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Abstract We present a parameter estimation procedure based on a Bayesian frame-
work by applying a Markov Chain Monte Carlo algorithm to the calibration of the
dynamical parameters of the LISA Pathfinder satellite. The method is based on the
Metropolis-Hastings algorithm and a two-stage annealing treatment in order to ensure
an effective exploration of the parameter space at the beginning of the chain. We
compare two versions of the algorithm with an application to a LISA Pathfinder data
analysis problem. The two algorithms share the same heating strategy but with one
moving in coordinate directions using proposals from a multivariate Gaussian distri-
bution, while the other uses the natural logarithm of some parameters and proposes
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jumps in the eigen-space of the Fisher Information matrix. The algorithm propos-
ing jumps in the eigen-space of the Fisher Information matrix demonstrates a higher
acceptance rate and a slightly better convergence towards the equilibrium parame-
ter distributions in the application to LISA Pathfinder data. For this experiment, we
return parameter values that are all within ∼ 1σ of the injected values. When we
analyse the accuracy of our parameter estimation in terms of the effect they have
on the force-per-unit of mass noise, we find that the induced errors are three orders
of magnitude less than the expected experimental uncertainty in the power spectral
density.

Keywords Markov Chain Monte Carlo · LISA · eLISA · Gravitational waves ·
LISA Pathfinder · LISA technology package · LTP

1 Introduction

LISA Pathfinder [1–3] is a European Space Agency mission aiming to develop and
test the key technology for the forthcoming space-based gravitational wave detectors
[4]. A considerable amount of the LISA Pathfinder mission time will be dedicated to
a series of experiments for the calibration of the model parameters of the spacecraft
dynamics. Such procedures will be periodically repeated during the LISA Pathfinder
mission, and similar procedures will be necessary on future space-based gravitational
wave detectors in order to ensure that the sensitivity of the instrument is optimised.
Since the instrument calibration has a direct impact on the scientific outcome of the
mission, it is of fundamental importance to develop a powerful and solid procedure
for parameter estimation that allows for an accurate calibration in a short amount of
time.

The problem of the calibration of parameters describing the dynamics was already
discussed in previous works focusing on LISA Pathfinder [5–7]. In Ref [5, 6] a fre-
quentist approach to the problem was developed using both linear and non-linear
parameter estimation techniques respectively. In Ref [7] a Bayesian framework was
developed for the second LISA Pathfinder mock data challenge, based on a clas-
sic Metropolis-Hastings Markov Chain Monte Carlo (MCMC) scheme for parameter
estimation[8, 9]. From the point of view of the present paper, the method presented in
Ref [7] is comparable with the algorithm working with the direct physical parameters
and proposing the MCMC jumps from a multivariate Gaussian distribution.

The MCMC algorithm is a stochastic method that is very useful for carrying out
Bayesian inference. The algorithm allows us to easily sample from a sometimes
unknown probability distribution. By generating an ergodic Markov chain, we can
sample from the underlying target distribution. The longer the MCMC, the more
statistically independent the chain is and the better we model this distribution.1 In
general MCMC algorithms are relatively easy to implement. While guaranteed to

1Once a chain has been run long enough and it begins to settle down to an equilibrium distribution, each
point in the chain should reach a state where it is only dependent on the previous point.
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converge to the target distribution, the convergence time of the MCMC is problem
dependent and is virtually impossible to estimate. However, the convergence can be
accelerated if we use proposal distributions for the chain which we believe to be close
to the target distribution. MCMC algorithms are normally divided into two parts :
a “burn-in” phase where we allow the chain to find an equilibrium state, and a true
MCMC which we use afterwards for statistical purposes. The end of the burn-in
phase is usually decided “by-eye” as it is problem specific.

