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The interaction with gold suppresses fiber-like
conformations of the amyloid β (16–22) peptide†

Luca Bellucci,*a,b Albert Ardèvol,c,d Michele Parrinello,c,d Helmut Lutz,e Hao Lu,e

Tobias Weidnere and Stefano Corni*b,d

Inorganic surfaces and nanoparticles can accelerate or inhibit the fibrillation process of proteins and

peptides, including the biomedically relevant amyloid β peptide. However, the microscopic mechanisms

that determine such an effect are still poorly understood. By means of large-scale, state-of-the-art

enhanced sampling molecular dynamics simulations, here we identify an interaction mechanism between

the segments 16–22 of the amyloid β peptide, known to be fibrillogenic by itself, and the Au(111) surface

in water that leads to the suppression of fiber-like conformations from the peptide conformational

ensemble. Moreover, thanks to advanced simulation analysis techniques, we characterize the confor-

mational selection vs. induced fit nature of the gold effect. Our results disclose an inhibition mechanism

that is rooted in the details of the microscopic peptide–surface interaction rather than in general

phenomena such as peptide sequestration from the solution.

1. Introduction

The heptapeptide Aβ16–22 (sequence: KLVFFAE)‡ is a fragment
from residue 16 to residue 22 of the full-length amyloid β
peptide (Aβ).1 The latter (featuring various alloforms, the most
important being Aβ40 and Aβ42) is the basic constituent of the
amyloid plaque characteristic of Alzheimer’s disease.2 In
aqueous solution Aβ16–22 does not have a specific conformation,
but it is able to aggregate into amyloid fibrils with high β-sheet
structure content.3,4 Because of its propensity to self-assemble,
Aβ16–22 is well suited as a model system for probing the mecha-
nisms of aggregation by using experimental3–9 and
theoretical10–21 approaches. For example, it was possible to
determine that Aβ16–22 in aqueous solution self-assemble to
form fibrils by a direct transition from a random coil state to a
β-sheet structure.9 The fibrillation process of Aβ16–22 is pro-

moted by the presence of the sequence LVFFA22 which also con-
stitutes the hydrophobic core of the full-length Aβ peptide.
Aβ16–22 represents therefore a key system to understand the
more complex fibrillation processes of Aβ.

It is well-known that the fibrillation process of this (and of
other) peptide can be affected by the environmental con-
ditions. For example, the self-assembling of Aβ16–22 can be
manipulated by tuning the protonation state of the terminal
residues (i.e., K and E) by a pH change, and/or capping the
charged terminal, that are hydrophilic groups.5,12,23 At acidic
pH the uncapped Aβ16–22 peptides self-assembled into nano-
fibrils, whereas the capped ones formed nanotapes.5 Recently,
the interaction with nanoparticles (NPs) and inorganic
surface24,25 has been identified as a further environmental
condition that can strongly affect the fibrillation propensity of
peptides and proteins.26 Depending on the nature of the nano-
particle and the protein/peptide considered, either accelera-
tion or inhibition of the fibrillation process was obtained.
Limiting ourselves to Aβ peptides, various NPs have been
investigated, obtaining acceleration of fibrillation,27–29 its
retardation,27,28,30–35 or both effects depending on the relative
peptide/NP concentrations.36,37 Despite the extensive experi-
mental evidence, the underlying molecular mechanism deter-
mining the role of nanoparticle is mostly unknown. A general
mechanism accelerating fibrillation has been proposed
early:38,39 when the nanoparticle binds the peptide/protein,
the local concentration on the NP surface is higher than in
solution, making the formation of critical fiber nuclei easier.
In contrast, mechanisms leading to inhibition of folding are
less general36,37,40,41 and much less well-characterized. A con-
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centration-dependent mechanism that has been suggested is
the sequestration of the peptide from the solution.37,42

Another important piece of information is that for peptides,
the propensity to fibrillate is related to their propensity to
assume fiber-like conformations at the single peptide
level.37,43,44 This has been established largely by coarse-
grained simulations validated against experiments, also in the
presence of surfaces.37 Therefore, we propose that a mechan-
ism leading to inhibition of fibrillation consists of the
reduction of the population of fiber-like conformations upon
interaction with the surface/nanoparticle.

We have recently demonstrated that the interaction with a
gold surface can re-shape the internal free-energy landscape
(and thus the conformational ensemble) of the prototypical
alanine dipeptide.45 To identify the effect of the interaction
with inorganic materials on the conformational ensemble of a
fibrillogenic peptide, we study the conformational ensemble of
Aβ16–22 in bulk solution and when adsorbed on the Au(111)
surface by means of enhanced sampling atomistic simu-
lations. Au(111) is the most stable surface of gold, and the
most frequently occurring in nanoparticles.46 In particular, we
have used Parallel Tempering47,48 combined with Meta-
dynamics49,50 to effectively explore the conformational space
of the peptide, and its perturbation due to the interaction with
gold. To characterize such multi-dimensional conformational
space, we have analyzed the outcome of the simulations using
a recently proposed dimensionality-reduction technique,
called sketch-map analysis,51–54 whose usefulness to interpret
the behavior of complex polypeptides has been recently
shown.55 Fiber-like conformations turn out to be suppressed
by the interaction with the surface, suggesting that inhibition
of fibrillation is possible. Moreover, we could identify the
molecular mechanism leading to this result. Our findings are
corroborated by X-ray Photoelectron Spectroscopy (XPS) and
Sum-Frequency Generation (SFG) experiments, and are in
agreement with existing experimental evidence showing that
inorganic species able to engage the LVFFA segment of Aβ,
such as fullerenes,56,57 are indeed able to inhibit fibrillation.

