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1. Introduction

What are the underlying principles of intelligent behaviour? For that we first ask:
How did complex organism with the potential of higher intelligence arise out of a
process of evolution? One basic principle of evolution is survival, that is, organisms
distance themselves from situations threatening their physical health. This requires
the ability of processing information about the environment. For deer to flee from
a predator, not only must it see, but it must also recognise the imminent threat. A
connection between the amount of available information of the environment to an
organism and its growth rate, or fitness, was suggested by Taylor et al. in 2007 [1].
Information about the system needs to be interpreted and used for predicting its
future developement in order to identify threats and act accordingly, moving away
from situations limiting the space of possible future options. By not only taking
instantaneous maximization of options into account (such as a chemotactic bac-
terium following the gradient of a nutrient [2]) but instead considering longer future
evolutions of the system, more complex situations can be assessed. The amount or
diversity of possible future evolutions of a system can be quantified. A general defi-
nition of causal entropy is based on a dynamical version of the Boltzmann-Shannon
entropy. That is, instead of considering the probability of macrostates, the causal
entropy is based on the probability of a finite path in phase space.
In 2013, Wissner-Gross and Freer proposed a connection between maximization of

causal entropy and intelligent behaviour [3]. This fundamental model can be applied
to various fields and problems, such as game theory where it was possible to create
a skilled artificial player in the game of Go using the principle of maximizing the
amount of possible future moves [4]. Furthermore, this principle has already been
used for modelling social cooperation in solving simple problems [3] for comparison
with experiments made with various animal species in this regard [5–7]. A more
general and basic approach to origins of collective and social behaviour was given
[8]. Even the emergence of life and developement of our planetary system can be
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1. Introduction

brought into direct connection with this model [9].
In this work we investigate the relationship between causal entropy and intelligent

behaviour from the point of view of statistical mechanics by examining the dynamics
of systems driven by a causal entropic force, maximizing their causal entropy. We
dive into the topic of group behaviour and pattern formation in confined space. This
includes the examination of steady state patterns in enclosed spaces, as well as the
dynamics of particles in a bottleneck system as analogy to agent based evacuation
scenarios [10–13]. Generally, in applying this model on bottleneck problems we
see great potential for the field of protein folding [14, 15], more precisely allowing
improvements to algorithms for Monte Carlo simulations of protein folding [16].
Our work is organized as follows. In the directly following section we will introduce

the concept of the causal entropic force. A simple approach for a particle on a
lattice with discrete timesteps will be introduced and examined in Chapter 2, where
we both consider a square lattice as well as a bottleneck as geometries for the
system. In Chapter 3 we derive a more general expression for the causal entropic
force and introduce our model for continuous space and time. In Chapter 4 the
dynamics of a single entropically driven particle in both a square and a bottleneck
system will be examined. Furthermore we draw the analogy of this model to the
statistical dynamics of polymers and compare numerical results with experimental
data in Section 4.6. In Chapter 5 we consider many-particle systems and further
analyse the formation of patterns of a large number of individually entropically
driven particles in confined space in Section 5.3. Causal entropy maximization as
model for evacuation problems will be examined in Section 5.4.
The figures in the bottom right corner of every odd page work as a flip book if the

pages are turned rapidly. The animation is an example video sequence of pattern
formation of many particles in a confined space and will be further discussed in
Section 5.2.

The causal entropic force

We define entropy on the set of possible future evolutions of a system within a finite
time horizon. This entropy, or causal entropy, is thus a quantity associated with
the diversity of future options available to a system. By maximizing the causal
entropy we maximize the diversity of options and therefore drive the system away
from restricted states. Like a chess player thinking several steps ahead, keeping his
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future options open. Thus, in phase space, moving away from restrictions such as
an impending loss – which would drastically decrease the diversity or number of
possible moves.
Figure 1.1 shows the light-cone representing the possible states a system can

reach within a time horizon τ . Three future trajectories of the system are shown, all
starting from the same initial state of the system x(0), its position in phase space
at time t = 0. The restriction effectively narrows the accessible states in the future.
Thus, by the causal entropic force maximizing its phase space volume the system is
driven away from the restriction.

Figure 1.1.: Sketch of the system exploring phase space. Fc(X, τ) drives the system
away from a restricted area. See also [3].

In this work we examine the behaviour of systems acted upon by such a causal
entropic force Fc towards states of larger causal entropy. This force can formally be
written

Fc(X0, τ) = Tc∇XSc(X, τ)|X0 , (1.0.1)

where Sc is the causal entropy, X the macrostate of the system, τ the maximum
time horizon of the considered future evolution of the system and Tc a scaling factor
which is convenient to call temperature or causal temperature.
In Chapter 3.1 we go into the details of the causal entropic force and causal

entropy for a generic system. But first we use the general idea of maximizing the
diversity of future option of a system in the following section, using discretized space
and time.

3



2. Discrete evolution: Theory and
results

In this section we use the correspondence of causal entropy to the diversity of future
options in a system’s evolution. We directly define causal entropy on the diversity
of possible trajectories, using two approaches with different quanitfications of this
diversity in a simple system: A single particle moving in a two-dimensional lattice
with discrete timesteps and only subject to the entropic force in Eq. (1.0.1). In
Sec. 2.1 we count the number of possible future trajectories with τ steps, whereas
in Sec. 2.2 we count the area covered by future trajectories. In Sec. 2.3 we discuss
and compare the results of those approaches.

2.1. First approach

2.1.1. Method

Consider a point-like particle moving on a finite two-dimensional lattice bounded
in both the x and y directions by walls. We study its motion under the influence
of a causal entropic force. To calculate the entropic force in this system, we count
the number of trajectories consisting of τ steps that are possible from the current
position of the particle such that the trajectory does not intersect the wall. The
particle will always take a step in the direction with the largest number of possible
trajectories, i.e. towards the state which maximizes the total number of possible
trajectories. If more than one direction have the same (maximum) number, the
next step will be chosen randomly between those. The particle will always move a
step – staying at its current field is not allowed. A typical sampling and calculation
of the entropic force is illustrated in Fig. 2.1. Please note that the horizon is
timewise, that is, the time we let a system evolve is fixed.
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2.1. First approach

Figure 2.1.: Few examples of systematic counting of all possible trajectories for a
particle (black square) in a two dimensional lattice close to two walls
in an otherwise open system (here for horizon τ = 3 steps). Circles of
decreasing radius represent the sequence of steps taken by the particle.

In this case, the counting of possible trajectories for horizon τ = 3 steps yields
n = 15 possible paths in direction up and right, away from the walls, and n = 9
for down and left, towards the walls, as illustrated in Fig. 2.2. Since the smallest
horizon we consider is 1, the particle will never try to take a step towards a wall. In
the worst case it can only “sense” if there is a wall to avoid and otherwise perform
a random walk.
In the following, when refering to a path or trajectory, we speak about ac-

tual paths an entropically driven particle takes. They shall not be confused with
sampling paths or - trajectories, used for the calculation of the entropic force.

2.1.2. Numerical results

In Fig. 2.3 two trajectories of a driven particle in a L×L, L = 10 square lattice are
shown for the horizon τ = 5.
The particle starts in the bottom left corner from where it moves towards the

centre in both cases, but with slightly different trajectories. Closer to a wall the
number of possible paths, and therefore the entropy, is smaller. The particle is then
driven away from this restricted area towards the centre. Since the distance to the
two closest walls is the same along the diagonal (at position (0, 0), (1, 1), ..) there

5



2. Discrete evolution: Theory and results

(a) (b)

Figure 2.2.: (a) The number of possible paths for τ = 3 steps. (b) Possible directions
for the next step. Since there is more than one direction with maximum
count, it will be randomly chosen between those two.
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Figure 2.3.: Two trajectories for a particle. Horizon τ = 5, box size L = 10, total
runtime 25 steps.

6



2.1. First approach

is no preferred direction for the particle to move wherefore it randomly chooses a
direction. In the centre, four fields are equidistant from the walls, therefore the
particle stays in this area effectively performing a random walk.
For horizons τ = 4 and τ = 6 trajectories in the same environment are shown in

Fig. 2.4.
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Figure 2.4.: Trajectories for horizon τ = 4 in (a) and τ = 6 in (b). Box size L = 10,
total runtime 100 steps. The inital position is at position (0, 0), in the
bottom left corner.

For horizon τ = 4 the particle will be driven away from the walls towards the
centre up to a minimum distance from the walls of 3 fields leading to a 4× 4 area in
which it moves around randomly. The horizon is just large enough for the entropic
force to keep the particle at a minimum distance from the walls of 3 fields. For
horizon τ = 6, the behaviour does not change compared to τ = 5 in Fig. 2.3 since
the particle already “sees” the whole system, meaning the horizon is large enough
for it to be repelled by the walls and to stay in the centre 4 fields.
We observe the particle being driven away from walls which restrict the accessible

area and therefore the number of possible paths to take. However, the horizon
determines the distance a particle will keep from the walls. In Fig. 2.5 this is shown
for a driven particle with variable horizon in systems of size 5 × 5 and 10 × 10
respectively. The particle’s average distance from the centre of the box is used to
measure the performance of a particle.
We observe that for a small horizon the distance to the centre is largest and
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2. Discrete evolution: Theory and results
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Figure 2.5.: Average steady-state distance to the centre of the box for different hori-
zons in systems of size (a) L = 5 and (b) L = 10. Distance is averaged
over 1000 steps after a transient of 100 steps. Initial position of the
particle is at (0, 0).

decreases for larger horizons to a minimum value. For τ = 1 the particle per-
forms a random walk since it can only sense one step ahead and therefore only the
neighbouring fields, randomly choosing one direction while not colliding with the
walls. For the 5 × 5 box the minimum distance is dmin = 0.5, for the 10 × 10 box
dmin = 0.7071 ≈ 2− 1

2 . This is due to the geometry of the system together with the
condition that a particle always needs to take a step and cannot rest at one field.
In Fig. 2.6 we show how a particle in a L× L box for a horizon τ ≤ L/2 will move
around the centre of the box for even and odd number of fields respectively. In Fig.
2.6(a) we see in grey the four fields a particle will move about, as we have observed
earlier. The average distance is constant at dmin = 2− 1

2 , all four fields are occupied
with equal probability. In Fig. 2.6(b), for an odd system size, there is actually a
centre field, but the particle is forced to move every step, and wherefore it switches
between the centre field and a neighbouring field.

Figure 2.7 shows the average distances to the centre for variable horizon τ and
box size L× L. For increasing horizon the average distance to the centre decreases
linearly. The area for large horizons and small box sizes, where the d is smallest,
is the regime where the particle is able to stay in the centre as discussed earlier.
The difference in behaviour between even and odd system sizes in that regime is not
visible with the scale at the colour bar used in Fig. 2.7. For the sake of completeness
this is illustrated in Fig. 2.8.
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2.1. First approach

(a) Even box size (b) Odd box size

Figure 2.6.: Centre fields for a particle in a box of (a) even and (b) odd size in grey.
For the even edge length the average distance is constantly

√
2/2, for

odd size it is half of the time at the centre field with distance d = 0 and
half of the time at a neighbouring field with d = 0.5 since it is forced to
move every step.
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Figure 2.7.: Average distance d from the centre of a box for different horizons τ
and box sizes L shown as three-dimensional plot in (a) and map in
(b). Sampled time 10000 steps, transient time 500 steps, initial position
(0, 0).
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2. Discrete evolution: Theory and results

For large box sizes and small horizons the data are slightly noisy. In general the
particle stays as far as possible away from the walls. The larger the system size the
further away from the centre a particle can possibly be. This explains the increasing
distance for small τ and increasing system size.
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Figure 2.8.: Average distance d from the centre of a box for different horizons τ and
box sizes L zoomed in in order to illustrate the deviant behaviour for
even and odd box sizes in the regime of horizon larger than box size,
respectively. Same data as shown in Fig. 2.7 (sampled time 10000 steps,
transient time 500 steps, initial position (0, 0)).

The two minimum distances are now visible. All data with larger distances are
not shown, therefore the whitespace in the top left corner.

We can consider the behaviour of the particle as quasi-deterministic. Except small
differences in the trajectory for example when moving away from a corner as shown
in Fig. 2.3 the qualitative outcome will always be the same. As soon as a particle is
at a distance to all walls larger than its horizon it performs a uniform random walk
within that distance.

2.1.3. Analytical results

We can view the trajectory of the particle as a random walk on a finite two-
dimensional lattice. The horizon simply determines the minimum distance from
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2.1. First approach

the walls a particle will keep after a transient time, i.e. long enough to be repelled
by the walls. For infinite time the probability density distribution of the position
of the particle will converge. In our system the probability for the particle to be at
field x with i neighbouring fields will be

p(x) =
∑
i

pi ·
1
Ni

(2.1.1)

where Ni denotes the number of neighbours of field i, which for this case is equivalent
to the inverse probability of moving to field x. This problem can be viewed as a first
order Markovian process. By creating a matrix of all transition probabilities we can
find the steady state distribution which, after normalization, is just the probability
density distribution of the particles position during a random walk. Appendix A.1
shows this in detail. The average distance to the centre can then be calculated using
the probabilities and the distances d of every field to the centre:

dav =
∑
x

p(x) · d(x) (2.1.2)

The analytical results for average distances are shown in Fig. 2.9(a). The analytical
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Figure 2.9.: (a): Analytical results for average distance d from the centre of a box
for different horizons τ and box sizes L × L. (b): Difference between
analytical and numerical results. Difference in average distance ∆d =
danalytical − dnumerical from the centre of a box for different horizons τ
and box sizes L.

model yields results that are very similar to computer simulations as shown in Fig.
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2. Discrete evolution: Theory and results

2.7. A comparison between the analytical model and simulations is shown in Fig.
2.9(b). The difference is negligible except for the regime with large horizon and
box size. This is due to the fact that here the particle has a larger area in which
it performs a random walk and therefore has a larger deviation from the expected
value. The rather good match of theoretical and numerical data is a nice validation
of the simulation.
The analytical results are valid for the case of a particle being able to remain on

a field. In our simulation the particle was forced to move every timestep, therefore
the densitiy distribution would alternate between two configurations. Like the king
on a chessboard, the particle can only move from a black to a white field, therefore
for one half of the fields the probability to be on is zero every step. The results can
be viewed as the average over two steps after an infinite time, or for a system where
a particle can rest at a field.
We observe the system moving away from restricted areas towards the centre

i.e. towards a state of largest (causal) entropy i.e a state with largest amount of
possibilities how to further evolve. In that sense entropy can be seen as a quantity
for freedom. If we would interpret the particle as an intelligent being, its intellect
would go with the horizon. For τ = 1 it is smart enough not to bump into walls, for
τ � 1 it will keep as much distance to restricted areas as possible maximizing its
freedom, maximizing its possibilities for the future.
This method becomes more and more computationally expensive, since the num-

ber of possible paths grows exponentially with the horizon. For an open infinte
system the total number of paths is Ntotal = 4τ . Therefore, we now describe a dif-
ferent method where we do not fully sample the accessible space. Also we choose
a different measurement for entropy (which is closer to what will be used later in
this work when we move to a continuous representation of space and time) in order
to have data that can be plausibly compared to the results of the simulations in
continuous space and time.

2.2. Second approach

2.2.1. Method

Similarly as before we let the particle sample its environment, but now we sta-
tistically generate a large number of random trajectories instead of going over all
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2.2. Second approach

possible sampling paths. Also, now we do not count the number of paths per di-
rection. Instead we sum over the number of fields each path contains, that is, the
area each path covers. For the three paths in Fig. 2.10 the total area we would
count is Atotal = 3 + 3 + 2 = 8. The areas are summed up for the initial direction
of the path. So for Fig. 2.10(a) the first step is up, for direction up we count the
area Aup = 3. Statistically the area of a path initially moving towards a restricted
area, like a wall, will be smaller and therefore giving information about the accessi-
ble phase space (here consisting only of position-space). In this way we can relate
the area covered by sampling paths to (causal) entropy as introduced before. This
method of sampling phase space is closer to what we will later use for continuous
systems. Thus making it comparable with results from different approaches.

(a) (b) (c)

Figure 2.10.: Schematic illustration: Sampling accessible phase space using (three)
random walks, counting the area of each path.

For the sampling shown in Fig. 2.10 the total area A for each direction D is the
sum of the areas ai of every sampling path i, whose first step is in direction D.

A(τ,D) =
∑
i

ai . (2.2.1)

From this we calculate a weight W

W (D) = A(τ,D)∑
D A(τ,D) , (2.2.2)∑

D

W (D) = 1 . (2.2.3)

We then would have the following values (assuming those three paths would consti-
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2. Discrete evolution: Theory and results

tute the whole sampling):

A(τ, ↑) = 3 (2.2.4)
A(τ,→) = 3 (2.2.5)
A(τ, ↓) = 2 (2.2.6)
A(τ,←) = 0 (2.2.7)∑

D

A(τ,D) = 8 (2.2.8)

W (↑) = 0.375 (2.2.9)
W (→) = 0.375 (2.2.10)
W (↓) = 0.25 (2.2.11)
W (←) = 0 (2.2.12)∑

D

W (D) = 1 (2.2.13)

The largest area is in the direction ↑ and →. Hence one of these will be chosen
randomly for taking a step.