We propose a Bayesian approach to the calibration of the parameters of the
spacecraft dynamics that is based on Metropolis-Hastings MCMC. The Metropolis-
Hastings MCMC is a reference method for parameter estimation in Bayesian
Statistics (see for example Ref [10]) and in space-based Gravitational waves data
analysis (for an overview, we refer the reader to Ref [11] and references therein)
where it has demonstrated its flexibility and power in the estimation of parameters
for a variety of GW sources [12] . We compare here two different algorithms for
the construction of the Markov Chain. One works with the physical parameters and
proposes MCMC jumps from a multivariate Gaussian distribution, the other uses a
conversion from some of the physical parameters to their natural logarithm in order to
calculate the Fisher Information Matrix. This improves the numerical stability for the
inversion operation to obtain the covariance matrix, and proposes MCMC jumps in
the eigen-space of the Fisher Information matrix. Both methods implement a double-
stage annealing heat treatment in order to effectively explore the parameter space at
the beginning of the chain.

The rest of the paper is laid out as follows. In Section 2 we provide details about
the LISA Pathfinder dynamics, as well as an introduction to the experiment aimed
at calibrating some of the parameters of the dynamics along the principal measure-
ment axis. In Section 3 we develop the mathematical basis of our algorithm, while in
Section 4 we report the results of the application of our methods to a model of LISA
Pathfinder and we analyze the two methods in terms of acceptance rate, convergence
to the equilibrium distribution and error on the test mass noise estimation caused by
the uncertainty on the estimated parameters.

2 A test case for LISA Pathfinder mission

LISA Pathfinder is a controlled three-body system composed of two test masses and
the enclosing spacecraft. One test mass is free-falling along the principal measure-
ment axis and it is used as a reference for the drag-free controller of the spacecraft.
The second test mass is actuated at very low frequencies (below 1 mHz) in order
to follow the free falling test mass. This actuation scheme provides a measurement
bandwidth of 1 ≤ f ≤ 100 mHz in which both the test masses can be con-
sidered to be effectively free-falling. The system has two output channels along
the principal measurement axis, which provide estimates of the displacement of
the spacecraft relative to the free-falling test mass and of the relative displacement
between the individual test masses. We focus our attention on the principal measure-
ment axis dynamics for which we can build a model that contains at least the five key
parameters reported in Table 1 of [6].
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Table 1 Parameter descriptions and parameter range values used in the simulation and in the MCMC
search. ‘Simulation values’ are the values used to produce the set of synthetic data, they represent the ‘true’
values for the parameters in our test. The ‘search range’ defines the extent of the uniform prior distribution
used in the MCMC

Name Description Simulation value Search range

Adf Actuation gain of the drag-free 1.05 [0.5, 1.5]
control loop acting on space-

craft thrusters

Alfs Actuation gain of the electro- 1.05 [0.5, 1.5]
static suspension actuating the

second test mass at low frequency

SΔ1 Interferometer cross-talk coef- 1 × 10−5 [−1 × 10−3, 1 × 10−3]
ficient coupling the first channel

with the differential channel

|ω1|2 Stiffness coupling the motion of 1.4 × 10−6 s−2 [1 × 10−7, 1 × 10−5] s−2

the spacecraft to the motion of

the first test mass

|ω2|2 Stiffness coupling the motion of 2.2 × 10−6 s−2 [1 × 10−7, 1 × 10−5] s−2

the spacecraft to the motion of

the second test mass

We simulated two typical experiments [6] for LISA Pathfinder: one simulates
the motion of the spacecraft with respect to the free-falling test mass and the other
forces a movement of the suspended test mass with respect to the free-falling mass.
The signal in the first experiment is obtained by forcing the drag-free controller
of the spacecraft to change sinusoidally its set-point. This sends a command to the
thrusters that produces a sinusoidal movement of the spacecraft with respect to the
free-falling test mass. In the second experiment we force a sinusoidal bias in the
set-point of the system that controls the low frequency actuation of the second test
mass. As a consequence a sinusoidal voltage is applied by the actuators to the sec-
ond test mass and a movement with respect to the free-falling test mass is induced.
For the generation of our synthetic signals we adopted the standard scheme in which
the output of the instrument can be written as s(t) = h(t) + n(t), where h(t) is the
time-dependent noiseless output of the LISA Pathfinder model for the dynamics (the
model is described in Ref [6]) and n(t) is an additive noise contribution generated
in accordance to the procedure described in Ref [13]. The noise n(t) is a Gaus-
sian distributed correlated noise that reproduces the current knowledge of the LISA
Pathfinder noise budget [14], its power spectral density at the two output channels is
reported in Fig. 1 together with the cross spectral density between the two channels.

