日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

書籍の一部

Comments on Higher-Spin Fields in Nontrivial Backgrounds

MPS-Authors

Rahman,  Rakibur
AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

1603.03050.pdf
(プレプリント), 245KB

付随資料 (公開)
There is no public supplementary material available
引用

Rahman, R., & Taronna, M. (2017). Comments on Higher-Spin Fields in Nontrivial Backgrounds. In L., Brink (Ed.), Higher Spin Gauge Theories (pp. 381-390). Singapur: World Scientific.


引用: https://hdl.handle.net/11858/00-001M-0000-002A-C18A-8
要旨
We consider the free propagation of totally symmetric massive bosonic fields
in nontrivial backgrounds. The mutual compatibility of the dynamical equations
and constraints in flat space amounts to the existence of an Abelian algebra
formed by the d'Alembertian, divergence and trace operators. The latter, along
with the symmetrized gradient, symmetrized metric and spin operators, actually
generate a bigger non-Abelian algebra, which we refer to as the "consistency"
algebra. We argue that in nontrivial backgrounds, it is some deformed version
of this algebra that governs the consistency of the system. This can be
motivated, for example, from the theory of charged open strings in a background
gauge field, where the Virasoro algebra ensures consistent propagation. For a
gravitational background, we outline a systematic procedure of deforming the
generators of the consistency algebra in order that their commutators close. We
find that equal-radii AdSp X Sq manifolds, for arbitrary p and q, admit
consistent propagation of massive and massless fields, with deformations that
include no higher-derivative terms but are non-analytic in the curvature. We
argue that analyticity of the deformations for a generic manifold may call for
the inclusion of mixed-symmetry tensor fields like in String Theory.