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1 Introduction

At low energies, the laws of physics appear to be accurately described by a particular

effective field theory (EFT) — the so-called standard model of particle physics (coupled

to Einstein gravity). However, the EFT framework leaves certain basic questions about

the standard model unanswered, and gives us less guidance than we would like about what

might come beyond the standard model. In the EFT construction of the standard model,

one specifies as input the basic symmetries of the theory, as well as the list of fundamental

fields and how they transform under those symmetries. The dynamics are then described

by the most general Lagrangian that is built from those fields and is invariant under those
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symmetries. However, certain questions remain. What determines the symmetries — e.g.

why is the standard model gauge group SU(3)×SU(2)×U(1)? What determines the basic

list of fermions fields, and why do they transform in the particular representations (and

with the particular charges) that they do? Similarly, what determines the basic list of

scalar fields, their representations and charges? It is natural to look for a mathematical

framework that is compatible with the EFT description of the standard model, but goes

further in addressing some of these questions. A framework that is more restrictive than

EFT — that only permits a subset of the theories that would seem valid from the EFT

standpoint — could explain more about the standard model, and give more guidance about

beyond-the-standard-model physics.

This paper builds on earlier work on non-commutative geometry (NCG) [1–4] and its

relationship [5–20] to the structure of the standard model (for a pedagogical introduction,

see [21–25]). The idea, in brief, is that the observed structure of the standard model (cou-

pled to Einstein gravity) may be reinterpreted as arising from the fact that the underlying

spacetime is non-commutative (i.e. it is described by a certain kind of NCG, consisting of a

10=4+6 dimensional space, with four continuous/commutative “ordinary” dimensions, and

six discrete/non-commutative “extra” dimensions of a certain type). The claim is that this

perspective captures or explains something important about the structure of the standard

model that is missed in ordinary EFT. Much as Euclidean geometry allows one, given the

first two angles of a triangle, to infer the third angle, the NCG approach allows one, given

certain features of the particle content of a gauge theory, to infer other features of the

particle content — features that would be completely independent inputs from the EFT

standpoint. For example, in the NCG approach, once one chooses: (i) the gauge symmetry,

(ii) the basic list of fermion fields in the theory, and (iii) the representations under which

they transform, then (iv) the scalar fields in the theory and the representations under

which they transform are determined (i.e. they are output, whereas in EFT they must be

specified as additional independent input). Fundamentally this is because, in the NCG

approach, the Higgs fields have a geometric meaning that puts them on the same footing

as the gauge fields: the gauge and Higgs fields are two different pieces of the connection

on the non-commutative space. Moreover, the fermion fields and their representations are

much more restricted in NCG than in EFT [19, 20, 26]. Fundamentally this is because

in EFT the fermions are governed by the representations of finite-dimensional Lie groups,

while in NCG they are governed by the representations of finite-dimensional associative ∗-
algebras (which are much more restricted: e.g. the Lie group SU(N) has an infinite number

of different finite-dimensional irreducible representations, while the associative algebra of

N ×N complex matrices MN (C) has only one or two irreducible representations, depend-

ing on whether we regard it as an algebra over C or over R — see e.g. [26]). As a simple

example, in the NCG approach, the observed fact that all the fermions in the standard

model transform in either the trivial or fundamental representation [of SU(2) and SU(3)]

is an explained output, whereas in EFT this is an unexplained input.

In this paper, we introduce a new formulation of the real-spectral-triple formalism in

non-commutative geometry. We explain its mathematical advantages and its success in

capturing the structure of the standard model of particle physics. Our approach, in brief,
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is as follows: (i) we start with a ∗-algebra Â (the “algebra of coordinates”); (ii) we use it

to define a related algebra A (the universal ∗-algebra of forms over Â); (iii) we take the

simplest non-trivial graded representation of A on a Hilbert space H (i.e. we take H to be

a graded space with just two non-zero components, HR and HL); and (iv) we note that

this representation may be reinterpreted as a super-algebra B = A ⊕ H, with even part

A and (square-zero) odd part H. This super-algebra B is the fundamental object in our

approach: we note that (nearly) all of the basic axioms and assumptions of the traditional

real-spectral-triple” formalism may be elegantly recovered from the simple requirement

that B should be a differential graded ∗-algebra (or “∗-DGA”). In addition, this require-

ment also yields other, new, geometrical constraints. When we apply our formalism to the

spectral triple traditionally used to describe the geometry of the standard model of particle

physics, we find that these new constraints are physically meaningful and phenomenologi-

cally correct (although a number of puzzles remain — see section 6). Notably, these new

constraints give a new interpretation/explanation of electroweak symmetry breaking that

is geometric/algebraic, rather than dynamical.

In a sense, our new proposal only differs from our earlier one [27, 28] by a small change

— namely, the fact that the representation of A on H is now appropriately graded —

but this small change leads to many improvements. Although (as reviewed in section 6

below) our earlier proposal already had some of the nice features of the new one, it also

had two key drawbacks (mentioned in [27], but emphasized and clarified in [29]). The first

drawback was that, although A was a differential graded algebra, its extension to B was

not (due to the presence of junk forms [2, 3, 30]). The second drawback was that, although

our new “second-order condition” seemed to mesh very nicely with the six-dimensional

discrete/non-commutative part of the standard model geometry, it was incompatible with

the ordinary four-dimensional continuous/commutative part. In their paper [29], Brouder

et al. had an important insight — they pointed out that these two problems could be

simultaneously resolved by taking an appropriately graded representation of A on H. Al-

though the formulation we suggest here is very different than the one proposed by Brouder

et al., their basic insight — that the representation of A on H should be appropriately

graded — is still the key. In this paper, we point out a different (more minimal) graded

representation; and we find that many other pieces then fall neatly into place.

The outline of this paper is as follows. In section 2 we introduce the idea of a

differential-graded ∗-algebra (or “∗-DGA”). Although ∗-algebras and (non-commutative)

DGAs have been widely studied on their own, the combined object (a non-commutative

∗-DGA) seems to have been studied less, and has some novel features that will play a key

role in our analysis. We particularly direct the reader’s attention to remarks (ii)′, (v)′

and (v)′′, which do not seem widely known, and will be crucial in what follows. The goal

of section 3 is: first, to introduce Eilenberg’s idea that the represention of an algebra A

may be regarded as a new “Eilenberg algebra” B = A ⊕ H (a “square-zero extension”

of A, and a particularly simple type of super-algebra); second, to explain how this idea

naturally generalizes to representing ∗-algebras, DGAs, and ∗-DGAs; and third, to define

the tensor product of two Eilenberg ∗-DGAs. In section 4, we introduce a simple type of

Eilenberg ∗-DGA B = A⊕H and explain its relevance to NCG. First (in subsection 4.1),
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given a ∗-algebra Â (the “algebra of coordinates”), we define a corresponding algebra A

(the universal ∗-algebra of differential forms over Â). Second (in subsection 4.2), we take

the simplest non-trivial graded representation of A on a Hilbert space H (i.e. we take H

to be a graded space with just two non-zero components H = HL ⊕HR). Third (in sub-

section 4.3), we show that the simple and natural requirement that B is an associative

∗-DGA elegantly unifies (nearly) all of the axioms and assumptions underlying the tra-

ditional real-spectral-triple formalism of NCG; and, in addition, we show that this same

requirement also yields other, new, geometric constraints (which do not appear in the tra-

ditional formulation). In section 5, we apply our formalism to the particular geometric

data traditionally used to describe the standard model in NCG; and we show that our new

geometric constraints correspond to physically meaningful and phenomenologically correct

conditions (which thereby represent an improvement over the traditional spectral triple

formulation of the standard model, although there are remaining puzzles which indicate

that the story still has missing pieces). In section 6, we review some phenomenological

consequences of our previous formulation that carry over to the new formulation, and we

mention some puzzles and interesting directions for future work.

2 Differential graded ∗-algebras (”∗-DGAs”)

We begin, in this section, with six definitions: (i) an algebra; (ii) a ∗-algebra; (iii) a graded

algebra; (iv) a differential graded algebra (or “DGA”); (v) a differential graded ∗-algebra

(or “∗-DGA”); and (vi) the tensor product of two ∗-DGAs.

Although ∗-algebras and (non-commutative) DGAs have been widely studied on their

own, the combined object (a non-commutative ∗-DGA) seems to have been studied less,

and has some novel features that will play a key role in our analysis. We particularly direct

the reader’s attention to remarks (ii)′, (v)′ and (v)′′, which do not seem widely known, and

will be crucial in what follows.

(i) An algebra A (over a field F) is a vector space (over F) equipped with an F-bilinear

product aa′ ∈ A (for a, a′ ∈ A). A is called “commutative” if the “commutator”

[a, a′] ≡ aa′ − a′a vanishes for all a, a′ ∈ A; and “associative” if the “associator”

[a, a′, a′′] ≡ (aa′)a′′ − a(a′a′′) vanishes for all a, a′, a′′ ∈ A. (Note that we do not

assume either commutativity or associativity of A in this section.)

