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I. INTRODUCTION

Yang-Mills gauge theory and its extensions including matter fields are extremely successful perturba-

tively [1]. One of the formal grounds for this success is a path-integral formulation based on the Faddeev-

Popov method to perturbatively fix the gauge and allow for Feynman diagram computations. There is an

inherent Becchi-Rouet-Stora-Tyutin (BRST) symmetry.

In Landau gauge,∂µAa
µ = 0, and in Euclidean spacetime, the gauge path integral takesthe form1:

Z =

ˆ

[DA] δ(∂Aa) det(M ) e−SYM =

ˆ

[DA] e−SFP

SFP= SYM +

ˆ

d4x
(

iba∂µAa
µ+ c̄a∂µDab

µ cb
)

, (1)

and it is invariant under the BRST transformations:

sAa
µ = −Dab

µ cb , sca =
g
2

f abccbcc , sc̄a = iba , sba = 0 . (2)

This perturbative setup allows for the establishment of several crucial features, ranging from all-order renor-

malizability 2 and gauge independence to perturbative unitarity, as well as a consistent extension for the

physics of massive gauge bosons, through the Brout-Englert-Higgs mechanism.

Non-perturbatively, however, the situation is by far not the same. While numerical methods provide

strong evidence for confinement and dynamical chiral symmetry breaking (when fermions are included) in

the strong-coupling region [2, 3], this regime of the theoryis not amenable to a fully analytical scrutiny,

leaving many theoretical gaps concerning e.g. the possiblemechanisms that can drive such remarkable

physical phenomena.

An important drawback of the Faddeev-Popov setup in the nonperturbative regime was first pointed

out by Gribov [4]: the sampling over physically inequivalent gauge configurations in the path integral is

hindered by the presence of gauge copies in the gauge fixing procedure (for recent reviews, cf. [5, 6]).

Away from the perturbative vicinity in gauge configuration space, large fields and eventually zero modes of

the Faddeev-Popov operator,

M ab =−δab∂2+g fabcAc
µ∂µ, with ∂µAa

µ = 0 (Landau gauge), (3)

1 We adopt standard notation, which can be found e.g. in Ref. [1].
2 To be precise, this statement is actually restricted to the class of gauge fixings for which the quantum action principle [53] has

been fully established. An example of such class of gauges isthe one which respects Lorentz covariance. For noncovariant
gauges, the situation can be much more involved [55–57].
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are reached and the functional integral measure in (1) becomes ill-defined, which can be directly appreciated

from the presence of det(M ) = 0. Over the last decades advances have been made in the direction of

circumventing this problem. In particular, the Gribov-Zwanziger framework [7] encodes a modification

of the Faddeev-Popov procedure in order to account for the presence of gauge copies. It corresponds to

restricting the functional measure to the first Gribov region Ω in the Landau gauge,∂µAa
µ = 0, namely

Ω = { Aa
µ| ∂µAa

µ = 0, M ab(A)> 0 } , (4)

whereM ab is the Faddeev-Popov operator (3). In practice, a nonlocal horizon term is introduced in the

SU(N) gauge action using a new mass parameterγ – the Gribov parameter:

SFP 7→ SGZ = SFP+ γ4H(A)−4Vγ4(N2−1) (5)

whereV is the spacetime volume and the horizon function reads

H(A) = g2
ˆ

d4xd4y fabcAb
µ(x)

[

M −1(x,y)
]ad

f decAe
µ(y) , (6)

in terms of the inverse of the Faddeev-Popov operator,
[

M −1
]

. The constraint that enables us to get rid

of the gauge copies3 is then realized by fixing the Gribov parameterγ in a self-consistent way through the

extremization of the vacuum energy of the theory with respect to γ2, yielding the gap equation:

〈H〉= 4V(N2−1) , (7)

where the vacuum expectation value〈H〉 has to be evaluated with the measure defined by the action in

eq. (5).

Even though this approach and its subsequent extensions have provided interesting results for correlation

functions of fundamental fields [8–11] as well as for physical observables like the bound state spectrum [12–

14], the thermodynamics and transport properties of the quark-gluon plasma [15–24], the standard BRST

symmetry is softly broken. The absence of this nilpotent symmetry that plays a crucial role in the pertur-

bative setup can obscure features such as renormalizability, gauge independence, definition of a physical

space and unitarity in the infrared regime of the theory. It has been established, however, that a softly broken

BRST operator is sufficient in several examples to guaranteethat a gauge theory is renormalizable, thus still

displaying predictive power. The other issues are still under intense investigation. For recent and different

perspectives on this important topic, the reader is referred to e.g. [25–43].

3 We remind here that the Gribov regionΩ is not free from Gribov copies,i.e. additional copies still exist insideΩ. A smaller
region withinΩ exists which is fully free from Gribov copies. This region iscalled the Fundamental Modular Region. Though,
unlike the case of the Gribov regionΩ, a local and renormalizable framework implementing the restriction to the Fundamental
Modular Region is, at present, unknown. Therefore, we shallproceed by focusing on the regionΩ.
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Here, we concentrate on a recent development put forward in Refs. [45, 58]: the existence of a nonper-

turbative BRST operator that is both nilpotent and an exact symmetry of the Gribov-Zwanziger action in

Landau and linear covariant gauges. The proposal relies on rewriting the Landau-gauge horizon function,

(6), in terms of a non-local gauge-invariant transverse field Ah
µ, namely

H(A) = H(Ah)−R(A)(∂A) = H(Ah)−
ˆ

d4xd4yRa(x,y)(∂Aa)y (8)

where

Ah
µ = Pµν

(

Aν − ig

[

∂A
∂2 ,Aν

]

+
ig
2

[

∂A
∂2 ,∂ν

∂A
∂2

])

+O(A3)

= Aµ−
∂µ

∂2∂A+ ig

[

Aµ,
1
∂2 ∂A

]

+
ig
2

[

1
∂2 ∂A,∂µ

1
∂2∂A

]

+ig
∂µ

∂2

[

∂ν

∂2∂A,Aν

]

+ i
g
2

∂µ

∂2

[

∂A
∂2 ,∂A

]

+O(A3) , (9)

with Pµν =
(

δµν − ∂µ∂ν
∂2

)

being the transverse projector. By construction, expression (9) is left invariant by

gauge transformations order by order. This fieldAh
µ can be obtained through the minimization of

´

d4xAa
µAa

µ

along its gauge orbit. We refer to [45] and references therein for details.

The termR(A)(∂A) is an infinite non-local power series ofAµ that collects all terms proportional to

(∂µAa
µ) and can be reabsorbed by a shift of the auxiliary fieldb as follows

SGZ = SYM+

ˆ

d4x
(

iba∂µAa
µ+ c̄a∂µDab

µ cb
)

+ γ4H(A)

= SYM+

ˆ

d4x
(

ibh,a∂µAa
µ+ c̄a∂µDab

µ cb
)

+ γ4H(Ah) , (10)

where the new fieldbh reads

bh = b+ iγ4R(A) . (11)

The action (10), with the horizon functionH(Ah) expressed via Zwanziger’s auxiliary fields(ϕ̄,ϕ,ω, ω̄),

i.e.