2. Methods and computational
details

All simulations were performed with Gromacs58 (v4.5.3) in con-
junction with the PLUMED59 (v1.3) plug-in. Analyses were per-
formed with Gromacs tools and VMD.60 The peptide and gold
surface were treated with GolP FF,61,62 a force field that was
specifically parameterized to describe peptide–Au(111) surface
interactions. GolP employs OPLS/AA for the peptide and that
gave good results compared with experiments for the amyloid β
peptide.63,64 The initial conformation of the Aβ16–22 segment (i.e.
residues KLVFFAE) was extracted from the first NMR structure
deposited at the protein data bank (PDB code 1IYT). The peptide
was modeled in the zwitterionic form with an N-terminal of
NH3

+ and a C-terminal of COO−; the lysine side-chain was proto-
nated and the glutamic acid side chain was deprotonated.

The simulations were performed in explicit solvent using
SPC65 water. The total number of water molecules was 2773 in a
rectangular box of dimensions 41 × 41 × 62 Å3. The simulations
were conducted using periodic boundary conditions (PBC), in
all the three dimensions. The long-range part of the electrostatic
potential was treated with the Particle Mesh Ewald (PME) sum
with a grid size of 42 × 42 × 64. The cut off distance for non-
bonded interactions was set to 10 Å and a switch function was
applied to smooth interactions between 9 and 10 Å. The inte-
gration time step was set to 2 fs and all bonds were treated as
holonomic constraints using the LINCS algorithm.66

The equilibration protocol consisted of several steps. First
the peptide (i.e., KLVFFAE) was placed in the middle of the
box, which contains water and a gold slab (exposing the (111)
face and composed of five layers) and was minimized by 3000
steps using the steepest descent algorithm. The coordinates
thus obtained were used to perform 100 ps of MD simulation
in the NVT ensemble (temperature 300 K) with protein heavy
atoms restrained. 200 ps without restraints were then per-
formed in the NPT ensemble (pressure 1 atm, temperature
300 K). The final conformation was used to perform 200 ps in
the NVT (temperature 300 K) ensemble, obtained via the sto-
chastic velocity-rescaling thermostat.67

2.1. Parallel-tempering metadynamics

Because of the large number of degrees of freedom and the
different kinds of interactions of the system under study (i.e.
protein–protein, protein–gold, protein–water etc.) the mere use
of standard MD does not ensure a sufficient conformational
sampling of the system (Fig. 1).

Fig. 1 Snapshot of the system during metadynamics simulation. The
system is composed by water, Aβ16–22 and five gold layers. Peptide can
interact with two equivalent gold surfaces. CV is the z coordinate of the
center of mass of the peptide with respect to the gold surfaces.
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As already stated in the Introduction, to ensure an adequate
sampling, we used Parallel Tempering47,48 molecular dynamics
together with MetaDynamics49,50 (PTMTD). Following such a
protocol, 16 copies of the system (replicas) are simulated con-
currently at different temperatures (see below for details).
Exchanges of the configurations of neighboring replicas are
attempted at fixed intervals, and are accepted or rejected by
means of a Metropolis test so as to ensure the correct sampling
of the equilibrium ensemble. Using high temperatures it is
possible to accelerate the crossing of the conformational
energy barriers of the protein, and to have faster diffusion. In
metadynamics, a history-dependent bias potential is added
regularly during the simulation along some selected collective
variables (CVs) so as to disfavor the visit of already visited
states and enhancing the sampling. It is possible to demon-
strate50,68 that this bias converges to the free-energy landscape
along the CVs, up to a constant.

To set up the enhanced sampling simulation, the last con-
formation obtained from the equilibration protocol was repli-
cated 16 times. The replicas were simulated with parallel
tempering (PT) for 2 ns; the temperatures of the replicas
spanned between 300 and 366 K. The exchange between repli-
cas was attempted every 300 steps, i.e. 0.6 ps.

