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The ratio of heat and salt flux is employed in ice–ocean models to represent ice–ocean interactions.
In this study, this flux ratio is determined from direct numerical simulations of free convection beneath
a melting, horizontal, smooth ice–ocean interface. We find that the flux ratio at the interface is
three times as large as previously assessed based on turbulent-flux measurements in the field. As a
consequence, interface salinities and melt rates are overestimated by up to 40% if they are based on
the three–equation formulation. We also find that the interface flux ratio depends only very weakly on
the far-field conditions of the flow. Lastly, our simulations indicate that estimates of the interface flux
ratio based on direct measurements of the turbulent fluxes will be difficult because at the interface
the diffusivities alone determine the mixing and the flux ratio varies with depth. As an alternative,
we present a consistent evaluation of the flux ratio based on the total heat and salt fluxes across the
boundary layer and reconcile the determinations of the ice–ocean interface conditions.

1 Introduction

The ice–ocean heat flux is a diffusive flux. At the ice–
ocean interface, no-slip and no-penetration conditions
prohibit any turbulent contribution to the exchange
of mass, momentum and energy and only diffusive
exchange remains. Nonetheless, it is common practice
to measure and model the ice–ocean fluxes based on
only turbulent fluxes [McPhee et al., 2008, Sirevaag,
2009]. Here, we present a consistent evaluation of the
molecular and turbulent contributions to ice–ocean
fluxes and their implication for ice–ocean models.

Most ice–ocean models conform to the so-called
three-equation formulation of the melt rate [Holland
and Jenkins, 1999]. This formulation improves the
ice–ocean heat flux significantly over other simplified
formulations [Schmidt et al., 2004]. It requires, how-
ever, knowledge of the ratio between the fluxes of heat
and salt at the interface. This flux ratio remains un-
certain. It has been assessed by various means—from
laboratory experiments [Martin and Kauffman, 1977]
over modeling work [Holland and Jenkins, 1999, Notz
et al., 2003] to field observations [Sirevaag, 2009]. The
interface flux ratio, normalised by far-field conditions,
has been estimated to range between 20 to 90. As
demonstrated below, this uncertainty in the flux ra-
tio can cause an uncertainty in modeled heat fluxes of
up to 40%. Modelled ice–ocean heat fluxes are part
of global circulation models and local ice–ocean in-

teraction models, both which desire the fluxes to be
physically correct.

In this work, we strive to settle the debate on the
one flux ratio. First, we introduce the formalism that
is generally employed to determine the interface con-
ditions and the heat flux from the flux ratio. Along we
present its historic context (second section). Then,
we explain the details of our setup and method: a di-
rect numerical simulation of free convection beneath a
melting, horizontal, smooth ice–ocean interface in the
semiconvective regime (third and fourth section). We
employ the simulation in the following to separately
investigate the molecular and the turbulent contribu-
tion to the vertical structure of the flux ratio (fifth
section). This investigation shows that all of the for-
mer assessed flux ratios may be reasonable, and we
explain the rationale behind this. Finally, we discuss
the interface value of the flux ratio which determines
the ice–ocean interface conditions and hence the melt
rates (sixth section). We find that the interface flux
ratio is almost independent of far-field conditions and
three times as large as the value previously estimated
from field measurements. As a result, heat-flux pa-
rameterisations based on the three-equation formula-
tion can lead to melt rates over-estimated by up to
40%.
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2 Formalism

The ratio between heat flux and salt flux is a relevant
quantity of the ice–ocean formalism, because it deter-
mines the interface values of temperature and salinity,
Ti and Si. This is well illustrated by the boundary
conditions of an ice–ocean interface,

Fh,i = ρicew0L (1a)

Fs,i = ρicew0Si (1b)

Ti = −mSi: (1c)

Because the ice of density ρice can only dissolve and
melt at one particular rate, w0, the interface salinity
must depend on the heat flux, Fh, and the salt flux,
Fs, according to Eq. (1a) and Eq. (1b) as Si =
LFs,i/Fh,i. The index i denotes interface values and
L is the latent heat of fusion. From the interface
salinity, the interface temperature follows with Eq.
(1c), where m describes the freezing point relation.
The challenging part about determining the interface
conditions, Ti and Si, is a proper representation of
the fluxes, Fs and Fh, or their ratio.

Josberger [1983] applies both a bulk description
and a detailed description based on insights by
McPhee [1981] to represent these fluxes. From both
descriptions he finds that the interface conditions de-
pend on the far-field conditions and on only one prop-
erty relating to the flow beneath the ice: the non-
dimensional ratio of the heat flux to the salt flux at
the interface,

γi =
Fh,i/ [cp (T∞ − Ti)]

Fs,i/ (S∞ − Si)
, (2a)

where cp is the specific heat capacity of water. This
ratio describes how effectively turbulence mixes heat
compared to salt near the interface. We reproduce
the resulting interface salinity from Josberger’s three–
equation formulation from Eq. (1) with the com-
monly used bulk flux parameterisations,

Fh,i = ρwatercpαhu∗0 (T∞ − Ti) and (3a)

Fs,i = ρwater αsu∗0 (S∞ − Si) , (3b)

which are based on the bulk heat exchange coefficient,
αh, the bulk salt exchange coefficient, αs, and the fric-
tion velocity u∗0 [Notz et al., 2003]. By substituting
Eq. (3) into Eq. (1), one obtains

mS2
i + (T∞ + ∆Tγ)Si −∆TγS∞ = 0 (4a)

∆Tγ = Lc−1
p γ−1

bulk. (4b)

As found by Josberger [1983], γbulk = αh/αs is the
one flow property that determines the interface condi-
tions from the far-field temperature, T∞, and far-field
salinity, S∞.

Holland and Jenkins [1999] find from different mod-
eling approaches that γbulk > 1 and almost indepen-
dent of the far-field mean shear velocity. The different

model approaches that they employ yield flux ratios
between 25 and 200 according to their Figure 4.

Notz et al. [2003] take on the determination of
γbulk from field measurements. By modeling obser-
vations of false-bottom persistence and migration un-
der sea ice, they indirectly show that γbulk needs to
be substantially different from unity. They adapt
results of laboratory studies of fluid heat and mass
exchange across hydraulically rough surfaces to de-
scribe the dependence of the bulk exchange coeffi-
cients on the molecular diffusivities [McPhee et al.,
1987]. Within the range they estimate for γbulk

[35 < γbulk < 70 [Owen and Thomson, 1963, Ya-
glom and Kader, 1974]], they find that a value on the
higher end of the range fits their data better.

