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Abstract
In dieser Arbeit wird ein automatisiertes Framework zur Extraktion von Netzwerk-
Information aus Bildern von End-Zellen der Drosophila Tracheen sowie die nach-
folgende quantitative Analyse des Wachstumsverhaltens selbiger vorgestellt. Der
analysierte Datenbestand enthält über 500 Bilder von Tracheen. Die zugehöri-
gen Larven wurden mit unterschiedlichen Mutationen (Rab8, Myospheroid, Crumbs,
Rhea), genetischen Grundlagen und bei verschiedenen Temperaturen aufgezogen.
Ein Datenbestand von solcher Größe war noch nie für quantitative Analyse verfügbar
und erlaubt statistisch signifikante Aussagen über die Beschaffenheit der Tracheen.
An den als Netzwerken dargestellten Zellen wird mit Hilfe eines Ansatzes aus dem
überwachten Lernen festgestellt, wie viel Anteil zur Unterscheidbarkeit der Netzw-
erke Mutation, genetische Grundlage und Temperatur beitragen. Clustering - ein
Ansatz aus dem nicht überwachten Lernen - ermöglicht außerdem das Auffinden von
bisher unbekannten Netzwerk- Phänotypen welche unabhängig von den vom Geno-
typ induzierten Phänotypen auftreten. Der Großteil der in der Netzwerk-Realisation
enthaltenen Information bezieht sich auf die Größe der Netzwerke. Durch Analyse
der Abweichungen von der Größenabhängigkeit der Netzwerk-Realisation können
vier Wachstumscharakteristiken identifiziert werden - die phänotypischen Trends.
Weiterhin werden zwei Modelle, welche das Verästelungsverhalten und die Verteilung
der Zell-Dicken und Zell-Längen beschreiben, vorgestellt.

Stichwörter: Netzwerke, Drosophila, Tracheen

Abstract
We develop a methodology for automated extraction of network information from a
large dataset containing images of Drosophila terminal cells. The dataset contains
images of larvae grown with different mutations prohibiting the expression of one
of four genes: Rab8, Myospheroid, Crumbs and Rhea. Larvae are also distinguished
based on their genetic background and growing temperature. The dataset is com-
posed of over 500 images which is a novelty for this field of research. This enables
us to find statistically highly significant results. We apply a supervised learning
approach to quantify the effect on discernability of each of the three growing condi-
tions. Using an unsupervised learning approach we find hidden phenotypes spanning
several of the already known phenotypes induced by the larva’s genotype. We find
that most of the information contained in network growth patterns is strongly tied
to network size. By analyzing deviations from the size dependence of network re-
alization we establish four main growth characteristics we call phenotypic trends.
We are also able to find very simple models describing cell branching behaviour and
distributions of tube lengths and tube radii.
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1. Introduction

1.1. Networks as the Lifelines of living Beings

Networks are a widely reoccurring pattern in nature. We can find them from the
micro to the macro scale, in the inorganic regime (figure 1.1a), single living beings
(figure 1.1b) or even single cells (figure 1.1c) and as organizational structures of
large meta-systems (figure 1.1d). Networks are especially important for multiple-
cell organisms when it comes to the transport of vital substances. Very prominent
examples for these transport networks are the blood vessels and respiratory network
of mammals. Understanding how these networks develop and function is central to
the understanding of why and how they can fail.

(a) Cracks in dried
clay. Image cour-
tesy of Pawan Nan-
dakishore.

(b) Blood vessels in the
human retina. Image
courtesy of Paul van de
Meer.

(c) Physarum slime mold
on a tree.

(d) Amazon river net-
work [1].

Figure 1.1. Different examples of networks found in nature: (a) Cracks in dried (inorganic)
clay. (b) Blood vessels in the human retina (multiple cells) (c) Network of the Amazon river.
(d) Slime mold (single cell).

Networks in animals are composed of branched tubular epithelial tissue. This tis-
sue covers all internal and external organs and wraps the lumen - the interior of any
hollow organ. There exist various known mechanisms [2], [3], [4] for the formation
of those tubes including cell fusion, cell rearrangements, cell migration or cell shape
changes. What most of these mechanisms have in common is that they create a tube
by enclosing an already existing external or internal space. In this work we are espe-
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1. Introduction

cially interested in the development of terminal cells (figure 1.2c) in the Drosophila
Melanogaster (figure 1.2a) respiratory network, the trachea (figure 1.2b). These
cells form tubes de novo [5] - they create lumen without enwrapping a preexisting
structure and spread in an elongated shape with multiple branches throughout the
surrounding tissue. The creation of tubular structures is common in many organ-
isms, be it the small fruit fly or humans. So far, the complexity of mammals has
obstructed a clear understanding of how networks form on a molecular level. How-
ever, as the underlying mechanisms are believed to be qualitatively the same for
every organism, the study of a much simpler system might yield answers of univer-
sal validity. For the research of the formation of tubular structures as well as for
many other processes [6], [7], [8] the Drosophila has proven to be an excellent
paradigm.

Figure 1.2. (a)
Image of a Drosophila
Melanogaster, the
common fruit fly. The
organism is widely
used for biological
research.1(b) Tracheal
tube system of a
Drosophila larva visual-
ized by immunological
staining.2(c) Trachea
terminal cell, result
of the last of three
sequential branching
processes in the trachea
development.3

a b

c

1Image courtesy of Bbski, Wikimedia Commons. https://en.wikipedia.org/wiki/
Drosophila (20.11.2014) Distributed under the creative commons license.

2Image courtesy of Xlab Goettingen. http://www.xlab-goettingen.de/organogenese.html
(20.11.2014)

3Image courtesy of Sara Sigmundbjörnsdottir, EMBL Heidelberg.
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1.2. Approach

1.1.1. Genotype and Phenotype

Genotype: the genetic constitution of an organism. The genotype de-
termines the hereditary potentials and limitations of an individual from
embryonic formation through adulthood. [9]

Phenotype: all the observable characteristics of an organism, such as
shape, size, color, and behaviour, that result from the interaction of its
genotype (total genetic inheritance) with the environment. The common
type of a group of physically similar organisms is sometimes also known
as the phenotype. [10]

The aim of this work is to provide a quantification of the effect of certain growth
conditions on the development of tubular structures: mutation of genes involved in
tube and lumen creation, genetic background and temperature. We want to define,
find and quantify phenotypes in networks in the sense of their common type. This is
not an easy task as networks are complex structures which show various geometric
and topological characteristics, all contributing to an observable phenotype.
We already know that there are changes in network growth patterns dependent on
the genotype of the fly. The genotype is composed of the knockdown gene as well as
the genetic background of the animals. In this work we call effects which are caused
by the genotype in interaction with the growing temperature induced phenotypes.
We want to clarify and quantify the impact of growing conditions on the expression
of induced phenotypes. Moreover we want to investigate whether there are hidden
phenotypes, i.e. formerly unknown similarities, expressed by the networks indepen-
dent of their genotype or at least spanning several genotypes.
To reach these goals, we consider a single terminal cell with its branching and wide-
stretching structure to be a network and apply approaches borrowed from graph the-
ory to understand its complex structure. To quantify different realizations and find
distinguishable phenotypes in a large set of networks we apply tools from Bayesian
reasoning and machine learning.

1.2. Approach
A broadly accepted problem in research is the possibility of bias in the analysis of
data if researchers “know what they are looking for”. This might lead to research
being directed only in the most promising or desirable direction and may go as far

3



1. Introduction

as the dismissal of inconvenient findings or the over-emphasis of data supporting
the desired outcome. Often it is difficult or expensive to generate data suitable for
analysis which leads to relatively small sample sizes which are highly susceptible
to noise. Moreover, analysis often involves manual processing of data which, even
when documented properly, makes it difficult to reproduce the results. During the
analysis involved in creating this thesis we were aware of all the above-mentioned
problems and were dedicated to implement tools and protocols to generate as unbi-
ased and reproducible results as possible.
The research for this work was conducted in collaboration with Sara Sigmundb-
jornsdottir and Maria Leptin at EMBL Heidelberg, who were responsible for the
preparation of Drosophila organisms and the imaging of terminal cells. To circum-
vent the problem of small sample sizes and high noise, our collaborators went to
great lengths to create an extensive dataset containing images of around 500 termi-
nal cells. A dataset of this size has not been available for research so far. Each of
the images contains one or both sides of the symmetrically growing terminal cell.
The images were recorded with a resolution of 0.3459442 µm × 0.3459442 µm per
pixel to capture even very small branches of the terminal cells.
We deliberately chose to learn as little as possible about the particulars of the molec-
ular mechanisms involved in tube formation and expected growth behaviour of the
networks. We were provided with the dataset of Drosophila terminal cell networks
as well as basic labelling information about the mutation, genetic background and
growing temperature of each of the samples to enable us to group the samples into
families.
Our first goal was to create an automated protocol for the retrieval of network data
from the images. We profited by a large degree from previous work we did involving
the processing of large amounts of leaf venation patterns [11]. After the digitization
of all available network data we applied a very broad range of techniques borrowed
from graph theory and machine learning to analyze all available information con-
tained in a single network and in the dataset as a whole.
After finishing our analysis we exchanged results with our collaborators to put them
in a biological context.

4



1.3. Content of the Thesis

1.3. Content of the Thesis

The remainder of the thesis is structured as follows: In chapter 2, section 2.2, we
give a short description of the digitization technique applied to segment the images
of the terminal cells. Adaptations and expansions to the existing framework are
described in more detail, as is a newly developed tool for graphical manipulation of
networks (section 2.4).

Chapter 3 contains a description of the analysis-methods we applied, as well as
a presentation of the results. After giving a short introduction into the methods
from graph theory we utilized (section 3.2), we quantify the impact of each of the
growing conditions (mutation, genetic background and temperature) on network
growth in section 3.3.
In section 3.4 we then localize the phenotypes induced by the network’s growing
conditions using a supervised learning approach and confirm their discriminative
power.
To investigate whether there are hidden phenotypes spanning several network fam-
ilies, in section 3.5 we apply an unsupervised learning approach to find possible
clusters in the dataset. We establish that most if not all information contained in
different network realizations is information about network size. Using the clusters
we found, we are able to isolate new phenotypes distinguished by network size which
span several families.
In section 3.6 we then investigate the question whether there is second order in-
formation independent of network size. This information has to be contained in
the geometry of a network such as how wiggly or clustered a network grows. This
second order information we call “phenotypic trends”. It can be separated into four
main characteristics of network geometry: diameter of branches, length of branches,
straightness of branches and growing direction.

After an in-depth analysis of network phenotypes, in section 3.7 we develop a growth
model for trachea terminal cells. We split the general model into three sub-models
for branching behaviour, radius distribution and growth direction.
Chapter 4 is dedicated to putting our findings into a biological context. In section 4.2
we give a short review of the morphogenesis of insect trachea. We also describe how
the genes affected by the mutations in the flies as well as genetic background and

5



1. Introduction

temperature are expected to affect network growth. This information enables us to
assess whether our findings support the theoretically expected behaviour. This is
described in section 4.3.

We finish with a summary of all our findings and their implications in section 5.1
of chapter 5. During our research we encountered many interesting questions and
research directions deviating from our main focus which would be worth further
investigation. In section 5.2 we give an outlook on possible future research topics
and summarize questions that remained open after our analysis.

6



2. Data Acquisition

2.1. Introduction
The data used in this work consists of 500 images of Drosophila trachea networks,
three of these images are shown in figure 2.1. The images were created using confocal
light microscopy. For the imaging, larvae were selected based on their developmental
stadium, not based on time after egg-lay. This ensured that there was no variation
in network realization based on overall larvae development.

