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ABSTRACT

In this thesis, I describe my work towards a novel experiment to study
the dynamics of oil droplets on water. It allows following the evolu-
tion of the droplet size distribution during a coalescence process with
superb statistics. Every experiment run involves more than 20,000 ini-
tial droplets coalescing into a few hundred within four to six hours,
with droplet sizes ranging from 0.01 cm? to 1,000 cm?.

Data acquisition is built around an LED light source and a shadow
image method that exploits the oil droplets” optical properties. Im-
ages of the droplet configuration are taken with a consumer-level
DSLR camera and processed with circle detection and morphological
methods. I have developed two open-source software frameworks:
one facilitates camera remote control at higher frame rates than avail-
able in existing software solutions, the other one simplifies the task
of batch image processing.

The coalescing oil droplets reveal an uncommon characteristic: As
the system evolves, the distribution of droplet sizes becomes bimodal.
By dividing the droplets into a group of small and a group of large
droplets, we are able to identify three regimes in the coalescence pro-
cess. We introduce a mathematical model in which the distribution
decomposes into a superposition of a steady distribution of small
droplets and a scaling distribution of larger droplets.






“Would you tell me, please, which way I ought to go from here?’

‘That depends a good deal on where you want to get to,” said the Cat.

‘I don’t much care where—" said Alice.

“Then it doesn’t matter which way you go,” said the Cat.

‘—so long as I get somewhere,” Alice added as an explanation.

‘Oh, you're sure to do that,” said the Cat, ‘if you only walk long enough.’

— Lewis Carroll, Alice in Wonderland
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MOTIVATION

Coalescene, the merging of two or more droplets or particles, is every-
where. It happens on the scale of molecules’* and on the scale
of galaxies?™. It plays a crucial role in natural processes, such as
rain formation®® or volcanic magmas?™!, as well as in industrial
processes, such as polymer blending'*'3, oil recovery'+'5, or spray
combustion %7,

Classic coalescence processes are driven by a decrease in surface
or line energy.18 Simply speaking, a molecule deep inside a liquid
droplet finds itself in a favourable energy state, as it benefits from
the cohesion with its neighbours. In contrast, a molecule segregated
to the surface loses roughly half of these cohesive interactions, and
hence lives in an unfavourable energy state. This is the fundamental
reason that liquids adjust their shape to expose the smallest possible
surface area. The surface tension (or line tension in the case of two-
dimensional droplets) v is a measure for energy necessary to uphold
one unit of surface area. Minimising the surface or line energy, i.e.
the total energy necessary to maintain the liquids shape, is the main
motor behind coalescence: A sphere with volume V has an area about
one third smaller than two spheres with Volume V/2.

There are many phenomena associated with coalescence that are
not yet fully understood. Thoroddsen and Takehara ¥ and Blanchette
and Bigioni*® used high-speed video recording to show that the co-
alescence of a droplet placed onto a layer of the same fluid is not
instantaneous, but takes place in a self-similar cascade. Gau and Her-
minghaus®' and Lapp** demonstrated that the dynamics in breath
figures, i. e. droplets condensing on a substrate, are dominated by cas-
cades of droplet coalescences. Weon and Je>3 and Kim et al. ** show
that droplet and bubble coalescence is subject to coalescence preference,
where a bubble merged from two differently sized parent bubbles
tends to be placed closer to the larger parent bubble (in agreement
with the surface energy release theory), and that the coalescence pref-
erence is inhibited in densely packed clusters of microbubbles.

Moreover, coalescence has fields of application that are not obvious
at first sight. The very first ideas on the way to this thesis stemmed
from the study of explosive percolation. Percolation theory is the study
of the number, properties, and behaviour of connected clusters in
random networks.*> While a long-standing topic in the field of stat-
istical physics, going back to the late 50s2°, recent advances by Achli-
optas et al.?7, da Costa et al.2829, Nagler et al.3°, and Riordan and
Warnke3'3? (among many others) have inflamed a lively discussion



MOTIVATION

on the existence and the prerequisites necessary to observe a macro-
scopic gap in the percolation function, i.e. a jump in the fraction of
network nodes that are part of the largest existing cluster under the
addition of links, even in the limit of infinitely many network nodes.
In a coalescence experiment, the individual droplets or bubbles can
be thought of as clusters, and a merging event corresponds to adding
a link to the network that connects two clusters.

Single coalescence events are often studied under microscopes3373°
or, more recently, via x-ray imaging®3*4. Owing to its many applica-
tions in industrial fields, the distribution of droplet sizes is typically
investigated in fragmentation rather than coalescence processes 373,
with the help of atomisers,3%4° such as fuel injection systems for com-
bustion engines, or strong ultrasound waves*'. The droplets and
bubbles available through these methods have diameters in the range
of tens or hundreds of micrometers.

However, results from experiments with larger droplets, as well as
studies on the evolution of the droplet size distribution under the influ-
ence of coalescence, are scarce. This hinders experimental insight into
phenomena that happen in the tails of distribution functions, such as
the evolution of the largest cluster in a percolating system, or the
initiation of rain.+*

1.1 OUTLINE

In this thesis, I introduce a novel experiment that uses oil droplets on
a water surface to extract high-quality data on the time evolution of
droplet size distributions in a coalescence process. I follow a bottom-
up approach: First, chapter 2 describe the thoughts that went into
the design of the experimental setup, and the advances and setbacks
that lay along the way to build it. Next, chapter 3 addresses the task
of acquiring valuable data from the experiment; namely, how do we
capture images from the experiment, and how can we automatically
process them. Last, chapter 4 uses the obtained data to learn about
specific traits of our experiment, and about features of its coalescence
behaviour.

The main goal of this thesis is to completely describe, characterise,
and generically evaluate a new physical experiment. Hence, it aims
at providing the reader with the information necessary to understand
the experimental setup as well as the software used for image acquis-
ition and analysis, including the image processing algorithms. I do
not go into an evaluation aimed at specific topics or applications of
coalescence, such as the coalescence preference or explosive percola-
tion. Rather, I provide a general analysis of the experiment in order
to gain insight into the statistical physics underlying its coalescence
process.
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Hofstadter’s Law: It always takes longer than you expect,
even when you take into account Hofstadter’s Law.
— Douglas Hofstadter+3

Albeit short, this chapter describes the basis of this thesis: The ex-
perimental setup built to provide statistics on the coalescence of oil
droplets on a water surface. I will start with an anecdote on the
inspiration for the experiment before presenting the fundamental re-
quirements that it was built against. With these in mind, section 2.2
retraces the many adventures and misadventures that lay along the
way to building the experiment. Finally, the current setup is summar-
ised in section 2.3, and I describe the procedures that were followed
for every run of the experiment in section 2.4.

Before we start, it seems in order to clarify on a nomenclature issue:
Many authors4747 use the term oil lenses for small oil droplets on a
surface. It is applicable to their cases since their oil droplets, mostly
examined in a microscope, are indeed shaped like circular lenses. As
we will see later, the larger oil droplets we encounter in the experi-
ment, far larger than what can be viewed through a microscope, are
more pancake- than lens-shaped, and I will hence stay with the term
oil droplet throughout this thesis.

2.1 FROM SALAD DRESSING TO EXPERIMENT

The salad at the Zentralmensa in Gottingen often comes with a me-
diocre, standard dressing, made mostly of water, o0il, and vinegar.
Probably familiar to the reader from cooking soups, the oil forms co-
alescing droplets on the water surface. During a long discussion over
finished plates, the following can be observed: through evaporation,
the water level in the bowl continuously decreases. Due to the shape
of the bowl, this reduces the dressing’s surface area. The oil droplets
are thus forced to share a smaller area, which accelerates the coales-
cence process. When the water has fully evaporated, we find a single,
large oil droplet.

The principal ambition of this thesis was to transfer the phenomen-
on of the coalescing salad dressing into a controllable, reproducible
laboratory experiment. To allow quantitative statements, great effort
must be put towards fast and extensive data acquisition. This imposes
the following requirements on the experiment:
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(i) Large possible numbers of oil droplets allow exploring a great range
of size distributions, and furthermore play a crucial role in
the variation of system size to facilitate finite size scaling ar-
guments.

(ii) Short experiment times are a key ingredient in achieving a re-
liable level of statistics through many experiment repetitions,
therefore reducing errors in quantitative measurements.

(iii) High-resolution imaging, both spatially and temporally, dictates the
range of droplet sizes that can be explored.

(iv) Reliable droplet detection sets the standard for both accuracy and
precision of the quantitative measurements.

Satisfying the latter two requirements is the heart of chapter 3, while
accomplishing the former two is discussed in the remainder of this
chapter.

2.2 A LONG WAY...

This section contains what is usually left out in a thesis: All the failures,
distractions, and 180 degree turns that precede what is finally achieved and
presented as straight-forward. I decided to include it since I spent an unsat-
isfactorily large chunk of my time on working around the many stumbling
blocks. The following paragraphs serve as a documentation of my work, and
I hope that they prove useful when discussing further improvements and en-
hancements of the experiment. They are intended as a collection of hints for
a potential student picking up the experiment later. As such, to not unne-
cessary bloat this thesis, they contain a summary of my experience rather
than an extended analysis of all the small experiments that lay along the
way. What follows is not necessary for understanding the final experimental
methods and materials, nor the results, and the incurious or impatient reader
should feel free to skip to the next section.

Canonically, the components of an experiment are introduced thematically.
However, since this section describes the history of the experiment, it follows
the experiment construction chronologically.

2.2.1 Prelude

A group of students from the University of Géttingen, Happ et al. 4%,
tried to evaluate the coalescing salad dressing in a short laboratory
(Projektpraktikum) during the summer semester of 2011. They poured
20 ml of water with one percent soap and 25 droplets of pumpkin
seed oil into a watch glass. Images of the merging processes during
water evaporation (about 24 hours) were taken with a low-resolution
video camera and processed with threshold and edge detection al-
gorithms. Their main hope was to review and provide support for
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numerical results on critical exponents in competitive percolation+’
by Nagler et al.3°. Unfortunately, their primary result was that a
much larger system size is needed to make quantitative statements,
with their system size insufficient to determine any of the exponents
they were interested in to a satisfying degree.

There are two ways to increase the initial number of oil droplets:
reducing the (initial) size of the droplets, and increasing the area on
which they (initially) live. I opted to do both, and dealt with increas-
ing the geometrical size of the experiment first. The watch glass was
replaced with a large funnel of about one meter in diameter and half
a meter in height. Naturally, waiting for the corresponding mass of
water to evaporate collides with our requirement (iii) (short experi-
ment times). Hence, the funnel was equipped with an outlet at its
bottom, allowing the experimenter to set the water level’s decrease
rate at will.

2.2.2  Making the droplets visible

Happ et al.4® used a piece of white paper underneath the watch
glasses to increase the contrast between background and oil droplets.
Buying a custom-made glass funnel of this size is, however, unreason-
ably expensive (if possible at all). The metallic surface of the funnel
significantly reduces the droplets-to-background intensity ratio, and
its reflectivity messes with the intensity profile of the background illu-
mination. While this can be dealt with by image post-processing and
painting the funnel, there is a still bigger problem: As the oil droplets
are rather thin layers, their visibility is strongly dependent on their
height. Using only their light absorption to differentiate them from a
white background unnecessarily increases the lower bound of detect-
able droplet sizes, and therefore contradict our requirements (i) (large
possible numbers of oil droplets) and (iv) (reliable droplet detection).

With this in mind, and in the naive hope of a near-perfect signal-to-
background ratio, I turned to fluorescence. The pumpkin seed oil was
replaced with hexadecane and a lipophilic, bright, and photostable
fluorescent marker, Nile Red. A spatially (relatively) homogeneous
excitation over the complete area of the funnel can be achieved with
an array of bright light-emitting diodes. Their dense emission spec-
trum would leave the emission spectrum nearly unpolluted (cf. fig. 1).
The camera must then be equipped with a corresponding low-, or
better yet, bandpass filter. Dishearteningly, fluorescence tests in a mi-
croscope showed that despite Nile Red’s high quantum yield>°, the
fluorescence from a thin hexadecane layer is too weak: At an illumin-
ation intensity higher than achievable with the bright LED array, and
an exposure time of one second (!) (the aperture being predetermined
by the microscope), a DSLR camera similar to the one we planned to
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Figure 1: Fluorescence and LED spectra. Nile Red’s absorption spectrum in
hexadecane (measured at Kris Hantke’s lab at the MPIDS) shows
two peaks. The second of these peaks has a near-perfect match
with the typical emission spectrum of a green LED (data shown is
for a Thorlabs M530L3), while the corresponding Nile Red emis-
sion peak has little to no overlap with the LED.

use in our experiment picked up the fluorescence peak at 18 of the
255 available arbitrary intensity units, above a base noise level of 3.

By now, oil absorption and fluorescence had been ruled out as
methods to visualise the oil droplets for image processing. In search
of a new method (and a hint of desperation), during a discussion in
the institute’s infamous yellow kitchen, we filled water and oil into a
casserole and played around with an LED flash light, trying to figure
out how our own eyes distinguish the oil droplets from the water sur-
rounding them. After establishing that our eyes are not too good at
seeing the droplets after all, we noticed that with light coming in per-
pendicular (i. e. from the top), each droplet produces a shadow image
of its shape (cf. fig. 2), with a very stark contrast between the bright
center of the droplet and the almost completely dark edge, where the
droplet’s curvature bends the light away.

There are two major obstacles on the way to implementing the
shadow-image method in our funnel setup. First, as the path of the
light towards the bottom is obscured by the non-transparent funnel,
there is no possibility to visualise the shadows with a light source set
up above. This can be resolved by placing a watertight light source
with wide opening angle at the bottom of the funnel, and by pla-
cing a screen at its top. Second, and more grave, the shadow image
of the oil droplets is strongly dependent on their distance towards
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Figure 2: Droplet shadows. Left: Due to the curvature of its edge®, and
the different refractive indices of the three materials involved 552,
parallel light falling onto an oil droplet on a water surface creates
a shadow image with a dark outline of the droplet’s edge and a
bright center. Right: Droplet shadows in an image from the final
experiment.

the screen. With growing distance, the shadows become increasingly
blurred. While this can be computed back in post-processing (it is
linear optics, after all), the effort would be huge, and would have
exceeded the scope of a master’s thesis.

Mastering the latter obstacle without excessive post-processing calls
for a constant distance between water level and screen. Given that
there is no obvious way to (i) keep the screen as close to the water
level as possible, (ii) make it follow the water level during an experi-
ment and at the same (iii) constantly change its size so that it fits into
the funnel at any given height, there were two possible choices at
this point: abandoning the shadow-image method, or committing to
a constant water level, essentially rendering the shape of the funnel,
and its outlet at the bottom, useless.

The shadow images were so temptingly beautiful, with much higher
contrast and much higher detail than anything we had seen before,
that I opted for the latter option and moved to different forms of
water basins. A small aquarium served as playground for prelimin-
ary tests before upscaling the shadow-image method. The aquarium
was filled with water almost to the top, where a white sheet of pa-
per served as screen. A number of light sources were then placed
underneath the aquarium.

2.2.3 [llumination

As Lucas Goehring once put it, “image processing on inhomogeneous
backgrounds is a bitch.” For ease of post-processing, the light source
for our experiment should be homogeneous on a large area. At the
same time, to use the lens properties of the oil and end up with a
sharp shadow image, it needs to produce collimated light. Several
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Figure 3: Controlling the effective surface area with a floating tube. The
oil droplets, trapped within the boundaries set by the tube (red,
solid), can be pushed together by pulling on one end of the tube
(dashed). The process can be automated and smoothed by using a
small electric gear motor.

light sources that are typically used for large-scale illumination, such
as halogen floodlights with a parabolic mirror or LED illumination
screens, were quickly ruled out. The missing collimation makes the
shadow images they produce too blurry. On the other end of the
spectrum, dedicated collimated light sources are only available with
small beam diameters of up to 50 mm. Finally, we ended where
we started: Flashlights that have an LED chip and a built-in lens
behave like a point source: At larger distances, the light rays can be
considered locally collimated (for the typical size of an oil droplet); and
while the background illumination is by no means homogeneous, its
heterogeneity is at least somewhat well defined.