γ4H(Ah) 7→
ˆ

d4x
(

−ϕ̄M (Ah)ϕ+ ω̄M (Ah)ω+ γ2Ah(ϕ̄+ϕ)
)

, (12)

enjoys the following exact nilpotent BRST symmetry:

sγ2 = s+δγ2 , s2
γ2 = 0 , sγ2SGZ = 0 . (13)

where the operatorsstands for the usual BRST operator

sAa
µ = −Dab

µ cb , sca =
g
2

f abccbcc , sc̄a = iba , sba = 0 ,

sϕab
µ = ωab

µ , sωab
µ = 0 , sω̄ab

µ = ϕ̄ab
µ , sϕ̄ab

µ = 0 , (14)
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while

δγ2c̄a = −γ4Ra(A) , δγ2bh,a =−iγ4sRa(A) ,

δγ2ω̄ac
µ = −γ2g fkbcAh,k

µ

[

M −1(Ah)
]ba

, δγ2(rest) = 0 . (15)

The presence of the Gribov parameter in the definition of thisnew exact BRST transformation makes explicit

its nonperturbative nature, while guarantees that the perturbative limit is fully recovered in the ultraviolet,

as desired. Furthermore, the extension of this framework tothe class of linear covariant gauges becomes a

straightforward procedure based on the BRST principle [44], in complete analogy with what is done in the

perturbative case. The resulting action is [45]:

SLCG
GZ = Sh

FP+

ˆ

d4x
(

−ϕ̄ac
µ M ab(Ah)ϕbc

µ + ω̄ac
µ M ab(Ah)ωbc

µ +gγ2 f abcAh,a
µ (ϕ̄+ϕ)bc

µ

)

, (16)

with

Sh
FP = SYM+sγ2

ˆ

d4x
(

c̄a∂µAa
µ− i

α
2

c̄abh,a
)

= SYM+

ˆ

d4x
(

ibh,a∂µAa
µ+

α
2

bh,abh,a+ c̄a∂µDab
µ cb

)

(17)

The parameterγ2 is still to be determined from the horizon condition, see (6)-(7), though withAµ replaced

by its gauge invariant counterpartAh
µ. As such, the horizon condition itself becomes a gauge-invariant

condition.

In this fashion, as discussed in [45], a substantial set of (infinitesimally) gauge equivalent configurations,

obeying the same linear covariant gauge condition, are excluded from the path integration. More precisely,

all infinitesimal gauge copies that have a Taylor expansion around the Landau gauge,α = 0, are eliminated.

Finally, we end up with a nonperturbative formulation of theGribov-Zwanziger theory for linear covari-

ant gauges that displays an exact, nilpotent BRST invariance. Nevertheless, the full power of this symmetry

is established only in local quantum field theories, which isnot the case of this one so far. Indeed, inspec-

tion of eqs.(13)–(16) reveals two sources of non-locality in the action and in the definition of the new BRST

transformation: the gauge-invariant fieldAh and the inverse of the Faddeev-Popov operator.

In this work, we show that this novel perspective on Yang-Mills theories in the presence of the Gribov

horizon can be cast in a fully local form – with both the actionand its exact nonperturbative BRST symmetry

localizable. The first consequences of this fully local version will also be explored, shedding some light

on the most relevant issue of gauge independence as well as providing an exact, all-order result for the

longitudinal part of the gluon propagator in linear covariant gauges.
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This paper is organized as follows. In the next section, the action (16) for the linear covariant gauges is

shown to be localized via the introduction of an auxiliary field of the Stueckelberg type. Section III then

presents the procedure for obtaining a local form for the nonperturbative BRST symmetry. In Section IV,

we write down Ward identities from which a set of interestingconsequences will arise, namely: the gauge-

parameter independence of BRST-invariant correlation functions and an exact result for the longitudinal part

of the gluon propagator, that turns out to be the same as in perturbative Yang-Mills theory. The extension of

the framework that takes into account the formation of dimension-two condensates is discussed in Section

V, while the treatment of matter fields is addressed in Section VI. Section VII collects our conclusions and

outlook.

II. LOCALIZATION OF THE BRST-INVARIANT ACTION

An important step towards the construction of the theory is that of finding expressions of the action, its

fundamental fields, and the corresponding nilpotent BRST symmetry in terms of local fields only. In this

section, we write down the action as a local field theory, while the local version of its BRST symmetry will

be discussed in the next section.

We first notice that the horizon functionH(Ah) in the action (10) has a double source of non-locality.

First, the horizon function is itself a non-local functional of its argument due to the presence of the inverse

of the Fadeev-Popov operator(M −1)ab. Second, the fieldAh has so far been formulated as a nonlocal series

in the gauge fieldA, eq.(9). As discussed in the previous section, the non-local quantity H(Ah) can be re-

expressed by introducing bosonic fields(ϕ̄ab
µ ,ϕab

µ ), as well as fermionic fields(ω̄ab
µ ,ωab

µ ). The corresponding

action reads4

SLCG
GZ = SYM+

ˆ

d4x

(

α
baba

2
+ iba∂µAa

µ+ c̄a∂µDab
µ (A)cb

)

+

ˆ

d4x
(

−ϕ̄ac
µ M ab(Ah)ϕbc

µ + ω̄ac
µ M ab(Ah)ωbc

µ +gγ2 f abc(Ah)a
µ(ϕ

bc
µ + ϕ̄bc

µ )
)

, (18)

in which the nonlocality stemming from the integral operator M −1 present in the horizon function has been

traded for the new auxiliary fields(ϕ̄ab
µ ,ϕab

µ ) and(ω̄ab
µ ,ωab

µ ).

Our next step towards the definition of a BRST-invariant Gribov-Zwanziger theory is to write its action

in terms of local fields only. As introduced in [45] and brieflyreviewed in the Introduction, the field

4 We point out that the Lagrange multiplierbh appearing in expression (17) can be considered as an elementary field. This follows
by noticing that the field redefinition in eq. (11) corresponds in fact to a field transformation with unit Jacobian. From now on
we shall remove the indexh in the Lagrange multiplier fieldb.
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Ah has been originally defined as a highly nonlocal series in thegauge field. In order to write a local

representation for the gauge-invariant fieldAh and consequently find a local action, we shall employ a

different representation of it, using an auxiliary Stueckelberg fieldξa, see refs.[46–50]. The fieldξa can be

introduced by first defining

h= eigξaTa
, (19)

so that we write the fieldAh as

Ah
µ = (Ah)a

µTa = h†Aa
µTah+

i
g

h†∂µh. (20)

An important feature ofAh, as defined by (20), is that it is gauge invariant, that is,

Ah
µ → Ah

µ , (21)

as can be seen from the gauge transformations with SU(N) matrixV

Aµ →V†AµV +
i
g
V†∂µV , h→V†h , h† → h†V . (22)

The fieldAh
µ is now a local field and can be expanded in terms ofξa, yielding

(Ah)a
µ = Aa

µ−Dab
µ ξb− g

2
f abcξbDcd

µ ξd +O(ξ3) . (23)

This construction allows us to write a local action for the Gribov-Zwanziger theory in linear covariant

gauges,

SLCG
GZ =

ˆ

d4x

{

1
4

Fa
µνFa

µν +
α
2

baba+ iba∂µAa
µ+ c̄a∂µDab

µ (A)cb

− ϕ̄ac
ν M ab(Ah)ϕbc

ν + ω̄ac
ν M ab(Ah)ωbc

ν + γ2g fabc(Ah)a
µ(ϕ

bc
µ + ϕ̄bc

µ )+ τa∂µ(A
h)a

µ

}

. (24)

Notice that the action is now written in terms of local fields only, with the Faddeev-Popov operator

M ab(Ah) =−∂µDab
µ (Ah) now in terms of the local version ofAh, eq. (20). The Lagrange multipliersba and

τa are needed to enforce two constraints. The first one is the linear covariant gauge condition∂µAa
µ = iαba ,

while the second is the transversality of the fieldAh, ∂µ(Ah)a
µ = 0, which can be seen as a constraint on the

Stueckelberg field. Indeed, if the Stueckelberg fieldξa is eliminated through the transversality constraint

∂µ(Ah)a
µ = 0, we get back the non-local expression for the fieldAh

µ appearing in the action (18). By further

integrating over the auxiliary fields(ϕ̄ab
µ ,ϕab

µ ) and(ω̄ab
µ ,ωab

µ ), one goes back to the original action (10).

