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Abstract. The gravitational memory effect leads to a net displacement in the
relative positions of test particles. This memory is related to the change in the
strain of the gravitational radiation field between infinite past and infinite future
retarded times. There are three known sources of the memory effect: (i) the loss
of energy to future null infinity by massless fields or particles, (ii) the ejection of
massive particles to infinity from a bound system and (iii) homogeneous, source-free
gravitational waves. In the context of linearized theory, we show that asymptotic
conditions controlling these known sources of the gravitational memory effect rule out
any other possible sources with physically reasonable stress-energy tensors. Except for
the source-free gravitational waves, the two other known sources produce gravitational
memory with E-mode radiation strain, characterized by a certain curl-free sky pattern
of their polarization. Thus our results show that the only known source of B-mode
gravitational memory is of primordial origin, corresponding in the linearized theory to
a homogeneous wave entering from past null infinity.

PACS numbers: 04.20.-q, 04.20.Cv, 04.20.Ex, 04.25.D-, 04.30-w

1. Introduction

The gravitational memory effect produces a net displacement between test particles after
the passage of a gravitational wave. The effect was initially recognized in linearized
gravity where the radiation memory is produced by an exploding system of massive
particles which escape to infinity [1]. Independently such burst memory was found as a
zero frequency mode of gravitational radiation in studies of the collision of relativistic
point particles [2] and in studies of astrophysical gravitational wave emission [3]. A
nonlinear form of radiation memory was discovered by Christodoulou [4], which was
then related [5 6] to the flow of gravitons to null infinity. Subsequent studies showed
that even in linearized gravitational theory the analogous energy transport to future null
infinity Z* by massless particles or fields (neutrinos, electromagnetic radiation, etc.) also
produce gravitational radiation memory [7, [8, 9]; so that rather than nonlinear memory
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this is now referred to as null memory. Despite the stunning recent observation of
gravitational waves by the LIGO-Virgo consortium [10], the detection of gravitational
memory is more demanding due to the current insensitivity of the LIGO detectors, as
well as pulsar timing arrays [I1], to the long rise-time of typical memory signals [12].

An overlooked aspect of gravitational radiation memory has been its global sky
pattern, which can be decomposed into E and B modes similar to the decomposition
of electromagnetic radiation, as explained in Sec. Recently, it has been shown that
both the gravitational burst memory due to ejected particles and the null memory are
purely E-mode [13], where it was also pointed out that B-mode gravitational memory
could be produced by a homogeneous, source-free gravitational wave, as we explicitly
demonstrate in Sec.

In this paper, we refine and elaborate the global properties of gravitational radiation
memory in the context of linearized gravitational theory. We show that if burst
memory (or its time reversed counterpart consisting of the capture of particles incident
from infinity) and homogeneous wave memory are eliminated by a weak asymptotic
stationarity condition then null memory is the only possible form of gravitational
memory arising from matter with a physically reasonable stress-energy tensor. Except
for homogeneous wave memory, the other two known sources (burst and null) produce
E-mode gravitational memory. Thus our results imply that B-mode memory is of
primordial origin, corresponding in the linearized theory to a homogeneous wave entering
from past null infinity. These results apply to non-compact matter sources with isotropic
stress, scalar fields and electromagnetic fields.

The gravitational memory effect is an asymptotic feature which arises from the
difference in the radiation strain at Z* between infinite past and infinite future retarded
times. As we discuss in Sec. 2 there is a connection between the gravitational memory
effect and the supertranslation freedom in the Bondi-Metzner-Sachs (BMS) asymptotic
symmetry group [I4]. For this reason, we base our work upon a linearized version of the
null hypersurface formulation of the Einstein equations pioneered by Bondi et al [I5] and
by Sachs [16]. The aspects of the Bondi-Sachs formulation related to gravitational wave
memory are reviewed in Sec. Bl While this is a metric based approach, we concentrate
on gauge invariant quantities. For an alternative covariant formalism in terms of the
Weyl tensor see [17].

In Sec. M, we present the underlying assumptions regarding asymptotic flatness and
the asymptotic conditions on the matter stress-energy tensor. In Sec. Bl we discuss
a weak asymptotic stationarity condition which controls incoming radiation fields and
rules out two of the known sources of the gravitational memory effect: the burst memory
and the homogeneous wave memory. The weak asymptotic stationarity condition
requires that the leading =5 coefficient of the Newman-Penrose curvature component
Uy be stationary in the retarded time limits v = £oo. Our main results for E-mode
memory are given in Sec. [6.I and those for B-mode memory, in Sec. [6.2l The role of
matter fields is discussed in Sec. [6.3]

Our approach is based upon a previous study of the global properties of
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electromagnetic radiation memory [I3], which showed that only the known current
distributions which carry charge to infinity can produce E-mode memory [I8] and
that B-mode electromagnetic radiation memory cannot be be produced by a physically
realistic charge-current distribution. In the course of this work, it was realized that the
version of asymptotic stationarity condition assumed in [I3] was unnecessarily strong.
In[Appendix A] we revisit the electromagnetic memory results under a weaker condition
of asymptotic stationarity analogous to the gravitational version presented here.

As pointed out in [18], the electromagnetic memory effect is more dramatic than
the gravitational effect. Electromagnetic waves produced by the ejection of a charged
particle give rise to a net momentum kick to test charges in the radiation zone, as
opposed to the displacement of test masses in the gravitational effect. Other recent
work on aspects of the memory effect addresses its role in cosmological effects [19], in
binary neutron star mergers [20], in higher dimensional theories [21], in properties of
angular momentum [22 23], in the supertranslation freedom [24] and in the black hole
information paradox [25].

We use geometric units in which the Einsteinian gravitational constant is kK = 8.
The signature of the metric is +2 and we use the conventions of [2§] for the curvature.
For reference, a list of the linearized Christoffel symbols is provided in

2. Radiation fields on the celestial sphere, geometrical framework

In linearized theory, gravitational radiation is described by a trace free strain tensor on
the celestial sphere 24 = (6, ¢),

oa(u,x), ¢*Poap =0, (1)

where qapdaz?daz® = df? + sin?0d¢? is the standard unit sphere metric and w is the
retarded time. The radiation memory is determined by the change in the strain between
infinite future and past retarded time,

Acoap = 0ap(u=00,0,0) — oap(u = —00,0,9). (2)
This produces a net displacement in the relative angular position of distant test particles
Alay —at') = ¢*P Aopo(a§ — 7)), (3)

where we use the notation AF(z%) := F(u, 2%)|u—co — F (1, 2%) [u=—so-

Similarly, the electromagnetic radiation pattern at future null infinity ZT is
characterised by the angular components of the (rescaled) electric field E(u,xz?). The
E and B mode classification results from decomposing the electric field in terms of a
gradient and the dual of a gradient,

Eq = Ds® + ecaD Oy, (4)

where D, is the covariant derivative and e, p is the antisymmetric surface area tensor
on the unit sphere, respectively. The real scalar fields ®) and ®}; correspond to the
E-mode and B-mode, respectively.
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A compact way to describe this decomposition is in terms of a complex polarisation
vector g4 satisfying

GaB = q(adp), €aB = iqads, ¢ 'qa=2, ¢"qa =0, ()
e.g. qa = (1,isinf) for the standard form of the unit sphere metric and where (AB)

and [AB] denote the standard notation for symmetrization and antisymmetrization of
indices. Then the electromagnetic radiation is represented by the spin-weight 1 field

¢"Ex = ¢"(Da®ig + €74y Dcpy) = 0(Pyg + ipy), (6)

where 0 is the Newman-Penrose spin-weight raising operator [26].