In sea-ice literature, the bulk exchange coefficients
are generally referred to as interface exchange coeffi-
cients or turbulent exchange coefficients (not to be
confused with eddy diffusivity, which is commonly
referred to as turbulent exchange coefficient). The
interface fluxes of heat and salt are further approxi-
mated by the turbulent fluxes in a certain distance
from the interface. In these lines, Sirevaag [2009]
follows up on the efforts of Notz et al. [2003] to
determine a turbulent flux ratio, γturb, from direct
field measurements at a certain distance from the in-
terface. From turbulent-instrument-cluster measure-
ments 1 m beneath the ice–ocean interface in the area
of Whaler’s Bay, he determines average temperature,
salinity, friction velocity and turbulent fluxes of heat
and salt. From his results (αh = 1.31 × 10−2, αs =
4.0 × 10−4) he estimates γturb ≈ 33 (or γturb ≈ 23
if only data with small mean-temperature changes is
accounted for), a value that lies on the opposing end
of the range and value given by Notz et al. [2003].

As opposed to the above mentioned application of
the bulk parameterisation [see Eq. (3)] and turbulent-
flux measurements, Gade [1993] applies the diffusive
flux definitions,

Fh,i = ρwatercpκt ∂zT |zi , and (5a)

Fs,i = ρwater κs ∂zS|zi , (5b)

to determine the interface conditions. In line with
his procedure, one introduces the gradient thickness
of temperature, δt = (T∞ − Ti) / ∂zT |zi , and salin-
ity analogously, and ends up with Eq. (4), but with
∆Tγ = Lc−1

p γ−1
mol, where γmol = Le δs/δt is a molecu-

lar flux ratio, Le = κt/κs is the Lewis number, and zi

is the position of the ice–ocean interface. He finds a
substantially different flux ratio. Based on the exper-
imental work by Martin and Kauffman [1977], Gade
[1993] determines the boundary thickness ratio,

R = δt/δs, (6)

to 2.3 which yields γmol = 88.9, for κt = 1.39 ×
10−7 m2 s and κs = 6.8 × 10−10 m2 s. We stress
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the difference between the ratio of exchange coeffi-
cients that have been determined so far: γmol = 88.9
and γturb ≈ 33 (from above).

The uncertainty in the flux ratio leads to consider-
able uncertainty in the determination of the interface
conditions. Whether γi equals γturb (≈ 30) [Sirevaag,
2009] or γmol (≈ 90) [Gade, 1993] leads to a different
determination of the interface salinity according to
Eq. (4) (see Figure 1a). The temperature difference
between far field and interface that follows from the
different interface salinities is significant. That im-
plies an overestimation of the melt rate by up to 40%
with the value of γturb ≈ 30 as compared to γmol ≈ 90
(see Figure 1b).

3 Setup

A mass of solid ice rests on top of a body of sea water
of fixed uniform temperature T = T∞ and salinity
S = S∞. Ice and water form a horizontal interface.
The ice is isothermal at the freezing temperature of
the interface, isohaline at the interface salinity and
has a smooth surface. The ice imposes the boundary
conditions given in Eq. (1) on the temperature and
salinity fields and no-slip, no-penetration boundary
conditions on the flow field. We consider the ice–
ocean interface together with the sea-water body as
our system of interest.

3.1 The Evolution of the System

This system is purely buoyancy driven and evolves
in space and time according to the evolution equa-
tions of mass, momentum, internal-energy and solute.
With the velocity field v (x, t), the temperature field
T (x, t), the salinity field S (x, t), the spatial coordi-
nate x = x1e1 + x2e2 − ze3, with ei = εijkejek, and
with time t, these evolution equations are

∂jυj = 0, (7a)

∂tυi = −υj∂jυi + ν∂2
j υi − ∂ip+ b(S, T ) δi3, (7b)

∂tT = −υj∂jT + κt∂
2
jT , (7c)

∂tS = −υj∂jS + κs∂
2
jS. (7d)

The equations are given in the Boussinesq approxi-
mation. ν is the kinematic viscosity, κt the thermal
diffusivity, κs the diffusivity of salinity, p the modified
kinematic pressure, ∂t the temporal derivative and ∂i
is the spatial derivative in direction of ei.

The buoyancy, b, depends on both the evolution
of temperature and salinity. We follow previous nu-
merical work on different double-diffusive systems of
Carpenter et al. [2012], Gargett et al. [2003], Kimura
and Smyth [2007], Nagashima et al. [1997], Zweigle
[2011] and approximate the buoyancy to first order

by

b(S, T ) =
g

ρwater
[β (S∞ − S)− α (T∞ − T )] , (8)

g is earth’s gravitational acceleration, α is the ther-
mal expansion coefficient, β is the haline contraction
coefficient, and ρwater is the water density, and the
subscript ∞ denotes the values far away from the
interface—in the far field. The salinity component
of buoyancy stabilises the water column for values
S < S∞, the temperature component destabilises the
water column for values T < T∞. From the interplay
of both salinity and temperature at different diffusivi-
ties follows a buoyancy-reversal instability that forces
the system.

For sufficiently low viscosity the system becomes
turbulent, decorrelates from its initial state, and
solely depends on the set of control parameters
{ν, κt, κs, g ρ

−1
∞ α (T∞ − Ti) , g ρ

−1
∞ β (S∞ − Si)}.

Dimensional analysis provides the set of non-
dimensional, independent control parameters
{Pr, Le, Rsρ}, with Prandtl number Pr = ν/κt,
Lewis number Le = κt/κs, and density ratio

Rsρ =
β (S∞ − Si)

α (T∞ − Ti)
(9)

[Turner, 1974]. For any given fluid of fixed Pr and
fixed Le, any flow property does only depend on the
governing parameter Rsρ. R

s
ρ quantifies the stabilising

effect of the salinity component compared to the effect
of the destabilising temperature component. Eq. (8)
is then written as

b

|bm|
= Rsρ σ − θ, (10)

with the minimum buoyancy bm = b(S∞, Ti), the nor-
malised salinity σ, and the normalised temperature θ,

θ =
T∞ − T
T∞ − Ti

, (11a)

σ =
S∞ − S
S∞ − Si

. (11b)

We assess the range of validity of Eq. (21) from a
parametric (S, T ) plot that we compare to the proper
formulation by Sharqawy et al. [2010] (not shown).
For Rsρ > 5, Eq. (21) becomes increasingly good
an approximation with absolute buoyancy deviations
less then 0.20 |bm|.