Expression (24) is now local, albeit non-polynomial. To some extent, the situation shares similarities

with other local non-polynomial models likeN = 1 SYM in superspace, non-linear two-dimensional sigma
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models as well as chiral Wess-Zumino models [54, 59–61]). Inall these cases the algebraic renormalization

proved to be very helpful, allowing in fact for an all order proof of the renormalizability of these models.

Perhaps, this will be also the case of our model, a thought reinforced by the non-trivial UV finiteness

properties displayed by the horizon function and by Gribov-like propagators [51]. Let us also remind that

the renormalizability of Landau gauge Yang-Mills theoriessupplemented by a Stueckelberg mass term has

been proven in [46, 47].

III. LOCAL BRST TRANSFORMATIONS

Now that we have a local version of the nonperturbative BRST-invariant GZ action, in the next subsec-

tions we address the localization of its nonperturbative BRST transformations.

A. The nonperturbative BRST operator sγ2

For the nilpotent BRST transformations we have

sAa
µ = −Dab

µ cb , (25)

sca =
g
2

f abccbcc , (26)

sc̄a = iba , (27)

sba = 0. (28)

Following [49], for the Stueckelberg field we write, withi, j indices associated with a generic representation,

shi j =−igca(Ta)ikhk j , s(Ah)a
µ = 0 , (29)

from which the BRST transformation of the fieldξa (cf. eq. (19)) can be evaluated iteratively, giving

sξa =−ca+
g
2

f abccbξc− g2

12
f amr f mpqcpξqξr +O(g3) . (30)

It is instructive to check here explicitly the BRST invariance ofAh. For this, it is better to employ a matrix

notation for the fields, namely

sAµ = −∂µc+ ig[Aµ,c] , sc=−igcc ,

sh = −igch , sh† = igh†c , (31)
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with Aµ = Aa
µTa, c= caTa, ξ = ξaTa. From expression (20) we get

sAh
µ = igh†c Aµh+h†(−∂µc+ ig[Aµ,c])h− igh†Aµ ch−h†c∂µh+h†∂µ(ch)

= igh†cAµh−h†(∂µc)h+ igh†Aµ ch− igh†c Aµh− igh†Aµch−h†c∂µh+h†(∂µc)h+h†c∂µh

= 0 . (32)

For the other fields, we write

sϕab
µ = ωab

µ =⇒ sωab
µ = 0, (33)

sω̄ab
µ = ϕ̄ab

µ =⇒ sϕ̄ab
µ = 0, (34)

sτa = 0. (35)

Within the BRST framework just introduced, the action (24) can be recast in the form

SLCG
GZ =

1
4

ˆ

d4xFa
µνFa

µν +s
ˆ

d4x

(

− iα
2

c̄aba+ c̄a∂µAa
µ− ω̄ac

ν M ab(Ah)ϕbc
ν

)

+ γ2
ˆ

d4xg fabc(Ah)a
µ(ϕ

bc
µ + ϕ̄bc

µ )+

ˆ

d4x τa ∂µ(A
h)a

µ. (36)

One of the most interesting features of the action (36) is that it enjoys a nonperturbative nilpotent BRST

symmetry

sγ2SLCG
GZ = 0 , s2

γ2 = 0 (37)

with the following full set of transformations defined as

sγ2Aa
µ = −Dab

µ cb , sγ2ca =
g
2

f abccbcc ,

sγ2c̄a = iba , sγ2ba = 0.

sγ2hi j = −igca(Ta)ikhk j , sγ2(Ah)a
µ = 0,

sγ2ϕab
µ = ωab

µ , sγ2ωab
µ = 0,

sγ2ω̄ab
µ = ϕ̄ab

µ − γ2g fkcb(Ah)k
µ

[

M −1(Ah)
]ca

, sγ2ϕ̄ab
µ = 0,

sγ2τa = 0. (38)

B. The localization ofsγ2

As mentioned before, the nonperturbative nilpotent BRST transformation (38) defines a symmetry of

the action (36). However, these transformations are non-local and to have a proper well-defined quantum
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field theory we have to construct a fully local formulation. This can be done by introducing another set of

auxiliary fields. We first note that

ˆ

DϕDϕ̄DωDω̄ e
−
´

d4x

(

−ϕ̄ac
µ M (Ah)abϕbc

µ +ω̄ac
µ M (Ah)abωbc

µ +g γ2√
2

f abc(Ah)a
µ(ϕbc

µ +ϕ̄bc
µ )

)

∼ e−
γ4
2 H(Ah) (39)

where the symbol∼ means “up to a prefactor”. We can also write this in terms of other fields

ˆ

DβDβ̄DζD ζ̄ e
−
´

d4x

(

−β̄ac
µ M (Ah)abβbc

µ +ζ̄ac
µ M (Ah)abζbc

µ −g γ2√
2

f abc(Ah)a
µ(βbc

µ +β̄bc
µ )

)

∼ e−
γ4
2 H(Ah) (40)

where(β, β̄) are complex bosonic fields and(ζ, ζ̄) are fermionic fields. Multiplying these expressions we

obtain a new local form for the action (10)

SLCG
GZ = SYM+

ˆ

d4x

(

α
baba

2
+ iba∂µAa

µ+ c̄a∂µDab
µ (A)cb

)

+

ˆ

d4x τa∂µ(A
h)a

µ.

+

ˆ

d4x

(

−ϕ̄ac
µ M (Ah)abϕbc

µ + ω̄ac
µ M (Ah)abωbc

µ +g
γ2
√

2
f abc(Ah)a

µ(ϕ
bc
µ + ϕ̄bc

µ )

)

,

+

ˆ

d4x

(

−β̄ac
µ M (Ah)abβbc

µ + ζ̄ac
µ M (Ah)abζbc

µ −g
γ2
√

2
f abc(Ah)a

µ(β
bc
µ + β̄bc

µ )

)

. (41)

It is clear from the construction that (10), (18), and (41) are all equivalent, sharing the same physical

content. The advantage of introducing the extra set of auxiliary fields is that we can now define a local

BRST symmetry for this action. It is straightforward to check that the following local nonperturbative

BRST transformations are a symmetry of the action (41)

slocA
a
µ = −Dab

µ cb , slocc
a =

g
2

f abccbcc ,

slocc̄
a = iba , slocb

a = 0.

sloch
i j = −igca(Ta)ikhk j , sloc(A

h)a
µ = 0,

slocϕab
µ = ωab

µ , slocωab
µ = 0,

slocω̄ab
µ = ϕ̄ab

µ + β̄ab
µ , slocϕ̄ab

µ = 0,

slocτa = 0,

slocβ̄ab
µ = 0 slocβab

µ = ωab
µ

slocζab
µ = 0 slocζ̄ab

µ = 0, (42)

with

slocS
LCG
GZ = 0 . (43)

The fields(ζ̄,ζ) have−1 and 1 ghost number, respectively, while the fields(β̄,β) have 0 ghost number. We

point out that the earlier non-local BRST operatorsγ2, eqs.(38), can be recovered from the local operator

sloc upon elimination of the auxiliary field̄β through the equations of motion ofβ.
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Note also that the original non-local action (10) was written in terms ofγ4 and the formulation of the

action (41) displays onlyγ2. It follows that this observation leads to a natural discrete symmetry related to

the invariance of the theory underγ2 →−γ2. In terms of the fields, this amounts to the exchange of both

sets of auxiliary localizing fields, more precisely, the action is invariant under