Parallel-tempering metadynamics (PTMTD)49 was per-
formed starting from the replicas obtained by the previous par-
allel tempering equilibration. The setup of the parallel
tempering protocol was the same as in the equilibration run.
All replicas were simulated by metadynamics using as CV
the projection along the z coordinate of the distance between
center of mass (COM) of the peptide and the gold surface.
In this way, surface and bulk-water conditions are sampled
with statistically relevant probabilities. The width and the
height of the Gaussian functions were set at 0.35 Å and
2 kJ mol−1 respectively. The bias potential was regularly
updated at every 5 ps intervals throughout the simulation.
After 78 ns of metadynamics the height of the Gaussian func-
tions was scaled to 1 kJ mol−1 to refine the energy profile.
Each replica was simulated for 140 ns yielding an aggregated
total time of 2.2 μs. The mean acceptance ratio evaluated at
the end of the PTMTD simulation was 18%. The reconstruc-
tion of the free-energy profiles was performed with the
PLUMED plugin.69 To estimate the accuracy of the re-
constructed free energy profile, we first generated the free
energy profiles (as the sum of the deposited hills) every 1 ns
excluding the first 50 ns of metadynamics, then we aligned
such profiles following the results of ref. 70 and finally, for
selected COM–Au distances placed every 2 Å, we calculated the
error by block-averaging the free-energies obtained for those
distances at different times. The free energy of adsorption was
obtained from the free-energy profile as described by Schnei-
der et al.71 Such a procedure requires to define the range of
COM–Au distances corresponding to the adsorbed peptide.
The lower boundary of this COM–Au distance range was here
chosen to be 0; the higher boundary was chosen as the
COM–Au distance where the free energy profile is 2.4 kJ mol−1

(i.e., kT ) below the bulk solution free-energy.

2.2. Setup of the sketch-map analysis

The analysis of the conformational ensemble of a flexible
peptide as Aβ16–22 is far from being straightforward. Confor-
mations are defined in a high dimensional space (even consid-
ering only the backbone dihedral angles Φ and Ψ, a 7 aa
peptide like Aβ16–22 requires 12 angles, i.e., a 12-dimensional
space). While it is reasonable to suppose that the peptide con-
formations are still clustered in basins,51 it is not obvious how
to choose a manageably small set of order parameters (collec-
tive variables) that allows to discriminate them. Recently, a
procedure to map the high-dimensional (high-D) confor-
mational space to a 2D space by keeping the relevant elements
of the high-D space structure has been proposed and success-
fully applied to problems in different fields.51–54 The basic
idea consists of: defining a distance between structures in the
high-D space (here the circular distance in the backbone tor-
sional angle space), associated to each conformation in the
high-D space a point in the Cartesian (2D) space and arranging
these points in such a way that the Euclidean distances
between them reproduce at best (in a sense that will be clari-
fied shortly) the distances in the high-D space.

In general it is not possible to preserve in the 2D space all
the distances of the high-D space, so what is really required is
that the high-D distances that are smaller than a typical, user-
defined threshold length σ are mapped to 2D distances that
are also smaller than σ, and vice versa. By judiciously choosing
σ, and a few other numerical parameters that control the
numerical mapping, the set of representative points distribute
on the Cartesian plane conserving the main features of basins
in the high-D space (for this property, such sets have been
called sketch-maps), providing a manageable way to identify
changes in the conformational ensemble as a response to
external perturbations (such as the surface). We refer the
reader to the original work51 for a comparison of sketch-maps
with other dimensionality reduction techniques such as prin-
cipal component analysis.

Sketch-map analysis has been performed via the suite of
programs distributed from the web-site http://epfl-cosmo.
github.io/sketchmap/. A snapshot every 2 ps was saved from
the trajectory of the lowest temperature replica in the PTMTD,
and the values of the 12 backbone angles in each such snap-
shot was extracted. The high-D distance was defined as pre-
viously51 and fully takes into account the dihedral angle
periodicity. 1000 landmark points in the 12-dimensional space
defined by these angles were selected according to the staged
algorithm54 with gamma = 0.1. Since the landmark points
were selected from the whole trajectory (i.e. from the peptide-
adsorbed, the peptide-solvated and the intermediate states),
the same numerical transformation can be used to produce
the sketch-maps associated to the conformational ensembles
of all states, making their comparison straightforward. The
sketch-map was built by minimizing the stress function
reported in ref. 51 for the landmarks using a distance
threshold σ = 2.5, and aD = bD = 7 for the sigmoid function of
high-dimensional distances and ad = 2, bd = 7 for the sigmoid
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function of bidimensional distances (see ref. 51 for defi-
nitions). σ, the most important parameter in defining the
sketch-map, was determined by trial-and-error, aD/d and bD/d
were chosen on the basis of previous experience and were not
optimized further. The sketch-map that refers to bulk behavior
was obtained from the projection on the 2D space of the
PTMTD snapshots where the COM–gold distance was larger
than 22 Å and the sketch-map for the peptide on the surface
was obtained from snapshots where the COM–gold distance
was ±1 Å of the minimum free-energy distance (4.7 Å).