The fully developed turbulent system is statisti-
cally homogeneous in horizontal directions. We de-
note horizontally averaged quantities by 〈· 〉 and fluc-
tuations around that mean by ·′. Horizontally av-
eraged statistics only depend on {Rsρ; z, t} with
z = − ~x · ê3 and the origin of ~x chosen such that
z gives the distance from the interface.

The flow develops freely into the far field (see Fig-
ure 2). It does not feel any solid boundary but the
ice–water interface.
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Figure 1: a) Theoretical interfacial salinity, Si, for S∞ = 34 g kg−1 and varying T∞ with γi = 30 or γi = 90.
Measured interfacial salinites 7.5 h (empty dot) and 47 h (filled dot) after laboratory-experiment start
[Martin and Kauffman, 1977]. b) Relative difference in melt rate due to difference in interface salinity
as seen in (a). The melt rate, w0, is given from Eq. (1a), Eq. (3a), with αh = const., u∗0 = const., and
Ti = Ti(γ) according to Eq. (4).

3.2 The Boundary Conditions

The boundary conditions, Eq. (1), are Robin bound-
ary conditions. The interface temperature and the in-
terface salinity, Ti = −m Si and Si = L Fs,i/Fh,i, de-
pend on fluxes, Fs and Fh, at the interface. The fluxes
evolve with the flow and so do the boundary condi-
tions. Notwithstanding the boundary conditions en-
countered in nature, we simplify the system in two
respects.

First, we apply homogeneous and steady Dirich-
let boundary conditions at the top boundary of the
scalar fields. Therefore, the system does only reflect
a natural evolution of the flow once the interface flux
ratio has reached an equilibrium, when the interface
temperature and interface salinity are fixed and do no
longer evolve with the flow. The tendency of a simi-
lar system to relax towards a preferred interface flux
ratio has been observed before by Carpenter et al.
[2012]. In the supplementary material, we show that
the flux ratio does also relax towards an equilibrium
in our simulations.

Second, we do not incorporate melt-water forma-
tion. According to Keitzl et al. [2016] melt-water for-
mation only influences the flow structure when the
Richardson number approaches one. This Richardson
number describes the importance of the stable strati-
fication next to the interface compared to the strength
of the buoyancy reversal that drives the convection.
The Richardson number relates to the density ratio
Rsρ of the setup described in the present paper. Keitzl
et al. [2016] suggest to define a Richardson number
based on the minimum buoyancy, bm = b(S∞, Ti).

With Eq. (21), bm and b(zi) = b(Si, Ti), one obtains

b(zi)

|bm|
=Rsρ − 1, (12)

which resembles their definition of the reference
Richardson number, Ri0. One can hence expect that
Rsρ similarly describes the importance of the stable
stratification next to the interface compared to the
strength of the buoyancy inversion. For their free-
convection system, Keitzl et al. [2016] find that melt-
water formation can be neglected as long as the buoy-
ancy inversion cannot compete with the stable strat-
ification next to the ice, that is as long as Rsρ � 1.
We restrict our investigations to such systems.

4 Direct Numerical Simulation

We integrate Eqs. (7) using a high-order finite-
difference method on a collocated, structured grid.
We approximate the integration by a fourth-order
Runge–Kutta scheme and the spatial derivatives by
sixth-order spectral-like finite differences [Lele, 1992,
Williamson, 1980]. After every integration step, a
pressure solver ensures fulfillment of the solenoidal
constraint. For this we use a Fourier decomposition
along periodic horizontal coordinates and a factori-
sation of the resulting second-order equations in the
vertical coordinate [Mellado and Ansorge, 2012].

The calculations are performed on a grid of 1152
grid points in the vertical direction and 2560 grid
points in both horizontal directions. The grid spac-
ing is uniform in the horizontal directions e1, e2 and
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Figure 2: Simulated buoyancy fluctuations at final simulation time for Pr=10, Le=4, and Rsρ = 6 (see Table 1).

in most of the vertical direction e3. The resolution
in e3 close to the interface, however, is increased be-
cause the main mean-temperature and mean-salinity
variation all over the domain occurs close to the in-
terface. These variations potentially entail the main
mean-buoyancy change, a change in the forcing of the
system from a positive to the global-extreme negative
value and back to almost zero. To fully cover this
buoyancy variation, we increase the resolution next to
the interface by a factor of two and a half. The regions
of uniform and adjusted resolution in e3 are gradually
matched by hyperbolic tangents. Finally, the grid in
e3 far from the interface is coarsened to save comput-
ing time. This part of the domain serves to diminish
the influence of the computational boundary on the
flow. This grid spacing, ∆x3, holds ∆x3/ηB < 2.0 at
all times where ηB is the Batchelor scale.

The boundary conditions in the velocity field are
no-slip and no-penetration at the interface, and free-
slip and no-penetration in the far field. The bound-
ary conditions in the temperature and salinity field
are Dirichlet at the interface and Neumann in the
far field. The initial conditions are an error-function
profile in the temperature and salinity fields and zero
in the velocity field. The error-function profiles are
described by their gradient thicknesses, δs and δt, at
initial time. The profiles of temperature, salinity and
flow fields are perturbed by broadband fluctuations
to accelerate the transition to turbulence. The initial
boundary thickness ratio, Rinit = R(t = 0), remains
the most influential parameter of the initial condi-
tions. A value around 1.5 or below forces a diffusive
evolution in the beginning. A larger value forces the
system with a buoyancy-reversal instability due to
the opposing forcing mechanisms of temperature and
salinity.

We are particularly interested in simulations of Pr
between 10–13.8 and Le between 176–204 that resem-
ble cold ocean-like fluids [Notz et al., 2003, Schmidt
et al., 2004, Sharqawy et al., 2010, Steele et al.,
1989]. The available computational resources, how-
ever, constrain our investigations to Pr × Le = 40

for which turbulence is still fully resolved on diffu-
sive scales. For our main simulations we stick to a
water-like fluid of Pr = 10 but of limited Le = 4. The
main simulation runs explore the influence of varying
Rsρ ∈ {6, 11, 21} (see Table 1). The estimated final
boundary-layer height of the simulated systems, zest,
is about 0.2 m (see Table 1). The simulations reach

Reynolds numbers w∗zestν
−1 and e2(εν)

−1
of up to

350 and 25, respectively, with the turbulent kinetic
energy e, the viscous dissipation rate ε, the convec-
tive velocity scale, w∗ and the viscosity ν.