ϕab
µ → −βab

µ , ϕ̄ab
µ →−β̄ab

µ ,

βab
µ → −ϕab

µ , β̄ab
µ →−ϕ̄ab

µ ,

ωab
µ → −ζab

µ , ω̄ab
µ →−ζ̄ab

µ ,

ζab
µ → −ωab

µ , ζ̄ab
µ →−ω̄ab

µ . (44)

At this point it is worth to note that there is a natural set of field variables that we can identify as being

BRST singlets,i.e. quantities which belong to the cohomology of the BRST operator, that is, BRST-closed

fields which are not BRST-exact. We note that

sloc

(

ϕab
µ +βab

µ

)

= 2ωab
µ ,

sloc

(

ϕab
µ −βab

µ

)

= 0, (45)

which hints us to introduce the combinations

κab
µ =

1√
2

(

ϕab
µ +βab

µ

)

,

λab
µ =

1√
2

(

ϕab
µ −βab

µ

)

. (46)

and their conjugate counterparts. In terms of these fields, the action becomes (41)

SLCG
GZ = SYM+

ˆ

d4x

(

α
baba

2
+ iba∂µAa

µ+ c̄a(∂µDµ)
abcb

)

+

ˆ

d4x τa∂µ(A
h)a

µ.

+

ˆ

d4x
(

−κ̄ac
µ M (Ah)abκbc

µ + ω̄ac
µ M (Ah)abωbc

µ

)

+

ˆ

d4x
(

−λ̄ac
µ M (Ah)abλbc

µ + ζ̄ac
µ M (Ah)abζbc

µ +gγ2 f abc(Ah)a
µ(λ

bc
µ + λ̄bc

µ )
)

,

= SYM+sloc

ˆ

d4x

(

−i
α
2

c̄aba+ c̄a∂µAa
µ−

1√
2

ω̄ac
µ M (Ah)abκbc

µ

)

+

ˆ

d4x τa∂µ(A
h)a

µ.

+

ˆ

d4x
(

−λ̄ac
µ M (Ah)abλbc

µ + ζ̄ac
µ M (Ah)abζbc

µ +gγ2 f abc(Ah)a
µ(λ

bc
µ + λ̄bc

µ )
)

, (47)
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where the transformations (42) now read

slocA
a
µ = −Dab

µ cb , slocc
a =

g
2

f abccbcc ,

slocc̄
a = iba , slocb

a = 0.

sloch
i j = −igca(Ta)ikhk j , sloc(A

h)a
µ = 0,

slocκab
µ =

√
2ωab

µ , slocωab
µ = 0,

slocω̄ab
µ =

√
2κ̄ab

µ , slocκ̄ab
µ = 0,

slocτa = 0,

slocλ̄ab
µ = 0 slocλab

µ = 0

slocζab
µ = 0 slocζ̄ab

µ = 0, (48)

from which it becomes apparent that the fields
(

(Ah)a
µ, λ̄ab

µ ,λab
µ , ζ̄ab

µ ,ζab
µ ,τa

)

define BRST singlets. Note

also that the term containing the Gribov parameterγ belongs to the cohomology of the BRST operatorsloc,

namely

sloc
∂SLCG

GZ

∂γ2 = sloc

ˆ

d4x
(

g fabc(Ah)a
µ(λ

bc
µ + λ̄bc

µ )
)

= 0 ,
∂SLCG

GZ

∂γ2 6= sloc∆ , (49)

for some local integrated field polynomial∆. This important property highlights the fact thatγ is a physical

parameter. On the other hand the gauge parameterα will not enter physical quantities, since it is associated

to a BRST-exact term. As such, it can also not contribute to the gap equation definingγ. Henceforth,γ is

gauge independent and thus allowed to enter the expectationvalues of gauge invariant quantities, including

the vacuum energy.

C. BRST-invariant infrared regularizing mass for the Stueckelberg field ξ

The tree-level propagator of the Stueckelberg fieldξ can be derived from the quadratic part of the final

action, eq. (47). The result is shown in Appendix A to be〈ξξ〉 ∝ α/p4, which could give rise to potential

IR divergences when performing explicit loop calculations. Nevertheless, it is possible to introduce an IR

regularizing mass term for the Stueckelberg field compatible with the local BRST invariance. Indeed, from

the transformation of the Stueckelberg field given in eq. (30), it can be checked that

sloc

(

ξaξa

2

)

=−ξaca . (50)

This interesting property of the Stueckelberg field can be derived from eq.(31),i.e.

sloc(e
igξ) =−igceigξ . (51)
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Expanding the exponential in Taylor series, one gets

sloc

(

1+ igξ− g2

2
ξξ− i

g3

3!
ξξξ+ ··

)

=−igc

(

1+ igξ− g2

2
ξξ− i

g3

3!
ξξξ+ ··

)

. (52)

Multiplying both sides of eq.(52) byξ, yields

ξ sloc

(

1+ igξ− g2

2
ξξ− i

g3

3!
ξξξ+ ··

)

=−igξ c

(

1+ igξ− g2

2
ξξ− i

g3

3!
ξξξ+ ··

)

. (53)

Equating order by order ing the expression (53) immediately provides eq.(50) at leading order.

Due to equation (50), we can introduce the following BRST-exact term

SIRR=

ˆ

d4x
1
2

sloc (ρξaξa) =

ˆ

d4x

(

1
2

M4ξaξa+ρξaca
)

, (54)

where(ρ,M) are constant parameters transforming as

slocρ = M4 , slocM
4 = 0. (55)

The parameterρ has ghost number−1, while M has ghost number zero. As it is apparent from equation

(54), the termSIRR provides an IR regularization for the Stueckelberg field in aBRST-invariant way, yielding

in fact a propagator for the Stueckelberg field which behavesnow like 〈ξξ〉 ∝ α
p4+αM4 . At the very end of

the computation of the correlation functions the parameters (M,ρ) will be set to zero.

Before ending this section, it might be worth to spend a few words on an important aspect displayed

by the model in the Landau gauge,i.e. ∂µAµ = 0, which corresponds toα = 0. As one checks out from

Appendix A, all propagators of all fields are IR safe in the Landau gauge. In other words, whenα = 0,

the introduction of the regularizing infrared massM is redundant. In particular, from Appendix A, one

sees that〈ξξ〉Landau= 〈Aµξ〉Landau= 〈Aµτ〉Landau= 0, while all other two-points correlation functions are

IR safe. This is an important property of the Landau gauge, which expresses in terms of Feynman rules

the decoupling of the Stueckelberg field, reflecting the expected fact that, when∂µAµ = 0, the higher order

terms of the infinite series (9) become harmless, due to the presence of the divergence∂µAµ. From this useful

feature of the Landau gauge one infers that the existence of the limit M2 → 0 is apparent for correlation

functions〈O(x)O(y)〉 of BRST invariant composite operatorsO(x). In fact, as we shall show in details

in the next section, the existence of an exact BRST symmetry will enable us to prove that〈O(x)O(y)〉
turns out to be independent from the gauge parameterα to all orders. As a consequence, the correlation

function 〈O(x)O(y)〉 can be directly evaluated in the Landau gauge,α = 0, which is IR safe, due to the

aforementioned decoupling properties of the Stueckelbergfield ξ.
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D. i-particles

In order to elucidate the nature of the fundamental excitations of the theory, we look at the quadratic part

of the BRST singlet sector of the action (47), which, bearingin mind thatF2 is gauge invariant, i.e.