(ii) A ∗-algebra is an algebra A (over F) that is equipped with an additional structure:

a ∗ operation. By a ∗ operation, we mean an anti-automorphism from A to A — i.e.

an invertible F-anti-linear map from A to A that is an anti-homomorphism:

(aa′)∗ = a′∗a∗, (2.1)

and also has the property that (a∗)∗ is proportional to a:

(a∗)∗ = εa. (2.2)

For example: the complex numbers C are a commutative ∗-algebra (over R), where

the ∗ operation is complex conjugation z → z̄; and n × n complex matrices Mn(C)
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are a non-commutative ∗-algebra (over C), where the ∗ operation is the conjugate

transpose (†) operation m→ m†.

(ii)′ Ordinarily, we can then use the argument εaa′ = ((aa′)∗)∗ = (a′∗a∗)∗ = (a∗)∗(a′∗)∗ =

ε2aa′ to determine that ε = +1, so that ∗ becomes an involution, (a∗)∗ = a; but,

as we will see in the subsection 3.2, this argument fails in the nilpotent sector of an

Eilenberg algebra, and the more general possibility ε = ±1 is allowed.1 In the general

case where (a∗)∗ 6= a, we should be careful to distinguish between the operation “∗”
and its inverse “∗̄”.

(iii) A graded algebra A is an algebra that decomposes into subspaces, A = ⊕mAm, where

the product respects the decomposition: am ∈ Am, an ∈ An ⇒ aman ∈ Am+n.

(iv) A differential graded algebra (or “DGA”) is a graded algebra A that is also equipped

with a left-differential dL: a linear map from Am to Am+1 that is nilpotent

d2L = 0 (2.3a)

and satisfies the left-Leibniz rule (see appendix A.1)

dL(aman) = dL(am)an + (−1)mamdL(an) (am ∈ Am, an ∈ An). (2.3b)

An example is the exterior algebra of differential forms: it is graded, since an m-form

wedged with an n-form is an (m+n)-form, and it is equipped with a differential: the

usual exterior derivative d on differential forms.

(v) A differential graded ∗-algebra (or “∗-DGA”) is a DGA that is also a ∗-algebra (with

the properties listed above). In particular, eq. (2.1) becomes (see appendix A.1)

(aman)∗ = a∗na
∗
m. (2.4)

(v)′ The ∗ operation maps m-forms to f(m)-forms; here eq. (2.4) implies f(m + n) =

f(m) + f(n) (which implies f(m) = ε′′m, for some constant ε′′), while eq. (2.2)

implies f(f(m)) = m (which implies ε′′ = ±1). This means that ∗-DGAs naturally

come in two distinct flavors: the ε′′ = +1 flavor, where the ∗ operation maps m-forms

to m-forms, and the ε′′ = −1 flavor, where the ∗ operation maps m-forms to (−m)-

forms.2 This observation, although very basic, will be crucial in what follows (and

may even be novel).

1We have chosen the name ε for this ± sign because, as we will see in section 4, it is linked to the ± sign

ε that appears in the standard definition of a real spectral triple in NCG: J2 = ε (see [24, 25]).
2We have chosen the name ε′′ for this ± sign because, as we will see in section 4, for the models we

consider it is linked to the sign ε′′ that appears in the standard definition of a real even spectral triple

in NCG: Jγ = ε′′γJ (see [24, 25]). Care should be taken however, as this correspondence is not true in

general, and only holds for NCG models in which the Z2 grading of an even spectral triple is identified with

the differential grading of its corresponding Eilenberg ∗-DGA (as explained below in sections 3 and 4).
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(v)′′ A ∗-DGA comes equipped with a left-differential dL and a ∗-operation; and from

these, it is natural to also construct the right-differential dR:

dR ≡ ∗ ◦ dL ◦ ∗̄ (2.5)

(i.e. “∗” composed with dL composed with “inverse ∗”). Note that, since dL is nilpo-

tent (2.3a) and satisfies the left-Leibniz rule (2.3b), it follows that dR is also nilpotent:

d2R = 0 (2.6a)

and satisfies the right-Leibniz rule (see appendix A.1)

dR(aman) = amdR(an) + (−1)ndR(am)an. (2.6b)

Note that dR maps m-forms to (m+ ε′′) forms: in other words, when ε′′ = +1, it is a

right-differential in the usual sense, but when ε′′ = −1, it is a right-differential with

respect to the inverted grading. Also note the following identities which follow from

the definition of dR

dL (a∗m) = dR(am)∗, (2.7a)

dR(a∗m) = dL (am)∗, (2.7b)

and which say that a ∗ operation which appears inside the argument of a differential

may be “pulled outside” at the cost of swapping dL ↔ dR.

(vi) Given two ∗-DGAs (A′, d′) and (A′′, d′′), their tensor product (A, d) is defined as

follows: the vector space A is the tensor product of the vector spaces A′ and A′′

(A = A′ ⊗A′′), the product on A is given by (see appendix A.2):

(a′m ⊗ a′′n)(a′p ⊗ a′′q ) = (−1)npa′ma
′
p ⊗ a′′na′′q , (2.8)

the ∗ operation on A is given by (see appendix A.2):

(a′m ⊗ a′′n)∗ = (−1)mna′m
∗ ⊗ a′′n∗, (2.9)

and the differential d is given by:

d = d′ ⊗ 1′′ + 1′ ⊗ d′′ (2.10)

where 1′ and 1′′ denote the identity operators on A′ and A′′, respectively.

3 Representing ∗-DGAs

The goal of this section is to introduce Eilenberg’s idea that the represention of an algebra

A may be regarded as a new “Eilenberg algebra” (a particular type of super-algebra with A

as its even part); to explain how this idea naturally generalizes to representing ∗-algebras,

DGAs, and ∗-DGAs; and to define the tensor product of two Eilenberg ∗-DGAs.

– 6 –



J
H
E
P
0
6
(
2
0
1
8
)
0
7
1

3.1 Representing algebras (with Eilenberg algebras)

In this subsection, we introduce Eilenberg’s perspective on representing an algebra A (via

an associated super-algebra B).

Let A be an algebra (over F), and let H be a vector space (over F); following Eilenberg

and Schafer [31, 32], we define a bi-representation R of A on H (or, equivalently, a bi-

module H over A) as a pair of F-bilinear products ah ∈ H and ha ∈ H (a ∈ A, h ∈ H).

Now notice that this definition of a bi-representation of A on H (or, equivalently, of a

bi-module H over A) is equivalent to the definition of a new algebra

B = A⊕H, (3.1)

(over F) with the product between elements of B (b = a+ h and b′ = a′ + h′) given by

bb′ = aa′ + ah′ + ha′ (3.2)

where aa′ ∈ A is the product inherited from A, while ah′ ∈ H and ha′ ∈ H are the products

inherited from R, and hh′ = 0. We will call such an algebra an “Eilenberg algebra”.3

Also notice that the algebra B defined this way is automatically a superalgebra — i.e.

a Z2-graded algebra, with “even” and “odd” subspaces A and H, respectively.

We stress that, so far, we have not assumed anything about the associativity of A or

B. On the one hand, if we now assume that B is associative, then we precisely recover the

traditional associative definition of an ordinary (left-, right-, or bi-)representation of the

algebra A on H, in the sense described in the following paragraph. On the other hand, we

need not necessarily assume that B is associative: for example, if A is a Jordan algebra (an

important type of non-associative algebra), then it is natural to define its representation

on H by taking B to also be a Jordan algebra [31, 32, 34]. In fact, this is what originally

led us to adopt Eilenberg’s perspective in [27, 35]: it is a way of defining the representation

of A on H that naturally generalizes from non-commutative geometry (where the algebra

of coordinates, may be non-commutative) to non-associative geometry (where the algebra

of coordinates may also be non-associative).

Let us now explain our assertion (from the previous paragraph) that if we assume

B is associative, then we precisely recover the usual associative definition of an ordinary

representation of the algebra A on H. If B is associative, all the associators [b, b′, b′′] must

vanish. This implies four non-trivial constraints:

[a, a′, a′′] = 0, (3.3a)

[a, a′, h′′] = 0, (3.3b)

[h, a′, a′′] = 0, (3.3c)

[a, h′, a′′] = 0, (3.3d)

3This name was introduced in ref. [29]. It is worth noting that the definition of an Eilenberg algebra

originally introduced in [31] and reviewed in [29] is slightly more elaborate and general than the simpler

definition presented in [27, 28, 32] and adopted in the present paper. We mention this in case the greater

generality afforded by Eilenberg’s original formulation turns out to be important for future developments

of the formalism presented here. This is also closely related to the idea of a ‘square-zero extension’ [33].
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while the remaining associators (in which two or three arguments are from H) vanish

trivially because hh′ = 0. Note that (3.3a) is simply the requirement that A itself is

associative; (3.3b) says that ah is a traditional associative left-representation of A on H;

(3.3c) says that ha is a traditional associative right-representation of A on H; and (3.3d)

says that the left- and right-representations commute with each other. In other words,

we recover the traditional associative definition of a left-right bi-representation of A on H

(or, equivalently, the traditional associative definition of a left-right bi-module H over A);

and the special cases of a left-representation (left-module) or right-representation (right-

module) are recovered, respectively, when either the right action ha or the left action ah

vanishes identically.

3.2 Representing ∗-algebras (with Eilenberg ∗-algebras)

In this subsection, we explain how to extend Eilenberg’s idea from algebras to ∗-algebras:

one simply requires that B itself is a ∗-algebra. We will see how many of the traditional

axioms/assumptions of NCG follow from this requirement.