To circumvent the computational constraints of
three-dimensional simulations, we further conduct
two-dimensional simulations. The two-dimensional
simulations contribute additional evidence in the re-
gion of the parameter space accessible to the three-
dimensional simulations, and allow us to extrapo-
late further into the parameter space: Simulations
of Pr = 1 approach the behaviour of varying Le up to
Le = 160. Simulations of both Pr = 6 and Pr = 10
approach the behaviour of varying Le up to Le ≈ 20.

5 The Flux Ratio

From the full expressions of the heat flux and the salt
flux,

Fh(z, t) = ρwatercp (κt∂3 〈T 〉 (z, t)− 〈υ′3T ′〉 (z, t)) and
(13a)

Fs(z, t) = ρwater (κs∂3 〈S〉 (z, t)− 〈υ′3S′〉 (z, t)) ,
(13b)

one obtains the flux ratio,

γ(z, t) =
κt∂3 〈θ〉 (z, t)− 〈υ′3θ′〉 (z, t)
κs∂3 〈σ〉 (z, t)− 〈υ′3σ′〉 (z, t)

, (14)

with the normalised temperature, θ, and the nor-
malised salinity, σ.
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Rsρ Pr Le T∞ [℃] |bm| [m s−2] zest [m] w∗zest
ν

k2

(εν) Rfinal

6 10 4 24.0 4.51× 10−2 0.17 348 25 1.67

11 10 4 16.1 2.45× 10−2 0.17 245 18 1.80

21 10 4 10.4 1.27× 10−2 0.19 192 13 1.89

Table 1: Properties of the numerical simulations of the ice–ocean system. The set of the first three columns uniquely
defines the system. They are the density ratio, Rsρ, the Prandtl number Pr, and the Lewis number Le.
The following two columns provide the far-field temperature and the minimum buoyancy for the reader’s
convenience. The far-field temperature, T∞, is determined from Eq. (4a) with S∞ = 34 g kg−1 and
R = 2.3 at Le = 200. The minimum buoyancy is bm = b(S∞, Ti). The columns 6–9 characterise the
turbulent system in its stage of final simulation time. The simulations reach a boundary-layer height, zest,
of up to 0.19 m, and the turbulence intensities, w∗zest

ν
, of up to 350, and Returb = k2/ (εν) of up to 25,

with turbulent kinetic energy k, viscous dissipation rate ε and viscosity ν. The convective velocity scale,
w∗, is defined as w3

∗ =
∫∞
0
H (〈b′υ′3〉) 〈b′υ′3〉dz, where H is the Heavyside function. The last column is

the resulting boundary thickness ratio of the simulation, R. All simulations have been initialised with an
initial boundary thickness ratio of R = 2. The grid size of the simulations is 2560× 1152× 2560. At final
time of the simulations the boundary layer reaches an aspect ratio between 4:1 and 5:1.

Sirevaag [2009] uses only the turbulent contribu-
tions of Eq. (14) to determine the flux ratio:

γturb =
〈υ′3θ′〉 (z, t)
〈υ′3σ′〉 (z, t)

. (15)

This turbulent flux ratio is identical to the ratio of
turbulent exchange coefficients of Notz et al. [2003]
and McPhee et al. [2008] if the interface flux ratio is
approximated by the mean turbulent flux ratio. Gade
[1993] uses only the molecular contributions of Eq.
(14) at the wall to determine the interface conditions.
This molecular-flux ratio is

γmol = Le
∂3 〈θ〉 (z, t)
∂3 〈σ〉 (z, t)

. (16)

The approximation to reduce the flux ratio either to
γmol at the wall or γturb in the outer layer is reason-
able, because there the corresponding contributions
to the fluxes dominate numerator and denominator
of γ (see Figure 3b).

The determination of the interface conditions, how-
ever, requires that γ is evaluated at the interface,
where γi ≡ γ|zi = Le R−1 with boundary-thickness
ratio R [Eq. (6]. The use of γturb as a surrogate for
γmol is convenient, because it allows for the employ-
ment of turbulent-flux measurements from the field.
It has been shown, however, that (in a volume av-
eraged sense [indicated by 〈· 〉V ]) 〈γturb〉V 6= 〈γmol〉V
for the double-diffusive regimes of diffusion [Gargett
et al., 2003], saltfingering [Kimura et al., 2011], and
semi-convection [Kupka et al., 2015]. We infer this
from the temporal evolution of effective diffusivities
of temperature, Kt, and salinity, Ks, given therein.

According to Eqs. (15, 16),

〈
Kt

Ks

〉

V

=

〈 〈υ′T ′〉
∂3〈T 〉

∂3〈S〉
〈υ′S′〉

〉

V

=

〈
γturb

γmol

〉

V

Le,

(17)

but in the given references, 〈Kt/Ks〉V 6= Le, and
therefore 〈γturb/γmol〉V 6= 1. With our simulations
we support this finding for an extended range of Rsρ
for the semiconvective regime and we investigate the
diffusive and the turbulent contribution to the flux
ratio separately.

Even though γturb 6= γmol, it might still be valid
to employ turbulent-flux measurements once the re-
lation between turbulent and molecular flux ratio is
clarified. In the following, we explore the vertical
structure of γ from our simulations to understand the
relation between turbulent and molecular flux ratio.

5.1 Vertical Structure of the Flux Ratio

The vertical structure of free convection beneath a
melting, horizontal, smooth ice–ocean interface in the
semiconvective regime is well described by a two-
layered structure: a diffusion-dominated wall layer
(the diffusive wall layer) and a turbulence-dominated
outer layer (in sea-ice literature sometimes referred
to as mixed layer, ml) (see Figure 3a). Molecular dif-
fusion dominates the heat transport next to the in-
terface (see Figure 3, solid line on the scale < 1.0).
Turbulent transport dominates the heat transport in
the outer layer (see Figure 3, dashed line on the
scale < 1.0). This description is similar to the two-
layered structure of the ice–lake system and is in-
spired by the more detailed description of the bound-
ary layer of free convection over a heated plate in
Mellado [2012].
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Final timeHalf time

molecularturbulentFlux con
tributio
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Ice Diffusive wall layer OceanOuter layer Far fieldA
B C

Figure 3: a) Illustration of the vertical structure of free convection beneath a melting ice–ocean interface in terms
of the abscissa of figure b. b) Molecular fraction of total heat transport (solid line on the scale < 1.0)
and turbulent fraction of total heat transport (dashed line on the scale < 1.0). Ratio between the total
heat transport (molecular + turbulent) and the total transport of salinity, γ, at final simulation time
(solid line on the scale > 1.0) and at half simulation time (dotted line on the scale > 1.0). This figure
shows that γturb describes this spatial structure well in the outer layer, γmol describes it well next to
the interface. c) Ratio γ at final simulation time, but scaled with Rsρ. Colours indicate different density
ratios, Rsρ. The flux ratio fluctuates wildly (vertical lines) between the outer layer and the far field where
there is hardly any turbulent nor molecular fluxes anymore.