2.3. XPS and SFG experiments

2.3.1. Sample preparation. Aβ16–22 (2 mg) was dissolved in
DMSO (33 μl) due to high aggregation tendencies in water or
buffer. From this solution, the required volume for a final con-
centration of 1 mg ml−1 Aβ16–22 was added to a vial with 1 ml
of water on a gold coated silicon wafer (1.2 nm Cr and 50 nm
Au). The gold substrate was incubated for 24 h in the peptide
solution. To avoid Langmuir–Schäfer deposition of a film from
surface adsorbed peptides when removing the sample, the
solution was flushed out of the vial for 1 min with running
MilliQ water. The gold substrate with the adsorbed peptide
was taken out of the vial and rinsed for another 60 s with
MilliQ water, then dried overnight. Self-assembled monolayers
on gold for the normalization of SFG spectra were prepared in
a similar way. A solution of dodecanethiol (DDT) was prepared
in ethanol (5 mM). The solution was added to a gold coated
silicon wafer in a glass vial and incubated overnight at room
temperature. The next day the substrates were taken out of the
solution and rinsed for 60 s with ethanol and then dried.
The gold samples were stored under nitrogen until the
measurement.

2.3.2. X-ray photoelectron spectroscopy. A Kratos AXIS
Ultra DLD spectrometer with a monochromatic Al Kα X-ray
source was used to collect the XPS data from the gold
substrates. The electron take off angle was 90° (normal to
surface). The acquisition was performed with an analyzer pass
energy of 80 eV. The base pressure during the measurements
was 5 × 10−9 mbar. The data was analyzed with the CasaXPS
software.

2.3.3. Sum frequency generation. The SFG setup used to
acquire spectra from the gold adsorbed peptides is described
elsewhere.72 In brief, a 10 W Spitfire Ace system (Spectra-
Physics, SP) with a repetition rate of 1 kHz is pumped with two
Empower systems (SP) and seeded with a Mai Tai (SP). A part
of the beam is used to generate broad-band infrared light in a
TOPAS Prime/NDFG unit (SP). The other part is spectrally nar-
rowed to 800 nm with a bandwidth of ∼16 cm−1 using an
etalon. The infrared (IR) and 800 nm (VIS) pulses are over-
lapped spatially and temporally on the gold substrate with
angles of incidence of 60° (IR) and 55° (VIS) to generate SFG in
a reflection geometry. The acquired spectra were energy cor-
rected using water vapor absorption bands and normalized
using gold substrates with self-assembled monolayers of dode-
canethiol. A linear background was subtracted. The SFG

spectra calculation were performed using the formalism
described by Roeters et al.73

3. Results and discussion
3.1. Adsorption free-energy profile

Adsorption free-energy profiles were calculated previously for
other peptides71 but not in the context of amyloidogenesis.
The adsorption free energy profile along the chosen CV (the
metal–peptide distance) is shown in Fig. 2. The profile has
been obtained by averaging the results at the two gold/water
interfaces present in the simulated system, the error bars rep-
resent the accuracy of the free energy calculated as described
in the previous section.

In the range 1.5–2.5 nm, the interactions between the
surface and the peptide are negligible. At 2.5 nm the peptide is
equidistant from both gold surfaces and the corresponding
free energy value was taken as zero. At 1.5 nm the peptide
starts to interact with the metal surface and the free energy
decreases. At lower distances the free energy profile shows
some irregularities, different for the two interfaces. These irre-
gularities might suggest that the peptide during the adsorp-
tion process can approach and finally adsorbs onto the gold
surface in a series of different conformations/orientations.
However, these irregularities are comparable to the extent of
the error bars of the free energy, therefore no definitive con-
clusion can be drawn.

The absolute minimum is located at 0.47 nm from the gold
surface. At this distance Aβ16–22 is completely adsorbed onto
the gold surface. We have calculated the adsorption free
energy as discussed in ref. 71, obtaining a value of −62 ±
16 kJ mol−1. There are no experimental data to compare
directly with. Typical adsorption free-energy values for other
dodecapeptides at polycrystalline (vs. single plane (111)) sur-
faces are in the same range but somewhat smaller, around
−40 kJ mol−1.74,75 Certainly the presence of other Au faces in
the experiments decreases the affinity with respect to
Au(111),76–78 and the highly charged nature of the experi-

Fig. 2 Free energy adsorption profile of Aβ16–22 onto the gold surface.
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mentally measured dodecapeptides may also contribute to
reduce their adsorption by creating unfavorable peptide–
peptide Coulomb repulsion effects as well as substantially
improving the solvation free energy. Finally, part of the differ-
ence may be due to the force field, since the original GolP
force field tends to overestimate the binding free energies in
solution with respect to the more recent GolP-CHARMM.76,79

3.2. Conformational analysis on the basis of the end-to-end
distance

In this section we shall present an analysis of the confor-
mational changes upon adsorption based on a standard collec-
tive variable for a floppy peptide, i.e., the end-to-end distance.
Although its descriptive power is quite limited, it provides a
first glimpse of what happens to the peptide conformational
ensemble. In the next section, we shall use instead an analysis
technique specifically designed to study conformational
ensembles and their changes. The end-to-end distance d of the
peptide is here defined as the distance between the terminal
Cα atoms (dotted red line in Fig. 3d).