The analogous decomposition of the gravitational radiation field can be made by
first noting that the strain can be represented in terms of a displacement vector field &4
by

5 (Daks + Dyta) — JaanD%c. (7)

Given two real scalar fields ¥ and X that form the complex scalar field ¥ :=

0AB =

Yg + i), the decomposition

£a = DaXig +epaDPEyy (8)
leads to the spin-weight 2 representation of the strain,

0= q"¢%oap = ¢*¢"DaDp(S) +iZy) = (L +iZp) =0°S . (9)

In spin-weight terminology, X and X represent the “electric” and “magnetic” parts
of the strain, corresponding to the E and B radiation modes. Here ¥ is the spin-weight
0 potential generating the spin-weight 2 field o via the spin-weight raising operator 0,
according to ([@). As we will make extensive use of the spin-weight calculus, if J4, 4, is a

symmetric trace free tensor field on the sphere and d"J = ¢4t ... ¢ J Ay..4,, We denote

the real part of the corresponding spin-weight 0 potential J by Ji and its imaginary
part by Jp.

In the electromagnetic case, the E and B radiation fields have equal magnitude and
are orthogonal in direction. Thus the electromagnetic radiation pattern and its memory
could be equally well described in terms its B field. Similarly, in the gravitational case,
the radiation fields corresponding to E and B” in an inertial frame picked out by a

time-like vector T, arise from the components of the Weyl tensor and its dual,
1
E =TT¢"¢"Conos, B= _iTaquAdeaAcCCCCbB ; (10)

where €gi23 = 1 is the four dimensional Levi Civita tensor. Here it follows from the
Petrov type N of the radiation field that the spin-weight 2 fields E and B are equal in
magnitude and oriented at 45°, i.e. E — B under the spin rotation ¢* — e"™/*¢*. The
leading coefficients of the electric and magnetic parts of the Weyl tensor in an expansion
at ZT are related to the strain according to

E(u,z*) = 9?0 (u, 2?) , B(u,z) = i0?c (u, ) . (11)
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For our purposes, it will be useful to deal with the strain but the Weyl tensor
representation has the advantage of being gauge invariant. The strain has gauge freedom

o — o+ 0% (12)

under a retarded time transformation u — wu + a(x?), which corresponds to the
supertranslation freedom in the Bondi-Metzner-Sachs asymptotic symmetry group [14]
260]. Thus, on comparison with (I2]), the E-mode component of the strain can be
gauged away during any stationary epoch. However, the E-mode of the memory (2))
is gauge invariant and can be considered to be a supertranslation shift between the two
preferred gauges for the strain picked out at u = +oo. It is curious, and perhaps of
some deeper significance, that in the electromagnetic case the E-mode radiation memory
is also related to a gauge shift, in that case with respect to the vector potential [13]
(see [Appendix Al).

3. Linearized Bondi-Sachs Framework

It will be useful to refer to three separate coordinate systems. A Cartesian inertial
system (t,2') = (t,x,9,2), the associated spherical coordinate system (t,r,z4) =
(t,7,0,9), r* = 22 + y* + 22, and the associated outgoing null spherical coordinate
system 2% = (u,r,z?), with retarded time u = ¢t — 7 and vertices of the null cones at
r = 0. In these retarded null coordinates, the Bondi-Sachs line element is

ds? = guudu® + 29, dudr + 2g adudz® + r?hapdridz?, (13)

where the use of an areal radial coordinate r implies that det(hap) = det(gap). In the
linearized approximation off the Minkowski background metric 7,4,

Guu ~ —1- 2B - VV; (14&)
Gur = — 11— 25) (14b)
gua ~ —12qapU”, (14c)

hap =~ qap + JaB, ¢*PJap=0. (14d)

In the following we treat (3, W,U?,.Jp) as linearized quantities and neglect higher
order terms. In this approximation, the non-zero contravariant metric components are

g7 = —1+28, (15a)
gt =1=28+W, (150)
gt = -U", (15¢)
gAB _ 7“_2((]AB o JAB)’ JAB — qACqBDJC’D- (15d)

Instead of working with the metric variables, we introduce spin-weighted fields and
express covariant derivativse D4 with respect to the unit sphere metric in terms of the
0 operator [26] 29]. For example, we represent the traceless symmetric tensor Jup by
the pure spin-weight 2 field J = ¢*¢®Jp and write

0T = ¢*¢®¢“Dedap, 0T =q¢*¢®Dedas . (16)
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A spin-weight s field F(2?) satisfies the commutation relation [3, 9] F = 2sF.

The linearized metric is determined by 3, W, the spin-weight 1 field U = ¢ U* and
the spin-weight 2 field J = ¢?¢®Jap. In the same way, we represent the components
pap Of the reduced stress-energy tensor of the standard matter stress-energy tensor T,

1
Pab = Tap — Enachca (17)
by the spin-weighted fields
N=q¢"pua, P=q"pra, S=q"¢"pas, (18)

and the spin weight 0 field Sy = ¢*¢®pas.
A spin-weight s field F(z*) can be expanded in terms of spin-weighted harmonics
Yom(z?) (1> 5),

o) l
F@) =" fim(u,r) Yim(z?). (19)

I=s m=—1
Here the ,Y},, are generated by applying 8° to the standard spherical harmonics Yj,,(z4).
. By this procedure, we can introduce a complex spin-weight 0 potential F' such that
F = 0°F. Hereafter, we denote any spin-weight s # 0 quantity by a scripted font, e.g.
F, and the its spin-weight 0 potential with the corresponding Roman font, e.g F'. This
procedure is not a priori unique since 0°Y},, = 0 for [ < s. We remove this ambiguity
by imposing the convention that for a spin-weight s field F its corresponding potential
F' contains no harmonics with [ < s.
Application of this notation to the metric and matter variables leads to the spin-
weight 0 potentials

U=0U, J=0J, N=0N, P=0P, S=0d6. (20)
Note that due to the above convention, U, P and N have no [ = 0 modes (which
otherwise would not be of physical significance). Similarly, J and S have no | = 0
and no [ = 1 modes. This notation leads to a natural decomposition of the linearized

field equations into their E and B-modes corresponding, respectively, to their real and
imaginary parts, as in the decomposition of the strain ().

