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121Università di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy
122Southern University and A&M College, Baton Rouge, LA 70813, USA

123College of William and Mary, Williamsburg, VA 23187, USA
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We report on a comprehensive all-sky search for periodic gravitational waves in the frequency band
100-1500 Hz and with a frequency time derivative in the range of [−1.18,+1.00] × 10−8 Hz/s. Such
a signal could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron
star in our galaxy. This search uses the data from the Initial LIGO sixth science run and covers a
larger parameter space with respect to any past search. A Loosely Coherent detection pipeline was
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applied to follow up weak outliers in both Gaussian (95% recovery rate) and non-Gaussian (75%
recovery rate) bands. No gravitational wave signals were observed, and upper limits were placed on
their strength. Our smallest upper limit on worst-case (linearly polarized) strain amplitude h0 is
9.7×10−25 near 169 Hz, while at the high end of our frequency range we achieve a worst-case upper
limit of 5.5 × 10−24. Both cases refer to all sky locations and entire range of frequency derivative
values.

I. INTRODUCTION

In this paper we report the results of a compre-
hensive all-sky search for continuous, nearly monochro-
matic gravitational waves in data from LIGO’s sixth
science (S6) run. The search covered frequencies from
100 Hz through 1500 Hz and frequency derivatives from
−1.18× 10−8 Hz/s through 1.00× 10−8 Hz/s.

A number of searches for periodic gravitational waves
have been carried out previously in LIGO data [1–10],
including coherent searches for gravitational radiation
from known radio and X-ray pulsars. An Einstein@Home
search running on the BOINC infrastructure [11] has per-
formed blind all-sky searches on S4 and S5 data [12–14].

The results in this paper were produced with the Pow-
erFlux search program. It was first described in [1]
together with two other semi-coherent search pipelines
(Hough, Stackslide). The sensitivities of all three meth-
ods were compared, with PowerFlux showing better re-
sults in frequency bands lacking severe spectral artifacts.
A subsequent article [3] based on the data from the S5
run featured improved upper limits and a systematic out-
lier follow-up search based on the Loosely coherent algo-
rithm [15].

The analysis of the data set from the sixth science run
described in this paper has several distinguishing features
from previously published results:

• A number of upgrades to the detector were made
in order to field-test the technology for Advanced
LIGO interferometers. This resulted in a factor of
about two improvement in intrinsic noise level at
high frequencies compared to previously published
results [3].

• The higher sensitivity allowed us to use less data
while still improving upper limits in high frequency
bands by 25% over previously published results.
This smaller dataset allowed covering larger param-
eter space, and comprehensive exploration of high
frequency data.

• This search improved on previous analyses by par-
titioning the data in ≈ 1 month chunks and look-
ing for signals in any contiguous sequence of these
chunks.

• The upgrades to the detector, while improving sen-
sitivity on average, introduced a large number of
detector artifacts, with 20% of frequency range con-
taminated by non-Gaussian noise. We addressed
this issue by developing a new Universal statistic

[16] that provides correct upper limits regardless of
the noise distribution of the underlying data, while
still showing close to optimal performance for Gaus-
sian data.

We have observed no evidence of gravitational radia-
tion and have established the most sensitive upper limits
to date in the frequency band 100-1500 Hz. Our smallest
95% confidence level upper limit on worst-case (linearly
polarized) strain amplitude h0 is 9.7×10−25 near 169 Hz,
while at the high end of our frequency range we achieve a
worst-case upper limit of 5.5×10−24. Both cases refer to
all sky locations and entire range of frequency derivative
values.

II. LIGO INTERFEROMETERS AND S6
SCIENCE RUN

The LIGO gravitational wave network consists of two
observatories, one in Hanford, Washington and the other
in Livingston, Louisiana, separated by a 3000 km base-
line. During the S6 run each site housed one suspended
interferometer with 4 km long arms.