2.2.4 Controlling the surface area

Having ensured the practicability of the shadow-image method, we
now focus on the problem that was deliberately swept under the
carpet in section 2.2.3: controlling the surface area on which the oil
droplets live. The rectangular shape of a typical aquarium forbids us-
ing evaporation or water draining to continuously drive the droplets
closer together. Kristian Hantke, who had also previously helped
with (and was rightfully sceptical about) the tests on fluorescence,
suggested using a floating tube. The tube is laid out on the water in
a loop, such that the radius can be controlled by pulling (or pushing)
on one end (cf. fig. 3). While the oil, bound to the surface, is trapped
inside the shrinking loop, the water is free to move underneath. A
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small electric gear motor, as commonly used in model making, can be
used to control and stabilise the rate of surface area reduction. While
the implementation involved a few trips to aquarium and hobby cen-
ters, as well as learning some new skills in the mechanics of holding
tubes and in electronics, first working versions of this method turned
out to be promising.

2.2.5 Restoring the funnel’s large size

While a big step up from the watch glass, the test aquarium with its
size of about 20 cm x 40 cm still had a lot of room for improvement
towards our requirement (i) (large possible numbers of oil droplets).
A custom-made aquarium with a base area of 1 m x 1 m, and a height
of 10 cm, was bought. Upscaling most other parts of the setup was
unproblematic: the LED flashlight was still sufficiently bright even
from an increased distance (for a larger area of illumination), and the
motor had to be replaced with a stronger version. The screen was
placed underneath the aquarium, squeezed between its bottom and
the top of an acrylic glass, as it would otherwise bend in too much at
the center of the aquarium.

Unexpectedly, however, there were major complications with the
tube that was supposed to push the droplets closer together. Even
though it is made of plastic and filled with air, short segments of it
sank below the water surface, thereby producing a leak for the oil
droplets and effectively cancelling the reduction in surface area. At-
taching small water wings made of bubble wrap to parts of the tube
only moved the leaks around, but never closed all of them. At the
same time, attaching bubble wrap to the complete tube was not pos-
sible, as the modified parts of the tube were too big for the tube
mounts. At this point, to move on with the thesis, I abandoned
the tube method and went on to an approach described in the next
paragraph. However, I believe with more time to explore different
tube materials, helpers, and mounts, the tube method can be made
to work, and possibly facilitate better control over the coalescence
behaviour than available with the current setup.

2.2.6 Defining initial conditions

In parallel to all the misses and successes described before, I spent a
lot of time in the chemistry lab, searching for ways to influence ini-
tial conditions and the speed of the coalescence process. Initially, I
had planned to spray oil onto the water surface, as this would pro-
duce very small initial oil droplets (working towards requirement (i)).
However, with the oil atomisers available on the consumer market,
there is very little control over the amount of oil deposited into the
experiment. It should also be noted that inhaled oil will form thin lay-
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ers on the alveoli in our lungs, much like on water, and lead to suffocation
despite breathing. Working with an appropriate mask is therefore es-
sential.

To make different experiment runs comparable, I switched to defin-
ing the amount of oil in the experiment as a starting point: Instead of
spraying oil onto the water, I pour a well-defined, carefully measured
amount of oil onto the water. The resulting single large oil droplet can
then be split into many small ones by stirring the water-oil mixture
with a spoon. The small droplets will relax into a circular shape faster
when a surfactant is added to the water, for which sodium dodecyl
sulfate (SDS) was used.

After a few tries, it became clear that the speed of the coalescence
process is mainly governed by the amount of oil used. While runs
with small amounts of 0il did show few coalescences even in a time
frame of hours, the oil droplets formed with large amounts were hard
to even split into small droplets, and coalesced into a large one within
seconds. The quantitative values of small and large naturally vary
with the size of the setup. In the petri dish used in the chemistry lab,
20 cm in diameter, they would correspond to 10 ml and 30 ml. In
between these two extremes is an amount of oil that seems just right
for our purposes: At around 22 ml, the large oil droplet poured in
at the beginning can easily be split into many small ones by stirring
for about one minute. Afterwards, the (left alone) droplets start co-
alescing until they form one big and few small droplets after 45 to 60
minutes.

This procedure can be transferred to the big aquarium with almost
no modifications. Despite the roughly 30 times larger area, the op-
timum amount of oil increases only by a factor of nine. After the
initial stirring, still about one minute, the droplets start a coales-
cence process that ends in one large and several smaller droplets after
about four hours, without any external influences on the droplets (i. e.
without the plastic tube). In the first seconds and minutes, the coales-
cences happen both fast and on a small (millimeter) scale, further
manifesting requirement (iii) (high-resolution imaging).

2.3 MATERIALS

Figure 4 shows the experiment in its current incarnation. It consists

of:

* Aluminum frame made of 40 mm x 40 mm BLOCAN struc-
tural profiles by Rose+Krieger GmbH (Minden, Germany), total
height 220 cm

¢ Custom-made glass aquarium, 1 m x 1 m x 10 cm, by AQUA
SCHWARZ GmbH (Goéttingen, Germany)
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Oil droplets

Acryllic Aguarium
glass 3 mm distilled
water, SDS)

Mirror

Figure 4: Experimental setup. Oil droplets on a water surface are illumin-
ated with locally collimated light from an LED source above. Their
shadows, high-contrast outlines of the droplets due to how they
bend light, are cast onto a transparent paper just beneath the aquar-
ium which holds the water and oil droplets. A digital single-lens
reflex camera (DSLR) takes high-resolution images of the shadow
figures.

11
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¢ Transparent paper, as used for engineering drawings before the
days of CAD (computer-aided design)

* Acrylic glass plate, 1m x 1 m x 5 mm

¢ Flashlight with a white Cree (Durham, North Carolina, USA)
Q3 LED and lens, by Fox Outdoor (Melrose Park, Illinois, USA),
modified by the MPIDS electronic workshop such that it runs
from a power supply instead of a battery

¢ Mirror (customary), 140 cm x 60 cm

* Dogo digital single-lens reflex camera, 4,288 x 2,848 pixels, with
an 18 mm wide-angle lens, by Nikon (Chiyoda, Japan)

Near-parallel light emerges from an LED at the top of the setup and
falls onto the oil droplets, which sit on a water surface in a 1 m?
aquarium. The curvature at the droplets” edges bends the light in-
wards, such that each droplet throws a shadow in the form of its
outline. These shadows become visible on a transparent paper just
below the aquarium, and are picked up by a camera equipped with a
wide-angle lens. Due to the restricted space, the optical path length
is increased with a mirror angled at 45°.

2.4 EXPERIMENTAL PROCEDURE

All the experiment runs that are evaluated in chapter 4 were prepared
in exactly the same fashion. First, the aquarium is cleaned from the
previous run (or from dust gathering in it over weekends, etc.):

(i) Remaining water is drained off through siphoning
(ii) Remaining oil is removed as good as possible with paper towels

(iii) The aquarium is cleaned with ethanol and paper towels, then
rinsed with distilled water

(iv) The aquarium is cleaned with acetone and paper towels, then
rinsed with distilled water

(v) The aquarium is rinsed with distilled water

(vi) When necessary after visual inspection, the last three steps are
repeated

With a clean aquarium, an experiment run is prepared as follows:

(i) Three liters of distilled water are filled into the aquarium (res-
ulting in a water level of 3 mm)

(ii) As surfactant, 2 milliliters of a water-SDS (sodium dodecyl sul-
fate) solution, with 10 % SDS by weight, are added to the water
in the aquarium, which is subsequently stirred
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(iii)) When the water has settled, 200 milliliters of olive oil (Franto
Natives Olivenol Extra, purchasable at Kaufland) are carefully
poured onto the water surface, such that it forms a single large
oil droplet

Next, the experiment run is initiated:

(i) The image capturing software (see chapter 3) is set to a count-
down of one minute

(ii) As soon as the countdown is started, the setup is stirred with a
plastic shovel

(iii) When the first picture is taken (i.e. when the countdown is
over), we stop stirring the setup

At this point, the experiment is left untouched for at least four hours,
with pictures taken at subsecond intervals (starting at 4 fps) for the
first few minutes, and then gradually fading into larger intervals
(up to one minute) as the coalescence speed decays. Images are
taken with a 1/15 second exposure time at an f/4.5 aperture and
ISO 400, providing a reasonable trade-off between depth of field (to
compensate for a slightly off focus plane if necessary), short exposure,
and noise level.

13
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A large portion of the work leading to this thesis comprised the devel-
opment of two software projects, one for image acquisition and one
for image processing. While I always had the experiment in the back
of my head, I hoped that they may be useful for other experimental-
ists at the institute. Hence, they were designed as frameworks, with
as much flexibility as possible. Both software projects are distributed
as packages for the Python programming language, such that they
can be easily configured and used from a user-friendly scripting lan-
guage, or integrated into other Python projects. To further ease usage,
they come with a command line interface.

The first software project, ICE (Image Capturing for Experimental-
ists), facilitates remote-controlling digital cameras. It has two major
advantages over other available software solutions: First, it is able
to use the camera’s burst mode during remote control, allowing full-
resolution frame rates about ten times faster than other software solu-
tions. Second, it gives users full flexibility in choosing the image cap-
turing intervals during time lapses, instead of pinning them down to
a simple “take X pictures, one every Y seconds” scheme.

The second software project, FIRE (Framed Image Recognition for Ex-
perimentalists), is a small framework that provides boilerplate’ for di-
gital image processing, releasing users from having to come up with
their own workflow (and, too often, immortalising it in inflexible
and hard-to-maintain code). Instead, image processing algorithms
are wrapped in modular units which can be selected, ordered, and
configured from a human-readable, easily maintainable configuration
file.

3.1 EXPERIMENTAL IMAGE CAPTURING

When choosing an image capturing solution for an experiment, you
get to pick two out of three attributes: high-resolution, fast, afford-
able. Simultaneous imaging of tens of thousands of oil droplets re-
quires a high resolution. However, as we will later see, the experi-
mental system generates many merging events within the first few

In programming, boilerplate is code that can be used in many applications and con-
texts with little to no alteration. The term originates from the newspaper industry
in the early 1900s, where advertisements or syndicated columns were sent to sub-
scribing newspapers as a mat, and boiling lead needed to be poured into the mat to
create the plate used to print the piece.?3 As these articles printed on a boilerplate
could not be altered, the term became used more widely for portions of language
that did not change while used for different occasions.

15
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seconds, making a high time resolution crucial as well. Here, we
present a solution to this problem that avoids buying a high-speed,
high-resolution camera.

The Department for Dynamics of Complex Fluids (DCF) at the MPI-
DS made good experiences with entry-level digital single-lens reflex
cameras (DSLRs) in the past. These offer high resolutions, typically
between 10 and 25 megapixels, and high flexibility through their in-
terchangeable lenses, while being both cheap and readily available
due to their wide distribution on the consumer markets. Their draw-
back, typically, is that they are slow. The data for this thesis was taken
with a Nikon Dgo, a DSLR featuring a 12.3 megapixel CMOS sensor
that sells between 500 and 600 € (excluding VAT) in a kit with a wide
angle zoom lens.

3.1.1 The problem with available remote control software

There are several software solutions available for remote-controlling
(tethering) Nikon DSLRs, such as DigiCamControl (open source), NKRe-
mote (commercial), or Nikon’s own Camera Control Pro (commercial).
All of these solutions gather pictures from the camera in the same
fashion: First, they trigger the camera. The camera then goes through
its internal picture-taking process (i. e. close down the aperture, flap
up the mirror, etc., until the sensor has been read out) without any
remote interaction. The picture is saved to the camera’s internal
SDRAM buffer, from which the software transfers it onto the remote-
controlling computer via USB. This last part is the major bottleneck
for high-speed image acquisition: downloading a full-resolution raw
image (roughly 10 MB) takes about three seconds due to the cheap
USB chips used in entry-level DSLRs. This limits the effective frame
rate for taking image series with the available software solutions to
1/3 frames per second (fps).

However, the camera is technically able to achieve much higher
frame rates. When hand-controlled, setting it to burst mode allows
(continuous) frame rates of up to 4 fps, i.e. a factor ten faster than
available during remote control. The difference stems from avoiding
the USB transfer: instead of transferred to the remote computer, the
pictures from the internal buffer are saved on an SD card plugged
into the camera. Since the frame rate in hand-held operation is often
a major selling point, camera manufacturers tend to spend money on
a fast SD card bus, rather than on the USB chip.

While four frames per second is not incredibly fast, it is impressive
when considering the high resolution and the low price, and a vast
improvement over the frame rates available through tethering. Still,
hand-controlling a camera for the course of a multi-hour experiment
is impractical. A part of this thesis was therefore the development
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Figure 5: Data flow in a digital camera. Image data is read from the APC
CMOS sensor into the camera’s internal SDRAM buffer. Unlike
other remote control software ICE retains the possibility of using
the camera’s highest available frame rate at full resolution by sav-
ing pictures from the buffer to an SD card instead of transferring
them via USB. Bus transfer rates are rough estimates from experi-
ence with a Nikon Dgo (SDRAM rate from data sheet).

of a software solution that uses the camera’s full potential without
requiring any human interaction during the experiment.

3.1.2 Introducing fast and flexible camera tethering with ICE

The basic idea of the first software solution, ICE (Image Capturing
for Experimentalists), aimed at achieving high-resolution, fast, remote-
controlled image acquisition, is very simple: While remote-controlling
the camera, mimic its behaviour from hand-controlled mode. That is,
make the camera save pictures to an SD card instead of transferring
them to the computer. ICE also provides another simple feature not
available in other solutions: variable frame rates. While the coales-
cence experiment changes fast at the beginning, it becomes increas-
ingly slower with time. Hence, images should be taken at small inter-
vals early on and larger intervals during later stages to avoid camera
wear and huge data sets.

Almost all modern cameras that have a USB interface implement
the Picture Transfer Protocol (PTP), a standard that facilitates remote-
controlling as well as tranferring data to and from still image capture
devices (i. e. cameras). For the Linux operating system, there is a stable
and well-maintained library, libgphoto254, that implements PTP and
includes many small improvements and hacks to unify the small dif-
ferences in the remote control interfaces of different manufacturers
(for DSLRs, these are mainly Nikon and Canon). ICE is a Python
package based on bindings for this library.

3.1.2.1 Fast frame rates via remote-controlled burst mode

So what is the black magic in ICE that allows much higher frame rates
than other tethering solutions? Libgphotoz provides two main calls
for taking still images: capture-image and trigger-capture. The
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former results in the behaviour found in available software solutions:
One or (depending on the camera’s settings) multiple pictures are
taken, then transferred from the internal buffer onto the tethering
computer via USB. During this transfer, the camera is unresponsive
to further library calls. The second call, trigger-capture, works on
a much lower level. It does roughly the equivalent of pushing the
shutter release button: trigger the camera’s internal picture-taking
process, then hand back control immediately. In particular, there is
no automatic USB transfer. Instead, the image either remains on the
camera’s internal buffer or is saved to the SD card, depending on the
camera configuration. While the library can reconfigure the camera
or send new commands with minimal delay, it is crucial to wait for
the camera to signal that the picture has been saved (to the buffer)
before triggering the next capture process.