2.2.2. Results: Box

First, we again consider a single particle in a two-dimensional, square lattice with
discrete timesteps, and only subject to the entropic force. Again as a measure of
performance we take the average distance from the centre d, averaged over 5000
steps after a transient of 500 steps. Figure 2.11 shows the average distance from the
centre for different horizons τ for a particle in a 5×5 and 10×10 box, respectively. In
both systems, for small horizons, the distance is large and decreasing as τ increases
to a minimum where it first stagnates. Contrary to our previous method d starts to
grow again when further increasing τ . That is, the particle is not as likely to stay
in the centre anymore. In the 5 × 5 system (Fig. 2.11(a)) for τ ≥ 35 it even has a
larger distance than when it performs a random walk at τ = 1, that is, it prefers
moving close to the walls. For small τ the behaviour in mostly a random walk, as
soon as the horizon is large enough for the particle to properly see the walls it stays
quite central, in (a) approaching dmin ≈ 0.5, in (b) dmin ≈ 0.8 which is around the
minimum found and discussed in the previous method. Concerning the behaviour
for large τ , note that in (a) the whole system in only 5 × 5 = 25 fields large. For
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2.2. Second approach

such high horizons the system can easily be covered by every trajectory. Sampling
trajectories initially going towards a wall will therefore sample an area very similar
to sampling trajectories initially going away from a wall. The entropic force hence
increases, causing the particle to change behaviour and preferences. In (b) the total
number of fields is 100 wherefore this effect is weaker, however there is a trend visible
in growing distance for larger horizon.
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(b) 10x10

Figure 2.11.: Average distance to the centre of the box for different horizons in sys-
tems with (a) L = 5 and (b) L = 10. [Distance averaged over 5000
steps after transient time 500 steps, initial position (0, 0), sampled
paths per step: 50000]

Figure 2.12 shows the dependence of d on τ and system size L.
For large L and small τ , d is relatively large and decreases smoothly for smaller L

and larger τ respectively. The dark blue region indicates a large set of parameters
where the particle stays in the centre. For small systems and large horizons in the
bottom right corner there is a light blue area were the particle shows a change in
behaviour congruent with what was already observed in Fig. 2.11(a).
In order to understand the behaviour in this regime we calculate the probability

density of the particle’s position. Figure 2.13(a) shows the case for τ = 1 (when
the particle performs a random walk). There are three kinds of fields with different
occupation probabilities: In the corners (two neighbours), at the walls (three neigh-
bours) and in the central area (four neighbours). As a comparison Fig. 2.13(b)
shows the analytical solution for this scenario (see Sec. A.1 in the appendix for
details on the analytical method). This gives the exact occupation probabilities pc,
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2. Discrete evolution: Theory and results
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Figure 2.12.: Average distance from the centre of a box d for different horizons τ and
box sizes L. [Distance averaged over 5000 steps after transient time
500 steps, initial position (0, 0), sampled paths per step: 50000]

pw, pm for corner, wall and central area, respectively,

pc = 0.025 = 1
40 (2.2.14)

pw = 0.0375 = 3
80 (2.2.15)

pm = 0.05 = 1
20 (2.2.16)

ptotal = 4 · pc + 12 · pw + 9 · pm = 1 . (2.2.17)

The occupation probability is linearly related to the number of neighbouring fields
by

pc = 2
4 · pm and (2.2.18)

pw = 3
4 · pm . (2.2.19)

Be aware of the different colour scale in Fig. 2.13(c) and (d). Figure 2.13(c) shows
the occupation probability for τ = 10. Around this horizon a minimum average
distance is reached (as shown and discussed in Fig. 2.11(a)). The probability to stay
in the centre field is around p ≈ 0.5 whereas its neighbouring fields have p ≈ 0.125.

16



2.2. Second approach

0 1 2 3 4
x

0

1

2

3

4

y

0.02

0.03

0.04

0.05

0.06

P
(x
,y

)

(a) Simulation, τ = 1
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(b) Analytic solution for a random walk
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(c) Simulation, τ = 10
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(d) Simulation, τ = 40

Figure 2.13.: Occupation probability for a particle in a 5x5 box for (a) τ = 1 and
(b) its analytical solution. In (c) τ = 10 and in (d) τ = 40. Be
aware of the different colour scale. [Occupation probability sampled
using 10000 steps after transient time 500 steps, initial position (0, 0),
sampled paths per step: 50000]
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2. Discrete evolution: Theory and results

The particle switches between the centre and the neighbouring fields thus showing
a behaviour we would expect from the previous method. However, for τ = 40 when
the average distance is even larger than in the diffusive case of τ = 1 the behaviour
differs dramatically as shown in Fig. 2.13(d). The occupation probability along
the wall is much higher than the centre fields. For a sufficiently large horizon, such
that one trajectory could fill the entire system, the positions close to the wall or the
corners seem more attractive than the centre. If a particle randomly moves starting
from the centre, it will most likely reflect from the wall and cross its own path. Hence
the total area is smaller than when it starts from a corner. In the latter case the
particle has a larger chance of moving towards the centre and other corners because
two directions are immediately restricted and so it easily moves to unexplored areas.
This might explair the tendency to stay close to the walls. However, if the horizon
is even larger, so that almost all trajectories cover the whole system, every direction
would be equally favorable and therefore we would observe behaviour equivalent to a
random walk. For a particle in a 5×5 box this is shown in Fig. 2.14, where the data
for τ ∈ [1, 70] are the same as in Fig. 2.11(a). For τ = 1, the particle performs a
random walk. The performance then increases, that is, the particle finds the centre.
Then it enters the regime where the wall is more favorable. When further increasing
τ the average distance to the centre d then converges to the level of the random
walk marked with a solid line. As expected, the particle performs a random walk
for τ →∞ since every trajectory, covering the whole system, will indicate the same
(maximum) entropy for every position. Walls lose their influence on the particle.
For τ ∼ L the behaviour for this method qualitatively matches the previously

examined approach of counting all possible trajectories - for even smaller τ , the
behaviour agrees quantitatively with the previous approach. As soon as the horizon
approaches the system size τ ∼ L2 we observe a different behaviour which can be
explained. In general for larger horizons this method exhibits larger deviations from
the expected values and a stochasticity due to the finite sampling. We now apply
this method to one class of problems or systems we want to examine in this thesis,
a bottleneck system.

2.2.3. Results: Bottleneck

Bottleneck problems can be found in various fields in physics. In a geometrical sense,
such as in evacuation scenarios where agents need to pass through a narrow exit, also
in the sense of a bottleneck in an energy landscape in the context of protein folding.
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Figure 2.14.: Average distance to the centre of the box for high horizons in system
with L = 5. [Distance averaged over 5000 steps after transient time
500 steps, initial position (0, 0), sampled paths per step: 50000]

We find great importance and relevance in studying this class of problem and thus
shall now examine the behaviour of a particle in a bottleneck-system. Figure 2.15
shows the system in which we let an entropically driven particle evolve. If not stated
otherwise we will always consider a small box of size sx = sy = 5 and a large box
Sx = Sy = 21 connected by a bottleneck of variable length lBN . Since the larger box
contains a larger area it is entropically more favorable to be occupied. The particle
starts in the smaller (less favorable) box and starts moving around. If it is “smart”
enough, it will move through the bottleneck into the big box. In general, as soon as
a particle reaches the first field of the big box after the bottleneck (marked in grey
in Fig. 2.15) the simulation is successful in entering the big box. It is most likely
(despite the slight stochasticity of this sampling method) to remain in the large box.
Figure 2.16 shows the average time to reach the big box tfp (a first passage time)

for different horizons τ and bottleneck-lengths lBN . Every data point is averaged
over 1000 simulations. If a particle takes longer than 25000 steps to succeed, the
whole set of simulations for those parameters counts as fail and no data point is
shown. For τ = 1, (so for a random walk) the particle succeeds for all bottleneck-
lengths. Then there is a gap where only for lBN = 0 the particle succeeds, the
success-time increases with increasing τ up to τ = 4. For τ > 4 the success-time
decreases and finally reaches a plateau. The magnitude of the plateau increases with
longer lBN . Close inspection of the curves for lBN ∈ {0, 1, 2} reveals that there is a
shallow minimum. For lBN = 0 this dip is at τ ' 15, for lBN = 1 at τ ' 20 and for
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2. Discrete evolution: Theory and results

Figure 2.15.: Geometry of discrete bottleneck potential. Initial position of the par-
ticle is in the lower left corner of the small box, marked with a black
field. Marked in grey is the field which in the following simulation
needs to be reached for the particle to be counted as “reached the big
box” or success.

lBN = 2 at τ ' 23. For simulations with lBN > 2 there is an interval for τ > 1 where
success-times were larger than the simulation time. In this regime the particle feels
the small box as favorable, more favorable than the bottleneck and simultaneously
is too “short sighted” to perceive the big box. Therefore, it is reasonable to stay in
the small box.
The small dip before finally converging, visible for short bottlenecks, originates

from the same effects as we discussed previously: As soon as the horizon is large
enough the corners are more favorable than the centre. Concerning the dip, first
the particle would move towards the central area from where it easily enters the
bottleneck. For a larger horizon the corners will be more favorable, causing the
particle to move there with higher probability.
For large horizons at some point the particle will succeed when it can see far

enough to rate the big box as more favorable. In general, the longer the bottleneck,
the longer it takes the particle to succeed.
For τ = 1 (the particle performs a random walk) we can calculate an analytical

success time. For that, again the whole system can be translated into a Markovian
process. See the appendix A.2 for details. The results together with the numerical
results are shown in Fig. 2.17.
We find that first passage time linearly increases with lBN and the analytical
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Figure 2.16.: Average time for a particle to reach the big box tfp for different hori-
zons τ and bottleneck-lengths lBN . [Averaged over 1000 simulations,
sampled paths per step: 50000, maximum runtime tmax = 25000]
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Figure 2.17.: Average time for a particle to reach the big box tfp for horizon τ = 1
(i.e a random walk) and different bottleneck-lengths lBN . [Numerical
data same as in Fig. 2.16: Averaged over 1000 simulations, sampled
paths per step: 50000, maximum runtime tmax = 25000]
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2. Discrete evolution: Theory and results

results (solid line) match well with the numerical data (crosses). For larger lBN
there is a deviation between the two curves which we ascribe to larger error bars in
the numerical calculations.
For large horizon, in Fig. 2.16 the average first passage time into the big box tfp

reaches a plateau. Those times are shown in Fig. 2.18 together with the theoretical
minimum number of steps necessary Clearly the theoretical minimum number of
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Figure 2.18.: Asymptotic time for a particle to reach the big box t∗fp for large hori-
zons versus bottleneck-length lBN . [Data same as in Fig. 2.18, time
averaged over all times after converging]

steps (crosses) increases linearly with lBN with slope one. The ideal performance
(line) is close to the minimum steps and increases for longer lBN .

2.3. Conclusions

Using the first approach where we counted the number of possible sampling paths, we
observed a particle moving towards the centre of a box or square lattice if the horizon
was at minimum as large as half of the side length of the box. For smaller horizon it
would keep τ steps distance from walls, performing a random walk within a square
area around the centre. The average distance from the centre d for different system
sizes L and horizons τ could be reproduced by a random-walk-based theoretical
approach.
With the second appreach, counting the area covered by each sampling path, we

observed a similar behaviour. However for a relatively large horizon around τ ≈ L2
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2.3. Conclusions

the particle finds the proximity of walls entropically favorable and thus moves to-
wards the walls, until the horizon is large enough to fill the entire system. At this
point the particle starts performing a random walk since all directions seem equiv-
alent. Furthermore, we explored the first passage time of a particle in a bottleneck
system. For a random walk a particle succeeded within finite time. For increasing
τ first the particle would not succeed, then succeed with decreasing first passage
times until it reached a plateau. Again we analytically calculated the behaviour for
a random walk and obtained matching results. It is remarkable that for for small
horizons a random walk produces the best success times. In this case of a small
horizon the entropic approach makes the bottleneck “scary” to the particle.
In order to move to more general systems and including momentum, in the follow-

ing section we derive an expression for the causal entropic force for a system with a
continuous representation of space and time.
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3. Continuous evolution: Theory

In this section we will first derive the equation for the entropic force in Sec. 3.1, we
then discuss how to sample the path probabilities in Sec. 3.2 based on [3]. We then
further explain and discuss the implementation in Sec. 3.3. In Sec. 3.4 we introduce
the model and discuss some of its parameters.

3.1. Derivation of the causal entropic force

Consider the standard definition of entropic force F with respect to the present
macrostate X0, that is, the state of the system including its environment

F(X0) = T∇XS(X)|X0 , (3.1.1)

with reservoir temperature T and entropy S of the macrostate X.
Now, we define the causal path entropy Sc of macrostate X on the set of all

possible paths through phase space within a finite time τ :

Sc(X, τ) = −kB

∫
Pr(Xτ |x(0)) ln

[
Pr(Xτ |x(0))

]
DXτ , (3.1.2)

with conditional probability Pr(Xτ |x(0)) of the occurence of a path Xτ starting from
the initial (micro)state or position in phase space x(0), where kB is Boltzmann’s
constant and

Pr(Xτ |x(0)) =
∫
ξτ

Pr(Xτ , ξτ |x(0))Dξτ , (3.1.3)

that is, the conditional probability of a path Xτ is determined by the integral over
all possible evolutions of the open system’s environment ξτ during the time interval
τ . The integrals in Eq. (3.1.2) and (3.1.3) are path integrals.
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3.1. Derivation of the causal entropic force

The entropic force can then be rewritten

Fc(X0, τ) = Tc∇XSc(X, τ)|X0 (3.1.4)

where Tc is the causal path temperature which determines the amplitude of the
force and therefore the tendency of the system to evolve towards states of higher
causal entropy. In the following we will refer to causal entropic force Fc simply as
force F and causal (path) entropy Sc as entropy S for the sake of simplicity. If we
restrict ourselves to position-space coordinates qj(0) we can express the force in the
following way:

Fj(X0, τ) = Tc
∂Sc(X, τ)
∂qj(0)

∣∣∣∣
X0

, (3.1.5)

and using Eq. (3.1.2)

Fj(X0, τ) = −TckB
∂

∂qj(0)

∫
Pr(Xτ |x(0)) ln

[
Pr(Xτ |x(0))

]
DXτ (3.1.6)

= −TckB

∫
∂

∂qj(0)Pr(Xτ |x(0)) ln
[
Pr(Xτ |x(0))

]
DXτ

= −TckB

∫
∂Pr(Xτ |x(0))

∂qj(0) ln
[
Pr(Xτ |x(0))

]
+

Pr(Xτ |x(0)) ·
[

1
Pr(Xτ |x(0)) ·

∂Pr(Xτ |x(0))
∂qj(0)

]
DXτ

= −TckB

{∫
∂Pr(Xτ |x(0))

∂qj(0) ln
[
Pr(Xτ |x(0))

]
DXτ+∫

∂Pr(Xτ |x(0))
∂qj(0) DXτ︸ ︷︷ ︸

=0

}
(3.1.7)

= −TckB

∫
∂Pr(Xτ |x(0))

∂qj(0) ln
[
Pr(Xτ |x(0))

]
DXτ . (3.1.8)

We can assume deterministic behaviour within one interval [t, t + ε]. Therefore a
conditional path probability can be decomposed into the probabilities of its intervals
in the following way:

Pr(Xτ |x(0)) =
[

N∏
n=1

Pr(Xε|x(tn))
]
Pr(Xε|x(0)) , (3.1.9)
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where Xε denotes a path of length ε (starting from whichever initial conditions are
given) and τ = Nε. Accordingly, we can express the gradient of the probability as

∂Pr(Xτ |x(0))
∂qj(0) =

[
N∏
n=1

Pr(Xε|x(tn))
]
∂Pr(Xε|x(0))

∂qj(0) (3.1.10)

Since Xε can be seen as the path from qj(0) to qj(ε) in one step, the gradient
in probability of jumping from x(0) to x(ε) with respect to qj(0) is equal to the
negative gradient in probability of jumping from x(0) to x(ε) with respect to qj(ε):

∂Pr(Xε|x(0))
∂qj(0) = −∂Pr(Xε|x(0))

∂qj(ε)
(3.1.11)

Now, by choosing the ε sufficently smaller than and spatial or kinetic variation of
the internal forces h(x)

ε�
√

mj

|∇q(0)hj(x(0))| , (3.1.12)

ε� 1
|∇p(0)hj(x(0))| , (3.1.13)

we can reasonably Taylor expand and express the position qj(ε) as follows:

qj(0) = qj(0) + pj(0)
2mj

ε+ fj(0) + hj(0)
2mj

ε2 , (3.1.14)

where fj(t) denotes a random Gaussian force with

〈fj(t)〉 = 0 (3.1.15)

〈fj(t)fj′(t′)〉 = mjkBTr
ε2 δijδ(t− t′) , (3.1.16)

and where δ(t) is the Dirac δ-function, and δij is the Kronecker delta. Thus we find
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that Pr(Xε|x(0)) is Gaussian in qj(ε). Therefore we can write

Pr(Xε|x(0)) ∼ exp
(
−1

2
(qj(ε)− 〈qj(ε)〉)2

〈q2
j (ε)〉 − 〈qj(ε)〉2

)
(3.1.17)

⇒ ∂Pr(Xε|x(0))
∂qj(ε)

= qj(ε)− 〈qj(ε)〉
〈q2
j (ε)〉 − 〈qj(ε)〉2

Pr(Xε|x(0))

=2fj(0)
kBTr

Pr(Xε|x(0)) . (3.1.18)

Using this last result Eq. (3.1.11) takes the form

∂Pr(Xτ |x(0))
∂qj(0) =

[ N∏
n=1

Pr(Xε|x(tn))
]

2fj(0)
kBTr

Pr(Xε|x(0)) . (3.1.19)

With (3.1.8) we then obtain

Fj(X0, τ) = −2Tc
Tr

∫
fj(0)Pr(Xτ |x(0)) ln

[
Pr(Xτ |x(0))

]
DXτ . (3.1.20)

Once we find a way to estimate the probabilites Pr(Xτ |x(0)) we can explicitly
compute the causal entropic force Fj(X0, τ).