While the sixth science run spanned a ≈ 15 months pe-
riod of data acquisition, this analysis used only data from
GPS 951534120 (2010 Mar 02 03:01:45 UTC) through
GPS 971619922 (2010 Oct 20 14:25:07 UTC), for which
strain sensitivity was best. Since interferometers spo-
radically fall out of operation (“lose lock”) due to en-
vironmental or instrumental disturbances or for sched-
uled maintenance periods, the dataset was not contigu-
ous. The Hanford interferometer H1 had a duty factor of
53%, while the Livingston interferometer L1 had a duty
factor of 51%. The strain sensitivity was not uniform,
exhibiting a ∼ 50% daily variation from anthropogenic
activity as well as gradual improvement toward the end
of the run [17, 18].

Non-stationarity of noise was especially severe at fre-
quencies below 100 Hz, and since the average detector
sensitivity for such frequencies was not significantly bet-
ter than that observed in the longer S5 run [3], this search
was restricted to frequencies above 100 Hz.

A detailed description of the instruments and data can
be found in [19].
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FIG. 1. S6 upper limits. The upper (yellow) curve shows worst-case 95% CL upper limits in analyzed 0.25 Hz bands (see Table I
for list of excluded bands). The lower (grey) curve shows upper limits assuming a circularly polarized source. The values of
solid points and circles mark frequencies within 1.25 Hz of 60 Hz power line harmonics for circularly (solid points) and linearly
(open circles) polarized sources. The data for this plot can be found in [20]. (color online)

III. THE SEARCH FOR CONTINUOUS
GRAVITATIONAL RADIATION

A. Overview

The search results described in this paper assume a
classical model of a spinning neutron star with a rotat-
ing quadrupole moment that produces circularly polar-
ized gravitational radiation along the rotation axis and
linearly polarized radiation in the directions perpendicu-
lar to the rotation axis.

The strain signal template is assumed to be

h(t) = h0

(
F+(t, α0, δ0, ψ) 1+cos2(ι)

2 cos(Φ(t))+

+ F×(t, α0, δ0, ψ) cos(ι) sin(Φ(t))
)

,
(1)

where F+ and F× characterize the detector responses to
signals with “+” and “×” quadrupolar polarizations, the
sky location is described by right ascension α0 and dec-
lination δ0, the inclination of the source rotation axis to
the line of sight is denoted ι, and the phase evolution of
the signal is given by the formula

Φ(t) = 2π
(
fsource · (t− t0) + f (1) · (t− t0)2/2

)
+ φ ,

(2)
with fsource being the source frequency and f (1) denoting
the first frequency derivative (which, when negative, is
termed the spindown). We use t to denote the time in
the Solar System barycenter frame. The initial phase φ is
computed relative to reference time t0. When expressed
as a function of local time of ground-based detectors the
equation 2 acquires sky-position-dependent Doppler shift
terms. We use ψ to denote the polarization angle of the
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projected source rotation axis in the sky plane.
The search has two main components. First, the main

PowerFlux algorithm was run to establish upper limits
and produce lists of outliers with signal-to-noise ratio
(SNR) greater than 5. Next, the Loosely Coherent de-
tection pipeline was used to reject or confirm collected
outliers.

Both algorithms calculate power for a bank of signal
model templates and compute upper limits and signal-
to-noise ratios for each template based on comparison
to templates with nearby frequencies and the same sky
location and spindown. The power calculation can be
expressed as a bilinear form of the input matrix {at,f} of
a series of short (1800 s) Hann-windowed Fourier trans-
forms (SFT) of recorded data:

P [f ] =
∑
t1,t2

at1,f+δf(t1)a
∗
t2,f+δf(t2)

Kt1,t2,f (3)

Here δf(t) denotes the combination of Doppler shift and
first frequency derivative. The sum is taken over all
times t corresponding to the midpoint of the short Fourier
transform time interval. The kernel Kt1,t2,f includes the
contribution of time dependent SFT weights, antenna re-
sponse, signal polarization parameters and relative phase
terms [15, 21].

The main semi-coherent PowerFlux algorithm uses a
kernel with main diagonal terms only and is very fast.
The loosely coherent algorithms use more complicated
kernels that increase effective coherence length. The ef-
fective coherence length is captured in a parameter δ,
which describes the amount of phase drift that the ker-
nel allows between SFTs, with δ = 0 corresponding to a
fully coherent case, and δ = 2π corresponding to inco-
herent power sums.