(a) (b) (c)

Figure 2.1. Confocal microscopy images of Drosophila trachea. (a) shows bright parts not
belonging to the network. (c) shows parts of a neighboring network coming into the picture
from the left. (a) - (c) contain some or all of the other half of the terminal cell to the left or
right. All of these artifacts had to be removed manually before automated processing.

To make the networks accessible for analysis, the networks first have to be ex-
tracted and digitized. We utilize an algorithm developed in an earlier work, [11],
where it was used to digitize the large networks of leaf venation patterns, and modi-
fied it to fit our needs. The following chapter consists of a description of the steps we
undertook to adapt and expand the digitization framework as well as an illustration
of its application to the data. As the networks we analyze in this work are only
approximately flat, we use a two-dimensional projection of the data. This in some
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2. Data Acquisition

cases causes the appearance of fake junctions by superposition of two branches grow-
ing at different z-coordinates. To get rid of these junctions we developed a graphical
user interface for graph manipulation. We also give a description of this GUI as well
as some screenshots of the graph-representation using the GUI.

2.2. Image Vectorization

When trying to extract ribbon-like shapes from digital images (e.g. networks), there
are two main approaches: Thinning [12] and Vectorization [13]. As described in [14],
for the purpose of network digitization, vectorization is the approach of choice. It
might be harder to implement but in the end, the network structures created by
vectorization are much easier to analyze and handle.

2.2.1. Binarization

The basis of a successful vectorization is a suitable binary representation of the
image. This means that foreground features (the features we want to depict in the
network structure) and background features are clearly separated and represented
as zeros and ones in a binary image. In a perfect binary image, there are no more
artifacts from the imaging process or unwanted features present.

Image Processing

To create such an image, several techniques from image processing can be applied
to reduce noise, increase contrast and sharpen edges. A detailed description of the
techniques applied in network vectorization can be found in [14]. The cornerstones
of pre-processing are:

• Gaussian filtering to reduce noise.

• Local histogram equalization to sharpen and equalize global contrast and
sharpen edges.

• Otsu-thresholding [15] to create a binary image.
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Artifact Removal and manual Processing

The images used in this work commonly contain many features or artifacts we did not
want to include in our processing. Processing steps that were performed manually
on many of the images include:

• Selection of the region of interest (ROI) excluding parts of neighboring net-
works from the considered region.

• Division of images which contained both symmetrically growing terminal cells
into two separate images for the left and the right cell respectively.

• Manual selection of the threshold used to create the binary image in cases
where Otsu-thresholding did not yield satisfactory results.

• Manual removal of stains, flares and parts of neighboring networks intermin-
gled with the focal network.

In general we try to restrict the manual processing to removing features. We only
add white (foreground) pixels in cases were the binarization algorithm did not rec-
ognize crucial connections in the network. Results of the binarization and manual
processing can be seen in figure 2.2.

(a) (b) (c)

Figure 2.2. The images from figure 2.1 after the binarization process and artifact removal.

2.2.2. Vectorization

As the Drosophila trachea are three-dimensional structures which grow on the sur-
faces of the insect’s organs, the first approach was to slice the structure into several
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horizontal parts and create z-stacks. The vectorization itself can easily be general-
ized for n dimensions as it relies on a constrained Delaunay triangulation [16] which
is defined for all dimensions n ≥ 1. It soon became clear that in application, using
the z-stacks was not possible for several reasons, including:

• In z-direction the network parts could not reliably be linked.

• Contrast was not high enough.

• A large set of artifacts ranging from imaging artifacts to parts of the organism
which did not belong to the network would have forced us to manually process
every single z-slice.

Finally, we decided to treat the images as pseudo-two-dimensional and processed
the two-dimensional projections of the z-stacks. As the trachea grow on internal
surfaces of the flies which can be considered flat, the length distortions introduced
by using a projection instead of a three-dimensional image were reasonably small.
Only rarely a superposition of two tubes would result in a fake junction which had
to be corrected manually after the digitization process.

2.3. Graph Creation

To extract a network from a binary image, we first have to determine what infor-
mation is needed to satisfactorily describe the network. As we want to analyze the
topology of the network as well as its geometry, we have to make sure that the
vectorization process provides us with

• two-dimensional coordinates of all nodes (xi, yi),

• lengths of all edges li,

• radii of all edges ri,

• neighbors of every node i.e. the network’s adjacency matrix,

• a distinguished root node.

Given this information we can reconstruct all information contained in the network
growth pattern, as illustrated in figure 2.3.
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Specific root node
gives graph direction
      topology 

Every node knows
its coordinates
      geometry

Every node knows
its neighbors
      topology

Every edge knows
its length and diameter
      geometry

Figure 2.3. Digitized network representation of a Drosophila terminal cell illustrating geometry
and topology information contained in the network structure.

2.3.1. Approximation of the Skeleton

Digitization of ribbon-like shapes requires finding the skeleton of the shape. The
skeleton is defined as a one pixel thin line which has the same distance to all bor-
ders of the feature. The vectorization approach accomplishes the extraction of the
skeleton by representing the features with vectors and points rather than pixels.
The first step is to find the contours of the shapes and approximate them by their
dominant points [17], [18]. Using these contour points, we can perform a constrained
delaunay triangulation on the shape with the contours as constraints. An example
of a triangulation performed on a network contour can be seen in figure 2.5. This
leaves us with a series of neighboring triangles represented by the coordinates of
their vertices.

Triangle “Centers”

For every triangle we now want to find a point C (the “center” of the triangle)
which will then be used to approximates the segments of the skeleton contained
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in the triangle. This center-point therefore should have the same distance to both
borders of the feature.
To find C for every triangle, we first have to differentiate between four different
kinds of triangles. Triangles are distinguished by their number of external (shared
with the contour) and internal (not shared with the contour) edges:

• Junction triangles: These are triangles which have three internal edges, they
lie in the middle of a junction.

• Normal triangles: These are triangles which have two internal edges, they lie
on the elongated parts of the shape.

• End triangles: These are triangles which have only one internal edge, they lie
at the tip of an elongated part of the shape.

• Isolated triangles: These are triangles which have no internal edge. They do
not have any neighboring triangles and are ignored.

Junction Normal End

Figure 2.4. Illustration of Junction, Normal and End triangles. The “center point” C is
indicated with a red cross.

For Junction triangles we expect C to lie on the longest angle bisection line. For
Normal triangles we expect C to lie on the line bisecting the angle between the two
internal edges. For End triangles we expect C to lie on the line bisecting the angle
between the two external edges. An illustration of the position of C can be seen in
figure 2.4.
To find the exact coordinates of C, we superimpose the triangles with the euclidean
distance map (EDM)[19] of the binary image. The EDM of an image is a matrix
which for each pixel in the image contains the distance to the nearest background
pixel. We then look along the angle bisection line for the point with the highest
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EDM-value, which signifies that it has the highest distance to the next background
pixel. Therefore C maximizes the distance to both borders of the feature, which is
required for a point on the skeleton.

normal

junction

end

Figure 2.5. Example of a triangulation of a contour belonging to a terminal cell network
shape. Junction, Normal and End triangles are indicated in orange, purple and red.

Creating the Graph

Now we have extracted all the information we need to describe the network. We cre-
ate a graph by compiling all the information into a networkx [20] graph-object. The
coordinates for the triangle-centers Ci are the coordinates of the nodes of the graph.
The distance to the nearest background pixel at each Ci determined from the EDM
is the thickness or radius of the tube at point Ci. By comparing triangle vertices
we can determine that each two triangles which share two of their vertices have to
be neighbors. This information we can use to create the graph’s adjacency matrix
and establish neighborhood relations. The length of the edges between neighboring
nodes we calculate by using the euclidean distance between the two nodes. The
radius of an edge is defined as the mean of the two radii of its nodes.
This leaves results in a graph that is a close approximation of the network present
in the original microscopy image.
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2.4. Graph Manipulation
From the biology of the Drosophila trachea we know that the network does not
contain any loops. As the image we used to create the graph representation was
a two-dimensional projection of a three-dimensional image, the digitization process
might have created artificial loops out of superimposed tubes. These need to be
removed manually.
Removing false loops and “rewiring” the network is a difficult task to automate,
therefore we decided to do it manually. To make this unavoidable manual ma-
nipulation step as transparent and fast as possible, we created a graphical user
interface, the Graph Manipulation GUI, to manipulate the graph using networkx
and matplotlib [21].

(a) Visualization of a graph-object using the
Graph Manipulation GUI.

(b) Cycles contained in the network are em-
phasized in red.

Figure 2.6. (a) Example of a digitized network loaded in the Graph Manipulation GUI.
The nodes (blue) and edges (black) are superimposed onto the original scan. (b) Cycles
(highlighted in red) can form because of fake junctions.

The tool superimposes the extracted graph object and the original image, as can
be seen in figure 2.6a, to make it as easy as possible for the human using the tool
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to decide whether a junction is a real branching point or just an artifact from the
projection. The GUI also provides a functionality to highlight all remaining cycles
in the graph which helps to make sure that no cycles are left. Figure 2.6b illustrates
a fake junction and its correction.

2.4.1. Graph Manipulation GUI

Options to remove and create nodes and edges to correct fake junctions and some
rudimentary tools to measure lengths and radii are also included in the GUI. At-
tributes for newly created elements of the graph are taken directly from the EDM.
An illustration of a fake junction and how it is corrected with the GUI is provided
in figure 2.7.

fake junction
removal of

fake junction
rewiring of

network

Figure 2.7. Illustration of the rewiring of a fake junction. The central node is falsely created at
the point where two superimposed tubes cross. The central node is removed and the remaining
nodes are rewired correctly.

2.4.2. Trees and directed Graphs

We know that the terminal cell which forms the network is a single cell that starts
its branching process at a spatially fixed point in the trachea. We call this point
the root of the network. By specifying a distinguished node in the graph as root we
can make use of this directional information about the network growth and give the
graph a direction. We can either select the node at which the veins have the largest
radius to be the root node, this is true for most cases - or specify it manually using
the Graph Manipulation GUI as we did for this work.
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2.5. Summary
At the beginning of the digitization process, we used techniques from image pro-
cessing to create a suitable binary representation of the image. The binary image
had to be manually modified in many cases to remove artifacts including parts of
neighboring networks and surrounding tissue. We tried to keep manual processing
to a minimum and refrained from adding foreground pixels wherever possible.
Using the binary image we followed a vectorization approach to extract the skeleton
of the ribbon-like network features and create a graph representation of the network.
The resulting graph contains geometric information such as node coordinates, edge
lengths and edge radii as well as topological information such as neighborhood rela-
tions and a distinguished root node. The graphs are known to not contain any loops.
As we treated 2D projections of 3D images, we had to correct “fake” loops in the
network after which we were able to transform the graph into its final representation
as a directed graph.
Examples of the extracted networks can be seen in figure 2.8.