3.2. Sampling of path probabilities

We use M Brownian trajectories through phase space to sample Pr(Xτ |x(0)) with
a finite time horizon τ . Every sampling trajectory starts from the current system
state x(0). A phase space volume is assigned to each sampling trajectory:

Ωi ∼
1

Pr(Xτ,i|x(0)) , (3.2.1)

assuming a uniform probability for all paths within a neighbourhood of a sampled
path Xτ,i, i < M . The normalization condition implies

M∑
i

ΩiPr(Xτ,i|x(0)) = 1 ⇒ Ωi = 1
MPr(Xτ,i|x(0)) . (3.2.2)
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Thus, our estimate of the force in Eq. (3.1.20) is

Fj(X0, τ) =− Tc
Tr

∫
fj(0)Pr(Xτ |x(0)) ln

[
Pr(Xτ |x(0))

]
DXτ (3.2.3)

≈− 2Tc
Tr

〈∑
i

fij(0) 1
MΩi

ln
(

1
MΩi

)
Ωi

〉

= 2Tc
TrM

〈∑
i

fij(0) ln(MΩi)
〉

= 2Tc
TrM

{〈∑
i

fij(0) ln(M)
〉

︸ ︷︷ ︸
=0

+
〈∑

i

fij(0) ln(Ωi)
〉}

= 2Tc
TrM

〈∑
i

fij(0) ln(Ωi)
〉
, (3.2.4)

now we add a vanishing term,

Fj(X0, τ) = 2Tc
TrM

{〈∑
i

fij(0) ln(Ωi)
〉
−

〈
ln
〈
Ωi

〉
·
∑
i

fij(0)
〉}

(3.2.5)

= 2Tc
TrM

〈∑
i

(
fij(0) ln(Ωi)

)
−
∑
i

(
fij(0) ln

〈
Ωi

〉)〉

= 2Tc
TrM

〈∑
i

{
fij(0) ln(Ωi)− fij(0) ln

〈
Ωi

〉}〉

= 2Tc
TrM

〈∑
i

{
fij(0)

(
ln(Ωi)− ln

〈
Ωi

〉)}〉

= 2Tc
TrM

〈∑
i

fij(0) ln
(

Ωi〈
Ωi′
〉)〉 . (3.2.6)

Many possible choices are available to quantify the phase space volume Ωi of the
sampling trajectories. We choose the radius of gyration:

Ri ≡ Ωi = R2
gyr,i = 1

N

N∑
k=1

(rk − rmean)2 , (3.2.7)

with N = τ
δt

the number of steps per sampling path. It contains the information of
how elongated a trajectory is. Statistically speaking, closer to an obstacle trajecto-
ries will be more “folded” and shorter, causing a smaller R. In open space however
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the trajectory is more likely to be elongated, causing a larger R. The information
about proximity of obstacles is conserved under this choice of phase space discretiza-
tion, and therefore it retains the relevant information required by our investigations.
The Gaussian noise of the sampling trajectory for time t = 0 is given by fij(0), that
is the force applied on the particle during its first step.
Effectively the entropic force is calculated by letting non-interacting Brownian

particles evolve through phase space for a fixed duration τ , then weigh their first step
using its phase space volume R. The first step is determined by the initial position
in phase space and the random Brownian force applied to the particle fij(0). In the
end we take the sum over all weighted first steps. This is schematically shown in
Fig. 3.1 with the first step in the small ellipse and what is used for calculating R
in the large ellipse.

Figure 3.1.: Schematic of a sampling trajectory with first step (small blue ellipse)
and part used as weight marked in large red ellipse.

Figure 3.2(a) shows an example of a sampling trajectory close to a wall. It en-
counters an obstacle, such as as wall, and is therefore more likely to cross its own
previous steps again. Statistically it will be more compressed, producing a smaller
R and resulting in weighting the first step fij(0) towards an obstacle less than a
step towards open space. This in total will generate a force directed away from the
obstacle.

3.2.1. Connection between sampling trajectory and polymers

An ideal polymer chain experiences a force between its two ends

〈~f〉 = −kBT
3〈~R〉
Nl2

, (3.2.8)
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3. Continuous evolution: Theory

(a)

Figure 3.2.: Sketch of a particle close to a wall with two exemplary sampling paths.
The path towards the wall is reflected and in total more compressed
compared to the path towards the right without any restricted areas.
The latter one has a larger radius of gyration and is therefore weighted
stronger. In total this generates a force away from the wall.

where T is the temperature of the chain, ~R is the distance between the two ends of
the polymer with N chain segments, each of length l. This force originates from the
polymers bias towards states of larger conformational entropy, caused by thermal
fluctuations acting on its chain segments. Thus, similar to a sampling trajectory
generating a force away from a restriction, a polymer under spatial confinement
statistically will expand and thereby exert a force onto the confinement pushing
itself away from it [17–19]. We can interpret a sampling trajectory, consisting of
N = τ

δt
uncorrelated random steps an a non-self-avoiding ideal chain of N freely

jointed segments – an ideal polymer. Thus an (causal) entropically driven particle
can be viewed as a particle with a number of ideal polymers attached to it (see Fig.
3.3(b)), being repelled by any restricted area.
We use this analogy in Sec. 4.6 where we compare results of an experiment with

DNA molecules with results of simulations with equivalent setup.

3.2.2. Position- and momentum-space – FP and FM

The phase spaces of most systems in this thesis consists of two position and two
momentum dimensions per particle. We decided to examine those two cross-sections
of phase space of the sampling trajectories seperately and analyse their effects on
the evolution of the system. If we explicitly refer to the radius of gyration for a
certain set of dimensions, position or momentum, we will add this information as an
index RP and RM, respectively. Accordingly, if we distinguish between simulations
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3.2. Sampling of path probabilities

(a) (b)

Figure 3.3.: (a) Sketch of a particle close to a wall with a sampling path compressed
at the wall. In analogy to samplings paths as polymers, two arrows
indicate the expansion of the polymer, thus generating a force away form
the wall. (b) Sketch of a particle with several sampling trajectories.

where we use the entropic force calculated using position- and momentum-space and
refer to them as FP and FM, respectively.
For position-space the radius of gyration RP is intuitive since it is equivalent to

the moment of inertia. The set of positions between two steps can be viewed as a
number of point particles of equal mass and the moment of inertia is taken relative
to the centre of mass, that is, the average position of all points. The more spread
out a trajectory and therefore its steps or positions, the larger RP , the larger the
weight for the first step of this particular trajectory.
However, in momentum-space RM will show reciprocal behaviour. After a colli-

sion with an obstacle the orthogonal part of the momentum will be inverted, causing
the data points to be spread out in phase space. Figure 3.4 shows an example of two
trajectories experiencing the same sequence of Gaussian noise, one with a reflection,
the other without. Both position and momentum-space are shown. Figure 3.4(a)
shows the position of a moving particle in an open environment while in Fig. 3.4(b)
its momentum is given. Figure 3.4(c) shows the evolution of a particle colliding
with a wall which is illustrated as a vertical black line. Its momentum-space in
Fig. 3.4(d) shows a large horizontal jump from negative to positive values as the
collision occurs. Please note that the lines do not indicate the actual trajectory of
the particle but connects the coordinates between two consecutive timesteps. This
is the reason why in Fig. 3.4(c) it might seem as if the particle did not touch the
wall.
In momentum-space, collisions with an obstacle will dramatically increase RM.
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3. Continuous evolution: Theory

For open space where with no or few collisions the points will be rather close to each
other resulting in a small R. Given our choice of radius of gyration as method for
quantification of the phase space volume, in the following for momentum-space the
calculated force will be inverted. Thereby an obstacle will statistically cause large
RM thus having resulting in a repulsive effect on driven particles.

Generally a trajectory with large RP will produce relatively small RM and vice
versa.
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(a) Position-space, no collision
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(b) Momentum-space, no collision
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(c) Position-space, collision
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(d) Momentum-space, collision

Figure 3.4.: Position-(a),(c) and momentum-space (b),(d) of two trajectories, (a),(b)
in an open environment and (c),(d) experiencing a collision with a wall.
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3.3. Implementation of the method

3.3. Implementation of the method

The Brownian trajectories used for sampling obey the Langevin equation

m~̇v = −γ~v + ξ(t) + h(~x) , (3.3.1)

where ξ(t) is a Gaussian noise, h(~x) represents the walls or other external forces and
the mass m = 1. Again, the two relevant quantities of each sampled trajectory are
the first step containing the information of direction and the radius of gyration of
the whole trajectory used to weight the first step. The total number of steps per
sampling trajectory n = τ/δt needs to be large enough such that the environment
will be sufficiently explored. At the same time n cannot be arbitrarily large for
the follwing reasons. Statistically, a first step of a sampling trajectory towards a
wall will always result in a smaller RP , causing a repulsion. Upon increasing n, the
influence of the first step decreases thus requiring more sampled trajectories in order
to observe statistical effects, that is, a repulsive force away from restricted areas. In
this thesis we let a sampling trajectory explore the environment with the total of
n = 15 steps, τ = 1.5, δt = 0.1. For exploration of a large area this comparably
small number of steps can be compensated through spatially large steps. In order
to maintain an accurate interaction with the walls despite large steps, in case of a
collision a step will be divided into smaller steps.
Figure 3.5 shows a sampling of an environment with every trajectory behaving

according to Eq. (3.3.1). Illustrated are 500 sampling trajectories of a point particle
close to a wall, that is, the initial position of every trajectory close to a wall. The
colour bar parametrizes time along the trajectory. Trajectories facing the wall are
more likely to be shorter, resulting in a smaller RP and in total will produce a
repulsion from the wall. Thus the entropic force will be directed away from the
wall. In order to get a qualitative idea of how the force depends on the distance
from an obstacle we show in Fig. 3.6 the force on a particle generated by an infinitely
long wall. The qualitative behaviour for this geometry is of interest. We calculate
the entropic force resulting from taking into account only the position subspace of
phase space P , or the momentum subspaceM. We also consider the components of
the entropic force parallel and perpendicular to the walls. The forces FP‖ and FM‖
are zero for all values of distance from the wall.
For large distances all forces considered vanish, while closer to the origin FP⊥ and

FM⊥ have smooth maxima indicating a repulsive force. Close to the wall there is a
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3. Continuous evolution: Theory
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(a)

Figure 3.5.: 500 sampling trajectories for a particle close to a wall with initial posi-
tion (0.1,0.5)

small regime of attraction to the wall, until for distances almost zero also FP⊥ and
FM⊥ become zero (see Fig. 3.6(b) for an enlarged view).
The behaviour limd→∞ F = 0 is expected, since as soon as an obstacle is further

away than the extent of the area covered by the sampling paths, it is not detected,
hence it cannot influence the particle. The repulsion is also as expected: Trajectories
are effectively shortened by the constrains imposed by the wall causing the repulsion.
The vanishing force for the particle close to the wall is also easily explained. For a

particle right at the wall all of its sampling trajectories will take their first step away
from the wall. If the first step is towards the wall, it is reflected immediately, which
is equivalent to a first step away from the wall. Statistically the following steps of
each trajectory will be the same causing the calculated entropic force to cancel out.
Concerning the small attractive regime for d ≤ 0.05 we observe an effect similar to

what we discussed in Sec. 2.2.2 with a particle on a square lattice preferring the edges
of the system for large horizons. In a continuous system for a particle sufficiently
close to a wall the radius of gyration of sampling trajectories with first steps towards
the wall will statistically be larger. Assuming that the radius of gyration is smallest
if the sampling trajectory crosses itself at around τ/2, the proximity of a wall will
restrict the number of such τ/2-stage crossings. Close to a wall, in direction towards
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3.3. Implementation of the method
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Figure 3.6.: Entropic force calculated using position-space and momentum-space of
sampling trajectories, respectively, depending on distance to an infinte
wall. The force parallel to the walls is fluctuating around zero. [Av-
eraged over 106 trajectories, γ = 0.25

δt
, τ = 1.5, δt = 0.1. Force was

normalized to have its maximum value at 1.]
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3. Continuous evolution: Theory

it no such crossing can occur since the sampling trajectory would be reflected or
move along the wall (see Fig. 3.7(a)). However in free space such crossings can
occur towards any direction (see Fig. 3.7(b)). The wall eliminating this event thus
lets R of trajectories with first steps towards it statistically be larger. We conclude
therefore that very close to a wall the entropic force will be weakly attractive.

(a) (b)

Figure 3.7.: Schematic of two sampling trajectories of a particle close to a wall with
(a) the first step towards the wall and (b) the first step away.

3.4. Model equation

In this section we will give illustrative evolutions of entropically driven particles and
discuss their dependence on the temperatures Tr and Tc.
After calculating the entropic force we can apply it to the driven particle according

to the following equation of motion

m~̇v = −γ~v + ~FC(t) + h(~x) , (3.4.1)

as introduced in the previous section with drag γ, mass m = 1 and walls and system
forces h(~x). We replace the Gaussian noise with the entropic force ~FC(t). We can
now let an entropically driven particle run freely in a system. Figure 3.8(a) shows
an entropically driven particle in a box using momentum-space for calculating the
entropic force. In Fig. 3.8(b) a set of sampling trajectories is shown. The driven
particle in Fig. 3.8(a) moves straight towards the centre of the box where it then
stays. It successfully detects the walls and moves away from them, ultimately finding
the most favorable position in the centre of the box. Figure 3.9 shows two trajectories
with different Tr.
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3.4. Model equation
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Figure 3.8.: (a): A particle in a box, using momentum-space of sampling trajectories
for calculating the entropic force. (b): Sampling trajectories for the
initial position. [Tr = 0.02, Tc

Tr
= 1.25, L = 1, δt = 0.1, τ = 1.5,

γ = 0.25
δt

, initial position (0.1, 0.1), using momentum-space]

In order to develope an intuition of the influence of the parameters Tr and Tc
Tr
,

we will examine the qualitative change in behaviour by varying those parameters
indepentently, while keeping all other parameters fixed.

3.4.1. Influence of Tr
We put a particle in a box of size L = 1 with initial position (0.1, 0.1) and let it
evolve according to Eq. (3.4.1). Figure 3.9(a) shows a simulation with Tr = 0.005
and Fig. 3.9(b) with Tr = 0.015. Sampling paths from the initial position are given
in the small insets. In both cases the particle starts moving straight away from the
corner. For Tr = 0.005 at t = 250 it starts to move upwards in a diffusive manner.
For Tr = 0.015 it reaches the centre and moves in the same manner diffusive manner
around it. In Fig. 3.9(a) the particle moves away from the walls until the sampling
trajectories do not reach them anymore and therefore do not produce any repulsion.
The particle then performs a random walk staying at a minimum distance from the
walls at all times. The particle in Fig. 3.9(b) has a Tr large enough so that its
sampling trajectories are sufficiently long to keep the particle relatively confined in
the centre, at maximum distance from all walls. Figure 3.10(a) shows the average
net displacement 〈dnet〉 = 〈|~r(τ) − ~r(0)|〉 of a sampling trajectory depending on
Tr. The average net distance of a sampling path scales with its average travelled
distance. Therefore we conclude that the distance from which a particle is able to
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3. Continuous evolution: Theory
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(b) Tr = 0.015

Figure 3.9.: A particle in a box for (a): Tr = 0.005 and (b): Tr = 0.015. The dotted
lines mark the centre of the box. [Tc

Tr
= 10, L = 1, δt = 0.1, τ = 1.5,

γ = 0.25
δt

, initial position (0.1, 0.1), using FM]

detect the walls depends linearly on Tr. Figure 3.10(b) shows an exemplary set of
sampling paths.
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Figure 3.10.: (a): Average end to end distance of a sampling trajectory depending
on Tr. b): Sampling paths for Tr = 0.01. [sampled paths per data
point: 10000, δt = 0.1, τ = 1.5, γ = 0.25

δt
]

3.4.2. Influence of Tc/Tr
We also consider the influence of Tc through the dimensionless number Tc

Tr
as it

appears in Eq. (3.2.6). Figure 3.11(a) shows a particle in box for Tc
Tr

= 1 which

38



3.4. Model equation

moves towards the centre where it stays relatively confined. Figure 3.11(b) shows
the same system for Tc

Tr
= 30 which also moves towards the centre, but it has

comparably larger steps and is not as confined to the centre as in Fig. 3.11(a). It
experiences a stronger entropic force.
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Figure 3.11.: A particle in a box for (a):Tc
Tr

= 1 and (b):Tc
Tr

= 30. The dotted lines
give the coordinates of the centre of the box. [Tr = 0.03, L = 1,
δt = 0.1, τ = 1.5, γ = 0.25

δt
, using FM]

3.4.3. Model parameters

In the simulations in this thesis we keep most parameters fixed. We list in table 3.1
all parameters including the value used if not explicitly stated otherwise.

commonly used value
δt 0.1 timestep
τ 1.5 time horizon of sampling trajectories
γ 0.25

δt
drag

Nsample 5000 number of sampled paths per step

Table 3.1.: List of parameters. Given values are used in all simulations shown, if not
explicitly stated otherwise.
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4. Continuous evolution: Single
particle dynamics

First we will examine how well a particle performs in reaching the centre of a box.
We use the average distance of a particle from the centre of the box d as quantity
for measuring its performance. We will show a phase-diagram of d depending on
Tr and Tc

Tr
and some exemplary path of entropically driven particles. In Sec. 4.1

this is shown using the position-space of sampling trajectories for calculating R and
therefore the entropic force. Analogously in Sec. 4.2 this is done using momentum-
space of the sampling trajectories for calculating the entropic force. In Sec. 4.4 we
examine the performance of a particle in a bottleneck system and finally compare
it to the results of the simulations on a lattice.

4.1. Particle in a box, using FP
We consider an entropically driven particle in a box of size L = 1 and let it move
for t = 3 · 104δt. After a transient of Ntransient = 104 steps we calculate its distance
d from the centre of the box and finally average over time. Figure 4.1 shows 〈d〉 for
different Tr and Tc

Tr
. Upon increasing Tr we can distinguish four regions:

1. The blue region for small Tr and large Tc
Tr
,

2. a purple region for increasing Tr,

3. a green region, and finally

4. the orange region covering the whole diagram for Tr > 0.06.