Depending on the terms used, the data from different
interferometers can be combined incoherently (such as in
stages 0 and 1, see Table II) or coherently (as used in
stages 2, 3 and 4). The coherent combination is more
computationally expensive but provides much better pa-
rameter estimation.

The upper limits (Figure 1) are reported in terms of
the worst-case value of h0 (which applies to linear polar-
izations with ι = π/2) and for the most sensitive circular
polarization (ι = 0 or π). As described in the previous
paper [3], the pipeline does retain some sensitivity, how-
ever, to non-general-relativity GW polarization models,
including a longitudinal component, and to slow ampli-
tude evolution.

The 95% confidence level upper limits (see Figure 1)
produced in the first stage are based on the overall noise
level and largest outlier in strain found for every template
in each 0.25 Hz band in the first stage of the pipeline.
The 0.25 Hz bands are analyzed by separate instances of
PowerFlux [3]. A followup search for detection is car-
ried out for high-SNR outliers found in the first stage.
Certain frequency ranges (Table I) were excluded from

the analysis because of gross contamination by detector
artifacts.

B. Universal statistics

The detector sensitivity upgrades introduced many ar-
tifacts, so that in 20% of the sensitive frequency range the
noise follows non-Gaussian distributions which, in addi-
tion, are unknown. As the particular non-Gaussian dis-
tribution can vary widely depending on particular detec-
tor artifacts, the ideal estimate based on full knowledge
of the distribution is not usually available. In the previ-
ous analysis [1–3], the frequency bands where the noise
distribution was non-Gaussian were not used to put up-
per limits. However, in the present case this approach
would have resulted in excluding most of the frequency
bands below 400 Hz and many above 400 Hz; even though
the average strain sensitivity in many of these frequency
bands is better than in the past.
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FIG. 2. Upper limit validation. Each point represents a sep-
arate injection in the 400-1500 Hz frequency range. Each es-
tablished upper limit (vertical axis) is compared against the
injected strain value (horizontal axis, red line) (color online).

To make use of the entire spectrum, we used in this
work the Universal statistic algorithm [16] for establish-
ing upper limits. The algorithm is derived from the
Markov inequality and shares its independence from the
underlying noise distribution. It produces upper limits
less than 5% above optimal in case of Gaussian noise. In
non-Gaussian bands it can report values larger than what
would be obtained if the distribution were known, but
the upper limits are always at least 95% valid. Figure 2
shows results of an injection run performed as described
in [3]. Correctly established upper limits are above the
red line.
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Category Description

First harmonic of violin modes 343.25-343.75 Hz, 347-347.25 Hz
Second harmonic of violin modes 686.25-687.5 Hz
Third harmonic of violin modes 1031.00-1031.25 Hz

TABLE I. Frequency regions excluded from upper limit analysis. “Violin modes” are resonant vibrations of the wires which
suspend the many mirrors of the interferometer.

Stage Instrument sum Phase coherence Spindown step Sky refinement Frequency refinement SNR increase
rad Hz/s %

0 Initial/upper limit semi-coherent NA 2 × 10−10 1 1/2 NA
1 incoherent π/2 1.0 × 10−10 1/4 1/8 20
2 coherent π/2 5.0 × 10−11 1/4 1/8 0
3 coherent π/4 2.5 × 10−11 1/8 1/16 12
4 coherent π/8 5.0 × 10−12 1/16 1/32 12

TABLE II. Analysis pipeline parameters. Starting with stage 1, all stages used the loosely coherent algorithm for demodulation.
The sky and frequency refinement parameters are relative to values used in the semicoherent PowerFlux search.

C. Detection pipeline

The detection pipeline used in [3] was extended with
additional stages (see Table II) to winnow the larger num-
ber of initial outliers, expected because of non-Gaussian
artifacts and larger initial search space. This detection
pipeline was also used in the search of the Orion spur [4].