(a) (b) (c)

Figure 2.8. Networks extracted from the binary images displayed in figure 2.2.
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3.1. Introduction

The main focus of this work is to analyze a large set of digitized trachea networks
from different genetic backgrounds, grown at different temperatures and expressing
different mutations. The data was given to us with the minimum possible infor-
mation about the biology of network growth. We did not know how the networks
were expected to behave for certain mutations. Furthermore, the expected impact of
different temperatures and genetic backgrounds on the functionality of gene knock-
down and network growth in general was not known to keep possible bias in the
analysis to a minimum.
Because of this deliberate non-information we had to look in every direction and an-
alyze every possible aspect of the networks. In the following chapter in section 3.2
we will define and explain the metrics we measured for every network including
purely topological as well as geometric observables.
We will then go on to describe the analysis methods we used to investigate how
different growing conditions affect the growth of the networks and which growing
conditions have sufficiently high impact to induce a distinguishable phenotype. In
the following we will call the set of growing conditions a cell was grown with its
family and each of the growing conditions a characteristic of the family. We specif-
ically want to investigate whether the networks from the same family clustered in
high dimensional metric space and therefore coincided with the phenotype defined
by their growing conditions. If this is not the case this would indicate the existence
of “hidden phenotypes” and the networks would form clusters independent of their
families. For this purpose we first do a very qualitative assessment of the metrics we
measured to see which of the family characteristics (mutation, genetic background
or temperature) have the largest impact on the growth of the networks and if some
of the characteristics can be ignored in later analysis. The results of this assessment
are described in section 3.3.
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In section 3.4 we determine whether we can reliably differentiate between the net-
works from different growing conditions by applying linear discriminant analysis
(LDA), a supervised learning approach, to the data. This gives us a measure of how
reliable we can decide whether a network was grown with a certain characteristic
using the measured growth behaviour.
To find possible hidden phenotypes, in section 3.5 we choose an unsupervised learn-
ing approach and apply clustering methods (KMeans and GMM ) to the dataset.
We investigate whether the clusters found by the algorithm are separated clearly
and what the affiliation to a cluster signifies for the growth pattern expressed by
the network.
As the clustering reveals that the strongest signal stems from pure network size and
the networks fall on a continuum rather than forming separate clusters in metric
space, we want to filter out the impact of network size on the metrics. In section 3.6
we do this by first choosing the four most representative geometric metrics for net-
work growth: the length and radius of edges, the area of the convex hull and the
length of the path along the tree from the root to the leaves. We then try to find
the underlying dependence of each of these metrics on the best representative for
network size: the number of branching points. After the dependence is known we
can look at significant deviations from the predicted curve. With this approach we
are able to find second order effects in network growth which contribute a small but
visible amount to the information contained in each network realization. We call
this effects phenotypic trends.
To ultimately understand how trachea terminal cells grow, in the last section 3.7 we
try to set up growth models for the three main aspects of network growth: branch-
ing behaviour, radius distribution and direction of growth. We also try to assess
whether mutations are able to qualitatively change the underlying growth models.

3.2. Network Metrics

Given the vectorized representations of the networks, we can start measuring certain
metrics for each network. In the following, we want to establish a nomenclature for
the description of graphs and derive the metrics we were able to measure given the
information contained in the graphs.
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3.2.1. Definitions

All definitions used in this work can be found in [22].

Graph: Let G = (V,E) be the graph-representation of the network. We call V
the vertices (nodes) of the graph and the set of vertex pairs E ⊆ [V ]2
the edges of G. In the following, we always assume |V | > 1.

Subgraph: Let G = (V,E) and G′ = (V ′, E ′) be two graphs. We call G′ a subgraph
of G if V ′ ⊆ V and E ′ ⊆ E.

Degree: We call the number of edges incident to a vertex the degree of the
vertex dG(v).

Path: A path is a graph P = (V,E) of the form

V = x0, x1, ..., xk E = x0x1, x1x2, ..., xk−1xk,

with xi pairwise different. The vertices x0 and xk are called the initial
and terminal vertices of Px0,xk

, they are connected via Px0,xk
.

Connected: We call a graph G connected if for every two nodes x, y ∈ V there is
a path P ∈ G which connects x and y. In the following, we always
assume connected graphs.

Cycle: Let P be a path. We call P a cycle if x0 = xk, therefore P is a cyclic
sequence of edges.

Tree: If a graph G does not contain any cycles, we call it a tree T = (V,E).
If moreover no vertex v ∈ T has a degree dT (v) > 3 we call the graph
a binary tree.

Directed
Graph:

A directed graph D is a pair of vertices and edges (V,E) together
with two functions init:E → V and ter:E → V which for each edge
e ∈ E specify an initial vertex init(e) and a terminal vertex ter(e). The
edge is then directed from init(e) to ter(e). In a tree, by specifying a
distinguished vertex as root r ∈ V of the tree, we can define init and
ter such that every edge is pointing away from the root and therefore
create a directed tree TD.

Subtree: A subgraph of a tree T which is also a tree is called subtree. In a
directed binary tree, for every node with degree d(v) > 2 we can define
a left subtree T ′L = (V ′L, E ′L) and a right subtree T ′R = (V ′R, E ′R).

Leaf: Every vertex that has a degree dT (v) = 1 and is not the root we call a
leaf l ∈ L of the tree.
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The graph-representations of the networks used in this work all are connected,
directed binary trees with |V | > 1.
We divide the metrics measured on the networks into two categories: Topological
metrics are observables which only depend on the topological characteristics of the
network i.e. the number of its elements (vertices and edges) and their relations. Ge-
ometric metrics are observables which only depend on the geometric characteristics
of the network i.e. the coordinates of the vertices and the radii of the edges.

3.2.2. Topological Metrics

We define the topological metrics Number of Junctions, Asymmetry, Tree Depth
and Completeness based on the information contained in the networks regarding
the number and neighborhood-relationship of the network’s vertices as well as the
identity of the root node r.

Number of Junctions

Number of Junctions (NoJ)We define the Number of Junctions (NoJ ) of a graph
G = (V,E) as the sum of all the nodes which have a
degree larger than two, plus the root node:

NoJ = |{v ∈ V | dG(v) > 2}|+ 1 (3.1)

Asymmetry

a = 1/2

a = 1/3

a = 0

a = 0

a = 0 a = 0 a = 0 a = 0

a = 0 a = 0

a = 0

global asymmetry = 0

global asymmetry = (1/2 + 1/3)/4

We define the Asymmetry asym of a vertex v ∈ V
as the absolute value of the difference between
the number of leaves in the left and right sub-
tree |LL,R| =

∣∣∣{v ∈ V ′L,R | d(v) = 1}
∣∣∣ normalized by

max (|LL|, |LR|). The asymmetry of the whole tree is
the sum of all vertex-asymmetries normalized by the
number of junctions:

asym = 1
NoJ ·

NoJ∑
i=1

|LL,i − LR,i|
max (LL,i, LR,i)

(3.2)
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Tree Depth

0

1
2

3

4

5

Depth of Tree (depth)3Given a graph G, the Tree Depth (or Depth) td(v)
of a vertex v ∈ V is the length of the shortest path
connecting v and the root r:

td(v) = min (|{Pr,v ∈ G}|) (3.3)

The depth of the tree is given by the maximum vertex
depth td(T ) = max [td(v ∈ V )].

Completeness

Cpl = 5/8

Cpl = 1Given a binary tree T width depth td(T ), the maxi-
mum number of leaves it could have is |L|max = 2td(T ).
Its completeness Cpl is the ratio between the actual
and the maximal number of leaves:

Cpl = |L|
|L|max

(3.4)

3.2.3. Geometric Metrics

We define the geometric metrics Length of Edges and Network, Radius of Edges,
Spacefillingness and Topological, Geometric and Normalized Distance to Root based
on the information contained in the networks regarding the (x, y)-coordinates of the
nodes in the graph as well as the radii of its edges.

Length of Edges and Length of the Network

Length of Edges (LoE)
Given a graph G = (V,E), for every edge e ∈ E we
can define the Length of the Edge LoE as the geometric
distance between the two vertices vi,j it connects:

LoE(e) =
√

(xvi
− xvj

)2 + (yvi
− yvj

)2 (3.5)

It has to be noted that the edge lengths used for the
calculations are not simply the geometric distances between the junctions. The final
graph-representation of the network only contains the junctions and leaves - all the
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nodes with degree two (corresponding to Normal triangles) which originally were
produced by the triangulation have been removed. To create a better approximation
of the geometry and take curvy growth into account, the actual length of an edge is
the sum of the lengths of all the originally created skeleton segments approximating
the original network.
The length of the whole network is the sum of the lengths of all edges:

LoN =
∑
e∈E

LoE(ei) (3.6)

Radius of Edges

Radius of Edges (RoE)The Radius of an Edge RoE is the mean of the radii of
the tube at the two vertices it connects. This radius
is not to be confused with the topological definition of
the radius of a graph, it is a purely geometric measure
of how thick the tube at the position of the vertex
is.
To increase the accuracy of the approximation, the
radius of an edge contained in the final graph representation also is calculated as
a mean of all the radii of the skeleton segments which originally were situated in
between the junctions it connects weighted by their lengths.

Area of Edges and Area of the Network

Using the LoE and RoE we can calculate the Area of an Edge AoE and the Area of
the Network AoN :

AoE(e) = 2 · RoE(e) · LoE(e) ; AoN =
∑
e∈E

AoE(e) (3.7)

Normalized Area of Edges and Normalized Area of the Network

The Normalized Area of Edges NA(e) is the area of an edge normalized by the
minimal edge length present in the graph:

NA(e) = 2 · RoE(e) · LoE(e)
min({LoE(e) | e ∈ E}) (3.8)
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The normalized area of the whole graph is the average over all its normalized edge
areas:

NA = 1
|E|

∑
e∈E

NA(e) (3.9)

Area of the Convex Hull

Area of convex Hull (AoCH)A set of points is defined to be convex if it contains all
the line segments connecting each of its points. We
define the convex hull CH of a graph G = (V,E)
as the minimal convex set containing V . If we order
the points of the convex hull counterclockwise we can
guarantee that the points represent a non-intersecting
polygon for which we can calculate the area

AoCH = 1
2 ·
∣∣∣∣∣
n−1∑
i=0

xiyi+1 − xi+1yi

∣∣∣∣∣ , (3.10)

where n = |CH | and xi, yi are the two-dimensional coordinates of the vertices con-
tained in the convex hull.

Spacefillingness

The spacefillingness Sfn is a measure of how dense a network fills the area it occupies:

Sfn = AoN
AoCH (3.11)

Tree-Distance to Root

Tree Distance from
Root to Leaf

For every vertex v ∈ V we can define the Tree-Distance
to the Root DT (v) as the length of the shortest path
min (|Pr,v|) along the network from the root to the ver-
tex:

DT (v) =
min(|Pr,v |)−1∑

i=0

√
(xi − xi+1)2 + (yi − yi+1)2

(3.12)
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The Tree-Distance to the Root for the whole network DT (V ) is the mean of the
tree-distances of all its leaves:

DT (V ) = 1
|V |

∑
v∈V

DT (v) (3.13)

We can split DT into three different metrics by looking at different sets of vertices:

• All vertices: DT (V ) = DTV

• Only junctions: DT (J) = DTJ

• Only leaves: DT (L) = DTL

As V = J + L it suffices to look at two of the three metrics. Therefore we only use
DTV

and DTL
for the following analysis.

Geometric Distance to Root

Geometric Distance from
Root to Leaf 

For every vertex v ∈ V we can define the Geometric
Distance to the Root DG(v) as the euclidean distance
between the vertex and the root:

DG(v) =
√

(xv − xr)2 + (yv − yr)2 (3.14)

The Geometric Distance to the Root for the whole Net-
work DG(V ) is the mean of the geometric distances of all its vertices:

DG(V ) = 1
|V |

∑
v∈V

DG(v) (3.15)

Again we can split DG into the three different metrics DGJ
, DGV

and DGL
, and use

only the last two.

Normalized Distance to Root

For every vertex v ∈ V we can define the Normalized Distance to the Root DN(v)
as the ratio between the tree distance and the geometric distance to the root:

DN(v) = DT (v)
DG(v) (3.16)
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Again we can define the normalized distance to the root for the whole network
DN(V ) and split it into three different metrics DNJ

, DNV
and DNL

and use only the
last two.

3.2.4. Redundancy

Figure 3.1. Illustration of dilation on
a binary image with varying radii rdiff
of the structuring element.