In the diffusive wall layer, we observe a significantly
smaller flux ratio than in the outer layer (see Figure
3b, solid lines on the scale > 1.0). From the definition
of the molecular flux ratio, γmol [see Eq. (16)], one
expects it to scale with Le and R−1. For our simula-
tions at fixed Lewis number, Le, the flux ratio seems
steady (cf. profiles at half time of the simulation,
dotted lines) and independent of the far-field condi-
tions (represented by varying Rsρ). We find a bound-

ary thickness ratio R = Le γ−1
i ≈ 1.7–1.9 (see Table

1). This constant R respresents a sequential layer-
ing of mean-temperature and mean-salinity profiles
at the interface. The visualisations show, however,
how temperature-driven and salinity-driven buoyancy
fluctuations alternate (see Figure 2).

In the outer layer, we observe a larger flux ratio
than in the diffusive wall layer (see Figure 3b, solid
lines on the scale > 1.0). The observed flux ratio
depends on the far-field conditions (cf. varying flux
ratio for varying Rsρ). From the definition of the tur-
bulent flux ratio, γturb [see Eq. (15)], one expects
it to be independent of the diffusivity ratio, Le, and
to scale with a certain temperature–salinity ratio. If
the outer layer is well-mixed, temperature and salin-
ity will be distributed homogeneously. Their mixing
is driven by a buoyancy-reversal instability. Accord-
ing to Eq. (21), the buoyancy-reversal instability is
favoured by a temperature–salinity ratio commensu-

rate with the density ratio, Rsρ, i.e. θ/σ ∼ Rsρ (see
supplementary material). Consequently, temperature
and salinity must be entrained in a proportion that
is commensurate with this Rsρ to maintain this θ/σ.
Our simulations support this argument and provide
the scaling

γturb = 2.3 Rsρ (18)

(see Figure 3c). Interestingly, the scaled turbulent
flux ratio seems to yield a constant similar to that of
the interface flux ratio.

In summary, the vertical structure of the flux ratio
is well described by two parameters. A boundary
thickness ratio, R, describes the molecular flux ratio
at the interface. A density ratio, Rsρ, describes the
turbulent flux ratio in the outer layer. Because Rsρ
is an independent control parameter that defines the
setup, only R remains to be determined to know the
vertical structure of the flux ratio.

5.2 Temporal Evolution of the Fluxes and
their Ratio

The vertical structure of the flux ratio results from
the vertical structure of the temperature and salinity
flux. All of our simulations exhibit a similar vertical
flux structure: the molecular fluxes at the interface
are higher than the turbulent fluxes in the outer layer
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(not shown). As a consequence of this vertical flux
structure, the flux profiles are not steady. The wa-
ter in the diffusive wall layer continuously cools and
freshens and thereby decreases the molecular fluxes
of temperature and salinity at the interface.

While the molecular fluxes at the interface keep de-
creasing in time, we observe a quasi-steady flux ratio
that is described by R and γturb. Accordingly, we
observe that the turbulent fluxes decrease along with
the molecular fluxes for all of our simulations. The
total buoyancy flux, the integral of molecular and tur-
bulent fluxes, decreases proportional to the growth of
the boundary layer (not shown). Consequently, the
turbulence will finally cease.

For externally forced turbulence, the behaviour of
the flux ratio remains an open question. However, all
indication from our simulations is that the mixing in
the outer layer will not affect the boundary thickness
ratio, R.

6 Discussion

In this work, we have so far determined R from sim-
ulations at fixed Pr = 10 and fixed Le = 4. R can be
described by a constant—almost independent of the
far-field conditions and also independent of varying
initial conditions (see supplementary material). We
will now use former studies along with a series of two-
dimensional simulations for varying Prandtl number
and Lewis number to assess the boundary thickness
ratio at as high a Lewis number as it occurs in the
Arctic Ocean.

The mean evolution of two-dimensional turbulence
does not represent the mean evolution of three-
dimensional systems correctly. Nonlinear flow phe-
nomena, such as cascades, coherent structures and
dissipative processes, however, take place in both sys-
tems and a common conceptual framework between
two- and three-dimensional turbulence exists [Tabel-
ing, 2002]. It can hence be instructive to employ sim-
ulations of two-dimensional turbulence [Fedorovich
et al., 2004] in double-diffusive systems [Zweigle,
2011]. Moreover, they appear to yield an energy bal-
ance at the interface that is to within 10% accuracy
to that of three-dimensional simulations. This has
already been observed for simulations of the ice–lake
system (not shown), and it is so for the simulations of
the ice–ocean system in both temperature and salin-
ity. Carpenter et al. [2012] have shown that two-
dimensional direct numerical simulation “accurately
”captures the heat flux and interfacial structures of
three-dimensional direct numerical simulations when
the density variation due to salinity is at least three
times larger than the density variation due to tem-
perature.

From the collection of two-dimensional and three-
dimensional simulations (see Figure 4), it emerges

Pr0

0,005

0,01

0,015

0,02

γ i
-1

SimulationsFit: a + b Pr2/3a =  0.01706b = -0.00129r²=  0.94

0 2 4 6 8 10

Figure 5: Simulated γ as extrapolated from Fig-
ure 4 for Le ≈ 200 (circles) and power-
law prediction by McPhee et al. [1987]
(dashed line).

thatR increases with increasing Lewis number, Le. In
other words, the larger the difference of temperature
diffusivity and salinity diffusivity is, the larger the
difference in their gradient thicknesses. The diffusiv-
ity of the scalar that defines the buoyancy, κ, is a key
parameter in the diffusive wall layer in free-convective
flows next to a Dirichlet interface. The corresponding
gradient thickness, δ, scales as κ2/3 [Mellado, 2012].
One might therefore expect the ratio of two gradient
thicknesses which are controlled by different diffusivi-

ties to scale with the ratio of diffusivities as (κt/κs)
2/3

as long as the two scalars do not couple to each other
(see Figure 4, dashed line).