The initial stage (marked 0) scans the entire sky with
semi-coherent algorithm that computes weighted sums
of powers of 1800 s Hann-windowed SFTs. These power
sums are then analyzed to identify high-SNR outliers. A
separate algorithm uses universal statistics [16] to estab-
lish upper limits.

The entire dataset was partitioned into 7 segments of
equal length and power sums were produced indepen-
dently for any contiguous combinations of these stretches.
As in [4] the outlier identification was performed indepen-
dently in each stretch.

High-SNR outliers were subject to a coincidence test.
For each outlier with SNR > 7 in the combined H1 and
L1 data, we required there to be outliers in the indi-
vidual detector data that had SNR > 5, matching the
parameters of the combined-detector outlier within a dis-
tance of 0.03 rad · 400 Hz/f on the sky, 2 mHz in fre-
quency, and 3 × 10−10 Hz/s in spindown. However, the
combined-detector SNR could not be lower than either
single-detector SNR.

The identified outliers using combined data are then
passed to followup stage using loosely coherent algorithm
[15] with progressively tigher phase coherence parameters
δ, and improved determination of frequency, spindown
and sky location.

As the initial stage 0 only sums powers it does not
use relative phase between interferometers, which re-
sults in some degeneracy between sky position, frequency
and spindown. The first loosely coherent followup stage

also combines interferometer powers incoherently, but
demands greater temporal coherence (smaller δ) within
each interferometer, which should boost SNR of viable
outiers by at least 20%. Subsequent stages use data co-
herently providing tighter bounds on outlier location.

The testing of the pipeline was done above 400 Hz and
included both Gaussian and non-Gaussian bands. We
focused on high frequency performance because prelimi-
nary S6 data indicated the sensitivity at low frequencies
was unlikely to improve over S5 results due to detector
artifacts.

The followup code was tested to recover 95% of injec-
tions 50% above the upper limit level assuming uniform
distribution of injection frequency. (Figure 3). Recovery
of signals injected into frequency bands which exhibits
non-Gaussian noise was 75% (Figure 4). Our recovery
criterion demanded that an outlier close to the true injec-
tion location (within 2 mHz in frequency f , 3×10−10 Hz/s
in spindown and 12 rad·Hz/f in sky location) be found
and successfully pass through all stages of the detection
pipeline. As each stage of the pipeline only passes out-
liers with an increase in SNR, this resulted in an outlier
that strongly stood out above the background, with good
estimates of the parameters of the underlying signal.

It should be noted that the injection recovery curve
in Figure 3 passes slightly below the 95% level for h0
equal to the upper limit. However, the upper limits are
based on power levels measured by stage 0, independent
of any follow-up criteria. That is, we can say with 95%
confidence that a signal above the upper limit level is
inconsistent with the observed power, even though such
a (hypothetical) signal might not pass all of our follow-
up criteria to be ”detected”. The main reason that these
injections fail to be detected is due to the different sen-
sitivities of the H1 and L1 detectors. When one interfer-
ometer is less sensitive sensitive we can still set a good
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FIG. 3. Injection recovery in frequency bands above 400 Hz.
The injected strain divided by the upper limit in this band
(before injection) is shown on the horizontal axis. The per-
centage of surviving injections is shown on the vertical axis,
with horizontal line drawn at 95% level. Stage 0 is the output
of the coincidence test after the initial semi-coherent search.
(color online).
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FIG. 4. Injection recovery in non-Gaussian bands above
400 Hz. The injected strain divided by the upper limit in
this band (before injection) is shown on the horizontal axis.
The percentage of surviving injections is shown on the vertical
axis, with horizontal line drawn at 75% level. (color online)

upper limit, but the initial coincidence criteria requires
that an outlier be marginally seen in both interferome-
ters. In the previous analysis [3] the interferometers had
similar sensitivity and the curve passed through the in-
tersection of the green lines (horizontal axis value of 1,
vertical axis value of 95%).