For every graph we can define the edge-
connectivity. A graph is k-edge-connected if we
have to remove a minimum of k edges until the
first component of the graph becomes discon-
nected. In loopy graphs, this can be used as
a measure for the graphs redundancy. For exam-
ple, the transport network in plant leaves still
works if defects in the form of severed veins
are introduced - there is redundancy in the net-
work. For trees-like graphs however, the k-edge-
connectivity always is one as there are no loops.
To define a measure of the redundancy of the
trachea, we have to think of something else.
The function of the trachea network is to trans-
port oxygen to the surrounding tissue via diffusion. We therefore define redundancy
for this kind of transport network as the area of the surrounding tissue that can be
reached via diffusion by more than one tube, given a diffusion range rdiff.
We could calculate that area from the geometry and coordinates of the network
we already have in the graph object. However it is easier and less approximate to
follow a purely graphical approach: As we already have the binary image from pre-
vious processing steps, we can utilize the morphological operation of dilation [23]
to simulate diffusion from the network into the surrounding tissue, as illustrated in
figure 3.1. For each dilation range rdiff (i.e. kernel size/structuring element of the
dilation operator) we can calculate the number of redundant pixels by

• First calculating the maximum number of pixels Nmax which are reached if
we dilute a straight line with the length of the boundary of our foreground
structure

• Then calculating the actual number of pixels Nact reached by dilating our
foreground structure with a structuring element with radius rdiff
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• Subtracting Nact from Nmax. We now have calculated the number of pixels
NRed which can be reached from more than one tube at diffusion range rdiff.

Angles

J

A
B

C

Every junction J except the root has degree three,
therefore at every junction we can measure three an-
gles between edges which meet at the junction. The
angle between the edges connecting J to node A and
the edge connecting J to node B is

αAB = arccos
 ~AJ · ~JB
‖ ~AJ‖‖ ~JB‖

 . (3.17)

We differentiate between three different angles specified by the radius of the edges
enclosing the angle:

• The angle between the edge with the largest and the edge with intermediate
radius αLI .

• The angle between the edge with the largest and the edge with the smallest
radius αLS.

• The angle between the edge with intermediate and the edge with the smallest
radius αIS.

3.2.5. Summary

For the purpose of further analysis, in this section a large quantity of different met-
rics which are measured on the networks from the dataset are defined. The metrics
can be divided into purely topological observables only dependent on the number of
network elements and their relation such as the number of junctions and the net-
work asymmetry. The other type of metric is purely geometric, only dependent on
the two-dimensional coordinates of the nodes and the radii of the edges. We also
defined a measure for the redundancy of a tree-like transportation network using its
functionality as a diffusive transport system for oxygen.
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3.3. Information Content of Network Characteristics

3.3.1. The Dataset

For each network in the dataset, the growing conditions of the larvae were controlled
for temperature t, genetic background BGen and mutation M . Furthermore, for each
network, the horizontal (left or right hemisphere) and vertical position in the insect
at which the network grew were recorded. For further analysis, horizontal and
vertical position were ignored as this information was already being analyzed in
another work created in parallel to this thesis [24]. The position in the larva also
was assumed to have less impact on the growing pattern of the terminal cell than t,
BGen and M .
As already mentioned, a combination of {t, BGen,M} is called a family, the elements
t, BGen and M are called characteristics of the family. In total our dataset consists
of 30 different families where each family contains between 10 and 20 networks for
a total of 500 different networks. The exact number of networks each family is
composed of is listed in table C.1 in the appendix. The number of networks in each
family is already quite high compared with other analysis done for trachea terminal
cells [25], [26]. This allows for statistically more significant statements, however it
has to be kept in mind that the amount of noise still can be quite high and other
effects such as possible mechanical deformations of the larvae during preparation for
the imaging could distort the results.

Temperature

Each characteristic combination (M,BGen) was grown at two different temperatures
t ∈ {18◦C, 29◦C}. In general, larvae grow faster at higher temperatures but as the
time span after which the imaging was performed was not constant but chosen with
regard to the developmental stage of each larva, a systematic impact of temperature
on the size of the network based on the development of the whole larvae can be
ruled out.

Genetic Background

A genetic background is a genetic construct used to tag the larvae for imaging
(described in more detail in section 4.2.3). This tagging also influences the RNA-
machinery responsible for the mutation. For this work the larvae came from three
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3. Network Phenotyping

different genetic backgrounds expressing the fluorescing protein GFP and the pro-
teins Dicer2 and PIP2. In the following, the genetic backgrounds will often be
abbreviated as G (only GFP), DG (Dicer2 and GFP) and PDG (PIP2, Dicer2 and
GFP).

Mutation

For each combination of (t, BGen) a population with a different mutation was grown.
The mutation was realized by interfering with the expression of one of the four
genes Betaint, Crumbs, Rab8, or Talin, the function of these genes is described in
section 4.2.2. As control, for each temperature and background there is also a set
of networks from Wild Type (WT ) larvae.

The means and standard deviations of all topological and geometric metrics for every
network family except the angles and redundancy are listed in the appendix C.

3.3.2. Is a single Characteristic enough to discriminate between
Networks?

As the number of data points in every family still is very low and noise therefore
pretty high, we first wanted to investigate whether all of the characteristics have
an impact on network growth. If this is not the case, we can safely collapse some
of the families and analyze only within the characteristics that do matter. We
can get a first impression of whether we can reliably discriminate between different
families based on the discriminative power of the information contained in each of
the characteristics.
The first approach was to plot each two metrics we measured against each other and
see whether data points expressing a certain characteristic would visibly cluster. An
example of that approach can be seen in figure 3.4. We can easily assess that for t
and BGen (sub-figures 3.4a and 3.4b) there is absolutely no separation between data
points with different characteristics - points with different characteristics are spread
over the whole range of possible values. For M however we see a clear tendency of
different mutants to occupy only part of the available range (subfigure 3.4c). This
indicates that information contained in the characteristics t and BGen is not sufficient
to discriminate between different families but information contained in the mutation
might be. The same behaviour can be seen for all pairings of metrics.
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Figure 3.4. Plots of NoJ over the
AoCH . Coloring of the data points was
done with respect to their (a) temper-
ature or (b) genetic background. Both
do not reveal any clustering. Coloring
the data points with respect to their (c)
mutation however shows separation of
the points.

3.3.3. Conclusion

The variations in network growth caused by different t or BGen seem to be small
compared to the variations caused byM . A first assessment of the metrics measured
for all the networks showed that the networks with the same temperature of genetic
background do not cluster whereas networks with the same mutation do. Therefore,
using the growth pattern of a network, we might be able to make a statement of
whether the larva had a certain mutation or not but we cannot predict its genetic
background or growth temperature. Nevertheless, within all the networks with the
sameM we still might be able to find an impact of t and BGen in the form of smaller
variations in network realization.
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3. Network Phenotyping

3.4. Quantification of Class Discernability using
Linear Discriminant Analysis

After the first very qualitative assessment of the data generated by measuring all
the above-mentioned metrics on the networks, in the next section we want to follow
a more quantitative approach. Our goal is to quantify the discriminative power of
the characteristics using Linear Discriminant Analysis.

3.4.1. Linear Discriminant Analysis

Methodology

Linear discriminant analysis (LDA) is a supervised learning approach to discrimi-
nate between different (known) classes in a dataset. It was first described by Fis-
cher [27] and later generalized for more than two classes by Rao [28]. LDA tries
to find a linear combination of class features (in our case the metrics we measured)
which characterizes a certain class best. From this we can also derive linear decision-
boundaries or hyperplanes in the multidimensional metric space which optimally
separate the classes from each other. LDA can be visualized by projecting the data
onto the most discriminative directions, in the following called the first and second
LDA component.

Assumptions

For the application of LDA it is assumed that the data-population of each class
follows a Gaussian distribution and the covariance matrices of every population are
equal. If the data is multimodal, modeling it with a single Gaussian is a poor approx-
imation and might lead to high class overlap. In general using a more complicated
distribution is possible but might lead to a very complicated optimization problem.
Therefore in this work we model distributions as Gaussian.
Even if the covariance matrices are not equal, LDA works quite well in most of the
cases. Problems caused by non-equal covariance matrices can be circumvented by
using the Mahalanobis distance [29] between a point and a distribution instead of
the symmetric squared distance.
A more detailed description of the approach and the algorithm used for this work
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3.4. Quantification of Class Discernability using Linear Discriminant Analysis

as well as an explanation of the scenarios in which the LDA-algorithm might fail is
given in the appendix A.2.

3.4.2. LDA Class Analysis

To further assess how well we can discriminate between different families, we per-
formed LDA on the dataset. The metrics we used for the LDA were

• NoJ , asym, Cpl

• LoE , LoN , AoN , RoE , NA, AoCH , Sfn

• DTL
, DTV

, DGL
, DTV

, ND

for a total of 15 different metrics.
As demonstrated in figure 3.7c, LDA is able to discriminate between networks from
different mutants (five different classes) with a success rate of 70±8 % true positive
and true negative predictions. Taking into account the different temperatures too
and therefore performing LDA for 10 different classes worsens the discernability to
52 ± 7 %. Additionally splitting the classes for genetic background (30 classes)
even brings discernability down to 37 ± 8 %. Using only temperature (two classes,
figure 3.7a) or genetic background (three classes, figure 3.7b) as class label yields
a discernability of 59 ± 10 % and 43 ± 11 % respectively which is not better than
guessing randomly. Therefore the mutation is the only label which enables us to
discriminate between networks with a success rate significantly better than chance.

3.4.3. LDA Metric Analysis

In figures 3.8a and 3.8b the weights used for the linear combination of metrics form-
ing the first and second LDA component are visualized. It can be seen that the
radius of edges RoE and the spacefillingness Sfn have by far the largest influence.
This is an interesting finding as both metrics are purely geometric. Topological
metrics like asym or Cpl do not seem to have much impact on the network discern-
ability.

We now want to investigate whether some of the metrics are obsolete or con-
tribute more to discernability than others. To find out whether this is the case, we
perform LDA using varying numbers of metrics, starting with only two and then
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Figure 3.7. LDA for (a) temperatures, (b)
genetic backgrounds and (c) mutations. For
BGen and t LDA yields a discernability of
43 ± 11 % and 59 ± 10 % respectively - the
different classes cannot be discerned. For M
the data points can be separated with dis-
cernability 70 ± 8 % which is significantly
better than pure chance.

32



3.4. Quantification of Class Discernability using Linear Discriminant Analysis

R
oE Sf
n

N
A

L
oN

A
oN

A
oC

H

N
oJ C
pl

as
ym L
oE

D
T
V

D
T
L

D
G
V

R
ed

D
G
L

Coefficient

0

2

4

6

8

10

12
W

e
ig

h
t

First LDA-Component

(a) Coefficients of the first LDA component.

R
oE Sf
n

N
A

L
oN D
T
V

N
oJ

L
oE C
pl

D
T
L

R
ed

A
oN

as
ym

A
oC

H

D
G
V

D
G
L

Coefficient

0

2

4

6

8

10

12

W
e

ig
h

t

Second LDA-Component

(b) Coefficients of the second LDA component.

Figure 3.8. Analysis of the coefficients of the metrics present in the first (a) and second (b)
LDA component. It can be seen that RoE and Sfn have the largest influence.
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Figure 3.9. Discernability for LDA performed on different sets of metrics. The LDA was
started with two metrics and then successively more metrics were added. The x-axis shows the
metrics added in each step. (a) Shows a certain order of metrics starting with the topological
ones. (b) reverses this order. For both trajectories, a qualitatively similar trend is visible.

successively adding more metrics, one at a time. Figure 3.9a shows the develop-
ment of the discernability with increasing number of metrics for a certain order of
metrics. Figure 3.9b shows the same for the reversed order. It is noticeable that
the trajectory both times exhibits qualitatively similar behaviour: It reaches around
70 % discernability after around 10 metrics and then seems to saturate.
We checked other metric orders and combinations and found the same behaviour:
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3. Network Phenotyping

It is more or less not important which metrics are used for the LDA, only their
raw number matters. From this we can conclude, that the metrics share a lot of
information on the network. This is quite natural as some of them are derived
from other metrics and most of them depend on the number of junctions present in
the network. Nevertheless, the picture only becomes complete after we have added
approximately 10 metrics to the LDA. This indicates that the metrics also each
contribute an individual part of information.