3.1. FEinstein Equations

We express the linearized Einstein equations in the form

Ray = Kpap - (21)
Following the formalism in [30], 31], they decompose into the hypersurface equations
87*5 = %Tprr , (22&)
1 1 5=
O (r'o,u) = 2r'o, <ﬁf§ﬁ) — §r2f§8n7 + 2677P (220)
20,(rW) = 46 + %(627 L5 — 2890 + %a,n [ﬂ(aﬁ + Eu)} - (22¢)

T The s < 0 case is obtained by exchanging & by 9.
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the complex evolution equation

r0,0,(r ) = %ar (%0.9) — 00, (1) + 205 + xS | (23)
and the supplementary conditions
(—puw + pur) =0 [K 25— (U 8U)| — S0 — o, [r2(Eu + ald)| (240
R{—Puu Pur) = U r ’ 9 2,2 1r2 r|T s a
(Y57 _55_ L2 1 L2z o om0
KN = 8u<46j 89— 5r 8,11) + 500, + 502(r°U) + 7 (00U — O°0) (24b)

The supplementary conditions can be interpreted as conservation equations [32, [33].
It follows from the Bianchi identities and the matter conservation laws that if the
hypersurface and evolution equations are satisfied then the supplementary conditions
are automatically satisfied if they are satisfied on a worldtube r = R(u,z?) (or if the
vertex world line = 0 is nonsingular).

Rewritten in terms of the spin-weight 0 fields (U, J, N, P, S), these linearized
equations reduce to the hypersurface equations

o0 = grpw , (25a)
o, (r'o,U) = 2r'9, (%6) - %(56 +2)r?0,J + 2k7°P | (250)
j R — 1 _

20,(rW) = 48 + 53030 + 2)J — 2308 + 50, (r*FO Uy ) — KSs (25¢)
the evolution equation

10,0, (rJ) = %ar (r20,7) — 0,(rU) + 28 + K5, (26)
and the supplementary equations

w2 - 1 = 1 _
I{(—puu + ,Our) = —8u <7 - ;5 — 63[][6]) — Wﬁﬁw — 27“2(1(7’%56014) s (27&)
1 — 1, 1 1,5, 5 =

kN =8, [1(66 +2)J =B &U] + 50 W 4 SO2(r?U) + SB0U (27b)

Given the gravitational data J on an initial null hypersurface uy and the matter data
prry, P, S and Sy, the hypersurface and evolution equations consist of radial differential
equations which can be integrated at retarded time ug to determine 3, U, W, 0, J, in that
sequential order. The corresponding integration constants are a mixture of physical
properties of the system, e.g. the mass and angular momentum aspects, and gauge
information. As explained in Sec. [4.2] it is possible to use the gauge freedom to set
B, 7, )| rmoe = U, 7,2 [p—oe = J (U, 7, 24)|p—00 = 0.

We note the Newman-Penrose Weyl component W, is given in terms of the
gravitational data b

1
8r2

§ The factor 1/4 in (28)) arises because of the normalization of the null vectors and Q°.

1
U, = —ZCadeK“QbKCQd = —0,(r*0,0%)), (28)
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where Cypeq is the Weyl tensor. Here @), = (0,0,7rg4) and
Ko=-Veu, N,=-Vo (29)

are the null vectors associated with the retarded time v = ¢t — r and the advanced time
v =t + r, with normalization K*N, = —2.

4. Asymptotic behavior

We are interested in systems which are asymptotically flat at future null infinity. In
particular, we impose the peeling property which requires that the leading terms in the
asymptotic expansion of the Bondi-Sachs metric can be expressed as a power series in
1/r. Thus, to the required power of 1/r, we assume that a field F'(z*) describing the
metric or matter has an expansion

Froy(u, 24 Fo(u, 24 Fa(u, 24
(%) | Fg(u,2?) | Fy(u,2?)

F(2%) = Fig(u,2") + 2 1

. +ony (30)

,
where the coefficients functions Fi,(u, z!) are evaluated at Z*. In particular, F(u,r =
o0, (L’A) = F[O} (u, ZL’A).

We make the following physical assumptions on the matter at null infinity:

(i) The total energy, momentum and angular momentum of the matter, and their
related fluxes are finite.

(ii) The dominant energy condition holds.

(iii) The matter stress-energy tensor satisfies the local conservation law V,7% = 0.

These matter conditions are complemented by asymptotic flatness and gauge conditions
on the perturbed metric.

4.1. Matter asymptotics

The most general asymptotic conditions on a stress-energy tensor 71, are that the total
energy, momentum and angular momentum, and their fluxes are finite. These conditions
indirectly apply to the stresses by requiring a dominant energy condition.

The condition that the total energy and momentum content of the matter be finite,
ie. fooo £9T, "r?dr converges for every background translational Killing vector £, implies

T =00, T" =0, T{=0(r"?), (3la)

u

Index symmetry of T}, then implies

=00, TA =07P). (310)

T

The condition that the matter transport finite energy-momentum and angular
momentum to infinity, i.e. that the flux £%7,"r? be finite at Z* for each Minkowski
background space-time translational or rotational Killing vector £¢, requires

" =0(r?), T, =0(r ), T4 =0, (31c)

u
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where we have again used index symmetry to constrain T4.  Furthermore, the
requirement that the time integrated fluxes ffooo £9T,"r%du also be finite gives stronger
conditions in the infinite past and future (see also App. of [17]),

" =0(r?), T, =0, T4 =0(r ), u = +00 .(31d)

u

The dominant energy condition requires that for any observer the velocity of the
matter is alway smaller than the velocity of light. Specifically, for every unit timelike
vector 7%, with T,,7%7% > 0 and T,;7® a non-spacelike vector, an equivalent formulation
of the dominant energy condition is that in any orthonormal basis (7%, e‘(’i)), 1=1,2,3,
Tt > |T(i)(j)| for each 4,7 [35]. This implies conditions on the stress components.
The vector 7@ = (r=+/4 1r1/%,0,0), with norm 77, = —(1 4+ r~'/?), approaches a unit
timelike vector as r — oo. Together with (BId) this implies T,,727° = O(r=3®) at
u = +o0o. Since we require that the leading terms in an asymptotic expansion be
integer powers of 1/r, for an orthonormal base associated with 7% at Z* the dominant

energy condition implies
T4 =00, u=4occ. (31le)

The relations (B1d)-(B1d) manifest the most general asymptotic behaviour of the T,
under the given assumptions. Given these results, the leading terms in the conservation
laws V,T? = 0 imply at u = 400

0= 0Ty — Tog = 0Ty = 0T hry)- (32)
In terms of the reduced tensor p,, the asymptotic behaviour ([BId)-([BId) correspond to

Puw = O ™?) . pur =0 "), pr =007, (33a)
and for the matter spin-weight 0 potentials

N=0r"?), P=0r?). (33b)

Further, the finiteness of the time-integrated flux along with the dominant energy
condition require at © = £o0

P =00, N=00"?) , S4=00"?), S=0("?). (33¢)
The conservations laws (B2)) in terms of p,, yield at u = +o0

0 = 0uSoj2) — 2puu3) = Ouprra) = OuPr3 - (33d)

4.2. Spacetime asymptotics

The asymptotic behavior of the matter tensor in the previous section ensures that the
radial integration of the hypersurface and evolution equations is convergent as r — oco.
Some of the integration constants involved in these radial integrals represent pure gauge
effects and others represent physical quantities such as the mass and angular momentum
aspects. Radiation memory is an asymptotic effect whose treatment is simplified by
taking advantage of the asymptotic gauge freedom.
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For a given gauge transformation £* (i.e. a linearized diffeomeorphism), the
linearized metric undergoes the gauge transformation [2§]