Fa
µν(A)F

a
µν(A) = Fa

µν(A
h)Fa

µν(A
h) , (56)

is given by

Ssinglet
quad =

ˆ

d4x

(

1
2
(Ah)a

µ(−∂2)(Ah)a
µ− λ̄ac

µ (−∂2)λac
µ + ζ̄ac

µ (−∂2)ζac
µ +gγ2 f abc(Ah)a

µ(λ
bc
µ + λ̄bc

µ )

)

,

(57)

where we have already taken into account the fact that the multiplier τa enforces the transversality of(Ah)a
µ.

Defining

λab
µ =

1√
2

(

Vab
µ − iU ab

µ

)

, (58)

we have

Ssinglet
quad =

ˆ

d4x

(

1
2
(Ah)a

µ(−∂2)(Ah)a
µ−

1
2
Vac

µ (−∂2)Vac
µ

−1
2
Uac

µ (−∂2)Uac
µ + ζ̄ac

µ (−∂2)ζac
µ +gγ2

√
2 f abc(Ah)a

µV
bc
µ

)

. (59)

Expression (59) can be diagonalized in the following way: for SU(N), we decompose the fieldVab as

Vab
µ =

1√
N

f abcVc
µ +Sab

µ , (60)

where

Va
µ ≡ 1√

N
f abcVbc

µ , (61)

and

f abcSab
µ = 0. (62)

The validity of equation (60) can be easily checked with the help of

f abc f abd = Nδcd . (63)

The action becomes now

Ssinglet
quad =

ˆ

d4x

(

1
2
(Ah)a

µ(−∂2)(Ah)a
µ−

1
2
Va

µ (−∂2)Va
µ +g

√
2Nγ2 (Ah)a

µV
a
µ

)

+

ˆ

d4x

(

−1
2

Sac
µ (−∂2)Sac

µ − 1
2
Uac

µ (−∂2)Uac
µ + ζ̄ac

µ (−∂2)ζac
µ

)

. (64)
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Therefore, introducing the complex fields

ηa
µ = (Ah)a

µ+ iV a
µ , η̄a

µ = (Ah)a
µ− iV a

µ (65)

we obtain

Ssinglet
quad =

ˆ

d4x

(

1
4

ηa
µ

(

−∂2− ig
√

2Nγ2
)

ηa
µ+

1
4

η̄a
µ

(

−∂2+ ig
√

2Nγ2
)

η̄a
µ

)

+

ˆ

d4x

(

−1
2

Sac
µ (−∂2)Sac

µ − 1
2
Uac

µ (−∂2)Uac
µ + ζ̄ac

µ (−∂2)ζac
µ

)

. (66)

As it is apparent from expression (66), the fields(η, η̄) correspond to a pair of unphysical excitations, called

i-particles [52], with complex conjugate squared masses±ig
√

Nγ2. As discussed in details in [52], this kind

of excitation is suitable to describe confined degrees of freedom. Moreover, it turns out that physical bound

states operators displaying a Källén-Lehmann spectral representation can be constructed by combining pairs

of i-particles, see [52]. Examples of such composite operatorsare

O(1) = η̄µνηµν

O(2) = εµνρση̄µνηρσ , (67)

where

ηµν = ∂µην −∂νηµ . (68)

It is remarkable that the fields(η, η̄) corresponding to thei-particles are BRST singlets. As a consequence,

the composite operators (67) are BRST singlets too.

IV. WARD IDENTITIES AND THEIR CONSEQUENCES

Having achieved a local formulation of the BRST transformations, we can proceed with the derivation

of the Ward identities and with the analysis of their consequences. To that purpose we employ the powerful

trick of extending the BRST transformations on the gauge parameterα, see [53, 54],i.e.

slocα = χ , slocχ = 0 , (69)

whereχ is a parameter with ghost number 1, which will be set to zero atthe end. As explained in [53, 54],

the extended BRST transformations, eqs.(42), (69), will enable us to prove in a purely algebraic way that

the correlation functions of local operators belonging to the cohomology of the BRST operatorsloc are

independent from the gauge parameterα.
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Taking into account the extended BRST transformation (69),the gauge fixing term becomes now

sloc

ˆ

d4x
(

−i
α
2

c̄aba+ c̄a∂µAa
µ

)

=

ˆ

d4x
(α

2
baba+ iba∂µAa

µ− i
χ
2

c̄aba+ c̄a∂µDab
µ (A)cb

)

, (70)

so that the action (41) reads

SLCG
GZ = SYM+

ˆ

d4x

(

α
baba

2
+ iba∂µAa

µ− i
χ
2

c̄aba+ c̄a∂µDab
µ (A)cb

)

+

ˆ

d4x τa∂µ(A
h)a

µ

+

ˆ

d4x

(

−ϕ̄ac
µ M (Ah)abϕbc

µ + ω̄ac
µ M (Ah)abωbc

µ +g
γ2
√

2
f abc(Ah)a

µ(ϕ
bc
µ + ϕ̄bc

µ )

)

+

ˆ

d4x

(

−β̄ac
µ M (Ah)abβbc

µ + ζ̄ac
µ M (Ah)abζbc

µ −g
γ2
√

2
f abc(Ah)a

µ(β
bc
µ + β̄bc

µ )

)

. (71)

We are now ready to establish the Ward identities of the theory. Following the general procedure of the

algebraic renormalization [53], we introduce a set of BRST-invariant external sources(Ωa
µ,L

a,Ka) coupled

to the non-linear BRST variations of the elementary fields, namely we start with the complete classical

action

Σ = SLCG
GZ +SIRR+

ˆ

d4x
(

Ωa
µslocA

a
µ+Laslocc

a+Kaslocξa)

= SLCG
GZ +

ˆ

d4x
(

Ωa
µslocA

a
µ+Laslocc

a+Kaslocξa)+

ˆ

d4x

(

M4

2
ξaξa+ρξaca

)

, (72)

where

slocΣ = 0, slocsloc = 0, (73)

with sloc being the local version of the nonperturbative BRST, eqs.(42), (69). The complete actionΣ turns

out to obey the following Ward identities [53]:

• The Slavnov-Taylor identity:

S(Σ) =

ˆ

d4x

[

δΣ
δΩa

µ

δΣ
δAa

µ
+

δΣ
δLa

δΣ
δca +

δΣ
δKa

δΣ
δξa + iba δΣ

δc̄a +ωab
µ

δΣ
δϕab

µ
+ωab

µ
δΣ

δβab
µ

+(ϕ̄ab
µ + β̄ab

µ )
δΣ

δω̄ab
µ

]

+M4 ∂Σ
∂ρ

+χ
∂Σ
∂α

= 0. (74)

• The gauge-fixing equation:

δΣ
δba = i ∂µAa

µ+αba− i
2

χ c̄a . (75)

• The anti-ghost equation:

δΣ
δc̄a

+∂µ
δΣ

δΩa
µ
=

i
2

χba . (76)
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To exploit the content of these identities at the quantum level, we introduce the 1PI generating functionalΓ

Γ = Σ+
∞

∑
n=1

~
nΓ(n) , (77)

and write down the quantum version of the identities (74), (75), (76),i.e.