3.4.4. Conclusion

Using an approach from supervised learning, namingly linear discriminant analysis
shows that based on the already known class labels for the different mutants, we can
discriminate networks with a 70 ± 8 % accuracy which means that the probability
P [correct classification] = 0.70. Using only temperature yields a much worse dis-
cernability of 59± 10 % as does discrimination based on genetic background with a
discernability of 43±11 %. Increasing the number of classes by using a combination
of mutation with temperature or mutation with genetic background also does not
yield a discernability better than chance.
The discernability saturates after utilization of about 10 out of the 15 metrics, the
order and identity of the metrics used does not matter. This points to a high corre-
lation between the different metrics.

3.5. Hidden Phenotypes

After applying a supervised learning method to the dataset to discriminate between
networks from different mutants, we want to investigate whether we can find group-
ing in the networks leaving aside the known labels. For this we use an unsupervised
learning approach where we try to assign class labels to networks based on the
growth characteristics they exhibit. We use clustering on the dataset with the same
metrics as in the LDA approach to see whether the networks cluster within the
phenotype induced by their mutation. We also want to investigate, if the clusters
are separated clearly and what the optimum number of clusters is.
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3.5.1. Clustering

Clustering Algorithm

To rule out an influence of the clustering method on the results we tried two
different popular clustering algorithms: a centroid based clustering method, the
KMeans [30] algorithm, and a distribution based clustering method, the Gaussian
Mixture Model [31] (GMM). The approaches for both KMeans and GMM as well
as the actual implementation used in this work are described in the appendix in
sections A.3.1 and A.3.2. Both clustering methods showed very similar results and
only very small if any quantitative deviations. We therefore continued to only use
KMeans in the following clustering analysis.

Silhouette Score

To answer the question of which number of clusters is optimal, we look at the
Silhouette Score S [32] of each clustering for different numbers of clusters:

S = a− b
max(a, b) ,

where a is the mean intra-cluster distance and b is the mean nearest-cluster distance.
Values of S lie in [1,−1], were 1 signifies good clustering, zero signifies overlapping
clusters and -1 signifies false clustering.
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Figure 3.10. Behaviour of
the Silhouette Score for the
KMeans clustering algo-
rithm with increasing clus-
ter sizes. The first four sig-
nificant local maxima are
indicated by arrows and red
dots. The Silhouette Score
never lies above 0.5 which
indicates overlapping clus-
ters.
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Figure 3.10 shows the behaviour of the silhouette score for different cluster sizes.
It can be seen that the silhouette score always lies below 0.5 which indicates that
the clusters are not separated clearly. Local maximal in the silhouette score signify
a more feasible number of clusters than the neighboring numbers of clusters. The
first significant local maxima are 2, 5, 7 and 11 clusters.

Clustering into two and four Clusters

For further analysis, we looked at the first two maxima of S. Five clusters turned
out to be only four proper clusters and one separate cluster for a single outlier.
Figures 3.11a and 3.11b show clustering with two clusters and four clusters. At first
glance the clustering already reveals that networks with the same mutation are not
all affiliated with the same cluster but spread between two or more different clusters.
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(b) Clustering for four possible clusters.

Figure 3.11. Heatmaps of the clustering into two (a) and four (b) clusters respectively. The
color code signifies number of networks which have been assigned to each of the clusters.
Cluster numbers are indicated by labels C1 - C4.
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Figure 3.12. Clustering into four
clusters with network families broken
apart into mutation, temperature and
genetic background.

We continued with clustering into four clusters.
S might be lower but forcing the networks to
divide into four different clusters gives a more
differentiated picture of similarities and dissim-
ilarities between networks than using only two
clusters.
Using the LDA approach described in section 3.4
we found that classifying networks based only on
their temperature and genetic background was
not possible. Nevertheless we could not rule
out an impact of temperature and genetic back-
ground on network realization within a muta-
tion. The unsupervised learning approach al-
lows us to differentiate between different tem-
peratures again and see whether networks from
the same mutant but grown at different tempera-
tures and with different genetic backgrounds will
be affiliated with different clusters.
Figure 3.12 illustrates that temperature can have
a high influence on the clustering of networks
with the same mutation. For Talin and Betaint
the majority of networks grown at different tem-
peratures are affiliated with completely different
clusters. For the other mutants, the impact is
not that strong and could be attributed to noise.
Genetic background has some influence on the
clustering of the networks from all mutants and
even the Wild Type but the influence is not
as strong as that of temperature and might be
caused by noise. One notable exception is Be-
taint 18◦ were each different genetic backgrounds
is affiliated with a different cluster.
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3.5.2. PCA

We have answered the questions of whether the clusters fall onto the original phe-
notypes induced by the mutation (they do not) and if temperature and genetic
background have an influence on the clustering. The low silhouette score also al-
ready indicated overlapping clusters therefore in the next step, we want to visualize
the clustering to see how the clusters are located in high-dimensional metric space.

Clustering Visualization

Principal Component Analysis (PCA) [33] is a feasible way to make the clustering
visible. In appendix A.1 we give a more detailed description of the functionality of
PCA and its implementation in this work.
We perform PCA on the same dataset as the clustering before, then project the
dataset onto the first two principal components and color the data points with
regard to their affiliation to a specific cluster.
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Figure 3.13. (a) Projection of the dataset onto the first two PCA components. The colors
were chosen according to the affiliation of each data point with the clusters created in the
previous sections. (b) Visualization of the contribution to variance in the dataset by the
different PCA components. The first two components are emphasized in red, they already
contribute 50% and 15 % of the variance respectively.

Figure 3.13a shows the projection of the PCA onto the first two components. It
is clearly visible that the first three clusters form a continuum along the first PCA
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component rather than clearly separated clusters. Only cluster four is separated
from the others along the second PCA component.
Looking at the metric weights for the first two PCA components in figures 3.14a
and 3.14b reveals that all metrics except asym, LoE and ND contribute to the
first component with more or less the same absolute weight whereas the second
component is heavily influenced by asym, LoE and Cpl.
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Figure 3.14. (a) and (b) Analysis of the influence of the different metrics on the first and
second PCA component.

To explain the separation of the fourth cluster from the other clusters along the
second PCA component and the strong influence of asym, Cpl and LoE on this
component, we anticipate the analysis performed in section 3.5.3 and look at the
growth patterns of the specific networks forming the fourth cluster.
We can see that only Betaint 18◦ Dicer GFP occupies the fourth cluster. These net-
works show a degenerate growing pattern: they do not branch and therefore consist
of only the root node and a leaf. This edge case causes especially the topological
metrics asym and Cpl to yield extreme results: for a network with no branches
asym = 1 whereas if branches are present it always lies around 0.5. Cpl = 0.5 for
this degenerate case whereas for larger networks it tends to be smaller by at least
one order of magnitude.
The influence of the edge length on the second component also fits well into the
picture of the degenerate networks: these networks will exhibit an extremely high
value for LoE as there is only one long branch which is not averaged with other
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smaller edges.
Therefore, as soon as a network starts to have at least some branches it immediately
falls into a continuum of network realizations along one dimension in metric space
which is influenced by all metrics except asym, LoE and ND. The underrepresen-
tation of ND could be explained by its dependance on DTL

and DGL
.

As the origin of the spread in the second PCA component stems from the degeneracy
of the networks and metrics which diverge for networks with no branches, we can
safely ignore the second component and only look at the first. This approach is also
supported by the fact that the first PCA component already contributes half of the
variance present in the dataset as is illustrated in figure 3.13b.
A closer inspection of the projection onto the first PCA component in figure 3.15
still shows absolutely no separation between adjacent clusters. The overlap between
adjacent clusters is not large however neither is the distance. Clusters 4 and 2 as
well as clusters 1 and 2 can be separated from each other quite clearly but cluster 3
completely spans the space separating the other clusters.
Had we chosen fewer or maybe different mutation for our analysis, the clusters
might have separated more clearly but for the selection of Betaint, Crumbs, Rab8,
and Talin this is not the case.
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3.5.3. New Phenotypes

After establishing that the networks form a continuum rather than separate clusters,
we can proceed to investigate what growth characteristics the networks belonging
to a certain cluster express. For a qualitative indication of network traits we look
at scatterplots of different metrics. How are the networks belonging to a cluster
arranged in these plots? Figure 3.16 is the most telling of these scatterplots: it
reveals that the clustering is based to a very large degree on network size. This
makes sense as most of the metrics are also dependent on network size.
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Figure 3.16. Scatterplot of
the NoJ over NoJ . The data
points all fall on a line, the clus-
tering divides this linear distri-
bution into four parts based on
network size. Cluster affiliation
is indicated by colored circles
around the data points: Large
(yellow) = cluster 2, Medium
(red) = cluster 1, small (blue)
= cluster 3 and degenerate
(green) = cluster 4.

With this in mind, we conclude that the metric most important to clustering
has to be the number of junctions present in a network. Its influence on the other
metrics will be described in more detail in section 3.6. Based on this, we are able
to define a main growth characteristic for every cluster: the main trait of networks
affiliated with clusters one to three is to be of small, medium or large size whereas
the networks in cluster four are degenerate and contain only a root and a leaf.
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Cluster 1 or the “small” Phenotype

The networks belonging to cluster one all exhibit a relatively small number of junc-
tions. Cluster one is mostly occupied by

• All of
– Talin 29◦C
– Betaint 29◦C

• Most of
– Rab8 29◦C DG
– Betaint 18◦C PDG

• Half of
– Talin 18◦C DG
– Betaint 18◦C DG

Figure 3.17 shows some examples of networks belonging to the small phenotype.
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BGen = DG

100 px

(c) M = Talin; t = 29◦C;
BGen = PDG

100 px

(d) M = Betaint; t = 29◦C;
BGen = G

100 px

(e) M = Betaint; t = 29◦C;
BGen = G

100 px

(f) M = Betaint; t = 29◦C;
BGen = PDG

Figure 3.17. Networks from the small phenotype belonging to Talin 29◦ and Betaint 29◦.
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Cluster 2 or the “large” Phenotype

Networks from the large phenotype are the largest networks present in the dataset.
The second cluster is composed of networks from

• All of
– WT 29◦C G,

DG
– WT 18◦C G,

DG

• Half of
– Crumbs 18◦C G,

DG
– Crumbs 29◦C G
– Rab8 18◦C G
– WT 29◦C PDG

• Some of
– WT 18◦C PDG
– Rab8 29◦C G

Figure 3.18 shows some examples of networks belonging to the large phenotype.

250 px

(a) M = WT ; t = 29◦C;
BGen = G

250 px

(b) M = WT ; t = 29◦C;
BGen = DG

250 px

(c) M = WT ; t = 18◦C;
BGen = DG

250 px

(d) M = WT ; t = 18◦C;
BGen = G

100 px

(e) M = Crumbs; t = 18◦C;
BGen = G

100 px

(f) M = Crumbs; t = 29◦C;
BGen = G

Figure 3.18. Networks from the large phenotype mostly belonging to WT and Crumbs.
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Cluster 3 or the “medium” Phenotype

The third cluster or medium phenotype is the cluster containing the most networks.
It spans the widest range on the first PCA component and contains networks with
intermediate sizes from

• All of
– Betaint 18◦C G
– Crumbs 29◦C

DG, PDG
– Rab8 18◦C DG
– Rab8 29◦C PDG
– Talin 18◦C

PDG

• Most of
– Crumbs 18◦C

PDG
– Rab8 29◦C G
– Talin 18◦C G
– WT 18◦C PDG

• Half of
– Crumbs 18◦C G,

DG
– Crumbs 29◦C G
– Rab8 18◦C G
– WT 29◦C PDG

Figure 3.19 shows some examples of networks belonging to themedium phenotype.