5§gab — gacacgb + gcbacé-a o gcacgab. (34)

This gauge freedom is subject to the Bondi-Sachs coordinate conditions d¢g"* = 0,
5§g“A =0 and gABéégAB = 0 [I4], 15], which leads to the functional dependence

1
¢ =a(wa”), &= fua®) - Do, € =—IDs”  (35)
By setting q46* = € and g4 f4 = 3f, in terms of a complex scalar field f(u,z?), we
obtain
— 1—
£=3f —r¥a, &= —gééf[e] + 509 . (36)
This gives rise to the following gauge freedom in the linearized metric variables:
1 -
2(%5 = —0,a — &57 = -0, + 563]‘14 , (37)
1., 1. = 1
ol = (&L—&«)ﬁ—ﬁ& = 8@]“—1—53(55]“[6]—28ua)+ﬁ5(53+2)a, (38)

6eJ = —0°f + %6%, (39)
and

5 W = —0,(267+€)+0,E™ = 10,50 f[e]—au(36+1)a—%36 f[e}+%35a.(40)
This gauge freedom allows us to fix the integration constants at Z*. In particular,

lim 0 = 00, f(u, z) (41)
so that we can use the u-dependence in the f(u,x?)
the notation of ([B0). Next,

gauge freedom to set Uy = 0, in

1 _
lim 6¢8 = —0,a(u, z*) + 555f[e}(xA) (42)
r—00 —
so that we can use the u-dependence in the a(u, z) gauge freedom to set Bio) = 0. The

remaining gauge freedom is time independent and is determined by a(z?) and f(a4).
At some fixed retarded time u = uy we have

lim d¢7 = —02f(z), (43)

which allows us to use the gauge freedom in f(z?) to set Jjg(uo, 2*) = 0.
In summary, after using gauge freedom, the spin-weight 0 metric fields satisfy

Boj(uw,z*) =0,  Upgy(u,z™) =0,  Jig(ug, z*) =0, (44)

with the remaining gauge freedom determined by a(z?).

Now, with these asymptotic conditions on the metric variables along with the
asymptotic properties of the matter variables, consider the radial integration of the
hypersurface and evolution equations. Given the asymptotic matter conditions p,, =
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O(r=%) and P = O(r~3), the integration of the S-hypersurface equation ([25d) and U-
hypersurface equation [25H) imply 8 = O(r72) and U = O(r72). As a result, the
J-evolution equation (26]), together with S = O(r~2), implies

(%J[O}(u, :L’A) =0 (45)
so that, with the initial gauge condition Jjgj(ug, ) = 0, we have Ji(u,z) = 0 at all
times. Thus, we can use the gauge freedom to set

b= ﬁ[g]r_2 +.., U= U[Q]T_z + ., J= Jm’r‘_l + ..., (46)
where the remainder terms are of higher order. Choosing ¢, = —V,u in the formula for
the radiation strain (7)) gives

r 1
o(u,2?) = §quBJAB(u,r, M) oo = 562J[1]. (47)

Together with (2) and (@), ([@7) shows that the spin-weight 0 potential A for the
radiation memory Ao is

AS = JATy, (48)
The remaining gauge freedom ([A3)) of J is according to (39)

b Iy (u, ) = a(z?), (49)
so that Jj;) may be gauged to 0 in either the limit u = oo or the limit u = —oo, but the

difference AJj) is gauge invariant.

5. Weak Asymptotic Stationarity

The weak asymptotic stationarity condition (see (64))) is key to our analysis of the sky
pattern of the memory effect. It serves to control incoming radiation and eliminates
two of the three known sources of radiation memory: burst memory and homogeneous
wave memory. The third known source, i.e. null memory, depends upon a non-zero
integrated energy flux to Z7.

5.1. Notation and useful formulae

Here we present some useful relations between the flat space Cartesian coordinates
1% = (t,2%), together with the associated orthonormal tetrad

T,=—0,t, X,=0x, Y,=0w, Z,=0,z, (50)

and their spherical analogues. Associated with the spherical coordinate r are the unit
vector r, = J,r and its the second partial derivative r,, = 0,0,r, with the spatial
components

0ij T,

r; = — = (sinfcos ¢,sinfsin ¢, cosf), r;;=—L — 3
r r r

: (51)

|| For the choice {4 = —V 4u in (@) the norm |o| equals the fractional length change 6L /L measured
by a gravitational wave detector.
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so that % = (¢,rr?). With this notation, the second derivative of a function F'(t,r) is
given by
o.F
r
The vector Q¢ with Q*T, = Q% , = 0 and angular components Q* = ¢*/r has
Cartesian spatial components

Q' = lngqA = (cos @ cos ¢ —ising,cosfsing + icosp, —sinf) ,  (53)
r Ox

)TaTb — 28,0, F)T\ary + (afF— 8;F )rarb+ (&F )nab. (52)

r

0,0, F = (afF +

which satisfy

cot , 1
Qur" =0, QaaaQb = TQb , Q'ry = ;Qj ) Qaaafl?A = qA/T (54)
and the useful relations
(@) +(QY)* = —sin®0), (55a)
Qry — Qry = —isinb, (55b)
Q"ry + Qry =sinf cos b, (55¢)
Q%ry + Qr, = sin 9(2 cos 0 cos ¢ sin ¢ + i(cos? ¢ — sin? gb)) , (55d)
QaQp(XY =YX XY~ YO XY rry = —sin? 0, (55¢)
QuQu( XY — Y X')(XPYT — VP X7)§;; = —sin? 0 . (55)

5.2. Weak Asymptotic Stationarity Condition

5.2.1. Boosted linearized Schwarzschild solution A particle at rest with mass m gives
rise to the linearized Schwarzschild metric

gar = —(1- 2Tm)TaTb +(1+ 277") (Xo Xy + YaYs + ZaZs). (56)

Burst memory is produced by a particle initially at rest which is later ejected with
escape velocity V. For a boost in the z-direction with four velocity v* = I'(1,0,0, V),

with I' = (1 — V2)71/2 the resulting memory is
Ag— _ 2mI'V?sin 6 _ (57)

(Vcos —1)

In order to see how burst memory can be eliminated in a gauge invariant way by
a weak asymptotic stationarity condition, consider the corresponding curvature tensor,
which for the Schwarzschild solution is determined by the electric part E,;, of the Weyl

tensor. In the rest frame, E,,r%?° = 2m/r® and E,;,Q°Q" = —2m/r® so that
Eu=—= (37’arb Ty — TaTb> , (58)
r

where T is the 4-velocity of the particle. The corresponding Weyl tensor is

2m
Cabed = gy [12 Ty rcly + 6<T[anb} e La) — TaMbjer d]) — 27]a[c77d]b} . (99)
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For a boosted particle with 4-velocity T — v® and r and r, substituted by the Lorentz
covariant expressions

1
r? = R* = 2%, + (v,2%)* | re — R, = E[% + (vp®) V4], (60)
we obtain
2m
Cabcd = ﬁ |:]-2R[avb}R[cvc} + 6<U[a77b][cvd} - R[anb][cRd}> - 2na[cnd}b] . (61)
The corresponding Weyl component ¥ is
3am 2
Vo= — | @K @) — (0 EK) (0,Q")] (62)
Since z,Q% = 0 and z,K* = —u, we find for a boost in the z-direction with velocity V'
3mI?u?V?2sin? 6 3m V2sin% 6 u?
Uy = — = - — +0(r %), 63
0 2R5 2 I3(1+ Vcosf)>2rd +00™) (63)

For a particle at initially at rest, Wy = 0 and W, satisfies ([G3) after it is ejected.
Thus the ejection and the associated burst memory can be eliminated by requiring the
weak stationarity condition

0= A lim P02V, (64)
This also rules out the memory effect due to the time reversed process of the capture of
particles incident from infinity.