S(Γ) =

ˆ

d4x

[

δΓ
δΩa

µ

δΓ
δAa

µ
+

δΓ
δLa

δΓ
δca +

δΓ
δKa

δΓ
δξa + iba δΓ

δc̄a +ωab
µ

δΓ
δϕab

µ
+ωab

µ
δΓ

δβab
µ

+(ϕ̄ab
µ + β̄ab

µ )
δΓ

δω̄ab
µ

]

+M4 ∂Γ
∂ρ

+χ
∂Γ
∂α

= 0. (78)

δΓ
δba = i ∂µAa

µ+αba− i
2

χ c̄a . (79)

δΓ
δc̄a +∂µ

δΓ
δΩa

µ
=

i
2

χba . (80)

We move then from the 1PI correlation functions to the connected ones by means of the Legendre

transformation

Z[J,J ,µ] = Γ[Φ,J ,µ]+∑
i

ˆ

d4xJ(Φ)
i Φi , (81)

wherebyJ stands for the standard sources coupled to the fields of the theory and

Φi ≡ {A,b,c, c̄,ξ,τ,ϕ, ϕ̄,ω, ω̄,β, β̄,ζ, ζ̄} ,

J ≡ {Ω,L,K} ,

µ ≡ {ρ,M4,α,χ} . (82)

From expression (81) we have

δΓ
δΦbos

i

= −J(Φ
bos)

i ,
δZ

δJ(Φ
bos)

i

= Φbos
i , (83)

for bosonic fields and

δΓ
δΦ f er

i

= J(Φ
f er)

i ,
δZ

δJ(Φ
f er)

i

= Φ f er
i , (84)

for fermionic fields, so that

δΓ
δJ

=
δZ
δJ

,
∂Γ
∂µ

=
∂Z
∂µ

. (85)

When written in terms of the generating functionalZ[J,J ,µ], the previous Ward identities take the form:
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• The Slavnov-Taylor identity:

ˆ

d4z

[

−J(A)aµ (z)
δZ

δΩa
µ(z)

+J(c)a(z)
δZ

δLa(z)
−J(ξ)a(z)

δZ
δKa(z)

+ iJ(c̄)a(z)
δZ

δJ(b)a(z)

−(J(ϕ)ab
µ (z)+J(β)ab

µ (z))
δZ

δJ(ω)ab
µ (z)

+J(ω̄)ab
µ (z)

(

δZ

δJ(ϕ̄)ab
µ (z)

+
δZ

δJ(β̄)ab
µ (z)

)]

+M4 ∂Z
∂ρ

+χ
∂Z
∂α

= 0. (86)

• The gauge-fixing equation:

−J(b)a(x) = i ∂x
µ

δZ

δJ(A)aµ (x)
+α

δZ

δJ(b)a(x)
− i

2
χ

δZ

δJ(c̄)a(x)
. (87)

• The anti-ghost equation:

J(c̄)a(x)+∂x
µ

δZ
δΩa

µ(x)
=

i
2

χ
δZ

δJ(b)a(x)
. (88)

In the following, we shall explore some implications of these identities for the two-point gluon correla-

tion function and to the correlation functions of BRST-invariant operators.

A. The longitudinal part of the gluon propagator

The first important consequence stemming from the identities (86), (87) and (88) is that they completely

determine the longitudinal part of the propagator of the gauge fieldAa
µ.

Acting with the test operator

δ

δJ(A)aµ (x)

δ
δJ(c̄)b(y)

(89)

on the Slavnov-Taylor identity, eq.(86), and setting all sources and parametersM andχ equal to zero, one

gets

δ
δJ(c̄)b(y)

δZ
δΩa

µ(x)
− i

δ2Z

δJ(b)b(y)δJ(A)aµ (x)
= 0. (90)

Let us now act on eq.(90) with the partial derivative∂x
µ, obtaining

δ
δJ(c̄)b(y)

∂x
µ

δZ
δΩa

µ(x)
− i∂x

µ
δ2Z

δJ(b)b(y)δJ(A)aµ (x)
= 0. (91)

Making use of the anti-ghost equation (88) withχ equal to zero, it follows that eq.(91) yields

δ
δJ(c̄)b(y)

J(c̄)a(x)+ i∂x
µ

δ2Z

δJ(b)b(y)δJ(A)aµ (x)
= 0 (92)
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or

δabδ(x−y)+ i∂x
µ

δ2Z

δJ(A)aµ (x)δJ(b)b(y)
= 0, (93)

which, in momentum space, becomes

pµ〈Aa
µ bb〉conn(p) =−δab, (94)

where we have defined〈Aa
µ bb〉conn(p) in such a way that

δ2Z

δJ(A)aµ (x)δJ(b)b(y)
=−〈Aa

µ(x)b
b(y)〉conn=−

ˆ

d4p
(2π)4 〈A

a
µ bb〉conn(p)eip(x−y) . (95)

Therefore, from Lorentz5 invariance, it follows that

〈Aa
µ bb〉conn(p) =− pµ

p2 δab. (96)

It remains now to apply the test operatorδ
δJ(A)bν (y)

on eq.(87) and set all sources andχ equal to zero, obtaining

i∂x
µ

δ2Z

δJ(A)aµ (x)δJ(A)bν (y)
+α

δ2Z

δJ(A)bν (y)δJ(b)a(x)
= 0, (97)

which gives, in momentum space,

− pµ〈Aa
µ Ab

ν〉conn(p)+α〈Ab
ν ba〉conn(−p) = 0, (98)

or

pµ〈Aa
µ Ab

ν〉conn(p) = α
pν

p2 δab. (99)

Therefore, decomposing the gauge propagator〈Aa
µ Ab

ν〉conn into transverse and longitudinal components

〈Aa
µ Ab

ν〉conn(p) =

[(

δµν −
pµpν

p2

)

D(p2)+
pµpν

p2 G(p2)

]

δab (100)

it follows that the longitudinal componentG(p2) is completely determined to all orders to be

G(p2) =
α
p2 , (101)

a result which is in full agreement with the recent lattice data [62, 63] as well as with the results following

from the analysis of the Dyson-Schwinger equations [64–66]. The linear covariant gauge was also analyzed

in [67, 68]. In [58], an alternative proof of this fact was presented, directly at the level of the path integral.

It is worth mentioning that the result (101) is hard to show ifone would not have an exact BRST symmetry

for the Gribov-Zwanziger action at one’s disposal.

5 Or more precisely, Euclidean 4D rotational invariance in our case.



20

B. Gauge-parameter independence of correlation functionsof BRST-invariant composite operators

A second relevant consequence which follows directly from the Slavnov-Taylor identity, eq.(86), is the

independence from the gauge parameterα of the correlation functions of composite operators which belong

to the cohomology of the BRST operatorsloc. To establish this property we follow the procedure outlined

in [53].

Let O(x) denote a local composite operator with vanishing ghost number and belonging to the coho-

molgy of sloc, namely

slocO= 0 , O 6= slocÕ , (102)

for any local operator̃O. The correlation functions〈O(x1) · · ·O(xn)〉conn are obtained by adding to the start-

ing action the BRST-invariant term
´

d4x
(

J(O)(x) O(x)
)

, with J(O) being an external invariant source. Due

to the BRST invariance of
´

d4x
(

J(O)(x) O(x)
)

, the Slavnov-Taylor identity, eq.(86), remains unmodified.

The correlators〈O(x1) · · ·O(xn)〉connare derived by differentiating the generating functionZ with respect

to J(O) and by setting all sources and parameters(M4,ρ,χ) equal to zero,i.e.

