
Master’s Thesis

Modelling the aerotaxis of
Shewanella oneidensis

Modellierung der Aerotaxis von
Shewanella oneidensis

prepared by

Henning Zwirnmann
from Witten

at the Max-Planck Institute for Dynamics and Self-Organization

Thesis period: 30 April 2015 until 29 October 2015

Supervisor: Dr. Marco G. Mazza

Second referee: Prof. Dr. Stephan Herminghaus





Abstract
Shewanella oneidensis (S.o.) are a species of bacteria that can adapt to a broad vari-
ety of living conditions. This includes both aerobic and anaerobic environments and
renders them interesting not only for scientific purposes, but also from an industrial
point of view: They can be component of microbial fuel cells or facilitate bioremedi-
ation of water. In this work, we perform molecular dynamics simulations of particles
representing these bacteria to analyse their behaviour in an aerobic environment.
Due to their oxygen consumption, a gradient in this concentration is established in
the system, which in turn leads to the formation of a so-called aerotactic band. We
study the dependence of the bacterial dynamics on different physical parameters
and quantify changes the system undergoes by means of correlation functions.

Zusammenfassung
Shewanella oneidensis (S.o.) sind eine Spezies von Baktieren, die unter unterschied-
lichsten Lebensbedingungen überleben können. Dies beinhaltet vor allem sowohl
aerobe als auch anaerobe Umgebungen und macht S.o. nicht nur von einem wis-
senschaftlichen Standpunkt aus interessant, sondern auch nützlich für industrielle
Zwecke: So können sie mutmaßlich als Bestandteile einer “lebenden” Batterie oder
zur Wiederaufbereitung von verschmutztem Wasser dienen. In dieser Arbeit führen
wir numerische Experimente mit S.o. durch, indem wir mittels von Molekulardyna-
miksimulationen das Verhalten von Bakterien in einem aeroben System modellieren.
Dadurch, dass sie Sauerstoff verbrauchen, stellt sich ein Konzentrationsgradient im
System ein, welcher wiederum zur Bildung einer speziellen Struktur, des sogenannten
aerotaktischen Bandes, führt. Wir variieren verschiedene Parameter und quantifizie-
ren Veränderungen im System mittels geeigneter Korrelationsfunktionen.
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1. Introduction

Many biological microorganisms have evolved mechanisms that allow them to prop-
agate actively through their environment. Only by this means they can explore it
effectively and react to stimuli they sense therein. Microorganisms with this fea-
ture are also called active swimmers and include amoeba, bacteria or other kinds of
living cells. While this mechanism has been known and under research for almost
100 years (see e.g. [1]), the modelling of the dynamics of active swimmers in the
face of statistical physics is a rather new branch. Starting with the seminal work
of Vicsek [2], it has attracted remarkable interest in the last 20 years. These sys-
tems are intrinsically in a nonequilibrium state. They differ from boundary-driven
nonequilibrium systems studied in the past as the driving and dissipation occur at
the scale of the individual particle.
The aim of the project is to numerically simulate a system of active swimmers

and reproduce behaviour and phenomenology of real bacteria in an experiment.
To this end, we implement a set of rules governing their dynamics in a molecular
dynamics (MD) simulation that originate from experimental observations. Here we
especially focus on the interplay of the bacteria with the oxygen dissolved in the
system. Figure 1.1 shows the simulation setup: The bacteria are confined to a flat
volume, i.e. between two microscopic slides. In the centre of the system a cylinder
resembles an air bubble from which oxygen diffuses into the surrounding medium

Figure 1.1.: Simulation setup: particles swim confined to the volume between two
walls. The blue overlay around the cylinder in the centre indicates the
diffusing oxygen
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1. Introduction

(not shown in the drawing).
The real counterpart to our model particles is a species of bacteria called She-

wanella oneidensis (S.o.). They are capable of exchanging electrons with their
environment and thus respiring outside their cell membrane. By this means these
bacteria are able to live under either aerobic or anaerobic conditions. Apart from
biological, biochemical and physical interests this feature renders S.o. also interest-
ing for industrial use, e.g. in microbial fuel cells and wastewater management [3].
By comparing the results from our simulations to the real experiments we hope to
be able to make further progress understanding the behaviour of the bacteria and
the parameters the latter depends on.
This thesis is structured in the following way: In Chap. 2, we first describe the

biological and biochemical fundamentals of Shewanella oneidensis (Chap. 2.1) as
well as the basic ansatzes to analyse their dynamics from the point of view of non-
equilibrium statistical physics (Chap. 2.2). Chapter 3 deals with the physical model
and the equations of motion that are at the bottom of our MD simulations. We then
describe how we implement these equations in the actual program code in Chap. 4.
In the following chapter (Chap. 5) we present the simulation results and show how
the system behaves while varying our model parameters. We conclude this work
with the summary and the outlook in Chap. 6.

2



2. Theory

2.1. The model organism: Shewanella oneidensis

Shewanella is a genus of monotrichous, Gram-negative and rod-shaped bacteria typi-
cally living in aquatic environments (see Fig. 2.1). The species Shewanella oneidensis
(S.o.) was first described in 1999 [4], named after Oneida Lake in New York state,
US, where the first sample was collected. They are bacteria with typical lengths be-
tween 2− 3 µm and diameters of 0.4− 0.7 µm [3]. The special interest in S.o. from
a scientific point of view arises from the fact that they can live in both aerobic and
anaerobic surroundings, which renders them facultatively anaerobic bacteria. S.o.
implements the electron pump mechanism on their outer cellular membrane. They
have evolved several breathing mechanisms enabling them to target metal oxides,
in addition to oxygen, as electron acceptors. Also, the bacteria can form biofilms or
congregate dynamically in vicinity of a suitable acceptor [5]. Because of their capa-
bility to exchange electrons with the environment outside their body (therefore the
term “exoelectrogen”) they can conceivably be used in microbial fuel cells (MFCs)
[6]. The same property makes them also interesting for wastewater treatment: When
the bacteria target e.g. soluble uranium(VI) as an electron acceptor, it is reduced
to insoluble uranium(IV) which precipitates and can thus kept away from the water
cycle. The full genome was sequenced in 2002 [7], which both allowed to gain deep
insights into basic biochemical mechanisms and facilitated further research.

Figure 2.1.: SEM image of S.o. forming nanowires [8]

3



2. Theory

2.1.1. Flagellar motion and movement mechanisms

As we said above, S.o. are a monotrichous species, i.e. they have a single polar flag-
ellum. Because of this they are typical “pusher” bacteria where counterclockwise
rotation of the flagellum produces forward propagation, while clockwise rotation
leads to rearward movement, i.e. in the direction of the flagellum itself. Bacteria
using only these two mechanisms for propagation employ a so-called “run-reverse”
strategy: After a time of forward movement they reverse the rotation direction of
their flagella, thus moving backward, before they reverse once more. Slight changes
from the original direction result from rotational diffusion and, possibly, an exter-
nal flow field [9]. Shewanella putrefaciens and probably other Shewanella species,
such as S.o., follow a “run-reverse-flick” mechanism [10]: At the transition between
backward and forward movements they flick their flagellum once afterwards, thus
turning around with an average turning angle of around 90 degrees (see Fig. 2.2).
This behaviour is considered to be especially advantageous during chemotaxis (see
Chap. 2.1.3) [11–13].

In contrast to S.o., Escherichia coli, the classical bacterial model organism, per-
form a “run-and-tumble” strategy. E.coli are a peritrichous species, i.e. they have
several flagella distributed all over the body that rotate counterclockwise in the
“run” phase. Sometimes one or more flagella reverse their rotation and thus ac-
count for a “tumbling” event with the bacterium rotating its body in a random
direction without propagating. Afterwards another run phase starts [14]. The tum-
bling frequency depends on the environment: E.coli have been found to perform
prolonged run phases swimming along a favourable chemical gradient, e.g. towards
a nutrient [15]. Thus this mechanism is strongly related to chemotaxis, too.

Figure 2.2.: Run-reverse-flick motion pattern [11]
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2.1. The model organism: Shewanella oneidensis

2.1.2. Respiration mechanisms

Respiration on its most fundamental level means donating one’s terminal metabolic
electrons: Humans breathe air that contains oxygen, which is a good electron ac-
ceptor and thus can be reduced easily in our mitochondria. Since bacteria do not
have mitochondria they have evolved different mechanisms to respire: S.o. prefer
to reduce oxygen dissolved in their environment, but can also live under anaerobic
conditions. There are several ways of extracellular electron transport allowing them
to reduce insoluble electron acceptors (IEA), including metal oxides such as Fe(III)
or Mn(IV) (see Fig. 2.3) [3]:

• Cytochromes are special proteins that reside on the outer cell membrane.
These facilitate electron transfer to a metal oxide particle that is in direct
contact with the bacterium [16] (see Fig. 2.3 A).

• Bacterial nanowires are electrically conductive filaments appended to the outer
cell membrane of the bacteria. Their length is of nanometer-scale with electron
transport rates of roughly 106/s and resistivities of around 1 Ω cm [8, 17] (see
Fig. 2.3 B).

• Organic compounds called chelators bind to soluble electron acceptors, thus
facilitating intra- or extracellular electron transfer [18] (see Fig. 2.3 C).

• Flavins, another kind of organic compounds, serve as electron shuttles trans-
porting electrons to an IEA. In contrast to the transfer via cytochromes the
individual does not need to contact the IEA directly to employ this pathway
[19] (see Fig. 2.3 D).

2.1.3. Taxis, kinesis and biofilms

Taxis (from Greek τάξις, “arrangement, order”) is a behaviour found in many ani-
mal species characterized by directed movement along a varying external stimulus.
Several mechanisms have been described, e.g. chemotaxis (along chemical gradients
[21]), phototaxis (along gradients in light intensity [22]) and magnetotaxis (along a
gradients in magnetic fields [23]). Besides chemotaxis during nutrient search S.o.
also perform aerotaxis, i.e. they look for an ideal oxygen concentration in their envi-
ronment. To do so, they use special proteins in their outer membrane that measure
and compare said concentration at different points in time. Due to their small size

5



2. Theory

Figure 2.3.: Extracellular respiration mechanisms: bacterium (orange oval), IEA
(red rectangle), reduced IEA particle (open red circle) [20]

comparing concentrations simultaneously at different positions (tropotaxis) is not
possible because fluctuations are not detectable on that length scale.
Aerotaxis can finally lead to the formation of the so-called “aerotactic band”,

which is a region of high bacterial density with high motility. Figure 2.4 shows the
formation of an aerotactic band in a colony of S.o. for two cases: When the oxygen
concentration at the meniscus is 100 %, the band develops at a bigger distance
from it than when the oxygen is only at air level (21 %). This indicates that there
is an ideal oxygen concentration where the bacteria stay preferably. The earliest
descriptions of similar behaviour in bacteria are due to observations by Engelmann
(1881, [24]) and Beijerinck (1893, [25]).
While directed movement due to a stimulus and its gradient is called taxis, the

Figure 2.4.: Formation of an aerotactic band. The oxygen concentration at the
meniscus (left side) is 100 % (upper panel) and 21 % (lower panel),
respectively. [26]

6



2.1. The model organism: Shewanella oneidensis

Figure 2.5.: Comparison of taxis and kinesis [28]

term kinesis (from Greek κίνεσις, “movement”) describes undirected movement due
to the stimulus intensity. This may involve both changes in speed (orthokinesis)
or turning frequency (klinokinesis) [27]. Hence, we can say the process governing
the formation of the aerotactic band is primarily dominated by either klinotaxis or
-kinesis. The different mechanisms are depicted in Fig. 2.5.
S.o. have been found to perform electrokinesis in an anaerobic environment in

the presence of an IEA, including both speed variations and abrupt reversals of the

Figure 2.6.: Scheme of S.o. congregating near an IEA. The black stars in the left
pictures mark a reversal event. [29]
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2. Theory

Figure 2.7.: Biofilm formation of S.o. on a glass surface in a flow chamber [5]

direction of motion [29, 30]. However, in this case, no chemoattractant is involved,
but the behaviour is dependent on the time passed since the last contact to the
acceptor. It finally leads to a congregation of the bacteria in vicinity to the IEA as
sketched in Fig. 2.6.
Figure 2.6 also points out that the bacteria not only congregate close to an IEA,

but finally attach to it and form a biofilm. In contrast to the previously described,
dynamic situations, they now become static and form a network as can be seen in
Fig. 2.7. In order to respire they can now make use of any of the mechanisms for
extracellular electron transport described in Chap. 2.1.2 [5].