The distribution of the end-to-end distance by the bias of
the metadynamics as a function of the COM–gold distance is
reported in Fig. 3. Not surprisingly, the end-to-end distance is
not effective in defining the conformational basins in bulk
solution: when the peptide is far from the surface, the distri-

bution of end-to-end distance spans a large interval with a
quite homogeneous distribution, possibly with a maximum
around 0.8 nm and with a distinct region below 0.6 nm. Never-
theless, when the peptide comes closer to the surface, the dis-
tribution of end-to-end distance becomes more structured. We
can recognize roughly 4 regions of end-to-end distances: (a)
completely elongated with d greater than 1.2 nm, (b) partially
elongated with d between 1 nm and 1.2 nm, (c) partially closed
with d between 0.6 nm and 1 nm (Fig. 3(c) and (d)) completely
closed (i.e. U shape)80 with d lower than 0.6 nm (Fig. 3(d)).
Visual inspection shows that within each d interval, various
backbone conformations co-exist. It is worth noting that the
partially closed conformations (Fig. 3(c)) are stabilized by a
salt bridge between the long side chain of the LYS residues
and the carboxylic groups of the C-terminal tail or GLU
residue, whereas the completely closed conformations
(Fig. 3(d)) are stabilized by a salt bridge between the N-termi-
nal and the same carboxylic groups (i.e. C-terminal tail or GLU
residue).

At short distances from the surface (closer than 1.2 nm)
Aβ16–22 starts to interact with the surface. Usually the FF motif
(which shows high affinity towards the metal surface) is
adsorbed to the surface, whereas charged groups (i.e. terminal
residues) point towards the solvent. In this region the most
populated states are the partially closed (Fig. 3(c)) and the
closed conformers (Fig. 3(d)). The elongated conformers are
not present.

At a distance lower than 0.5–0.6 nm the peptide is comple-
tely adsorbed and starts to populate the elongated and par-
tially elongated conformer states (Fig. 3(c and d)). While end-
to-end distance may convey some useful information, the
picture of the peptide conformational ensemble that it pro-
vides is rather partial, and more advanced analysis techniques,
like that presented in the next section, are needed.

3.3. Effect of the adsorption on the peptide conformations:
conformational selection vs. induced fit

In the previous section, we have described some of the
changes in the structural properties of the peptide as a func-
tion of the distance from the surface via the end-to-end dis-
tance. It is clear, from that analysis, that the conformational
ensemble is modified upon adsorption on the surface.
However, the use of a single, structural descriptor is certainly
not enough to characterize the peptide conformations. Indeed,
sketch-maps51,54 will be used here to analyze the effect of the
adsorption on the peptide conformations. Analogously to
intrinsically disordered proteins and peptides that bind to a
biological partner,81,82 two extreme cases can be defined.83 In
conformational selection,84 the “biological partner” (the surface
here) would bind only a subset of the conformations that exist
in solution; in induced fit,85 it would instead induce new con-
formations that do not belong to conformational basins of
bulk solution. The first issue that we shall address here is
whether the interaction with the surface is akin to confor-
mational selection, induced fit or an intermediate case.

Fig. 3 Distribution fraction of the end-to-end distance d as a function
of the peptide–gold distance (top). The black rectangle identifies the
minimum of the free energy with respect to the peptide–surface dis-
tance. In the top right inset we show the distribution averaged over the
bulk region (COM distance from the surface larger than 1.25 nm). Panels
(a)–(d) show examples of conformations with characteristic d values.
The end-to-end distance (d ) is defined as the distance between the
terminal Cα atoms. All the distances are in nm.
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The sketch-map for the molecule in solution (i.e., when the
COM–gold distance is greater than 2.1 nm) is presented in
Fig. 4(a) in terms of normalized density of conformations. The
conformations that characterize each basin are shown in
Fig. S1,† showing that indeed the sketch-map preserves the
basin repartition of the high-D space. Populations for the
major basins are also given in Fig. S1;† none of the basins
collect more than 10% of the total population, showing that
this peptide is floppy and lacks a dominant conformation.
Fig. 4(b) shows the sketch-map for the peptide on the surface
(i.e., when the COM is within ±1 Å from the COM–surface dis-
tance corresponding to the minimum of the free energy). First,
by comparing the two sketch-maps in Fig. 4(a) and (b), we note
that indeed the surface changes sizably the conformational
ensemble of the peptide. The comparison between the two
sketch-maps (in solution and on the surface) allows us to
address the question whether the binding to the surface is
more similar to conformational selection or to induced fit.
First, we note that there are indeed peptide conformations in
water that are conserved also on the surface, i.e., some portion
of the maps of Fig. 4(a) and (b) are similarly populated. In par-
ticular, the basin identified by the basin labeled 2 is the most
populated both in solution and on the gold surface (with a
similar population, around 10%), albeit the center of the basin
undergoes a small shift in the CV plane. However, many other
well populated basins in solution disappear on the gold
surface (e.g., basin 1), i.e., many conformations that exist in
solution are not bound by the surface. In this respect, the
binding process resembles the conformational selection
mechanism, where some conformations do not participate in
the binding. On the other hand, a pure conformational selec-
tion would require the sketch-map at the surface to be a sub-
set of that in water. This is clearly not the case since new spots
(i.e., conformational basins) appear on the surface sketch-map
that are not present in bulk water (see, e.g., the spot marked by
arrow 3). Therefore, the surface is inducing new confor-
mations, i.e., an induce-fit mechanism is also at work. We can
characterize the conformational ensemble changes due to the

surface as intermediate between an induced fit and a confor-
mational selection one.