This noise is principally composed of thruster noise in the channel sensing the
displacement of the spacecraft relative to the free falling test mass (first channel)
and of a mixture of capacitive actuation noise and interferometric sensing noise on
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Fig. 1 Noise power spectral density (PSD) and cross spectral density (CSD) for the two output channels

the channel sensing the relative displacement between the test masses (differential
channel). These two channels (which are displacement estimates at the interferome-
ter output), need to be converted into force-per-unit-mass for the analysis of the force
noise affecting the test masses. The conversion is based on a model of the spacecraft
dynamics that is written in terms of the parameters described in Table 1. The cali-
bration of the parameters of such a model therefore has a direct impact on the LISA
Pathfinder test-mass noise budget, which is the main scientific target of the LISA
Pathfinder mission.

In order to better understand our parameter estimation problem, we calculated the
5D likelihood surface over a uniform grid of points spanning the parameters ranges
defined in Table 1. 2D slices of the likelihood surface are presented in Fig. 2 where
we clearly see that there is one global solution over the ‘search range’. The ‘search
range’ for the parameters is defined from the prior knowledge of the system that
principally comes from construction constraints and requirements.

In order to provide an idea of the sensitivity of the instrument to the parameters
we report in Fig. 3 the system transfer functions for the parameters values used for
the simulation (Table 1) and the values at the beginning of the Markov chain.

3 Bayesian analysis and Markov Chain Monte Carlo

Bayesian analysis has become a very useful tool in the field of space based gravita-
tional waves [15–27], and has also been applied to LISA Pathfinder data analysis [7].
One of the advantages of Bayesian analysis is that it provides a direct method of cal-
culating the marginalised posterior density function (PDF) for each of the parameters
via Bayes’ theorem

p(λ|s) = π(λ)p(s|λ)

p(s)
, (1)
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Fig. 2 2D slices in the 5D likelihood surface for the current parameter set. Note that some of the axes are
in log-scale while others are in a linear scale. We clearly see that over the parameter ranges, the surface
contains a single global solution

where p(λ|s) is the posterior density function (PDF) for the solution λ given the data
s(t), π(λ) denotes the prior probability of the parameters and p(s|λ) is the likelihood,
which we will define below. The constant in the numerator is the Bayesian evidence
and is defined by

p(s) =
∫

dλπ(λ)p(s|λ), (2)

which, as can be seen, is independent of the solution set λ and is unimportant for our
study.

While the previous works cited above have used sophisticated variants of the
MCMC to search over a wide parameter space, in this study, as we can see from
Fig. 2, we are dealing with a simplified surface. Even starting at the boundaries of our
parameter priors, we can see that the surface contains a unimodal solution. Because
of this we can use a straightforward MCMC.

Starting with a detector output s(t) = h(t)+n(t), where h(t) is the induced signal
and n(t) is the noise in the detector, we generate a template h(t;λi ) by choosing
a random starting point in the parameter space λi , and then draw from a proposal
distribution in order to propose a jump to another point in the space λi+1. To compare
both points, we evaluate the Metropolis-Hastings ratio

H = π(λi+1)p(s|λi+1)q(λi |λi+1)

π(λi )p(s|λi )q(λi+1|λi )
, (3)
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Fig. 3 This Figure displays the system input—output transfer functions for the parameter values used
for the simulation data (Table 1) and the values at the starting of the Markov chain. Blue line refers to
simulation parameters while red line refers to chain starting values. A Transfer function between the first
experiment input and the first output channel. B Transfer function between the first experiment input
and the differential output channel. C Transfer function between the second experiment input and the
first output channel. D Transfer function between the second experiment input and the differential output
channel

where we now define p(s|λ) as the likelihood by

p(s|λ) ≡ L(λ) = C e−〈s−h(λ)|s−h(λ)〉/2, (4)

where C is a normalization constant. We are unconcerned by this constant as we
ultimately are interested in the likelihood ratio between the original and proposed
points, hence cancelling the constant. The angular brackets above denote the noise-
weighted inner product of the two real functions s(t) and h(t)