〈O(x1) · · ·O(xn)〉conn=
δ

δJ(O)(xn)
· · · δ

δJ(O)(x1)
Z
∣

∣

∣

J=J=0,M=ρ=χ=0
. (103)

To prove the gauge-parameter independence of the correlation functions〈O(x1) · · ·O(xn)〉conn, we act with

the test operator

δ
δJ(O)(xn)

· · · δ
δJ(O)(x1)

(104)

on the Slavnov-Taylor identity, eq.(86), and afterwards wederive with respect to the parameterχ, yielding

the equation

∂
∂α

[

δnZ

δJ(O)(xn) · · ·δJ(O)(x1)

∣

∣

∣

J=J=0,M=ρ=0

]

−χ
∂2

∂χ∂α

[

δnZ

δJ(O)(xn) · · ·δJ(O)(x1)

∣

∣

∣

J=J=0,M=ρ=0

]

= 0 . (105)

Setting now the parameterχ to zero, we finally get

∂
∂α

〈O(x1) · · ·O(xn)〉conn= 0 , (106)

which establishes the all-order independence of the correlation functions〈O(x1) · · ·O(xn)〉conn from the

gauge parameterα. In particular, the vacuum energy (zero point function) isα-independent, and as a

consequence also the Gribov parameterγ which follows from extremizing the vacuum energy.
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V. DIMENSION-TWO CONDENSATES AND CONSTRUCTION OF THE REFIN ED GZ ACTION

It is known that the GZ vacuum exhibits the formation of dimension-two condensates which are ener-

getically favoured, giving rise to a refined action called the RGZ action, see [8–10]. In the present BRST-

invariant formulation of the linear covariant gauges, these dimension-two condensates are easily identified,

the corresponding dimension-two operators being given by

(Ah)a
µ(A

h)a
µ ,

(

ω̄ab
µ ωab

µ − ϕ̄ab
µ ϕab

µ − β̄ab
µ βab

µ + ζ̄ab
µ ζab

µ

)

. (107)

We underline that both operators appearing in eq. (107) belong to the cohomology of the BRST operator

sloc, as it is easily checked. Taking into account these dimension two operators, for the BRST-invariant RGZ

action we get

SLCG
RGZ = SYM+Scond+SIRR+

ˆ

d4x

(

α
baba

2
+ iba∂µAa

µ+ c̄a∂µDab
µ (A)cb

)

+

ˆ

d4x τa ∂µ(A
h)a

µ.

+

ˆ

d4x

(

−ϕ̄ac
µ M (Ah)abϕbc

µ + ω̄ac
µ M (Ah)abωbc

µ +g
γ2
√

2
f abc(Ah)a

µ(ϕ
bc
µ + ϕ̄bc

µ )

)

,

+

ˆ

d4x

(

−β̄ac
µ M (Ah)abβbc

µ + ζ̄ac
µ M (Ah)abζbc

µ −g
γ2
√

2
f abc(Ah)a

µ(β
bc
µ + β̄bc

µ )

)

, (108)

with SIRR given by expression (54) and6

Scond=

ˆ

d4x

{

m2

2
(Ah)a

µ(A
h)a

µ+µ2
(

ω̄ab
µ ωab

µ − ϕ̄ab
µ ϕab

µ − β̄ab
µ βab

µ + ζ̄ab
µ ζab

µ

)

}

. (109)

We note that in the auxiliary fields sector, a single mass parameter is used. If different parameters were

used, we could simply fix then to be equal (up to a sign) by demanding thatScond is invariant under the

non-perturbative BRST transformations and the discrete transformations (44). The parameters(m2,µ2) in

expression (109) are dynamical parameters which, as much asthe Gribov parameterγ2, can be determined

order by order through the evaluation of the effective potential for the dimension two operators of eq.(107),

see [10]. Notice also that, as in the case ofγ2, the parameters(m2,µ2) are coupled to the operators (107),

which belong to the cohomology of the BRST operator. As such,(m2,µ2) are physical parameters of the

theory which will enter the physical correlation functionsof BRST invariant operators.

VI. INCLUSION OF MATTER FIELDS

It is interesting to point out that this fully local BRST-invariant description is not restricted to the case of

pure-gauge theories. Gauge-invariant matter fields, analogous toAh, may be constructed for various fields

6 As pointed out in [9] before,µ2 should be positive to avoid tachyonic modes in theω̄ω sector.
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belonging to different representations of the SU(N) color group, allowing for the modeling7 of nonper-

turbative gauge-interacting matter. In what follows, we discuss two particular cases of phenomenological

interest: adjoint scalar fields and Dirac fermions in the fundamental representation.

A. Scalar fields in the adjoint representation

Consider adjoint scalar fields

φ = φaTa , (110)

whose BRST transformation is

sφ = ig[φ,c] . (111)

A gauge invariant scalar field is obtained by making use of theStueckelberg fieldξ (defined in eq. (19)), as

φh = h†φh . (112)

It is easy to verify thatφh is left invariant by the BRST transformations,i.e.

sφh = 0. (113)

Generalizing the construction outlined in [34], a BRST-invariant action for the scalar fieldφh is given by

Sσ = σ4Hφ(φh,Ah) = g2σ4
ˆ

d4xd4y fabc(φh)b(x)[M −1(Ah)]ad(x,y)(φh)e(y) , (114)

where the parameterσ4 plays a role analogous to that of the Gribov parameterγ4 8. As shown in [34], the

relevance of introducing the matter action (114) lies in theinteresting feature that, besides sharing a natural

similarity with the horizon functionH(A) of the gauge field, it enables us to obtain a propagator for the

scalar field which fits in a nice way the available lattice numerical data, see the discussion presented in [34].

Proceeding as before, the non-local term (114) can be cast inlocal form by introducing the auxiliary fields

(ϑ, ϑ̄) and (θ, θ̄)

Slocal
σ =

ˆ

d4x
{

−ϑ̄acM ab(Ah)ϑbc+ θ̄acM ab(Ah)θbc+σ2 f abc(φh)a(ϑbc+ ϑ̄bc)
}

. (115)

7 It would remain, in the future, to work out a self-consistentdynamical realization of such model, starting from the standard
Yang-Mills matter actions.

8 Although we do not have a geometrical picture behind this parameterσ4 akin to that ofγ4, i.e. we do not have a horizon condition.
Following footnote 7, it remains to work out a dynamical realization ofσ4.
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As done before, the action (115) is left invariant by the non-perturbative BRST transformations

sσ2ϑab = θab, sσ2ϑ̄ab = 0,

sσ2θab = 0, sσ2θ̄ab = ϑ̄ab+σ2g fmnb(φh)m
(

1
M (Ah)

)na

, (116)

with

sσ2Slocal
σ = 0 . (117)

Again, the transformations (116) can be localized in the same fashion as those of the pure gauge sector.

B. Fermion fields in the fundamental representation

The same construction can be applied to fermion fields in the fundamental representation. The BRST-

invariant fermion field is now

ψh = h†ψ . (118)

In this case, the invariant spinor action is

Sς = ς4Hψ(ψh,Ah) =−g2ς4
ˆ

d4xd4y(̄ψh)i
α(x)T

a,i j [M −1(Ah)]ab(x,y)Tb, jk(ψh)k
α(y) , (119)

where i, j,k are the indices of the fundamental representation of SU(N), α is the spinor index and the

parameterς4 is analogous toσ4 and γ4. As in the case of the scalar field, the term (119) enables us to

nicely reproduce the available lattice data on the quark propagator, upon including as before a mass for the

localizing auxiliary fermion fields [14, 34].

VII. CONCLUSION

In the present work we have pursued the study of the nonperturbative nilpotent exact symmetry of the

Gribov-Zwanziger formulation recently proposed in [45], in the Landau and linear covariant gauges.

The main issue which has been faced is that of the localization of both BRST operator and action derived

in [45]. As shown in Sections (II) and (III), a complete localformulation can be achieved, as summarized by

eqs.(41), (42), (43). In addition of the auxiliary fields(ω̄,ω, ϕ̄,ϕ) already present in the original formulation,

a second set of auxiliary fields(ζ̄,ζ, β̄,β), eq.(42), as well as an auxiliary Stueckelberg fieldξ, eq.(19), have

been introduced to obtain a fully local set up.
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This novel formulation of the linear covariant gauges opensthe possibility of new lines of investigation,

as already partially reported in Sect.(IV). In particular,as a consequence of the Ward identities of the theory,

the longitudinal component of the gauge field propagator hasbeen proven to be completely determined to

all orders, being given byαp2 , see eqs.(100),(101). We emphasize that this result is in complete agreement

with the recent lattice numerical simulations [62, 63] as well as with the studies of the Dyson-Schwinger

equations [64–66].