To quantify the changes of the conformational ensemble
continuously from bulk solution to the surface, we have calcu-
lated the Hellinger’s distance between the sketch-map in bulk
solution and those at various COM heights. The Hellinger dis-
tance H[f,g] is a measure of the overlap of two normalized dis-
tributions f (Q) and g(Q), function of a set of variables Q:

H½ f ; g� ¼ 1�
ð
dQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðQÞgðQÞ

p
ð1Þ

It is symmetric with respect to f and g, and yields a number
between 0 (identical distributions) and 1 (no overlap). All the
structures of the peptide found at varying values of COM dis-
tance to the gold surface were projected on the sketch-map to
obtain the conformational population density of all the poss-
ible intermediate ensembles. By applying this distance defi-
nition we were able to show that the sketch-map changes
almost monotonically from solution to surface, as shown in
Fig. 5.

The distance between two sketch-maps both taken in bulk
solution but at different COM positions turns out to be 0.1
(rightmost values in Fig. 5). We can take this value as a
measure of the statistical uncertainty on the sketch-maps (in
fact, without statistical noise the distance between two sketch-
maps both in bulk solution would be 0). This confirms that
the changes in the sketch-map upon adsorption (reaching a
Hellinger distance of 0.9, leftmost value of Fig. 5) are well-
beyond the level of statistical noise.

Fig. 4 Sketch-map for Aβ16–22 in (a) bulk solution and (b) on the surface.
The three arrows, labeled 1, 2 and 3, mark basins that change in three
different ways passing from bulk to surface (1 is suppressed, 2 is almost
unaffected – slightly shifted – and 3 is enhanced). Structures selected from
the conformational basins 1, 2 and 3 are shown as insets in the panels.
Representative structures for the other basins and basin populations are
shown in Fig. S1.† The colour bar denotes the relative population.

Fig. 5 The Hellinger distance between the sketch-map calculated at a
given peptide COM–gold separation and the average sketch-map
obtained in bulk solution. For each explored COM–gold separation, all
the snapshots whose COM is within ±0.1 nm from that separation are
considered to build the sketch-map. The Hellinger distance for the two
rightmost points, that are in bulk solution and should be identical in the
limit of infinite sampling, is around 0.1 and it is representative of the stat-
istical uncertainty on sketch-maps obtained with the present level of
sampling.
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3.4. Effect of the adsorption on fibril-like conformations

The second issue that we want to address is whether the con-
formational space as modified by the surface is enriched or
depleted of conformations that resemble amyloid fibers. To
this end, we have calculated the backbone dihedral similarity s
between an experimental structure of the peptide in a fiber
and each member of the conformational ensembles of Aβ16–22
in the bulk and on the surface. Such similarity s is defined as:

s ¼ 1
2

X
i

½1þ cosðϕi � ϕi
expÞ� ð2Þ

where the sum runs on all the Ramachandran backbone
angles considered, ϕi is the value of the i – angle in the PTMD
conformation and ϕi

exp is the same angle in the experimental
structure. Here, the ϕi

exp are taken by the experimental X-ray
structures of Aβ16–21 in fibers identified by the PDB ID 2Y29.86

Other experimental structures (2Y2A, 3OW9,86 and 3OVJ87)
have very similar backbone angles. In the sum in eqn (2) we
have considered all the Ramachandran dihedrals ϕ and ψ of
the portion Aβ16–21, ten angles in total. Therefore, s is equal to
10 when the PTMD snapshot is matching exactly the experi-
mental backbone structure, and is decreasing toward 0 by
decreasing the similarity between the PTMD snapshot and the
experimental structure. The distributions of s for the bulk and
the adsorbed conformational ensembles obtained by the
PTMD simulations are shown in Fig. 6.

The most interesting region of such a plot is for s close to
10, i.e., for perfect similarity with the experimental structure.
First, it is apparent that in solution the peptide does assume
fiber-like conformations (represented by the peak centred at s
≈ 9.5), in agreement with its propensity to fibrillate. But the
most important result comes from the on-surface distribution:
the bulk peak at 9.5 fully disappears, showing that the
adsorbed state is in fact strongly depleted of fiber-like confor-

mations with respect to the water case. In other words, the
interaction with the surface is suppressing fiber-like struc-
tures. It is also apparent that such population is replaced by
new peaks in the region between 6.5 and 7.5 (i.e., having
several backbone angles far from those in the fibers).

To strengthen our analysis, we have also projected all the
existing experimental fiber structures on the sketch-maps in
the bulk and on the surface. The results, reported in Fig. S2,†
show that fiber-like structures sit in sketch-map regions that
are populated for the peptide in the bulk and empty for the
adsorbed peptides, confirming the picture just described.