2.2. Nonequilibrium statistical physics

The studies of systems with a large number of particles in their equilibrium was a
main task dealt with by physicists such as Maxwell, Boltzmann and Gibbs in the
second half of the 19th and the early 20th century. They provided a theoretical
foundation for thermodynamics that was up to then mostly based on empirical ob-
servations. In contrast to that, nonequilibrium statistical physics, i.e. the description
of how particles behave when the system is not in an equilibrium state, is a rather
new branch with no such general framework. Several approaches exist, though, some
of which we will describe and apply to our model. We focus especially on the mu-
tual interaction of a particle density and the concentration of a chemoattractant.

8



2.2. Nonequilibrium statistical physics

Without loss of generality we consider the case of one-dimensional motion if not
mentioned otherwise. There are various ways to deduce the following equations.
Our description is loosely based on [14], [31] and [32].

2.2.1. Langevin equation for Brownian particles

We begin by studying a Brownian particle in a simple fluid in one dimension, i.e. we
deal with a passive particle whose motion is strongly influenced by the surrounding
bath. Its mesoscopic equation of motion thus reads

mv̇ = −γv + Ffluct . (2.1)

The right-hand side is composed of two parts: viscous damping with coefficient γ,
which leads to an exponential slowdown of the particle, and a randomly fluctuating
force Ffluct. Both are due to collisions of the swimmer with the fluid molecules.
Based on the nature of Ffluct we can postulate two properties:

〈Ffluct(t)〉 = 0, (2.2)
〈Ffluct(t)Ffluct(t′)〉 = Γδ(t− t′), (2.3)

where δ(t) is Dirac’s delta function. These equations imply that we interpret Ffluct

as a stochastic force: Its average vanishes and collisions are uncorrelated in time (Γ
is a constant). These properties make Ffluct a so-called Langevin force and Eq. (2.1)
a Langevin equation for v, respectively. If we further postulate that all cumulants
of Ffluct higher than the second are zero, we call Ffluct a Gaussian white noise and
have thus fully determined the process. Pictorially the force can be imagined as a
δ-function accelerating particles in an instant.

Making use of the equipartition theorem one can conclude from the velocity corre-
lation function 〈v(t)v(t′)〉 that Γ in Eq. (2.3) is related to the damping coefficient γ
in Eq. (2.1):

Γ = γkBT. (2.4)

This is a very simple version of a fluctuation-dissipation theorem connecting the
fundamental microscopic property Γ to the macroscopic quantity γ. Furthermore it
is possible to express the mean square displacement 〈(x(t)− x(0))2〉 in terms of the

9



2. Theory

velocity correlation function. With the definition of the diffusion coefficient,

D ≡ lim
t→∞

〈(x(t)− x(0))2〉
2t , (2.5)

one can then obtain the so-called Stokes-Einstein relation

D = kBT

γ
. (2.6)

2.2.2. Equations of motion for active swimmers

The simple Langevin Eq. (2.1) can serve as a basis to describe the motion of our
bacteria. There are fundamental differences, though, that shall be highlighted in
the following, together with their consequences.
We can make use of Eq. (2.6) to compute the theoretically expected diffusion

coefficient for a bacterium: Assuming that Stokes’ law (γ = 6πηa) is valid, which is
a good assumption at low Reynolds numbers as in our case (see below), and inserting
the viscosity of water η = 10−3 kg m−1 s−1, the particle diameter a = 2µm and a
typical temperature of T = 293 K yields D ≈ 0.11µm2 s−1. This is far below the
actually observed value for bacteria similar to S.o.: Vibrio alginolyticus, another
monotrichous bacterium performing run-reverse-flick locomotion, has a diffusivity
of D = 220µm2 s−1[11]. In other words, if V. alginolyticus diffused according to
the fluctuation-dissipation theorem, we would expect a temperature of more than
500 000 K. Hence, they cannot be treated as simple Brownian particles.
This difference results from the fact that these bacteria are by no means passive

particles but instead can propagate actively using their flagellum, as described in
Chap. 2.1. They gain energy needed for this active locomotion from their environ-
ment, which is why they make use of chemo- and aerotaxis (see Chap. 2.1.3). Hence,
we do not expect the ensemble-averaged velocity v(t) to decay to zero exponentially
with time as for Brownian particles. Instead it should stay at a constant value v0 for
every particle, depending on its internal energy, as long as resources are available,
which we typically assume. In contrast to the speed, the orientation e of a particle
can change naturally due to e.g. noise or collisions.
Another fact that makes our system differ from passive Brownian particles con-

cerns inertia: If one calculates the Reynolds number R ≡ av/ν for the situation
at hand (particle diameter a ≈ 1µm, speed v ≈ 10µm s−1 and kinematic viscosity
ν ≈ 106 µm s−2 of water) one arrives at values of R ≈ 10−5, which is indeed very

10



2.2. Nonequilibrium statistical physics

small. As R indicates the ratio of inertial to viscous forces we conclude that the
former do not play a role for our particles. In fact if a bacterium with initial speed
v = 30µm s−1 stops its flagellum, it will only move roughly 10−11 m before it comes
to rest [33]. Hence, we can safely neglect the inertia term in Eq. (2.1). We do not
consider acceleration due to gravity, either, because its effects are even smaller as
the bacterial mass density is typically only slightly bigger than that of water.
Based on these considerations we arrive at two equations governing the dynamics

of our active swimmers:

dx
dt = v0e(t), (2.7)
de
dt = Ffluct + Fext, (2.8)

which is a deterministic equation for the position x and a Langevin equation for the
orientation e. The additional term Fext accounts for other force contributions, e.g.
inter-particle forces, as mentioned previously.

2.2.3. Fokker-Planck and diffusion equation

Instead of describing the dynamics of a particle by solving its microscopic equa-
tions of motion one can also focus on the statistics of the particle’s position. One
possibility to do so is to describe the temporal evolution of the particle probability
distribution function p(x, t) under influence of drift and diffusion in the system. This
is determined by a Fokker-Planck equation, which in one dimension reads:

∂p(x, t)
∂t

= − ∂

∂x
(A(x)p(x, t)) + 1

2
∂2

∂x2 (B(x)p(x, t)) . (2.9)

A(x) and B(x) describe the strength of drift and diffusion, respectively, and may
themselves depend on the spatial coordinate. p(x, t) is related to the actual particle
density n(x, t) by means of the relation n(x, t) = Npart p(x, t) where Npart is the
total number of particles. Given the data from our observations we can approximate
Npart in fact as constant during one experiment as there is almost no cell division
or death on our time scale. One can show that this treatment is indeed equivalent
to the description via a Langevin equation with noise term Ffluct as described in
Chap. 2.2.1, i.e. the solutions x(t) are identical. During the proof of this equivalence
one has to overcome difficulties regarding Ffluct which are at the core of the so-called
Itô-Stratonovich dilemma.
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2. Theory

If we assume that both A and B in Eq. (2.9) no longer depend on space we arrive
at a drift- (or advection-) diffusion equation:

∂p(x, t)
∂t

= −A ∂

∂x
p(x, t) + 1

2B
∂2

∂x2p(x, t). (2.10)

This equation is related to Fick’s law of diffusion if we furthermore assume that
there is no drift in the system (⇒ A = 0):

∂p(x, t)
∂t

= D
∂2

∂x2p(x, t). (2.11)

Here we have inserted the classical diffusion coefficient D ≡ B/2. We can make
use of this equation to describe the evolution of the oxygen concentration c(x, t) in
our system. To this end, we multiply by the total initial oxygen concentration C0

first (similarly to what is done above with Npart). Furthermore we must add a term
that accounts for bacterial oxygen consumption, i.e.

∫
V c(x, t)dx 6= C0 for t > t0 in

general. We choose the consumption term to be proportional to the particle density
n itself, thus yielding

∂c(x, t)
∂t

= D
∂2

∂x2 c(x, t)− κθ(c(x, t))n(x, t). (2.12)

We identify κ as bacterial consumption rate, which can be determined experimen-
tally, too. The added term also contains the Heaviside function θ(c) that accounts
for the fact that the bacteria only consume oxygen if there is any at all. We also know
that D = 2× 103 µm2 s−1 is in fact constant, being the diffusion rate of dissolved
oxygen in water [34].

2.2.4. Velocity-jump processes

Another approach to describe cell motility is by means of a linear transport equation
as done in [32], [35] and [36]. It is based on a mass balance equation, but also takes
into account cell velocity and stochastic reorientations. The latter are modelled as
a Poisson process with frequency λ, thus yielding

∂p(x,v, t)
∂t

+ v ·∇p(x,v, t) = −λp(x,v, t) + λ
∫
T (v,v′)p(x,v′, t)dv′, (2.13)

12



2.2. Nonequilibrium statistical physics

where ∇ only acts as a spatial derivative operator. p(x,v, t) hence describes the
probability of finding a particle with velocity v at (x, t). T (v,v′) is the reorientation
kernel defining the probability for a jump from v′ to v given the jump actually occurs.
Therefore T is normalized such that

∫
T (v,v′)dv = 1 ∀ v′.

For a simple one-dimensional case we can show that the diffusion equation follows
immediately from the transport equation (2.13). To that end we assume that both λ
and v are constant, so the only possible velocities are ±v0. We define a probability pl

for particles moving to the left and pr to the right:

∂pl(x, t)
∂t

+ v0
∂pl(x, t)
∂x

= −λpl(x, t) + λpr(x, t), (2.14)

∂pr(x, t)
∂t

− v0
∂pr(x, t)
∂x

= −λpr(x, t) + λpl(x, t). (2.15)

By adding and subtracting Eq. (2.14) and (2.15) it follows that the total par-
ticle density p(x, t) = pr(x, t) + pl(x, t) and the particle probability flux j(x, t) =
v0(pr(x, t)− pl(x, t)) obey the equations

∂p

∂t
+ ∂j

∂x
= 0, (2.16)

∂j

∂t
+ 2λj = −v2

0
∂p

∂x
. (2.17)

Taking the spatial derivative of Eq. (2.17) and using Eq. (2.16) yields the telegraph
equation:

∂2p(x, t)
∂t2

+ 2λ∂p(x, t)
∂t

= v2
0
∂2p(x, t)
∂x2 . (2.18)

From this again follows the classical Fickian diffusion equation (Eq. (2.11)) in the
limit λ→∞, v0 →∞, v2

0/2λ ≡ D.

We can tailor the ansatz (2.13) to our model by specifying how λ and T have to
look like: In our case λ must depend on the motility rule we choose. In Chap. 3 we
describe three different variants where λ can be function of particle coordinate or
rather oxygen concentration at that position, speed and orientation. Independently
of that choice we know that T has to be of the form T (v,v′) = δ(vxy + v′xy). Here
the index xy describes the velocity in the x-y plane because a velocity jump event
always leads to an orientation change in that plane.
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2.2.5. Chemotaxis equation

The typical way to describe the diffusion of the density of a bacterial species a(x, t)
influenced by a chemoattractant with concentration ρ(x, t) is by means of the Keller-
Segel approach. In 1970 they analysed aggregations in a species of amoeba (Dic-
tyostelium discoideum) due to a chemical (acrasin) [37]. Their considerations are
based on the conservation of the number of amoeba as well as several assumptions
regarding diffusion and production of said chemical, thus yielding four equations for
the temporal evolution. Further simplifications allowed them to exclude an inter-
mediate product and an enzyme from the system of equations, which finally lead to
the chemotaxis or Patlak-Keller-Segel-Alt (PKSA) equation

∂a

∂t
= −∇ ·

(
δ · a
ρ

∇ρ

)
+ ∇ · (D2∇a), (2.19)

where δ is a constant. We see that the second term on the right-hand side describes
the regular diffusion of cells with coefficient D2 that might depend on a or ρ itself.
The first term of the right-hand side governs the interaction of amoeba and chemical
by generating a flux towards high acrasin concentrations (provided δ > 0). In [32]
the authors show how the PKSA equation follows from the linear transport equation
(Eq. (2.13)) by imposing restrictions on the reorientation kernel T or the turning
rate λ.

The equation for a is complemented by another equation for ρ,

∂ρ

∂t
= − kK

1 +Kρ
ρ+ af(ρ) +Dρ∇2ρ, (2.20)

with constants k,K andDρ, and af(ρ) accounting for amoebal production of acrasin.