D. Gaussian false alarm event rate

The computation of the false alarm rate for the out-
liers passing all stages of the pipeline is complicated by
the fact that most outliers are caused by instrumental
artifacts for which we do not know the underlying prob-
ability distribution. In principle, one could repeat the
analysis many times using non-physical frequency shifts
(which would exclude picking up a real signal by acci-
dent) in order to obtain estimates of false alarm rate, but
this approach is very computationally expensive. Even
assuming a perfect Gaussian background, it is difficult
to analytically model the pipeline in every detail to ob-
tain an accurate estimate of the false alarm rate, given
the gaps in interferometer operations and non-stationary
noise.

Instead, following [4], we compute a figure of merit
that overestimates the actual Gaussian false alarm event
rate. We simplify the problem by assuming that the en-
tire analysis was carried out with the resolution of the
very last stage of follow-up and we are merely triggering
on the SNR value of the last stage. This is extremely
conservative as we ignore the consistency requirements
that allow the outlier to proceed from one stage of the
pipeline to the next; the actual false alarm rate could be
lower.

The SNR of each outlier is computed relative to the
loosely coherent power sum for 501 frequency bins spaced
at 1/1800 Hz intervals (including the outlier) but with all
the other signal parameters held constant. The spacing
assures that correllations between neighbouring sub-bins
does not affect the statistics of the power sum.

To simplify computation we assume that we are deal-
ing with a simple χ2 distribution with the number of
degrees of freedom given by the timebase divided by the
coherence length and multiplied by a conservative duty
factor reflecting interferometer uptime and the worst-case
weights from linearly-polarized signals.

Thus to find the number N of degrees of freedom we
will use the formula

N ≈ timebase · δ · duty factor

1800 s · 2π
(4)

with the duty factor taken to be 0.125 and δ giving the
phase coherence parameter of the loosely coherent search.
The duty factor was chosen to allow for only 50% interfer-
ometer uptime and only one quarter of the data receiving
high weights from our procedure, which weights the con-
tribution of data inversely as the square of the estimated
noise [22, 23].
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Thus we define the outlier figure of merit describing
Gaussian false alarm (GFA) event rate as

GFA = K · Pχ2

(
N + SNR ·

√
2N ;N

)
(5)

where N defines the number of degrees of freedom as
given by equation 4, Pχ2(x;N) gives the probability for
a χ2 distribution with N degrees of freedom to exceed x,
and K = 1.3×1014 is the estimated number of templates.

We point out that the GFA is overly conservative when
applied to frequency bands with Gaussian noise, but is
only loosely applicable to bands with detector artifacts,
which can affect both the estimate of the number of de-
grees of freedom of the underlying distribution and the
assumption of uncorrelated underlying noise.

IV. RESULTS
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FIG. 5. Parameter space covered in the analysis. Ein-
stein@Home searches use longer coherence times than Pow-
erFlux, with better sensitivity to narrow band signals. The
results for area marked “PowerFlux S6” are reported in this
paper. (color online)

The PowerFlux algorithm and Loosely Coherent
method compute power estimates for gravitational waves
in a given frequency band for a fixed set of templates.
The template parameters usually include frequency, first
frequency derivative and sky location.

Since the search target is a rare monochromatic sig-
nal, it would contribute excess power to one of the fre-
quency bins after demodulation. The upper limit on the
maximum excess relative to the nearby power values can
then be established. For this analysis we use a univer-
sal statistic [16] that places conservative 95% confidence
level upper limits for an arbitrary statistical distribution

of noise power. The universal statistic has been designed
to provide close to optimal values in the common case of
Gaussian distribution.

The PowerFlux algorithm and Loosely Coherent
method have been described in detail in [1, 2, 15, 22–
24].

Most natural sources are expected to have negative
first frequency derivative, as the energy lost in gravita-
tional or electromagnetic waves would make the source
spin more slowly. The frequency derivative can be pos-
itive when the source is affected by a strong slowly-
variable Doppler shift, such as due to a long-period orbit.

The large gap in data taking due to installation of Ad-
vanced LIGO interferometers provided an opportunity to
cover an extended parameter space (Figure 5). With re-
spect to previous searches, we have chosen to explore
comprehensively both negative and positive frequency
derivatives to avoid missing any unexpected sources in
our data.