Except for the blue to the purple transition, all other transitions are rather steep.
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4.1. Particle in a box, using FP

In region 1 the particle has such a small horizon that it will gain some distance
from the walls, then diffuse and due to limited sampling time, not fully explore the
system. In region 2 the particle finds the centre and stays there. Region 3 indicates
that the particle manages to find the centre of one wall and stays there at distance
d ≈ 0.5. In region 4 the particle stays at the corner at distance (d ≈ 0.7 ≈

√
0.5).
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Figure 4.1.: The average distance of a particle from the centre of the box for variable
Tr and Tc

Tr
. Region numbers are displayed for each corresponding regime.

[L = 1, total runtime t = 3000 δt, transient time ttransient = 1000 δt,
using FP ]

Figure 4.2 shows six trajectories for points in the phase-diagram, giving the hori-
zon as insets. In Fig. 4.2(a)-(d)we increase Tr while keeping the ratio Tc

Tr
= 1; they

correspond to a vertical cut through the phase diagram (Fig. 4.1). Figures 4.3(a)
and (b) give two trajectories in the right area of the phase diagram for Tc

Tr
= 4. In

Fig. 4.2(a) a trajectory for parameters in region 1 is shown. The particle moves away
from the corner and starts moving around in a diffusive manner. Tr and therefore
the horizon are much smaller than the box such that the particle stops detecting
the presence of walls long before it reaches the centre. In Fig. 4.2(b) the particle
with parameters in region 2 of Fig. 4.1 succeeds in reaching the centre. It starts in
the bottom left corner where it first moves along the walls until it moves towards
the centre in a curved trajectory. Initially it is not repelled by the wall but instead
moves around in the corner until by chance it gains sufficient distance from the walls
such that it is repelled. It first reaches this distance from the vertical wall, which
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4. Continuous evolution: Single particle dynamics

is why it experiences for some time stronger repulsion in the x direction. Therefore
the trajectory to the centre is bent. A trajectory in region 3 of Fig. 4.1 is shown
in Fig. 4.2(c). The particle moves around in the bottom left corner until at some
point it reaches a distance to the left wall such that it is repelled. It then stays in
the centre at the bottom wall. The horizon is large enough for the sampling tra-
jectories to cover the entire system. With equal probability the particle could have
moved along the vertical wall up and stayed at the left wall. Figure 4.2(d) shows a
particle in region 4 for even larger horizon, which never leaves the bottom left cor-
ner. In Fig.4.3(a) a trajectory in region 1 for Tc

Tr
= 4 is shown. The particle moves

straight away from the corner and then moves within the system in almost ballistic
fashion, feeling a repulsion of the walls and keeping a certain distance from them.
The distance is roughly the length of the radius of the set of sampling trajectories.
Figure 4.3(b) shows a particle in region 4 for Tc

Tr
= 4 where the particle remains in

the corner as observed in Fig. 4.2(d), but this time covering a larger area in the
corner. We conclude that region 2 corresponds to the most efficient combination of
parameterns to find the centre of the box.

4.2. Particle in a box, using FM
Now we study an entropically driven particle in a box, similarly to the previous
section, but this time we use the radius of gyration of the points of a sampling
trajectory in momentum-space. Figure 4.4 shows the phase diagram of the average
distance of a particle from the centre d for variable Tr and Tc

Tr
. We can identify three

regions:

1. The blue region for Tr . 0.1,

2. the purple region for 0.1 < Tr . 0.06, and

3. the orange region for Tr & 0.06.

Region 1 takes values from d = 0.4 to d = 0.2 smoothly increasing with increasing
Tc
Tr
. Region 2 uniformly shows values around d < 0.05. In region 3 for small Tc

Tr
we

observe distances up to d = 0.75, and for increasing Tc
Tr

it decreases to d = 0.06.
Figure 4.5 shows three trajectories with parameters taken from the phase-diagram

in Fig. 4.4. It shows a vertical cut through the phase diagram for Tc
Tr

= 2 with a
trajectory for each region. In Fig. 4.5(a) the particle moves away from the corner

42



4.2. Particle in a box, using FM
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= 1, Tr = 0.03, purple region
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= 1, Tr = 0.05, green region
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Figure 4.2.: Typical trajectories for a particle in a box and different sets of param-
eters in the phase diagram of Fig. 4.1. [L = 1, using FP ]
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Figure 4.3.: Typical trajectories for a particle in a box and different sets of param-
eters in the phase diagram of Fig. 4.1. [L = 1, using FP ]
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4. Continuous evolution: Single particle dynamics
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Figure 4.4.: The average distance of a particle from the centre of the box for variable
Tr and Tc

Tr
.[L = 1, total runtime t = 3000, transient time ttransient =

1000, using FM]

until it cannot detect the walls any longer and then moves around in a diffusive
manner. For increasing Tc

Tr
the particle experiences stronger entropic forces. As soon

as the influence of the walls vanishes, the entropic force decreases to a non-zero value
with random orientation due to finite sampling. With larger Tc

Tr
this random noise

increases and therefore determines the stepsize of the random walk the particle then
performs. If we assume it is diffusing, increasing Tc

Tr
corresponds to an increasing

diffusion coefficient. This explains the smooth decrease from d = 0.4 to d = 0.2 for
increasing Tc

Tr
, since the particle then randomly explores larger areas of the system

and statistically moves closer around the centre. For infinite sampling time every
horizontal line in the phase diagram would have the exact same value d.
Figure 4.5(b) shows the particle moving towards the centre. For Tr = 0.03 the

horizon is large enough to produce a repulsion from all walls forcing the particle to
remain confined in the centre of the box. A trajectory in region 3 is shown in Fig.
4.5(c). The horizon is large enough for the sampling trajectories to be larger than
the system size, covering the entire box. The particle remains in its inital corner,
slightly moving around but constantly feeling an attraction to the walls.
The transition from region 2 to 3 in Fig. 4.4 at d = 0.06 is steep and is due to too

large a horizon relative to the system’s size. Both for position- and momentum-space
we observed the particle preferring proximity to the walls for a horizon significantly
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4.2. Particle in a box, using FM

0

0.5

0 0.5

y

x

y

x

Horizon

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

t[δ
t]

0

7

14

(a) Tc

Tr
= 2, Tr = 0.005, region 1

0

0.5

0 0.5

y

x

y

x

Horizon

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

t[δ
t]

0

7

14

(b) Tc

Tr
= 2, Tr = 0.03, region 2

0

0.5

0 0.5

y

x

y

x

Horizon

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

t[δ
t]

0

7

14

(c) Tc

Tr
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Figure 4.5.: Three trajectories in a box for constant Tc and changing Tr as a cut
through the phase diagram. Note that this is still a box with L = 1, it
is zoomed in. [Using FM]
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4. Continuous evolution: Single particle dynamics

larger than the system’s size. This we also observed for a particle on a square lattice
in Sec. 2.2.2.
In Fig. 4.4 the transition between success in reaching the centre and staying in

the corner is constant around Tr = 0.06 as soon as Tc
Tr

is sufficient large. For Tc
Tr

too
small the entropic force is so weak that the deviation in behaviour (region 3 reaching
down to Tr = 0.05) is due to insufficient sampling times.
To quantify the relative importance of the horizon to the relevant length-scale

in the system we introduce the Prandtl number P as ratio between viscous and
thermal diffusion rate which directly translate to the ratio of the effective size lH of
the sampling horizon and the system’s size L.

1
P
≡ thermal diffusion rate

viscous diffusion rate = kBTr
γ σ
δt

1
L

= lH
L
, (4.2.1)

where σ denotes the diameter of a particle. In this section we treat the particle
as point-like, however the dynamics do not change for a particle-size much smaller
than the box. It is convenient to set kB = 1 and choose σ = 0.004 = δt

γ
such that

we can directly use the value of Tr from the diagram in Fig. 4.4 to define a critical
ratio which we call Λ

1
Pcritical

≡ Λ = lH,critical

L
= 0.06

1 = 0.06 . (4.2.2)

We can expect a behaviour where the particle prefers being close to a wall for
lH
L
< Λ and a behaviour where the particle persistently feels a repulsion of walls for

lH
L
> Λ. The critical Prandtl number and lH,critical correspond to the parameters at

the transition between region 2 and 3, or the transition between the two described
behaviours, respectively.

4.3. Brief conlusion

In the previous two sections we examined how efficiently a single particle in a box
reaches the centre depending on Tr and Tc

Tr
. Figure 4.1 and 4.4 show the phase

diagram for position- and momentum-space, respectively. We identified different
regions and their characteristics in performance. The most striking difference in
behaviour lies in the region of position-space in Fig. 4.1 for Tr < 0.06 and Tc

Tr
< 0.7

where a particle sticks to a walls. This originates from the different interaction with
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4.4. Particle in a bottleneck, using FM

walls of the two methods, as discussed in Sec. 3.3.
Figure 3.6 shows the entropic force experienced by a particle close to a wall for

position- and momentum-space. Using position-space, there is a larger interval
of distances where a particle is attracted to the wall than with momentum-space.
This most certainly causes the difference in performance of the two methods. For
momentum-space theoretically there also exists this domain, however even the small-
est values Tc

Tr
considered in the calculations of the phase-diagram caused fluctuations

strong enough to let a particle move away from walls. Only for Tr < 0.04 we can
identify parts of this region.
In the following section we let a particle explore a bottleneck system. In order to

exclude wall effects as far as possible we exclusively use momentum-space for this
type of system.

4.4. Particle in a bottleneck, using FM
We now let an entropically driven particle move in a bottleneck system. Figure 4.6
shows such system for a bottleneck of length lBN = 0.6. The small box in which
the particle starts at position (0.36, 0.01) is of size lx = ly = 0.3 whereas the large
box has a side length of Lx = Ly = 1.0. In Fig. 4.6 the starting position is marked
with a red cross. A simulation will be counted as successful if the particle reaches
the large box, that is, it enters the large box at the position marked with a green
circle at x = lx + lBN . As discussed in the previous sections when examining the
behaviour of a particle in a box for position- and momentum-space respectively, the
general behaviour for simple systems is the same for both methods. However, using
FM, the particle is less likely to get stuck at a wall or a corner. Therefore in this
section we will exclusively use momentum-space for calculating the entropic force.
Figure 4.7 shows a typical trajectory of an entropically driven particle, including

its speed which was averaged over 20 simulations. The color bar indicates time and
a set of sampling trajectories is shown in the inset.
Starting from the corner, the particle accelerates towards the centre of the small

box where it slows down until at x ≈ 0.2 it discovers the bottleneck and what
is behind. It speeds up until entering, then slows down again since the sampling
trajectories going diagonally up right and down right now do not contribute that
much again. However while approaching the large box the speed increases again.
Right after entering it again slows down and around x = 5.5 accelerates while gaining
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4. Continuous evolution: Single particle dynamics
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Figure 4.6.: The bottleneck potential for bottleneck-length lBN = 0.6. The initial
position of the particle for every simulation in the small box marked with
a red cross, the entrance to the big box and position used for sampling
the first passage time marked with a green circle. For all simulations
the size of the small box is lx = ly = 0.3, of the large box Lx = Ly = 1.0
and the width of the bottleneck wBN = 0.025.

some distance from the walls and therefore feeling their repulsion. Then its speed
gradually decreases as it moves towards the centre of the large box where it then
stays. The speed in vertical direction fluctuates around zero, except in the beginning
around x = 0 to x = 0.15 when it moves upwards from the corner.
Despite an entropically unfavourable bottleneck the particle succeeds in reaching

the large box. We want to emphasize that there is no artificial incentive given, the
particle succeeds only due to detecting the entropically favorable area in the large
box.
Displayed in Fig. 4.8 are the average success or first-passage times to the large

box tfp depending on the sampling horizon determined by Tr and the length of the
bottleneck lBN . For every data point we averaged over 100 simulations. If one
of those simulations were to take longer than a maximum of tmax = 30000 δt, all
simulations for this set of parameters would be stopped and we would consider the
simulations for those parameters as failures. That means that they do not appear
as data points in Fig. 4.8. Simulations were performed for all bottleneck-lengths
lBN ∈ {0.0, 0.1, .., 0.9, 1.0} and horizons Tr ∈ {0.005, 0.01, .., 0.065, 0.07}. Every
missing point in Fig. 4.8 indicates a failure – either the particle could not succeed
or it took the particle longer than the maximum time. Note that in the latter case
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Figure 4.7.: Top: Example trajectory for same set of parameters as used for finding
the velocity profile. Bottom: Average velocity profile of a particle. [Tr =
0.015, Tc

Tr
= 4, using FM, velocity profile averaged over 20 simulations]
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4. Continuous evolution: Single particle dynamics

the average time was not necessarily larger than the maximum time, but its variance
was large enough such that within the 100 simulations in at least one simulation the
particle would have taken longer than the maximum time to succeed.
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0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

t f
p

Tr

lBN = 0.0
lBN = 0.1
lBN = 0.2
lBN = 0.3
lBN = 0.4
lBN = 0.5
lBN = 0.6
lBN = 0.7
lBN = 0.8
lBN = 0.9
lBN = 1.0

Figure 4.8.: Average first passage or success time tfp depending on Tr and bottleneck-
length lBN . Initial position is in the bottom left corner of the small box
at (0.01, 0.36). Every data point is averaged over 100 simulations. If a
single simulation in a set took longer than t = 30000 δt, the simulation
for those parameters was stopped and skipped (do not appear in plot).
So every data point indicates full success rate. Using FM.

First, we will describe the behaviour for lBN < 0.4. For Tr ≤ 0.01 the particle
always fails. It succeeds for Tr = 0.015 with increasing tfp for increasing Tr up to a
maximum at Tr = 0.025. With further increasing Tr the first passage times decrease
and reach a plateau. In general tfp increases with longer bottleneck lBN . Concerning
the simulations with larger lBN they first succeed for Tr = 0.02. For larger Tr instead
of monotonously decreasing the show a drastic increase (lBN = [0.7, 0.8, 0.9]) or fail
(lBN = 1.0).
For small Tr ≤ 0.01 the particle does not enter the big box since as soon as the

particle approaches the bottleneck, the opposed wall is so far that the particle does
not detect it via sampling. Thus, in that direction the particle feels no repulsion
anymore in contrast to the bottleneck. The small peak around Tr = 0.025 can be
explained by looking at the behaviour of the particle for those parameters. Figure
4.9 shows example trajectories for horizons Tr = [0.015, 0.02, 0.025]. While for Tr =
0.015 (Fig. 4.9(a)) the particle first moves towards the centre of the small box and
then approaches the exit. For larger Tr (Fig. 4.9(b) and (c)), the particle stays close
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4.4. Particle in a bottleneck, using FM

to the walls. From that position fewer sampling paths enter the bottleneck and are
therefore less likely to detect the large box. Statistically it takes longer times for
the particle to sufficiently detect the large box and ultimately succeed – despite the
larger horizon.
As approximated in equation (4.2.2) the ratio between size of horizon and system

needs to be smaller than Λ = 0.06 for the particle to move towards the centre. For
the small box in this system the temperature Tr determining the size of the sampling
horizon needs to be chosen such that the size of the horizon lH is smaller than

lH,critical = Λ · L = 0.06 · 0.3 = 0.018 . (4.4.1)

This is consistent with what we observe in Fig. 4.9: For Tr = 0.015, corresponding
to lH = 0.015 < lH,critical the particle moves towards the centre of the small box
whereas for Tr = 0.02, corresponding to lH = 0.02 > lH,critical the particle moves
along the walls.

(a) Tr = 0.015, lH = 0.015 (b) Tr = 0.02, lH = 0.02

0

500

1000

1500

2000

2500

3000

t[δ
t]

(c) Tr = 0.025, lH = 0.025

Figure 4.9.: For three temperatures Tr = [0.015, 0.02, 0.025] a particle leaving the
small box. [Tc

Tr
= 1, using FM]

In the following we will briefly examine the behaviour of the system at different
points in Fig. 4.8 by showing example trajectories of entropically driven particles
for those parameters.
Figure 4.10 shows a trajectory for lBN = 0.2 and Tr = 0.005 in the region of failing

simulations. The particle moves towards the centre of the small box and stays there.
Its horizon is so small that as soon as it moves further towards the bottleneck it does
not detect the left wall anymore, thus only feeling a repulsion of the bottleneck.
Figure 4.11 shows a particle with Tr = 0.02 moving along the bottom wall of

the small box towards the bottleneck and continuing through the bottleneck until
it reaches the centre of the large box. The dashed lines indicate the exact centre
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4. Continuous evolution: Single particle dynamics
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Figure 4.10.: The particle stays in the small box. [Tr = 0.005, Tc
Tr

= 1]

of the large box. Concerning the small box the horizon is larger than the critical
horizon lH > lH,critical (see Eq. 4.4.1).
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Figure 4.11.: The particle reaches the large box. [Tr = 0.02, Tc
Tr

= 1]

A simulation with much larger horizon corresponding to Tr = 0.06 is shown in
Fig. 4.12. The particle moves relatively straight towards the bottleneck and ends
up close to the centre of the large box. However, it moves around a point close
to the centre, slightly shifted towards the bottleneck. The sampling paths cover
the entire system and detect the small box, causing this shift. Also the entropic
force is stronger than the simulation given in Fig. 4.11 for example. Except Tr, all
parameters are the same in both simulations. Due to larger Tr the sampling paths
are on average larger, producing a larger R which comes in as a factor in Eq. (3.2.6).