This finding suggests that the intrinsic effect of the surface
is to inhibit fiber formation, although one should not forget a
possible opposite effect due to the increased local concen-
tration of peptides following the adsorption from the solution
of several peptide molecules.39 The free-energy profile in
Fig. 2, in fact, shows that the surface has a high propensity to
bind Aβ16–22 from the solution.

What is the driving force of this fiber-conformation sup-
pression? The affinity of Au(111) for PHE88 and the presence of
two contiguous PHE’s in the Aβ16–22 peptide suggest a role for
such residues. We can define their relative orientation in
terms of the angle α between the Cα–Cβ bonds, as presented in
Fig. 7(a). cos(α) > 0 means that the phenyl rings are on the
same side of the molecule (parallel orientation) while cos(α) <
0 means they are on the opposite side (called also antiparallel
orientation in the following). Experimental fiber structures
have cos(α) close to −1 (Fig. 7(b)). By coloring the projections
on the sketch-map of the PTMTD snapshots by the value of
such cos(α) (Fig. 7(d)), it turns out that the conformations with
different relative PHE orientations are well separated in the
peptide conformational space (i.e., sketch-map spots are
homogeneously colored).

Interestingly, the comparison of the sketch-map in bulk
(Fig. 7(d)) with the sketch-map on the surface (Fig. 7(e)) shows
that α is indeed a good coordinate to identify conformations
that are suppressed by the surface: most of the structures with
antiparallel phenyl rings disappear on the surface, in favor of
new parallel ones. The driving force is clear: the favorable
simultaneous interaction of both phenyl rings with the surface
is possible only when they are on the same side of the mole-
cule; therefore, antiparallel structures, where this interaction
is impossible, are comparatively disfavored. Moreover, the
other residues in the peptide do not interact strongly with the
gold surface, leading to the U-shaped conformation previously
discussed (an example is shown in Fig. 7(c)).

To explore the conformational ensemble as described by
the variable α, in Fig. 8(a) we present the 2D free energy
surface as a function of the peptide distance from the surface
and of cos(α). The change in the free-energy topology passing
from the bulk (right-hand portion of the color map) to the
surface (left-hand part) is visible. To make it more clear, we
report in Fig. 8(b) the distribution of cos(α) averaged for the
two regions identified as “bulk” and “surf” in panel (a). It is
evident that the interaction with the surface does change the
relative population of parallel and antiparallel phenyl orien-

Fig. 6 Normalized distribution of s obtained for the peptide on the
surface (“surf”) and in bulk water (“bulk”). s = 10 corresponds to perfect
matching with the backbone angles of the 2Y29 fiber structure of
Aβ16–21.86 In the inset, a representative PTMD structure with s = 9.6 is
shown. It highlights the clear β-strand (i.e., fiber-like) character of the
conformations contributing to the peak indicated with the arrow.
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tations, by suppressing the antiparallel (cos(α) < 0)
conformations.

The range of variability of α in the experimental X-ray struc-
tures is identified as the gray region in Fig. 8(b). It is apparent
also from this plot that in the on-surface distribution (blue
curve in Fig. 8(b)) the region where experimental fibers sit is
strongly depleted of conformations with respect to the bulk
water case.

Interestingly, a permutation of the Aβ16–22 residues leading
to a sequence where the two PHE’s are separated by an odd
number of residue (e.g., KLVFAFE) does not benefit by the
potential inhibition mechanism described here, as the two
PHE would be on the same side of a fiber-like conformation.

3.4.1. Comparison with experimental SFG data. To validate
the computational predictions we have used XPS and SFG
spectroscopy. First, XPS was used to determine the amount of
Aβ16–22 peptides adsorbed onto the gold surfaces. Table S1†
summarizes the XPS-determined elemental composition of the
Aβ16–22 peptide film on gold adsorbed from a 1 mg ml−1 solu-
tion. Compared with published XPS spectra of surface protein
films, the nitrogen concentration of 4.8 atom% indicates the
formation of a monolayer film on the surface.89 The compo-
sition of the peptide film omitting the gold emission is close
to the theoretically expected composition of Aβ16–22 peptides.
The somewhat increased carbon content is likely explained by
small amounts of residual advantageous carbon, which was
not removed by the protein when binding. A very similar be-
havior is observed for monolayers of extended oligodentate
molecules on gold.90

Fig. 7 (a) Definition of the angle α used to describe the relative orientation of PHE side chains; (b) representation of a fiber-like conformation of the
peptide Aβ16–21, from PDB 3OVJ87 with PHE residues in thicker licorice representation; (c) an example of antiparallel, U-shaped conformation taken
from the PTMTD; (d) sketch-map projections of the PTMTD trajectory snapshots where Aβ16–22 is in bulk water on the sketch-map CVs, colored as
cos(α); (e) sketch-map projections of the PTMTD trajectory snapshots where Aβ16–22 is on the gold surface, colored as cos(α).