The upper limits obtained in the search are shown in
figure 1. The numerical data for this plot can be obtained
separately [20]. The upper (yellow) curve shows the up-
per limits for a worst-case (linear) polarizations when the
smallest amount of gravitational energy is projected to-
wards Earth. The lower curve shows upper limits for
an optimally oriented source. Because of the day-night
variability of the interferometer sensitivity due to anthro-
pogenic noise, the linearly polarized sources are more sus-
ceptible to detector artifacts, as the detector response to
such sources varies with the same period. The neigh-
borhood of 60 Hz harmonics is shown as circles for worst
case upper limits and dots for circular polarization up-
per limits. Thanks to the use of universal statistic they
do represent valid values even if contaminated by human
activity.

Each point in figure 1 represents a maximum over the
sky: only a small excluded portion of the sky near eclip-
tic poles that is highly susceptible to detector artifacts,
due to stationary frequency evolution produced by the
combination of frequency derivative and Doppler shifts.
The exclusion procedure is described in [3] and applied
to 0.033% of the sky over the entire run.

A few frequency bands shown in Table I were so con-
taminated that every SFT was vetoed by data condi-
tioning code and the analysis terminated before reaching
universal statistic stage. While the universal statistic
could have established upper limits with veto turned off,
we opted to simply exclude these bands, as the contam-
ination would raise upper limits to be above physically
interesting values.

If one assumes that the source spindown is solely due
to emission of gravitational waves, then it is possible to
recast upper limits on source amplitude as a limit on
source ellipticity. Figure 6 shows the reach of our search
under different assumptions on source distance. Super-
imposed are lines corresponding to sources of different
ellipticities.

The detection pipeline produced 16 outliers (Table III).
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Idx SNR log10(GFA) Segment Frequency Spindown RAJ2000 DECJ2000 Description
Hz nHz/s degrees degrees

1 3331 −9360 [0, 6] 192.49269 −8.650 351.371 −33.342 Hardware injection ip8
21 1329 −3114 [1, 5] 108.85717 −0.000 178.417 −33.400 Hardware injection ip3,

Non Gaussian, disturbed H1 spectrum
42 957 −2622 [0, 6] 575.16354 0.005 215.261 3.370 Hardware injection ip2
69 112 −196 [0, 3] 397.51894 −0.115 271.698 67.257 Non Gaussian, Line in H1, disturbed spectrum in L1
72 93 −78 [4, 4] 1397.76097 −11.220 296.704 −16.069 Induced by loud hardware injection ip4,

Non Gaussian, highly disturbed H1+L1 spectra
76 82 −162 [0, 5] 1145.20043 0.400 90.936 −67.610 Highly disturbed H1 spectrum, stationary line area
79 64 −98 [1, 4] 566.08359 −4.850 91.028 86.915 Line in H1 at 566.085 Hz
81 54 −68 [2, 4] 704.03500 4.110 117.932 50.411 Disturbed H1 and L1 spectrum
82 48 −86 [0, 6] 1220.74448 −1.120 223.413 −20.502 Hardware injection ip7, sloping H1 and L1 spectra
83 48 −73 [0, 4] 140.41014 −0.010 270.298 66.821 Highly disturbed H1 spectrum, stationary line area
94 36 −44 [0, 3] 192.65413 9.270 145.440 10.439 Induced by loud hardware injection ip8
95 35 −28 [2, 3] 250.01082 2.750 247.459 −76.842 Lines in H1 and L1, Non Gaussian

101 19 −13 [2, 6] 1145.30312 8.515 196.471 33.778 Highly disturbed H1 spectrum
102 18 −12 [0, 4] 1397.91328 1.070 42.627 32.827 Induced by loud hardware injection ip4,

Non Gaussian, highly disturbed H1+L1 spectra
103 17 −4 [3, 4] 1143.41710 −2.455 107.611 −56.347 Highly disturbed H1 spectrum
107 14 −0 [2, 3] 451.47993 −10.880 49.317 33.890 Line in H1 at 451.5 Hz

TABLE III. Outliers that passed detection pipeline. Only the highest-SNR outlier is shown for each 0.1 Hz frequency region.
Outliers marked with “line” had strong narrowband disturbances identified near the outlier location. Outliers marked as “non
Gaussian” were identified as having non Gaussian statistics in their power sums, often due to a very steeply sloping spectrum.
GFA is the Gaussian false alarm figure of merit described in Sec. III D. Segment column reports the set of contiguous segments
of the data that produced the outlier, as described in IV. Frequencies are converted to epoch GPS 961577021.