Figure 4.13 shows a particle for lBN = 1 and Tr = 0.06, parameters for which the
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Figure 4.12.: The particle reaches the large box. [Tr = 0.06, Tc
Tr

= 1, lBN = 0.2]

simulation fails after a drastic increase of tfp for increasing Tr in Fig. 4.8. After
entering the bottleneck, the particle stops before entering the large box and stays
there. Due to its large horizon, which easily covers the entire system from its final
position within the bottleneck, largest entropy is found in the centre of the system.
We already observed the final position moving closer to the small box for larger
Tr in Fig. 4.12. For larger lBN this position eventually shifts into the bottleneck.
This causes the simulation to fail in reaching the large box. Entropically speaking,
the particle does not see the necessity of entering the large box. For a large box of
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Figure 4.13.: The particle gets stuck in the bottleneck. [Tr = 0.06, Tc
Tr

= 1, lBN = 1]

infinite size the particle would not get stuck but always succeed. Figure 4.14 shows
the success or first passage times to the large box tfp for different Tr and lBN , but
for a system with Lx = Ly =∞. For Tr < 0.045 the data correspond to the data in
Fig. 4.8. Though for Tr > 0.45 the first passage times do not increase but instead
decreases monotonically. This negative slope is the same for all lBN , the curves are
parallel to each other. This is due to fact, that for this system the walls of the
large box do not produce any repulsion anymore. In Fig. 4.8, a particle with a
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4. Continuous evolution: Single particle dynamics

large horizon was, despite considering the large box as most favorable, repelled by
its walls.
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Figure 4.14.: The same simulations as shown in Fig. 4.8 but with a large box of
infinte size. Average success time tfp depending on Tr and bottleneck-
length lBN . Initial position is in the bottom left corner of the small box
at (0.01, 0.36). Every data point is averaged over 100 simulations. If a
single simulation in a set took longer than t = 30000 δt, the simulation
for those parameters was stopped and skipped (do not appear in plot).
Every shown data point indicates full success rate. Using FM.

4.5. Comparison of results from continuous and
discrete systems

We now compare the results of a particle in a bottleneck system in a spatially
discrete system (Fig. 4.15(c)) with the continuous case for both the large box of
size Lx = Ly = 1 (Fig. 4.15(a)) and Lx = Ly = ∞ (Fig. 4.15(b)). For a purely
random motion, which was not included in the continuous simulation yet intuitive,
statistically the particle succeeds in finding the large box in any case after finite
time.
For small horizons in all simulations the particle does not succeed since it perceives

the bottleneck as an unfavourable area only, and stays in the small box. In the
continuous case the behaviour of the particle changes at Tr = 0.02 when it starts
moving along the walls of the small box (see Fig. 4.9), causing the success time
to increase up to a maximum at Tr = 0.025 before steadily decreasing for larger
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4.6. Entropically driven particle as DNA molecule

Tr. This effect did not occur in the discrete simulation. We did not observe, in the
discrete simulations, the effect in the continuous simulations for Lx = Ly = 1 that
for large Tr and lBN the particle stays in the bottleneck (see Fig. 4.13). For large
horizons both the first passage time for the discrete simulations and the continuous
for Lx = Ly = ∞ in Fig. 4.15(b) decrease in the same manner, and the curves for
different lBN are parallel to each other.
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(a) Continuous (see Fig. 4.8)
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Fig. 4.14)
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(c) Discrete (see Fig. 2.16)

Figure 4.15.: Average success times of a particle in a bottleneck system for different
horizons and lengths of the bottleneck. Results of the continuous and
the discrete simulations for comparison.

4.6. Entropically driven particle as DNA molecule

We can interpret an entropically driven particle as the centre of mass of a polymer
and thus compare its dynamics with experiments. In 2002 Turner, Cabodi and
Craighead [20] examined the dynamics of DNA molecules confined by nanopillars
but in proximity to an entropically more favorable area. Figure 4.16(a) shows their
experimental setup where the area with nanopillars is entropically less favorable
due to the restricted degrees of freedom. They observe that strands of DNA are
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strongly pulled into the area free of nanopilllars as soon as an end of the DNA strand
reaches into it. In their experiment the entropic force originates from a gradient in
configuration entropy. In the interpretation of our driven particle as centre of mass of
a polymer, its sampling trajectories correspond to polymer configurations. Thereby
for this setup the causal entropy can be associated with the configuration entropy
of a DNA molecule.
Figure 4.16(b) shows our numerical setup. A field of pillars in which an entrop-

ically driven particle moves towards the right, towards an empty area. We collect
the times tfp the particle takes to reach the entropically favorable area, starting
at a distance d from it. We used simulations with initial position of the particle
d = n · 0.001, n ∈ [1,∞], increasing n until the particle did not succeed within a
maximum time, that is, the entropic force was too weak for the particle to move
into the direction of the open area.
Figure 4.16(c) and (d) show the experimental results from Turner et al.[20] and our

numerical results, respectively. Shown is the distance from the entropically favorable
area as a function of its first passage time. The fit is a square-root dependence, which
was predicted by Turner et al.. Our numerical setup matches the experimental
setup qualitatively, the dimensions and ratios of distances are different, also due
to long simulation times our results are relatively noisy. However we were able
to qualitatively reproduce experimental results, which gives us confidence in the
validity of the polymer-analogy of our model.

4.7. Conclusions

We analysed the dynamics of a single particle in a box for both position- and
momentum-space driven entropic forces and identified a difference in behaviour.
Using position-space, particles find the proximity of walls entropically favorable if
they initially are close enough, as discussed in Sec. 4.3. We then examined the
first passage times for a particle in a bottleneck system and found similar results
as in the discrete case, discussed more elaborate in Sec. 4.5. Also we briefly com-
pared experimental results of the dynamics of DNA strands between two areas of
different configurational entropy with our numerical results of an equivalent setup.
The qualitatively matching results give us confidence in the polymer-analogy of our
model.
The next step is to explore the dynamics of many particle systems where all
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Figure 4.16.: (a): Sketch of the experimental setup used in [20]. “The fluidic device
consists of a quasi-two-dimensional gap between a floor and ceiling
approximately 60 nm in height. Some regions of the device are popu-
lated with nanopillars”. (b): Sketch of the numerical setup. [Diameter
of pillars: σ, distance between two pillars dp = 4σ, γ = 0.75

δt
, using FM].

(c): Experimental results from [20] and (d) our numerical results for
time before total recoil, that is, time until the entire DNA strand or
our entropically driven particle fully reaches the entropically favorable
area. (a) and (c): Reprinted figures with permission from S. W. P.
Turner, M. Cabodi and H. G. Craighead, Phys. Rev. Lett. 88, 128103
(2002). Copyright 2015 by the American Physical Society.
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particles are subject to the entropic force.
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5. Continuous evolution:
Many-particle dynamics

In this section we will examine the dynamics of multiple entropically driven particles
in a confining box. Particles will still interact with the walls as point particles.
Particles interact with each other as elastic spheres of cross-section σ following Eq.
5.1.1.
We use two different types of interaction, A and B, which differ in the way the

entropic force acting on a single particle is calculated. In Sec. 5.1 type A interaction
is introduced and the resulting particle dynamics examined. We then introduce type
B interaction in Sec. 5.2 which leads to the emergence of patterns. Their origin and
characteristics are discussed thereafter.
For both interaction types we again examine the dynamics of a number of particles

in a bottleneck system in Sec. 5.4, directly relating those simulations to evacuation
scenarios.
Concerning particles in a box we examine three system sizes, for the ratio S

between the size of a square box L × L and the approximate diameter of the area
explored by the sampling paths 2rsample. We keep fixed the size of particles σ relative
to rsample.

• S = l
2rsample

= 0.5 (Tr = 0.015, L = 20σ),

• S = l
2rsample

= 1 (Tr = 0.015, L = 40σ),

• S = l
2rsample

= 1.5 (Tr = 0.015, L = 60σ),

which are illustrated in Fig. 5.1.
Both position- and momentum-space will be used and examined seperately. For

better differentiation, we use red and blue in the plots for position- and momentum-
space, respectively. In all simulations the particles are given random initial positions,
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Horizon

(a) S = 0.5, L = 20σ

Horizon

(b) S = 1.0, L = 40σ

Horizon

(c) S = 1.5, L = 60σ

Figure 5.1.: A set of sampling paths for a particle in the centre of the three system
sizes used in this thesis, respectively.

but paying attention that the particles do not overlap, and have zero initial total
momentum.

5.1. “Blind agents” (Type A)

Type A particles do not detect other particles while sampling, that is, entropically
any particle assumes being in an empty system. Sampling trajectories will not
interact with other particles. However if two particles i and j touch each other they
interact through a repulsive linear force

~Fij =

−k(σ − |~xj − ~xi|)~eij , if |~xj − ~xi| < σ

0 , otherwise.
(5.1.1)

If we interpret the particles as intelligent entities, the sampling trajectories are
their eyes; they try to maximize the free area around them, avoid walls but are blind
to other entities for this interaction type. Figure 5.2(a) shows four particles and Fig.
5.2(b) the sampling trajectories for the red particle. The three green particles do
not influence the sampling trajectories.
Figure 5.3 illustrates the temporal evolution of 20 entropically driven type A

particles in a box of size L = 20σ, the particles’ initial positions have been chosen
randomly with no particles touching and initially no momentum. The timestep in
given in the title of each figure, the frames indicate the walls. At timestep n = 20 the
particles move closer to the centre, at n = 50 they already reached it. At timestep
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5.1. “Blind agents” (Type A)
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Figure 5.2.: Type A interaction. (a): Four particles. (b): Sampling trajectories of
the red particle.

n = 75 they exhibit a different configuration, showing that they constantly move
around.
Every particle in general behaves as if it was alone in the system, being repelled

by the walls and move towards the centre. All particles form a cloud, frequently
bump into each other, never reaching an equilibrium state since all try to reach the
same spot in the centre.
In Fig. 5.4 the final states of 20 particles in different systems are shown, both

for position-space (left column, (a), (d), (g)) and momentum-space (right column,
(b), (e), (h)). By final state we mean the steady state the system evolves to after a
sufficiently long time. Every row contains a different system size and its respective
horizon (small plot in the very right). In (a) (P , L = 20σ) the particles move to
the centre where they bump into each other and push each other away from the
centre continuously. Four particles are stuck on the walls. (d) (P , L = 40σ) shows
essentially the same behaviour: Most particles are in the centre, two are stuck at the
centre of the upper wall. For the largest system in (g) (P , L = 60σ) the particles
even after a long time do not fully move to the centre as soon as they reached a
distance of size around the maximum length of they sampling paths. Not directly
visible in this plot, the particles come to stop and very slowly diffuse, as it is the
case in (a) actively bump into each other. One particle is stuck on the bottom wall
at about x = 0.5, also not in the centre as it is the case for the two previously
described simulations. In panels (b), (e) and (h) momentum-spaceM is used and
the behaviour is qualitatively the same as when using P , except that we do not
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5. Continuous evolution: Many-particle dynamics

t = 0 t = 20

t = 50 t = 75

Figure 5.3.: Four snapshots of 20 particles moving in a box. [Type A interaction.
Timesteps illustrated: n ∈ [0, 20, 50, 75]. L = 20σ, Tr = 0.01, Tc

Tr
= 0.5,

using FM]
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5.2. “Seeing agents” (Type B)

observe particles getting stuck at a wall. Also in (h) they are closer to the centre
than in panel (g).
The phenomenon of particles stuck at a wall when using FP was already discussed

in section 4.1. All particles stuck to the walls for the shown simulations initially
happened to be so close to the walls that the entropic force was attractive. Note
that the particles at a wall still maximize their distances from all other restrictions.
In (a) and (d) they are at the centre of the wall whereas in (g) at maximum distance
from the left wall, keeping in mind that its horizon is considerably smaller than the
box.
The behaviour of the particles in (h), being more confined to the centre compared

to (g), can be explained by looking at the way phase space is sampled. If a sampling
path is reflected by a wall and we consider momentum-space, its radius of gyration
R (which we use for quantifying phase space volume of a sampling path) increases
dramatically. Therefore even if at the last step of a path a reflection from a wall
occured it will have significant effect on R. Using position-space a reflection in
the last step of a otherwise stretched out path will make little difference to R. To
significantly feel the walls the particle would need to be closer to a wall.
The general behaviour of systems with type A interaction is always like just ob-

served, we will not gain any new insights for other sets of parameters. However later
in this thesis we will examine escape scenarios where this interaction type will be
used again. We now move on to a different type of interaction.

5.2. “Seeing agents” (Type B)

Type B particles can detect other particles while sampling. The position of all other
particles is kept fixed for the entire sampling time. If we interpret the particles as
intelligent entities, type B particles see other particles and will assume they stay
where they are in that moment. While sampling they have hard-core interactions,
that is, if a sampling trajectory collides with a particle it is reflected in a manner
equivalent to a collision with a wall. This applies only to sampling trajectories. If
two seeing particles collide they still interact via a linear repulsive force as introduced
in Eq. (5.1.1).
Figure 5.5 illustrates the sampling. Sampling paths are shown for the red particle

at position (1,1), for the same configuration as in the type A case shown in Fig. 5.2.
It is visible how every particle hinders the sampling paths from reaching the area

63



5. Continuous evolution: Many-particle dynamics

t = 1500

(a) Position-space, L = 20σ

t = 1500

(b) Momentum-space, L = 20σ

Horizon

(c) Horizon L =
20σ

t = 1500

(d) Position-space, L = 40σ

t = 1500

(e) Momentum-space, L = 40σ

Horizon

(f) Horizon L =
40σ

t = 1500

(g) Position-space, L = 60σ

t = 1500

(h) Momentum-space, L = 60σ

Horizon

(i) Horizon L =
60σ

Figure 5.4.: 20 particles in systems of different sizes for position-space P and
momentum-spaceM. [P : Tc

Tr
= 0.5,M: Tc

Tr
= 4. Tr = 0.015 ]
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Figure 5.5.: Type B interaction. (a): Sampling trajectories of the red particle. (b):
The positions of the particles at time of sampling. [Tr = 0.01]

A typical evolution of a system using type B interaction is shown as an animation
of figures in the bottom right corner of every odd page when rapidly turning the
pages of this thesis. The shown figures are at times t ∈ {0, 4, 8, . . . } (At page n
the figure shows the system at time t = n−1

2 · 4). Figure 5.6 shows configuration of
the system at selected times. The initially randomly distributed particles reach a
steady state where they form lines. Some particles move towards the centre then
together take a rhombic shape. The lines in general touch the wall at the central
part. Note that (g) is at t = 400 δt and (h) at t = 1500 δt, showing that this
conformation does not change anymore except for small fluctuations around the
steady-state positions. However single particles still can move around, as for example
in (g) the single particle in the top right area or in (h) the one in the top left area.
We want to emphasize that patterns do not form due to an artificially implemented
potential, as for instance the Lennard-Jones potential with an attractive region.
Pattern formation solely exists due to the entropic force.

We will now introduce some quantities and methods to quanitatively characterise
the system’s behaviour and evolution.
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5. Continuous evolution: Many-particle dynamics

t = 0

(a)

t = 50

(b)

t = 100

(c)
t = 150

(d)

t = 200

(e)

t = 250

(f)
t = 400

(g)

t = 1500

(h)

Horizon

(i)

Figure 5.6.: Evolution of a system with type B interaction using FM. [Tc
Tr

= 4,
Tr = 0.015, N = 30]
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5.2. “Seeing agents” (Type B)

5.2.1. Alignment factor

To detect the formation of lines as observed in Fig. 5.6 we use the alignment factor
A

A(t) ≡
〈
1− cos2(θ)

〉
, (5.2.1)

where θ is the angle between the vectors connecting particle i to two neighbouring
particles ij (see Fig. 5.7(a)). We average A over all particles, where for every particle
we include only its local neighbourhood within radial distance rn (see Fig. 5.7(b)).

(a) (b)

Figure 5.7.: (a): The angle θ between the connecting vectors of particle i to its
two neighbours i1 and i2. (b): Particle i and five particles within its
neighbourhood radius.

The alignment factor can vary between A = 0 which corresponds to a perfectly
aligned system as shown is Fig. 5.8(a), and A = 1, corresponding to a system with
exclusively perpendicular connecting vectors, shown in Fig. 5.8(b).
Figure 5.9 shows the alignment factor for the system in Fig. 5.6. Every data

point is averaged over 25 snapshots. We observe the alignment factor decreasing
from initially A = 0.57 to an average value around A = 0.37. Theoretically an
unordered system would result in A = 0.5, but due to walls and finite size effects in
our system the initial value is slightly increased. From Fig. 5.9 we can conclude that
at t = 200 large parts of the system already formed lines. This can be confirmed by
examining Fig. 5.6(d)-(f).
The alignment factor allows us to estimate the transient time of a system.
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5. Continuous evolution: Many-particle dynamics

(a) A = 1 (b) A = 0

Figure 5.8.: (a): A configuration with solely perpendicular connecting vectors, re-
sulting in A = 1. (b) A configuration with solely parallel connecting
vectors, resulting in A = 0.
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t

Figure 5.9.: Alignment factor of the system shown in Fig. 5.6. [Neighbourhood
radius rn = 4σ, averaged over N = 30 particles and 25 timesteps]
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5.2. “Seeing agents” (Type B)

5.2.2. Radial distribution function

We use the radial distribution function (rdf) g(r) to identify typical length-scales in
a pattern. To compute g(r)

g(r) =
〈∑

i

δ(ri − r)
〉

(5.2.2)

we first let the system reach a steady state and then count the number of particles
per ring of radius r and width dr around a particle, so g(r) is connected to the
probability of finding a particle within distance [r,r+dr]. The number of particles
is normalized by the area of the ring, excluding the parts which exceed the systems
boundaries, as well as the number of particles and the the particle density. Normally
the rdf converges to g(r � 1) = 1 for large distances since in an unordered system
the probability of finding a particle in a certain distance approaches one. However,
in our case the system is finite, and therefore the rdf decays to zero at maximum
length existing in the system.
Figure 5.10(a) shows the rdf for the system in Fig. 5.6. We have marked the main

peaks of g(r) corresponding to the main length-scales. The corresponding distances
between particles for each peak are shown in Fig. 5.10(b). Peak 1 and 2 correspond
to the distance between a particle and its next and second next neighbour, respec-
tively. Peak 3 and 4 are two characteristic lengths of the square structure in the
centre of the box.