Interestingly, R levels off with further increasing Le
indicating that the temperature and salinity field in-
teract with each other (see Figure 4). Carpenter et al.
[2012] reason that the temperature profile effectively
feels the salinity interface as a solid conducting plane
once Le is high enough. Then, the development of
a temperature sublayer at the felt salinity interface
should only follow the Prandtl number. For a fixed
Prandtl number, it is hence reasonable to expect that
the boundary thickness ratio approaches a constant.

In summary, R becomes independent of Le once Le
crosses a critical value. We observe that R still de-
pends on the diffusivity of the more strongly diffusing
scalar, temperature. Our simulations are consistent
with the scaling, R ∝ Pr2/3, suggested by McPhee
et al. [1987] (see Figure 5). For Pr = 10, a Le of
four already seems to be high enough to approach
independence of R on Le. From our simulation we
measure R =1.7–1.9. That yields γmol =105–118.

6.1 Comparison to Former Studies

Several previous studies had independently targeted
the boundary thickness ratio, R, beneath an ice–
ocean interface.

8/ 17



Figure 4: Lewis-number series of boundary thickness ratio, R = δt/δs. Colors indicate different Prandtl numbers:
Pr = 1 (light blue), Pr = 6.25 (blue), Pr = 10 (purple). Our direct numerical simulations are of Rsρ = 6
and Rinit ≈ 2. The error estimations for the direct numerical simulations is the maximum and minimum
of the temporal fluctuations around the mean boundary thickness ratio. The dashed line indicates the
expected behaviour of R from the diffusive scalings of free convection over a heated plate. The data of
Pr = 10 (purple) suggests a boundary thickness ratio of 2–2.3.

Notz et al. [2003] assessed the bulk flux ratio by
modeling observations. They use this bulk flux ra-
tio to determine the interface temperature and salin-
ity. In this sense they equate γbulk with γi. This
hypothetical equality implies a hypothetical bound-
ary thickness ratio, R. The range they estimate for
γbulk corresponds to a R range of [2.9 < R < 5.7] (see
Figure 4, grey bar). However, their hint that lower R
values fit the data better already points towards the
smaller value obtained in this study.

Carpenter et al. [2012] assessed the flux ratio of
a fluid–fluid interface—warm and fresh fluid on top
of cold and salty fluid. Buoyancy-reversal instabil-
ities on both sides of a sharp fluid–fluid interface
promote free convection. They find that turbulence
is not able to penetrate the stable stratification of
the interface core. Just like a rigid interface, their
fluid–fluid interface is dominated by molecular fluxes.
They observe a boundary thickness ratio, R, of 2.5 at
Pr = 6.25, Le = 100, Rsρ = 6, (see Figure 4, circle)
similar to the values observed in our simulations.

Gade [1993] assessed the molecular flux ratio from
the boundary thickness ratio of interfacial profiles of
temperature and salinity. He finds R = 2.3 from the
laboratory work of Martin and Kauffman [1977] (see
Figure 4, purple star) and R = 2.26 from the model-
ing work of Wilson et al. [1980] (see Figure 4, pyra-
mid).

Sirevaag [2009] assessed the turbulent flux ratio by
field measurements. Depending on the time span of
the temporal averaging and the threshold criteria that

are applied to the measurement data, he determines
turbulent flux ratios between 23 and 37 in case of
rapid melting. These turbulent fluxes are well within
the range of those that we observe in the outer layer
of our simulations (see Figure 3b). The turbulent flux
in the outer layer, however, is not a good proxy the
flux ratio at the interface.

The outer-layer flux ratio determined in this work
does agree with field measurements. Regarding the
interface flux ratio, we estimate a boundary thickness
ratio of

R = (2.2± 0.2) (19)

from all of the evidence presented so far: from the
trends of all two-dimensional simulations to lose their
dependence on the Lewis number (see Figure 4, lines),
from the value which the two-dimensional simulations
approach for increasing Lewis number at Pr = 10
(purple line), from the laboratory-experiment value of
Martin and Kauffman [1977] (purple star), and from
the fact that the three-dimensional simulation yields
a slightly smaller value than does the two-dimensional
simulation (purple dot). This interval yields an inter-
face flux ratio in the range of 83 to 100. The interface
flux ratio determined in this work does agree with
that obtained from laboratory work, modeling work
and numerical work of similar setups.

The interface flux ratio has been suspected to de-
pend on the surface roughness of the ice–ocean in-
terface [Notz et al., 2003]. Our investigations of
a smooth ice–ocean interface show that no surface
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Figure 6: a) Evolution of the boundary thickness
ratio in time. Three-dimensional simula-
tions (solid lines) approach the values ob-
tained from two-dimensional simulations
(dashed lines). Colours indicate the den-
sity ratio of the simulation as given in
Figure 3c. b) Density-ratio series of the
boundary thickness ratio.

roughness at all is needed to reproduce the turbulent
flux ratios that have been suggested as reasonable.

6.2 Dependence of the Boundary
Thickness Ratio on Far-field
Temperature and Salinity

So far it seems that the boundary thickness ratio
is a universal property of a melting ice–ocean inter-
face. However, a weak dependence on the far-field
conditions remains. As explained in section two, the
far-field conditions reflect in the overall temperature
range, Ti − T∞, and in the overall salinity range,
Si − S∞, of the system. The independent control
parameter that characterises the far-field conditions
is the density ratio, Rsρ. The dependence of R on Rsρ
is illustrated in Figure 6. The variation in R accounts
for about 10% of its value. The dependence is faint
and seems to level off for increasing Rsρ.

6.3 The Melt Rate

The determination of the melt rate from the three–
equation formulation requires knowledge of two pa-
rameters: the bulk heat exchange coefficient, αh, and
the boundary thickness ratio, R. The latter is rele-
vant for the determination of the interface tempera-
ture, Ti. The melt rate is then given as a function of
far-field temperature, T∞, and friction velocity, u*0

(see Eq. (3a). In this work, we have determined R
to be 2.2 ± 0.2. In the absence of temperature and
salinity fluxes in the ice, the three–equation formula-
tion yields melt rates that are up to 40 % lower than
previous estimates due to the influence of R on the
interface temperature (see Figure 1b).