To extend Eilenberg’s construction from algebras to ∗-algebras, we must promote B

from an algebra to a ∗-algebra. The ∗ operation on B should have all the properties

explained in section 2, plus one more: compatibility with the ∗ operation on the sub-algebra

A ⊂ B. This together with (2.2) implies compatibility with the intrinsic Z2 grading on B

(i.e. b∗ ∈ A when b ∈ A, and b∗ ∈ H when b ∈ H), and fixes the ∗ operation to be

b∗ = a∗ + Jh (3.4)

for a ∈ A, h ∈ H, and where a∗ is the ∗-operation on A, while J is an invertible anti-linear

operator on H. We will call such an algebra an “Eilenberg ∗-algebra.”

In section 2, we took the ∗-algebra A to satisfy (a∗)∗ = εa (and then derived ε = 1);

but for an Eilenberg super-algebra we should allow a different constant in the even and

odd sectors: (a∗)∗ = ε0a and (h∗)∗ = ε1h. Then, as in section 2, the argument ε0aa
′ =

((aa′)∗)∗ = (a′∗a∗)∗ = (a∗)∗(a′∗)∗ = ε20aa
′ yields ε0 = 1; but ε1ah = ((ah)∗)∗ = (h∗a∗)∗ =

(a∗)∗(h∗)∗ = ε1ah doesn’t yield any constraint on ε1; and ε1hh
′ = ((hh′)∗)∗ = (h′∗h∗)∗ =

(h∗)∗(h′∗)∗ = ε21hh
′ doesn’t either (because hh′ = 0). If the ∗ operation still has some finite

period (i.e. ∗n = 1 for some finite n): it follows that ε1 is a root of unity; but then, the

argument ε1h
∗ = (h∗)∗∗ = (h∗∗)∗ = (ε1h)∗ = ε̄1h

∗ implies that ε1 is also real, and hence

±1. From now on, to match standard NCG notation, let us drop the subscript “1” and

simply refer to ε1 as “ε.” We thus recover the standard NCG axiom J2 = ε, where ε = ±1.

The fact that B is a ∗-algebra thus implies and unifies four traditionally-assumed facts

about NCG, including: (i) that A is a ∗-algebra; (ii) that H is equipped with an invertible

anti-linear operator J ; and (iii) that J2 = ε where ε = ±1. In addition, (iv) the anti-

homomorphism property (bb′)∗ = b′∗b∗ implies (ah)∗ = h∗a∗ and (ha)∗ = a∗h∗, which

then implies that A is not just left-represented or right-represented on H, but left-right

bi-represented on H, with the left and right representations related by

Ra = JLa∗J
−1, (3.5a)

La = JRa∗J
−1. (3.5b)
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Finally, in the NCG context, H will be a Hilbert space, so compatibility with the inner

product on H will also require J to be anti-unitary

J† = J−1. (3.6)

3.3 Representing DGAs (with Eilenberg DGAs)

In this subsection, we explain how to extend Eilenberg’s idea from algebras to DGAs: in

parallel with the previous subsections, one now requires that B itself is a DGA.

Let us proceed in two steps: (i) first, we define graded bi-representations (or, equiva-

lently, graded bi-modules), and (ii) second we define differential graded bi-representations

(or, equivalently, differential graded bi-modules).

(i) Suppose A is a graded algebra (over F) with grading A = ⊕mAm, and H is a vector

space (over F) with grading H = ⊕mHm. As the natural extension of Eilenberg’s

preceding definition of a bi-representation (or bi-module), let us define a graded bi-

representation R of A on H (or, equivalently, a graded bi-module H over A) as a pair

of F-bilinear products ah ∈ H and ha ∈ H that respect the grading:

amhn ∈ Hm+n and hnam ∈ Hm+n (am ∈ Am, hn ∈ Hn). (3.7)

(ii) Next let A be a DGA, with grading A = ⊕mAm and differential d; and let H be a vec-

tor space with grading H = ⊕mHm. Then we will say that a graded bi-representation

R of A on H is a differential graded bi-representation of A on H (or, equivalently, a

differential graded bi-module H over A) if H is also equipped with its own differential

d: i.e. a linear operator from Hm to Hm+1 that is nilpotent

d2(hn) = 0 (3.8)

and satisfies the graded Leibniz conditions

d(amhn) = d(am)hn + (−1)mamd(hn), (3.9a)

d(hnam) = d(hn)am + (−1)nhnd(am), (3.9b)

for am ∈ Am and hn ∈ Hn.

With these definitions, we now notice that the definition of a graded bi-representation

of the graded algebra A on H (or, equivalently, the definition of a graded bi-module H

over A) is simply equivalent to the definition of the algebra B given above, together with

the condition that B is graded as follows:

B =
⊕
m

(Am ⊕Hm) (3.10)

[where in the applications to NCG in section 4, Am will only be non-zero for integer values of

m or some subset thereof, while Hm will only be non-zero for m = {0, 1} (when ε′′ = 1) or for

m = ±1
2 (when ε′′ = −1)]. Similarly, the definition of a differential graded bi-representation
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of the DGA A on H (or, equivalently, the definition of a differential graded bi-module H

over A) is simply equivalent to the requirement that the algebra B is itself a DGA with

respect to the grading (3.10). We will call such an algebra B an “Eilenberg DGA.”

We also notice that the algebra B is now graded in two different ways or, more precisely,

it is graded over the ring Z × Z2. In other words, it has its new grading
⊕

m(Am ⊕Hm)

over Z; but, in addition, it still has another independent Z2 grading that splits it into an

even part A and an odd part H, thereby making it a super-algebra (or, in this case, a

super-DGA).

We again stress that, so far in this subsection, we have not assumed anything about the

associativity of A or B. If we now assume that B is associative, then we recover a case of the

traditional associative definition of a (differential) graded representation of the (differential)

graded algebra A on H. However, as discussed above, we need not necessarily assume that

B is associative; and for some purposes, the fact that this approach to representing a (dif-

ferential) graded algebra naturally generalizes to the non-associative case may be crucial.4

3.4 Representing ∗-DGAs (with Eilenberg ∗-DGAs)

Finally, in this subsection, we extend Eilenberg’s idea from algebras to ∗-DGAs (by requir-

ing B itself is a ∗-DGA).

Having laid all the groundwork in the previous three subsections, there is little to be

added here. A differential graded ∗-representation of A on H (or, equivalently, a differential

graded ∗-module H over A) is simultaneously a ∗-representation (∗-module) in the sense

of subsection 3.2, and a differential graded representation (differential graded module) in

the sense of subsection 3.3. As before, these conditions may be succinctly summarized by

saying that the algebra B defined above is a ∗-DGA (and, moreover, a super-∗-algebra,

because of its intrinsic Z2 grading). We will call such an algebra an “Eilenberg ∗-DGA.”

3.5 Tensoring two Eilenberg ∗-DGAs

We have seen how a ∗-DGA A may be represented by an Eilenberg ∗-DGA B = A⊕H; and

we would now like to define the tensor product of two such Eilenberg ∗-DGAs. At the end

of section 2, we explained how to take the tensor product of two generic ∗-DGAs A′ and A′′

to obtain a new ∗-DGA A. If we directly apply this construction to two Eilenberg DGAs

B′ = A′ ⊕H ′ and B′′ = A′′ ⊕H ′′, we obtain a new ∗-DGA B̂; but it is not an Eilenberg

∗-DGA, since its four components B̂ = (A′⊗A′′)⊕(A′⊗H ′′)⊕(H ′⊗A′′)⊕(H ′⊗H ′′) do not

decompose into two pieces A⊕H with the necessary properties: A2 ∈ A, AH ∈ H, HA ∈ H
and H2 = 0. The remedy is to simply throw away the “odd” parts A′⊗H ′′ and H ′⊗A′′ in

B̂: the remaining even sub-algebra B = (A′⊗A′′)⊕(H ′⊗H ′′) (which is indeed an Eilenberg

∗-DGA) is the correct definition for the product of the two Eilenberg ∗-DGAs B′ and B′′.

Note a somewhat confusing point: the “even” sub-algebra B = (A′ ⊗ A′′) ⊕ (H ′ ⊗ H ′′)
is, itself, Z2-graded (like all Eilenberg algebras), and hence breaks into an even part A =

A′ ⊗A′′ and odd part H = H ′ ⊗H ′′, with respect to this grading.

4E.g. in the generalization from non-commutative to non-associative geometry; and perhaps also for

describing beyond-the-standard-model physics.
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4 Application to NCG

In the previous section we explained, in general terms, how to extend Eilenberg’s approach:

from representing algebras to representing ∗-DGAs. In this section, our goal is to describe

a simple type of Eilenberg ∗-DGA B = A ⊕ H: first, given a ∗-algebra Â (the “algebra

of coordinates”), we define A as the universal ∗-algebra of differential forms over Â; and

then, to complete the definition of B, we take H to be the simplest possible non-trivially

graded space — a space with just two components H = HL ⊕HR — and follow this idea

where it leads. We find that this construction does a remarkably good job of unifying

and explaining many aspects of the traditional NCG formalism,5 on the one hand, and

resolving key problems/puzzles in the traditional NCG construction of the standard model

of particle physics, on the other.