In the derivation of Eq. (2.19) the authors argue that the part of the amoeba
flux due to acrasin has to be proportional to its gradient, analogously to the flux of
heat being dependent on temperature gradient. However, this assumption is only
valid when spatial variations in the latter are reasonably small. This might not be
justified in our system because a large bacterial density as is the case inside the
aerotactic band leads to a steep gradient. Hence, we cannot make use of the PKSA
equation to model our system.
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2.2. Nonequilibrium statistical physics

2.2.6. Solutions to the diffusion equation

In this chapter we want to find out what kind of solutions for ρ(x) we can expect. To
this end, we assume that the diffusion equation (Eq. (2.11)) holds with a diffusion
rate D ≡ D(x) that is space-dependent. For this case, the equation reads

∂ρ(x, t)
∂t

= ∂

∂x

(
D(x) ∂

∂x
ρ(x, t)

)
. (2.21)

We suppose that the form of the diffusion rate is as follows:

D(x) = D0 + k tanh(x0 − x). (2.22)

The parameter x0 represents the interface of the oxygen-rich region: This shape of
D(x) yields high particle diffusion for x < x0 and low diffusion for x > x0 with
control parameters D0 and k. The first region can be identified with an aerobic
environment where particles have high speed and reverse their orientation rarely,
whereas the second regime stands for anaerobic surroundings with low speed and
frequent turning, thus accounting for a low diffusion. We will later show that these
assumptions are indeed justified (see Chap. 5.2.6).
To simplify eq. (2.21) further, we focus on its steady-state solutions, hence ∂ρ

∂t
= 0.

After inserting Eq. (2.22) into it one can easily find the solution

ρ(x) = c1

k − 1e
D0(k−1)(x0−x)

D2
0−k2 (D0 cosh(x0 − x) + k sinh(x0 − x))

(k−1)k

k2−D2
0 + c2 (2.23)

with two integration constants c1 and c2. We plot Eqs. (2.22) and (2.23) for c1 = 1,
c2 = 0, k = 7, D0 = 10 and for two values of the oxygen interface x0 = 5 and
x0 = 10, respectively, in Fig. 2.8. One can see that ρ peaks approximately at x0,
while it drops steeply down to 0 for x > x0 and to a value larger than zero for
x < x0 in the interval considered. Varying x0 shifts both functions from one point
to another, while the form of the curves stays the same.
This functional behaviour captures some of the features we expect: The result can

be interpreted as a travelling band with the maximum density in the transition zone
between the aerobic and the anaerobic region in the system. It also makes sense to
identify the functional dependence of D with the shape of the oxygen concentration
c itself. If we suppose that there is an oxygen source at x = 0, it also makes sense
that the band travels towards it, i.e. t(x0 = 5) > t(x0 = 10). On the contrary, we
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Figure 2.8.: Diffusion rate and particle density according to Eqs. (2.22) and (2.23)

would also expect that the height of the peak rises because more and more particles
join the band. However, as we have not normalized ρ, the integral over it does not
stay constant so we lose particles in this model. We also need to keep in mind that
we consider steady-state situations that are typically not obtained in our system,
which is intrinsically in a non-equilibrium state.
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3.1. Equations of motion
In the following we describe the equations of motion that we solve for every particle i
in our MD simulations and the individual contributions to them. They are based
on the previously derived equations for active particles (Eqs. (2.7) and (2.8)):

ṙi(t) = vi (c(ri, t)) ei(t) + 1
γf
F i(t), (3.1)

ėi(t) = η⊥,i(t)− λi(t)ei(t) + gc, i(t) + gw, i(t) + gox, i(t). (3.2)

We can see that the change of position ri is purely deterministic: One contribution
is due to the particle’s velocity vi that can depend on the local oxygen concentra-
tion c as described in Chap. 3.2. The second contribution arises from a pairwise
interparticle force F i realized by means of a WCA potential and controlled by a
parameter γf (see Chap. 3.3).
Changes in the orientation ei result from multiple contributions that can be in-

terpreted as torques: η⊥,i is the part of a random noise vector ηi that is orthogonal
to ei. In order to keep the orientation at unity length, we employ a Lagrangian
multiplier λi. By demanding that the torque be orthogonal to the orientation we
obtain a unique value for λi. By this means we no longer need to normalize the
orientation in every step and can instead maintain a time-continuous version of the
algorithm [38]. Further contributions arise from collisions with other particles or
walls (gc, i and gw, i, cf. Chap. 3.4) and from interactions with the oxygen field
(gox, i, cf. Chap. 3.5).

3.2. Speed distribution and dependence on oxygen
Every particle has a base speed v0,i drawn from a given distribution (see Fig. 3.1)
that stays constant during one simulation. The distribution is composed of two
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Figure 3.1.: Initial speed distribution with vc = 0.2 and σvc = 0.04

identical Gaussian distributions, one centered at zero, and the other at vc, each
with the same standard deviation σvc :

p(v0) ∼


1√

2πσvc

[
2 exp

(
−v2

0
2σ2

vc

)
+ exp

(
−(v0+vc)2

2σ2
vc

)
+ exp

(
−(v0−vc)2

2σ2
vc

)]
, 0 ≤ v0 ≤ 2vc

0, else
(3.3)

One can see that the higher peak at v0 = 0 results from the fact that an outcome
smaller than zero is projected on the respective positive value. Also, to prevent
unrealistically high values the distribution is truncated at vmax = 2 vc. This model
results from visual inspection of the motility of a colony of S.o. in video microscopy
where some of the particles are highly motile, whereas others hardly move at all.
The only way of varying the bacterial speed is from its dependence on the oxygen

concentration at the position of the particle. In every simulation we choose among
three different models (see Fig. 3.2):

(i) constant: vi(c) = v0,i everywhere (3.4)

(ii) two-state: vi(c) =

v0,i + vhigh,

v0,i,

c > ct

c < ct
(3.5)

(iii) proportional: vi(c) =

v0,i +mox(c− ct),

v0,i,

c > ct

c < ct.
(3.6)
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Figure 3.2.: Comparison of models for vi(c) for particles with v0,i = 0.2, ct = 0.2,
vhigh = 0.2 and mox = 0.25

ct is a threshold concentration, i.e. the smallest oxygen concentration the bacteria
react to. Together with the other parameters vhigh and mox, respectively, it needs
to be chosen appropriately.

3.3. Interparticle force

Bacteria have rigid outer cellular membranes. Thus we can simplify our model
by treating them as hard spheres. This choice neglects the fact that S.o. are in
fact elongated, cylindrical rods (as described in Chap. 2.1), but is still a very good
approximation. We choose the Weeks-Chandler-Andersen (WCA) potential [39],
which is a shifted and truncated Lennard-Jones potential and thus only contains a
repulsive part to model the hard sphere interaction:

VWCA(r) =

4ε
(
σ12

r12 − σ6

r6

)
+ ε, r ≤ 21/6σ,

0, r > 21/6σ,
(3.7)

where r = |r| is the particle distance, σ the particle diameter and ε the energy scale.
The potential is used to assign a volume to each particle, thus preventing them from
overlapping. ε can be thought of as the membrane stiffness: The higher its value,
the bigger is the value of the potential (see Fig. 3.3) and thus the displacement after
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Figure 3.3.: Comparison of the WCA force for different values of σ and ε

a collision due to the force. The force derived from Eq. (3.7) is

FWCA(r) = −∇VWCA(r) =

24ε
(
2σ12

r14 − σ6

r8

)
r, r ≤ 21/6σ,

0, r > 21/6σ.
(3.8)

If a particle interacts with more than just one other particle, all contributions are
simply added up (superposition principle). Because the parameter γf in the equa-
tions of motion (Eq. (3.1)) is redundant with ε for the WCA force, we set γf = 1 for
all simulations.

3.4. Collisions

Apart from shifting particles involved in a collision due to the WCA potential we
also need to rotate their orientation afterwards. The actual collision mechanism is
unknown, but we assume a billiard-like behaviour: While the component parallel to
the force F is inverted, the component perpendicular to it is not changed (see also
Fig. 3.4):

gc = −2(e · F̂ )F̂ (3.9)

We apply this mechanism only if the scalar product of the orientation of a particle
and the force vector is negative, because otherwise it leads to unphysical behaviour.
Collisions with walls (i.e. the air bubble or boundaries in z-direction) follow the
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Figure 3.4.: Collision process

same mechanism, i.e. the component parallel to the plane of reflection with unit
normal vector n̂ stays constant whereas the perpendicular component is reversed:

gw = −2(e · n̂)n̂ (3.10)

3.5. Aerotactic mechanisms

We have seen in Chap. 2.1.3 that the bacterial motility, i.e. propagation speed and
frequency of orientation reversals, changes under influence of a chemoattractant.
Thus velocity-jump events as described in Chap. 2.2.4 can be seen as the result of
klinokinetic or -tactic behaviour. We model this feature by reversing the orientation
of a particle in the x-y plane:

gox = −2(exx̂+ eyŷ), (3.11)

where e = exx̂ + eyŷ + ezẑ is the orientation of a particle. In our simulation
we cannot set the turning frequency directly. Instead we vary the probability of a
turning event pturn, from which follows said frequency. These probabilities have to be
understood as probabilities per time step, i.e. if we increase the time step length δt
we also have to increase the probability. We compare three different models for the
turning probability that are depicted in Fig. 3.5:

(i) “Harris rule”: The higher the oxygen concentration is, the faster a particle
and the bigger its turning probability [30]:

pturn = pturn(v) ∼ v ∼ c (3.12)

(ii) “Anti-Harris rule”: The lower the oxygen concentration is, the higher the
turning probability:

pturn = pturn(c) ∼ c0 − c (3.13)
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(iii) “Mazzag rule”: The turning probability is minimal at a constant value p0 for
an ideal oxygen concentration in the range cideal, min < c < cideal, max. For
too high concentrations it is k1p0, while for too low concentrations it is k2p0

(1 ≤ k1 ≤ k2). Between these regions there are buffer zones, i.e. cideal, max <

c < cbuffer, max and cbuffer, min < c < cideal, min. The actual value of pturn depends
on the orientation of the particle e with respect to the local oxygen gradient
[40]:

pturn(c) =



p0,


cideal, min < c < cideal, max

cideal, max < c < cbuffer, max and e ·∇c ≤ 0

cbuffer, min < c < cideal, min and e ·∇c ≥ 0

k1p0,

c > cbuffer, max

cideal, max < c < cbuffer, max and e ·∇c > 0

k2p0,

c < cbuffer, min

cbuffer, min < c < cideal, min and e ·∇c < 0

(3.14)

In [40], the authors suggest using k1 = k2 = 5 for Azospirillum brasilense, a
species with similar characteristics as S.o.
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Figure 3.5.: Turning probabilities for different aerotactic mechanisms
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4. Computational methods

4.1. Integration scheme
The integration scheme relies on a simple Euler forward algorithm. As the simulation
takes place in an overdamped regime (see Chap. 2.1.1), there is no acceleration
influencing the speed of the particles. This assumption allows us to maintain a
first-order integration scheme, treating changes in position ri and orientation ei
independently of each other. Thus, the time-discrete versions of Eq. (3.1) and (3.2)
with time step δt at times t, t+ 1 read

rt+1
i = rti +

(
vti(c)eti + 1

γf
F t
i

)
δt, (4.1)

et+1
i = eti + (ηt⊥,i − λtieti)δt+ gtc, i + gtw, i + gtox, i . (4.2)

4.2. Oxygen diffusion scheme
We include an air bubble in the centre of our system that cannot be accessed by
the bacteria. To account for diffusing oxygen, we employ a finite-difference diffu-
sion scheme, i.e. we subdivide our volume into square cells along the x- and y-axis,
neglecting fluctuations in the confined z-direction. The scheme is a centered space,
forward time Euler algorithm with a five-point stencil and periodic boundary con-
ditions, based on Eq. (2.12), which becomes

ct+1
i,j = cti,j + Dδt

δx2 (cti−1,j + cti+1,j + cti,j−1 + cti,j+1 − 4cti,j)− κnti,jδt. (4.3)

D is the diffusion constant of dissolved oxygen in water and nti,j the number of
particles with consumption rate κ in cell i, j. To account for the θ-function in
Eq. (2.12) we set the minimal value of cti,j to zero. We also need to specify initial
conditions for our system to define it completely. We choose a uniform distribution,
which also makes sense from a physical point of view if we define t = 0 as the point
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in time at which the experimental cell is closed:

c0
i,j ≡ c0 ≡ C0/Ncells ∀ i, j, (4.4)

where C0 and Ncells are the initial oxygen content and the number of cells in the
system, respectively.
A Von-Neumann stability analysis shows that the numerical diffusion scheme (4.3)

is conditionally stable [41], i.e. it yields a stable solution only under the condition

δt ≤ δx2

4D . (4.5)

Cells that are located fully inside the air bubble do not follow Eq. (4.3): Because
oxygen diffusion in air is six orders of magnitude faster than in water [34] we assume
that it takes place immediately. Hence, we define the oxygen concentration as the
average of all the cells in question. Also, we have the possibility to add a number of
virtual cells Ncells, virtual to the bubble that do not show up in the system physically
but are capable of storing oxygen. In this way we can decouple the physical size
of the bubble from the oxygen stored inside, setting the total initial oxygen in our
system to Ctotal

0 = c0(Ncells +Ncells, virtual).