5.2.3. Van Hove function

We used the van Hove function, a time-dependent pair correlation function, for
gaining insight into the nature of the patterns. It is defined as the probability of
finding a particle j at distance r of particle i at time t. The van Hove function can
be divided into the self and the distinct part, Gs and Gd,

G(r, t) = Gs(r, t) +Gd(r, t)

= 1
N

〈 N∑
i=1

δ(r + ri(0)− ri(t))
〉

+ 1
N

〈 N∑
i 6=j

δ(r + ri(0)− rj(t))
〉
, (5.2.3)

where the self part gives the probability of a particle i travelling the distance r within
time t and the distinct part describes the behaviour of all other particles. Using the
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5. Continuous evolution: Many-particle dynamics

(a) (b)

Figure 5.10.: (a): Rdf of the system shown in Fig. 5.6 [N = 30, Lx = Ly = 20σ],
averaged 26 independent simulations, each averaging over n = 1000
timesteps after a transient of ntransient = 500 timesteps. The four
marked peaks correspond to examples of length-scales shown in (b).

van Hove function we can distinguish between static and stationary patterns in our
system. Figure 5.11(a) shows the van Hove function of the system displayed in
Fig. 5.12 for considered time intervals ∆t ∈ {0, 100, 200} in red, green and blue,
respectively. The three time-intervals show how large the probability of finding a
particle at distance r is at a certain time, corresponding to ∆t = 0, or after a time
interval ∆t = 100, ∆t = 200. The red curve takes similar shape as the rdf shown
in Fig. 5.10, including the nearest neighbor peaks at r = 2 and r = 3 as well
as the two peaks at r = 8 and r = 11. Also for r → 0 we see G(r) increasing
dramatically. For larger time intervals all peaks dissolve and the curve smooths out.
This indicates particles moving around instead of staying fixed relative to other
particles. Figure 5.11(b) shows G(r) for ∆t = 200, the blue curve in Fig. 5.11 and
its contributions of the self and distinct part, Gs(r) and Gd(r). The self part, which
for ∆t = 0 is a sharp peak at r = 0 dissolves and took in the displayed time the
shape of a Gaussian. For a brownian particle in an open system the self part of a van
Hove function is equivalent to the probability density distribution of its position.
For time zero the distinct part of the van Hove function is equivalent to the radial
distribution function. With increasing t the rdf starts to dissolve and smear out
as particles move away from their initial relative positions. A crystal structure for
instance is time-independent and would result in the same probability distribution of
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5.3. Pattern formation

the van Hove function for all t. However, if observe the initial distribution dissolve it
does not necessarily mean that the structure of the particles is changing but rather
the relative position of the single particles to each other. In this case stationary
structure can be conserved.
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Figure 5.11.: (a): Van Hove function for the system shown in Fig. 5.12 for three
time-intervals. (b): Van Hove function and its self and distinct part
for ∆t = 200.

5.3. Pattern formation
In this section we will first show some observed patterns, using both position- and
momentum-space. We then examine their formation and characteristics and discuss
by what mechanism they arise. Finally we briefly explore how patterns change with
varying parameters.
Figure 5.12(a) and (b) shows snapshots of two simulations of N = 100 particles in

a Lx = Ly = 40σ square box using position- and momentum-space respectively. In
Fig. 5.12(a) most particles form lines which meander through the system whereas
few are close to walls. The particles close to the wall correspond to what we already
observed for a single particle in a box in Sec. 4.1 where particles which were close
to a wall initially would be attracted to it.
The pattern shown in Fig. 5.12(b) consists of lines forming polygonal areas. Some

arms of the polygon are touching the wall, as in the bottom right of the box. Figure
5.12(c) shows a set of sampling paths for a particle in the centre of the box and
Tr = 0.015, as used in the simulations in Fig. 5.12(a) and (b).
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5. Continuous evolution: Many-particle dynamics

t = 1000

(a) using FP

t = 1000

(b) using FM

Horizon

(c) Horizon for
Tr = 0.015

Figure 5.12.: Pattern found in the system at time t = 1500 using (a) position- and
(b) momentum-space of sampling trajectories for calculating the en-
tropic force. [ (a): Tc

Tr
= 0.5, (b): Tc

Tr
= 4, Lx = Ly = 40σ, Tr = 0.015,

random initial position without particles overlapping]

Figure 5.13(a) and (b) show the corresponding alignment factors over time of the
systems in Fig. 5.12. In Fig. 5.13(a) A decreases from initially A = 0.5 to A = 0.12
at time t = 700 where it reaches a plateau. At time t = 1300 A quickly increases to
A = 0.2 and then slowly decreases again. The initial positions of the particles are
chosen randomly and therefore A(t = 0) = 0.5. As the particles form structures,
A approaches lower values since particles align. The increase at t = 1300 will be
examined in Fig. 5.14. In Fig. 5.13(b) A decreases from A(t = 0) = 0.5 to A = 0.35
around t = 200 where it fluctuates around that value.
Figure 5.14(a)-(d) show the temporal evolution of the system in Fig. 5.12(a) at

four times, and we compare it with the changes in the alignment factor (Fig. 5.14(e)).
Figure 5.14(a) shows the system at time t = 100 when some particles already formed
lines. In Fig. 5.14(b) at t = 500 most particles make up lines, some stick to the walls.
In Fig. 5.14(c) the alignment factor reached the plateau with lowest A, as particles
form lines meandering through the system. Figure 5.14(d) shows the system after
the steep increase in A at t = 1400. Particles at position (0.3, 0.4) are now scattered
and unordered. From the decrease in A in Fig. 5.13(a) after t = 1300 we can see
that the particles start realigning. However, throughout the entire simulation the
same particles stay close to the walls. Note: The particle form lines and have very
short distances to their nearest neighbours. Despite a rather soft repulsive force
between two particles (force increases linearly with overlap of particles), particles
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5.3. Pattern formation
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(b) corresponding to system in Fig. 5.12(b)

Figure 5.13.: Alignment factor A of (a),(b) the system shown in Fig. 5.12(a),(b).
Radius of neighbourhood of a particle rn = 5σ.

are occasionally pushed away from each other strongly. If by chance particles in a
line are pushed towards each other, they briefly have larger overlap resulting in the
particles gaining large momentum and locally destroying order. Such event occured
around t = 1300. This effect only occurs when using FP . Further decreasing the
repulsion between two overlapping particles would lead to particles passing through
each other.
Figure 5.15(a)-(d) show the temporal evolution of the system in Fig. 5.12(b)

(thus the dynamics is solved using FM) at four times and the comparison with its
alignment factor, shown in Fig. 5.15(e). In Fig. 5.15(a) at time t = 100 the particles
start forming lines. Figure 5.15(b) shows the system at t = 500 after the alignment
factor already reached a plateau. The particles form up a polygonal structure, which
is qualitatively maintained throughout the rest of the simulation, two times shown
in Fig. 5.15(c) and (d). The particles locally lose order and realign afterwards, as
visible in Fig. 5.15(c) in the top left corner where particles lost their linear structure
and regained it at t = 1400 in Fig. 5.15(d).
Since the structure locally breaks up occasionally and yet reassemble to the same

general structure we can conclude that a patterns will be the same for all times and
initial conditions for a fixed set of parameters. The data shown in this section are
typical.
In general, since every particle is entropically repelled by restricted areas, it prefers

empty areas. Hence it makes sense for a large number of particles in a confined
environment to form patterns in order to create those empty areas. Also due to
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5. Continuous evolution: Many-particle dynamics

t = 100

(a)

t = 500

(b)

t = 1000

(c)

t = 1400

(d)
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Figure 5.14.: (a)-(d): Four snapshots of the system shown in Fig. 5.12(a) at different
points in their temporal evolution. (e): The alignment factor of the
system with the four shown times marked.
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t = 100

(a)

t = 500
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t = 1400
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Figure 5.15.: (a)-(d): Four snapshots of the system shown in Fig. 5.12(b) at different
points in their temporal evolution. (e): The alignment factor of the
system with the four shown times marked.
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5. Continuous evolution: Many-particle dynamics

repulsion from walls particles seek a certain distance from them – excluding the
minority of particles which stay close to walls and therefore effectively drop out of
the dynamics of the simulation. It seems plausible for particles to form lines parallel
to the walls, as walls generally exert greater repulsion than particles as they restrict
a larger area. In order to get a deeper understanding of how or why particles form
such patterns, we will examine the qualitative force being exerted from particles
onto each other.

5.3.1. Force between two particles

First we examine the force exerted by a single particle of diameter σ onto another due
to entropic forces. To that end we place two particles next to each other and calculate
the entropic force for different distances. The setup is shown in Fig. 5.16(a). In
Fig. 5.16(b) the entropic force for position and momentum-space in both directions
parallel and perpendicular to the line joining the two centres is given. The horizontal
axis denotes the distance of the particle centres from each other. In this simulation
we used Tr = 0.015.
The perpendicular part fluctuates around zero. The parallel part for position-

space in red for large distances is also zero but increases for decreasing distance. It
has a peak around d = 5σ and then decreases. For distances at almost at d = 1σ
when the particle would touch the force even becomes negative, meaning the particles
would attract each other. The behaviour for momentum-space is similar. It increases
steadily until around d = 2σ there is a small kink. At d = 1.25σ it reaches a peak and
briefly decreases for even smaller distance, however it is repulsive for all distances.
In (c) the same data is shown, magnified at the origin.
Concerning the perpendicular part the setup is symmetric and therefore a total

force around zero makes sense. That the parallel part decreases for large distances is
also plausible. For the red curve, position-space, the shape is similar to the particle-
wall interaction, given in Fig. 3.6. The blue curve, momentum-space however shows
different behaviour. Particles still exert a relatively strong repulsion onto each other
for small distances.

5.3.2. Force between three particles

Since we face highly nonliner interactions, the interaction between two particles does
not necessarily give adequate insight into the behaviour of more than two particles.
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(c) magnification of (b) close to the origin

Figure 5.16.: Entropic force calculated using position and momentum-space respec-
tively depending on distance to a fixed particle. [Tr = 0.015, every
point averaged over 5 · 106 sampling trajectories, force was normalized
to have its maximum value at 1]
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5. Continuous evolution: Many-particle dynamics

One configuration which could be observed frequently during the simulations was
particles forming stable lines. Therefore we also examine the force of a particle
between two fixed particles being moved from the centre outside. Figure 5.17(a)
shows the entropic force normalized with maximum at F = 1 for variable d and
dp, where dp is the distance between the centres of the two particles held fixed, and
d is the distance between the test particle and the line joining the other two. In
this simulation we used Tr = 0.02, however the qualitative shape of the force is of
interest.
In 5.17(b) and (c) the force for different distances of the fixed particles to each

other dp the variable particle to the interseting line between the fixed particles d is
shown. Fig. 5.17(d) and (e) contain the same data as (b) and (c) respectively for
small distances d. The colour bar indicates the orientation of the force, red meaning
repulsive and green attractive. While d goes from d = 0 to larger values, we have a
minimum of dp = 2. This is due to the definition of dp as the distance of the centres
of the fixed particles. For dp < 2 the variable particle would overlap with the other
particles. For both position and momentum-space the force is approximately zero
for large distances d. With decreasing d the force increases in a manner similar
to the two particle force in Fig. 5.16. Even the kink for momentum-space in Fig.
5.16 at d = 3σ exists in Fig. 5.17(c) for dp = 2 around d = 1. The force reaches
a maximum at d = 5σ for position- and d = 3σ for momentum-space. Further
decrease of d goes with decreasing force which reaches F = 0 for d = 0. Especially
interesting is the area visible in Fig. 5.16(d) for d ∈ [0, 1] and dp ∈ [2, 3], using FP ,
where the force is negative, that is, the test particle is attracted towards the mid
point between the two fixed particles.

5.3.3. Pattern formation, using FP
For particles driven by an entropic force which was calculated using the position
of their sampling paths, we found an attractive force between the particles. Two
particles close to each other will feel comparibly small repulsion, or for even smaller
distances than d = σ an attractive force (see Fig. 5.18(a)). Once two particles come
close enough they therefore tend to stay close. Thus a larger number of particles
will form lines. Also and as a result from this attractive force, as discussed in Sec.
5.3.2, two particles exert a force on a third particle in between them, so that they
align (see Fig. 5.18(b)).
In Sec. 4.1 we examined the behaviour of a single particle in a box, where the
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Figure 5.17.: Entropic force calculated using position-space and momentum-space
of sampling trajectories, respectively, depending on distance to centre
between two fixed particles and distance of those particles to each
other (illustrated in (a)). [Averaged over 5 · 106 sampling trajectories,
Tc = 0.05, Tr = 0.02]
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(b) Attractive region at d = 0.5σ and dp = 2σ

Figure 5.18.: Attractive region in the interaction of (a) two and (b) three particles,
as introduced and discussed in Sec. 5.3.1 and 5.3.2.
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5.3. Pattern formation

phase diagram in Fig. 4.1 shows the performance in reaching the centre. We chose
the parameters Tc/Tr = 0.5 and Tr = 0.015 for all simulations using FP . We
discussed the choice of Tr in the beginning of Sec. 5. We use Tc/Tr = 0.5 in order
to obtain relatively slow movement of particles, small fluctuations, hence allowing
the formation of temporarily stable patterns. For a single particle with this set of
parameters in Fig. 4.1 we are in the region where particles would stick to the wall
if they are close enough to it. If we increase Tc/Tr such that fluctuations are large
enough to prevent a particle from staying too close to a wall, that is, sticking to a
wall, particles move too fast in order to form patterns – collisions of fast particles
with emerging lines destroy any stable structure. Also, the phase diagram in Fig.
4.1 is valid for a single particles. Multiple particles in a system effectively decrease
the accessible area of a single particle and therefore increase the tendency to stick
to walls.

We now qualtitatively examine the formation of patterns using FP . We keep all
parameters fixed and vary the particle density in the system. Figure 5.19 shows
patterns for a system with a sampled area to box size ratio of S = 1 which means
the area explored by the sampling paths is roughly of size of the system. This is
shown in Fig. 5.19(a). Figure 5.19(b)-(f) show patterns in the system which are
representative, since the patterns qualitatively do not change with time. This was
indicated in the beginning of Sec. 5.3 where we observed local decay of structures
and the formation of similar structure thereafter. Also for different sets of initial
conditions we observed the formation of the same patterns. Figure 5.19(b) shows
a system with N = 10 particles of which two stay at the left wall while all others
are positioned in the centre, equidistant to each other. In Fig. 5.19(c) with N = 50
particles form line segments. In Fig. 5.19(d) with N = 90 those segments already
connect to each other and form larger structures. For N = 140 in Fig. 5.19(e)
the formation of cells can be observed in the bottom left where lines connect with
each other via small particles bridges. Figure 5.19(f) with with much larger density
N = 240 cells are the dominating type of structure.

For N = 10 in Fig. 5.19(b) enough space is available such that particles keep
relatively large distance to other particles and the walls (excluding particles sticking
to the wall). For increasing particle density the formation of patterns becomes
entropically more favorable for every single particle. Although every particle is only
maximizing its own entropy, they form structures from which every particle benefits
entropically. Initially the structures are positioned in the centre with distance from
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5. Continuous evolution: Many-particle dynamics

walls, for N = 140 they already connect with particles at the wall.
So using FP , upon increasing density particles start forming line segments which

then form larger structures, lines through the system, and at last a cellular structure.

5.3.4. Pattern formation, using FM

Using momentum-space no attractive particle-particle interaction was observed (see
Fig. 5.18(a)). Yet we observed the emergence of patterns, as seen in Fig. 5.12(b).
Unlike for position-space where the force decreases to zero as particles come closer,
using FM they entropically exert a strong repulsion onto each other. So if a particle
(using FM) in an otherwise perfect line moves out of symmetry, its two neighbour-
ing particles will push it further away. Hence, lines must be highly unstable by
themselves, some other force or effect keeps them in a semi stable structure. ‘Semi’
stable, since we observed in Fig. 5.15 that the structure can temporarily dissolve
locally. Particles forming clean lines suddenly lose order, move around within the
system for a short time before reassembling.
This additional force stabilizing patterns originates from walls or a number of

particles blocking an area and thus having an equivalent effect as walls.
Figure 5.20 shows patterns observed in systems with S = 1 using FM for calcu-

lating the entropic force. Figure 5.20(b) shows N = 20 particles in the centre of a
box forming a square cloud with the particles equidistant to each other and keeping
a minimum distance to the walls. For N = 30 in Fig. 5.20(c) particles form lines
parallel to the walls. The density is so high that particles in a cloud like in Fig.
5.20(b) repell each other, as well as being repelled by the walls and thus form lines
or rather a circular structure. In Fig. 5.20(d) a circle formed in the bottom left
part of the box, the other particles form lines which shape three cells adjacent to
the circle. In Fig. 5.20(e) and (f) particles form cells with lines connecting the cells
to the walls, and with increasing density the diameter of the cells decreases. For low
particle density we did not observe particles positioned close to walls, only when the
density is large enough such that particles touch the walls as part of a pattern.
As expected, no free lines, that is, lines without its ends attached to another

structure or wall could be observed. A single line of particles is unstable and cannot
exist over time.
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Horizon

(a) Tr = 0.015, S = 1

t = 1500

(b) N = 10

t = 1500

(c) N = 50

t = 1500

(d) N = 90

t = 1500

(e) N = 140

t = 624

(f) N = 240

Figure 5.19.: Patterns in a square box with S = 1 using FP . [TcTr = 0.5, Tr = 0.015]
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Horizon

(a) Tr = 0.015, S = 1

t = 1500

(b) N = 20

t = 1500

(c) N = 30

t = 1500

(d) N = 60

t = 1500

(e) N = 120

t = 878

(f) N = 240

Figure 5.20.: Patterns in a square box with S = 1 using FM. [Tc
Tr

= 4, Tr = 0.015]
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5.3.5. Comparing patterns

The difference in how patterns emerge between using position- and momentum-
space is illustrated in Fig. 5.21. For S = 1.5 an increasing number of particles in
a box is shown. Using position-space, in Fig. 5.21(a) we observe single scattered
particles attaching to each other, with increasing N forming short line segments
in Fig. 5.21(b) and connecting to longer lines in Fig. 5.21(c). Using FM, in Fig.
5.21(d) particles are uniformly distributed within the centre of the box. For larger
N in Fig. 5.21(e) particles form circles and in Fig. 5.21(f) form cells.
If the density is high enough, for both methods cellular structures can be observed.