Note that (64]) does not restrict higher order boosted multipoles, whose Weyl
curvature W, falls off faster than 1/r°. However, as we show next, this weak
asymptotic stationarity condition does rule out the memory effect due to source-free
waves. Expressed in terms of the metric variable J by means of (28]), weak asymptotic
stationarity (64)) restricts the metric coefficient Jj3 according to

0= ATy . (65)

In particular, this places no restriction on the time dependence of the radiation field
Jji), and therefore it is not a direct restriction on the gravitational memory AX.

5.2.2. Source-free gravitational waves Here we consider the standard formalism [28§]
for linearized metric perturbations hy, of a Minkowski background metric,

Gab = Tab + hap, gab = Uab - haba det(gab) =—-1+ hg (66)

where indices are raised and lowered with the Minkowski metric. The densitized version
of the perturbation is given by

V —9Y9ab = Tlab + Yab 5 (67)
where
1
Yab = hap — 577abh§~ (68)

We adopt the harmonic gauge condition 9,y® = 0, in which the source-free linearized
Einstein equations take the simple form 1%9,9;v.q = 0.
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We construct source free linearized waves in the harmonic gauge by using the
gravitational analogue of a Hertz potential H*? [41] 40)], which has the symmetries

Hacbd _ H[ac}bd _ Hac[bd} _ Hbdac (69)
and satisfies the flat space wave equation 9°0,H*"* = 0. As a result, the densitized
metric perturbation

fyab — acadHacbd (70)

satisfies the linearized Einstein equations in the harmonic gauge.
Source-free, ingoing-outgoing gravitational waves can be generated from the
potential
t—r)— f(t
Hacbd — Kacbd f( T) f( + T) ’ aeKabcd =0 ’ (71)
r
which gives rise to the perturbation

flt=r)—f(t+r)

fyab — Kadeﬁbﬁc (72)
,
According to (7)), the strain of the radiation field on Z* is given by
1 a
o= lim 5rQuQwy b, (73)

For these vacuum solutions of the field equations Rgpcq = Capeq and the Weyl component
\Ifo is
1 ab rcd 1 ab rcd
Vg = _ZRabch Q"KQ" = —5(2%17,0[1 — Yac,bd — %d,ac)K Q"KQ", (74)
where the individual terms are determined by the tetrad components of ~,, according

to
Yo aQ QKK = K0 [ K041 Q°Q")] (75a)
1 , 1
YaeaQ K QK = K0, Q0 =7 Q K" sinf — 1 QQ"] | (750)
sin 6 r
0y (v KO K®)7 4sinf b QOK® 2
’}/ab,chaKchQd = Qcac [Q d(f}/ ’ >] sin 6 — 1 Qcac<fy bQ ) + _27aanQb'
sin r sin r

(75¢)
Considering 7,Q%Q", Yoo K?Q" and 7,4, K*K® to be functions of (u,r, 0, ¢), we rewrite
(75d) -(75d) as
YabedQ QKK = 82(7apQ°Q"), (76a)
YanedQ K" QK = 0, [Siff"qAaA (M)} o[22 (760)

sin 0
sin 0 A04 (Y KK A7y, QK 2
el Q= 2 g, [ ITIT)  DaQPRT L 2 gugr (760
r sin 0 sin r
For our purpose, it suffices to consider the perturbation (72) determined by
iCr? . T <7
f(r)=4¢ F(r) : 0<7<T (77)
0 : T<0
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where F'(7) is chosen to make the solution smooth. In particular,
f"lu)y=0C, f'vy=C, : u>T
f"(w)y=0, f'(v)=C, : u<Oandu—+2r>T. (78)

5.2.3. Quadrupole B-mode gravitational wave memory The choice

Jabed _ i(T[aZb]X[CYd} + X[aYb]T[CZdQ (79)

in ([2), along with the help of (52), gives rise to the purely B-mode quadrupole
perturbation with components

Qs —2isito( LS w2 | J) = Fuy 2r)

), (80a)

r r2
K°Q yap = icost sme(_z’u/(:f +2r) 2/ + i?f/(u +2r)
n 3f(u)—i£(u+2r) )7 (05
KK’ a5 =0, (80¢)

corresponding to spin-weight (I = 2,m = 0) spherical harmonics. This perturbation
gives rise to the B-mode radiation strain

o (u, ) = —isin@ lim | f"(u) + f"(u + 2@} . (81)
r—00
The waveform ([[7)) then leads to the non-zero radiation memory
Aoy = —iC'sin* 6. (82)

Thus homogeneous waves with non-zero B-mode radiation memory exist.

In order to show that weak asymptotic stationarity rules out these waves we
calculate the Weyl component W,. Substitution of (80d) - (80d) into (T6d) - (76d)
yields the required second derivatives of the metric,

" " 17 1"
VabedQ Q" K K" = i sin” 9{ 8f"(u+2r) 16f"(u+2r) + 4f"(u) + 20" (u + 2r)

r 72 r3
L L2 (w) —rf’(u - 2@]} | o

e edQ K QFK = i 5in? 0 { ALf" (u) —Té”(u +2r)] | 12[f'(w) +T 4f’(u +2r)]
L L2[f(w) —Tg(u +2r)] } | o

e KK QOQ = i sin2 0 { A[f"(u) —T{;”(u +2r)] | 12[f'(w) +T {’(u +2r)]

L 12[f(w) = flu+2r)] } (83¢)

rd
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The subsequent evaluation of (74]) leads to
f"(u+2r)  2f"(u+2r) N 3f"(u+2r)  3f'(u+2r)

\Ifo[b} = \Ifo = ’iSil’l2 ‘9{

r r2 r3 r4
3f(u)— f(u+2r)
2 7o } ' (84)
For the waveform ([77), we find
Yo =0, u>T,
3iCu?sin” 0
Yo = %, u<0,ut2r>T. (85)
r

Consequently, the weak asymptotic stationarity condition (64]) implies that C' = 0 and
rules out the B-mode memory (82)) arising from homogeneous ingoing-outgoing waves.