〈h |s 〉 = 2
∫ ∞

0

df

Sn(f )
[h̃(f )s̃∗(f ) + h̃∗(f )s̃(f )], (5)

where

h̃(f ) =
∫ ∞

−∞
dt h(t)e2πıf t (6)

is the Fourier transform of the time domain waveform h(t) and an asterisk denotes a
complex conjugate. The quantity Sn(f ) is the one-sided noise spectral density of the
detector. The quantity q(λ|y) is the transition kernel or proposal distribution used for
jumping from λi to λi+1. Once a jump is proposed, it is then accepted with probability
α = min(1, H), otherwise the chain stays at λi . While we are sure that the MCMC
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will eventually converge to the global solution, the timescale of this convergence is
unclear. So, since we can never be sure that our starting values are close to the true
values, it can take a long time for the chain to “walk” to the global maximum. A
common way of decreasing this travel time is to heat the likelihood surface using a
technique called simulated annealing. This has the effect of lowering and fattening
structures on the surface. We will describe this method in more detail at a later stage.

For the LISA Pathfinder experiments, we expect to have an extremely high signal-
to-noise ratio (SNR) (∼ 105 − 106). In this case the detector output has the form
s(t) ≈ h(t). For this high SNR limit, it is expected that the errors in the parameter
estimation will have a Gaussian probability distribution given by

p(Δλ) =
√

Γ

2π
e−

1
2 ΓμνΔλμΔλν

, (7)

where Γμν is the Fisher information matrix (FIM)

Γμν =
〈

∂h

∂λμ

∣∣∣∣ ∂h

∂λν

〉
, (8)

and Γ = det(Γμν). For the LISA Pathfinder project, there is no closed-form solution
to the Fisher matrix calculation as it is not possible to take the derivatives of the tem-
plate with respect to the parameters, nor evaluate the integral analytically. Therefore,
the derivatives in the inner product need to be calculate numerically using a one-sided
difference algorithm. Also, as the templates are expensive to generate (on the order
of seconds), we update the FIM calculation every 100 iterations during the annealing
scheme and as we believe that the FIM should remain almost constant at the global
solution, every 5000 iterations during the MCMC.2

While we have seen that the likelihood surface is highly simplified compared to
other gravitational wave problems, in that there exists a single mode solution, our
goal here is to present an algorithm that can be started from any point in the parameter
space. In order to accelerate the convergence of the chain to the global peak, we use
a mixture of annealing methods as presented in [15, 16]. This first means re-writing
the likelihood as

L(λ) = C exp

(
− 1

2β
〈s − h(λ)|s − h(λ)〉

)
, (9)

where we introduce a heat scaling β. The first annealing scheme used is called ther-
mostated annealing. While the SNR for the experiments are large, and even though
there is no chance of getting stuck on a secondary solution in this particular problem,
it is difficult to choose the initial annealing temperature by hand. If the tempera-
ture is too high, all structures on the likelihood surface are completely flattened and
the MCMC aimlessly explores a flat surface. Therefore, as it is again costly to gen-
erate templates, we do not want to waste computer cycles by choosing the initial
temperature too high. On the other hand, in the case of a multimodal solution, if the

2The update of the Fisher Information Matrix is performed in order to update the proposal distribution that
is a multivariate Gaussian which covariance matrix is provided by the inverse of the Fisher Information
Matrix.
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temperature is too low, the chain can get stuck on a secondary maximum and never
reach the global solution. Therefore, we allow the algorithm to chose its own initial
annealing temperature according to