ICE uses libgphoto2’s ability to remotely set a camera’s configur-
ation, enabling burst mode and setting the desired frame rate and
number of pictures to be taken, then starts image acquisition via
trigger-capture. Although this approach is very simple, it sets
ICE apart from other software solutions, allowing remote control of
DSLRs without sacrificing their fast burst mode frame rate. The draw-
back of this method is that pictures are saved to an SD card instead
of a computer hard drive, and therefore

(i) the SD card needs to be large enough to hold all pictures of an
experiment run,

(ii) the SD card needs to be fast enough for the desired frame rate,
(iif) pictures cannot be evaluated immediately.

The impact of (iii) must be evaluated from use case to use case, and
does not pose a problem for the experiment described in this thesis.
And while (i) is typically not a problem, with 64 GB and 128 GB
SDXC cards readily available these days, requirement (ii) touches the
limits of many SD cards. A raw, 12 megapixel camera picture has
a size of about 10 MB. Sustaining a frame rate of four frames per
seconds consequentially requires a write speed of 40 MB/s. There
are many SD cards that support such fast writes, especially these
with a UHS-I interface.>> Many older or cheaper cards have write
speeds around 20 MB/s. For these, either resorting to two frames
per seconds (reminder: the frame rate available with USB transfer is
around one frame every three seconds), or accepting minimal image
quality loss by enabling the camera’s high-quality JPEG compression,
will usually do the trick.

3.1.2.2 Flexible time lapse configuration

ICE’s second feature is the freedom to set variable frame rates. Avail-
able software solutions are not aimed at experimentalists. They allow
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studio photographers to put their camera on a tripod, then remotely
change its exposure settings and capture images directly to a com-
puter, where a large screen for viewing and post-processing tools are
immediately available, and they allow hobby photographers to take
picture series of their garden or a sunset. Hence, their time lapse con-
figuration is usually limited to “Take X pictures, one every Y seconds”,
or “Take a picture every Y seconds until Z”. As the tethering software
simply translates these settings into “trigger image capture, then wait
Y seconds (in software); repeat X times”, providing greater flexibility is
not hard. ICE provides the user with two ways two configure time
lapses:

(i) provide a list of millisecond timestamps when images should
be taken, e.g. [0, 250, 500, 750, 1000, 2500, 5000, 16000],
or

(ii) provide a string with “number of pictures @ frame rate” in-
structions, eg. "4 @4fps, 1 @1.55, 1 @2.55, 2@ 5s" for
the same picture timestamps as above.

In both cases, ICE will internally determine list of camera configura-
tion and trigger commands, together with a list of timestamps when
they should be sent. For frame rates faster than one frame per second,
the camera needs to be set into burst mode. For slower frame rates,
it is sufficient to set the camera to single shot mode, then trigger the
capture and wait (in ICE) until the next trigger command needs to be
sent.

3.2 PROCESSING EXPERIMENT IMAGES

Computer vision, i.e. the field of recovering information about a real-
world scene from its two-dimensional projections,>® and digital im-
age processing, i.e. the field of transforming images into other images
in order to enhance particular information and suppress noise, have
been around almost since digital computers became available to the
scientific community. In 1966, Marvin Minsky at MIT assigned an
undergrad student with a summer project (!) “linking a camera to
a computer and getting the computer to describe what it saw”.57 At
the time, many pioneers in artificial intelligence believed solving the
computer vision problem would be an easy step along the path to
solving larger problems such as higher-level reasoning. We know
now that the problem is slightly more difficult than that. A brief, but
well-written and extensively illustrated history of computer vision is
provided by Szeliski.>”

Similar to the last section, we first pinpoint some issues that are
common in image processing in experimental physics in section 3.2.1.
Subsequently, section 3.2.2 shows how FIRE tries to overcome these
issues. Sections 3.2.3 to 3.2.5 then introduce the image processing
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algorithms and methods used for evaluating the images we gather
from our experiment, with the goal of obtaining a list of all droplets,
one list per image, with the droplets’ size, shape, and position. We
employ different algorithms based on the size of the droplets to be
detected: For small droplets, we make use of their almost perfectly
circular shape by finding pairs of opposite gradient vectors in the im-
age. For larger droplets, whose shapes tend to be less consistent, we
turn towards thresholding, morphological operations, and a variety
of filters. Finally, section 3.2.6 describe the parameters used for all the
different image processing algorithms, and how they were obtained.

3.2.1  The problem with image processing in experimental physics

Often, computer vision solutions for acquiring data from images in
experimental physics are extremely inflexible. There is a causal chain
behind this:

(i) Physicists are typically neither interested in nor experienced
with computer vision. Instead, they treat it as a means to ex-
tract data from large sets of raw images from an experiment.

(i) However, computer vision problems often have very specific
solutions. Take the experiment described in this thesis: in front
of an inhomogeneous but steady background, the size of vastly
different oil droplets need to be detected from a shadow image.
As we will see below, this requires applying many different al-
gorithms and parameters for different droplet sizes. This is typ-
ical for the evaluation of physical experiments with computer
vision methods: While the algorithms are readily available in
software libraries®, their usage is drastically different from case
to case. This forces experimental physicists to write their own
code.

(iii) But: While sometimes brilliant in the design and implementa-
tion of algorithms, more often than not, physicists have little
expertise in designing program architectures.

Consequentially, image processing in experimental physics is often
done in badly designed scripts that are extremely inflexible, with
hard-coded algorithm calls and parameter values, sometimes even
filenames. These scripts solve exactly one measurement or detection
problem, and changes to the image evaluation process, even simple
parameter adjustments, become tedious and error-prone.

My work for this thesis included writing software that would ex-
tract information about the oil droplets out of images from the ex-
periment. However, in order not to end up with yet another static

* The list of available and free image processing libraries is huge. For Python

alone there is OpenCV 58, SimpleCV 59, mahotas 6o, scikit—image61, scikit-learn©?, or

ilastik 3, to name just a few.
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Figure 6: Data flow in FIRE. For each image file to be processed, FIRE se-
lects an appropriate image loader based on file type. The loaded
raw image is then given to a chain of preprocessors. Once fully
preprocessed, the image is fed to the processors, which return lists
with data extracted from the image. Finally, exporters receive this
list and save the data to files or a database.

script, I designed FIRE (Framed Image Recognition for Experimentalists),
a framework that facilitates organised image processing. It should be
stressed that FIRE is not an image processing library — it is a framework
that provides the boilerplate for calling algorithms from other librar-
ies. Its main feature is a flexible approach where these algorithms are
organised in modular units which can be easily plugged in and out
of the image evaluation process. These modules are selected, ordered,
and configured through a human-readable and easy-to-maintain con-
figuration file.

3.2.2  Organised image processing with FIRE

The basic structure of most image processing solutions in physics is
the same:

(i) Load image: e.g. read an image file or capture a new image
with a camera.

(ii) Preprocess image: cropping, colour conversion, background re-
moval, etc.

(iii) Process image: use computer vision algorithms to extract the
desired information from the preprocessed image.

(iv) Export data: save the extracted information to a file or database.

FIRE implements this workflow in a flexible script language. In a
configuration file, the user supplies a list of modules for each of the
steps above. For each of the files to be processed, FIRE then goes
through the following steps (cf. fig. 6):

(i) Based on file type, select the appropriate image loading module,
then give the file name (or hardware resource such as a camera)
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to the image loader, which returns a byte array containing the
image data.

(i) Hand the image to the first preprocessor, which returns a modi-
fied image. This image is given to the next preprocessor, and so
forth, until the chain of preprocessing modules is exhausted.

(iii) Give the (fully preprocessed) image to the chain of processing
modules. Each processor receives the image and the detection
infos (e.g. coordinates of a circle or the area of an oil droplet)
extracted by processors higher up in the chain, and returns a
list of detection infos.

(iv) Give the full list of detection infos to every exporter. They re-
turn nothing but typically have side effects (like creating an out-
put file).

In sections 3.2.3 to 3.2.6, we will describe the image processing
and computer vision methods used in evaluating images from the
experiment described in chapter 2.

3.2.3 Cleaning up the mess

Extracting valuable information from raw camera images is (a) hard
and (b) computationally expensive. There is no way around both of
these properties, but there are ways to reduce the pain they induce.
Typical measures to reduce the impact of (a) are background removal,
noise reduction, or contrast enhancement. The effects of (b) can of-
ten be alleviated by throwing away unusable or redundant parts of
an image, such as uninteresting regions or colour information. This
section deals with the preprocessors that were used on this thesis’s
experiment images to tackle these tasks.

In fig. 7, we see a typical raw image from an experiment, exactly as
saved to the SD card by the camera. We make the following observa-
tions:

(i) Since the experiment is square, but the camera’s CMOS sensor
has a 3:2 aspect ratio, roughly a third of the image contains only
the dark room that the experiment was set up in.

(ii) The illumination is bright in the center and falls of drastically
towards the outside, such that the far corners of the experiment
are barely illuminated.

(iif) The background is not noise-free. In this image, wrinkles in the
paper screen are clearly visible in the lower two corners.

(iv) There is little information in the colours of the image: while
many larger oil droplets have a green-yellowish tint, those to-
wards the center of the experiment, and particularly smaller
ones, do not.
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Figure 7: Typical experiment image before preprocessing. Due to its shape,
the experiment only occupies roughly two thirds of the image. The
background, inhomogeneously illuminated and with noise at the
lower two corners, is far from optimal. Little information can be
gained from the colour channels, as smaller droplets in general,
and larger droplets in the center, do not possess a green-yellowish
tint.

To cut down on computing time, we can make use of observations
(i) and (iv). First, we crop the image (original resolution 4288 x 2848
pixels) to the part that contains the actual experiment, resulting in an
effective image resolution of 2370 x 2370 pixels. Second, we reduce
the information to be processed by two thirds by converting the col-
our image to grey scale. A common strategy for this is colorimetric
conversion: the information in the three colour channels R, G, and B
(for red, green, and blue, respectively) is reduced to a single lumin-
ance channel Y via

Y =0.2126R + 0.7152G + 0.0722B,

where the three coefficients represent the empirically measured hu-
man intensity perception for the colours. Another common method
is to throw away two of the three colour channels. For our experiment
images, the best contrast at the edges of the droplets is found when
using just the red channel. The latter grey-scaling method is used in
the following for our image processing.

Figure 8a shows the cropped grey-scale version of our experiment
image (fig. 7). The luminosity along a horizontal line shown in light
blue is provided in fig. 8b. At the edges of the droplets, where the
curvature bends the light towards the inside of the droplet, we find
strong negative peaks in light intensity. These will be our main means
for the automatic detection of droplets described in the later sections
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Figure 8: Experiment image cropping and background removal. a) Cropped
and grey-scaled version of fig. 7. b) Droplet edges manifest as neg-
ative peaks in the profile along the blue line, but the bell-shaped
function overlaid by the background illumination forbids defining
a threshold. c) Image after dividing by a background reference im-
age (i. e. an image taken just before oil was poured into the setup)
and subtracting one. False colours were added to visually separ-
ate negative from positive pixels. d) We can now separate droplet
edges from background via a global threshold. By comparing the
signal-to-noise ratios in both profiles it was verified that the per-
ceived increase in noise mainly stems from the different colour
maps.
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of this chapter. However, the inhomogeneous illumination introduces
two difficulties:

(i) A bell-shaped background function is superimposed onto the
comb-like function containing the peaks. Consequentially, we
can not simply define a threshold to separate droplet edges
from the background.

(ii) Not only is the absolute value of a peak dependent on the
droplet’s position, but so is its difference to the background
function. I e. the height of the peaks with relation to the back-
ground decreases with the distance from the image center. Thus,
if we subtract the background from the image, we find the peaks
enclosed in an envelope function.

As a counter measure to these two difficulties, and to the presence
of background noise, we divide our image data by the background,
where we define the background as a picture taken just before any
oil was put into the setup. Furthermore, we subtract one, such that a
negative pixel value corresponds to “darker than background”, with
-1 marking absolute darkness. Similarly, a positive pixel value corres-
ponds to “brighter than background”, with +1 marking a doubling in
brightness. Note that the latter step is equivalent to subtracting the
background from the image before dividing by it.

The background-adjusted image is shown in in fig. 8c, with false
colours to separate positive and negative values. In comparison to
the original image on the left, we see an increase in contrast between
droplet edges and background near the edges of the system. Addi-
tionally, the wrinkles at the bottom corners of the image disappeared
(while there are no droplets in these corners in this image, they are
common at earlier times during an experiment). A look at the pro-
file (tig. 8d) reveals that the bell-shaped background was almost fully
removed, and the position dependence of the peak height is strongly
suppressed. Droplet edges are now much better separated from the
background. In passing we note that the perceived increase in noise
in the processed image is mostly a result of the tighter colour map:
by inspection of the two profiles, we see that the signal-to-noise ra-
tio is invariant, or at most marginally increased, upon background
removal.

3.2.4 Small oil droplets are circles!

In computer vision, it is crucial to know characteristics of the objects
one wishes to detect. That is, it is much easier to identify an elephant
in an image when you expect that there is an elephant in the image.
In fig. 7, we see that smaller oil droplets are almost perfectly circu-
lar, while the largest droplets have less well-defined forms, ranging
from ellipsoidal to irregularly, i. e. potato-shaped. This section deals
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with identifying the small droplets by making use of their circular
characteristic. The detection of larger droplets will be addressed in
section 3.2.5.

As an introduction, I describe the top dog of circle detection al-
gorithms: the Circle Hough Transform;® its advantages and short-
falls, and why it is inapplicable for our purpose. Next, we explain
a novel, fast approach by Rad et al.®> that was implemented in Py-
thon and C as part of the present thesis, and that generates a list of
circle candidates from an image as shown in fig. 8c. Subsequentially,
we cluster these circle candidates to retrieve a list of detected circles
via a well-established density-based clustering algorithm. In a final
step, we eliminate an easily identifiable source of experimental noise
by making use of directional statistics.

3.2.4.1 Conventional circle detection

Due to their abundance in nature as well their simple mathemat-
ical properties, circle detection, or, more generally, the detection of
curved objects, is one of the oldest fields in computer vision (cf. Jain
et al.®, ch. 6 or lllingworth and Kittler°7). Consequentially, there are
many well-established algorithms to detect circles. The most prom-
inent of these is the Circle Hough Transform (CHT), a specialisation of
the Hough Transform invented by Duda and Hart 4, based on a 1962
patent by Hough.®® The rough idea behind CHT is as follows (colours
refer to fig. 9):

(i) Assume that we want to detect circles with known radius R.

(ii) Detect edges in the image, such that dark pixels correspond
to object edges and bright pixels correspond to uninteresting
background. In other circumstances, a popular method to find
edge points is Canny Edge Detection®. In fig. 8c, the droplet
edges already correspond to negative intensity peaks, and we
can arrive at a black-and-white image through thresholding.

(iii) Around every dark (edge) pixel, draw a circle with the known
radius R (light blue in fig. 9).

(iv) Split the image into equally-sized bins (the accumulator matrix).
Every bin that is touched by a drawn circle receives a vote from
this circle. After evaluating all drawn circles, we report a detec-
ted circle with radius R at the center of each bin where the count
of votes is a local maximum and exceeds a suitably defined
threshold value (dark red star in the center of fig. 9).

There are many modifications”® to the Circle Hough Transform
which make it faster, consume less memory, or more robust to noise.
Still, most of these suffer from a basic drawback of CHT: if the circle
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Figure 9: Circle Hough Transform. Draw a circle (light blue) with radius R
around every edge pixel in the original image (black, done exem-
plarily at dark blue points). Points where the drawn circles over-
lap (red stars) are candidates for a circle with radius R in the ori-
ginal image. The candidates are binned in the three-dimensional
circle parameter space, and local maxima in this space (above a
threshold) are considered “real” circles (dark red star in center).
The algorithm should be repeated for a range of R when the circle
radius is unknown.
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radius R is unknown, the algorithm must to be repeated for each ra-
dius of interest. If the range of possible radii is large, like in our
oil droplet experiment, this becomes very computationally intensive,
even on modern computers.