100 px

(a) M = Betaint; t = 18◦C;
BGen = G

100 px

(b) M = Crumbs; t = 29◦C;
BGen = DG

100 px

(c) M = Crumbs; t = 29◦C;
BGen = PDG

100 px

(d) M = Rab8 ; t = 18◦C;
BGen = DG

100 px

(e) M = Rab8 ; t = 29◦C;
BGen = PDG

100 px

(f) M = Talin; t = 18◦C;
BGen = PDG

Figure 3.19. Networks from the medium phenotype mostly belonging to Betaint, Rab8,
Crumbs and Talin.

44



3.5. Hidden Phenotypes

Cluster 4 or the “degenerate” Phenotype

The fourth cluster represents the degenerate phenotype. It consists of networks that
do not branch. The only family that expresses such networks is Betaint 18◦C DG.
Figure 3.20 shows some examples of networks belonging to the degenerate phenotype.

100 px

(a) M = Betaint; t = 18◦C;
BGen = DG

20 px

(b) M = Betaint; t = 18◦C;
BGen = DG

100 px

(c) M = Betaint; t = 18◦C;
BGen = DG

Figure 3.20. Networks from the degenerate phenotype all belonging to Betaint 18◦C Dicer
GFP.

3.5.4. Fake Mutants

To assess how large the influence of network size on the clustering is, we perform an
experiment: We want to know if newly created networks controlled only for their
size, so called “fake mutants”, will cluster in the same way as the real mutants
do. For this purpose, we measure the NoJ for Betaint, Crumbs, Rab8 and Talin
and average over each mutant. Then we create fake mutants by removing junctions
farthest away from the root from the Wild Type networks until these networks reach
the target NoJ of the respective mutant. We then perform the same clustering
as described in section 3.5.1 on all the real and the fake mutants. The result can
be seen in figure 3.21: as expected, if the clustering is only dependent on network
size, the fake mutants cluster in the same way as the real mutants do. The only
qualitative differences can be seen in the clustering of the fake Betaint 18◦C, the
fake Rab8 29◦C and the fake Talin 29◦C. In all three cases, the difference can be
explained by the averaging process involved in calculating NoJ : as the target NoJ
was calculated by averaging over all families with a certain mutation, there is no
possibility of creating for example degenerate networks, as the average NoJ for all
networks from Betaint 18◦C will always be larger than one.
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3.5.5. Conclusion

D
e
g
e
n
e
ra
te

La
rg
e
l

M
e
d
iu
m

S
m
a
ll

Betaint 18
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Crumbs 18
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Rab8 18
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Talin 18

Talin 29

Cluster Heatmap: Clustersize 4

Fake Betaint 18

Fake Betaint 29

Fake Crumbs 18

Fake Crumbs 29

Fake Rab8 18

Fake Rab8 29

Fake Talin 18

Fake Talin 29

Figure 3.21. Clustering performed on the
“fake mutants” created by removing ele-
ments from the WT networks and real mu-
tants.

The networks do not cluster in the pheno-
types induced by their mutations, instead
they form new - formerly hidden - pheno-
types. The growing characteristics of these
new phenotypes seem to be heavily influ-
enced by the network size. The networks
cannot be separated into clearly discernible
clusters but form a continuum on the dimen-
sion with the highest variance of the high-
dimensional space spanned by the PCA com-
ponents. Temperature and genetic back-
ground have an influence on the position
of the networks in this continuum: Being
grown at a different temperature can cause
a network to be affiliated with networks with
a completely different mutation. The effect
of temperature on network growth is larger
than that of the genetic background with the
notable exception of Betaint.
We assumed that the clustering is solely de-
pendent on network size which can best be
represented by a network’s NoJ . This as-
sumption was verified by an experiment in
which we created fake mutants by removing elements from Wild Type networks.
The fake mutants which were created by controlling solely for their NoJ clustered
qualitatively in the same way as their real counterparts. The only differences were
explainable by the averaging involved in creating the fake mutants.

3.6. Phenotypic Trends

In the previous sections we established that most of the information contained in
the networks of trachea terminal cells is related to network size. In the following
section we want to investigate whether there are significant second order signals in
the network’s growth patterns independent of network size.
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3.6. Phenotypic Trends

3.6.1. Size Dependence

To get rid of the size dependence of the different metrics, we try to find the depen-
dence of the metrics on network size. After this dependence is known, we can look
for significant deviations from the predicted trend and define “phenotypic trends”.
If a certain family or cluster follows a phenotypic trend, its networks tend to deviate
from the predicted growth pattern in a way indicated by the trend.
We have already established that genetic background and temperature do have an
impact on how large a network will grow. While looking for deviations from the
general trend we can also gather information about trends in the influence of t and
BGen on NoJ .

3.6.2. Significant Deviations

Analysis Approach

Figure 3.22 shows a characteristic example of the described analysis process: first
the dependence of LoN on NoJ has to be found. Looking at the dependence of single

0.0 0.5 1.0 1.5

LoN [px] 1e4

15

30

45

60

N
oJ

Number of Junctions over Length of Network

Betaint 18 ± C

Betaint 29 ± C
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WT 18 ± C
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Confidence interval (95%)
R² = 0.87
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Figure 3.22. Dependence of
LoN on NoJ . The dependence
is clearly linear. The gray line
and area represent a linear fit to
the data points and a 95% con-
fidence interval. Data points
which lie outside the confidence
interval have been marked with
red circles. Networks grown
at different temperatures have
been indicated with lighter and
darker shades of the respec-
tive color. The three data
points per color correspond to
the three genetic backgrounds.

edge lengths on the tree-depth of the edge (shown in figure B.1) shows that LoE does
not significantly change with depth. Therefore the presence of more junctions should
linearly increase the size of the network. We can now perform linear regression on
the data points and get an indication of the 95% confidence interval around this fit.
As we are only interested in the identification of trends, identification of deviations
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as data points lying outside the confidence interval by eye was sufficient. By looking
at significant deviations from the size-dependence we can identify the data points
which lie significantly above the linear fit as families which tend to grow shorter
than average. Data points which lie below the fit correspond to networks that grow
longer than average.

Dependence of NoJ on t and BGen

Additionally, the data points in 3.22 have been colored to depict the temperature
at which the networks were grown. With this additional information we can draw
conclusions about the dependence of network growth on the temperature: The Wild
Type shows a quite clear dependence on temperature - all networks grown at 18◦C
have less junctions than the ones grown at 29◦C. Talin shows an inverse dependence
of NoJ on temperature whereas Betaint, Rab8 and Crumbs do not show a clear
trend for different temperatures.
We also performed this analysis for the genetic backgrounds but there were no
significant trends visible.

3.6.3. Four Phenotypic Trends as Deviations from basic growth
Characteristics

We can define four basic geometric properties of network growth: edge length and
radius, angle between edges and how straight edges grow. We can also find metrics
which we think best represent these geometric properties: LoE , RoE , AoCH and
DTL .
Based on the deviations of these representative metrics from their dependence on
NoJ , we are able to define four qualitative phenotypic trends. The geometric real-
izations of these trends are illustrated in figure 3.23.

Wiggly vs. Straight

Clustered vs. Starlike

Long vs. Short

Thick vs. Thin

Figure 3.23. Phenotypic trends as a result of deviations of the four basic geometric charac-
teristics from their dependence on the number of junctions.
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3.6. Phenotypic Trends

The observed dependencies and their phenotypic trends are

• Edge length: LoE seems to be independent of tree-depth. Deviations from the
dependence of LoE or LoN on NoJ indicate a trend on the short ↔ long axis
(figure 3.24a).

• Edge radius: RoE seems to be linearly dependent on NoJ . Deviations from
the dependence of RoE indicate a trend on the thin↔ thick axis (figure 3.24b).

• Straightness: DTL
linearly depends on NoJ . A deviation from this dependence

indicates a trend on the straight ↔ wiggly axis (figure 3.25a).

• Angle at junctions: AoCH also depends linearly on NoJ . Deviations from this
dependence indicate a trend on the starlike ↔ clustered axis (figure 3.25b).

An overview of the dependencies of each of the representatives on NoJ as well as
significant deviations from this dependency is given in figures 3.24 and 3.25.
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(a) Dependence of LoN on NoJ is linear. Devia-
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Figure 3.24. Dependence of representatives of the two basic geometric properties on NoJ :
(a) LoN represents edge length. (b) RoE represents edge radius.
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Figure 3.25. Dependence of representatives of the two basic geometric properties on NoJ :
(a) DTL

represents straightness. (b) AoCH represents compactness

3.6.4. Trends for the different Mutants

For each of the four mutants and theWild Type we gathered all significant deviations
and compiled them in table 3.1.

Mutant t NoJ dep. on t LoN RoE AoCH DGL

Betaint 18◦C - - - - -
Betaint 29◦C - - thin - -
Crumbs 18◦C - - - - -
Crumbs 29◦C - short - clustered straight
Rab8 18◦C - long thin starlike wiggly
Rab8 29◦C - long - starlike wiggly
Talin 18◦C negative short thick - straight
Talin 29◦C negative - thick - -
Wild Type 18◦C positive - - - wiggly
Wild Type 29◦C positive - - clustered -

Table 3.1. Compilation of temperature dependence and phenotypic trends for all four mutants
and the Wild Type.

A deviation was recorded if more than one family from a (M,BGen) combination
would significantly deviate from the trend in one direction and if no family from the
combination deviated in the other direction. We split the networks into groups of
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3.7. Growth Models

(M,BGen) as different mutation and growth temperature had the highest impact on
the expression of different trends.
The table aims to form a picture of growth trends but it is hard to interpret in
a biological context as the underlying mechanisms influencing characteristics like
wiggly growth are unknown.

3.6.5. Conclusion

From the two-dimensional geometry of the networks we were able to infer four ba-
sic growth characteristics: edge length and radius, angle between edges and how
straight an edge grows. These basic characteristics were used to define four “pheno-
typic trends” in network growth: networks can grow longer/shorter, thinner/thicker,
more spread out/clustered and straighter/wigglier. We found a metric represent-
ing each of these characteristics and the dependence of these metrics on network
size. We identified significant deviations from the general dependency and gathered
these deviations to form growth-tendencies for each of the families. A discrimina-
tion between networks grown at different temperatures was necessary because these
networks often exhibited different or even contrary trends. Genetic background,
however did not seem to have a major impact on these trends.

3.7. Growth Models

To better understand how certain mutations affect network growth, it is desirable
to have a model that describes the growth process. This model should cover all the
aspects that characterize a network realization:

• Branching behaviour.

• The distribution of edge radii over the network.

• The growth direction of an edge.