β =

⎧⎪⎨
⎪⎩

1 0 ≤ SNR ≤ SNRT

(
SNR

SNRT

)2
SNR > SNRT

, (10)

which ensures that once we attain a SNR of greater than a threshold SNR, SNRT , the
effective SNR never exceeds this value. The working principle of such a method is
that below the threshold SNRT , the algorithm behaves as a standard MCMC. There-
fore it spends all of its time conducting local exploration. However once it finds
something interesting, i.e. SNR > SNRT , the surface is heated according to (10).
In our algorithm we run the thermostated annealing for the first 2000 iterations. For
this problem, we choose our threshold SNR upon which we start injecting heat into
the system as follows. We calculate the SNR at the boundary as defined by our pri-
ors, and pick an arbitrary value for β, which defines SNRT . Therefore as the solution
progresses more and more controlled heat is injected into the system, allowing the
MCMC to effectively control its own environment, and converge faster. As previously
stated, the SNRs involved in this problem are very large. If we take the boundary val-
ues for the parameters, as given in Table 1, the SNR at the boundary is 1.097 × 106,
while at the injected values we have a SNR of 1.176 × 106. To choose the threshold
SNR, we arbitrarily demand an initial value of β = 1000. Solving for the threshold
SNR in the above expression then provides a threshold value of SNRT ∼ 3.5 × 104.
After this we use a second annealing scheme, which is standard simulated annealing,
to cool the surface down. To do this we use an annealing of the form

β =

⎧⎪⎨
⎪⎩

10
ξ
(

1− i
Tc

)
0 ≤ i ≤ Tc

1 i > Tc

, (11)

where i represents the chain index, and Tc represents the number of chain points
during the cooling schedule. For this study, ξ = log10

(
βT A

max

)
is the initial simu-

lated annealing heat-index defined by the maximum temperature at the end of the
thermostated annealing phase βT A

max. Again, as there is no risk of getting stuck on sec-
ondary maxima, we cool down the surface much quicker that we normally would for
other problems. Here we set the cooling schedule equal to Tc = 3000 iterations.

One of the things that we wanted to test in this study was the difference between
moving in eigen-directions and coordinate directions when we update the parameters.
In Ref [15, 16] the proposed updates were done in the following manner. Once the
Fisher matrix is calculated, we find the eigenvalues Eμ and eigenboldsymboltors
Vμν . We then update the parameters in the eigen-directions according to

λμ → λμ +
(√

β

D

)
5∑

ν=1

Vμν√
Eν

nν (12)
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where D is the dimensionality of the problem and nν = Nν(0, 1) is a boldsymboltor
of normal distributed random numbers with zero mean and unit variance. The factor
of 1/

√
D ensures that the total jump in the parameter space has a length of ∼ 1 σ ,

while the heat factor β ensures that while the temperature is high, we take larger steps
in the chain and thus more quickly explore the parameter space.

To move in coordinate directions, we first invert the Fisher matrix to obtain the
variance-covariance matrix, i.e.,

C ≡ Cμν = (Γμν)
−1. (13)

As C is a real symmetric matrix, we then use a Cholesky decomposition to write
the covariance matrix as C = LL∗, where L∗ is the Hermitian conjugate or adjoint
matrix of L, and L is a unique lower triangular matrix. We should note here that for
a real symmetric matrix the Hermitian conjugate is equivalent to the matrix trans-
pose. We then generate a boldsymboltor of zero mean, unit variance random Gaussian
values n = nν , and we update the parameter values according to

λμ → λμ +√β(L.n), (14)

where the update is along the coordinate directions for the parameters.
In the analysis conducted in this article, we combine the information provided by

two LISA Pathfinder output channels and two separate experiments. Since we assume
that the outputs of two distinct experiments are independent, the total likelihood for
a number Ne of experiments is just the sum of the likelihoods from each experiment,
i.e.

Ltot =
Ne∑
i=1

Li . (15)

The inner product in (5) can be generalized in a straightforward way to the case of
multiple output channels by

〈s − h(λ) |s − h(λ) 〉 = . . .

2

∞∫

0

[s̃1 − h̃1(λ), . . . , s̃Nc − h̃Nc(λ)]Σ−1
n (f )

⎡
⎢⎣

s̃1 − h̃1(λ)
...

s̃Nc − h̃Nc(λ)

⎤
⎥⎦
∗

df + c.c.