5.2.4. Quadrupole E-mode gravitational wave memory Ingoing-outgoing waves for
electric type homogeneous waves can be generated from the dual * K% of ([77),

1 1 1 1
*Kacbd _ §nabefK6fcd _ §(nabn6d . 7,]adnbc) + ZTv[aZc}Tv[bZd} _ ZX[GYC}X[bYd}. (86)
The previous procedure for the magnetic type gravitational waves, using * K¢ instead
of K% leads to the quadrupole E-mode gravitational memory related to the B-mode

memory (82) by
Aa[e} = —iAU[b] = Csin2 0 (87)
(also compare with (ITI)).
Similarily, we find Wop) = —iWqp , so, referring to (83),
\Ifo[e] =0, u>T,
~ 3Cu?sin*6
N 4r5

Consequently, the weak asymptotic stationarity condition (64]) again requires C' = 0

Ty w<0,u+2r>T. (88)

and rules out E-mode memory arising from homogeneous ingoing-outgoing waves.

6. Gravitational Memory

We now discuss our central issue, the global analysis of the E and B-mode patterns
of the linearized gravitational memory. For this purpose, we consider the general
asymptotic solution of the linearized Einstein equations at Zt and, in particular, the
limiting behavior at u = 400, subject to the asymptotic conditions on the matter and
metric discussed in Sec. [l

The solution of the Einstein equations, as detailed in Sec. [, assumes an asymptotic
expansion of the matter and metric variables in terms of a 1/r expansion. For the metric
variables, we assume, in accord with (4], that the strain variable J has the expansion

J = Jur~" + Jgr~> + Jzr~° + higher order terms , (89)
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and, for the matter fields, we assume in accord with (33d)-(33d)
. Prr[4]
=—

We proceed to use these expansions to integrate the linearized equations.

Py Sof2]

S

rr

The integration of the g-hypersurface equation gives the asymptotic dependence

KPrr
B=—g 00/ (91)

and together with (33d)
8uﬁ[2] =0 y u = F00. (92)

Integration of the U-hypersurface equation (258) yields

U, U, 1+3l1
v =2, =8 < - u)U[log] + higher order terms,  (93a)

72 r3 9r3
1 _
Ug = —;(00+2)Jy, (930)
L
Usg = —3, (93¢)
Uliog] = (66 + Q)J[g} — 889 + 2P, (93d)

, appearing
in Ups are, respectively, the dipole-moment aspect and the angular-momentum aspect.

where the real and imaginary parts of the function of integration L(u,x)

Inserting the asymptotic solutions for 8 and U into the evolution equation (26]) yields

0= 81“][2} y (94&)
0 = Ujtog = (30 + 2)Jj9) — 82y + 26Pg (94b)
0= 20,Jp3 + Jig) + Ujz) + 2B + £S5y (94c)
As a consequence of (941), the logarithmic term in (93d) vanishes, i.e.
U U
U= % + % + higher order terms, (95)

which is consistent with asymptotic expansion in 1/r required by the peeling property.
Subsequently, integration of the - hypersurface equation (25d), while using (@3]), gives

Wi W,
wo= 228, (96a)
r T
Wpy = —2M (96b)
1= _ K
Wig = — 566U[51] — (00 + Q)ﬁ[g} + 5(65353] + So[g]) , (96¢)

where the function of integration M = M(u,z4) is the mass aspect, normalized so
that the uu-component of the metric perturbation equals 2M /r in the static case. This
general solution must also obey the supplementary conditions at some radius r. In the
next two sections, we impose these conditions in the limit of Z*, where their real and
imaginary parts constrain the £ and B-mode memory, respectively. The matter terms
which appear in the spin-weight 0 version ([27d) and (27H) are expanded according to

[B3d) and (330) as

. Puul2] Puul3] Puul4]

N N
fe N=—Z4Eal (97)
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6.1. Implications for the E-mode gravitational memory

The supplementary condition (27d), i.e. Ry, = Kpuu, is purely real, whereas (270),
resulting from the spin-weight 0 version of ¢ R 4 = xN, has both a real and imaginary
part. In order to constrain the E-mode memory we consider the real part of (278),

1 1 1 1
0=0, [1(55 +2)Jig = 8 = 5770 Uiq| + 50 W + 597 (r*Upg)) — £Njg. (98)

Substitution of the asymptotic expansions for 3, W, and the real parts Ji and U,
yields the leading order terms

[r~2 part of @7d)] 0= 0uWpy — 8u58U[62] — KPuuf2] (99a)
[r~" part of (@8)] 0= 9,(00 + 2)Jjer] + 40,Uer) (99b)
[r~2 part of ([@8)] 0 = 0,(00 + 2)Jieg) + 60,Upes) — 40,89 — 2Wpy — 46 Njeq). (99¢)

Substitution of the electric part of U from (934) into ([994) shows that ([994) is

already satisfied. Using the formulae (@) and ([@7)) for the strain, along with (93%) and
([©60), the supplementary condition (09d) implies

1
OuM = 30,93(30 + 2)Tig = Zpuutz - (100)
Integration over retarded time from u = —oo to u = 0o gives
+00
ADD(3D + 2)% = 4AM + 2m/ Puufz)du. (101)

Here the contribution from py,[ is the null memory arising from the net transport of
energy to infinity by the matter. In the absence of null memory, we thus obtain that
the E-mode memory A¥, is related to the change in the mass aspect AM .

Next, the supplementary condition ([@9d), along with the electric part of (O41), gives

0 = 260, Pes) — 40,B19) — 60,Ule3) + 2W)y) + 4k Nieg). (102)
Differencing (I02) between u = +oo, while employing the matter conditions (83d) and
([B3d), the condition (@2)), and the relations ([©3d) and (96H), gives

A0y L = 2AM . (103)
Consequently (I0I) shows that the electric memory AX, can alternatively be expressed

in terms of the dipole-moment aspect L by
“+o00

A66(56 + 2)2[6} = 2A8uL[e} + 2,‘{/ puu[g}du . (104)

Next, application of the weak asymptotic stationarity condition (G5 to the u-
derivative of (94d), together with (92)), (03d) and (04d), gives

AauL[e} = 3A8u5[62]. (105)

As a result, (I04) relates the E-mode memory to the net change in the u-derivative of

the anisotropic stress according to
“+o0o

AJD(T0 + 2)X () = 6620, Seq + 25 / Puuzd . (106)

—00



Linear gravitational memory 19

Thus, except for the null memory arising from p,,[, the only memory effect allowed
by the weak asymptotic stationarity condition must arise from a matter distribution
with the asymptotic behavior A9, Sy # 0. A detailed discussion of this possibility is
postponed to Sec.