With the interface temperature available, it proves
convenient to provide melt rates as a function of the

convective Richardson number,

Ri∗ =
∆bz0

w2
∗

, (20)

with the strength of the stable stratification, ∆b =
b (zi) − bm, the thickness of the diffusive wall layer,
z0, and the convective velocity scale, w∗ (see Fig-
ure 7). The convective Richardson number describes
the ratio between the kinetic energy that a fluid
particle needs to overcome the diffusive shield be-
neath the ice and its kinetic energy. A comparison of
the Richardson-number dependence of the melt rates
measured from our simulation (see Figure 7, filled
circles) to that of the ice–lake system (see Figure 7,
filled squares), shows how both systems follow a sim-
ilar working principle. As the far-field temperature
increases, the buoyancy-reversal instability strength-
ens and the convective Richardson number decreases
(see Figure 7, filled circles). With increasing convec-
tive motion beneath the ice, the melt rates of the
ice increase. Compared to the ice–ocean system, the
ice–lake system has larger an extent of the diffusive
wall layer but significantly weaker a diffusive shield at
similar free-convection velocities for systems of sim-
ilar size. Consequently, the Richardson numbers of
the ice–lake system are smaller by a factor of 100.
In this case, convective motions are strong enough to
overcome the diffusive shield. In the case of ice–ocean
free convection, however, we have observed that con-
vective motions were not strong enough to overcome
the diffusive shield because turbulence is statistically
unsteady and will finally cease.

The melt rates in conditions of forced- and mixed-
convection remain to be ascertained. Sirevaag [2009]
provides a well-controlled field measurement of mixed
convection in ice–melting conditions. He measured
the far-field temperature (−0.86 ℃), the far-field
salinity (34.4 psu), the heat flux (268 W m−2) and
the friction velocity (0.9 × 10−2 m s−1). From his
measurements, we reproduce the interface temper-
ature (−1.27 ℃), the interface salinity (23.5 psu),
the buoyancy shielding ∆b (8.8 × 10−2 m s−2),
and the strength of the buoyancy-reversal instabil-
ity bm (1.5 × 10−4 m s−2). If his heat-flux measure-
ment under the given mixed-convection conditions
is representative for the diffusive flux at the inter-
face, we estimate z0 = 0.9 × 10−3 m. In the ab-
sence of fluxes within the ice, his measurements yield
a melt rate of 76 mm d−1 at a convective Richard-
son number of about 1. His measurement deviates
thus from the Richardson-number dependence seen
for the simulated ice–ocean system and follows more
closely the simulated ice–lake system. From this mea-
surements, we learn that mixed convection occurs at
lower Richardson numbers because convective mo-
tions eventually compete with the diffusive shield just
as in ice–lake free convection. From the strength of
the buoyancy-reversal instability, bm, and the stably
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Figure 7: Melt rates, w, over convective Richardson number, Ri∗. The convective Richardson numbers of the
simulations are determined from the strength and apparent position of the buoyancy-reversal instability
and the convective velocity scale (filled circles). The convective Richardson number of the ice–lake system
are taken from Keitzl et al. [2016] (filled squares). Colours indicate the density ratio, Rsρ, and Richardson
number, Ri0, of the setups as given in Figure 3c and in Fig. 1/Tab. 1 of Keitzl et al. [2016]. The melt
rates of the ice–lake system agree well with independent laboratory measurements of Dorbolo et al. [2016]
(black diamond). They measured the mass flux of a rotating ice disc melting in fresh water. From PIV
measurements, they found convective velocities of 10 mm s−1 at a far-field temperature of 20 ℃ (personal
communication). The turbulent-instrument-cluster measurements of Sirevaag [2009] follow more closely
our simulations of the ice–lake system than those of the ice–ocean sytem (black star). His measurements
of far-field conditions and friction velocity allow us to reconstruct a convective Richardson numbers, where
we ued R = 2.15. We assess his measurement in the discussion section. The three–equation formulation
with γi = 90 and with the commonly accepted value of αh ≈ 0.01 overestimates the melt rates when the
convective velocity scale is used to mimic the friction velocity of forced convection (shaded symbols).
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stratified buoyancy shield, ∆b, one expects a refer-
ence Richardson number, Ri0 = ∆b/ |bm|+ 1, for his
measurement of about 586 [see Eq. (12)]. If the
measurement were made under free-convection con-
ditions, one further expects a turbulent flux ratio of
about 1350 [from Eq. (18)]. Instead Sirevaag [2009]
found γturb = 33. We conjecture that the influence
of external forcing tends to even out differences be-
tween the turbulent fluxes of heat and salt. The role
of the mixing fraction, Rsρ, in sustaining the convec-
tive motion decreases with the strength of the shear.
In the extreme of forced convection, one might hence
expect a turbulent flux ratio that is not influenced by
Rsρ anymore and approaches unity.

6.4 The turbulent flux ratio under
ice–growing conditions

Even though we have considered a melting–ice sce-
nario for our studies, we now assess the turbulent flux
ratio of a growing–ice scenario. McPhee et al. [2008]
study the double-diffusive tendencies under growing
ice. They found an asymmetric behaviour of the
double-diffusive process between freezing and melting
ice: While turbulent flux ratios measured in melting–
ice scenarios are for example of order 101–102, the
turbulent flux ratio in growing–ice scenarios was as-
sessed to be unity. As opposed to melting ice, they
suggest that for growing ice the double-diffusive ten-
dencies are relieved by dynamics within the mushy
layer above the advancing ice front.

This mushy layer prevails for growing ice because
the salt of the ocean water is embedded between grow-
ing ice crystals. As long as ice continues to grow, the
lower most advancing front of bulk ice will always
embed salt corresponding to the salinity of the ocean
water as it grows [Notz and Worster, 2009]. There-
fore, we do not expect any salt gradient between the
ocean water and the lower most frontDesalination of
the mushy layer. The interface salinity is that of the
ocean water.

The presence of an interface salinity lower than the
salinity in the outer layer is a prerequisite for the
promotion of the buoyancy-reversal instability. In
the absence of the buoyancy-reversal instability (the
forcing mechanism of free convection), the density ra-
tio, Rsρ, does no longer control nor influence the ratio
in which salinity and temperature mix in the outer
layer. The forcing mechanisms that remain are for
example vertical shear from draining salt plumes and
horizontal shear due to drifting of ice. A shear forc-
ing, however, does not distinguish between the mixing
of temperature and salinity, because—by definition—
the diffusivities do not influence the turbulent flux ra-
tio [see Eq. (15)]. Based on our findings, we endorse
the argument of McPhee et al. [2008]; Not dynamics
within the mushy layer but its mere presence implies
a turbulent flux ratio of unity.

7 Conclusions

The main objective of this study has been the de-
termination of the ratio of heat and salt flux. This
flux ratio is used in models of ice–ocean interaction
to control the interface conditions and thus also the
melt rates. We have obtained the vertical structure
of the flux ratio from simulations of free convection
beneath a melting, horizontal, smooth ice–ocean in-
terface in the semiconvective regime. By means of
direct numerical simulations, we have determined the
flux ratio for the first time not only in the outer layer
but also directly at the interface. We have reported
two main findings.