4.3. Choice of time step δt
The introduction of the WCA potential sets an upper bound for the time step δt:
If we choose the latter too big, two particles that do not sense each other in step t,
i.e. their distance rt is ≥ 21/6σ, can significantly overlap in step t + 1 if things go
bad. Such overlaps create immense, unphysical forces that can lead to a cascade of
particle jumps through (and out of) the simulation box. Therefore, we demand that
the minimal distance of two particles should be σ even in a worst-case scenario:

σ ≤ rt+1 = rt − 2 · (vmax + Fmax)δt (4.6)
= 21/6σ − 2 · (2 vc + F (σ))δt (4.7)

⇒ δt . 10−2 (4.8)

The last result arises from inserting the values we typically use in our simulations
(σ = 0.1, vc = 0.2, ε = 10−4). With this choice we can avoid unphysical forces at
least for the situation described here, i.e. two particles initially not sensing each
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other, with maximum speed towards each other, each pushed by the maximum force
additionally. Still it does not cover all possible situations, e.g. in a multi-particle
collision or due to external forces. As such cases only happen very rarely we settle
for the condition derived, but additionally check for too big forces in the code.

4.4. Choice of units
As far as units are concerned, we need to distinguish between three different choices:

• real physical units as from the experiment,

• reduced MD units used in the simulation and

• coordinates in the unit box.

Assuming all particles are of same mass, we are only dealing with two different
dimensions dictating the particles’ dynamics (time and space). Hence, we need to
employ two independent quantities from the experiment to adapt the simulation to
it. If we choose

• particle diameter σ = 1.0µm (≡ 0.1 distance unit),

• diffusion constant D = 2.0× 103 µm2 s−1 (≡ 1 diffusion unit) of dissolved oxy-
gen in water,

one time unit is equal to 5× 10−2 s. Thus, we are able to set all other physical
quantities, such as turning frequencies or filling fractions, in accordance with the
experimental scale, too. In contrast to that, for the potential parameter ε and the
bacterial consumption rate κ we use values obtained empirically from our simula-
tions. This is due to the fact that the former is an empirical model with unknown
parameters, whereas the latter is only very difficult to access in an experiment. Re-
duced or MD units are typically used to avoid the occurrence of very large or small
numbers during calculations that lead to loss of precision. Apart from that, it sim-
plifies the equations of motion to relevant quantities and allows for the comparison
of arbitrary simulations. In order to save computation time, the simulation volume
is scaled to a unit box. This means that the particles’ coordinates are scaled to
the range (−0.5, 0.5]× (−0.5, 0.5]× (−0.5, 0.5] instead of [0, Lx)× [0, Ly)× [0, Lz).
This feature simplifies especially the calculations effected by the periodic boundary
conditions. Only when calculating the WCA potential real distances need to be
employed to obtain consistent results.
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4. Computational methods

4.5. Simulation parameters
The simulation takes place in a flat, rectangular box, very similar to a system of
bacteria confined to the volume in a specimen holder (see Fig. 1.1). Therefore,
we call our system a quasi-2d system, with periodic boundary conditions in the
x-y plane and reflective walls in z-direction. The air bubble is modelled as a cylinder
in the centre stretching the whole z-direction with constant size. In Table 4.1 the
important simulation parameters are summarized as well as their typical quantities
and values in terms of MD units, respectively.

Type Description Name Typical size
numerical number of simulation steps Nsteps 105 − 107

length of time step δt 10−2

cell size during oxygen diffusion δx 1
constant container height Lz 1

particle size σ 0.1
number of particles Npart 104

potential steepness ε 10−4

force parameter γf 1
oxygen diffusion constant D 1
centre of speed distribution vc 0.2
width of speed distribution σvc 0.04
initial oxygen per cell c0 1

variable filling fraction φ 10−2 − 10−4

system size Lx, Ly 25− 250
size of air bubble rbubble 0.1Lx
noise strength η 0.1− 5
bacterial oxygen consumption κ 10−3 − 10−4

number of cells Ncells LxLy/(δx)2

number of virtual cells Ncells, virtual 0− 104

total initial oxygen content Ctotal
0 104 − 105

model turning mechanisms Harris, Anti-Harris,
Mazzag

turning probability pturn 0− 10−2

velocity dependence on oxygen none, proportional,
two-state

Table 4.1.: Parameters used during simulations
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5. Analysis

In the following we present the results of our simulations. We do not describe the
results of every parameter combination, but instead figure out which parameters are
crucial for our model and which are rather optional.
First we want to clarify our naming and plotting conventions: We denote the

position of a particle with r, measured from the centre of the system. r = |r| is
then the distance to the centre and r̂ = r/r a unit vector pointing in direction of r.
With ∆r we denote a displacement. Finally, e is the orientation of a particle and
v = ve its velocity. When referring to an absolute time t or an interval ∆t, we use
the reduced time unit as derived in Chap. 4.4.
There are several possibilities to analyse the results: Typically we use space-time

plots to show both the spatial and the temporal evolution of a quantity, e.g. of
the average filling fraction 〈φ〉. The angular brackets denote both an average over
360◦, i.e. all particles at a distance r from the center axis, and over an ensemble of
independent simulations with the same parameters. In the same manner, we plot the
evolution of the average particle speed 〈v〉 and oxygen concentration 〈c〉. Another
means of visualization of our system is to plot a top view of the particles, where
we typically restrain limit the number of particles to 2000 to allow a clear picture.
Here, quiver plots enable us to present both particle distributions as well as their
speeds and orientations.
To analyse the structure of our system in more detail, we calculate various func-

tions: The radial distribution function g(∆r), defined via the relation

g(∆r) ≡
〈

1
ρNpart

Npart∑
i=1

Npart∑
j=1,j 6=i

δ(∆r − |ri − rj|)
〉
, (5.1)

tells us how many other particles one particle on average finds in a distance ∆r. ρ
and Npart are the global particle density and number of particles, respectively, and
δ(r) is Dirac’s delta function. The angular brackets denote an ensemble average.
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5. Analysis

We also study a number of autocorrelation functions

C(f(x),∆x) = 〈f(x)f(x+ ∆x)〉
〈f(x)〉〈f(x+ ∆x)〉 , (5.2)

where x is an independent variable. Here we focus on the particle orientation e as
a function of either distance from the centre of the system r or time t. To simplify
our notation, we define the functions

Cee
1 (r,∆r) ≡ 〈e(r) · e(r + ∆r)〉 , (5.3)

Cee
2 (r,∆r) ≡

〈
(e(r) · e(r + ∆r))2

〉
, (5.4)

and

Cee
1 (t,∆t) ≡ 〈e(t) · e(t+ ∆t)〉 , (5.5)

Cee
2 (t,∆t) ≡

〈
(e(t) · e(t+ ∆t))2

〉
, (5.6)

respectively. We note that we only consider x- and y-components of the orientation
because the relevant dynamics take place only in this plane. The former two func-
tions can tell us how particles are oriented with respect to each other, whereas from
the latter we infer how rigidly a particle keeps its direction.

Another useful quantity to describe positional order in the system is the scalar
product of particle position (with respect to the centre of the system) and its orien-
tation,

Cre
1 (r, t) ≡ 〈r̂(r, t) · e(r, t)〉 (5.7)

and
Cre

2 (r, t) ≡
〈
(r̂(r, t) · e(r, t))2

〉
, (5.8)

respectively. These functions are no autocorrelation functions, but we can still use
them to describe the structure of our system: If a majority of the particles moves
towards the centre, Cre

1 will show a negative amplitude. Cre
2 will also show an

amplitude, even though it is weaker because of the square, but from this quantity
we can mainly infer if there are many particles moving perpendicular to the centre
of the system.
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5.1. Regular system

5.1. Regular system

5.1.1. Parameter choice

In the following we consider a system of swimmers with the parameters given in
Table 5.1. The plots that do not show single particles are calculated based on an
average of 100 simulations with the same parameter choice, but different initial
random seeds. We want to stress here that we have set k1 = 1, meaning that
oxygen only acts as an attractant in the system and never as a repellent. Therefore,
particles only want to escape regions with a too low oxygen concentration, but are
not affected by too high concentrations, e.g. next to the bubble.

5.1.2. Density and speed

Figure 5.1 shows space-time plots of the average local filling fraction 〈φ〉, speed 〈v〉
and oxygen concentration 〈c〉. The grey regions in Fig. 5.1(a) and (b) indicate the
space occupied by the cylinder that is not accessible to the particles and the dashed,
vertical line marks its boundary.
Filling fraction and speed remain homogeneous up to t ≈ 5000. At this time, the

oxygen concentration has decayed in the whole system and a gradient has formed
towards the bubble. A short calculation shows why this must be the case: The ini-
tial oxygen content in the system is C0 = 62500 (not considering the additional cells
in the centre). The total oxygen consumption is Cconsumed = κNpartt = 61250 for t =

Parameter Value
number of particles Npart = 12250
system size Lx = Ly = 2500σ, Lz = 10σ
filling fraction φ0 ≈ 1.06× 10−4

noise η = 5
speed dependence none (v(c) = v0)
initial oxygen concentration c0 = 1
additional cells inside bubble Ncells, virtual = 104

total initial oxygen content 72500
consumption rate κ = 10−3

aerotactic mechanism Mazzag
turning probabilities pturn = 0.00125, k1 = 1, k2 = 5
oxygen concentration thresholds cideal, min = 0.1, cbuffer, min = 0.05

Table 5.1.: Parameters used for the simulations in Chap. 5.1.1
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Figure 5.1.: Space-time plots of mean local filling fraction 〈φ〉, mean speed 〈v〉 and
mean oxygen concentration 〈c〉

5000, so the average concentration per cell is now 〈c〉 = (C0 − Cconsumed)/Ncells = 0.02.
This result does not yet consider the contribution from additional oxygen diffusing
out of the bubble, which is naturally higher for cells closer to the center. How-
ever, the value is of the same order of magnitude as the concentration thresholds
cideal, min = 0.1 and cbuffer, min = 0.05 determining particle reversals.
At t ≥ 5100 (solid, horizontal line), the filling fraction at a distance of r/σ ≈

1100±100 is already slightly higher than the average, as is confirmed in Fig. 5.2. This
region of higher density moves towards the centre of the system, further increasing
in density, until its densest part with 〈φ〉 ≈ 50φ0 reaches the bubble at t ≈ 6500
(dotted line in Fig. 5.1(a)). This happens only after some of the faster particles
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Figure 5.2.: Filling fraction profiles
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Figure 5.3.: Speed profiles

already did so, starting with t ≈ 6300. Figure 5.2 also shows us that the average
particle density behind the band falls to values below average because fast particles
have left this area. The additional minimum at 650 . r/σ . 750 is probably due
to the fact that from this region also the slightly slower particles have been able to
follow the band, leaving only particles with v ≈ 0. For t & 6800, the maximum
density decreases again and the particles spread in a larger area around the bubble.
This is due to the oxygen concentration that is now everywhere below the necessary
level for aerobic behaviour so the particles diffuse freely again, with a higher reversal
rate than in the beginning of the simulation, though.

The overall average speed for our velocity distribution p(v) from Eq. (3.3) with
vc = 0.2 and σvc = 0.04 is v̄ =

∫
vp(v)dv ≈ 0.115 = 0.575 vc. When we compare this

value to Figs. 5.1(b) and 5.3, respectively, we find that the band consists largely of
particles faster than that. In contrast to that, the speed in the dilute region behind
the band is much below average. This is especially the case for 550 . r/σ . 750,
coinciding with the low-density region visible in Fig. 5.2. For large t the speed close
to the bubble is still higher than average, but some of the fast particles have already
diffused into more distant regions of the system, as described above.

We show additionally the oxygen profiles at the specific points in time in Fig. A.1.
One can see that the homogeneous initial distribution changes into an approximately
exponential decay for 5100 ≤ t ≤ 6500, while the region where 〈c〉 = 0 approaches
the centre.
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5. Analysis

5.1.3. Positional and orientational ordering

Figures 5.4(a) and 5.5 show the temporal evolution of the radial distribution function
g(∆r). To remove confinement effects due to walls in z-direction, we normalize the
results with the initial radial distribution function at t = 0. By this means we do not
neglect the excluded volume of the bubble, though, which is especially important if
there are many particles next to it, i.e. for t & 6500. In this case, the “true” value
of g(∆r) is higher than the one we present. For t . 6000 the system is completely
homogeneous with g(∆r) ≈ 1, while for t > 6000 we can see that the particle
density inside the band is much higher than in the bulk. However, these plots tell
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5.1. Regular system

us that there is no fine structure inside the band because the only peak of g(∆r) is
at ∆r/σ ≈ 1.5.