Fig. 8 (a) Color map showing the free energy surface for Aβ16–22 as a
function of the peptide COM distance from gold of the cosine of the
angle α that identifies the relative orientation of the two PHE’s. (b) Nor-
malized distributions of cos(α) obtained for the peptide on the surface
(region “surf” in panel (a)) and in bulk water (region “bulk” in panel (a)).
The shadowed region corresponds to the α angles found in experimental
fiber-structures.
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SFG was used to probe the conformation of Aβ16–22 peptides
on gold. The selection rules of SFG dictate that only ordered
species at interfaces are visible in the SFG vibrational
spectra.91 SFG has been recently been developed into a reliable
probe of interfacial folding and binding of peptides92–94 and
proteins.95,96 For the experiments we adsorbed Aβ16–22 pep-
tides onto gold surfaces and recorded the spectra in the amide
I region, which reports back on the secondary structure of
protein backbones. The SFG spectrum shown in Fig. 9a exhi-
bits a broad feature between 1620 and 1690 cm−1, which is
typical for the extended chain and strand motifs also observed
in the simulations.97 The presence of an SFG signal shows that
the peptide film is reasonably well ordered and defined.98

For a more direct comparison of the simulations with the
experimental data we calculated a theoretical SFG spectrum
from a representative conformation for Aβ16–22 at the surface
(see Fig. 9b). This conformation is taken at the center of the
most densely populated region of the on-surface sketch-map,
Fig. 4(b). For the spectra calculations we followed a procedure
described by Roeters et al.73 The calculated spectrum, shown
in the top panel of Fig. 9a, captures the broad shape and the
energy position of the experimental peak very well, which

shows a remarkable agreement of the SFG experiment and the
MD simulations. The SFG spectra obtained from structures
representative of bulk-like conformations did not provide such
agreement (see Fig. S3†).

Our computational and experimental predictions are also
coherent with other published experimental studies. It has
been remarked that the effect of NPs on aggregation propen-
sity is not only related to the increase of local concentration
upon adsorption, but is also related to the peptide sequence
itself.99 More specifically, it was demonstrated that fullerenes
can inhibit the fibril formation from Aβ by binding the region
16–21, KLVFF56,57 with a mechanism that is also based of the
affinity of PHE for the inorganic material57 that has been
found relevant also for other amyloidogenic peptides.100 More-
over, it has been shown that hydrophobic nanoparticles slow
down Aβ fibrillation under conditions when the hydrophobic
core region LVFF is exposed.101 What we find here is a very
similar mechanism, although for an extended surface the
balance between inhibition by fiber-conformation disruption
and acceleration by increased surface concentration is likely
more tilted toward the latter than for the fullerene molecules.

Recently, Crespi et al.42 determined the crystal structure of
the antibody Solanezumab (Eli Lilly) complexed to the mid-
region (12–28) of the Aβ peptide. Clinical trials to evaluate Sola-
nezumab as a possible drug to decrease the risk of Alzheimer’s
disease are under way. In that study it is shown that Solanezu-
mab selectively binds the mid-region of the Aβ peptide, with the
two PHE oriented parallel to each other, as we find here on the
surface. Sequestration from the solution via high binding
affinity and disruption of fiber-prone conformations are
common features of this antibody and of gold surfaces, at least
with regard to the truncated peptide considered here. The effect
of the surface on the entire Aβ peptide cannot be extrapolated
by these findings, and requires a specific investigation.

4. Conclusions

In this work, we have presented state-of-the-art enhanced
sampling atomistic simulations of an amyloidogenic peptide
interacting with a gold surface in water. In particular, we have
characterized how the conformational ensemble of the peptide
is modified by the interaction with the surface using a recently
developed powerful analysis technique (sketch-map), and we
have rationalized these changes in terms of the affinity of gold
to phenylalanine. The main conclusion is that the surface
depletes the conformational ensemble of fiber-like structures
via a mechanism that is intermediate between induced fitting
and conformational selection. Taking into account that the
probability of assuming fiber-like conformations is correlated
with fibrillation propensity,44 we can conclude that the intrin-
sic effect of the surface is to reduce the fibrillation propensity
of Aβ16–22. However, this is contrasted by the capability of the
surface to bind the peptide efficiently (as shown by binding
free-energy results). This leads to a high peptide concentration
at the surface, which may seed fibrillation.39 Since the two pro-

Fig. 9 (a) Comparison of experimental SFG spectra of Aβ16–22 adsorbed
onto gold surfaces and a spectrum calculated from the structure shown
in panel (b). The calculated spectrum agrees well with the experimental
data. (b) Snapshot of the simulated structure used for the spectra
calculations.
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cesses (depletion of fiber-like conformations and surface-
induced nucleation) involve a different number of peptide
molecules (the former acts on single peptides, the latter
involves different peptides, depending on concentration),102

we expect the resulting effect of the gold surface on Aβ16–22
fibrillation propensity to be concentration dependent.37

Despite this complexity, our results clearly highlight how the
details of the peptide–surface interactions can determine the
role of inorganic surfaces in affecting fibrillation, and may
stimulate new strategies to exploit nanoparticles to control
protein aggregation.
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