So far in this paper, we have not assumed associativity, since we want to emphasize

that one of the features of our formalism is that it retains the advantage of Eilenberg’s

perspective — i.e. it naturally lends itself to generalization, from the associative to the

non-associative case. This is surely an interesting direction for future work. However,

for the rest of this paper, we will restrict to the associative case — i.e. the case where

B is associative (and hence A and Â are also associative — since our main goal in the

remainder of the paper will be to show how we can thereby neatly unify and illuminate

the traditional axioms of traditional (associative) NCG and also fix several problems in the

traditional NCG construction of the standard model.

4.1 The ∗-DGA A

As in the traditional real-spectral-triple formalism of NCG, we start by choosing a (possibly

non-commutative) ∗-algebra Â (over F): roughly, this may be thought of as the algebra of

coordinates. We can then define A, the universal ∗-algebra of forms over Â, as follows.

For every element â ∈ Â, let us introduce a corresponding formal symbol d(â) which

has the following familiar linearity and Leibniz properties: d(λâ) = λd(â), d(â + â′) =

d(a) + d(â′), d(ââ′) = d(â)â′ + âd(â′) (λ ∈ F, â, â′ ∈ Â). We can regard â as a zero-

form, d(â) as a one-form, and d(â)∗ as an ε′′-form (i.e. as a one-form or a minus-one-form,

depending on the sign of ε′′ — see section 2). Next consider an arbitrary term constructed

by taking a product of â’s, d(â)’s and d(â)∗’s: to take a rather complicated example,

consider â(1)d(â(2))∗d(â(3))â(4)d(â(5))â(6), where â(1), . . . , â(6) ∈ Â: note that this example

is a 3-form if ε′′ = +1, or a 1-form if ε′′ = −1. We can take the product of two such

terms by simply juxtaposing them, and using the product inherited from Â: e.g., the

product of the 1-form a1 = d(â(1))â(2) and the one-form a′1 = â(3)d(â(4)) is the 2-form

a2 = a1a
′
1 = d(â(1))â(5)d(â(4)), where we have used the product â(2)â(3) = â(5) in Â. The

algebra A is obtained by considering all such terms (and all linear combinations of such

terms over F), with the product just defined. Note that this algebra is automatically

graded, A = ⊕mAm, where Am is the space of m-forms. The ∗ operation on Â extends to

a ∗ operation on A in the natural way (by recursive application of the rules described in

5Note that in this paper we focus on NCG spaces of even KO dimension and Euclidean signature, leaving

spaces of odd dimension and Lorentzian signature to future work.
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section 2): so, for example, (λ d(â(1)) â(2)∗ d(â(3))∗ â(4))∗ = λ̄ â(4)∗ d(â(3)) â(2) d(â(1))∗. We

can also extend d(. . .) to a differential on A in the natural way by recursive application

of the graded Leibniz rule d(aman) = d(am)an + (−1)mamd(an) (am ∈ Am, an ∈ An),

along with the definitions d(d(â)) = d(d(â)∗) = 0 (â ∈ Â): so, for example we can write

d(â(1)d(â(2))â(3)d(â(4))∗) = d(â(1))d(â(2))â(3)d(â(4))∗ − â(1)d(â(2))d(â(3))d(â(4))∗. In short:

A, the universal ∗-algebra of differential forms over Â, is the algebra generated by Â, d(Â)

and d(Â)∗, modulo the various relations described above.

Note that this “universal ∗-algebra of differential forms over Â” is similar to the more

familiar “universal algebra of differential forms over Â” (presented e.g. in [2]). However,

as indicated by the difference in name, there is an important difference between these two

algebras, coming from the way the ∗ operation is handled: note, in particular, that we do

not add the extra relation d(â)∗ = −d(â∗) (or d(â)∗ = +d(â∗])), but instead only impose

that d(â)∗ is an ε′′-form, with the weaker condition d(d(â)∗) = 0. This difference will be

key in what follows.

4.2 The ∗-DGA B = A ⊕ H

So far we have made very few assumptions about the general form that the representation

space H takes. Now let us take H to be the simplest possible graded space, with just two

non-vanishing components which we can call HR and HL (for “right” and “left”):

H = HR ⊕HL. (4.1)

Without loss of generality, we can take HR to be the component of lower grading while HL

is the component of higher grading. Note that, when ε′′ = +1, we should take HR and HL

to have ordinary integer gradings (0 and 1, respectively, like the two states in a fermionic

fock space), but when ε′′ = −1, we should take HR and HL to have half-integer gradings

(−1/2 and +1/2, respectively, like the two states of a spin-1/2 particle).

As explained in subsection 3.3, since B is a DGA, its differential d must map m-forms

in H to (m+1)-forms in H and so, in particular, must map HR to HL, and HL to 0. Thus,

for h ∈ H, we can write

d(h) = dHh (4.2)

where dH is a linear operator on H that, in the {HL, HR} basis, is only non-zero in its

upper off-diagonal block:

dH =

(
0 ∆

0 0

)
. (4.3)

In the previous section, we saw that d2 vanishes on A; and now, since H has only two

components, it immediately follows that d2 also vanishes on H, and hence on the whole of

B (as is required in order for B to be a DGA).

So far we have specified A and H; but to specify the algebra B = A ⊕ H, we must

also specify the product between A and H. Actually, we only need to specify the product

âh — i.e. the left-action of a zero-form â ∈ Â on an element h ∈ H — since (as we shall

see) the remaining products amh and ham (the left-action or right-action of an arbitrary
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m-form am ∈ Am on an element h ∈ H) are then determined by the general structure of an

Eilenberg ∗-DGA. To explain this point clearly, let us proceed in three steps: (i) first we

discuss the left- and right-action of â on h; (ii) second we describe the left- and right-action

of d(â) on h; and (iii) third we discuss the left- and right-action of d(â)∗ on h. (Any more

complicated element of A is just a product of â’s, d(â)’s and d(â)∗’s.)

(i) First we consider the left- and right-action of â on H:

Lâh = âh, (4.4a)

Râh = hâ. (4.4b)

[Note that, in the NCG literature, the operators Lâ and Râ (the left and right rep-

resentations of â on H) are sometimes denoted π(â) and π(â)0, respectively.] As

explained in subsection 3.2, the fact that B is a ∗-algebra then implies that H is

equipped with an invertible anti-linear operator J (h∗ = Jh) and, moreover, that the

right-representation Râ is determined by the left-representation Lâ via the familiar

NCG formula

Râ = JLâ∗J
−1. (4.5)

(ii) Next we consider the left- and right-action of d(â) on H:

Ld(â)h = d(â)h, (4.6a)

Rd(â)h = hd(â). (4.6b)

Since B is a DGA, we can use the Leibniz rule (3.9) to determine Ld(â) and Rd(â) in

terms of Lâ and Râ:

Ld(â) = [dH , Lâ], (4.7a)

Rd(â) = [dH , Râ](−1)−|h|, (4.7b)

where by |h| we mean the order of the Hilbert space element h, according to the

grading: i.e. |h| is 0 or 1 when ε′′ = +1, and |h| is ±1/2 when ε′′ = −1. Note that

(−1)|h| is an operator, not just a number, so care must be taken with regards to its

position in eq. (4.7b).

(iii) Finally we consider the left- and right-action of d(â)∗ on H:

Ld(â)∗h = d(â)∗h, (4.8a)

Rd(â)∗h = h d(â)∗. (4.8b)

Since B is a ∗-algebra, we can use eq. (3.5) to determine Ld(â)∗ and Rd(â)∗ in terms

of Ld(â) and Rd(â) and hence — using (4.7) — in terms of Lâ and Râ

Ld(â)∗ = JRd(â)J
−1 = J [dH , Râ](−1)−|h|J−1, (4.9a)

Rd(â)∗ = JLd(â)J
−1 = J [dH , Lâ]J

−1, (4.9b)

where once again we stress that the factor (−1)−|h| is an operator on H which does

not necessarily commute with J or dH .

– 13 –



J
H
E
P
0
6
(
2
0
1
8
)
0
7
1

We thus see how the left- and right-actions of â, d(â) and d(â)∗ on H are all determined

in terms of Lâ, the left-representation of â on h (and hence how the left- and right-action

of any element of A is determined in terms of Lâ).

Let us end this subsection with two remarks:

• First note that La∗ = L†a and Ra∗ = R†a for zero forms; but Ld(a)∗ 6= L†d(a) and

Rd(a)∗ 6= R†d(a) for one forms.

• Second note that, in the {HL, HR} basis, the quantities Ld(a) and Rd(a) always have

the form:

Ld(a) ∼ Rd(a) ∼

(
0 x

0 0

)
(4.10)

while the quantities Ld(a)∗ and Rd(a)∗ have a form that depends on ε′′:

Ld(a)∗ ∼ Rd(a)∗ ∼



(
0 x

0 0

)
(ε′′ = +1)(

0 0

x 0

)
(ε′′ = −1)

(4.11)

This will be important below.

4.3 Comparison with traditional NCG formalism

Now that we have introduced the algebra B (including the simple two-component struc-

ture for H assumed in the previous subsection), we would like to see which aspects

of the traditional NCG formalism follow from the requirement that B is an associative

Eilenberg ∗-DGA.

To facilitate the comparison, it will be convenient to introduce two important operators

on H that we have not discussed yet: D and γ.

(i) Introducing D. From the operator dH (which is not hermitian), we can construct

another operator

D ≡ dH + d†H =

(
0 ∆

∆† 0

)
(4.12)

that is Hermitian: D† = D. D is the generalized Dirac operator that appears in the

traditional NCG spectral triple {Â,H,D}.