Cre
1 (r, t) provides more information about the average particle orientation. For

t < 5000, Cre
1 (r, t) ≈ 0, which indicates that initially the particles have no preferred

direction of motion, i.e. they diffuse freely through the system. In contrast to that,
inside the band this quantity is negative. This is due to the fact that it is negative
for particles swimming towards the origin of the system (equal to the centre of
the cylinder), which is just the case for a propagating band. Comparing this to
Fig. 5.1(a), we can see that the lower boundary of this curve in r-t space indeed
coincides with the region of maximum density. Figure 5.6 shows this comparison
again: While there is no amplitude for t = 0 and t = 6800, Cre

1 6= 0 for the other
times, so the particles show directed motion towards the centre.

Cre
2 (r, t) in Fig. 5.4(c) does not show any notable feature. At first sight this seems

to be contrary to the amplitude that the non-squared average scalar product shows.
This apparent contradiction can be solved considering the fact that the square of
quantity with an absolute smaller than 1 is even smaller, and is finally averaged out
because the average is taken over many particles. However, we present this plot here
to compare it to the same function for a system with lower noise (see Chap. 5.2).
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Figure 5.6.: Profiles of position-orientation scalar product Cre
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5.1.4. Correlation functions

In Fig. 5.7 we present the spatial orientation correlation functions Cee
1 (r,∆r) and

Cee
2 (r,∆r) for specific times. The bin widths are 5.7σ for r and 0.5σ for ∆r. We

also show the average filling fraction 〈φ〉 as a color plot, i.e. single bars from Fig. 5.1
and graphs from Fig. 5.2, respectively. One should have in mind this quantity when
considering where the amplitudes in the correlation plots result from: Because the
number of particles itself does not go into the correlation functions, a value that
results from considering a region with high density might need to be interpreted
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Figure 5.7.: Spatial orientation correlation functions for different times t
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Figure 5.7.: Spatial orientation correlation functions for different times t

differently than a value in a low-density area. Therefore, it is useful to have a look
at the example quiver plots in Fig. 5.10. The grey regions in the plots indicate that
there is no data for the point in question.
We begin with t = 5100, which shows a situation shortly after the first stage

of the band has appeared (Fig. 5.7(a)). Cee
1 is distinctively different from zero

only for 1000 . r/σ . 1250, which also makes sense looking at the quiver plot in
Fig. 5.10(a): For smaller r, all particles are still in an aerobic environment, i.e. they
diffuse freely. Also it makes sense to have in mind Cre

1 (green curve in Fig. 5.6),
which indicates directed movement to the centre for this region. The same is valid
for t = 5600, displayed in Fig. 5.10(b): We find positive correlations confined to the
region 600 . r/σ . 1050, again coinciding with the corresponding curve in Fig. 5.6.
In Fig. 5.7(c) (t = 6500) the band reaches the bubble. From the observation

that Cee
1 (r/σ = 250,∆r) ≈ 0 we can conclude that the very first front of the band

is unordered because particles therein often collide with each other and with the
bubble, and are therefore not correlated to any other part of the system. This also
explains the bright line with slope ∆r/r = 1 (i.e. Cee

1 ≈ 0) in the red region because
particle orientations at these distances are uncorrelated to the orientations in the
band then, too.
The second correlation function Cee

2 never shows any notable feature. This is
surprising at first sight, but is again due to the fact that the particles are generally
aligned towards the bubble. While Cee

1 is able to detect this tendency, this is not
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the case for Cee
2 because it does not play a role here if particles move parallel or

antiparallel.
The temporal orientation correlation function Cee

1 (t,∆t) in Fig. 5.8(a) does not
show any feature until t = 5000, meaning that particles often change their orienta-
tion. Only from then up to t = 6800 we can see a small signal. This results from
the persistence of the orientation of the band particles, that now steadily approach
the bubble. Therefore it is in good agreement with Cre

1 in Fig. 5.6. In contrast to
that, Cee

2 again does not show any feature because the thermal noise makes particles
change their orientation frequently.

5.1.5. Typical trajectories and quiver plots

In Fig. 5.9 we present typical particle trajectories for the system discussed. Trajec-
tories 2, 4 and 6 stem from particles performing aerotaxis, approximately starting
with the black marker at t = 5100, and are therefore most probably part of the aero-
tactic band. Additionally, trajectory 4 is an example of a particle that eventually
diffuses back into a region farther away, thus making the band expand again into a
wider region after it comes in contact with the bubble (see Fig. 5.1 for t & 7000).
Particle 1 is much slower, but also shows directed movement towards the bubble.
In contrast to that, 3 and 5 only diffuse around their initial positions. Particle 7
also moves but does not exhibit aerotactic behaviour. In general we can see that the
trajectories are warped initially, comparable to freely diffusing molecules, while they
are almost straight and pointing towards the bubble during the aerotactic phase.
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Figure 5.9.: Typical particle trajectories

The plots in Fig. 5.10 show positions and velocities of the same 1000 randomly
picked particles (left) and the oxygen concentration in the system (right) at the four
times considered before. The additional lines in the plots mark oxygen concentration
isolines of the system (dotted: c = 0.1, dash-dotted: c = 0.05, solid: c = 0.01). In
these pictures one can again see that there are many particles with velocity close
to zero (blue dots or arrows). If an arrow is red, but apparently only very short it
means that this particle primarily moves in z-direction which we neglect otherwise.

Figure 5.10(a) shows the initial stage of the band at t = 5100: Although the system
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(a) t = 5100: early band situation

Figure 5.10.: Particle configurations for different times t
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has a cylindrical symmetry, the periodic boundary conditions deform the shape of
the isoconcentration lines. We notice that the particle density in the top left and
right corners has already visibly decreased. In contrast to that, close to the bubble
no density anomaly can be made out. Asymmetries in x- and y-direction result from
slightly inhomogeneous particle distributions at the boundary at the time the band
forms, and from the fact that we use square boxes in our diffusion scheme, which
leads to inaccuracies around the bubble. At t = 5600 (see Fig. 5.10(b)), the oxygen
isolines are almost circular. A dense region has formed, approximately between the

-1000 -500 0 500 1000
x [σ]

-1000

-500

0

500

1000

y
[σ

]

-1000 -500 0 500 1000
x [σ]

-1000

-500

0

500

1000
0.05

0.05

0.05

0.0
5

0.10

0.01 0.05

0.10

0.0 0.3 0.6 0.9 1.2 1.5
particle speed v [vc]

0.0 0.2 0.4 0.6 0.8 1.0
oxygen concentration c

(b) t = 5600: intermediate band situation
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Figure 5.10.: Particle configurations for different times t
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Figure 5.10.: Particle configurations for different times t

isolines for c = 0.1 (dotted) and c = 0.01 (solid). Figure 5.10(c) shows the situation
at t = 6500 when the band has reached the bubble and thus has reached maximum
density (see Fig. 5.1). At t = 8000 (see Fig. 5.10(d)), almost all oxygen in the system
has been consumed and some particles have already diffused back into the system.

5.1.6. Statistics of the band

In order to provide any statistics of the band, such as its width, distance from the
bubble and propagation speed, we first need to give a mathematical definition of
what we mean by “band”. We propose the following points:

• We use a particle-based ansatz, i.e. we decide individually for each particle if
it is part of the band or not. This has the advantage that we can take into
account asymmetries in the band (which would not be the case if we used an
ansatz based on e.g. the average particle density in some distance to the centre
of the system).

• A particle belonging to the aerotactic band has to have at least a certain
number of neighbours in a certain distance around it, well above the aver-
age number of neighbours. We choose twice the overall particle density in
a cylinder with a radius of 30σ around a particle, which corresponds to 12
neighbouring particles in that volume.
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In Fig. 5.11 we display the number of particles Nband in the band (red curve),
averaged over 100 runs, and their weighted average distance to the surface of the
bubble rband (blue curve). We can use the standard deviation σrband as a measure of
the width of the band, i.e. dband = 2 σrband .
We can see that already in the beginning we obtain values for both Nband and

rband, which is unexpected. These are due to random fluctuations in the particle
density, i.e. there are always some regions in the system where the particle density is
twice the global value (see also Fig. 5.12(a)). However, this is no band situation, as
becomes especially clear when one considers the fact that Nband ≈ 70, i.e. a very low
value. Only for t ≥ 4800 we can see that rband begins to decline from around 1000σ
to (824 ± 11)σ at t = 5300. At this time, Nband has already significantly grown
to 260 ± 60 particles, which is no longer due to fluctuations with high probability.
The band then approaches the center until the minimum position r/σ = 250 ± 15
at t = 6700. Between t = 5300 and t = 5900, Nband grows almost linearly up to
2450 ± 90 particles, before the growth slows down to a slower, still approximately
linear regime until Nband = 3880±60 at t ≈ 6700. After that, only few particles join
the band, while rband rises again slightly. This is due to the fact that fast particles
begin to diffuse back into the system, i.e. the dense region gets broader.
We can compare dband to its width as expected from Fig. 5.2, i.e. the region in

the plot where 〈φ〉 > 2φ0. We find that at dband(t = 5600)/σ = 45, while from that
plot we would have guessed roughly 80σ. This deviation can be explained from
inspection of Fig. 5.12(b) where we see that the band is not perfectly circular, but

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
time t

250

350

450

550

650

750

850

950

1050

po
sit

io
n
r b

an
d
[σ
]

0

600

1200

1800

2400

3000

3600

4200

4800
pa

rt
ic
le
s
in

ba
nd

N
ba

nd

Figure 5.11.: Number of particles in the band Nband and its position rband
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5.1. Regular system

generally closer to the center for x < 0 than for x > 0 in this snapshot. While we
take this into account in our calculations in this chapter, we average over circular
areas in Fig. 5.2, thus leading to a broader band.

In the interval 5200 ≤ t ≤ 6000 the band moves with almost constant average
speed vband ≈ 0.058, which is roughly 1/3 of the mean speed of the particles in it
(see Fig. 5.1(b)). This means that the particles themselves travel three times the
distance the band does and is due to their frequent reversals and the fact that they
do not necessarily swim parallel to the gradient but possibly at a slight angle to it
(compare to trajectories in Fig. 5.9).
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Figure 5.12.: Particles belonging to the band for different times t
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5. Analysis

In Fig. 5.12 we display snapshots of all particles belonging to the band with the
given definition in one run. We can see that for t = 5100 several clusters have formed
throughout the system (see Fig. 5.12(a)). This makes us see that our definition of
the band is not perfect because we would have expected a band-like structure for
this time already. However, for t = 5600 in Fig. 5.12(b) this is clearly the case,
where we can see an almost circular band covering the c = 0.05-isoline. At t = 6500
in Fig. 5.12(c) the particles form a very dense ring around the centre, which has
become broader at t = 8000 (see Fig. 5.12(d)). The main difference between the
last two snapshots is that for t = 8000 we spot more arrows pointing away from
the bubble. In all cases we can see that the plot is dominated by dark, i.e. fast
particles. On the one hand, this is related to the fact that dark arrows are longer
than bright arrows and therefore take more space. On the other hand, as we know
from Fig. 5.1(b), particles in the band possess higher speed on average, so we would
also expect to observe this phenomenon.

5.2. System with low noise

In this chapter we consider a system with the same parameters as in Table 5.1 apart
from the noise η: We set η = 0.1, i.e. we reduce the thermal noise in order to see in
how far this parameter changes the results we obtained in Chap. 5.1.1.

5.2.1. Density and speed

The space-time plot of the average filling fraction displayed in Fig. 5.13(a) looks
qualitatively the same as the one in Fig. 5.1(a): One can see that filling fraction
and speed remain homogeneous up to t ≈ 5000 (solid black line). At t = 5100, the
average local filling fraction at a distance of r/σ ≈ 1100±100 is already higher than
the average (see Fig. 5.14). However, the plots differ quantitatively in so far as this
time, the bubble is only reached by the densest part of the band at t ≈ 6800 (dotted
lines in Fig. 5.13 and the following plots), i.e. slightly later than in the system with
stronger noise. Furthermore, both the peak filling fraction when the band reaches
the bubble and the width of this dense region are higher for that case. The minimum
filling fraction is roughly 0.6 φ0, so here there is no dip down to 0.3 φ0 for r/σ ≈ 600.