We assume that knocking down certain genes in the larvae does not change the
underlying growth model but only changes the parameters which scale its behaviour.
In the following, we try to model each of the above-mentioned aspects and test the
assumption of the unchanged growth model against the data. This works quite well
for the branching behaviour and radius distributions but for the growth direction
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the modeling is more complicated.
In the following analysis we always asses the significance of our findings using the
Lilliefors test for normality [34]. This test generalizes the Kolmogorow-Smirnov test
for distributions with theoretical mean and variance unknown. To get an indication
of the significance of our findings, we first have to compute the maximum difference
D between the sample cumulative distribution function (cdf) and the theoretical cdf.
We calculate the theoretical cdf using the mean and variance of the data-sample.
We can then translate D into p-values using tables provided for example by [35]
which link critical values of D, sample size N and a significance level p. We assume
that we can ignore the impact of t and BGen and look at samples composed of all
networks with a certain mutation. Therefore we have around 100 networks for each
mutant. If we were to split the dataset into 30 families, the number of networks in
each family would be too small and the results too noisy to fit a distribution. For
all our findings we encounter values of D ∝ 10−2. For N = 100 this corresponds to
a significance level of p < 0.01.

3.7.1. Branching Behaviour

Assumptions

To describe the branching behaviour of terminal cells we assumed that:

• The growth speed of edges is constant.

• Branching probability is independent of edge radius and tree depth.

• The length of a branch is independent of tree depth (this was already indicated
by the data presented in figure B.1).

• Branch length is also independent of the length of preceding branches.

• Branching events are rare events and therefore can be modeled as Bernoulli
Process.

Predictions

If the above assumptions are true and branching indeed is a Bernoulli process, the
number of junctions should follow a Poisson distribution. The length of the edges
in-between the junctions should therefore follow an exponential distribution.
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3.7. Growth Models

Comparison with Data

Figure 3.26 shows two examples of distributions of NoJ and LoE . As examples
we took the networks from Wild Type and Talin which illustrates that the distri-
butions do not qualitatively change regardless of mutation or network size. The
NoJ and LoE in both cases follow a normal distribution after a variance stabilizing
transformation from a Poisson and exponential distribution respectively.
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(b) Exponential fit to the LoE-distribution of WT.
The D- and p values were calculated using the trans-
formed and therefore normal distribution.
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Figure 3.26. (a) and (b) distribution of the NoJ and LoE of all networks from Wild Type.
(c) and (d) distribution of NoJ and LoE of all networks from Talin. Significance levels were
calculated using the Lilliefors test for normality on the distributions after a variance stabilizing
transformation.
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3.7.2. Edge Radii
Assumptions
Finding an adequate growth model for the radii at first seems to be more difficult
than for the branching process. Radii are not independent of tree depth and radius
of preceding branches. Nevertheless, we can assume the branch radius along an edge
to be constant. Modeling the distribution of edge radii can be reduced to finding a
model of how edge radii behave at junctions. Given the radius of the mother branch
we have to find out how the radii of the two daughter branches behave.

Findings
At each junction we can discriminate between the radius of the largest, intermediate
and smallest edge connecting at the junction (RL, RI , RS). Figure 3.27a shows that
the radii decay exponentially with depth. Figure 3.27b shows the distribution of
all radii in a stacked histogram colored by the proportions of RL, RI and RS for
each bin. The figure shows an exponential decay of the number of edges with
increasing radius. Bearing in mind that radius exponentially decays with depth
this distribution can be explained by the exponentially increasing number of edges
with depth. Therefore, edges are thickest close to the root and the radius thereafter
decays exponentially with tree-depth.
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Figure 3.27. (a) Radii are smaller the deeper in the tree the edge is located - the decay
seems to be exponential. (b) Histogram showing the radius distribution split into RL (blue),
RI (green) and RI (red). Radii are distributed exponentially: more edges have a smaller
radius.
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A very simple model for the behaviour of the radius at junctions is the assumption
that the total intersection area of the edges is conserved, therefore R2

L = R2
I + R2

S.
To verify this assumption, in figure 3.30 we have plotted the distribution of the area
ratios AR = (R2

I +R2
S)/R2

L.
We can see that for theWild Type the area ratios follow a normal distribution around
µ = 1. The behaviour is the same for the mutants. Averaged over all families, the
area ratio AR = 1.02±0.07 is very close to one which means that da Vinci’s rule [36]
holds.
This is surprising as we would intuitively expect the radius of the branches to further
grow for some time after branching has happened. This expectation comes from the
intuition that the network as a whole is still growing and all tube radii are still
getting larger. This would shift area ratios to values smaller than one. The finding
indicates that the radius of a branch is dependent on the radius of the mother branch
at branching time and then conserved. Nevertheless there is a slight trend visible
indicating that larger networks have higher mean area ratios than smaller networks
(as can be seen in table B.1 which lists all AR values independently).
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Figure 3.30. (c) Area
ratios at junctions fol-
low a normal distribu-
tion with mean µ ≈ 1.
The depicted distribution
shows the AR for the
Wild Type but other mu-
tants behave the same
with a slight trend to-
wards higher average AR
for larger networks.
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3.7.3. Angles

Assumptions

Now that we can model when an edge will sprout a new branch and what radii
the edges will have after branching, the only thing missing to completely model the
whole network growth is the growing direction of branches. The model can be di-
vided into two sub-models describing the growing direction directly at the branching
point and the growth farther away from junctions.
In the following, we will present some findings related to the growing direction di-
rectly at the branching point. We were not able to completely model how branches
grow farther away from junctions. We suspect that growth farther away from junc-
tions is heavily influenced by the surrounding tissue. The cells grow on muscle tissue
which is inhomogeneous and structured. To model the growth behaviour within this
tissue, we do not have enough information about the character of this tissue.

Angles at Junctions

To analyze the angles between branches, we first distinguish between three different
angles (as described in section 3.2.4): The angle between the thickest and interme-
diate branch αLI , the angle between the largest and the smallest branch αLS and
the angle between the intermediate and the smallest branch αIS.
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Figure 3.31. (a) The angles αLI , αLS and αIS follow a von Mises Distribution. (b) Angles
converge to 120◦ the more equal the radii of the three edges at a junction are.
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Figure 3.31a shows that each of the three angles follows a von Mises Distribution [37].
In figure 3.31b we can see that the more equal the radii of the branches at a junction
are, the closer the angles between the branches get to 120◦. This indicates a repelling
force between branches at a junction.
The question remains whether this force is purely due to the mechanics of branch
growth or if it has a chemical aspect such as branches growing in the direction of
lowest oxygen saturation. Both could create a repelling force dependent on the
radius ratios between branches.

Redundancy

Understanding the behaviour of network growth with regard to an edge’s growth
direction is quite difficult given our limited knowledge of the tissue the networks
grow in. Figure 3.34a shows the muscle tissue surrounding the terminal cell. It is
structured and shows regions of increased density and preferred directions of growth.
We have no means of assessing the influence of this tissue on network growth.
Figure 3.34b gives an indication of the cells which are supplied with oxygen by the
trachea. These images illustrate the function of the networks: every cell in the or-
ganism that needs oxygen has to be in diffusion range of at least one network branch.
Using the redundancy defined in section 3.2 we can at least estimate whether the

(a) Image courtesy of S. Sigmundb-
jörnsdottir, EMBL Heidelberg

(b) Image taken from the
dataset.

Figure 3.34. Microscopy
images of the tissue sur-
rounding the trachea termi-
nal cells: (a) shows that the
networks grow in structured
muscle tissue. Several cell
nuclei can be identified as
darker circular shapes. (b)
also shows other cells in the
neighborhood of the termi-
nal cell which are supplied
with oxygen by the network.

networks express something like a preferred distance between branches - a tube
frequency in space. Indeed, the additional number of redundant pixels for each di-
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lation step always shows a global minimum around 200 pixels which corresponds to
≈ 70 µm.
We can now solve the diffusion equation for a spherical tube and a target concen-
tration c(r) = 0.1 mol/m2 which is the oxygen saturation found in the guts of
herbivorous insects [38]. This yields a diffusion range of

r = c0r0

c(r) = 100 µm =̂ 300 px ,

with a starting concentration of c0 = 44 mol/m3 which corresponds to the concentra-
tion of oxygen in normal air and a tube radius r0 = 3 µm. We neglected any effects
related to membrane permeability and assumed the diffusion coefficient of the tissue
to be sufficiently close to that of water. We find it quite noticeable that our predicted
diffusion range so closely matches the observed redundancy minimum even with this
very rough calculation. This leads us to speculate that the trachea networks try to
optimize for lowest possible redundancy: At a diffusion range close to a range we
assumed to be the maximum range a spherical tube can supply surrounding tissue
with oxygen the networks express a redundancy minimum.

3.7.4. Conclusion

We were able to find growth models which quite successfully describe the branch-
ing behaviour and radius distribution described by trachea terminal cells. We also
found that with regard to branch growth direction directly at the junction there is
a repelling force between branches dependent on their radius ratios. To accurately
describe branch growth farther away from a junction we would need more informa-
tion about the surrounding tissue as we cannot assume it to be homogeneous.
We can get an indication of the large-scale growth pattern by looking at network
redundancy: the networks seem to optimize their growth with regard to lowest pos-
sible redundancy, therefore expressing a preferred distance between branches. This
distance is close to the maximum range a branch can supply with oxygen. We also
found that all of the networks follow qualitatively similar distributions, therefore
mutation does not seem to change the underlying growth model.
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3.8. Summary

This chapter was dedicated to describing the approaches we followed to analyze
the dataset and the results of this analysis. As during the analysis we did not
know “what we were looking for”, we choose a very broad approach by defining and
measuring a large set of metrics.

Metrics and Dataset

In section 3.2 we introduced the definitions of these metrics and found that the
networks contained in our dataset are directed, binary trees. The metrics were
divided into topological and geometric metrics and a measure for the network’s
redundancy. Our dataset is composed of 500 networks which are divided into 30
families with regard to their mutation, genetic background and growing temperature.

Assessment of known Phenotypes

The first and foremost question we wanted to answer is whether there are “hidden
phenotypes” besides the ones induced by each network’s genotype. To answer this
question, in section 3.3 we first looked at the already known phenotypes and assessed
the discriminative power of mutation, genetic background and growing temperature.
The goal was to investigate which of the already known growing parameters had the
capacity to define a distinguishable phenotype for network growth. We found that
a network’s mutation influences its growth so drastically that it is possible to dis-
criminate between networks with different mutations using a qualitative assessment
of the metrics measured on them. This is not the case for temperature and genetic
background.
We were further able to quantify this result by performing linear discriminant anal-
ysis, a form of supervised learning, on the dataset. The process is described in
section 3.4. The results also show that we can discern between networks based on
their mutation with an accuracy of 70± 8 %. If we only use temperature or genetic
background, discernability is not better than chance.

Hidden Phenotypes

We have established that a network’s mutation induces a well-distinguished pheno-
type for the growth pattern. Using an unsupervised learning approach, in section 3.5
we applied clustering to see whether the networks express clustering behaviour dif-
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ferent from the already known phenotypes. We found that the networks indeed form
clusters beyond their mutations. We also saw that these clusters are not separated
clearly but rather form a continuum in metric space. Furthermore we were able to
identify the meaning of the direction with the highest variance in metric space as
network size. This means that networks with different mutations can still have the
same size and therefore be affiliated with the same cluster. We also found that all
of the metrics measured on the networks are more or less dependent on the size of
the network.

Phenotypic Trends
We suspected that there is weaker second order information describing how a net-
work grows. To be able to assess this information, we first had to remove the size
dependence of all metrics. In section 3.6 we established that there are three main
independent geometric characteristics of network growth: edge length, edge radius,
growth direction and a measure of how “wiggly” the network grows. The best rep-
resentative for network size is its number of junctions. To each characteristic we
assigned one of the metrics as best representative. We then found the dependence
of each of these metrics on the number of junctions and looked for significant devia-
tions from this dependence. These significant deviations are the “phenotypic trends”
a family of networks exhibits.