(ii) Introducing γ. Since H is graded, with two parts, we are free to define a corresponding

operator on H which detects this grading. To match the usual NCG notation, we do

this by defining an operator γ that equals −1 on HL and +1 on HR; so it is block

diagonal in the {HL, HR} basis, and given by

γ =

(
−1 0

0 +1

)
. (4.13)
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Now, let us see which of the traditional NCG axioms and assumptions follow from the

fact that B is associative. Associativity of B is equivalent to the requirement that the

associator [b, b′, b′′] vanishes, for all b, b′, b′′ ∈ B. Thus, let us list all the different types of

associators that arise in this way, and the consequences of requiring them to vanish.

• From [â, â′, â′′] we recover the usual assumption that the coordinate algebra Â (i.e.

the algebra that appears in the traditional spectral triple {Â,H,D}) is associative;

• From [a, a′, a′′] we recover the usual assumption that A, the universal algebra of forms

over Â, is associative.

• From [â, â′, h] we recover LâLâ′ = Lââ′ or, in other words, π(â)π(â′) = π(ââ′), which

is the familiar condition satisfied by the left-representation of Â.

• From [h, â′, â] we recover RâRâ′ = Râ′â or, in other words, π(â)0π(â′)0 = π(â′â)0,

which is the familiar condition satisfied by the right-representation of Â.

• From [â, h, â′] we recover [Lâ, Râ′ ] = 0 or, in other words, [π(â), π(â′)0] = 0, which is

the traditional “order zero” axiom of NCG.

• From [d(â), h, â′], [â, h, d(â′)], [d(â)∗, h, â′] and [â, h, d(â′)∗] we recover

[[D,π(â)], π(â′)0] = 0, which is the familiar “order-one” axiom of NCG.

• All further associators, including those involving two or more h’s, or two or more

d(a)’s or d(a)∗’s are automatically satisfied and do not yield further constraints,

except :

• [d(â), h, d(â′)∗] and [d(â)∗, h, d(â′)] which only yield non-trivial constraints when

ε′′ = −1, as may be seen from eqs. (4.10), (4.11).

Note that, unlike the previous associators, which all corresponded to traditional NCG

axioms and assumptions, these final two associators correspond to new “second-order

conditions” which are not normally imposed as axioms in NCG. These new second-

order conditions were first pointed out in [27]; but the fact that they are only non-

trivial when ε′′ = −1 is one of the most important new results in the present paper,

and is important for resolving a key puzzle in the NCG construction of the standard

model of particle physics. (We will return to this point in the following section.)

Next, as explained in subsection 3.2, from the assumption that B is a ∗-algebra we recover:

• the assumption that Â and A are ∗-algebras;

• the assumption that H is equipped with an invertible anti-linear operator J ;

• the assumption that J2 = ε with ε = ±1; and

• the assumption that Â is not just left-represented or right-represented on H, but

rather left-right bi-represented on H, with the right representation related to the left

representation by the familiar NCG formula (4.5).
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Finally, let us see what follows from the fact that B is ∗-DGA (i.e. from including the

differential-graded structure of B):

• From eqs. (4.12), (4.13), we recover the assumption that {D, γ} = 0 (which, from our

new perspective, follows from the fact that d is an order-one operator on H).

• The fact that B is graded implies that the zero form â ∈ Â must map HL → HL and

HR → HR which implies that in the {HL, HR} basis, La0 and Ra0 are block-diagonal,

from which we recover the usual NCG axioms [γ, Lâ] = [γ,Râ] = 0 or, in other words,

[γ, π(â)] = [γ, π(â)0] = 0.

• From the fact that, as explained in point (v)′ of section 2 the ∗-operation must map

m-forms to (ε′′m)-forms, we recover the assumption that Jγ = ε′′γJ where ε′′ = ±1

is the ∗-DGA sign choice explained in section 2.

• Finally, as explained in subsection 4.1, to make A a ∗-DGA, we require d(d(a)∗) = 0

and hence

Ld(d(â)∗) = {dH , Ld(â)∗} = 0. (4.14)

Note that, unlike the previous few conditions which all corresponded to traditional

NCG axioms and assumptions, this final condition corresponds to a new condition

(like the new second-order condition described above); and (again like the second

order condition) this new condition is only non-trivial when ε = −1.

So far in this subsection, we have focused on explaining how the requirement that B

is an associative ∗-DGA, together with the simplest choice of grading on H, unifies and

explains a long list of the traditional axioms and assumptions of NCG. Let us end this

subsection by summarizing a few of the key ways in which our construction differs from

traditional NCG:

• We differ from the traditional NCG formalism in our representation of how d(â) and

d(â)∗ act on H. Fundamentally this is because our grading for H differs from the

traditional one in NCG.

• We obtain novel “second-order” constraints [d(â), h, d(â′)∗] = [d(â)∗, h, d(â′)] = 0

which are only non-trivial when ε′′ = −1.

• We obtain another novel constraint (4.14) which is only non-trivial when ε′′ = −1.

In the following section, we will see how these differences resolve several key puzzles in the

NCG formulation of the standard model of particle physics.

5 Application to the standard model

In the previous section, we defined a particularly simple type of Eilenberg algebra

B = A⊕H, where A was the universal ∗-algebra of differential forms over some “alge-

bra of coordinates” Â, and H was the simplest non-trivially graded space (with just two

components, HR and HL); and we explained how the traditional list of NCG axioms and
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assumptions could, to a remarkable degree, be unified in the requirement that B was an

associative ∗-DGA. In order to specify a particular B of this type, it just remains to choose

the following three final inputs: (i) a particular algebra of coordinates Â; (ii) a particular

left-representation of Â on H; and (iii) particular values for the ± signs ε and ε′′.

In this section, we choose these final inputs to be the ones used in the traditional

NCG description of the standard model, and then investigate the consequences. In the

traditional approach, the geometry of the standard model is, itself, the product of two

geometries: (i) one that describes an ordinary, continuous, commutative four-dimensional

spacetime; and (ii) another that describes a finite, discrete, non-commutative “internal

space”. In our language, this corresponds to an Eilenberg algebra B that is, itself, the

product of two Eilenberg algebras Bc and Bf . We discuss these two algebras in turn — for

each, we begin by listing the three final inputs mentioned in the previous paragraph.

For a pedagogical introduction to the traditional NCG construction of the standard

model, see [24, 25]. Note that in this section we discuss the geometry of the standard

model. Traditionally one then uses the so-called “spectral action” formula to convert

this geometry into an ordinary field theory Lagrangian (which, for this particular choice

of geometry, turns out to be the Lagrangian for the standard model of particle physics

coupled to Einstein gravity). For an introduction to this conversion process (which we do

not discuss here), see [24]. Also note that, in what follows, it will be convenient to discuss

the continuous and finite parts of the geometry separately. The bosonic fields of the theory

(in particular, the gauge fields and Higgs fields) then arise from the interaction between

these two parts (again see [24] for an introduction).

5.1 The continuous geometry, Bc

The continuous geometry is described by the so-called “canonical spectral triple”

corresponding to ordinary (commutative) four-dimensional Riemannian geometry (see

section 2.1 in [24]).

(i) In this case, the algebra of coordinates is Â = C∞(M), the algebra of smooth func-

tions on the compact 4-dimensional Riemannian spin manifold M .

(ii) H = HR⊕HL is the Hilbert space of square-integrable (Dirac) spinors on M . HR and

HL are the subspaces of right-handed and left-handed Weyl spinors. Â is represented

on H by pointwise multiplication: (ah)(x) = a(x)h(x) for a(x) ∈ Â and h(x) ∈ H.

(iii) In this case, the signs ε and ε′′ are fixed by the representation theory of Clifford

algebras; the appropriate values depend on the dimension (mod 8) of the manifold

M (see e.g. the table in section 2.2.2 of [24]). Since the traditional NCG description

of the standard model is formulated in Euclidean signature,6 the values in 4D are

ε = −1 and ε′′ = +1.

In this case, the operator D (4.12) is just the ordinary curved-space Dirac operator

D = D/ = −iγµ∇Sµ , (5.1)

where ∇Sµ is the Levi-Civita spin connection and the γµ are the gamma matrices.

6See the Discussion for a related comment.
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In the previous section we showed that our formalism predicts new geometrical con-

straints, in addition to those of the traditional NCG formalism — but these new constraints

are only non-trivial when ε′′ = −1. As a result, since the continuous geometry described

above has ε′′ = +1, it only needs to satisfy the traditional NCG constraints (which it does),

and it does not need to satisfy any additional second-order constraint.

This neatly resolves a key puzzle that was noted at the end of our earlier paper [27]

and emphasized in [29]. In our earlier construction [27], the second-order condition gave

a non-trivial constraint on both the finite and continuous parts of the geometry; and,

although the constraint on the finite part was successful (in that it neatly removed all of

the unwanted terms in the finite Dirac operator), the constraint on the continuous part

was too strong. By constrast, here we see that the second-order condition only gives a

non-trivial constraint in the ε = −1 case (so it still gives a successful non-trivial constraint

on the finite geometry, which has ε′′ = −1, but it gives no additional constraint on the

continuous geometry, which has ε′′ = +1, and hence is perfectly compatible with it).