3.2.4.2 Improving robustness and efficiency with FCD

In 2003, Rad et al.®> proposed Fast Circle Detection (FCD): a novel,
size-invariant method for circle detection. Averaged over a variety of
sample images from different application fields, they report not only
an improved robustness against noise, but also execution times more
than thousand times faster than these for CHT, and more than eighty
times faster than a popular improvement on it, the edge-oriented
CHT.7* Although Rad et al.® originally branded FCD as only work-
ing on “circles which are totally brighter or darker than their back-
grounds”,® we successfully apply it to our “edge-like” greyscale im-
ages (see (ii) above) without modifying the underlying idea.

The basic concept of FCD is to make use of the circle’s symmetry by
finding opposing gradient vectors. Consider fig. 10a: Along the circle,
we find strong gradients pointing towards its center. For each of the
gradient vectors, we find a complementary one at the opposite side of
the circle. Each of the gradient vector pairs is translated into a circle
candidate (x,y,r), where x and y mark the center between the two
gradient vectors, and r marks their halved distance. L. e. (x,y,) cor-
responds to a circle with radius r that touches the bases of both gradi-
ent vectors. FCD has two parameters to accommodate that circles
in “real” images are typically not perfect. These parameters dictate
which gradients are considered pairs (cf. fig. 10b):

(i) The gradient vectors of a perfect pair point at exactly opposing
directions, i. e. their angles differ by exactly 180°. The parameter
o determines a tolerance around this difference.

(ii) The line that connects the bases of a perfect gradient vector pair
is aligned with the directions of the two vectors, i.e. its angle
matches the direction of one vector. The parameter 3 determ-
ines a tolerance around this direction.

A naive implementation could compare every gradient vector to
every other gradient vector, such that the computational effort scales
as O(n?), where n is the number of pixels, and hence the number of
gradient vectors, in the image. As our images are very large (2370 x
2370 pixels after preprocessing), we take some simple measurements
to decrease the computational burden:

(i) Only gradient vectors with a magnitude larger than a minimum
norm are considered. This replaces the thresholding step and
rules out most gradient vectors that lie in the background and
inside oil droplets.
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Figure 10: Fast Circle Detection (FCD). a) In an edge image, there are strong

gradients pointing towards the center of a circle. FCD looks for
pairs of opposing gradient vectors (colour-coded), and translates
them into circle candidates (black star, one candidate per vector
pair). b) FCD has two parameters that determine which gradient
vectors are considered a pair. The allowed deviation in vector
direction is determined by &, while 3 sets the allowed deviation
between vector direction and the direction of the line connecting
them. c) and d) « filters circle candidates originating from non-
parallel vector pairs. While the star in c) could be the middle of a
noisy small circle, the star in d) would be placed more appropri-
ately at the intersection of the two dotted blue lines.
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(ii) A third filter parameter, v, is introduced. A possible vector pair
is no longer processed when the ratio of their magnitudes is
larger than v.

(iif) The vectors are stored in memory not ordered by position, but
ordered by their angle.

Hence, the implementation written for and used in this thesis ad-
opts the following workflow:

(i) Calculate the gradient vector for every pixel of the image using
the NumPy library”*

(ii) Drop all gradient vectors that have a magnitude smaller than
the minimum norm, then sort the remaining ones by their angle

(iii) For all vectors (until break condition):

a) Given a vector with angle ¢, find the first vector with an
angle larger than ¥ = ¢ + m— «. If @ > m, break out of
loop

b) For all vectors with angle larger than ¥ (until break condi-
tion):

i. If angle of this vector is larger than ¢ + 7+ «, break
out of loop

ii. If ratio of norms is larger than vy, continue with next
potential partner vector

iii. Calculate angle of line connecting the two vectors (this
is by far the most expensive step)

iv. If difference between the angle just calculated and ¢
is larger than {3, continue with next potential partner
vector

v. If all the checks above passed, save a circle candidate,
with the radius corresponding to half of the distance
between the two vectors, and the center lying midway
between them.

In our final image analysis, due to the irregular shapes of big
droplets, we only detect circles up to a maximum radius Tmax, Where
Tmax 18 much smaller than the image dimensions. We use this to signi-
ficantly reduce the computing time by splitting the image into smaller
tiles that have an overlap of 2.2 - rmax, and performing FCD on each
of the tiles separately.

3.2.4.3 Subpixel-resolution clustering

After these steps, we are left with a long list of circle candidates in
a three-dimensional circle parameter (x,y,r) space. Just like in the



3.2 PROCESSING EXPERIMENT IMAGES

Figure 11: DBSCAN with minPts = 2. If a point has at least two other
points in its € environment, it is considered a core point (red).
All points that are reachable from a core point, or reachable from
the points in its environment (and so on), are considered part
of the same cluster (red and yellow). Points that have less than
two other points in their € environment, but are reachable from
a core point, are considered edge points (yellow), and are part of
the same cluster as the core point(s) they are reachable from. Per
definition, no point is reachable from an edge point. If a point
has less than two other points in its € environment and is not
reachable from a core point, it is considered noise (blue).

original CHT paper®4, we could generate a list of circles from these
by binning and finding local maxima above a threshold. This is the
method used by Rad et al. 5. However, binning comes with a list of
well-known drawbacks, such as loss of resolution or a strong result
dependence on bin size; and not only has the world of circle detection
evolved since the 1970s, but so has the world of cluster analysis, i.e.
the world of segmenting a heterogeneous population into a number
of more homogeneous subgroups”? — in our case, the decision which
circle candidates belong to a circle in the original image, and which
candidates are regarded as noise.

A modern and particularly well-established (cf. Berkhin74, p. 43)
clustering algorithm is DBSCAN (density-based spatial clustering of ap-
plications with noise, proposed by Ester et al.® in 1996. It is a density-
based clustering algorithm: For a given a set of points, it groups to-
gether those points that are closely packed together, and marks single
points in low-density regions as outliers (noise). This makes it well
suited for our FCD data, where circle candidates are the points in the
(x,y,7) circle parameter space, and clusters of points that are similar
in all three parameters (i. e. close neighbours in the parameter space)
are likely candidates for a circle in the original image.

DBSCAN classifies the points in some space into three classes (cf.
fig. 11):

31



32 IMAGE CAPTURING AND PROCESSING

(i) A point p is considered a core point if at least minPts other points
are within distance € of it. These other points are considered
directly reachable from p.

(ii) A point is considered an edge point if it is directly reachable
from a core point, but has less than minPts points in its e en-
vironment. Per definition, no points are directly reachable from
an edge point.

(iii) A point is considered noise if it is not directly reachable from a
core point and has less than minPts points in its e environment.

A point q is considered reachable from a point p if there is a path
P1,--,Pn, Withpy =p and pn = q, such that p; 7 is always directly
reachable from p;. If a point is a core point, it forms a cluster with
all points that are reachable from it. After the classification above, we
end up with a set of distinct clusters and a set of single outlier points
(noise). Each cluster contains at least one, possibly more, core points,
and possibly a number of edge points.

The classification depends on only two parameters: minPts and e.
It is performed as follows:

(i) Pick a random point that has not been visited.

(ii) If the point is not are core point (i. e. if there are less than minPts
points within distance e of it), mark it as noise and go back to
(). The point will possibly be detected as an edge point later in
the process.

(iii) If the point is a core point, start a cluster containing it and all
the points in its e environment.

(iv) Visit all the points in the cluster, and, if they are also core points,
add the points in their € environments to the cluster. This pro-
cess continues recursively.

(v) When the complete cluster has been visited, go back to (i). If
there are no further unvisited points, our work is done.

In our image analysis we use an implementation of DBSCAN provided
by scikit-learn. ® The clusters found by DBSCAN correspond to circles

in the original image, and we report one detected circle per cluster, at

the (x,y, r) center of mass of its circle candidates.

3.2.4.4 Reducing false detections

Circle detection often aims at finding a single, or few, circles in an
image, e.g. in iris recognition or fingertip positioning. However, in
our case, the images contain thousands of closely packed circles. This
introduces clusters of false circle candidates between two circles (cf.
fig. 12). These clusters differ from the ones that result from real circles
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Figure 12: False circle candidates. Since FCD accepts slightly non-perfect
gradient vector pairs (managed through the « and (3 parameters,
cf. fig. 10b), it generates false positives (red stars) between two
circles lying next to each other. The resulting clusters of circle
candidates can be filtered by requiring the directions of the con-
necting vectors (dashes lines) to be uniformly distributed.

(e.g. fig. 10a): The angles of the lines connecting the gradient vector
pairs are not uniformly distributed, but restricted to a narrow range.

To remove the false positives we now wish to quantify the uniform-
ness of our angular data. First, we identify that the lines connecting
the vector pairs are bidirectional: None of the two gradient vectors is
special, and a connecting line with angle ¢ is identical to a line with
angle ¢ 7. Hence, our angular data effectively only lives in the [0, 7r)
range, not in a [0, 27) range of directional data. To use principles from
the more common unidirectional circular statistics (mainly revolving
around the trigonometric functions, see e.g. Fisher”>, ch. 2 for an
introduction), we transform our bidirectional angles (said to live in a
diametrically bimodal circular distribution) to the full [0, 27r) angle space
by angle doubling7>, i.e.

@ — 9 =2¢ mod 2m.

We can then quantify the angular spread of our angles 9, --- ,9n via
the measure”>

T= VX2 +YZ2, with
1N
X=3 > sind;,
i=1
1N
Y= N Z cos V.
i=1

As the sine and cosine have vanishing integrals over their periods, r
vanishes for perfectly uniform angle distributions, and it approaches
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unity when the distribution prefers a particular angle. Hence, to sep-
arate noise clusters as in fig. 12 from clusters belonging to real circles,
we stipulate a maximum angular spread rmax for the set of connection
angles belonging to the circle candidates of a cluster. In our image
processing, I found rmax = 0.6 a good compromise to filter clusters
lying between two circles (as in fig. 12) while still allowing clusters
arising from small circles which have few circle candidates (and hence
possibly a narrow angle distribution due to noise).

3.2.5 Larger droplets are potatoes!

In our experiment images (figs. 7 and 8), we can easily identify that
large droplets do not always come in a circular shape. As we will
see in section 4.1.1, this arises from the fact that, after a merging
event, large droplets require much longer times to relax into a circle
shape than small droplets. Hence, the oil droplet characteristic we
rested upon to detect small droplets is not reliable for large droplets.
This section deals with detecting the potato-shaped larger droplets by
thresholding the image to find the dark droplet edges, then perform-
ing morphological operations and extensive filtering. This approach,
while working, is much less sophisticated than the circle detection
approach, and developing it relied heavily on a trial-and-error work-
flow.

3.2.5.1 Segmenting the image into connected areas

In fig. 8, we can identify a property that is common to all droplets,
and in particular, that is independent of their shape: At its edge, the
droplet’s curvature bends the incident light, forming a dark outline
of the droplet. Using this outline to split the image into a set of
areas is the heart of this and the following section. Subsequently, sec-
tion 3.2.5.3 deals with identifying which of these areas are considered
oil droplets.

A popular method for image segmentation is the watershed trans-
form. Its inspiration stems from geoscience, and Vincent and Soille7°
give a perspicuous and to-the-point introduction that I wish to repro-
duce and not rephrase:

Everybody has heard for example about the great divide,
this particular line which separates the U.S.A. into two
regions. A drop of water falling on one side of this line
flows down until it reaches the Atlantic Ocean, whereas
a drop falling on the other side flows down to the Pacific
Ocean. As we shall see in further detail later, this great di-
vide constitutes a typical example of a watershed line. The
two regions it separates are called the catchment basins of
the Atlantic and the Pacific Oceans, respectively. The two
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Figure 13:

Detection of large droplets. a) Through thresholding the prepro-
cessed image (fig. 8c), we can do a rough identification of the
droplet edges. However, the image is so noisy that gaps emerge
in the edges (upper inset), as do sprinkled dark spots that do not
belong to a droplet outline. b) Via erosion and dilation, we can
close many of the gaps in the droplet outlines. ¢) Through binary
filling, i.e. through filling dark regions that do not contain any
white pixels, we remove the sprinkled dark spots. d) Labeling the
connected white regions yields many candidates for droplets, but
also quite a few false detections and missed droplets.

35



36

IMAGE CAPTURING AND PROCESSING

Oceans are the minima associated with these catchment
basins.

The idea of the watershed transform is to interpret our experimental
images as a height map, where the light intensity at a pixel corres-
ponds to the height at that pixel. For every pixel of the image, we
follow the gradient until we reach a local minimum. All pixels from
which we end up at this minimum, i.e. all pixels that are in this
minimum’s catchment basin, receive the same label (e. g. a number).
These labels designate the areas into which we segmented our image.
Note that, since our droplets are bright in the middle and dark at
the edges, we would invert the image before applying the watershed
transform.

In our case, the watershed transform struggles with two issues,
ultimately making us refrain from using it:

(i) There is a high level of noise (cf. fig. 8c), particularly towards
the borders, introducing many more regional extrema than there
are droplets®. This leads to over-segmentation, where single oil
droplets are segmented into multiple areas.

(ii) The droplets sometimes have small gaps in their dark outlines,
an artifact of either the imaging or the droplets position relative
to other droplets, making the detected areas “leak out” at these

gaps.

The approach to finding large droplets adopted for the present work
is based on detecting the droplet outlines as a binary (black-and-
white) image, then filling them (much like the fill tool you remember
from Microsoft Paint) to find the droplet areas. But even when not
using the watershed transform, the issues above persist.

There are several ways to convert a grey scale to a black-and-white
(i.e. binary) image. The most simple one, and the one we use, is to
simply threshold the image. For a given threshold grey value t, we
map the value of all pixels with an original grey value larger than
t to 1, and the value of all other pixels to 0. While doing this, we
again encounter the two issues: If we choose t too negative, many of
the droplet outlines contain grey values above the threshold, which
introduces gaps in the outlines. On the flip side, the closer we move
t towards zero, the more sprinkled black dots (arising from noise, cf.
fig. 8b) will end up in the thresholded image. Figure 13a shows our
preprocessed sample image after thresholding with t = —0.05. The
threshold is a compromise between the two extremes, such that we
find only few gaps in the droplet outlines and a medium level of

The typical cure for noisy images is to blur them in preprocessing, e. g. with a Gaus-
sian filter. However, with our images, a reduction of the noise to acceptable levels
required such heavy blurring that the droplets themselves were strongly smeared
out.
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Structuring
element:

Figure 14: Morphological testing. The image is probed with a structuring ele-
ment, in this case a 3 x 3 cross (right). The structuring element is
positioned at all possible locations and compared with the corres-
ponding pixel neighbourhood. Yellow: The structuring element
hits (intersects) the neighbourhood. Red: The structuring element
fits the neighbourhood. Blue: The structuring element misses the
neighbourhood.

noise. In the next section, we work towards solving both of these
issues through mathematical morphology.

3.2.5.2  Morphology

Mathematical morphology is one of the oldest techniques in digital im-
age processing. It originates from the study of porous media by Math-
eron”’ and Klein and Serra,”® who considered points on a grid rep-
resenting a binary state, i.e. either porous or non-porous. In short,
mathematical morphology is a theory for the analysis of spatial struc-
tures,”” with mathematical referring to its basis in set theory, integral
geometry and lattice algebra, and morphology referring to its aim of
analysing the shape and form of objects. Morphological operations
probe an image with a small template called the structuring element.
This template is positioned at all possible locations in the original im-
age and compared with the corresponding pixel neighbourhood (cf.
fig. 14). The structuring element is said to

¢ fit the pixel neighbourhood when for every pixel of it that is set
to 1 the corresponding pixel in the neighbourhood is also set to
1,

* hit (intersect) the pixel neighbourhood when for at least one pixel
of it that is set to 1 the corresponding pixel in the neighbour-
hood is also set to 1, and

* miss the pixel neighbourhood if none of the above cases is true.