A second important consequence following from the local Ward identities is the independence of the

correlation functions of local BRST-invariant composite operators from the gauge parameterα. For in-

stance, this result implies that the masses of the glueballsalready obtained in the Landau gauge [12, 13]

remain the same when moving to the linear covariant gauges.

Concerning future investigations, we might quote the studyof the infrared behaviour of the Faddeev-

Popov ghost propagator in linear covariant gauges, the proof of the all order renormalizability of the new

formulation, the analysis of the cohomology of the new localBRST operator, eq.(42), and the possible iden-

tification of a suitable set of composite operators displaying the Källén-Lehmann spectral representation, a

task of utmost importance for the understanding of the physical spectrum of the theory. In addition, it will

also be worthwhile to set up a dynamical framework to computethe variousd = 2 vacuum condensates

needed to stabilize the Gribov-Zwanziger vacuum.
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condensates〈
(

ω̄ab
µ ωab

µ − ϕ̄ab
µ ϕab

µ − β̄ab
µ βab

µ + ζ̄ab
µ ζab

µ

)

〉 and〈(Ah)a
µ(A

h)a
µ〉, as in the so-called refined Gribov-

Zwanziger theory by adding the termScond. An infrared cutoff for the Stueckelberg fieldξ is necessary, as

discussed in the Subsec. III C. This cutoff is added in a BRST-invariant way through the termSIRR. Let us

start with the full action (41),

SLCG
RGZ = SYM+Scond+SIRR+

ˆ

d4x

(

α
baba

2
+ iba∂µAa

µ+ c̄a(∂µDµ)
abcb

)

+

ˆ

d4x τa ∂µ(A
h)a

µ.

+

ˆ

d4x

(

−ϕ̄ac
µ M (Ah)abϕbc

µ + ω̄ac
µ M (Ah)abωbc

µ +g
γ2
√

2
f abc(Ah)a

µ(ϕ
bc
µ + ϕ̄bc

µ )

)

,

+

ˆ

d4x

(

−β̄ac
µ M (Ah)abβbc

µ + ζ̄ac
µ M (Ah)abζbc

µ −g
γ2
√

2
f abc(Ah)a

µ(β
bc
µ + β̄bc

µ )

)

, (A1)

supplemented by the Stueckelberg field mass regulator

SIRR =

ˆ

d4x
1
2

s(ρξaξa) =

ˆ

d4x

(

1
2

M4ξaξa+ρξaca
)

(A2)

and the dimension two condensates

Scond =

ˆ

d4x

{

m2

2
(Ah)a

µ(A
h)a

µ+µ2
(

ω̄ab
µ ωab

µ − ϕ̄ab
µ ϕab

µ − β̄ab
µ βab

µ + ζ̄ab
µ ζab

µ

)

}

. (A3)

In order to extract the quadratic part of the action (A1), we use the Stuckelberg field to write the transver-

sal gluonic fieldAh to first order in the fields as(Ah)a
µ = Aa

µ−∂µξa. Besides, the Faddeev-Popov operator is

trivially given by M ab(Ah) =−∂2δab+O(Ah). The quadratic part of the action is then

Squad
RGZ = S(quad)

YM +

ˆ

d4x
{

ba
(

i∂µAa
µ+

α
2

ba
)

+ ϕ̄ab
µ (∂2−µ2)ϕab

µ +gγ2 f abc(Aa
µ−∂µξa)

(

ϕbc
µ + ϕ̄bc

µ

)

+ c̄a∂2ca

−ω̄ab
µ (∂2−µ2)ωab

µ + τa(∂µAa
µ−∂2ξa)+

1
2

m2(Aa
µAa

µ−ξa∂2ξa−2Aa
µ∂µξa)+

M4

2
ξaξa+ρξaca

+β̄ab
µ (∂2−µ2)βab

µ −g
γ2
√

2
f abc(Aa

µ−∂µξa)
(

βbc
µ + β̄bc

µ

)

− ζ̄ab
µ (∂2−µ2)ζab

µ

}

. (A4)

Following the standard procedure, one finds the following set of tree-level propagators of the theory in

momentum space

〈Aa
µ(p)A

b
ν(−p)〉 =

p2+µ2

p4+(m2+µ2)p2+m2µ2+2Ng2γ4δabPµν +
α
p4 pµpν (A5)

〈Aa
µ(p)b

b(−p)〉 = − p2

p4+αM4δabpµ (A6)

〈Aa
µ(p)ϕ

bc
ν (−p)〉= 〈Aa

µ(p)ϕ̄
bc
ν (−p)〉 =

gγ2 f abc

p4+ p2(m2+µ2)+m2µ2+2Ng2γ4Pµν (A7)

〈Aa
µ(p)ξ

b(−p)〉 = i
αδab

p4+αM4 pµ (A8)

〈Aa
µ(p)τ

b(−p)〉 = −i
αM4

p2(p4+αM4)
pµδab (A9)
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〈ba(p)bb(−p)〉 =
M4

p4+αM4δab (A10)

〈ba(p)ξb(−p)〉 = i
p2δab

p4+αM4 (A11)

〈ba(p)τb(−p)〉 = −i
M4

p2 δab (A12)

〈c̄a(p)Ab
µ(−p)〉 = −i

ρα
p2(p4+αM4)

δabpµ (A13)

〈c̄a(p)bb(−p)〉 = i
ρ

p4+αM4δab (A14)

〈c̄a(p)τb(−p)〉 =
ρ

p4+αM4δab (A15)

〈c̄a(p)ξb(−p)〉 =
ρα

p2(p4+αM4)
δab (A16)

〈ϕ̄ab
µ (p)ϕ̄cd

ν (−p)〉= 〈ϕab
µ (p)ϕcd

ν (−p)〉 =
g2γ4 f abmf mcd

(p2+µ2)[p4+ p2(m2+µ2)+m2µ2+2Ng2γ4]
Pµν (A17)

〈ϕ̄ab
µ (p)ϕcd

ν (−p)〉= g2γ4 f abmf mcd

(p2+µ2)[p4+ p2(m2+µ2)+m2µ2+2Ng2γ4]
Pµν −

δacδbd

p2+µ2δµν (A18)

〈ϕa
µ(p)τ

b(−p)〉= 〈ϕ̄a
µ(p)τ

b(−p)〉 = −i
gγ2

p2(p2+µ2)
pµ f abc (A19)

〈ξa(p)ξb(−p)〉 =
αδab

p4+αM4 (A20)

〈ξa(p)τb(−p)〉 =
p2

p4+αM4δab (A21)

〈τa(p)τb(−p)〉 = −
{

m2(p4−αM4)+M4p2

p2(p4+αM4)
+

2Ng2γ4

p2(p2+µ2)

}

δab , (A22)

with Pµν =
(

δµν − pµpν
p2

)

being the transverse projector.

The theory also has a considerable set of vanishing propagators, given by all propagators involving either

thec or the theω fields, except for

〈c̄a(p)cb(−p)〉 =
1
p2 δab (A23)

〈ω̄ab
µ (p)ωcd

ν (−p)〉 = − 1
p2+µ2δacδbdδµν. (A24)

The propagators involving the auxiliary fields(β̄,β) and(ζ̄,ζ) are straightforwardly derived from those

above by using the symmetry relations (44). All other propagators which have not been listed above are

vanishing. Finally, let us recall that the parametersM and ρ (which regularize the propagation of the

Stueckelberg field) must be taken to zero at the end of any actual calculation.
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