Name Frequency Spindown RAJ2000 DECJ2000

Hz nHz/s degrees degrees

ip2 575.16354 −1.37 × 10−4 215.25617 3.4440
ip3 108.85716 −1.46 × 10−8 178.37257 −33.4366
ip4 1397.831947 −25.4 4.88671 −12.4666
ip7 1220.744496 −1.12 223.42562 −20.4506
ip8 192.492709 −0.865 351.38958 −33.4185

TABLE IV. Parameters of hardware-injected simulated signals detected by PowerFlux (epoch GPS 961577021).

Each outlier is identified by a numerical index. We report
SNR, decimal logarithm of Gaussian false alarm rate, as
well as frequency, spindown and sky location.

The “Segment” column describes the persistence of the
outlier through the data, and specified which contigu-
ous subset of the 7 equal partitions of the timespan con-
tributed most significantly to the outlier: see [4] for de-
tails. A continuous signal will normally have [0,6] in this
column (similar contribution from all 7 segments), or on
rare occasions [0,5] or [1,6]. Any other range is indicative
of a non-continuous signal or artifact.

Several outliers were due to simulated pulsar signals in-
jected into data during the run (Table IV). The full list
of injections including those too weak to be found by an
all-sky search can be found in [25]. The hardware injec-
tion ip3 was exceptionally strong with a clear signature
even in non-Gaussian band.

The recovery of the injections gives us confidence that
no potential signal were missed. Manual followup has
shown non-injection outliers to be caused by pronounced

detector artifacts.

V. CONCLUSIONS

We have performed the most sensitive all-sky search
to date for continuous gravitational waves in the range
100-1500 Hz. We explored both positive and negative
spindowns and placed upper limits on expected and un-
expected sources. At the highest frequencies we are sen-
sitive to neutron stars with an equatorial ellipticity as
small as 8 × 10−7 and as far away as 1 kpc for favor-
able spin orientations. The use of a universal statistic
allowed us to place upper limits on both Gaussian and
non-Gaussian frequency bands.

A detection pipeline based on a Loosely Coherent al-
gorithm was applied to outliers from our search. This
pipeline was demonstrated to be able to detect simulated
signals at the upper limit level for both Gaussian and
non-Gaussian bands. Several outliers passed all stages of
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FIG. 6. Range of the PowerFlux search for neutron stars
spinning down solely due to gravitational radiation. This is
a superposition of two contour plots. The grey and red solid
lines are contours of the maximum distance at which a neu-
tron star could be detected as a function of gravitational-wave
frequency f and its derivative ḟ . The dashed lines are con-
tours of the corresponding ellipticity ε(f, ḟ). The fine dotted
line marks the maximum spindown searched. Together these
quantities tell us the maximum range of the search in terms
of various populations (see text for details) (color online).

the coincidence pipeline; their parameters are shown in
table III. However, manual examination revealed no true
pulsar signals.
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Universitats of the Govern de les Illes Balears, the Na-
tional Science Centre of Poland, the European Commis-
sion, the Royal Society, the Scottish Funding Council,
the Scottish Universities Physics Alliance, the Hungar-
ian Scientific Research Fund (OTKA), the Lyon Insti-
tute of Origins (LIO), the National Research Foundation
of Korea, Industry Canada and the Province of Ontario
through the Ministry of Economic Development and In-
novation, the Natural Science and Engineering Research
Council Canada, Canadian Institute for Advanced Re-
search, the Brazilian Ministry of Science, Technology,
and Innovation, Fundação de Amparo à Pesquisa do Es-
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