5.2 The finite geometry, Bf

The discrete “internal space” is described by a finite spectral triple (with a finite-dimensional

algebra, represented on a finite-dimensional Hilbert space) — see section 6 in [24].

(i) In this case, the algebra of coordinates Â is the direct sum of the complex numbers

C, the quaternions H and the 3× 3 complex matrices M3(C):

Â = C⊕H⊕M3(C). (5.2)

(ii) Next, we describe the left-representation of Â on H. For clarity, we will describe a

single generation of standard model fermions; the extension to the full set of three

generations is straightforward. The Hilbert space H is C32 (here 32 is the number

of fermionic degrees of freedom in a single standard model generation, if we include

a right-handed neutrino in each generation to account for the observed neutrino

masses). The left-representation of Â on H is block-diagonal: let us start by giving

physically-appropriate names to the corresponding subspaces of H on which these

blocks act. For starters, as explained in subsection 4.2, the grading splits C32 into

two copies of C16: H = HL ⊕ HR. Next, each C16 splits into two copies of C8:

HL = F̄R ⊕ FL and HR = FR ⊕ F̄L (here the subspaces FL and FR contain the

left- and right-handed fermions, while F̄L and F̄R contain the corresponding anti-

fermions). Finally, each C8 splits into a lepton part (C2) and a quark part (C2⊗C3):

FL = LL ⊕QL FR = LR ⊕QR
F̄L = L̄L ⊕ Q̄L F̄R = L̄R ⊕ Q̄R. (5.3)

Now, if we consider an arbitrary element â = (λ, q,m) ∈ Â, where λ ∈ C is a complex

number, q ∈ H is a quaternion, and m ∈M3(C) is a 3×3 complex matrix, and we write

q =

(
α β

−β̄ ᾱ

)
and qλ =

(
λ 0

0 λ̄

)
(5.4)
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where α and β are complex numbers, then (in the {L̄R, Q̄R,LL,QL,LR,QR, L̄L, Q̄L}
basis just described) the left-action of â on H has the following block diagonal form

Lâ =



λI2
I2 ⊗m

q

q ⊗ I3
qλ

qλ ⊗ I3
λI2

I2 ⊗m


, (5.5)

where I2 and I3 denote the 2× 2 and 3× 3 identity matrices, respectively.

(iii) In this case, the space has KO dimension 6: the corresponding signs are ε = +1 and

ε′′ = −1 (along with DJ = JD, again see the table in section 2.2.2 of [24]). In the

basis just described, J and γ are then given by

J =

(
0 I
I 0

)
◦ c.c. and γ =

(
−I 0

0 +I

)
(5.6)

where I is the 16 × 16 identity matrix, and “c.c.” stands for “complex conjugation”

— a reminder that J is anti-linear.

From the traditional NCG conditions DF = D†F , {DF , γF } = 0, [DF , JF ] = 0 and the

order one condition, one finds that DF is constrained to the form

DF =

(
0 ∆

∆† 0

)
, (5.7)

where ∆ is a 16× 16 symmetric matrix of the form

∆ =


M NT Y T

l 0

N 0 0 Y T
q

Yl 0 0 0

0 Yq 0 0

 . (5.8)

Here Yl and Yq are two arbitrary 2× 2 matrices, M is a 2× 2 symmetric matrix given by

M =

(
a b

b 0

)
(5.9)

where a and b are arbitary constants, and N is a 6× 2 matrix given by

N =

(
~c ~d

0 0

)
, (5.10)

where ~c and ~d are two arbitrary 3× 1 column vectors.
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As reviewed in ref. [27], these traditional NCG constraints are not strong enough —

i.e. they do not constrain D to be of the phenomenologically desired form. Instead, they

allow non-zero values for the parameters b, ~c and ~d, which give rise to phenomenologically

unwanted Yukawa couplings and scalar fields if they are not eliminated. This problem was

highlighted in [18] and the concluding section of [19]. In the traditional formalism, one is

forced to introduce an extra (empirically-motivated, non-geometric) condition (called the

“massless photon” condition [18, 19]) in order to eliminate these extra, unwanted terms.

In our formalism, something nice happens instead. As explained in subsection 4.3,

when ε′′ = −1 (as is the case for the finite geometry), we obtain non-trivial “second-

order conditions” [d(â), h, d(â′)∗] = [d(â)∗, h, d(â′)] = 0. These second-order conditions

yield exactly the same restrictions on DF that we previously obtained from the second-

order conditions in ref. [27] (or that Brouder et al. later obtained from the second-order

conditions in [29]). In particular, as shown in [27], these second-order constraints may be

satisfied in four different ways by setting (i) b = ~c = ~d = 0; (ii) Yq,11 = Yq,21 = b = 0;

(iii) Yl,11 = Yl,21 = ~c = ~d = 0; or (iv) Yl,11 = Yl,21 = Yq,11 = Yq,21 = ~c = 0. In particular,

solution (i) precisely corresponds to setting the seven unwanted coeffients (b, ~c, ~d) to zero,

without having to introduce the extra non-geometrical massless photon condition.

Thus, our current formalism neatly resolves the paradox in our earlier paper [27]: that

our new second-order constraint seemed to provide such a phenomenologically successful

constraint on the finite part of the geometry, while at the same time providing an unwanted

over-constraint on the continuous part of the geometry. In our new formalism, the successful

constraint on the finite part of the geometry is retained, while the overconstraint on the

continuous part is eliminated. This resolution is satisfying, as it directly follows from

thinking more clearly about the basic structure of a ∗-DGA — see Remark (v)’ in section 2.

5.3 Applying the new constraint

In the previous two subsections, we have explained how our present formalism, when applied

to the standard model “input data” (the choice of Â and its representation on H described

above), recovers all the successful constraints from our earlier paper [27] (including the

successful second-order condition on the finite geometry in [27]), while also neatly avoiding

the problematic second-order over -constraint on the continuous geometry in [27].

Now we turn to our present construction’s new constraint (4.14), which applies when

ε′′ = −1 (as is the case for the finite geometry). This constraint is new, not only compared

to traditional (spectral triple) NCG formalism, but also compared to our formalism in [27].

First, it is worth noting that, if we look back at the construction of A from Â in

subsection 4.1, we see that the new constraint (4.14) has a different status from the other

constraints that we have discussed. In particular, it is not actually needed in the definition

or construction of the graded ∗-algebras A and B.7 Instead, it is only needed when we

formally extend the differential d from Â to A, so that we can reinterpret A and B as not

7The graded ∗-algebra A (consisting of arbitrary products of â’s, d(â)’s and d(â)∗’s, and arbitrary linear

combinations of such products) is obtained by first defining a first-order differential calculus (A1, d) over

Â [49], and then tensoring this (over Â) with itself arbitrarily many times.
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merely graded ∗-algebras, but as differential graded ∗-algebras, and pass from the level of

first-order differential calculus to full differential calculus [49].

If we now impose the complete set of constraints — i.e. those discussed in subsection 5.2

plus the new constraint (4.14) — we find that the following striking results:

• (i) On the one hand, if we take the full finite algebra Â = C⊕H⊕M3(C), with the

representation described in subsection 5.2, the complete set of constraints can only

be simultaneously satisfied if the finite Dirac operator vanishes identically: DF = 0.

• (ii) On the other hand, if we restrict the full finite algebra Â (and its representation

on H) to an appropriate sub-algebra Â′, then the complete set of constraints can be

satisfied for non-vanishing DF . In particular, one can check that the maximal sub-

algebra compatible with non-vanishing DF is Â′ = C⊕M3(C). When we restrict the

full algebra Â to the sub-algebra Â′, the corresponding representation of an element

{λ,m} ∈ Â′ is obtained by restricting the representation of an element {λ, q,m} ∈ Â
(described in subsection 5.2) as follows: wherever the 2× 2 quaternion q appears, we

make the replacement:

q =

(
α β

−β̄ ᾱ

)
→ qλ(n̂) = Re(λ)I + i Im(λ)n̂ · ~σ, (5.11)

where I is the 2 × 2 identity matrix, ~σ = {σ1, σ2, σ3} are the three Pauli sigma

matrices, and n̂ = {sin(θ)cos(ϕ), sin(θ)sin(ϕ), cos(θ)} is a unit vector in R3. In other

words, qλ(n̂) represents the general embedding of C in H (the unit vector n̂ describes

the orientation of the single complex imaginary i ∈ C in the 3D space of quaternionic

imaginaries {I, J,K}); and the previous diagonal embedding qλ defined in eq. (5.4)

corresponds to the special case n̂ = {0, 0, 1}.