The average speed, depicted in Figs. 5.13(b) and A.2, shows corresponding differ-
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5.2. System with low noise

250 500 750 1000 1250
position r [σ]

0
1000
2000
3000
4000
5000
6000
7000
8000

tim
e
t

(a)

250 500 750 1000 1250
position r [σ]

(b)

250 500 750 1000 1250
position r [σ]

0
1000
2000
3000
4000
5000
6000
7000
8000(c)

1 5 10
〈φ〉 [φ0]

0.2 0.4 0.6 0.8 1.0
〈v〉 [vc]

0.00 0.25 0.50 0.75 1.00
〈c〉
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Figure 5.14.: Filling fraction profiles for a system with η = 0.1

ences: This time we can make out a continuous transition from fast particles close
to the bubble to slow particles far away from it for all times after the appearance
of the band, whereas Figs. 5.1(b) and 5.3 show a dip for intermediate values of r.
However, we see that for t & 7200 density and average speed grow again farther
away from the bubble as particles begin to diffuse into the system. The oxygen
concentration 〈c〉, displayed in Figs. 5.13(c) and A.3, looks identical to the one we
observed in Chap. 5.1.2.
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5. Analysis

5.2.2. Positional and orientational ordering

In Fig. 5.15 we display the temporal evolution of g(∆r), Cre
1 and Cre

2 . The first
shows again no visible signal until t ≈ 6000. However, looking at Fig. 5.16 we can
see that the function at t = 5600 is already slightly larger than at t = 5100. We
see that the band is densest at t ≈ 6800 when it has reached the bubble. As could
be expected from the density plots, the peak values of g(∆r) are lower than the
corresponding peaks in Fig. 5.5 for η = 5.
Cre

1 , displayed in Figs. 5.15(b) and 5.17, looks qualitatively the same as in the
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Figure 5.15.: Space-time plots of radial distribution function g(∆r, t) and position-

orientation scalar products Cre
1/2(r, t) for a system with η = 0.1
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Figure 5.17.: Profiles of position-orientation scalar product Cre
1 (r, t) for a system

with η = 0.1

case with η = 5, even though slightly less distinct. Still we can clearly make out the
general tendency of the particles to approach the bubble for 5100 . t . 7000. This
time, also Cre

2 shows an amplitude, which is mostly below average (see Figs. 5.4(c)
and 5.18, respectively). Because we know that this quantity only becomes zero when
the scalar product is zero itself, i.e. when particles move orthogonal to their position
vector, this means that they move in circles around the centre. This is only possible
of course because we are dealing with a system with low thermal noise. Only in front
of this blue region, i.e. closer to the bubble, the particles have a tendency to swim
parallel (or antiparallel) to the oxygen gradient, rather than perpendicular to it.
This area corresponds to the first front of the band containing the fastest particles
swimming towards the centre, which becomes clear when one compares the curves
for t = 5600 in Figs. 5.18 and 5.14.

5.2.3. Correlation functions

We show the spatial particle orientation correlation functions for different times in
Fig. 5.19 with a logarithmic plot of the average density as a function of distance r
between it. Cee

1 looks very similar to the correlations discussed in Chap. 5.1.1,
including the fact that the correlation in the band vanishes when it comes close to
the bubble (see Fig. 5.22(c)).
As for Cre

2 before, Cee
2 shows an amplitude in the low-noise case, too: For t ≥ 5600
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with η = 0.1

we find several regions: The main part of the band is at r/σ ≈ 600, indicated by
the dark region in the density plot in the centre. This explains why there is positive
correlation for r/σ ≈ 600 and 0 . ∆r/σ . 75. The big, red region above is due
to a different fact: Keeping in mind Fig. 5.18 and having a look at Fig. 5.22(b)
where we plot 1000 randomly chosen particles one can see that for large values of r
many particles move perpendicular to the gradient. Therefore, these particles move
either parallel or antiparallel to each other, thus explaining positive correlation.
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Figure 5.19.: Spatial orientation correlation functions for a system with η = 0.1
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Figure 5.19.: Spatial orientation correlation functions for a system with η = 0.1

The slightly blue stripe for 200 . ∆r/σ . 250 results from this phenomenon, too,
stemming from band particles in the band oriented perpendicular to these particles.
The brighter, triangular area with increased density between r/σ ≈ 600 and r/σ ≈
800 is due to uncorrelated orientations between particles following the band and
these in front of it. The latter are also clearly the reason for the uncorrelated region
for 250 . r/σ . 550. Cee

1 does not show these features because particle orientations
are either parallel or antiparallel, thus averaging out all contributions. Instead, the
amplitude decaying with increasing r in this plot results from the general tendency
of the particles to approach the bubble and their alignment due to that.
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5. Analysis

In the next plot (Fig. 5.19(c)), the band has reached the bubble. When examining
Cee

2 one notices again the distinct, almost white line with slope one. As explained in
Chap. 5.1.4, this structure is a direct consequence of the band itself, where particles
collide and change their orientation frequently. The red region above implies that
particles in these distances are still oriented perpendicular to the gradient, so Cee

2

is still positive for them. This becomes especially clear considering the snapshot in
Fig. 5.22(c).
We display Cee

1 (t,∆t) and Cee
2 (t,∆t) in Fig. 5.20. While the former looks qual-

itatively the same as in Fig. 5.8 with the only non-zero feature appearing during
band propagation phase, this is clearly not the case for the latter: This function,
too, shows now an amplitude, which was not the case for η = 5. Because this am-
plitude is always positive we know that particles tend to keep their orientations, i.e.
collisions with other particles are rare, while they might interact with the oxygen
field and hence reverse their orientation frequently. Only during the band phase,
particles have a higher probability (and therefore frequency) to move in the same
direction as before, namely parallel to the oxygen gradient.

5.2.4. Typical trajectories and quiver plots

In Fig. 5.21 we show once more different types of particle trajectories for the system
with η = 0.1. Again, we can differentiate between several types:

• Particles 1, 3 and 10 hardly move at all.
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5.2. System with low noise

• Particles 2 and 8 perform aerotaxis towards the bubble.

• Particle 6 is also rather slow, but is clearly influenced by aerotaxis, too.

• Particles 5 and 7 have an orientation perpendicular to the oxygen gradient
and therefore do not reach the bubble.

• Particles 4 and 9 are fast particles, but they are never part of the band because
they are located at the boundary of the system when it forms. Probably the
oxygen around them is already depleted before they can align with the gradient
and hence do not follow it.

The main difference to the case where η = 5 (see Fig. 5.9) is that there are fast-
moving particles, such as number 5 and 7, that are affected by aerotaxis, but not
part of the band because they move perpendicular to the gradient. They are also the
reason why Cre

2 is lower than average in the regions behind the band (see Fig. 5.18).

In Fig. 5.22 we present again snapshots of 1000 randomly chosen particles. While
the system at t = 5100 still looks the same as the system with η = 5, there is clearly
a qualitative difference for the next two times (compare Figs. 5.22(b) and 5.22(c)
to Figs. 5.10(b) and 5.10(c)): Behind the band a region of lower density has formed
where the particles seem to move in circular trajectories around the centre. These
correspond to trajectories 5 and 7 in Fig. 5.21. Because the noise is very weak and
apart from collisions and orientation reversals due to the oxygen there is no other
way for them to change their orientation, they always stay perpendicular to the band
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Figure 5.21.: Typical particle trajectories for a system with η = 0.1
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(b) t = 5600: intermediate band situation

Figure 5.22.: Particle configurations for a system with η = 0.1

and can therefore only be part of it for a very short time period. In Fig. 5.22(d)
these particles still exist, but the picture is now again dominated by those particles
that have diffused back into the system from the vicinity of the bubble after all
oxygen has been consumed.

5.2.5. Statistics of the band

We plot the distance from the band to the centre and the number of particles in it in
Fig. 5.23. The plots look qualitatively the same to the case for η = 5 on first view,
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Figure 5.22.: Particle configurations for a system with low noise
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(d) t = 8000: situation after all oxygen has been consumed

Figure 5.22.: Particle configurations for a system with η = 0.1

but differ quantitatively: The first deviations from the initial values of Nband and
rband appear at t = 5200. Contrary to the case with stronger noise where the speed
of the band stays almost constant, this time it slows down upon approaching the
centre: Its average in the interval 5200 ≤ t ≤ 6800 is roughly 0.039, but it amounts
to 0.066 for t ≤ 5800 and only 0.023 afterwards. Also the number of particles Nband

belonging to the band is different from the calculations with η = 5: Indeed it rises
again until t = 6500, where it peaks to a value N = 2370±70 particles, but this value
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Figure 5.23.: Number of particles in the band Nband and its position rband for a
system with η = 0.1

is 1000 particles below the one in the previous case. Between t ≈ 6500 and t = 7000
Nband stagnates at this level, before it rises again slowly. This stagnation occurs
because the band is so close to the bubble that it does not pick up new particles on
the one side, while on the other side there are hardly any slower particles swimming
in direction of the band joining it from the outside. This is different from the
situation in Fig. 5.11, where many slightly slower particles were aligned parallel to
the gradient and could thus join the band while it slowed down.
The smaller number of particles in the band and its slowdown are mutually de-

pendent: Initially, Nband is lower than for the higher noise case because many fast
particles are not able to follow the band (see trajectories in Fig. 5.21). This leads
to a decreased number of particles inside it and thereby to decreased total oxygen
consumption. Therefore, the oxygen has more time to diffuse out of the bubble and
for a given time t the threshold oxygen concentration cideal, min will always be farther
away from the bubble for η = 0.1 than for η = 5.

5.2.6. Diffusion coefficients and Péclet numbers

In this section we calculate diffusion coefficients and Péclet numbers of the two
systems considered in Chaps. 5.1 and 5.2. To this end, we first plot the mean
squared displacement

MSD ≡ 〈(r(t)− r(0))2〉, (5.9)
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5.2. System with low noise

from which we extract the diffusion rate

D ≡ lim
t→∞

〈(r(t)− r(0))2〉
6t . (5.10)

This is the corresponding case in three dimensions to the one-dimensional case we
presented in Eq. (2.5). The Péclet number P is a dimensionless quantity that
denotes the ratio of advective to diffusive forces in a system [42]:

P ≡ advective propagation
diffusive propagation ≡

v̄Lz
D

. (5.11)

We display the MSD for four different situations in Fig. 5.24: Apart from the
noise η, we differentiate between two turning probabilities pturn = 1.25 × 10−3 and
pturn = 6.25× 10−3, respectively. Because we have set κ = 0, i.e. there is no oxygen
consumption in the simulation, the latter are valid throughout the whole system
and for all times. By this means we can calculate the particle diffusion rates for an
aerobic (high oxygen ⇒ pturn = 1.25× 10−3) and for an anaerobic environment (low
oxygen ⇒ pturn = 6.25× 10−3).
We can see that there is almost no difference between the different noises for

an aerobic environment. In the anaerobic case, the diffusion turns out marginally
larger for η = 0.1. This is a contrast to common systems of particles where the
mean squared displacement increases with larger noise. Because we are dealing
with self-propelled particles here this is not the case, though. As we have seen in
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Figure 5.24.: Mean squared displacements
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pturn = 1.25× 10−3 pturn = 6.25× 10−3

D: η = 0.1 1.972(13) 0.453(12)
η = 5 1.499(13) 0.424(11)

P: η = 0.1 5.83(4) 25.386(29)
η = 5 7.67(7) 27.123(23)

Table 5.2.: Diffusion coefficients D (in σ2/ time unit) and Péclet numbers P

Fig. 5.9, a larger noise leads to more warped trajectories instead of straight lines
like in Fig. 5.21. Instead of η, the determining factor for the diffusivity is pturn: The
final mean squared displacement is approximately five times higher for the aerobic
environment. This is of course due to the frequent particle reversals that prevent
them from covering large distances.
In general we can make out two linear regimes in the graphs: For t . 3, i.e. 300

time steps, we are in the ballistic regime, i.e. the propagation is dominated by self-
propulsion, and 〈(∆r)2〉 ∼ t2. A second regime with smaller slope and 〈(∆r)2〉 ∼ t

can be identified for t & 10, where reorientations due to noise or reversals become
dominant. Based on this slope, we can now make use of Eq. (2.5) to calculate the
diffusion coefficient D for the situations presented here. We note that we consider
all particles independent of their speed.
To calculate P , we insert the average speed v̄ = 1.15 σ/time unit (see Chap. 5.1.2)

in Eq. (5.11) to quantify the advective propagation in our system. The diffusive part
is described by the diffusion coefficient divided by a characteristic distance, which
we choose to be Lz. These values lead to the Péclet numbers given in Tab. 5.2.
We see that our values are O(10), which lies inbetween typical Péclet numbers for
bacteria (O(10−2 − 10−3), [44]) and these of other microorganisms (e.g. O(102) for
volvocalean green algae, [45]).