(16)

Here Σn(f ) is the cross-spectral matrix, which contains the power spectral density
at frequency f on the diagonal and the cross-spectral density on the off-diagonal
terms, Nc is the number of output channels.

4 Results

Our study involves two different types of MCMC. For the movement in eigen-
directions, we choose to work with the parameter set:

λμ =
{
Adf, Alfs, SΔ1, ln |ω1|2, ln |ω2|2

}
. (17)
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Table 2 Simulated and recovered parameter values from the eigen-direction MCMC. The final column
gives the standard deviation scaled offset from the true value

Parameter Simulation value Mean Standard deviation (λR − λC)/σC

Adf 1.05 1.049445 4.7356 × 10−4 1.17

Alf s 1.05 1.050002 3.3727 × 10−6 −0.58

SΔ1 10−5 9.9314 × 10−6 1.5669 × 10−7 0.44

|ω1|2 1.4 × 10−6 1.40004 × 10−6 1.8048 × 10−10 −0.23

|ω2|2 2.2 × 10−6 2.20011 × 10−6 1.5974 × 10−10 −0.69

By working in the natural logarithm of the parameters
{|ω1|2, |ω2|2

}
we lower

the condition number of the Fisher matrix, making it numerically more stable for
inversion purposes. This matrix is still not as stable as we would like due to the
small values of the parameter SΔ1.3 However, as this parameter can also have neg-
ative values we cannot use its logarithm. For the coordinate direction chains, we
use the physical parameter values. Each chain was run for 2 × 105 iterations, with
5,000 iterations of annealing. The execution time for each chain is roughly 12 hours
using a single core of a 16 cores E5640 2.66 GHz Intel(R) Xeon(R) processor. The
simulated experiment includes two system identification investigations of 4 hours
each. The LISA Pathfinder scheduled mission length is six months, during this
period a densely scheduled program of experiments will be executed with the aim of
completely characterise the system in free-fall condition. The typical length for an
experiment is 24 hours, each experiment can involve several output channels sam-
pled at 1 Hz. In some special cases, e.g. long noise measurements to assess noise
stability and low frequency behaviour, a single experiment can last more than one
day. To confirm the relative simplicity of the problem, starting with injected values
of {1.885, 2.0399,−0.00746, 9.135 × 10−6, 6.327 × 10−6}, both chains converged
to the global maximum within 3000 iterations. However, just to be safe, we will label
the first 8,000 chain points as “burn-in”. These points will be rejected when it comes
to constructing a statistical analysis from the chains. These initial values correspond
to a separation of approximately {103, 105, 104, 104, 104}σ from the injected values,
where σ here is the standard deviation calculated from the chain and presented later
in Table 2. In Fig. 4 we plot the instantaneous acceptance rates for both the eigen-
direction chain (blue-solid) and the coordinate direction chain (orange-dashed). We
can see that we gain roughly a factor of two by using jumps in eigen-directions
rather than coordinate directions with the chains having final acceptance rates of
63 % and 31 % respectively. This means that to independently sample the same pos-
terior density, the coordinate direction chain would need to be twice as long as the
eigen-direction chain.

In Figs. 5 and 6 we plot the convergence of the means and standard deviations
of each parameter from the two MCMC methods. We can see by comparing both

3We are in log space in order to have the parameters of the same order of magnitude. In the case of SΔ,
since it can go negative, we can not use the logarithm and the parameter keeps its standard value of the
order 10−5 that is considered small when compared with 1.
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Fig. 4 The instantaneous acceptance rate for two Markov chains moving in eigen-directions (blue-solid)
and coordinate directions (orange-dashed). We observe a factor of two improvement by moving in eigen-
directions, as opposed to moving in coordinate directions

methods that they have a similar rate of convergence. We should point out here that
we would not expect both chains to find exactly the same value. If we were to run
N chains, we would expect the chains to produce N values all roughly within ±1σ

of the true value. Our criterion of evaluation here is how quickly the chains flatten
with no large fluctuations. Although after 2 × 105 iterations, it is still difficult to
prefer one method over the other. This is because of the fact that even though we
are dealing with a simplified problem, it still takes 105 iterations for the Metropolis-
Hastings algorithm to begin to converge. This suggests that for full convergence, the
chains would need to be run for longer. However, it is still clear that we are finding
the global peak very quickly.