The result of a morphological operation is a new binary image, where
every pixel corresponds to the result (success or failure) of the test at
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Erosion Dilation

H

Figure 15: Erosion and Dilation with a 3 x 3 cross. Erosion answers whether
a pixel neighbourhood fits the structuring element (cf. fig. 14),
and intuitively corresponds to making white (nonzero) areas
shrink. Dilation has the opposite effect: Answering whether a
pixel neighbourhood intersects the structuring element, it makes
white areas grow.

that position. A deeper introduction is way beyond of the scope of
this thesis, but I encourage the reader to take a look at one of the
definitive books in the field, written by Pierre Soille.””

The morphological operations we are particularly interested in are
its two workhorses for noise removal, erosion and dilation:

* Erosion is the answer to the test “Does the structuring element
fit the neighbourhood?” For typical structuring elements, e.g.
3 X 3 crosses (see fig. 14) or 3 x 3 blocks, this corresponds
to the intuitive sense of geological erosion: blocks of white (i. e.
nonzero) pixels lose elements at their edges, as these neighbour
black pixels and therefore do not fit the structuring element (cf.

fig. 15).

* Dilation has the opposite effect: it answer the test “Does the struc-
turing element hit the neighbourhood?”, and increases the size of
blocks of white pixels as the answer is “yes” for a black pixel ad-
jacent to at least one white pixel (again assuming a 3 x 3 cross
as structuring element).

In our thresholded experiment images, we can close the gaps in the
droplet outlines by performing erosions (i.e. intuitively, by making
the black areas grow). When we perform the same number of dila-
tions afterwards (to approximately restore the original area of the
droplets), the gaps will not be re-opened, since they are surrounded
by other dark pixels from the outline. This allows us to (partly) solve
issue (ii): Figure 13b shows our thresholded sample image after per-
forming two erosions followed by two dilations. The closing of an
outline gap can be seen in the upper inset.

After eroding and dilating, we (ideally) have an image where every
droplet has an intact outline. Using this characteristic, we can deal
with issue (i): By converting all black clusters that do not embed a
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white cluster (as our droplet outlines do), we almost fully remove the
sprinkled noise. The result of this operation can be seen in fig. 13c,
where we find remaining noise only at the corners of the image. This
arises from both the high level of noise in these regions and the fact
that the hole-filling algorithm as implemented SciPy®° does not con-
vert black clusters that touch the image border, even when they do
not embed a white cluster. At this point (ideally), our droplets are
unbroken white clusters that are separated from the rest of the image
through an embedding black cluster.

We now identify candidates for individual droplets by assigning
labels (e.g. numbers) to the white clusters. The result of this (with
colour-coded labels) is shown in fig. 13d. While we were able to
correctly segment many of the droplets from our original image, there
are two major issues:

(i) There are many false detections in the space between droplets.

(ii) There are a few missed droplets, in particular large ones. This
partially arises from different levels of light refraction depend-
ing on the droplet size, with larger droplets having less well
defined outlines.

We deal with issue (i) in the next section, separating the false detec-
tions from real droplets through extensive filtering. In the final image
processing, issue (ii) is overcome by using multiple parameter sets for
our non-FCD droplet detection, i.e. by using different threshold val-
ues, erosion and dilation steps, and filters (cf. section 3.2.6).

3.2.5.3 Meet the filters

In fig. 13d, we find the results of our image segmentation through
thresholding and morphological operations. They are not exemplary
for our final image processing (cf. section 4.1.4), where we use more
finely tuned parameters and a combination of parameter sets for dif-
ferent droplet sizes. Rather, they show a fundamental challenge for
our image segmentation: The droplets are packed so closely that their
outlines often touch each other. This creates isolated white clusters
that do not correspond to droplets, but to the space in between them.
However, our labeling has no method to separate between these two
types. Hence, we find many false positives in our segmented image.
At the beginning of section 3.2.5 on the detection of large droplets,
we ruled out using Fast Circle Detection as the droplets do not al-
ways possess a circular shape. Still, there are other characteristics
which we can use to divide droplets and false positives. In this sec-
tion, we introduce simple filters, aimed at the characteristics of our
droplets, to separate real droplets from detections corresponding to
the in-between spaces. After preprocessing, thresholding, morphing,
filling, and labeling the image, we run all detected areas, separately,
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through a chain of filters. The filters each calculate a certain prop-
erty of the area, then check whether it fits into a range of acceptable
values.

First, we calculate the size of the area by counting the pixels that
it is comprised of. While this bears no potential to separate false
positives from oil droplets, it is useful for two things: First, we use
it to deal with issue (ii) from the end of section 3.2.5.2, i.e. the fact
that very large droplets have thinner outlines. By running different
parameters, e.g. more erosion steps, for just these droplets, we are
able to close large gaps in their outlines without sacrificing precision
in our detection for smaller droplets. Second, we use it to separate
the realm of thresholding-and-morphing detection from the realm of
the more precise Fast Circle Detection.

Next, we calculate the standard deviation of the original (prepro-
cessed) grey values of all pixels that belong to the inspected area. This
makes use of the fact that droplets never live inside other droplets.
The erosion and filling operations will sometimes completely elim-
inate small droplets from the binary image (as the erosion converts
any white pixels on the inside to black, and filling then removes the
all-black “hole” from the image). The areas that originally contained
these small droplets will then have a large standard deviation in pixel
grey values, as the small droplets originally had very dark edges and
very bright centers. Since oil droplets do not live inside other oil
droplets, high standard deviations are only observed in false pos-
itives. This filter fails, however, for false positives that contain no
droplets, e. g. in areas near the edge of the experiment.

The third filter calculates the total corner response of the area. Since
the shape of the oil droplets in mainly governed by interface tensions,
they almost always possess a smooth outline. On the other hand,
false positives, circumscribed by the outlines of multiple droplets, of-
ten have sharp corners at the points where the oil droplet outlines
adjoin. Corner detection, being very useful for finding points of in-
terest, is a wide field in computer vision.®82 Here, we use one of
the most popular corner detection algorithms, that is due to Harris
and Stephens,®} and implemented in the scikit-image®" library. The
basic idea, going back to an original approach by Moravec,® is very
simple: Given a pixel in the image, we consider a patch of the gradi-
ent image centered on this pixel, and compare it to nearby, largely
overlapping patches (cf. fig. 16) by considering the sum of squared
distances (SSD).

(i) When the pixel is in a mostly uniform area, the contents of the
patch will change little, regardless of the direction in which it is
moved.

(i) When the patch contains an edge, its contents will show a large
variation when moved perpendicular to the edge, but little vari-
ation when moved along the edge.
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Figure 16: Corner detection after Moravec.® A patch around a center pixel
is compared to nearby, largely overlapping patches by consider-
ing the sum of squared distances. The smallest sum of squared
distances over all patch movements is the corner response of the
considered pixel. Blue: Pixel in a mostly uniform area, where the
contents of the patch change little when moved around (small
corner response). Red: Pixel near an edge, where the contents of
the patch change a lot when moved perpendicular to the edge,
but little when moved along it (small corner response). Green:
Pixel near a corner, where the contents of the patch change a
lot regardless of the direction in which it is moved (large corner
response).

(iii) When the patch contains a corner, i.e. an intersection of two
edges, it will show a large variation regardless in which direc-
tion it is moved.

The corner response of our pixel is the smallest SSD between the patch
centered on our pixel and any of its neighbours. A large problem
with Moravec’s approach, as pointed out by himself, is that it is not
isotropic: If an edge’s direction does not match the direction of the
image axes, the smallest SSD will be large even for case (ii). Harris
and Stephens®? solve this by considering the SSD in all directions
through a Taylor expansion. We calculate the total corner response
of an inspected area as the sum of corner responses of its individual
pixels (calculated after Harris and Stephens®3), divided by the length
of the area’s perimeter. This value will be large for areas with many
sharp corners and small for areas that have a smooth outline. Hence,
we require all areas to have a maximum total corner response TCRpax.

While the large droplets are often not perfectly circular, their shape,
sometimes elliptical, sometimes circular with bumps, typically still
resembles a circle. Using this quality, we can further filter some false
positives. Given an area A with perimeter p, the isoperimetric quotient
Q is the ratio of A and the area that a circle with perimeter p would
have,® and measures the object’s compactness:
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As circles are the shape that maximise the area under the constraint
of a fixed perimeter (i. e. the shape that maximises compactness), 0 <
Q < 1, where the second equality holds only when the examined area
A is circle-shaped. We can filter some of the false negatives, whose
shapes sometimes strongly differ from that of a circle or an ellipse, by
requiring all detected areas to have a minimum isoperimetric quotient
Qmin to be considered a droplet.

Our last filter is similar to the isoperimetric quotient, as it also
aims at the fact that most large droplets are shaped similar to circles
or ellipses. This makes them (typically) convex. On the other side, as
many false positives consist of areas in between the droplets, they are
shaped complementary to these droplets, and hence are (typically)
piecewise concave. There are many measures for concavity.*” For
its ease of calculation and its intuitive meaning, we define the convex
ratio CR of an area A as:

cR=
AcH
where Acy is the area of the convex hull around A. The convex hull
for a set X (in our case the pixels that make up A) is the smallest
convex set that fully contains X. Similar to the isoperimetric quotient,
if A is already convex, we would find CR = 1, whereas we find CR
increasingly closer to zero the more concave A is. As with the isoperi-
metric quotient, we stipulate a minimum CR for a detected area to be
considered a droplet.

3.2.6  Putting it all together

Having a long list of computer vision algorithms, morphological op-
erations, and filters sounds great until you realise that none of these
tools work without the parameters appropriate for the problem at
hand. There simply is no universal recipe to finding suitable para-
meters for a specific problem, and more often than not it ends in a
few hours of trial-and-error.

The good news is: there are means to ease the trial-and-error pro-
cess! For the detection of small droplets, i.e. for the Fast Circle De-
tection and DBSCAN algorithms, I developed a parameter sandbox
(fig. 18) based on the matplotlib® and PyGObject® libraries. The
sandbox allows changing the many FCD and DBSCAN parameters
and provides almost instant feedback on the circle candidates and
circles detected in a small image segment. For the larger droplets,
FIRE is flexible enough to show the output of some filters, e. g. the
corner response or the isoperimetric quotient, before filtering areas
outside of the criteria.

The full FIRE configuration file as used in the final image pro-
cessing is shown in listing 1 (page 83). For detecting large oil droplets,
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Figure 17: Filter performance for large droplets. Using common characteristics of large droplets,
such as their uniform inside, their smooth outlines, their compactness, or their convexity,
we can separate them from false positives (i. e. mostly areas in between the droplets). See
section 3.2.5.3 for explanations on the four characteristics used.
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Figure 18: Parameter Sandbox for Fast Circle Detection. The parameters for
FCD and DBSCAN entered with the many sliders on the left-
hand side are immediately applied to a small portion of a pre-
processed experiment image (right-hand side). Circle candidates
are overlaid as small red dots (as a projection in which the in-
formation on radius is lost). Detected circles gathered from these
candidates through clustering are shown as red circles.

we use three different combinations of thresholds, morphological op-
erations, and filters. After each threshold-morph-filter process, the
areas of the detected droplets are removed from the image and will
no longer be picked up by any further threshold-morph-filter combin-
ations, or by the FCD algorithm. First, we detect very large clusters
with many erosions and a relatively weak requirements towards con-
vexity: very large false positives are rare, and when they occur, they
typically wrap around the center area that contains droplets, making
them very concave. Next, we detect clusters that we are particularly
certain about, with only one erosion and strong requirements towards
the maximum standard deviation, maximum corner response, min-
imum isoperimetric quotient and minimum convex ratio. This stage
picks up most of the droplets that are outside of the area range we use
for FCD. Afterwards, we try to recover missed middle-sized droplets
with no erosions, but a threshold that is relatively close to zero, and
even stronger critical values for the filters. Finally, we use Fast Circle
Detection to detect small droplets down to just few pixels. The para-
meter set used is quite loose in the restriction of gradient vector pairs,
producing many circle candidates, but filters false positives with a
stronger requirement towards the angular spread.
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In chapter 3, we captured images from the experimental setup and
made extensive use of computer vision algorithms to process them
into lists of detected droplets. With this list, we are finally able gain
insight into the physical properties of our coalescing oil droplets on
a water surface. In section 4.1, we first take a look at the phenom-
ena that can be seen with the bare eye: In a typical experiment time
series, more than 20,000 droplets coalesce into just a few hundred
within four to six hours. Unexpectedly, the total area of the detec-
ted droplets is not constant. Instead, there is a growing oil slick
at the edges of the system that does not participate in any coales-
cences. After a subsequent look at the dynamics of single droplets,
we suggest an explanation for the shrinking droplet area and support
it with studies on the droplet area before and after an individual co-
alescence in section 4.2, showing that there is no oil mass movement
into the third dimension (height). In section 4.3 we study aggregate
measurements from our experiment. Surprisingly, despite being pre-
pared identically, different time series vary strongly in their quantitat-
ive measurements, and sometimes even in their qualitative behaviour.
Common, however, is an intriguing feature: the droplet size distribu-
tions become bimodal: While a first mode of small droplets accounts
for a majority of the number of droplets, a second mode contributes
almost all of the droplet area. In section 4.4, we use this observation
to establish that the experiment dynamics go through three temporal
regimes, and propose a mathematical description for the time evolu-
tion of the droplet size distribution.

4.1 PHENOMENOLOGY

Before we dive into detailed evaluations of our data, let us take a look
at what the experiment can tell us at first sight. Below, we consider
raw and processed images from a typical time series (in fact, from
our very first run with the final parameter set). We find the coales-
cence behaviour familiar from the Mensa salad bowl that started it
all: beginning with a large number of small droplets, we arrive at a
small number of large droplets after a few hours. However, a num-
ber of very small droplets remain, contributing the bulk of the total
number of detections, but almost nothing to the total detected area.
Counter-intuitively, the total area of oil droplets constantly shrinks.
The oil gathers in a constantly growing oil slick which touches all
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system borders, thus representing a surrounding to all other droplets.
The slick does not participate in the percolation process.

4.1.1  Coalescence

A time line from a typical experiment run and the corresponding de-
tections from our image processing are shown in figs. 19 and 20. In
the very first image, we detect about 33,000 oil droplets. A single one
is larger than 10 cm?, and 99 % are smaller than 1 cm?. Starting from
there, we see an initially fast, but increasingly slower coalescence pro-
cess. After roughly 45 minutes, we find about 4,500 droplets that are
all still smaller than 30 cm?.

Three hours into the experiment, we see a little over 300 droplets,
of which 17 are larger than 30 cm?, and five (of these) are larger than
100 cm?. 280 (i. e. 85 %) of the detected droplets are still smaller than
1 cm?. Almost all of them are adjacent to large areas. We take a closer
look at size distributions in section 4.3.

Figure 21 shows two close-up time lines of merging droplets. After
a coalescence, and with enough time, the resulting droplet relaxes
into a disk shape. Larger droplets exhibit a longer relaxation phase.
Moreoever, coalescence events with droplets of similar size require
longer relaxation times than those where a large droplet absorbs a
smaller one. After all, the large droplet is already close to the final
disk shape in the latter case.

4.1.2  Inhomogeneities and the growing background

Our experimental coalescence system is not perfectly homogeneous.
First, we can spot different neighbourhoods within the system. These
neighbourhoods vary in typical droplet size. In figs. 19 and 20, the
contrast is particularly noticeable in the center of the system, where
droplets are typically smaller than towards the outside.