6.2. Implications for the B-mode gravitational memory

As seen from (48), the B-mode gravitational memory AXjp is determined by the
imaginary part Jp;. As only the fields J, U, P, N and S have imaginary parts, the
only relevant supplementary equation is the imaginary part of (270),

j 1 1 1=
0=20, [1(36 + Q)J[b] — 57“207“[][1)}] + 583(T2U[b}) + 566U[b] — KNy (107)
The leading two orders of (I07)), along with the imaginary parts of (89), (95) and (@7),

give

1 _

(7’_1) : 0= Zau(ﬁ(’) + Q)J[bl] + 8uU[b2] , (108a)
1. = 3 1

(7‘_2) 0= 1&(66 + Q)J[bQ] + §8HU[(,3] + 555(][(,2] — KN (108b)

The imaginary part of (934) implies that (I084d) is already satisfied. From the imaginary
parts of (33d), ([038), (93d) and (@4d) the second condition (L08%) simplifies at u = +o0
to

1 _
0= 166(55 + Q)J[bl] + &LL[b] , (109)
so that
ADD(DD + 2)Ey) = —2A, Ly - (110)

Thus the B-mode memory AXp, is related to the angular momentum aspect Ly
in a similar way that the E-mode memory is related to the dipole-moment aspect L.
Also note, there is no analogue of the null memory for the B-mode case. As in the
E-mode case, the B-mode memory can be related to the asymptotic anisotropic stress
S by applying the asymptotic stationarity condition (63l to the magnetic part of (04d)
together with (93d) and (94d),

ADD(DD + 2)p) = —65A0, S - (111)

Thus, after using weak asymptotic stationarity to rule out the known source of
B-mode memory, i.e. a homogeneous wave, a non-compact matter distribution with the
asymptotic stress Ad, Sz # 0 remains the only possibility.

6.3. Matter implications for E and B-mode gravitational memory

From (I06]) and (III), we have shown that the weak asymptotic stationarity condition

condition leads to
+00
ADJI(00 + 2)X = 6KkAI, (S[eg} — iS[bm) + 2K / Puufzdu (112)

— 00
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In the absence of null memory f_Jr;o puuzidu = 0 so that ([II2)) reduces to
ABO(DD +2)% = 650, (S — iSp2) - (113)

which shows that all remaining possible sources of gravitational memory are determined
by the retarded time derivatives of the stress 9,5]y at u = 00. Recall that ¥ contains
no monopole or dipole harmonics which otherwise would be allowed by the inverse of
the 00(00 + 2) operator. We now discuss the asymptotic behavior of 8,5y for various
sources.

Sources of compact support: For matter which vanishes in a neighborhood of Z at
all finite u, it immediately follows that 9,S2) = 0 for all u. Note that this does not rule
out matter confined inside an expanding (or contracting) worldtube r = R(u), where
R(u) — o0 as u — £o0.

Scalar fields: The stress-energy tensor of a scalar field ® with mass m,

1 m?
Ty = (0.0)(04®) = 51 [1”(.9)(0s®) + 5707 (114)
gives rise to the anisotropic stress
0%S = (00)%. (115)
For a massive scalar field on a Minkowski background, it has been shown that ® falls
off faster than any finite power 1/r" at Z [38, 39]. Therefore Sy vanishes for all u.

For a massless scalar field, the asymptotic radiative behavior ®(z%) =
@y (u, z)r~! + O(r=2) implies

u

1
T = —ﬁ(auq)mf + ... 628u5[2} = 2(5(13[1])68u®m. (116)

The requirement that the u-integration of the energy flux 7 to Z* be finite implies that
8U(I)[1] = 0 for u = +00. Thus A&uS[Q} =0.
Electromagnetic fields: The stress-energy tensor of an electromagnetic field F,

1
Tab = FachC - ZnabFCchdu (117)
gives rise to an anisotropic stress
O*S = ¢ qPFa F. (118)

The asymptotic behavior of the electromagnetic field, dictated by the peeling property
implies (in null spherical coordinates) ¢4 F4, = O(1), ¢*¢° Fap = O(1), F,, = O(1/r?)
and ¢4 F,, = O(1/r?). As a result,
1
T = ﬁ\qAFAu[O]F + oy 028 = =20 P Fauo Firpg) - (119)
As in the scalar case, the requirement that the u-integration of the energy flux 77 to
7" be finite implies that qAFAu[O] = 0 for u = +o00. Thus Sjgy = 0 at u = Foo and
consequently Ad, Sy = 0.
Perfect fluid halo: The stress-energy tensor of a perfect fluid, with matter density

p, pressure p and 4-velocity v?,

Toy = (p+ p)Vap + Plas, (120)
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gives rise to the anisotropic stress

0°S = (p+p)(qva)® = r'(p+p)(gav™)*. (121)
Here, the normalization v,v% = —1 requires v%|,—o, # 0, v" = O(1) and v4 = O(1/r).
The finite energy-momentum conditions, 7 = O(1/r*) and T* = O(1/r%), imply
p=0(1/r") and p = O(1/r*) and consequently

02051 = qaqp0. [(0[4] +p[4])Uﬁ}U€}] : (122)

The leading terms in the A-component of the conservation laws (82) imply at u = +o00
that

0=0, [(0[4] + P[4])Uf?]ﬂf6]]~ (123)
The equations of motion (6% + v2,) V.1 = 0 give to leading order in 1/r

(Pra) + Ppa)) Quvipy + vigyOupia) = 0, (124)

(P +p[4})vff)]3uv[rm +(-1+ U[TO}U[HO})aup[ﬁl} =0, (125)

(P + pia) Ouvi) + V{1 0upis) = 0. (126)
We have
520[“0}5%5[2] = qaqBV[50u [(Pm + p[4])“ﬁ}v[%]

- {“ff)](au“ﬁ)(ﬁ[ﬂ + ool + 00 (o + pa)efiely

@iy o+ maethef | (127)

As a result, a direct application of (I23), (I24), and (I20) gives, after some algebra,

521)[“0}%5[2] =0, wu=zto0. (128)

Therefore A9,.S; = 0 for a perfect fluid halo.

7. Summary

In the context of linearized theory, we have shown that the weak asymptotic stationarity
condition, along with standard asymptotic conditions on the metric and matter stress-
energy tensor, imply that the only possible sources of gravitational radiation memory,
other than null memory, require matter with asymptotic stress satisfying Ad, S, # 0.
While, on the basis of general principles, we cannot rule out such an anisotropic, time
dependent stress, we have shown that it is ruled out by common sources including matter
confined to an expanding or contracting worldtube, scalar fields, electromagnetic fields
and a perfect fluid halo. Barring exotic matter sources, our results imply that the
E-mode memory effect is restricted to null memory and the two known sources that
are eliminated by the weak asymptotic stationarity condition, i.e. burst memory (and
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its time reversed counterpart) and homogeneous wave memory. The results for B-
mode memory are more restrictive since there is no B-mode analogue to null memory
or burst memory. Thus the only known source of B-mode memory appears to be
of primordial origin, corresponding in the linearized theory to a source free, ingoing-
outgoing gravitational wave entering from past null infinity.