In Fig. 7 we plot the marginalised, normalised histograms from the MCMC. On
the x-axis we plot the true value offset scale (λR − λC)/σC , where λR is the true
injected parameter value, λC is the chain value and σC is the standard deviation as
calculated from the chain. We can see that both chains give us distributions very close
to the true values. If we look closer, we can however see that the coordinate direction
distributions have a higher kurtosis due to the lower acceptance rate. In all cases, the
distributions are almost Gaussian with a skewness of ∼ 10−2. While there may seem
to be no reason to prefer one method over the other, we will focus on the results from
the eigen-direction chain due to its higher acceptance rate. We present the results
in full in Table 2, but we quote here that the chain returned mean values for each
parameter that were within {1.17,−0.58, 0.44,−0.23,−0.69}σ of the true answer.
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Fig. 5 The instantaneous parameter means for two Markov chains moving in eigen-directions (blue) and
coordinate directions (orange). The two methods show similar rate of convergence and despite we are
dealing with an unimodal problem it takes 105 samples to have a reasonable convergence. The means are
calculated using a sliding window, so each value of the mean is updated as the number of iterations of the
chain is increased

One of the aspects of the problem that we can also investigate from the MCMC
is the correlations between parameters. Using the chains, we calculate the variance-
covariance matrix using

Cμν = 1

N − 1

N∑
i=1

(xμ − x)(yν − y), (18)

where N = 192, 000 is the number of chain points (ignoring the 8,000 burn-in points
at the beginning of the 2×105 iterations). An overbar denotes the mean of the param-
eter as calculated from the chain. Once we have the variance-covariance matrix, we
can calculate the matrix of standard deviations and correlation coefficients according
to

Dμν =
{√

Cμν μ = ν

Cμν/
√

σμσν μ �= ν
, (19)

where σμ = √
Cμμ are the standard deviations of the marginalised chains for each

parameter. The numerical values for the matrix, where the order of the rows and
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Fig. 6 The instantaneous parameter standard deviations for two Markov chains moving in eigen-
directions (blue) and coordinate directions (orange). They are calculated using the same sliding procedure
adopted for the means in Fig. 5

columns correspond to
{
Adf, Alfs, SΔ1, |ω1|2, |ω2|2

}
are

Dμν = . . .⎛
⎜⎜⎜⎜⎝

4.736 × 10−4 −9.921 × 10−3 1.662 × 10−3 −6.891 × 10−3 −1.547 × 10−3

3.373 × 10−6 1.259 × 10−2 6.697 × 10−1 7.659 × 10−1

1.567 × 10−7 −2.267 × 10−1 8.097 × 10−3

1.805 × 10−10 8.789 × 10−1

1.597 × 10−10

⎞
⎟⎟⎟⎟⎠ .

(20)

We can see that the parameter set is mostly uncorrelated. However, we do see
strong correlations between Alfs and the two parameters (|ω1|2, |ω2|2), i.e. 0.67 and
0.77, and between |ω1|2 and |ω2|2 themselves, i.e. 0.88. Such values are in agreement
with the Cramer-Rao bound matrix up to the second decimal digit.

It is interesting here to quantify the accuracy of our result in terms of the LISA
Pathfinder test mass noise budget. As discussed above, the parameters of the dynam-
ics play an important role in the analysis of the test mass noise, since they are used
for the calibration of the model that converts the displacement noise to force-per-
unit-mass. On the basis of such a model we calculated the noise response to the