First, the ratio of heat and salt flux has the fol-
lowing vertical structure: In the outer layer, the ra-
tio depends strongly on the far-field temperature and
salinity of the water. A commonly used independent
control parameter, the density ratio, Rsρ, can be used
to scale the flux ratio there. The flux ratios obtained
in field measurements from Sirevaag [2009] are eas-
ily reproduced for varying Rsρ. Next to the interface,
however, the flux ratio becomes almost independent
of the far-field conditions as has been indicated be-
fore by Holland and Jenkins [1999]. The flux ratio has
to be evaluated at the interface to obtain the value
relevant for the determination of the interface condi-
tions of the ice–ocean interface. Our simulations in-
dicate that direct measurements of the interface flux
ratio based on the turbulent fluxes will be difficult,
because next to the interface the turbulent contribu-
tion ceases and is not a good proxy for the molecular
contribution. Instead we have presented a consistent
evaluation of the flux ratio based on the total heat
and salt fluxes.

Second, the interface flux ratio is three times as
large as previously assessed based on turbulent-flux
measurements at a certain distance from the inter-
face. Instead of the currently accepted value of the
flux ratio, γturb = 33, which corresponds to the tur-
bulent flux ratio in the outer layer, we find γi ≈ 83–
100 to be more realistic at the interface. With γi the
interface conditions are determined according to Eq.
(1c), Eq. (4a), and ∆Tγ = 0.85 K. Compared to our
improved estimate, melt rates of the ice–ocean inter-
face based on the three-equation formulation using
the too low value γturb = 33 are overestimated by up
to 40%.

Supplementary Material

Dependence on Initial Conditions

Turbulent structures are known to quickly lose the
memory of their history and so of their initial con-
ditions. In the following, we monitor if this is true
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Figure 8: Temporal evolution of simulations of varying initial conditions as given in Table 2 and as obtained from
two-dimensional simulations.

Case R(t = 0)
√

TKEmax(t = 0) zest [m] w∗zest
ν

k2

(εν) Rfinal

ic1 10 0 0.29 1538 204 2.12

ic2 4 0 0.22 522 42 1.89

ic3 2 0.03 0.17 245 18 1.80

Table 2: Properties of the numerical simulations of the ice–ocean system for different initial conditions (ic). All
simulations are conducted at Pr = 10, Le = 4, and at Rsρ = 11. The columns 4–7 characterise the turbulent
system in its stage of final simulation time. The simulations reach a boundary-layer height, zest, of up to
0.29 m, and the turbulence intensities, w∗zest

ν
, of up to 1500, and Returb = k2/ (εν) of up to 200, with

turbulent kinetic energy k, viscous dissipation rate ε and viscosity ν. The convective velocity scale, w∗, is
defined as w3

∗ =
∫∞
0
H (〈b′υ′3〉) 〈b′υ′3〉dz. The last column is the resulting boundary thickness ratio of the

simulation, R. The grid size of the ic1-simulation is 1024× 1152× 1024, and 2560× 1152× 2560 for the
rest.
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for our property of interest, the boundary thickness
ratio, R.

The initial conditions are described by a shape and
a perturbation in each of the fields, T , S, and νi. To
monitor the influence of the shape, we run three sim-
ulations of different initial boundary thickness ratios,
Rinit ∈ {10, 4, 2, 1.5, 1}. These simulations are ini-
tially perturbed in the salinity and temperature fields
(see Table 2) to quicken the transition to turbulence.
After an initial transient all simulations tend towards
a similar final boundary thickness ratio of just be-
low two (see Figure 8)—independent of their shape.
A similar behaviour was already observed before by
Carpenter et al. [2012] for almost all of their simula-
tions (see their Fig. 5).

To monitor the influence of perturbation, we com-
pare simulations that initially evolve diffusively to
simulations that initially evolve turbulently. Those
simulations with Rinit ≤ 1.5 result in an initially sta-
bly stratified water column across the whole domain.
They initially evolve diffusively. Only after the tem-
perature profile has diffused sufficiently (far into the
domain where salinity does hardly vary anymore),
does a buoyancy-reversal instability build up and pro-
mote convection. Those simulations with a perturba-
tion in the velocity field initially evolve turbulently.
After an initial transient all simulations tend towards
a similar final boundary thickness ratio of just below
two (see Figure 8)—independent of their perturba-
tion.

The observed boundary thickness ratio, R, is inde-
pendent of the initial conditions. R is thus intrinsic
to the system that is wholly defined by {Pr,Le, Rsρ}.
The flux ratio for Pr = 10, Le = 4 and Rsρ = 10
targets about 1.8.

Bulk Heat Exchange Coefficient

In free-convection setups, bulk scalar exchange coef-
ficients are generally inferred from the turbulent flux
in the outer layer that is scaled by the scalar scale
and the convective velocity scale. For the simula-
tions presented in this work, this yields bulk heat ex-
change coefficients of 0.003 to 0.0045 (see Figure 9,
solid lines).

In field measurements, the friction velocity, u*0

is used for the same purpose because one generally
copes with mixed convection. For lack of a precise
definition at which distance from the surface the fric-
tion velocity is to be measured, we estimate bulk heat
exchange coefficients from our simulations by using
the maximum friction velocities encountered across
the domain (see Figure 9, dotted lines).

For the sake of completeness, we also provide the
bulk heat exchange coefficients that can be estimated
by using the maximum of the turbulent-kinetic energy
rms.

Mixed-layer scalar fraction

The mixing in the outer layer (sometimes referred
to as mixed layer) is mainly determined by turbu-
lence. If the outer layer is well-mixed, temperature
and salinity will be distributed homogeneously. In
the following, we report our observation of how tem-
perature is mixed compared to salinity.

The mixing in the outer layer is driven by a
buoyancy-reversal instability. This buoyancy-reversal
instability is favoured by a temperature–salinity frac-
tion that equals the density ratio, Rsρ:

b

bm
= Rsρ σ − θ, (21)

Temperature and salinity must be entrained in pro-
portion Rsρ to sustain mixing. In free convection,
a homogeneously mixed outer layer should exhibit
θ/σ ∼ Rsρ. Our simulations support this argument
and provide the scaling,

σml =
1

2.8
θml R

s
ρ, (22)

where ml refers to quantities in the outer layer (see
Figure 10).
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