5.2.7. Intermediate noise

Figure 5.25 shows the evolution of an ensemble of 100 systems with η = 1, i.e.
intermediate noise. The solid line marks t = 5100, while the dotted line marks
t = 6500 when the band reaches the bubble, which coincides with the time for η = 5
(see Fig. 5.13). Considering plots 5.25(a), 5.25(b) and in particular Cre

2 (r, t) in
Fig. 5.26(c) we can state that the evolution of the system shows features of both
the cases for η = 5 and η = 0.1: While the local densities are comparably high
as for η = 5 and the speed profiles show the characteristic dip for t ≥ 6500 (see
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Figure 5.25.: Space-time plots of mean local filling fraction 〈φ〉, mean speed 〈v〉 and
mean oxygen concentration 〈c〉 for a system with η = 1
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Figure 5.26.: Space-time plots of radial distribution function g(∆r, t) and position-

orientation scalar products Cre
1/2(r, t) for a system with η = 1

also Figs. A.4 and A.5), we observe non-zero values in Cre
2 (r, t), even though weaker

than for η = 0.1 (see also Fig. A.6). This classification is endorsed by the values
of the temporal correlation function Cee

2 (t,∆t) in Fig. A.7, showing that on average
orientation correlations have decayed after ∆t ≈ 300.

5.3. Effect of parameter variations

5.3.1. Filling fraction

In Fig. 5.27 we display space-time plots of 〈φ〉, 〈v〉 and 〈c〉 for a system with filling
fraction φ0 = 10−2 and other parameters according to Tab. 5.1. To this end, we
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Figure 5.27.: Space-time plots of mean local filling fraction 〈φ〉, mean speed 〈v〉 and
mean oxygen concentration 〈c〉 for a system with φ0 = 10−2

reduce the size of our container to 250σ in x- and y-direction, but keep the number
of particles constant. We also keep the initial oxygen concentration per cell c0 = 1
constant and thus reduce the global oxygen content C0 by factor 100, compared to
the values in Tab. 5.1. Because the number of particles per cell is now much higher,
the oxygen is consumed much faster. However, we still see how a migrating band
evolves and travels towards the bubble. A difference to the systems considered so
far can be found in Figs. A.8 and A.9, respectively: The radial distribution function
shows a small, but visible second peak around ∆r ≈ 2.5 indicating a shell of second
next neighbours.

5.3.2. Speed rule

Figures 5.28(a) and 5.28(b) show space-time plots of 〈φ〉, 〈v〉 and 〈c〉 for a system
with the parameters from Tab. 5.1, except that we vary the speed rule: Instead
of constant speed vi = v0,i we choose concentration-dependent speeds according to
Eqs. (3.5) and (3.6), respectively. We can see the behaviour is qualitatively the same
as with independent particle speeds. However, because the average particle speed
is higher now, the band propagates much faster and reaches the bubble already at
t ≈ 6000 and t ≈ 6300, respectively. Also, especially for the two-state speed model
in Fig. 5.28(a), the peak density is higher than for constant speed because more
particles are able to follow the band. This impression is confirmed by the plot of
g(∆r) in Fig. A.10(a).
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(a) Two-state speed model
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Figure 5.28.: Space-time plots of mean local filling fraction 〈φ〉, mean speed 〈v〉 and
mean oxygen concentration 〈c〉 for systems with other speed rules

5.3.3. Consumption rate

In Fig. 5.29 we display space-time plots of 〈φ〉, 〈v〉 and 〈c〉 for a system with a
consumption rate κ = 10−4, i.e. one order of magnitude smaller than in Chap. 5.1.
We observe that the band forms only after t ≥ 50000, i.e. ten times later than for
κ = 10−3. This is the expected order of magnitude, based on the total oxygen
Cconsumed = κNpartt consumed so far (see corresponding calculations in Chap. 5.1.2).
Another qualitative difference appears for t & 57000: We can see that some of the
fast particles form a second band that travels back into the system. This is an
artifact of the parameter choice: Because the amount of oxygen diffusing out of
the bubble is larger than the amount the particles can consume, the concentration
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Figure 5.29.: Space-time plots of mean local filling fraction 〈φ〉, mean speed 〈v〉 and
mean oxygen concentration 〈c〉 for a system with κ = 10−4

behind the band is not necessarily zero as in the cases considered so far. This
observation coincides with the plot Cre

1 (r, t) in Fig. A.11, which shows us even two
regions where this quantity is > 0, i.e. regions where particles move away from the
centre.

5.3.4. Oxygen in the centre

Figure 5.30 shows space-time plots for a system with the same parameters as in
Table 5.1, except that we set the number of virtual boxes in the bubble Ncells, virtual

to 0. This means that the bubble stores much less oxygen now and that, hence, the
concentration gradient it establishes will turn out weaker.
The first consequence of this variation is that the oxygen in the system is already
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Figure 5.30.: Space-time plots of mean local filling fraction 〈φ〉, mean speed 〈v〉 and
mean oxygen concentration 〈c〉 for a system with Nboxes, virtual = 0

58



5.3. Effect of parameter variations

depleted for t ≈ 5500 and no longer for t ≈ 8500, because also Ctotal
0 is lower than

in Chap. 5.1.2. We can see that a region marginally denser than the average forms
at t ≈ 5000, so slightly earlier than in the cases considered so far. This is because
the concentration in the whole system, including the outer regions where the band
begins to form, is now lower than in the case with additional oxygen that comes from
the bubble and diffuses into the system, i.e. the threshold concentration is reached
earlier. On the other hand, the peak density in the band is comparably low. A reason
for this behaviour is that the amount of oxygen coming from the bubble is too little
to be noticed by all particles because it is consumed by other particles before. The
immediate effect of the virtual boxes on the oxygen concentration and its gradient
can be clearly seen comparing the oxygen concentration profiles in Figs. A.13 to
those for the case Ncells, virtual = 104 in Fig. A.1.

5.3.5. Turning probability

In this section we discuss the effect of varying the turning probability pturn in the
Mazzag model, covering a range of five orders of magnitude. In doing so, we only
modify the basic turning probability, but keep k1 = 1 and k2 = 5 constant, i.e. the
factors determining the difference between optimal, too low and too high oxygen
concentrations (see Tab. 5.1). The results present the average over 20 runs with each
parameter set. Figure 5.31 shows space-time plots of average filling fractions, speeds
and oxygen concentrations for 1.25 × 10−6 ≤ pturn ≤ 1.25 × 10−2. We can see that
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(a) pturn = 1.25× 10−2

Figure 5.31.: Space-time plots of mean local filling fraction 〈φ〉, mean speed 〈v〉 and
mean oxygen concentration 〈c〉 for systems with varying pturn
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5. Analysis

there are only qualitative differences between the first two values: For the biggest
probability in Fig. 5.31(a) the band is slightly more distinct and the spreading after
reaching the bubble turns out weaker than for 1.25 × 10−3 in Fig. 5.31(b), which
corresponds to the parameters discussed in Chap. 5.1.1. The differences to the next
probability are much bigger: The band is still visible for pturn = 1.25 × 10−4 (see
Fig. 5.31(c)), but it is much less pronounced with peak filling fractions of 18φ0 at
t = 7400. The dip in the speed plot for 600 ≤ r/σ ≤ 750 has also vanished in
favour of a low-speed plateau. For pturn = 1.25×10−5, displayed in Fig. 5.31(d), the
band is hardly visible any longer and the peak filling fraction is only 1.8φ0, while
for the smallest value it has vanished completely (see Fig. 5.31(e)). Two more facts
can be noticed: On the one hand, the oxygen consumption becomes increasingly
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(b) pturn = 1.25× 10−3
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Figure 5.31.: Space-time plots of mean local filling fraction 〈φ〉, mean speed 〈v〉 and
mean oxygen concentration 〈c〉 for systems with varying pturn
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(d) pturn = 1.25× 10−5
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Figure 5.31.: Space-time plots of mean local filling fraction 〈φ〉, mean speed 〈v〉 and
mean oxygen concentration 〈c〉 for systems with varying pturn

slower. This is due to the fact that the oxygen diffusion out of the bubble slows
down because the concentration gradient in the system reduces when no band forms.
As a direct consequence, the band itself decelerates: Because fewer particles are part
of it, consumption inside it is smaller, which is why it contacts the bubble at later
times for smaller pturn. The same gradual decline of all features with declining pturn
is also visible for g(∆r) and Cre

1 (r, t) that we display in Fig. A.14.

5.3.6. Aerotactic mechanism

Figures 5.32(a) and 5.32(b) show space-time plots of the evolution of a system with
the Harris rule (Eq. (3.12)) and the Anti-Harris rule (Eq. (3.13)) applied as aerotactic

61



5. Analysis

mechanisms, i.e. as rules determining pturn. We observe that neither of them leads
to the formation of a dense area or, let alone, a migrating band. The same applies
to the correlation functions displayed in Fig. A.15. This is clearly due to the fact the
Harris rule as used here stems from an anaerobic scenario where bacteria perform
electrokinesis rather than aerotaxis [30]. However, we will see in Chap. 5.4.2 that
with slight further modifications of our model we can reproduce behaviour similar
to that in the reference.
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(a) Harris reversal rule
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Figure 5.32.: Space-time plots of mean local filling fraction 〈φ〉, mean speed 〈v〉
and mean oxygen concentration 〈c〉 for systems with other aerotactic
mechanisms
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5.4. Extension to different models

5.4.1. Steady oxygen inflow into the bubble

In this chapter we discuss a system that has a steady inflow of oxygen into the bub-
ble, i.e. a two-dimensional version of the one-dimensional system in the experiment
displayed in Fig. 2.4. To this end, we set c0 to a constant value in the whole sys-
tem initially like in Chap. 5.1, but while the oxygen is consumed in the system, its
concentration stays constant inside the bubble. To accelerate the evolution of the
system, we set κ = 3×10−3. Additionally we account for the toxicity of oxygen now
by setting k1 = k2 = 5, which means that particles want to escape regions with both
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Figure 5.33.: Space-time plots of mean local filling fraction 〈φ〉, mean speed 〈v〉 and
mean oxygen concentration 〈c〉 for systems with steady oxygen supply
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too high and too low oxygen now. Apart from these changes, we use the parameters
given in Tab. 5.1.
The temporal evolution of the system for c0 = 1 and c0 = 5 is displayed in

Fig. 5.33. Just as in Chap. 5.1 we can see that a dense region forms and approaches
the centre. However, this time the propagation stops and the system seems to settle
into a steady state. This behaviour is particularly visible for c0 = 5 in Fig. 5.33(b).
The correlation functions in Fig. A.16 do not show further surprising results: From

g(∆r) we can learn once more that the band is denser for c0 = 1 than for c0 = 5.
Cre

1 (r, t) tells us three things: Firstly, the initial, migrating phase is marked by a
negative amplitude, just as for systems without constant oxygen supply. Secondly,
the slow particles behind the band keep their tendency to approach the band, indi-
cated by the large, blue regions. Thirdly, one could have supposed that a migrating
band forms also for too high concentrations, moving away from the bubble. How-
ever, this is not the case because the threshold concentration between too high and
ideal oxygen concentration is never reached in this region, contrasting the situation
for larger r.

5.4.2. Harris model

In this chapter we mimic a situation similar to the one described in [30]: There, the
authors study the anaerobic behaviour of S.o. in presence of an insoluble electron
acceptor (IEA). They conclude that only after a bacterium has contacted the IEA
its motility undergoes changes in both speed and turning frequency, i.e. both are
increased. This behaviour will finally make the particles congregate close the IEA,
as is also depicted in Fig. 2.6.
To approximate this configuration as closely as possible, we vary our model in the

following way: We consider again a system with the Harris reversal rule (Eq. (3.12)),
but also make use of Eq. (3.6) as a speed rule, i.e. the speed is the base speed
plus an additional term proportional to the oxygen concentration. Another major
modification is that these two changes in motility only take effect after a particle has
contacted the bubble. By this means of these variations we have almost reproduced
the anaerobic conditions described above.
Figures 5.34(a) and 5.34(b) present space-time plots of 〈φ〉, 〈v〉 and 〈c〉 for two

systems with these rules, averaged over 20 simulations. Additionally, in Fig. 5.34(a)
pturn is ten times higher than in Fig. 5.34(b). We can see that we do not obtain a
propagating band. However, we can observe that the particles congregate next to
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the bubble in the first case, while there is no feature visible in the second. This is
a behaviour very similar to that described in [30].
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Figure 5.34.: Space-time plots of mean local filling fraction 〈φ〉, mean speed 〈v〉 and
mean oxygen concentration 〈c〉 for systems following the Harris model
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6. Summary and outlook

In the following we want to summarise our findings from the previous chapters.
Also, we want to point out how our model can be improved and which kind of
future studies are possible in this area, if not necessary.