Exp Astron (2014) 37:109–125 123

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

-4 -2 0 2 4 -4 -2 0 2 4

(λR - λC ) / σC

Adf Alfs SΔ1

ω1
2 ω2

2

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

-4 -2 0 2 4 -4 -2 0 2 4

(λR - λC ) / σC

Adf Alfs SΔ1

ω1
2 ω2

2

Fig. 7 This Figure displays the marginalised 1D histograms from the chains moving in eigen-directions
(left) and coordinate directions (right). The x-axis origin is set at the true value of the parameters and the
offset is the scaled difference between the true value λR and the chain value λC , divided by the standard
deviation of the chain σC . Both chains give distributions very close to the true values but from a closer
observation the coordinate direction distributions have a higher kurtosis due to the lower acceptance rate
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Table 3 Test mass noise response to parameters variations. The response of the noise as a function of
each parameter is linear n(ν) = Aν + B, therefore we obtained the slope A by a linear fit to the data. The
noise variation Δn at 1σ is obtained multiplying A by the sample standard deviation of the parameters
obtained from the chain

λ A Δn at 1σ [ms−2Hz−1/2]

Adf 1.9 × 10−28 9 × 10−32

Alfs 6.9 × 10−15 2 × 10−20

SΔ1 3.5 × 10−16 5 × 10−23

|ω1|2 2 × 10−12 4 × 10−22

|ω2|2 1.2 × 10−11 2 × 10−21

parameters as reported in Table 3. This data is obtained calculating the noise-per-
unit-mass on an uniform grid of values for the parameters. The grid is centered
around the simulation ‘true value’ and extends over 10σ , where σ is the sample
standard deviation obtained by the chain. The response of the noise as a func-
tion of each parameter is linear n(ν) = Aν + B, therefore we obtained the slope
A reported in Table 3 by a linear fit to the data. The noise change Δn at 1σ is
obtained by multiplying A by the values of σ obtained by the chain. As can be
seen in Table 3, even combining the results for all the five parameters we obtain
Δn ∼ 2 × 10−21[ms−2Hz−1/2]. Even assuming that we use 6 months data (the full
mission duration) this value is three orders of magnitude lower than the expected
experimental uncertainty (2.3 × 10−18 [ms−2Hz−1/2]). For this calculation we cal-
culated the power spectral density with the well known Welch’s overlapped segment
averaging method, using a 4 sample Blackman-Harris window [28] and 50 % seg-
ment overlapping. A reasonably long LISA Pathfinder noise run can last for 3 days,
and the current estimation for the noise level is 7.2 × 10−15 [ms−2Hz−1/2] at 1mHz
[14]. Using this information in calculating the expected uncertainty, we obtain a value
of 1.4×10−16 [ms−2Hz−1/2]. While if we assume a 6 month long data run, we obtain
an experimental uncertainty of 2.3 × 10−18 [ms−2Hz−1/2], where the uncertainty is
simply calculated as the value for the power spectral density divided by the number
of averaging segments.

5 Conclusions

We have presented a study of two different MCMC methods for an experiment with
LISA Pathfinder. While both methods are based on the Metropolis-Hastings algo-
rithm, and both use the Fisher matrix to generate the covariance matrix, they differ
in their treatment of the parameters and the way in which they move in the parameter
space. In one case, we work with the physical parameter values and make MCMC
jumps in the coordinate directions. For the other chain, we generate a more numeri-
cally stable Fisher matrix by working in the logarithm of two of the five parameters.
This lowers the condition number of the matrix and makes it more stable during
the inversion process to obtain the covariance matrix. We demonstrate that while
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the experiment chosen for this study is quite simple, in that a single global solution
exists in the likelihood surface, we gain roughly a factor of two in acceptance rate
by moving in eigen-directions rather than in coordinate directions. Our chains both
end up with parameter estimations that are very close to the true values. This is to be
expected due to the extremely high SNR of the signal. However, as we are conduct-
ing a Bayesian inference, we are mostly interested in the full posterior distribution for
each parameter. In this case, due to the higher acceptance rate, it is clear that calculat-
ing a more stable Fisher matrix and moving in eigen-directions is an optimal choice.
The accuracy of the recovered parameters has been analyzed in terms of the effect
they have on the force-per-unit-mass test mass noise estimate. We demonstrated that
the error introduced by the parameters estimated from the MCMC chain is in any case
more than three orders of magnitude less than the expected experimental uncertainty
in the power spectral density.
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