Second, in some sectors near the edge of the system, the oil does
not form small droplets which then enter the coalescence process.
Rather, not particularly well-defined oil slicks are formed (cf. fig. 22).
These slicks quickly connect and form a large slick that touches the
edges of the system. With time, the slick retracts towards the edges,
and the oil droplets are pushed into the center.

We declare this bordering oil slick as background, and its comple-
ment (i. e. the part of the system that contains “regular” oil droplets)
as active area. From the images, we make the following observations
by eye:

(i) The background does not directly interact with droplets in the
active area.
(ii) The background experiences strong growth with time.
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Figure 19: Raw images from a typical time series. Starting from roughly 33,000 (detected) oil
droplets, we find initially fast, then increasingly slower coalescence, with a correspond-
ing increase in typical size of the largest droplets. With advancing time, droplets gather
in the area towards the middle of the setup, and darker areas separating the droplets
become more and more prominent: aggregates of stable air bubbles.
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Figure 20: Areas detected as droplets from a typical time series (shown in fig. 19). Colour is solely
for visual distinction of neighbouring droplets. It has no quantitative meaning. A few
oil droplets missed by our image processing can be discerned. They arise especially
near the corners of the setup, where illumination was limited (cf. fig. 19). Every detec-
tion touching the border of the image is declared background and discarded (and not
coloured above).
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Figure 21: Time lines of typical coalescences. After a merging event (second
column), the resulting droplet relaxes into a disk shape (final
column). Larger droplets take a longer time to relax: top: droplets
with initial diameters of about 1 cm take 11 seconds to relax; bot-
tom: droplets with initial diameters around 5 cm need roughly
400 seconds to relax.

Figure 22: Background formation. After the initial stirring (see section 2.3)
most parts of the system relax into small oil droplets (green).
Some parts, however, form oil slicks that quickly connect, move
towards the edges, and do not participate in the coalescence pro-
cess (blue). We declare this large, surrounding oil slick as back-
ground.
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Figure 23: Droplets in active area and background. The image on the right
shows the same crop from a raw experiment image as the one
on the left. Contrast was strongly enhanced by selecting only the
yellow-lime hues of the oil droplets in hue-saturation-value (HSV)
colour space, then encoding the saturation channel as grey-scale.
While it is possible to find droplets in the background (cf. top
three clusters in right image), they have much lower contrast than
droplets in the active area (cf. droplet edges in left image).

(iii) There are droplets in the background. These have a much lower
contrast than droplets in the active area, and our image pro-
cessing is incapable of reliably detecting them (cf. fig. 23).

(iv) The background droplets sometimes interact with each other,
and very seldom they even interact with the active area.

Due to the unreliability of their detection, we ignore all droplets in
the background, and consider their interactions with the active area
as experimental noise.

In fig. 24, we see total droplet area for five experiment runs. Note
that this area is not the same as the active area, which also includes
the empty spaces between inner droplets (this area is not part of
the background). Over the course of one experiment run, the total
droplet area quickly reaches a peak of roughly 4,000 cm? (i.e. 40 %
of the system area), about ten or twenty minutes into the experiment.
Subsequently, it decays slowly to about a third or fourth of this peak
value. Naturally, the total oil volume is a conserved quantity in our
system.

Both the initial increase and slow decay in active droplet area have
no intuitive explanation. For the increase, we see three possible
causes:

(i) The detection limits and errors for small droplets, and the large
relative error in area at sizes slightly above the limit, possibly
systematically biased towards smaller areas.

(ii) The fact that the oil was freshly stirred (see section 2.3) and is
still in the process of forming small droplets.

(iif) There might be an unseen oil film that is not part of the droplets,
and that facilitates transport of oil from the droplets to the back-
ground surrounding the active area. This reduces tension on the
oil droplets in the center and allows them to expand.
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Figure 24: Time evolution of the total detected area. After an initial rise for
about ten to twenty minutes, the area of all detected oil droplets
decreases continuously to about a third or fourth of its peak value.
At the peak, about 4,000 cm® of oil droplets are detected, i.e.
about 40 % of the total system area is covered by droplets.

The subsequent decay could be the result of one or both of the follow-
ing causes:

(i) With larger droplets, some oil moves into the third dimension
(height), invisible to our optics.

(ii) Except for coalescence, all droplets experience constant shrink-
ing. The oil moves into the background by some mechanism
invisible to the cameras.

The aim of the subsequent detailed analysis in section 4.2 is to sort
out which of these mechanisms are active.

4.1.3  Surface pollution

Besides the growth of oil droplets, there are also several growing dark
areas visible, particularly in the last two images of fig. 19. These are
aggregates of stable air bubbles that arise from our preparation of the
initial conditions. Albeit the identical preparation of the experiments,
their number and size varies between different runs of the experiment.
We can make two observations based on our images:

(i) In the course of time, the dark aggregates gather towards the
center of the setup, much like the oil droplets.
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(ii) The bubble aggregates have a repulsive interaction with the oil
droplets.

Given these observations, it seems reasonable to assume that they
influence the dynamics of a single experiment in a fashion over which
we have no control.

4.1.4 Detection quality

Due to the vast number of droplets, especially at early times, it is
hard to quantify the quality of our droplet detection. Visual inspec-
tion of figs. 19 and 20 gives the impression that almost all medium-
to large-sized droplets are correctly detected. There are only few
false negatives. They arise near the edges of the system due to the
far from optimal illumination. Assuming that the droplet neighbour-
hoods (see section 4.1.2) are distributed uniformly throughout the
system, this should not affect our aggregate statistics (section 4.3) in
the long run. At very late times, few false positives in the free space
between droplets occur.

Figure 25 allows to judge the performance of the detection for small
droplets. As the FCD algorithm works on gradients, it has diffi-
culties in detecting droplets whose edges have low contrast to the
background (and the inner part of the circle). Overall, FCD perform-
ance is good nonetheless, with no perceived bias towards missing
droplets of particular sizes. The number of false positives within the
air bubble aggregates (see above) is negligible.

4.2 DROPLET DYNAMICS

In the previous section, we saw that the total detected droplet area is
not a constant: it rises by about a third of its initial value within 15 to
20 minutes, then slowly decays to about a third or fourth of its peak
for the remaining six to eight hours of the experiment (cf. fig. 24). In
this section, we investigate the mechanics underlying these observa-
tions. We will see that — contrary to droplets in the experiment — the
first oil droplet deposited onto a fresh setup quickly expands to cover
the water surface. A second droplet then lives on top this first layer
(instead of blending into it), and expands much slower.

These observations from single droplets suggest that, in the exper-
iment, a thin oil layer covers the complete water surface. This layer
provides a mechanism that continuously transports oil from droplets
into the background. We critically inspect this idea by examining
the behaviour of droplets in the experiment in the absence of coales-
cences, and by examining the difference in area of a droplet resulting
from a coalescence and the total area covered by the two droplets
prior to the coalescence. Applying corrections implied by the oil-
layer theory yields a master plot with a modified area measurement
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: FCD performance. Red circles show detections from the FCD al-

gorithm, while coloured areas are from the threshold detection
methods geared towards large areas. At early times (top), the
circle detection algorithm has problems with circles whose edges
have low contrast (since it works on gradients), but performs reas-
onably good overall. Except for the smallest droplets, where we
run into problems with the image resolution, there seems to be
no bias towards missing droplets of certain sizes. In later images
(bottom), there are few false positives within the dark areas (air
bubble aggregates), and very few missed droplets.
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Figure 26: Expansion of single oil droplets. A small amount (20 ml) of
oil is deposited onto a setup prepared identically to our exper-
iments (top row). The droplet quickly expands to a diameter of
20 cm after half a minute (second column), and covers almost
the complete setup after four minutes (final column, & ~ 9o cm).
A second droplet deposited onto the same spot expands much
slower (second row), from a diameter of 7 — 8 cm after sixteen
seconds (second column) to a diameter of 20 — 25 cm after six
and a half minutes (final column). The droplets” expansion is op-
posed to observations from the coalescence experiments, where
droplets in the active area constantly shrink (excluding coales-
cence events). Due to the thinness of the droplets, contrast was
very strongly enhanced in both time series: For the top row, the
positions of the strongest gradients, marking the droplet’s edge,
are overlaid in grey. In the bottom row, the non-yellow-lime col-
ours of the background are greyed out. The strong yellow spots in
the centers of both image series are oil aggregates that are pinned
to the glass bottom of the setup after pouring them in due to the
low water height.

where both the area of a droplet in the absence of coalescences and
the total area during coalescence are conserved.

4.2.1  Single oil droplets

Figure 26 shows the behaviour of single droplets deposited onto a
setup prepared identically to our experiment (water and surfactant).
The first droplet deposited immediately begins a fast expansion: after
30 seconds its diameter has grown to about 20 cm, and after four
minutes a thin oil layer covers almost the complete setup. A second
droplet deposited on top of this layer expands much slower, growing
to a diameter of about 25 cm after six and a half minutes.

The observations from the single droplet experiment oppose obser-
vations from the coalescence experiments. Figure 27 shows the time
evolution of the size of the largest droplet. While we can clearly see
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Figure 27: Evolution of the largest droplet. Aside from the expected jumps
that arise from coalescence events, there is another striking phe-
nomenon: the largest droplets shrink in between the droplet
merge events. This shrinking is not related to the droplet relax-
ing into a disk shape (cf. fig. 21), which happens on much shorter
time scales. It opposes observations from our single droplet ex-
periments, where the droplets continuously expanded. The rate
of area decrease seems to grow with the area (particularly well
visible in the green (20150220) and red (20150225) data series).
Large back-and-forth jumps are artifacts resulting from detection
errors.

the expected big jumps resulting from coalescence events, another
feature in these time series catches the eye: In between the coales-
cences, the largest droplets do not expand. Rather, they shrink. This
shrinking is different from the droplet relaxing into a disk shape after
a coalescence (cf. fig. 21), as the relaxation times are much shorter.

In section 4.1.2, I suggested that the decay of the total detected
area may be traced back to two independent mechanisms: oil moving
into the third dimension (i. e. a size-dependent droplet height profile,
contrary to a pancake shape), and oil being invisibly transported from
droplets into the background. While both mechanisms will be dealt
with in section 4.2.2, we can make a first, rough check for the latter
mechanism by normalising the observed size of the largest droplet
with the (changing) total droplet area.

Indeed, in the absence of coalescences, the normalised droplet sizes
(fig. 28) do no longer show any significant droplet expansion or shrink-
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Figure 28: Evolution of the largest droplet, normalised by the total detected
area. The droplet shrinking in between coalescences (cf. fig. 27)
has vanished, such that a;/aict is a constant, implying a; ~ a;.

ing. Instead, the ratio ai(t)/ai(t) for any droplet i with area a;
seems to be a constant in between collisions. Considering

d(li

dt Atot
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this implies
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Again, it should be stressed that this describes the droplet area change

behaviour only in between coalescences.
The above considerations yield

(t) ~ ai(t) - £(1). (1)

d
aatot ~ Qtot - T(t)
t
= air = qr(to) - exp <J dr f(w)) . @)
to

For a first approximation, we assume that f(t) is a constant, such that

Aot (t) = arot(to) - €** (3)
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Figure 29: Evolution of the total detected area (on a logarithmic scale). The
total area seems to roughly follow an exponential decay, as ex-
pected from fig. 28 and egs. (1) and (2), but does not perfectly
fall onto a straight line on the logarithmic scale. This mismatch
might arise from both inaccuracies in our approximation or from
effects associated with the droplet merging.

That this approximation is reasonably good, but not completely ac-
curate, can be seen in fig. 29. The deviations of the total detected area
from a perfectly exponential function might arise from both errors in
the assumption of a constant f(t) as well as from effects associated
with the droplet merging.

With these insights, we propose the following explanation for the
total detected area decay: As soon as there is a background area at
the edges of the system, there is a physical force driving oil into this
background. This force can mainly be traced back to the line tension
of the oil, as

(i) the oil droplets in the active area can decrease their perimeter
by shrinking, and

(ii) the background can decrease the perimeter of its “inner hole
(i. e. the active area) by growing.

7”7

The oil transport mechanism is provided by a thin oil layer covering
the complete active area (as we have seen in the single droplet ex-
periment). This agrees with the o0il droplet mass loss being roughly
proportional to the droplet area (eq. (1)), as this area is the droplet’s
interaction interface with the layer.

The idea of an oil layer that invisibly transports oil from the active
area into the background could furthermore explain the initial rise
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in total detected area (cf. section 4.1.2 and fig. 24). We sugeest that
in the early stage of the experiment, when the background is still in
the process of forming, almost all of the oil is in the active area. This
introduces a strong tension on the oil droplet edges, moving oil into
the third dimension, therefore reducing the droplet area visible to the
camera. As the background forms and collects oil from the active area,
this line tension declines, allowing the droplets to expand. Later, this
effect is superimposed by the (stronger) oil droplet mass loss through
the (now established) transport mechanism.

4.2.2  Coalescence radii

In the previous section, we have proposed that the decay in total de-
tected area is caused (at least partially) by oil being transported into
the background through a thin oil layer covering the complete setup.
In this section, we investigate the second mechanism proposed in sec-
tion 4.1.2: the droplets might have a height profile that is dependent
on their size (opposed to a pancake shape). In this case, with grow-
ing droplet size, oil would move into the third dimension (droplet
height), thereby hiding from the camera and our image processing.
This mechanism can easily be tested: if the droplets are not pancake-
shaped, i.e. if oil moves into the height profile of the droplet, the
area of a merged droplet would differ from the total area of its two
ancestor droplets.

In section 4.1.1 and fig. 21, we saw that after a coalescence event,
the droplet relaxes into a circular shape. In the following, we inspect
the radii, not the areas, of droplets involved in coalescence events. This
is motivated by the fact that the height profile which we are interested
in is only consistent between different droplets of the same size when
they are in a relaxed state. In other words, of course the total area of
a merged droplet equals the sum of its two ancestral droplets imme-
diately after their edges connect. We are, however, interested in the total
area after the droplet has undergone this immediate, fast area change,
i.e. when the droplet has relaxed into a round shape. In this relaxed
case, a droplet’s area and radius are exchangeable (a = mir?), and we
stick to using radii to constantly remind us that we are looking at an
equilibrium state.

Figure 30 shows the ratio of merged area (r%) and total initial area
(3 +13) after a coalescence event. Except for the ratios for very small
droplets, where relative errors are very large, there is a distinct trend
in the data: the area ratio decreases with growing droplet size. Co-
alescences of small droplets lead to a total area increase of up to
roughly 5 %, whereas coalescences of large droplets lead to a total
area decrease of up to 3 %. This observation might be a hint towards
a size-dependent droplet height profile. However, in section 4.2.1,
we saw that droplets continuously lose mass, and that — independent



4.2 DROPLET DYNAMICS 59

1'5 L L

N * 20150220
* 20150225

1.4 * 20150227

1.3 A 3

1.2 A F

2

+ r5)

1.1 A

2/}
*
*

.2
T3

1.0

0.9 4 F

0.8 . -

0.7

10° 10" 10?
ri [em?]