Now if we restrict to this sub-algebra and its representation, and apply the com-

plete set of constraints (i.e. if we use Â′ and its representation on H to build the

corresponding algebra B′, and then demand that it is a ∗-DGA), we find that DF is

again restricted to have the form given in eqs. (5.7), (5.8), (5.9), (5.10); but now, in

addition, we find that the parameters b, ~c, and ~d in DF must vanish

b = ~c = ~d = 0, (5.12)

while the Yukawa matrices Yl and Yq in DF are restricted to the form (note the sign

change compared to the convention we used in [27]):

Yl =

(
+yνϕ1 yeϕ̄2

−yνϕ2 yeϕ̄1

)
, Yq =

(
+yuϕ1 ydϕ̄2

−yuϕ2 ydϕ̄1

)
, (5.13)
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where the four complex numbers {yν , ye, yu, yd} are arbitrary, while the two complex

numbers {ϕ1, ϕ2} are constrained to satisfy:

(I + n̂ · ~σ)

(
ϕ̄2

ϕ̄1

)
= 0. (5.14)

DF now has precisely the correct form to match the standard model of particle

physics (see e.g. [24] for a more detailed explanation): the four complex numbers

{yν , ye, yu, yd} become the neutrino, electron, up quark and down quark Yukawa

couplings, respectively, and Φ = {ϕ1, ϕ2} becomes the usual standard model Higgs

doublet.8 Note that the same Higgs doublet Φ appears in both Yl and Yq; and if we

include all three generations, Yl and Yq still have the form shown in eq. (5.13): yν ,

ye, yu and yd become 3× 3 Yukawa coupling matrices, but there is still just a single

Higgs doublet.

We emphasize that the constraints on DF in our earlier paper [27] (and in subsec-

tion 5.2 above) had two shortcomings. First, our “second-order condition” was only

strong enough to restrict DF to one of four possible forms (and we had to choose

the phenomenologically correct form from among these four by hand). Second, even

after we chose the correct form from among these four options, DF was still too gen-

eral since the matrices Yl and Yq were not yet constrained to the phenomenologically

correct form (5.13).

It is remarkable that the new constraint (4.14) resolves both of these shortcomings

(so that DF is restricted to precisely the phenomenologically correct form), while

at the same time forcing spontaneous breaking from Â to Â′, which corresponds to

the usual electroweak symmetry breaking of the full standard model gauge group

SU(3)× SU(2)×U(1)Y down to the unbroken subgroup SU(3) ×U(1)E&M .

As explained above, the embedding of C in H involves choosing an arbitrary direc-

tion n̂. This choice may be made independently over each point in the continuous

4D spacetime, and is linked to the “direction” of the Higgs doublet Φ at that same

point in spacetime via eq. (5.14). We see that, in our new formalism, the unbro-

ken SU(3)×U(1) gauge symmetries of the standard model correspond to the inner

derivations of B′, while the remaining three broken generators (corresponding to the

massive W± and Z bosons) act non-trivially on Φ (and rotate n̂).

It is striking that, in our present formalism, electroweak symmetry breaking already

appears before we write down the action: it arises when we want to extend the

differential d from Â to B, to promote B from a graded ∗-algebra to a differential -

graded ∗-algebra, and pass from first-order differential calculus to full differential

calculus.

8More precisely, Φ will correspond to the Higgs doublet upon fluctuation of the Dirac operator in the

full product geometry (again see e.g. [24] for a more detailed explanation).
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6 Discussion

Let us briefly recap. We start by (i) choosing an “algebra of coordinates” Â; (ii) defining

A, the corresponding universal ∗-algebra of differential forms over A; and (iii) taking the

simplest non-trivially graded representation of A on H (i.e. the one where H has just

two non-zero components, HL and HR). As we explain in section 4, nearly all of the

axioms and assumptions of the traditional real-spectral-triple formalism of NCG are then

recovered from the simple requirement that the corresponding Eilenberg algebra B = A⊕H
(a particularly simple type of super-algebra) is a ∗-DGA. Moreover, this requirement also

implies other, novel, geometric constraints. As we explain in section 5, when we apply our

current construction to the specific NCG data traditionally used to describe the standard

model of particle physics, we find that these new constraints are physically meaningful and

phenomenologically correct.

Our current construction improves on our earlier framework [27, 28] in a number of

important respects. From a mathematical standpoint, our earlier definition of B in [27, 28]

already unified some of the NCG axioms and assumptions, but now we are able to go much

further: roughly speaking, the earlier definition of B unified the axioms and assumptions

that did not involve γ, while the new definition also incorporates those that do involve

γ. It is encouraging that this improved unification goes hand-in-hand with the improved

mathematical structure of B which (with its new definition) is now a proper ∗-DGA. From

a physical standpoint, our new formalism resolves a paradox which arose in our earlier

work [27, 28]: namely, in our earlier formalism, the second-order condition (when applied

to the standard model geometry) seemed to give a phenomenologically successful constraint

on the finite part of the geometry, but a problematic over-constraint on the continuous part

of the geometry. In our current formalism, the unwanted over-constraint on the continuous

geometry is automatically eliminated (as explained in subsection 5.1), while the successful

constraint on the finite geometry is automatically retained (as explained in subsection 5.2).

It is satisfying that this resolution follows from thinking more clearly about the basic

structure of a ∗-DGA — see Remark (v)’ in section 2. As explained in subsection 5.3,

the formalism developed in the present paper also predicts a constraint (4.14) that is new,

not only compared to traditional (spectral triple) NCG formalism, but also compared to

our formalism in [27]. Strikingly, this new constraint turns out to fix DF (the “Dirac

operator” on the finite space) to precisely the phenomenologically desired form while, at

the same time, requiring electroweak symmetry breaking, and providing a new geometric

interpretation for this basic aspect of the standard model of particle physics.

The construction presented in this paper also inherits a few other nice features from our

earlier work: (i) first, the conceptually nice reinterpretation of the symmetries of the stan-

dard model, and the structure of the gauge-Higgs sector, as arising from the requirement

that the action should be invariant under automorphisms of B (see [28]); and (ii) second, the

corresponding implication that the traditional “standard model geometry” actually yields

a slight extension of the standard model which, in addition to including a right-handed

partner for each left-handed neutrino, also includes an extra U(1)B−L gauge symmetry and,

correspondingly, two new particles: a new U(1)B−L gauge boson, and a new complex scalar
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field σ that is a singlet under the standard model gauge group SU(3) × SU(2)×U(1), but

is charged under the new U(1)B−L, and is responsible for Higgsing this symmetry (so that

it is unseen at low energies). As emphasized in [28], this extension of the standard model

is phenomenologically viable, and resolves the discrepancy between the traditional NCG

Higgs mass prediction (∼ 170 GeV) with that of the observed Higgs mass (∼ 125 GeV),

and can account for several cosmological observations that cannot be accounted for by the

standard model alone [37].

It is also worth mentioning that there are still some puzzling and unsatisfying features

of the construction presented here. For example, the standard model geometry as we have

described it looks like a real algebra represented on a complex Hilbert space. Really, we

should interpret this as short-hand for a real algebra represented on a real Hilbert space of

double the dimension (and this is also what we must do if we want to regard A and H as

two subspaces of a common vector space B = A⊕H). This has an awkward consequence:

in section 4, we argued that the antilinearity of J (over C) could be derived from the fact

that B is a ∗-algebra; but if B is a ∗-algebra over R, then this is no longer true, and the

anti-linearity of J (over C) must be put in by hand. We regard this awkward and seemingly

technical point as a clue that there is something important that is still missing from the

formalism presented here, and we are currently working on a follow-up paper addressing

this issue among others [50].

It is natural to wonder about the physical implications of the new geometrical in-

terpretation of electroweak symmetry breaking described above. In the traditional NCG

formulation of the standard model, one uses the “spectral action” which, in order to roughly

match observations, must live at roughly the grand unification scale (∼ 1016 GeV), and

yields certain relations between coupling constants at that scale (including the standard

gauge-coupling relation familiar from grand unification). It seems that the formalism pre-

sented in the present paper should naturally “live” at the electroweak scale, rather than

the GUT scale, and so it is interesting to consider whether or how this might be made

compatible with the traditional spectral action formula. Perhaps a new formula for the

bosonic action will be needed in this new framework. We leave these interesting issues for

future work.

There are also many other possible directions for future work. (i) Firstly, as noted

in [29], the DGA structure of B suggests a connection to the BRST/BV formalism, and

may be an important clue about how to quantize correctly. (ii) It is interesting to consider

how our formalism interacts with other recent interesting proposals for how to go beyond

the traditional NCG formulation of the standard model (see e.g. [38–47]). (iii) We believe

that there are interesting issues to be sorted out involving the relation between euclidean

and lorentzian signature — see the comment in subsection 5.2. (iv) Although we have

mostly restricted our attention in this paper to the case where the algebras Â, A and B are

associative, we were originally led to Eilenberg’s approach by the fact that it was designed

to naturally generalize to the non-associative case [27, 35]. In other words, one of the

advantages of our new formalism is that it is naturally suited to generalizing from non-

commutative to non-associative geometry; and this continues to seem like a very interesting

avenue to explore. In particular, it is intriguing to explore physical models based on a co-
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ordinate algebra Â involving the octonions, or the exception Jordan algebra. (v) Finally, in

the current paper we assume the simplest possible non-trivial representation space, identify-

ing the usual Z2 grading on H with its differential grading. A natural extension of the ideas

discussed here would be to consider more general implementations of the grading on H.
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A More about ∗-DGAs

This appendix is meant to help the unfamiliar reader become better acquainted with some

of the basic rules defining ∗-DGAs that we introduced in section 2 — the logic of how they

interact with one another, why they are what they are, and how much freedom there is to

modify them.