Although our results are based upon linearized theory, it is straightforward to
extend the underlying approach, an asymptotic expansion of the Bondi-Sachs metric
along the outgoing null cones, to the nonlinear theory. Thus our results set the stage for
an investigation of how the presence of black holes affect the sky pattern of the memory
effect.
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Appendix A. Global electromagnetic memory revisited

Here we revisit the global electromagnetic memory analysis and show that a weaker
asymptotic stationarity condition than the one employed in [13] yields the same results.
With a slight change of notation from [13], we adopt the spin-weight formulation
analogous to the linearized gravitational case. In this notation, the Maxwell field and
vector potential, Fy, = 20,4y, have angular components in null spherical coordinates
represented by the spin-weight 0 potentials & and &/ according to

663 = qBFBu, 652{ = qBAB, (A].)

where, by convention, & and &/ have no [ = 0 component. We adopt a null gauge
A, = 0, which is the electromagnetic analogue of the Bondi-Sachs gauge [13] [32]. We
use the remaining gauge freedom, A, — A, + 0,A(u, %), to set A, = Ay|z+ = 0. The
remnant gauge freedom Ap — Ap+ 0z A(x) is the electromagnetic analogue of a BMS
supertranslation. The electromagnetic radiation memory for a test particle with unit
charge and mass is

oo

ADY = lim | 0&du=—Adey . (A.2)

r—oo [

The peeling property of an isolated system requires that the electromagnetic

Newman-Penrose component @y := 3F, K*Q" = O(1/r®). The new weak asymptotic
stationarity condition is
A lim r°0, Py = A9, Pgz) = —A, 0 =0 . (A.3)
r—00

There are three known causes of electromagnetic memory: burst memory due to
the ejection of charged particles, homogeneous wave memory due to source free waves
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and null memory due to the flow of charge to Z* by a (hypothetical) charged massless
field or fluid. We now show that the weak asymptotic stationarity condition ([A.3]) rules
out burst memory and homogeneous wave memory.

Burst memory results from the asymptotic behavior of a boosted Coulomb field,

which can be described in the Lorentz covariant form
q q
A, = =, , F = —(xu — 104) , A4
7 b R3( b — ThUa) (A4)
where v, the four velocity of a particle with charge ¢ and R is given by (60]). A charged
particle which is initially at rest and ejected with velocity V' in the z-direction gives rise

to the non-zero burst memory

_ qVsind
0AY = T Veost (A.5)
The resulting electromagnetic Newman-Penrose scalar is
q a b q(1 = V)V sinb u .
b, = — (K%, = — 40 A6
0 2R3( x )(Q ’Ub) 2(1—VC089)3 r3 + (’f’ ) ( )

so that the weak asymptotic stationarity condition ([A.3]) rules out burst memory.

Homogeneous electromagnetic wave memory can be described using an antisym-
metric Hertz potential H% = H®  The vector potential A* = 0, H® then satisfies
the Lorentz gauge condition 9,A® = 0 and generates a solution of Maxwell’s equations
provided H? satisfies the wave equation n%9,0,H* = 0. Following [13], the purely
E-mode Hertz potential

ngg) = (TaZb _ ZaTb)f(u) — J;(u + 27")’ (A7)
Cr T<rT

f(r)=< F(r) : 0<7<T (A.8)
0 17 <0,

where F'(7) is chosen to make the solution smooth, yields the non-zero E-mode memory

AV = —Ccos?.
The corresponding Newman-Penrose component satisfies
1C
Pgo=0, wu>T, and P = _5_5 sinf, u<0,u+2r>T, (A.9)
T
so that
1C
Ay = 5= sind. (A.10)

Thus the weak asymptotic stationarity condition (A.3]) rules out homogeneous wave
E-mode memory.

Homogeneous B-mode solutions of the Maxwell equation are generated from the
dual H(“g) = *H(“g) of (A7). The resulting vector potential is purely magnetic with
B-mode memory and B-mode Newman-Penrose component

A/y/[b} = Z'A/y/[e} and (I)[b}o = _i®[5}0 . (A.ll)
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Consequently the weak asymptotic stationarity condition ([A.3) also rules out
homogeneous wave B-mode memory.

We now show that the weak asymptotic stationarity condition rules out all memory
sources except E-mode null memory. For that purpose, we consider Maxwell’s equations
with 4-current J¢ whose angular components are represented by a spin-weight 0
potential according to 0_¢ = gaJ?. In the null gauge, A, = 0, Maxwell equations
decompose into the hypersurface, evolution and supplementary equations given by,

respectively,
A Je = 0, <7’287,Au - 66%4) , (A.12)
trr 7 =120, (20,00 — Ay - Oy ) + 00y (A.13)
42 J7 = 0,(504) — 0,(50A) + TOA, — 20,0, A, . (A.14)

As discussed in [13], if the current density is modeled after a charged fluid
then the finiteness of its total angular momentum requires in Cartesian coordinates
' JF — 2*J = O(r=37), € > 0, which implies in null spherical coordinates that
JA4 = O(r=57¢). In addition, the finite flux of charge to Z* requires J" = O(r=2)
with J[g”j:oo = 0. Thus the current satisfies the asymptotic conditions

Adiy=AF1=0. (A.15)

Global E-mode memory: As discussed in [13], the electromagnetic E-mode memory
is governed by the supplementary equation ([A.14)) evaluated at ZT,

{4mr®J" + 0,00 + r*0,0,Au}z+ = 0. (A.16)
Integration of (A.I6]) shows that the radiation memory (A.2]) is governed by two terms,

00(AYy) = —AA,n + 47?/ Jpydu (A.17)

where the second term is the null memory and ([A.17) is the electromagnetic counterpart
to the E mode of the linearized gravitational wave memory (I0G]).
The real part of the evolution equation (A.13]) gives at ZF
471'/[64} = — 281“52/[61] + Au[l] . (A.18)

Weak asymptotic stationarity (A.3)) along with the current condition (A.I5) imply that
AAup = 0. Consequently, (A.IT) shows that weak asymptotic stationarity eliminates
all E-mode memory except null memory.

Global B-mode memory: The B-mode component of the electromagnetic memory

(A&2),
Ay = =Dy, (A.19)

is governed by the imaginary part of the evolution equation (A.13)),
0= 7‘28,« (4&“!2/[1,] - 8@%[1)]) - 8642/{171 - 47T7‘4j[b]. (AQO)
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Its evaluation at Z*, along with the imaginary part of the weak asymptotic stationarity
condition (A3) and the current condition (ATH), yields

0 = AJOH - (A.21)

Thus weak asymptotic stationarity eliminates all B-mode electromagnetic radiation
memory.

Appendix B. Christoffel symbols

Here we list useful Christoffel symbols for the calculation of the curvature quantities.
For simplicity, we define Uy = qapU?®.

1
Fgu = Qauﬁ - 587’W - arﬁ (21&)
Ly =0 (2.1b)
1
Dia = Daf = 50, (r*Ua) (2.10
I, =0 (2.1d)
rA = (2.1¢)
1
Iip =rqas — 2rfqap + 5(97»(7’2JAB) (2.1f)
1
= SOW = 9,5+ a W+ 8,8 (2.24)
1
[, =500 +0,8 (2.20)
1
I, = 5 DaW + §0T(7’2UA) (2.2¢)
F:r =20, (Q.Qd)
1
rA = 57’2&»UA + Daps (2.2¢)
1
W = —1qap — (W = 2B)qap + r*DUs) + 57"28“JAB
1
- §ar(7°2JAB) (2.2f)
r4 =-9 UA+iDA<5+1W> (2.3a)
uu u T2 2 .
1 1
A _ LY ooa L aa
i = = 550 G D8 (2.3b)
1 1
Tip = — §QAC [DBUC - DCUB):| + §qACauJBC’ (2.3¢)
ry, =0 (2.3d)
1
Iy = _5A + §qA00 Jop (2.3¢)
Ige = Te + rU%po+DisJef — _DAJBC (2.3/)

2
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