Figure 30: Ratio of total initial and merged area after a coalescence of two
disk-shaped droplets with radii 1 and r, into a disk-shaped
droplet with radius r3. Stars represent data from individual mer-
ging events. The black line shows the average and standard devi-
ation of events with similar final radius r3. There is a small, but
distinct trend in the ratio: coalescences of small droplets lead to
a total area increase of up to roughly 5 %, whereas coalescences
of large droplets lead to a total area decrease of up to 3 %. Ra-
tios for very small droplets vary wildly due to the large relative
error in size measurement and the large relative impact when ad-
ditional droplets took part in the coalescence and were missed in
the visual inspection.
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Figure 31: Relaxation time for droplets of different sizes. When two droplets
coalesce, the resulting droplet relaxes into a disk shape (cf.
fig. 21). The relaxation time clearly increases with the size of
the resulting droplet, and seems to do so in a roughly power-law
fashion. Relaxation times range from 1.5 seconds for droplets
with a radius of 0.5 cm to 10 minutes for droplets with a radius of
8 cm. The power law can be fitted reasonably well with At ~ 143
(dashed line). However, the small range of our measured radii
(about one decade), our time resolution limits, and the large vari-
ance within the data forbid drawing quantitative conclusions.

of our oil layer transport theory — this should be compensated for by
normalising areas with the total detected area. As the radius r3 of the
resulting droplet is measured at a later point in time than the radii
r1 and 1, of the two ancestral droplets, in fig. 30, we have compared
radii that are in fact not comparable in the context of height profile
investigation.

While the time difference, and the corresponding change in total
detected area, between measuring the radius of the resulting droplet
and the radii of the ancestral droplets might be negligible for small
droplets, its impact grows with increasing droplet size. Figure 31
shows the relaxation time, i. e. the time difference between measuring
r3 and 11 2, plotted against the radius r3 of the resulting droplet. The
time that a droplet needs to relax strongly increases with the droplet’s
size, from less than half a minute for droplets with a radius of 1 cm
to ten to twenty minutes for droplets with a radius of about 8 cm.
While a power law can roughly be fitted to the scatter data by eye,
no quantitative conclusions can be made due to the small range of
measured radii (one decade), the time resolution limits, and the large
variance within the data.
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Figure 32: Ratio of total initial and merged area after a coalescence of two
disk-shaped droplets with radii 1 and r, into a disk-shaped
droplet with radius 3. The radii have been normalised with the
total droplet area (cf. fig. 24), i.e. 7/ = 7i{/+/atot(ti). While the
trend of coalescences of large droplets resulting in slightly smal-
ler areas (cf. fig. 30) is not completely canceled by the normal-
isation, the total resulting (normalised) droplet area is no longer
smaller than the sum of the two initial areas. The variance within
the data increases slightly with the normalisation.

However, the increasing relaxation time can explain the trend seen
in fig. 30: The larger the resulting droplet, the larger the oil mass loss
resulting from the continuous shrinking. For analysing the droplet
height profile change, we need to suppress this effect of the increasing
relaxation time, i. e. individual shrinking of isolated droplets. In sec-
tion 4.2.1, we saw that this can be achieved by normalising all droplet
areas with the total detected area. Figure 32 shows the ratio of initial
and merged area for radii that have been normalised with the total
droplet area at the moment of measuring, i.e.

T =T1i/V aor(ti), (4)

where t; is the time at which r; has been measured. Indeed, the
normalised data does not show a distinct trend: a horizontal line
could easily be fitted through all error bars, potentially also because
the normalisation slightly increases the scatter in the data.

The continuous oil movement towards the background explains the
trend seen in fig. 30. However, while almost all error bars touch
the unity ratio expected for a perfect conservation of area, almost
all binned ratio averages (black dots in fig. 32) lie above 1.0. Again,
this could be explained by assuming that a thin oil layer covers the

61



62

RESULTS

15

1.4 A

*
*
*

20150220
20150225
20150227

1.3 4

0.8 A

0.7

10* 107 107 10"
p
L

Figure 33: Ratio of total initial and merged area after a coalescence of two
disk-shaped droplets with radii r1 and r, into a disk-shaped
droplet with radius r3. The radii have been normalised with
the total detected droplet area (cf. fig. 24), and with a fraction
of the area that is overtravelled while the resulting droplet re-
laxes, egs. (4) and (5). The free parameter « is set to « = 0.01.
With these corrections, the resulting area of an average coales-
cence varies less than 3 % of the initial area for almost all droplet
sizes.

setup. During the relaxation process of a merged droplet, it moves
over and onto an area that was not previously covered by droplets.
The oil layer from this area is absorbed into the droplet, effectively
increasing its oil mass and therefore its radius in the relaxed shape.
We can test this hypothesis by introducing a second radius correction,

Ty = (1 — - C‘;ZW> -5, (5)

where o is a free parameter related to the fraction of the oil layer that
is actually absorbed into the droplet, and anew is the area that was
previously not covered by the two initial droplets. This correction
maps the (normalised) radius of the resulting droplet onto the (norm-
alised) radius that it would have had, had it not absorbed any oil from
the oil layer.

Figure 33 shows the ratio of initial and merged area with both cor-
rections, egs. (4) and (5), applied. The free parameter « has been set
to 0.01. Particularly in the range of median droplet radii, the binned
ratio averages fall very close to unity, with typical deviations less than
1 %. However, it should be stressed that we had to introduce a free
parameter to achieve this excellent agreement.
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Figure 34: Average droplet size. In each run, the average droplet size grows
initially, and it stabilises in the later stages of the experiment.
While (expectedly) starting at the same average, different exper-
iment realisations quickly diverge in average droplet area. The
strong variability severely hampers calculation of ensemble aver-
ages.

The observations from this section further support the oil layer the-
ory: Applying corrections that it implies, egs. (4) and (5), allows
the creation of a master plot where the area of a droplet resulting
from a coalescence is equal to the sum of the two areas of the ances-
tral droplets. This rules out that the droplets have a size-dependent
height profile. In all of the following analysis, we will therefore as-
sume that the droplets are pancake-shaped. I.e. they are uniform in
height except at the edges.

4.3 AGGREGATE MEASUREMENTS
4.3.1  Droplet growth

In fig. 34, we find the time evolution of the average droplet size: for all
runs, this size initially undergoes continuous growth. Even though
intuitive, this is not inevitable: both the total droplet area a;.+ and the
number of droplets N are constantly changing. If we had a large num-
ber of small droplets that do not take part in coalescences, we would
expect the average droplet size to first grow, while the decrease in N
through coalescence dominates, then shrink again while the decrease
in total droplet area dominates. We will gain a better understanding
of the average droplet area in section 4.4.

63



64

RESULTS

Figure 34 is exemplary for an observation we will make through-
out many parts of our data evaluation: the identically prepared ex-
periment realisations diverge not only quantitatively, but also qual-
itatively, and repeatedly even dramatically: the largest and smallest
droplet size averages after four hours can differ as much as by a factor
of four. The green data series (20150220) stabilises much earlier than
other runs; on the other hand, the blue one (20150218) barely stabil-
ises within the four hour time frame we look at. Similarly, in the
previous sections, we saw that both the peak and the decay rate of
the total detected area vary so much that data series cross in the com-
bined plot (fig. 24), and that the largest droplet constitutes a quarter
of the total detected area after four hours in the green data series
(20150220), but only about 7 % in the purple one (20150227, fig. 28).
This variability of the data prevents naive averaging of experiment
runs to find ensemble averages.

Figure 35 shows the droplet packing density, i. e. the ratio of total
droplet area and total active area. In the first twenty minutes of all
experiment runs, we see a rapid increase from under 50 % up to 70 —
80 %. This peak is held, or for some runs further increased, within the
following forty minutes. One hour into the experiment, as droplets
become increasingly bigger (cf. fig. 34), the packing density starts
declining, and does so roughly linearly for the rest of the experiment.
After four hours, all packing densities lie between 50 and 60 %. Just
like with the total detected area (cf. fig. 24), the data series of different
experimental realisations, in particular their decay rate, vary so much
that their graphs cross.

4.3.2  Coalescence speed

In this section, we will study the evolution of the number of detected
droplets, and the (related) evolution of its change, i. e. the coalescence
speed c%(t). In fig. 36, we see the number of detected droplets as a
function of time. All experiment runs start at a similar level (on a
logarithmic scale) between 20,000 — 30,000 droplets and stabilise after
about four hours. Unlike the start levels, the stabilisation levels differ
significantly: from about 200 droplets (blue data series, 20150218) to
about 1,000 droplets (yellow run, 20150228), a separation by a factor
of five.

If we plot not only the number of detected droplets, but also the
time on a logarithmic scale, as in fig. 37, we see that there is a cros-
sover in qualitative behaviour about 1,500 seconds (50 minutes) into
the experiment. After that crossover time point, all runs can roughly
be approximated by a power law. The power-law-like behaviour lasts
until the finite size effects take hold of the experiment, i.e. until the
stabilisation of the droplet number. While this is the large majority of
the experiment time, it is not even a decade on the logarithmic time
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Figure 35: Droplet packing density. Starting at 40 — 50 %, after a very strong
increase within the first twenty minutes, the fraction of the active
area covered by droplets reaches a maximum at around 70 — 8o %
after 45 minutes. For the remaining hours of the experiment, as
droplets become increasingly larger, it declines in a roughly linear
fashion. After four hours, the packing fractions of all experiment
realisations lie between 50 and 60 %.
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Figure 36: Total number of droplets. While all experiment realisations start
at about the same number of droplets (on a logarithmic scale),
they diverge with time. After four hours, the number of detected
areas stabilises between 1,000 droplets and 200 droplets.
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Figure 37: Total number of areas on double-logarithmic scale. After about
1,500 seconds, i.e. at maximum droplet packing density (cf.
fig. 35), we see a crossover in the qualitative behaviour: from a
logarithmic (cf. fig. 38) to power-law decay. However, this power-
law decline lasts less than a decade before the total number of
areas stabilises.

scale, and the power-law approximation should therefore be treated
with great caution.

We can take a closer look at the early behaviour, i. e. before the cros-
sover at 1,500 seconds, by plotting only time, but not droplet number
on a logarithmic scale. In fig. 38, we have furthermore normed the
droplet number by its initial value. The normed number of droplets,
N(t)/No, show a convincing data collapse in the early stages of the
experiment, where we see a rapid decline in the total number of
droplets. After 1,000 seconds, the number of droplets has fallen to
roughly 20 % of its initial value for all experiment runs. The data
collapse can be approximated by a logarithmic function:

t —a
N(t)/No =In <> (6)
to
In fig. 39, we plot the (negative) coalescence speed, —d—T, against

time. Again, we find a good collapse of all experiment realisations
in the first one to two thousand seconds of the experiment. During
this period (i. e. about two decades in the logarithmic time scale), the
coalescence speed seems to decay in a power-law fashion. At later
stages, where the total number of droplets is relatively small, the rel-
ative differences in number of droplets between data series are large
(cf. tig. 37), and finite size effects become important, the coalescence
speed data varies more wildly, both between different and within
single experiment data series.
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very start of the experiment we see a rapid decline in the number
of detected droplets. All experiment realisations lose about 8o %
of their initial droplets after 1000 seconds. In this very short time
frame, the droplet number decay can be approximated reasonably
well with a logarithmic function.
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Figure 39: Coalescence speed as function of time. In the first 1,000 — 2,000

seconds, all experimental data collapses onto a power-law, while
towards the end of the experiment, where finite size effects have
an increasingly larger influence, the coalescence speed starts to
vary more wildly.
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Figure 40: Coalescence speed as function of droplet count. While we find no
data collapse as in fig. 39, we do get a better insight into the later
stages of the experiment: when the droplet number decreases in
a power-law fashion (cf. fig. 37), the coalescence rate also seems
to vary with the droplet number in a power-law fashion.

To gain a better insight into the coalescence speed during the late
stages of the experiment, we plot it against the number of droplets
in fig. 40. Again, we find a large variation in the experimental data
for late times, i.e. for small droplet numbers. This could possibly
be explained through the very low coalescence rates at these times,
down to a single coalescence per 100 seconds. Despite the relatively
large variation, all data can be fitted quite well with a power law for
small droplet numbers, ranging over about one and a half decades.
This range of droplet numbers for which the power-law fit holds cor-
responds to the time span after the crossover in qualitative behaviour
from fig. 37: At 1,500 seconds, we find around 8,000 droplets.

4.3.3 Size distributions

In section 4.1.2, we noted that the spatial distribution of droplet sizes
is non-uniform: the experiment is characterised by local neighbour-
hoods comprised of similar-sized droplets. Here, we will take a look
at the aggregate, i. e. non-local, distribution of droplet sizes: the evol-
ution of the experiment’s droplet composition on a global scale.
Figure 41 shows the probability density p(a,t) of finding a droplet
of size a for different points in time. In general, the evolution begins
with a narrow distribution peaking at a very small droplet size of
around 0.03 cm?. This peak exists throughout all times, moving only
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Figure 41: Probability density of droplet sizes. All experiment realisations start with a narrow

distribution of small droplets, peaking at about 3 - 10? cm?. The peak of this distribution
moves only marginally during the experiment, to about 5 - 10> cm? after four hours.
However, during this shift, a second, smaller mode emerges out of the bulk of the
distribution. This second mode corresponds to the larger droplets of the system; those
that contribute almost all of the droplet area (cf. fig. 43). The second mode continually
diverges, while its peak moves towards larger droplet sizes. Again, peak movement and
divergence vary between data series. Generally, the peak after four hours lies between
10 cm® and 100 cm?, with the exception of the yellow (20150228) data series, where it
lies at just 1 cm?.
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Figure 42: Exemplary number distribution of droplet sizes. The double-
logarithmic scales point out the bimodal nature of the droplet
size distribution. A first mode with steady peak (in terms of
droplet size, and at the very late stages also in its droplet count)
of very small droplets is accompanied by a second mode with
ever-growing droplet size peak and distribution width.

marginally to the right during the course of the experiment. However,
we clearly saw in the previous sections that very large droplets start
to form with time. In fact, the distribution becomes bimodal. The
second mode of this system, initially overlapping the small droplet
mode, continually moves its peak to larger droplet sizes. At the same
time, it becomes wider and wider, until it is so spread out that it is
barely distinguishable in the probability density function.

The bimodal nature of the droplet size distribution becomes more
clearly visible if we plot the distribution of droplet sizes, n(a,t) =
N(t) - p(a,t) on a double-logarithmic scale, as in fig. 42. Note that this
is more than a mere normalisation, as the total number of droplets N
varies with time. The declining number of droplets in the experiment
corresponds to the declining area under the curve in the number dis-
tribution. The first, stable (in terms of peak position) mode of the dis-
tribution is clearly visible on the left side, whereas the second mode
can be found initially hidden in the right flank of the first mode, then
moving towards bigger droplet sizes while spreading out. The peak
heights of the two modes are always separated by at least a factor of
ten in favour of the small droplets.

The distributions in figs. 41 and 42 seem unintuitive when remem-
bering our raw experiment images from fig. 19. What meets the eye
is not the relative distribution of droplet sizes, but the contribution of
droplets of size a to the total droplet area, a-n(a,t). This contribu-
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Figure 43: Exemplary distribution of total droplet area. After the first thirty
minutes, we find a single-mode distribution with an elongated
tail towards smaller droplet sizes. The bulk of the total area is
contributed by droplets of sizes 5 cm® to 10 cm®. As familiar
from fig. 41, the peak continuously moves towards larger droplet
sizes while the distribution diverges. After four hours, the largest
part of the total area comes from droplets of sizes between 20 cm?
and 1,000 cm?.

tion is plotted in fig. 43. While not far from negligible in the probabil-
ity density function in fig. 41, the second mode of the distribution, i. e.
the one containing the large droplets, expectedly contributes almost
all of the total droplet area. After a short transient of about thirty
minutes, the contribution distribution consists of a single mode with
an elongated tail towards smaller droplet sizes. At this time, most
of the total area is contributed by droplets of sizes 5 cm* to 10 cm?.
In the following hours, as already familiar from figs. 41 and 42, the
single peak continuously moves towards larger droplet sizes while
the distribution spreads out. Four hours into the experiment, the
bulk of the total area is contributed by droplets sized between 20 cm?
and 1,000 cm?.