Using position-space this happens when for increasing density lines of particles make
an increasing number of connections between each other, resulting in uniform cells.
Using momentum-space, cells can be viewed as densely packed circles.

5.3.6. Analysing patterns, using FP

To better understand how patterns depend on N we extract their characteristic
length-scales. For that, we calculated the radial distribution function (rdf) of each
simulation and noted the positions of peaks. Figure 5.22(a) shows the rdf of a system
with N = 90 and S = 1, as shown in Fig. 5.19(d). We can identify the peak around
r = 1σ as the distance between two neighbouring particles and the next peak around
r = 2σ as the next-neighbour distance. The peaks at r ∈ {8, 16, 25, 33} represent
the distances between the lines in the system. The position of those peaks are shown
in Fig. 5.22, plotted versus N , where we can identify five lines. Two lines are around
r = 2σ. One is at r = 8σ for N = 10, then increases to r = 12σ at N = 60 and for
large N smoothly decreases to r = 8σ. Another line can be identified with r = 17σ
for N ≥ 90 which decreases to r = 15σ for N ≥ 200. A fifth line appears for N ≥ 30
at r = 21σ, rises to r = 25σ for N = 80 and keeps that value until N = 180.
The two lines at r = 2σ correspond to the distance between two neighbouring

particles in a chain and the second next particle, respectively. As soon as those
peaks appear, we can assume particles start forming lines. For N = 50, N = 80,
and N = 100 even the peak for the third next particle is visible around r = 4σ.
The line around r = 8σ indicates the distance between lines or line segments, or for
N ≥ 140 also the diameter of cells. For N < 40 it also includes the distance between
single particles, as for instance in Fig. 5.19(b). The decrease in r for increasing N
for N > 100 of the peaks associated with this line can be understood by comparing
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5. Continuous evolution: Many-particle dynamics

t = 1500

(a) P, N = 60

t = 1500

(b) P, N = 100

t = 798

(c) P, N = 240

t = 1500

(d) M, N = 60

t = 1500

(e) M, N = 100

t = 879

(f) M, N = 240

Figure 5.21.: Comparing patterns from simulations using position- and momentum-
space with S = 1.5.
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5.3. Pattern formation

Fig. 5.19(e) and (f). As the particles density increases, the size of structures or cells
decreases due to limited space.
The line around r = 16σ corresponds to the second next line segment or cell for

N ≥ 90. For N < 90 no peaks existed at that distance.
The fifth line, around r = 21σ for N ≥ 30 and r = 26σ for N ≥ 80, corresponds

to the maximum characteristic length of the structure in the centre of the box.
This includes the peak at r = 17σ for N = 10 which corresponds to the maximum
distance between two particles in the centre of the box (see Fig. 5.19(b)). With
increasing N more particles take space in the centre and thus the size of structures
(or for N = 10 the size of the cloud) increases. Comparing Fig. 5.19(c) with (d)
shows this. For N = 90 in Fig. 5.19 particles take more space and the size of the
structure increases from r = 22σ for N = 50 to r = 26σ for N = 90. Also this line
is the first multiple of the first line for N < 90 and the second multiple for N ≥ 90.
In Fig. 5.22(a), the peak at r = 33σ is not in the diagram in Fig. 5.22(b). This

peak corresponds to the distance between an outer line and the particles at the
opposite wall. Those distances r > 30σ do not reveal any additional information
about patterns within the system wherefore we do not take them into account. This
includes the single point in Fig. 5.22(b) at r = 30σ for N = 20.
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Figure 5.22.: (a): Rdf of system with S = 1,N = 90 as shown in Fig. 5.19(d). (b):
Peaks in rdf for different N .

We now compare the diagram in Fig. 5.22(b) with the corresponding diagrams
for S = 0.5 and S = 1.5, so for systems with the box size smaller and larger than
the area covered by the sampling paths, respectively.
Figure 5.23(a) and (b) show the positions of the peaks for S = 0.5 and S = 1.5
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5. Continuous evolution: Many-particle dynamics

respectively. The general shape of the diagram is the same as for S = 1. We can
identify two lines around r = 2σ for the first and second neighbour of particles in
chains, as well as the peaks around r = 7σ corresponding to the distance between
line segments or the diameter of cells. For S = 0.5 for N ∈ [10, 30] and N ∈ [80, 100]
the first multiple of those peaks are visible. For S = 1.5 however we can identify
more multiples, indicated by the approximately equidistant positions of the peaks
for every N in Fig. 5.23(b).
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Figure 5.23.: Position of peaks for variable N in a system with (a): S = 0.5, (b):
S = 1.5

5.3.7. Analysing patterns, using FM
Figure 5.24 shows the position of peaks in the radial distribution functions of simu-
lations for S = 1 using momentum-space of the sampling trajectories for calculating
the entropic force, from the same system shown in Fig. 5.20. Similar to the previ-
ously discussed results in Fig. 5.22(b) we observe two lines around r = 2σ resulting
from the next and second next neighbouring particles, as well lines around r = 10σ
and r = 20σ, and for N ≥ 160 a line around r = 25σ. At r = 10σ we observe the
line corresponding to distance of lines to each other or cell diameter, increasing with
particle density until N = 60 and r = 13σ then steadily decreasing to r = 7σ. For
increasing N , this is due to the formation of lines and structures from equidistant
particles and then increasing density leading to smaller cells. The other two lines are
multiples of this. The line at r = 20σ splits into two lines for N ≥ 140, when cells
decreased in size leading to a larger number of cells and therefore more multiples of
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5.3. Pattern formation

their diameter, that is, multiples of the characteristic length of the system’s pattern.
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Figure 5.24.: Peaks in rdf for variable N with S = 1 using FM.

For systems with S = 0.5 and S = 1.5 those plots a shown in Fig. 5.25. Like
for position-space in the previous section in Fig. 5.23, we observe the same general
behaviour as for S = 1 in Fig. 5.24. Two lines around r = 2σ corresponding to next
neighbours as well as a line around r = 9σ as characteristic length in the system and
its multiples. Beside that, in Fig. 5.25(b) lines seem to split for increasing N given
that the systems geometry allows structures for further increase of density (which is
not the case for S = 0.5). At N = 50 we can interpret a line with r = 6σ splitting
into the line at r = 12σ and the two next neighbour lines. Also we can assume a
split at N = 220 for r = 25σ into r = 22σ and r = 32σ.
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Figure 5.25.: Position of peaks for variable N in a system with (a): S = 0.5, (b):
S = 1.5
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5. Continuous evolution: Many-particle dynamics

5.3.8. Influence of walls

In Fig. 5.21(c) and (f) particles in the centre of the box have a horizon too small
in order to detect walls and the patterns are coherent with what we observe for
S < 1.5. In order to learn about the influence of the system’s geometry on the
formation of structures, we show in Fig. 5.26 a system with circular boundaries.
We chose the radius of the circle such that S = 1. Figure 5.26(a) shows a set of
sampling trajectories for a particles in the centre of the circle. In Fig. 5.26(b) using
FP , N = 90 particles form two concentric circles, also a number of particles is at
the boundary. For N = 160 in Fig. 5.26(c) we see the formation of cells. Figures
5.26(d)-(f) show for momentum-space the transition from particles forming circles
for N = 40 to cells for N = 160. Particles, like for a square system, tend to align
with the walls and therefore form circles until for higher density a cellular structure
arises.

Horizon

(a) Tr = 0.015, S = 0.5

t = 2500

(b) N = 90

t = 1056

(c) N = 160
t = 1500

(d) N = 40

t = 2500

(e) N = 90

t = 2476

(f) N = 160

Figure 5.26.: Circular boundary conditions with S = 1.

In order to truly understand the impact of the walls on the patterns we remove
the walls and study the system with periodic boundary conditions where particles
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5.3. Pattern formation

solely act relative to each other’s position. Figure 5.27 shows a system equivalent
to a S = 0.5 square box with periodic boundary condition. Figure 5.27(a) shows
particles driven by the entropic force calculated using FP , Fig. 5.27(b) using FM.
For both methods patterns emerge, plainly through interaction with each other.

t = 800

(a) P, periodic boundary condi-
tion

t = 800

(b) M, periodic boundary condi-
tion

Figure 5.27.: A S = 0.5 square box with periodic boundary conditions.

5.3.9. Conclusion

For the type A interaction we found that particles move to the centre of the box
where they continually collide, which is expected and no pattern emerges. For type
B interaction we observed the formation of various patterns. For position- and
momentum-space we were able to identify two different sources of patterns. Using
position-space particles find the direct neighbourhood of other partlicles entropically
favorable and therefore have the tendency to form chains. For increasing particle
density those chains grow in length and, as accessible space diminishes, the chains
grow into larger structures. The final structure we identified as cellular.
We found the same final structure also when using FM, however the formation

of structures works differently with that method. As observed in Fig. 5.16, using
FM particles repell each other for all distances, unlike particles using FP . Therefore
the formation of chains is not possible, or rather a linear structure is not stable.
Instead, as soon as particle density exceeded a certain value particles spontaneously
form circles, or for that matter, closed structures. With increasing density they
connect with walls and ultimately form similar cellular structures as for position-
space. Using radial distribution functions we analysed the characteristic lengths for
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5. Continuous evolution: Many-particle dynamics

different sets of parameters and were able to confirm this emerging of a common
final structure.
In the following section we examine the dynamics of a number of particles in a

bottleneck system for both type A and B particle interaction.

5.4. Many-particles in a bottleneck system

In this section we examine the dynamics of 25 particles in a bottleneck system in
analogy to an evacuation scenario. The system has the same geometry as used
for simulations shown in Sec. 4.4. We use a sampling horizon corresponding to
Tr = 0.015 for which a single particle moves towards the centre of the small box first
before leaving it (see Fig. 4.9). Note that the larger box is chosen to be of infinite
size. The length of the bottleneck is set to lBN = 0.2. For these simulations we
will exclusively use momentum-space for the calculation of the entropic force since
particles then have a lower tendency of sticking to walls. For the small box the ratio
between area covered by sampling paths and box size corresponds to S = 3.

5.4.1. “Blind agents” (Type A)

Particles with type A interaction can be brought into correspondence with a class of
agents in an evacuation scenario which ignore the existence of other agents during
their decision making process – viewing the calculation of the entropic force as an
intelligent process of taking a decision. In that sense we refer to them as “blind”
agents, well aware of the system’s geometry but blind to other particles.
Figure 5.28 shows 25 “blind” particles in a bottleneck system. Fig. 5.28(a) - (f)

show the evolution of the system, where (f) is giving a larger view on the system in
order to learn about how the escaped particles arrange. Fig. 5.28(g) shows the time
evolution of the number of escaped particles. The particles gather in the centre in
Fig. 5.28(b), bump into each other, practically push each other away while trying to
get to the centre, and start streaming out doing so. Once outside, they gain a certain
distance to the exit and then, slowly moving randomly, stay in a group with little
interaction. As soon as they reached that state, they do not feel each other. During
sampling they do not see each other anyway, and in real space they barely move
and therefore have almost no interaction. Since particles do not interact with each
other they can freely move as long as they do not touch and push each other around.
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5.4. Many-particles in a bottleneck system

The two particles leaving last, shown in Fig. 5.28(e) and (f), simply take longer in
finding the larger box i.e. finding the larger box entropically more favorable. As
visible in Fig. 5.28(g) they leave around ∆t = 23 later than the previous particle.

5.4.2. “Seeing agents” (Type B)

For type B interaction, particles can be viewed as agents looking for an empty area
or pathway out of the small box. As introduced in section 5.2, when sampling, other
particles are viewed as solid obstacles. Figure 5.28(a) shows the initial position of
N = 25 particles inside the small box. At t = 50 δt in Fig. 5.29(b) some particles
already escaped through the bottleneck while all remaining arrange themselves inside
the small box, forming lines or queues, as shown in Fig. 5.29(c). The particle about
to escape in Fig. 5.29(c), is the same as the one on the right in Fig. 5.29(d). A
particle in the bottleneck blocks all sampling trajectories of other particles, thus
letting it seem as if the channel was a dead end. As a consequence, any particle
will wait until the previous one reached the large box before entering. Figure 5.29(f)
shows the system at time t = 1720 δt when most particles already escaped and gained
some distance to the exit. As soon as enough free space is available, they distance
themselves from each other and the small box, giving other particles space to escape.
Figure 5.29(g) shows the number of escaped particles versus time. Until t = 600 δt,
particles leave the small box in regular time-intervals, later the intervals increase
on average. This increase can be explained through the decreasing particle density
inside the small box. Fewer particles take up less space, giving remaining particle
more space to explore while sampling, thus reducing the tendency of escaping. This
can be viewed as a decreasing pressure inside the small box.

5.4.3. Comparison

Figure 5.30 shows the number of particles remaining in the small box versus time
for N = 25 and both type A and B, averaged over 51 simulations. For type A,
the green curve, particles in general are faster in escaping than for type B, magenta
curve. This is due to effect for type B of particles blocking sampling trajectories
while escaping, thus causing other particles to wait.
We ran the simulations again for N = 50 and compared the escape times. Figure

5.31(a) shows the number of remaining particles versus time for both simulations
with N = 25 and N = 50. The results for N = 25 are shifted such that their initial
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t = 0 δt

(a)

t = 75 δt

(b)

t = 200 δt

(c)

t = 400 δt

(d)

t = 600 δt

(e)

t = 800 δt, large view

(f)
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Figure 5.28.: Snapshots of 25 particles in a bottleneck potential with an infinitely
large big box for Tr = 0.015. Type A interaction. [lBN = σ , using
FM, Tc

Tr
= 4]
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t = 0 δt

(a)

t = 50 δt

(b)

t = 415 δt

(c)

t = 452 δt

(d)

t = 1300 δt

(e)

t = 1720 δt, large view
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Figure 5.29.: Snapshots of 25 particles in a bottleneck potential with an infinitely
large big box for Tr = 0.015. Type B interaction. [lBN = 0.2 , using
FM, Tc

Tr
= 4]
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Figure 5.30.: Average time evolution of particles escaping a bottleneck system. Cal-
culations are averaged over 51 simulations, each of N = 25 particles,
using FM, Tc

Tr
= 1.

time matches the time when in the other simulation Nr = 25 particles remain. We
see that the times for both simulations match. We can thereby assume that the
performance of the particles is independent from the past evolution of the system.
For larger numbers of particles remaining the slope of the both curves for type A
and B seems linear before changing around Nr = 10 and Nr = 25, respectively.
Figure 5.31(b) shows the length of the time intervals between two particles escap-

ing. For type A the time intervals are constant at δt∗ = 4 for Nr > 13. At Nr = 13
we observe a transition to a linear increase of δt∗ and yet another transition at
Nr = 5 to an even stronger increase. For type B δt∗ slightly increases from δt∗ = 10
to δt∗ = 12 until Nr = 23, where a transition to a stronger increase in δt∗ occurs.
For numbers of remaining particles larger than a critical number Nr > Nc we can

expect almost constant time interval lengths between two particles escaping. For
the shown simulations we have Nc = 13 and Nc = 23 for type A and B, respectively.

5.4.4. Conclusion

We examined the dynamics of a number of entropically driven particles in a bot-
tleneck system for both type A and B interaction. We viewed the simulations as
an evacuation scenario where we could identify two different strategies. For type
A, particles move directly to the exit and escape, frequently colliding with other
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Figure 5.31.: (a): Number of remaining particles versus time with results from both
simulations with N = 25 and N = 50. The results for N = 25 are
shifted such that their initial time matches the time when in the other
simulation Nr = 25 particles remain. (b): Number of remaining par-
ticle versus time intervals between two particles escaping. [Averaged
over 51 simulations, using FM, Tc

Tr
= 1]

particles. For type B, particles leave through the bottleneck one by one, forming
lines while waiting for other particles to exit.
Further analysis of the simulations for both N = 25 and N = 50 particles showed

a change in length of the time intervals between two particles escaping. There seems
to be a transition at a certain particle density in the small box where the length of
those intervals strongly increases (see Fig. 5.31). This suggests that the behaviour
of the system is practically independent of its preceding evolution.
Our model includes single entities individually assessing the current situation and

adapting to changing environments and thus associates with agent-based models.
The observed behaviour for type A and B interaction can be interpreted as herding
and queuing, as also found in various agent-based evacuation models [10, 11].
This behaviour is remarkable given the complete absence of specific rules govern-

ing the particles. They solely maximize their entropy, or for that matter the free
area around themselves. All emerging behaviour originates from this single basic
principle.
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6. Discussion and outlook

Following [3], we defined the causal entropy on the set of possible future paths of
finite temporal length through phase space of the system

Sc(X, τ) = −kB

∫
Pr(Xτ |x(0)) ln

[
Pr(Xτ |x(0))

]
DXτ . (3.1.2)

We maximized this causal entropy by applying the causal entropic force

Fc(X0, τ) = Tc∇XSc(X, τ)|X0 (1.0.1)

on the system. In Sec. 1 we briefly introduced the idea of the causal entropy and
causal entropic force whereas in Sec. 3.1 and 3.2 we derived and discretized an
expression for the causal entropic force which we used in numerical simulations.
For both discrete and continuous representation of space and time we examined

the behaviour of a single particle driven by the causal entropic force. We found
that the particle moves towards the centre of a box where it has maxium causal
entropy, or maximum accessible free area around it. For increasing horizon the
particle started to find the walls of a system entropically favorable. For the discrete
case we were able to analytically reproduce and verify parts of the numerical results
using a random-walk based approach.
Also for both discrete and continuous space and time we examined success times

of a single particle in a bottleneck system. We consistently found particles not
succeeding within simulation time for small horizon and decreasing success times
for increasing horizon, as discussed in Sec. 4.5 and shown in Fig. 6.1. In Sec.
3.2.1 we drew a connection between the dynamics of polymers and a particle driven
by causal entropic force. This allowed us to compare experimental data of DNA
molecules in a setup with two areas of different (configurational) entropy with our
numerical results of an equivalent setup in Sec. 4.6. We were able to reproduce the
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Figure 6.1.: Average success times of a particle in a bottleneck system for different
horizons and lengths of the bottleneck. Results of the continuous and
the discrete simulations for comparison.

qualitative behaviour of DNA molecules in the given setup, giving us confidence in
the validity of the polymer-analogy.
By introducing a number of independent entropically driven particles in a bottle-

neck system, we found parallels of our model to an agent-based evacuation model
[21]. Depending on the definition of causal entropy we observed herding behaviour,
where particles form a crowd at the exit as well as queuing behaviour (see Fig. 6.2).
Both are found in the literature for this type of evacuation model [10, 11].

t = 75 δt

(a) Herding

t = 452 δt

(b) Queuing

Figure 6.2.: Snapshots of particles in a bottleneck potential (see Fig. 5.28 and 5.29).