A.1 ∗-DGA conventions and definitions

In section 2 we built up the defining properties of ∗-DGAs in steps, first introducing the

involution ∗, followed by the grading A =
⊕

nA
n, and finally introducing the differential

operators dL and dR. In this section we wish to highlight how some of these conditions

arise, and where matters of convention enter. To do so we consider generalized ∗-DGAs

which satisfy the following generalizations of the conditions given in (2.3b) and eqs. (2.4):

dL(aman) = ρndL(am)an + ηmamdL(an), (A.1a)

(aman)∗ = χm,na
∗
na
∗
m, (A.1b)

for am, an ∈ A, and where the coefficients ρn, ηm, and χm,n are valued in F. We maintain

the usual conditions d2 = 0 and (a∗)∗ = a. Our goal will be to understand what restrictions

are forced on the coefficients in eqs. (A.1).

A.1.1 The graded Leibniz rule

Let’s start by considering the coefficents ρn, ηm in eq. (A.1a). By applying dL twice to a

pair of algebra elements aman, and making use of eq. (A.1a) we find

d2L(aman) = d2L(am)an + (ρnηm+ε′′ + ρn+ε′′ηm)dL(am)dL(an) + η2mamd
2
L(an). (A.2)

Our first requirement for a DGA is that we want d2L = 0 on A, and from (A.2) we see that

this implies ηm = (−ρn+1/ρn)mη0, and ρm = (−ηn+1/ηn)mρ0. This implies that ρ, and

η are of the form: ρm = κmρ0, and ηm = (−κ)mη0 for some κ, η0, ρ0 ∈ F. To further fix
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η0 = ρ0 = 1, we can use one of the following three requirements — any one of them will

do the job. First, we could require that dL should obey the ordinary (ungraded) Leibniz

rule on the sub-algebra of zero forms A0:

dL(a0a
′
0) = dL(a0)a

′
0 + a0dL(a′0), (A.3)

which directly fixes η0 = ρ0 = 1. Second, we could require that the Leibniz rule is the one

that makes sense for a unital algebra A (with unit e ∈ A0), in which case

d(a0) = d(ea0) = d(e)a0 + η0ed(a0) = η0d(a0) (A.4)

which again fixes η0 = 1. An analogous argument from the right fixes ρ0 = 1. Third, we

could require that the Leibniz rule is the one that makes sense for an associative algebra A,

so that it does not matter in which order we use the Leibniz rule to break up the expression

d(amanap) into parts; this implies ηmηn = ηm+n which, once again, implies η0 = ρ0 = 1.

All roads lead in the same direction, and so we have:

ρm = κm, ηm = (−κ)m (A.5)

Next notice that given a differential operator dL satisfying the generalized Leibniz rule

given in eq (A.1a) and (A.5), we can always define a new differential operator d′L(am) =

(±κ)−mdL(am) which will satisfy the graded Leibniz rule d′L(aman) = (±1)nd′L(am)an +

(∓)mamd
′
L(an). Without any loss of generality we therefore choose the simplest case κ = 1,

in eq (A.5) such that we arrive at the ‘left’ graded Leibniz rule (2.3b). It is called the ‘left’

graded Leibniz rule because signs are picked up whenever passing over an algebra element

from the left. An equally good choice would have been to select κ = −1, which would have

resulted in a ‘right’ acting differential operator.

A.1.2 Properties of graded involutions

Let us next consider what role the function χm,n plays in our construction. In eq. (2.5) we

introduced dR = ∗dL∗ as a ‘right-acting’ differential. Notice however that this interpreta-

tion depended on the form of χm,n. In particular, for a ∗-DGA satisfying the generalized

condition (A.1), dR satisfies the generalized Leibniz rule:

dR(aman) = (−1)nχm,nχε′′n,ε′′m+1dR(am)an + χm,nχε′′n+1,ε′′mamdR(an). (A.6)

We see that our choice χm,n = 1 in section 2 indeed results in dR = ∗dL∗ acting as a right

differential; but what freedom did we have in this choice? Our first constraint is that we

require (a∗m)∗ = am, which implies χm,n = (χε′′n,ε′′m)−1. Then, for the involution to make

sense for associative algebras we need χm,n+pχn,p = χm,nχm+n,p. A choice compatible with

both of these restrictions is to select χm,n = (−1)mn; but for that choice the operator dR =

∗◦dL◦∗ acts as a ‘left’ differential, and it is instead the operator d′R(am) = (−1)m∗dL∗(am)

which acts as a right differential. Notice that these two conventional choices (χm,n = 1 or

χm,n = (−1)mn) work for both real and complex ∗-DGAs, and for ∗-DGAs of both types
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(ε′′ = ±1). Both conventions turn out to be very useful in different situations as we will

show below in subsection A.2. More generally, we can write

dR = σ′m ∗ dL∗, (A.7)

where χmn = eiαmn, σ′m = ±e−iαm, and we will refer to the special cases α = 0 and

α = 1 as “convention I” and “convention II”, respectively.9 For complex DGAs satisfying

ε′′ = 1, we could consider the more general situation in which −π ≤ α ≤ π. Notice however

that whichever value of α is chosen, we can always construct a new involution ∗′ which

is given by a∗
′
m = eiτ(m−1)m/2(am)∗. For this new involution ∗′ one finds a new coefficient

χ′m,n = χm,ne
iτmn. Thus we can always pick τ to recover either convention I or II.

A.2 Graded tensor product conventions and definitions

Next let us think about the origin of the (Kozul) tensor product rule given in (2.8). Suppose

H ′ and H ′′ are graded vector spaces on which graded operators O′m : H ′p → H ′p+m and

O′′n : H ′′q → H ′′q+n act respectively (where the subscripts denote the order of each operator).

Define the product space H = H ′⊗H ′′ and product operator Om+n = O′m⊗O′′n such that

the action of Om+n on elements of H is given by:

(O′m ⊗O′′n)(h′p ⊗ h′′q ) = Ψn,p(O′mh′p ⊗O′′nh′′q ) (χn,p ∈ F) (A.8)

for h′p ∈ H ′p, h′′q ∈ H ′′q , and where Ψn,p are F valued coefficients that we wish to constrain.

Note that ∗-DGAs can be thought of as particular examples of graded vector spaces in

which each element am ∈ Am can be considered as an operator of degree m. Given two

∗-DGAs (A′, d′, ∗′), (A′′, d′′, ∗′′), define their tensor A = A′ ⊗ A′′ following eq. (A.8) such

that the product between algebra elements is given by

(a′m ⊗ a′′n)(a′p ⊗ a′′q ) = Ψn,p(a
′
ma
′
p ⊗ a′′na′′q ) (χn,p ∈ F) (A.9a)

and where the differential and involution are given by

d = d ′ ⊗ 1′′ + 1′ ⊗ d ′′, (A.9b)

∗ = ∗′ ⊗ ∗′′θ, (A.9c)

where θ is an F valued function of the grading, which again we wish to determine.

Let’s first determine the form of the function Ψn,m. We want (A, d) to be a DGA

(i.e. we want d to satisfy the appropriate left graded Leibniz rule on A), which implies

Ψn,p = (−1)npΨ0,0.
10 This, in turn, is enough to ensure that:

• (i) if A′ and A′′ are both associative, then A is also associative; and

• (ii) if A′ and A′′ are both graded-commutative, then A is also graded-commutative.

(We stress that we do not assume associativity or graded-commutativity in this appendix.)

9As discussed in subsection 4.1, for ∗-DGAs satisfying ε′′ = 1, we could impose the additional condition

dL(a∗m) = ±ei(π−α)mdL(am)∗, or equivalently using eq. (A.7), dL(am) = ±(−1)mdR(am). In this paper we

do not enforce this additional condition however.
10Note that we could have instead asked that an appropriate right-leibniz rule be satisfied in which case

we would have arrived at a different convention for the Kozul sign.
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In order to further fix Ψ0,0 = 1, we can use one of the following two requirements —

either one will do the job. First, we could require that, on the sub-algebra of zero-forms

A′0 ⊗A′′0, the multiplication rule should reduce to the standard one for the tensor product

of two ungraded algebras A′0 and A′′0:

(a′0 ⊗ a′′0)(ã′0 ⊗ ã′′0) = a′0ã
′
0 ⊗ a′′0ã′′0 (A.10)

which directly fixes Ψ0,0 = 1. Second, we could require that the product is the one that

makes sense for unital algebras A′, A′′ andA′⊗A′′ (with units e′, e′′ and e′⊗e′′, respectively),

so that

(a′0 ⊗ a′′0) = (e′ ⊗ e′′)(a′0 ⊗ a′′0) = χ0,0(e
′a′0 ⊗ e′′a′′0) = χ0,0(a

′
0 ⊗ a′′0) (A.11)

which also fixes Ψ0,0 = +1. Either path leads back to the (Kozul) product rule (2.8).

Next let us consider the function θ. In subsection A.1.2 we introduced two good

conventions for defining the involution on a differential graded algebra labelled by the

signs χm,n = eiαmn, σ′m = ±e−iαm for α = 0 or α = π. Once a convention is chosen, if we

want it to remain stable under the tensor product of ∗-DGAs, then this places restrictions

on the function θ. In particular, it should be:

θ(am ⊗ an) = ei(π−α)mn(am ⊗ an) (A.12)

with α = 0 (for convention I) or α = π (for convention II). The convention chosen in the

body of this paper corresponds to the choice χm,n = σ′m = 1, and θm,n = (−1)mn.

In future work, we will discuss the implications of this formalism for taking tensor

products of spectral triples, since this is an interesting story in its own right [48].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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