In this section, we found that the distribution of droplet sizes be-
comes bimodal during the experiment. Almost all of the total area is
detected by a continually widening peak of few large droplets. At the
same time, almost all of the total number of droplets is contributed
by a different, narrow and relatively stable peak of small droplets,
which take part in none or very few coalescence events.
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4.4 TOWARDS A MATHEMATICAL DESCRIPTION

Previously, we saw that the distribution of droplet sizes is bimodal. A
first mode of small droplets contributes the bulk of the total number
of droplets, while a second mode of large droplets contributes the
bulk of the total droplet area. In this section, we investigate these
two modes separately and establish that the experiment processes
through three time regimes. Finally, we propose and test a break-
down of the distribution of droplet sizes into a superposition of two
distributions: a stationary distribution of small droplets, and a scal-
ing distribution of large droplets.

After visual inspection of fig. 42, we can roughly separate the two
modes by categorising droplets as either smaller or larger than 1 cm?.
In the following, we will limit us to the "20150218" data set. Figure 44
shows the number of droplets as well as the average and total droplet
area for both droplet categories. Marked by grey dashed lines, we
can identify three regimes in time:

(i) t <200 s. Immediately after the experiment’s start, when there
are very few large droplets, the total detected area is mostly
dominated by small droplets. At the same time, we see an in-
crease in number of large, and a decrease in number of small
droplets. The average small droplet size, expected to be con-
stant from fig. 42, undergoes a small increase. This can be attrib-
uted to an imperfect mode separation by our 1 cm? threshold
(again, cf. fig. 42).

(ii) 200 s <t < 1500 s. After the experiment has somewhat evolved
from its initial conditions, we start to identify several power
laws within the data. While the average small droplet size is
constant by now, we can see the first manifestation of the mov-
ing large-droplets peak in the average large droplet size. It fol-
lows a t!/3 power law. At the same time, as the total area starts
to be dominated by large droplets, the total area contributed by
small droplets declines as t=2/3. As the average small droplet
area is constant, this also implies a t—2/3 decline of the number
of small droplets. Simultaneously, the number of large droplets
stays nearly constant.

(iif) t > 1500 s. The third regime comprises around go % of the
experiment time. Here, the total detected area is contributed
almost exclusively by large droplets, and hence the decline in
total droplet area manifests in a t~!/3 power law. As the coales-
cence process is now in full swing, their number declines fast,
following a t=3/3 power law. Accordingly, the average large
droplet size scales as t*/3. While the average small droplet size
remains constant, the total number of small droplets, and con-
sequentially also their total area, undergo a fast decline, losing
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Figure 44: Aggregate statistics per droplet size regime. When building separate aggregates for

droplets smaller (green) and larger (blue) than 1 cm?, we can identify three time regimes,
marked by grey dashed lines. First, the system is dominated by small droplets; then, as
the second mode of the droplet size distribution starts separating, larger droplets take
over; finally, for about 9o % of the experiment time, both the total area and the number
of droplets decline as the coalescence process takes place. Within the aggregate statistics,
we can identify several power laws, mostly bound to single time regimes. None of these
power laws hold for more than a decade on the time scale. Data shown is from the
’20150218’ run.
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about 9o % of their value in the third regime. This decline flat-
tens out towards the end of the experiment.

Figure 44 also helps in explaining the counter-intuitive behaviour
of the (aggregate) average droplet size (fig. 34). While the total area
A in aavg = A/N is almost exclusively contributed by large droplets,
the total number of droplets N is dominated by small droplets. The
aggregate average area mixes up the two modes that make up the
droplet size distribution, i.e. it mixes droplets that do with droplets
that do not participate in the coalescence process, and therefore has
little informative value.

We now suppose a mathematical description of the droplet distri-
bution n(a,t). Based on our findings in the previous sections, we
propose that the aggregate distribution is a superposition of

(i) a stationary probability distribution of small droplets, ps(a),
with varying weight, i. e. number of small droplets N(t), and

(ii) a scaling probability distribution of large droplets, pi(a/x(t)),
dependent on the average large droplet size «(t) = A(t)/Ny(t),
and a time-dependent weight Ny(t),

such that:
n(a,t) =Neft)-pola) + S (), )
with j:oda pela) =1,
Joe s m (Sia) =
ie. j:oda n(a,t) =N(t) Vt.

We can check this description by considering the probability P
that any droplet is larger than a threshold value a*:

*

—

P-(a%t)=pla>a

~ Nx(a*t)
- N(1)
] o0
T NS0 + Ny (1) L*d“ nla.t)

At this point, we insert our proposed n(a,t) (eq. (7)). We will now
restrain ourselves to large threshold areas a*. In that case, the con-
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Figure 45: Plausibility check for proposed mathematical description of
droplet size distribution (eq. (7)). In particular during the late
time regime (blue to dark blue), the plotted values pair fall onto
a single line that can be interpreted as the complementary cumu-
lative distribution function for large droplets (cf. eq. (8)). Shown
data is composed from samples for 30 different threshold areas
a* between 1.2 cm? and 1000 cm?.

tribution of the first summand of eq. (7) to the integral is negligible,
and the above can be simplified to

L © N a
=08 = N L*d“ ) P (ax(t))

Ny (t)

= Ns(t)-l-Nl(t)Jﬂ* depilx),

o(t)

where the integral can be identified as the complementary cumulat-
ive distribution function for large droplets, ¢ (a*/x(t)) = pi(a >

a*/a(t)):

Ny(t)

R ORI

¢ (a*/a(t)) (8)

As all variables in eq. (8) except for ¢ are experimentally access-
ible, this allows us to gain a better insight into whether eq. (7) is
a plausible description of the distribution of droplets sizes. If it is,
all value pairs of (14 Ng/Ny) P~ against a*/« should be samples of
the complementary cumulative distribution function of the underly-
ing scaling distribution of large droplets p(a/«), i. e. they should fall
onto a single line describing that complementary cumulative distri-
bution function.
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Figure 45 shows scatter plots of the above value pairs for a variety
of threshold areas. Indeed, we see that the data falls onto a line
closely resembling a cumulative distribution function, as we expected
from eq. (8). This is true especially for the late time regime, where the
separation of the two modes is large and the approximations made
to arrive at eq. (8), i.e. that the first summand of eq. (7) is negligible
in the integral over large droplet sizes, are applicable. This supports
our approach of separating the total droplet size distribution into a
stationary distribution for small droplets and a scaling distribution
for large droplets.



CONCLUSION

The efforts described in this thesis are threefold: Chapter 2 describes
a novel physical experiment which grants access to a new level of
statistics on the evolution of droplet size distributions during coales-
cence processes. In chapter 3, I introduced two software frameworks
that are designed to be usable beyond this thesis: one facilitates high-
speed image capturing at full resolution from consumer-level DSLR
cameras, the other aids experimental physicists in the task of organ-
ising their image processing. Chapter 4 provides a general evaluation
of the experimental data. Unlike what has been published in the lit-
erature, the droplet size distributions become bimodal. Hence, in
section 4.4 the droplet distribution was modeled in terms of a super-
position of two modes: a stationary distribution of small droplets,
and a scaling distribution of large droplets.

5.1 ACHIEVEMENTS

EXPERIMENT We use the dynamics of oil droplets on a water sur-
face, familiar from cooking soups, to gain statistics on the droplet
size distributions in coalescence processes. The setup is distinctly dif-
ferent from previous coalescence experiments, which either concen-
trated on single coalescences on pm scales, imaged via microscopy
or x-ray methods, or droplet size distributions at a single point in
time, such as experiments with fuel injection systems. In our exper-
iment, the detected droplet cover areas from 0.01 cm? to 1,000 cm?,
and the experiment initially holds more 20,000 initial droplets, coales-
cing into a few hundred within four to six hours. A major challenge
for the experiment was the visualisation of the droplets, and it has
been overcome by exploiting the optical properties of the oil droplets:
we take pictures of the shadows that they cast on a screen made of
transparent paper when they are illuminated by an LED flashlight.

IMAGE CAPTURING To track large numbers of droplets we used
high-resolution digital single-lens reflex cameras, which are widely
spread on the consumer markets. However, the available remote con-
trol software limits the (full-resolution) frame rate for time lapses to
roughly one image every three seconds. For our purposes, a higher
frame rate was desirable to avoid losing too much detail of the coales-
cence process, in particular during the first few minutes of the exper-
iments where the dynamics are very fast. To fill this gap I developed
a new open-source software framework, ICE, aimed at the needs of
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experimentalists. It wraps a low-level camera remote control library
and allows full-resolution frame rates up to four frames per second
(depending on camera model) by saving images to an SD card instead
of immediately transferring them through the camera’s USB connec-
tion. Thus, it avoids the slow USB bus chips used in consumer-level
cameras.

DROPLET DETECTION We automatically detected the oil droplets
from the experiment images through a combination of computer vis-
ion methods. We find small droplets by utilising their circular shape.
A commonly adopted approach based on the Circle Hough Trans-
form, was computationally too intensive due to our wide radii range.
We detect circles by finding gradient vector pairs, as proposed by Rad
et al.®5. Moreover, for larger droplets with less well-defined shapes,
we use a mixture of thresholding, mathematical morphology, and fil-
tering. As byproduct of implementing the image analysis, I presented
a second open-source software framework, FIRE, that aims at aiding
experimentalists in organising their image processing.

TOTAL DROPLET AREA The five considered, identically prepared,
realisations of the experiment diverge quantitatively, and, in some as-
pects, even qualitatively. This forbids calculating ensemble averages,
and strongly suggests the need for more experimental data. Still,
many surprising conclusions can be drawn from the present data.
Through examination of the area difference between a merged droplet
and its two parent droplets, we established that the oil droplets in our
experiment are pancake-shaped, i.e. uniform in height except at the
edges. Oil mass does not move into the third dimension (height)
under coalescences. Still, the total area of detected droplets is not
constant. Instead, there is a growing background made of oil that does
not take part in the coalescence process. We propose that, driven by a
decrease in line tension, oil from the center of the system moves into
this background through a thin oil layer covering the water.

BIMODAL SIZE DISTRIBUTION After a brief transient, the number
distribution of droplet sizes becomes bimodal: A first, steady mode
of small droplets of constant size contributes the bulk of the total
number of droplets. A second mode comprises growing droplets. It
contributes the bulk of the total droplet area. By dividing the detec-
ted droplets into a group of small and a group of large droplets, we
identify three temporal regimes in the evolution. They are character-
ised by distinct power laws describing the average droplet area, total
area, and number of droplets for both groups.

MATHEMATICAL DESCRIPTION Following these observations, a
mathematical description for the time evolution of the droplet size



5.2 IMPROVEMENTS

distribution is proposed, where the total droplet distribution is a su-
perposition of a stationary distribution of small droplets, while the
size distribution of large droplets takes a scaling form. We support
this description with a master plot where the (originally drifting) cu-
mulative distribution function for large droplets falls onto a single
line for all but the very early data from an experiment run.

5.2 IMPROVEMENTS

Naturally, no new experiment is born perfect. There are many rough
edges in the oil droplet experiment. Many of these can be smoothed
easily with a little time, e. g. :

The accuracy and precision of the droplet size detection can be
improved by correcting distortions of the camera lens, as commonly
done in photo processing software, and by providing a more homo-
geneous illumination. This can be achieved by buying or building
a new light source with a more powerful LED and a wider opening
angle, bringing the illumination at the corners more in line with the
illumination at the center.

Increasing reproducibility of the experiment, such that the data can
be averaged to find ensemble means, can be done by obtaining better
control on the initial conditions of the experiment. Right now, we can
generate a roughly monodisperse distribution of droplet sizes, but we
have no method to define the typical droplet size of this distribution,
and little means to set the spatial composition of the initial droplets.
This can be achieved by using an atomiser that allows fine control
over the deposited mass.

Introducing better control over the surface area is necessary to take
advantage of finite size scaling methods. Currently, the amount of oil
is predetermined by the aquarium size and our requirements towards
the coalescence speed, and there is no tool to change the water’s
surface area. This can be overcome by either implementing a floating
tube as described in section 2.2.4 (with the added benefit of being able
to vary the area during a run), or by introducing physical barriers and
thus decreasing the effective aquarium size.

5.3 PROSPECTS

So far, we have done little exploration of the experiment’s parameter
space. For example, we have chosen the oil and the surfactant, and
their amounts, based on their availability and a trial-and-error pro-
cess to find a combination that worked. More extensive and quant-
itative testing with other mixtures will help identify which of the
features we find in our oil droplet experiment are specific to it, and
which could broaden our general understanding of coalescence pro-
cesses.
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CONCLUSION

There are many other open questions in the evaluation of the ex-
perimental data. Why do the runs vary in some qualitative features,
albeit being prepared in a similar fashion? What are the details of
the mechanism through which oil is constantly moved into an in-
active background? What laws govern the arrangement of droplets
into neighbourhoods with similar droplet size? A particular appeal
comes from the bimodal droplet size distributions, a quite uncom-
mon characteristic in the world of statistical physics in general, and a
behaviour not yet reported in studies on the coalescence of droplets
and bubbles.

Once one can collect reproducible data for a range of different sys-
tems, the experiment can be used to explore how droplet size dis-
tributions and their evolution are impacted by features of single co-
alescences, such as by coalescence preference or coalescence cascades.
The experiment is a model system that allows full access to the form-
ation of bimodal size distributions, one of the major open problems
to address upon modeling rain initiation. Moreover, the superb res-
olution of the tails of the distributions will make it possible to sys-
tematically study the physical significance of features which are usu-
ally hidden in those noisy tails, such as the evolution of the largest
droplets and its connection to explosive percolation.









SOURCE CODES

At the time of writing this, the source codes of ICE and FIRE have
a combined length of more than 3,000 lines. Reprinting them here

would be of little use. Their source code and documentation are avail-
able on GitHub:

e ICE: https://github.com/jdemaeyer/ice
e FIRE: https://github.com/jdemaeyer/fire

The very first commit in both of these repositories corresponds to the
state as used in the image analysis of this thesis.

Listing 1: YAML configuration file for image processing with FIRE, as used
in the final image processing for our experiment images.

preprocsteps:
— crop:
y: 252
X: 942
dy: 2370
dx: 2370
— makefloat
— greyscale:
channel: o
— removebg:
bgsource: /run/media/jakob/TOSHIBA EXT/Data/Big
/20150218 / Full /100NCDgo/DSC_0006.JPG
methods:
— sub
— div

procsteps:
# Very large clusters
— threshold:
threshold: —o0.08
minsize: 10000
steps_prelabel:
— erode: 2
— remove_bordering: 10
— fill
— erode: 2
— open
— close
steps_postlabel:
— maxstddev: o.1
— dilate: 5
— minconvexratio: 0.8
# Clusters of all sizes that we are certain about
— threshold:
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threshold: —o.05
minsize: 200
steps_prelabel:
— erode
— remove_bordering: 10
fill
— open
— calccornerresponse
steps_postlabel:
— dilate: 2
— erode: 2
— maxstddev: o.1
— maxcornerresponse: 7.
— minQ: 0.3
— dilate: 2
— minconvexratio: 0.85
# Midsized clusters (out of our FCD range) that weren’t
detected previously
— threshold:
threshold: —o.03
minsize: 500
maxsize: 10000
steps_prelabel:
— remove_bordering: 10
— fill
— open
— calccornerresponse
steps_postlabel:
— maxstddev: o.1
— maxcornerresponse: 6.5
— minQ: 0.5
— dilate
— minconvexratio: 0.9
— removeouter:
padding: 8o
— tiledfcd:
tiles: 5
minr: null
maxr: 30.
gaussian: 1.
sobel: false
minnorm: 3.0e—2
alpha: o.5
beta: o.7
gamma: 0.3
mincenterlevel: .1
radiusscaler: null
minmembers: null
epsilon: 1.0
minsamples: 1
maxangspread: 0.6
— diskextend

exportsteps:
— string
— save
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