Furthermore, we observed the formation of patterns for a number of particles in a
box. We seperately examined the cases where particle use position- or momentum-
space of sampling paths (discussed in Sec. 3.2.2) and identified two different origins
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of pattern formation. For position-space particles form lines which grow in length
for increasing particle density. Conversely, for momentum-space sampling parti-
cles cannot form stable lines but instead spontaneously form circles for sufficiently
large particle density (see Fig. 6.3). We used radial distribution functions and

t = 1500

(a) P, N = 60

t = 1500

(b) P, N = 100

t = 798

(c) P, N = 240
t = 1500

(d) M, N = 60

t = 1500

(e) M, N = 100

t = 879

(f) M, N = 240

Figure 6.3.: Comparing patterns from simulations using position- and momentum-
space of sampling trajectories for calculating the entropic force. (see
Fig. 5.21)

collected the positions of peaks, depicting characteristic length-scales in the corre-
sponding system. Comparing structures for increasing particle density in position-
and momentum-space, we found different characteristic lengths up to a certain par-
ticle density (see Fig. 6.4). As soon a the density is large enough, in both cases we
observed the formation of cells as final structure before higher density and fluctua-
tions would not allow any pattern formation (see Fig. 6.5).
Future work will include the investigation of group behaviour and swarming as

result of entropy maximization and without the need of any arbitrary rule or be-
havioural condition. We consider two models:

• Individual entities being able to share information and thus entropically ben-
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Figure 6.4.: Peaks in rdf for variable N depicting characteristic length-scales in the
corresponding system (see Fig. 5.22 and 5.24).

efiting from the proximity of other entities, and

• a shared entropy, corresponding to a collective consciousness or hive mind,
where every entity instantaneously reacts to changing environment of every
other entity.

Further optimization of the code would allow extending the simulation to a three-
dimensional model and exploring more complex behaviour and structures. This
bears great potential especially concerning group behaviour.
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t = 1056

(a) N = 160

t = 2476

(b) N = 160

Figure 6.5.: Formation of cells connected to the walls of the system as final type of
observed structure for increasing particle density (see Fig. 5.26).
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A.

A.1. Finding steady state density distribution from
transition matrix

For a 3x3 lattice of shape

Figure A.1.: Indices of nine fields on a 3× 3 lattice.

the corresponding vector describing the state of the system concerning the prob-
abilities to find a particle in field i is

vT =
[
p11, p12, p13, p21, p22, p23, p31, p32, p33

]
(A.1.1)∑

i

pi = 1 , (A.1.2)

while the transition probabilities tji to move from field i to j for this system look as
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follows:

A =


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(A.1.3)

Assume we have an initial distribution of

v0 =
[
1, 0, 0, 0, 0, 0, 0, 0, 0

]
(A.1.4)

meaning the particle initially is at field 11, i.e. the chance to find the particle at 11
at time t = 0 is p11(0) = 1. The probability distribution for t = 1 then can be found
by multiplying the transition matrix A on the vector

v1 = A · v0 (A.1.5)

where the distribution then is

vT0 =
[
0, 1

2 , 0,
1
2 , 0, 0, 0, 0, 0

]
, (A.1.6)

meaning with probability 0.5 the particle is at field 12 or 21, respectively.

By letting the system evolve infinitely long, the system will converge to a steady
state, if such a state exists, which yields

vss = Avss , (A.1.7)

meaning it will not be changed by multiplication of the matrix on it, neither its dis-
tribution, nor its length (again: eigenvalue λ = 1, conservation of length). However,
by finding the eigenvector to the eigenvalue 1 of the matrix, the steady state can be
determined simply through normalization of the eigenvector. For this transitionma-
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trix A the steady state is

vTλ=1 =
[

1
12 ,

1
8 ,

1
12 ,

1
8 ,

1
6 ,

1
8 ,

1
12 ,

1
8 ,

1
12

]
. (A.1.8)

The resulting probability distribution is shown in Fig. A.2:

0 1 2
x

0

1

2

y

1
12

1
8

1
6

P
(x
,y

)

Figure A.2.: Probability distribution of a particle’s position on the lattice. We find
three different probabilities for a corner field pc = 1

12 , a wall field pw = 1
8

and the middle field pm = 1
6 .

A.2. Finding temporal evolution of density
distribution

In order to determine the first passage time for a particle performing a random walk
in a bottleneck system as illustrated in Fig. A.3 moving to the first field in the
big box we use a transition matrix for that system to examine the evolution of the
initial state of the particle starting in the bottom left corner of the small box.

106



A.2. Finding temporal evolution of density distribution

Figure A.3.: Schematic of a lattice bottleneck system. The length of the bottleneck
varies in the simulations. In black the initial position of the particle for
each simulation, in grey the field for which the fpt (first passage time)
is being calculated or measured, the asterisk denotes the field adjacent
to the fpt field.

The circle marks the field adjacent to the first passage field. We can break the
system down to only the small box and the bottleneck as shown in A.4 and use a
33x33 transition matrix. For calculating the first passage time we ’drain’ the system
from the probability to move from the last field (marked with a circle) to the first
passage field, which in this system is

tfpt =
∞∑
t=0

p∗(t) ·
1
2 · (t+ 1) . (A.2.1)

This probability is being subtracted from the last field

p′∗(t) = p∗(t)− p∗(t) ·
1
2 (A.2.2)

in order to eliminate the case of the particle moving back into the system. Once it
reaches the fpt field, its propagation is stopped. That way the first passage time
can be calculated sufficiently.
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A.

Figure A.4.: Schematic of the system considered while noting the transition matrix.
The field marked with the asterisk is being drained from the probability
to move to the fpt field every timestep in order to calculate the first
passage time of a particle, which once hit the fpt field will not come
back into the system.
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B. Patterns

B.1. Box, S = 0.5, FP

t = 1500

(a) N = 10

t = 1500

(b) N = 20

t = 1500

(c) N = 30
t = 1500

(d) N = 40

t = 1500

(e) N = 50

t = 1500

(f) N = 60
t = 1500

(g) N = 70

t = 1500

(h) N = 80

t = 1500

(i) N = 90
t = 1500

(j) N = 100

Horizon

(k) Tr = 0.015, box size
L = 0.5

Figure B.1.: S = 0.5, FP , Tc
Tr

= 0.5, Tr = 0.015
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B.2. Box, S = 0.5, FM

B.2. Box, S = 0.5, FM

t = 1500

(a) N = 10

t = 1500

(b) N = 20

t = 1500

(c) N = 30
t = 1500

(d) N = 40

t = 1500

(e) N = 50

t = 1500

(f) N = 60
t = 1500

(g) N = 70

t = 1500

(h) N = 80

t = 1500

(i) N = 90
t = 1500

(j) N = 100

Horizon

(k) Tr = 0.015, box size
L = 0.5

Figure B.2.: S = 0.5, FM, Tc
Tr

= 4, Tr = 0.015

111



B. Patterns

B.3. Box, S = 1.0, FP

t = 1500

(a) N = 10

t = 1500

(b) N = 20

t = 1500

(c) N = 30
t = 1500

(d) N = 40

t = 1500

(e) N = 50

t = 1500

(f) N = 60
t = 1500

(g) N = 70

t = 1500

(h) N = 80

t = 1500

(i) N = 90
t = 1500

(j) N = 100

t = 1500

(k) N = 120

Horizon

(l) Tr = 0.015, box size L =
1.0

Figure B.3.: S = 1.0, FP , Tc
Tr

= 0.5, Tr = 0.015
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B.3. Box, S = 1.0, FP

t = 1500

(a) N = 140

t = 1500

(b) N = 160

t = 1258

(c) N = 180
t = 955

(d) N = 200

t = 758

(e) N = 220

t = 624

(f) N = 240
t = 519

(g) N = 260

Horizon

(h) Tr = 0.015, box size
L = 1.0

Figure B.4.: S = 1.0, FP , Tc
Tr

= 0.5, Tr = 0.015
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B. Patterns

B.4. Box, S = 1.0, FM

t = 1500

(a) N = 10

t = 1500

(b) N = 20

t = 1500

(c) N = 30
t = 1500

(d) N = 40

t = 1500

(e) N = 50

t = 1500

(f) N = 60
t = 1500

(g) N = 70

t = 1500

(h) N = 80

t = 1500

(i) N = 90
t = 1500

(j) N = 100

t = 1500

(k) N = 120

Horizon

(l) Tr = 0.015, box size L =
1.0

Figure B.5.: S = 1.0, FM, Tc
Tr

= 4, Tr = 0.015
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B.4. Box, S = 1.0, FM

t = 1500

(a) N = 140

t = 1500

(b) N = 160

t = 1500

(c) N = 180
t = 1485

(d) N = 200

t = 1092

(e) N = 220

t = 878

(f) N = 240
t = 751

(g) N = 260

Horizon

(h) Tr = 0.015, box size
L = 1.0

Figure B.6.: S = 1.0, FM, Tc
Tr

= 4, Tr = 0.015
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B. Patterns

B.5. Box, S = 1.5, FP

t = 1500

(a) N = 10

t = 1500

(b) N = 20

t = 1500

(c) N = 30
t = 1500

(d) N = 40

t = 1500

(e) N = 50

t = 1500

(f) N = 60
t = 1500

(g) N = 70

t = 1500

(h) N = 80

t = 1500

(i) N = 90
t = 1500

(j) N = 100

t = 1500

(k) N = 120

Horizon

(l) Tr = 0.015, box size L =
1.5

Figure B.7.: S = 1.5, FP , Tc
Tr

= 4, Tr = 0.015
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B.5. Box, S = 1.5, FP

t = 1500

(a) N = 140

t = 1500

(b) N = 160

t = 1500

(c) N = 180
t = 1196

(d) N = 200

t = 981

(e) N = 220

t = 798

(f) N = 240
t = 649

(g) N = 260

Horizon

(h) Tr = 0.015, box size
L = 1.5

Figure B.8.: S = 1.5, FP , Tc
Tr

= 4, Tr = 0.015
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B. Patterns

B.6. Box, S = 1.5, FM

t = 1500

(a) N = 10

t = 1500

(b) N = 20

t = 1500

(c) N = 30
t = 1500

(d) N = 40

t = 1500

(e) N = 50

t = 1500

(f) N = 60
t = 1500

(g) N = 70

t = 1500

(h) N = 80

t = 1500

(i) N = 90
t = 1500

(j) N = 100

t = 1500

(k) N = 120

Horizon

(l) Tr = 0.015, box size L =
1.5

Figure B.9.: S = 1.5, FM, Tc
Tr

= 4, Tr = 0.015
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B.6. Box, S = 1.5, FM

t = 1500

(a) N = 140

t = 1500

(b) N = 160

t = 1500

(c) N = 180
t = 1500

(d) N = 200

t = 1500

(e) N = 220

t = 879

(f) N = 240
t = 1017

(g) N = 260

Horizon

(h) Tr = 0.015, box size
L = 1.5

Figure B.10.: S = 1.5, FM, Tc
Tr

= 4, Tr = 0.015
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B. Patterns

B.7. Circular, S = 0.5, FP

t = 1500

(a) N = 10

t = 1500

(b) N = 15

t = 1500

(c) N = 20
t = 1500

(d) N = 25

t = 1500

(e) N = 30

t = 1500

(f) N = 35
t = 1500

(g) N = 40

t = 1500

(h) N = 45

t = 1500

(i) N = 50
t = 2500

(j) N = 60

t = 2500

(k) N = 70

Horizon

(l) Tr = 0.015, radius r =
0.25

Figure B.11.: S = 0.5, FP , Tc
Tr

= 0.5, Tr = 0.015
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B.8. Circular, S = 0.5, FM

B.8. Circular, S = 0.5, FM

t = 1500

(a) N = 10

t = 1500

(b) N = 15

t = 1500

(c) N = 20
t = 1500

(d) N = 25

t = 1500

(e) N = 30

t = 1500

(f) N = 35
t = 1500

(g) N = 40

t = 1500

(h) N = 45

t = 1500

(i) N = 50
t = 2500

(j) N = 60

t = 2500

(k) N = 70

Horizon

(l) Tr = 0.015, radius r =
0.25

Figure B.12.: S = 0.5, FM, Tc
Tr

= 4, Tr = 0.015
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B. Patterns

B.9. Circular, S = 1.0, FP

t = 1500

(a) N = 10

t = 1500

(b) N = 15

t = 1500

(c) N = 20
t = 1500

(d) N = 25

t = 1500

(e) N = 30

t = 1500

(f) N = 35
t = 1500

(g) N = 40

t = 1500

(h) N = 45

t = 1500

(i) N = 50
t = 2500

(j) N = 60

t = 2500

(k) N = 70

Horizon

(l) Tr = 0.015, radius r =
0.5

Figure B.13.: S = 1.0, FP , Tc
Tr

= 0.5, Tr = 0.015
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B.9. Circular, S = 1.0, FP

t = 2500

(a) N = 80

t = 2500

(b) N = 90

t = 2500

(c) N = 100
t = 2500

(d) N = 120

t = 2005

(e) N = 140

t = 1056

(f) N = 160
t = 984

(g) N = 180

t = 921

(h) N = 200

t = 757

(i) N = 220
t = 631

(j) N = 240

t = 529

(k) N = 260

Horizon

(l) Tr = 0.015, radius r =
0.5

Figure B.14.: S = 1.0, FP , Tc
Tr

= 0.5, Tr = 0.015
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B. Patterns

B.10. Circular, S = 1.0, FM

t = 1500

(a) N = 10

t = 1500

(b) N = 15

t = 1500

(c) N = 20
t = 1500

(d) N = 25

t = 1500

(e) N = 30

t = 1500

(f) N = 35
t = 1500

(g) N = 40

t = 1500

(h) N = 45

t = 1500

(i) N = 50
t = 2500

(j) N = 60

t = 2500

(k) N = 70

Horizon

(l) Tr = 0.015, radius r =
0.5

Figure B.15.: S = 1.0, FM, Tc
Tr

= 4, Tr = 0.015
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B.10. Circular, S = 1.0, FM

t = 2500

(a) N = 80

t = 2500

(b) N = 90

t = 2500

(c) N = 100
t = 2500

(d) N = 120

t = 2500

(e) N = 140

t = 2476

(f) N = 160
t = 1619

(g) N = 180

t = 138

(h) N = 200

t = 1068

(i) N = 220
t = 877

(j) N = 240

t = 702

(k) N = 260

Horizon

(l) Tr = 0.015, radius r =
0.5

Figure B.16.: S = 1.0, FM, Tc
Tr

= 4, Tr = 0.015
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B. Patterns

B.11. Circular, S = 1.5, FP

t = 2500

(a) N = 10

t = 2500

(b) N = 15

t = 2500

(c) N = 20
t = 2500

(d) N = 25

t = 2500

(e) N = 30

t = 2500

(f) N = 35
t = 2500

(g) N = 40

t = 2500

(h) N = 45

t = 2500

(i) N = 50
t = 2500

(j) N = 60

t = 2500

(k) N = 70

Horizon

(l) Tr = 0.015, radius r =
0.75

Figure B.17.: S = 1.5, FP , Tc
Tr

= 0.5, Tr = 0.015
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B.11. Circular, S = 1.5, FP

t = 2500

(a) N = 80

t = 2500

(b) N = 90

t = 2500

(c) N = 100
t = 2500

(d) N = 120

t = 1865

(e) N = 140

t = 1846

(f) N = 160
t = 1450

(g) N = 180

t = 1087

(h) N = 200

t = 876

(i) N = 220
t = 760

(j) N = 240

t = 601

(k) N = 260

Horizon

(l) Tr = 0.015, radius r =
0.75

Figure B.18.: S = 1.5, FP , Tc
Tr

= 0.5, Tr = 0.015
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B. Patterns

B.12. Circular, S = 1.5, FM

t = 2500

(a) N = 10

t = 2500

(b) N = 15

t = 2500

(c) N = 20
t = 2500

(d) N = 25

t = 2500

(e) N = 30

t = 2500

(f) N = 35
t = 2500

(g) N = 40

t = 2500

(h) N = 45

t = 2500

(i) N = 50
t = 2500

(j) N = 60

t = 2500

(k) N = 70

Horizon

(l) Tr = 0.015, radius r =
0.75

Figure B.19.: S = 1.5, FM, Tc
Tr

= 4, Tr = 0.015
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B.12. Circular, S = 1.5, FM

t = 2500

(a) N = 80

t = 2500

(b) N = 90

t = 2500

(c) N = 100
t = 2500

(d) N = 120

t = 2500

(e) N = 140

t = 2500

(f) N = 160
t = 2324

(g) N = 180

t = 1896

(h) N = 200

t = 1476

(i) N = 220
t = 1200

(j) N = 240

t = 965

(k) N = 260

Horizon

(l) Tr = 0.015, radius r =
0.75

Figure B.20.: S = 1.5, FM, Tc
Tr

= 4, Tr = 0.015
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