6.1. Summary

We have shown that our model, based on a MD simulation of self-propelled parti-
cles interacting with an oxygen field, is able to reproduce the aerobic behaviour of
bacteria, such as Shewanella oneidensis: If the oxygen concentration in the system
sinks locally below a threshold value, the formation of a migrating aerotactic band
following a concentration gradient in the system can be observed (see Chap. 5.1).
The formation of the aerotactic band is robust under changes of many of the

parameters of the system: We have shown that variations of the thermal noise η (see
Chap. 5.2), the filling fraction φ (see Chap. 5.3.1), the functional dependence of the
speed on the local concentration (see Chap. 5.3.2) or the bacterial consumption rate
κ (see Chap. 5.3.3) do not inhibit band formation. This is only partly true for other
parameters, such as the amount of oxygen stored in the bubble (see Chap. 5.3.4)
and the frequency of orientation reversals fturn and the underlying probability pturn
(up to a certain value, see Chap. 5.3.5), respectively: Upon decrease, these lead to
a drastic reduction or even disappearance of the effects observed. However, even
more important than the magnitude of the turning probability is the underlying
model: We have seen that a band only forms if we choose pturn according to the
Mazzag motility rule (see Chap. 5.3.6). The key difference between this rule and
the other two is that it includes buffer regions where pturn does not only depend on
the local concentration, but on the orientation of a particle, too. By this means the
Mazzag rule is also the only mechanism tested here that actually accounts for tactic
behaviour, while the other two depict kinetic scenarios (see Chap. 2.1.3).
The quantities we use to analyse our system show corresponding results: While
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we do not see any particular features in them during the regular, initial diffusion
phase, all of them show amplitudes during the propagation phase of the band. This
includes both the single-particle functions Cee

1 (t,∆t) and Cre
1 (r, t) and the many-

particle quantities Cee
1 (r,∆r) and g(∆r): The latter shows that the band is indeed

a very dense region constantly attracting more particles. We would have expected
to see a more distinct structure where one can make out different neighbour shells
like in a fluid, but apart from next neighbours this is not the case. This is due
to the comparably low filling fraction we use in our simulations, as can be seen
from the weak second peaks for φ0 = 10−2 in Fig. A.9. The correlation functions
Cee

1 (t,∆t) and Cee
1 (r,∆r) give strong evidence for temporal and spatial correlations

during the time period and at the position of the band. The scalar product of
orientation and position Cre

1 (r, t) confirms these observations. While the former
quantities are also easily accessible in an experiment, this is not the case for the
latter: In order to calculate this quantity from video data, one needs to define
positions and orientations with respect to the oxygen source in the system, which
probably has a more complex geometry than our cylindrical air bubble.
The “second” correlation functions, i.e. Cee

2 (r,∆r), Cee
2 (t,∆t) and Cre

2 (r, t), show
features only if the noise η is sufficiently low: While there is no amplitude for η = 5,
this is the case for η = 1 and, even more pronounced, for η = 0.1. On the one hand,
these additional correlations are due to particles that move perpendicular to the
oxygen gradient; on the other hand, because collisions are rare in out dilute system,
particles keep their orientation if not rotated due to noise, which is the reason for
the amplitudes Cee

2 (t,∆t) shows.

6.2. Comparison with analytical predictions

In Chap. 2.2.6 we have proven that for a reasonable, space-dependent diffusivity the
theoretical solution to the diffusion equation is in fact a peaked function, similar to
the distribution we observe in our simulations. The assumption that the diffusivity
is high in an aerobic region, while it is low in an anaerobic environment is confirmed
by the actual diffusivities measured in the system (see Chap. 5.2.6). We would have
expected this agreement because the diffusion equation is equivalent to a description
by means of a Langevin equation, which is at the core of our model.
Another analytical solution for the steady-state density of an aerotactic band can

be found in [40]: For a one-dimensional system with constant oxygen supply at the
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meniscus, the authors propose a function consisting of six intervals in which the
oxygen concentration is equal to a particular value. The distance of the band from
the bubble and its width can then be calculated from the input parameters such as
the oxygen concentration at the meniscus and the bacterial consumption rate.

6.3. Comparison with literature values

The statistics of our band are at least qualitatively in accordance with the exper-
imental results: From Fig. 2.4 we can learn that the distance between band and
meniscus rises with increasing oxygen concentration at the latter. We can confirm
this in Chap. 5.4.1. The same applies to the width of the band, as is observed by the
authors of [40] and [43], respectively, in experiments with Azospirillum brasilense.
However, actual values differ strongly, as the band appears at a distance of about
2 mm, which is much farther away than in our system, where it settles close to the
bubble. The width of the band is smaller than expected, too, especially for low
c0 (O(50µm) in our simulations versus O(200µm) in experiments). These contra-
dictions indicate that some of our model parameters are not chosen appropriately,
presumably the consumption rate κ.
When we compare the diffusion constants we determined in Chap. 5.2.6 to the

literature values for V. alginolyticus, we find a difference of one order of magnitude:
While for the latter it has been found that D = 210µm2 s−1 (see Chap. 2.2.2), our
particles diffuse with D ≈ 1 σ2/time unit ≡ 20µm2 s−1. This is partly due to the
fact that we have taken into consideration all particles in our system, independent of
their speed. If we constrain the calculation of D to v0 > vc/2, i.e. we consider only
motile particles, we obtain values roughly twice as large as before. Another reason
for the weak diffusivity is the high reversal probability: While our particles turn on
average 0.125 (0.625) times per time unit in the aerobic (anaerobic) regime, i.e. 2.5
(12.5) times per second, Mazzag suggests to use a reversal frequency of 0.1 (0.5)
times per second. Dimming that quantity would hence lead to a further increase of
D, thus approximately yielding its expected order of magnitude.
We have shown that the Péclet number for our system is O(10) and depends

mainly on the turning frequency, not the noise. This tells us that active propulsion
is more important than diffusion for the locomotion of the particles, especially in an
anaerobic environment. The value of P does not depend on the choice of particles
like D does, because both v̄ and D grow about the same size when we consider only
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fast particles and thus do not change P according to Eq. (5.11). With this order of
magnitude, our value is larger than often found for single bacteria or cyanobacteria
(O(10−2 − 10−3), [44]), but smaller than for other flagellated microorganisms, such
as certain volvocalean green algae (O(102), [45]).

6.4. Outlook and possible improvements

So far we have only adapted some of the model parameters to real quantities mea-
sured in an experiment. To be able to transfer our results to the experimental
outcomes, this needs to happen with as many parameters as possible. At the time
being, we do not know about some of them, so instead we choose suitable values
that facilitate the evolution of the system as expected. This problem applies espe-
cially to quantities intrinsic to the bacteria, e.g. their actual turning frequencies and
oxygen consumption rates depending on the aerobicity of the environment. Apart
from these simple parameters, it also concerns the models we decided to use in our
simulations, such as the aerotactic mechanism, the initial speed distribution or the
dependence of the speed on the oxygen concentration. We are confident to infer
some of the dynamic quantities in question from a particle tracking system that can
be used to analyse data from a real colony of S.o.
In order to systematically analyse higher filling fractions it makes sense not only

to decrease the size of the system, but also to increase the number of particles Npart.
So far this is hardly possible because it drastically prolongs the time needed for a
single simulation. In Chap. 5.3.3 we have seen that too low a number of particles
additionally leads to unreasonable results when a second band arises that propagates
away from the bubble. This disadvantage can be overcome by parallelising the code
or reimplementing it as a version for GPU systems instead of CPU systems.
An advantage of our model is that it is very general: While most of our studies deal

with a system with finite amount of oxygen, we have shown that we are also able to
reproduce a situation where oxygen flows steadily into the system (see Chap. 5.4.1).
Furthermore, we have tried to imitate the experimental setup described in [29] in
Chap. 5.4.2 and are able to capture some of the features observed: The authors
describe an anaerobic situation where bacteria are located in vicinity to an insoluble
electron acceptor and behave kinetic instead of tactic, i.e. without a concentration
gradient, but they still vary their motility after contacting the acceptor, finally
leading to a congregation around the IEA. Our work focusses clearly on the aerobic
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6. Summary and outlook

behaviour of S.o.; however, we describe in Chap. 2 in how far their behaviour under
anaerobic conditions is special and why it deserves attention. Hence, it is worthwhile
to follow and study these characteristic traits in a separate project.
Apart from these two model variations, we can go even further: Even if this work

is motivated by and based on observations made on S.o., our code does not rely on
a feature unique to these bacteria. As long as we deal with self-propelled particles
performing aerotaxis we can adapt the parameters to make the model fit the species
in question. Furthermore, by this means we can also find out if the dynamics of
the latter can be reproduced by our code correctly or if there are other features not
included in the model.
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A. Appendix: Additional plots
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Figure A.1.: Oxygen profiles for the regular system
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A. Appendix: Additional plots

Low noise
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Figure A.2.: Speed profiles for a system with η = 0.1
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Figure A.3.: Oxygen profiles for a system with η = 0.1
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Intermediate noise
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Figure A.4.: Filling fraction profiles for a system with η = 1
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Figure A.5.: Speed profiles for a system with η = 1
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A. Appendix: Additional plots
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Figure A.6.: Profiles of position-orientation scalar product Cre
2 (r, t) for a system with

η = 1
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Figure A.7.: Temporal orientation correlation functions for a system with η = 1
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Effects of parameter variations
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Figure A.8.: Space-time plots of radial distribution function g(∆r, t) and position-

orientation scalar products Cre
1/2(r, t) for a system with φ0 = 10−2
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A. Appendix: Additional plots
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(a) Two-state speed model
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Figure A.10.: Space-time plots of radial distribution function g(∆r, t) and position-
orientation scalar products Cre

1/2(r, t) for systems with other speed rules
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Figure A.11.: Space-time plots of radial distribution function g(∆r, t) and position-

orientation scalar products Cre
1/2(r, t) for a system with κ = 10−4
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A. Appendix: Additional plots
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Figure A.13.: Oxygen concentration profiles for a system with Nboxes, virtual = 0
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Figure A.14.: Space-time plots of radial distribution function g(∆r, t) and position-
orientation scalar products Cre

1/2(r, t) for systems with varying pturn
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(b) pturn = 1.25× 10−3
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Figure A.14.: Space-time plots of radial distribution function g(∆r, t) and position-
orientation scalar products Cre

1/2(r, t) for systems with varying pturn
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A. Appendix: Additional plots
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(d) pturn = 1.25× 10−5
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Figure A.14.: Space-time plots of radial distribution function g(∆r, t) and position-
orientation scalar products Cre

1/2(r, t) for systems with varying pturn
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(a) Harris reversal rule
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(b) Anti-Harris reversal rule

Figure A.15.: Space-time plots of radial distribution function g(∆r, t) and position-
orientation scalar products Cre

1/2(r, t) for systems with other aerotactic
mechanisms
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A. Appendix: Additional plots

Extension to different models

0 2 4 6 8 10
particle distance ∆r [σ]

0
5000

10000
15000
20000
25000
30000
35000

tim
e
t

250 500 750 1000 1250
position r [σ]

250 500 750 1000 1250
position r [σ]

0
5000
10000
15000
20000
25000
30000
35000

100 101 102

g(∆r, t)
-0.50 -0.25 0.00 0.25 0.50

Cre
1 (r, t)

0.40 0.45 0.50 0.55 0.60
Cre

2 (r, t)

(a) c0 = 1

0 2 4 6 8 10
particle distance ∆r [σ]

0
5000

10000
15000
20000
25000
30000
35000
40000

tim
e
t

250 500 750 1000 1250
position r [σ]

250 500 750 1000 1250
position r [σ]

0
5000
10000
15000
20000
25000
30000
35000
40000

100 101 102

g(∆r, t)
-0.50 -0.25 0.00 0.25 0.50

Cre
1 (r, t)

0.40 0.45 0.50 0.55 0.60
Cre

2 (r, t)

(b) c0 = 5

Figure A.16.: Space-time plots of radial distribution function g(∆r, t) and position-
orientation scalar products Cre

1/2(r, t) for systems with steady oxygen
supply
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