Growth Models
In the last part of this chapter, in section 3.7, we tried to find growth models ex-
plaining the dependencies and distributions of the metrics we measured. We divided
the global growth model into three sub-models describing branching behaviour and
edge length, radius distribution and growth direction. The branching process was
assumed to be a Bernoulli process and the data supports this assumption.
To model the radius distribution within the network, we looked at the behaviour of
radii at branching points. We found that the intersection area on average is con-
served at junctions and that edge radius decays exponentially with tree-depth.
The model for growth direction can be divided into two regimes: behaviour of branch
growth close to a junction, and farther away from it. We found that close to the
junction we see a repelling force between branches depending on their radius ratios.
To describe the growth behaviour away from branching points we would need more
information about the tissue the branch grows in. Using the previously defined mea-
sure for redundancy we got an idea of the general large-scale growth pattern: the
terminal cell tries to minimize overlap between diffusion ranges of its branches.
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4.1. Introduction

The respiratory system of Drosophila flies has long been a suitable paradigm for the
study of network-like structures involved in the transport of oxygen. In contrast to
the much more complex structures found in mammals, the trachea of Drosophila are
a much simpler system. For the flies, the cellular mechanisms and genetic programs
which guide the development of the trachea are understood, at least in part. Many
of these mechanisms also can be found in mammals. Therefore, the formation of the
Drosophila trachea over the last decades has turned out to be a rewarding research
target for the understanding of branching morphogenesis. We hope the answers
provided by this research will give deeper insight in the development of network
structures in organisms of higher complexity.
In the following we will first give a short introduction into trachea morphogenesis.
Before, we have used mutation, genetic background and growing temperature as
variables without any expectations or meaning attached to them. Now we will
explain the meaning of these growing conditions in a biological context.
In the second part we will put the results we obtained in the previous chapter into a
biological perspective: how, from a purely biological point of view, would we expect
the terminal cells to behave for different growing conditions?

4.2. Biology of Drosophila Trachea

The Drosophila trachea are a network of interconnected epithelial tubes which can
be divided into a primary, secondary and terminal part [39].
In this work, we are only interested in the growth patterns of trachea terminal cells
and the impact certain mutations have on their growth. In the following, we give
a short overview over the trachea morphogenesis. We also describe the mechanism
causing mutations in the genetic expression of the larvae. Finally we look at the
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genetic backgrounds and growing temperatures and their impact on network growth.

4.2.1. Trachea Morphogenesis

Tracheal tubes consist of a simple epithelial monolayer wrapped around a central
lumen which contains the gas transported throughout the system. At the spiracular
openings on the insect’s surface, oxygen enters the network and then diffuses through
the network until it reaches its target tissue. The trachea network originates from
≈10 cell clusters in early developmental stages of the larva. Traces of these clusters
can later be found in a segmentation of the resulting network along the length of
the larva. The trachea display a bilateral symmetry and every terminal cell itself
also has a left and a right part.
Tracheal branches are formed by a sequence of branching events forming successively
thinner branches. The primary and secondary branching stages express branches
with rather well defined growth structures and positions. However, the growth pat-
terns of the terminal branches are believed to be completely random except for the
fact that they always grow two well-distinguishable parts. The primary and sec-
ondary branches of the trachea consist of around 80 cells [40] whereas the terminal
branches are formed by the outgrowths of only one single cell.
As already mentioned, there exist several ways for lumen formation within pri-
mary and secondary trachea branches [2], [3], [4] which generate lumen by wrapping
around or changing an already existing external or internal space. The lumen for-
mation in terminal cells however is believed to be de novo [5] which is a process
were a tube is created without an external space. During growth of the larva, the
terminal cells undergo a hundredfold increase in size. This and the de novo lumen
formation indicate that there has to be a very efficient mechanism in place to pro-
vide the cell with the material to create new tubes. During its growth, the terminal
cell is believed to respond to hypoxic signals from target tissue [41] by sprouting
new branches to deploy oxygen. It is also known that the terminal cells do not only
grow at the tips of the branches but along the whole length of the tube. Most of
the mutations we used in this work affect the vesicular transport mechanisms of
molecules to the growing terminal cells. This results in different lumen morphol-
ogy - tangled or faulty lumen (which was not analyzed in this work) and different
branching patterns. The latter was subject to extensive analysis in the previous
chapter.

62



4.2. Biology of Drosophila Trachea

4.2.2. Mutants

To investigate the effect of several genes known to play a functional role in trachea
terminal branching, mutants were created where these genes were knocked down.
This inactivation of genes was obtained via RNA mediated interference (RNAi).
The selected genes were

• Rab8 which regulates diverse aspects of vesicular transport in the cells includ-
ing: the transport of cargoes from the trans-Golgi network to the apical or
basolateral plasma membrane, regulation of recycling endosomes and regula-
tion of apical protein localization [42].

• Myospheroid which encodes βPS-integrin (in the analysis called Betaint) which
plays a role in macrophage migration [43].

• Crumbs which plays a role as an apical determinant required for tube forma-
tion [44].

• Rhea which encodes Talin which plays a role in the ability of the network to
attach itself to surrounding tissue [45].

It is important to mention that the larvae expressing a lack of the above-mentioned
genes were not real mutants missing the gene completely. They rather were organ-
isms in which the expression of these genes was diminished. Therefore, the larvae
could still express some reduced level of the knocked down genes. The effectiveness
of the knockdown is believed to depend on other growing conditions such as genetic
background or temperature. Therefore the actual expression levels of the knocked
down gene are unknown.
As a control group, for each growing condition there also was a population of Wild
Type flies for which images of the trachea terminal cells were recorded.

4.2.3. Genetic Backgrounds and Temperatures

To facilitate imaging of the terminal cells, they were tagged with a fluorescent pro-
tein. The protein chosen for this task was the Green Fluorescent Protein GFP [46]
which fluoresces green when exposed to light in the blue to ultraviolet spectrum. Ex-
pression of GFP interacts with the RNAi machinery responsible for the knockdown
and can change its efficiency. To test the influence of GFP and two other proteins on
network growth and knockdown efficiency, larvae expressing different combinations
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of them were grown. The selection of these proteins the larva expresses is called
its Genetic Background. The proteins used are Dicer2 [47], PIP2 [48] and GFP, of
which Dicer2 is believed to increase knockdown efficiency. The genetic backgrounds
are

• Dicer2 and GFP also called DG,

• Dicer2, PIP2 and GFP also called PDG,

• Only GFP also called G.

Another condition that can influence the efficiency of the gene knockdown is the
temperature at which the larvae are grown. To create larvae expressing a range of
knockdown-efficiencies, for each mutant, larvae from all three genetic backgrounds
were grown at temperatures of 18◦ C and 29◦ C. This yields a total of 30 different
growing conditions composed of combinations of mutation, genetic background and
temperature.

4.3. Analysis Results in a biological Context

4.3.1. Mutation Effect on Network Growth

The analysis we performed in section 3.5 clearly shows that the by far strongest effect
of mutations on network growth is the influence on network size by the reduction of
branches. This can be explained by the functions the knocked down genes normally
fulfill: Betaint, Rab8 and Crumbs all play a crucial role in the transport of material
for the formation of new tubes. If less material is provided, the tubes cannot form
the extensive networks we see in the Wild Type. Without Talin the cell is no longer
able to attach to the surrounding tissue. It might create several branches but during
growth they tend to collapse into fewer but thicker branches.
If our dataset consisted of networks with different or fewer mutations, we might have
been able to find network phenotypes clearly separated by their number of junctions.
However, with the mutations our larvae expressed, the networks happened to all fall
on a continuum with regard to their size.
In this continuum we see a clear trend of Betaint most drastically impeding network
growth. This goes as far as the expression of networks with only a few or even
only one branch. The larvae grown with Betaint DG at 29◦ C were not able to
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survive, therefore we have no data from this family. This lethality can be seen as a
continuation of the trend of drastic size reduction.
Talin also interferes with network growth quite strongly although not as severe as
Betaint. Rab8 has a clearly measurable impact on network growth. However, it
does not seem to impede functions necessary for network growth in the same drastic
way as Betaint and Talin.
Crumbs is the mutation which has the least impact on network branching. The
networks with knocked down Crumbs are nearly as large as the Wild Type. Some of
these networks are even indistinguishable from Wild Type networks.

4.3.2. Effect of M , BGen and t on the Mutation

We have learned that genetic background and temperature are expected to influence
the efficiency of the RNA interference and therefore create small-scale variations in
the expressed phenotypes. In sections 3.3 and 3.4 we were able to confirm this
expectation. We were not able to discern networks only based on their genetic back-
ground and growing temperature.

Genetic Background

Out of BGen and t the genetic background seems to have the least impact on the
efficiency of the gene knockdown. There is no clear general trend indicating which
of the genetic backgrounds is most favorable to the gene knockdown.
However the variations between genetic backgrounds for the same mutation and
temperature seem to be clearly visible for some cases. Nevertheless, it has to be kept
in mind that single families of networks only contain 10-20 data points, therefore
noise is very high. Also, it is not clear whether these variations are caused by
the impact of the genetic background on the knockdown mechanism. The genetic
background could also influence network growth on its own in other, yet unknown
ways. The second statement is supported by the finding that we can also see varying
network growth throughout Wild Type families.
To see whether significant variations in branching numbers were more common for
mutants, we performed a two sided t-test for every two genetic backgrounds within
a (M ,t) combination. Table 4.1 shows the results of these tests. p-values larger
than 0.1 are highlighted in red to show where distributions are similar and therefore

65



4. Biological Context

variation is not significant. It is noticeable that for the Wild Type and Rab8, two out
of three tests indicated similar distributions. The other three mutants express much
larger variations in their branching numbers with no or only one test indicating a
similar distribution.
This leads us to the conclusion that variation in branching numbers due to genetic
background is caused by two separate effects: impact of the genetic background itself
on growth behaviour cannot be ruled out as there still are significant variations in
the Wild Type. Nevertheless variations are much higher in the mutants, therefore
there is an influence of the genetic background on the gene knockdown. We can
also infer that the knockdown process of Rab8 is not affected as much by genetic
background as the knockdown process of the other mutants.

Variations in NoJ for different genetic backgrounds

t BGen WT Betaint Crumbs Rab8 Talin

18◦ C G vs. DG t = −0.34
p > 0.5

t = 6.61
p < 0.01

t = −3.06
p < 0.01

t = 0.12
p > 0.75

t = 2.52
p < 0.1

18◦ C G vs. PDG t = 1.08
p > 0.50

t = 10.05
p < 0.01

t = 0.80
p > 0.25

t = −1.22
p > 0.1

t = −1.48
p > 0.1

18◦ C DG vs. PDG t = 0.45
p > 0.25

t = 3.10
p < 0.01

t = 3.35
p < 0.01

t = −1.32
p > 0.1

t = −3.92
p < 0.01

29◦ C G vs. DG t = 4.63
p < 0.01

t = −4.33
p < 0.01

t = −2.79
p < 0.01

t = −0.20
p > 0.75

t = −7.63
p < 0.01

29◦ C G vs. PDG t = 1.36
p > 0.1

t = −4.59
p < 0.01

t = −4.85
p < 0.01

t = −5.47
p < 0.01

t = −3.71
p < 0.01

29◦ C DG vs. PDG t = −3.89
p < 0.01

t = −1.84
p < 0.1

t = −1.96
p < 0.1

t = −4.82
p < 0.01

t = 5.79
p < 0.01

Table 4.1. t-values and p-values of two-sided t-tests for the null hypothesis that the two
samples are not drawn from the same distribution. Tests were performed for every two NoJ
distributions for different BGen within the same t andM . p-values larger than 0.1 corresponding
to similar distributions are emphasized in red.

Temperature

We expected higher temperatures to be more favorable to gene knockdown. This
is the case as the mechanism used for the RNAi originally stems from yeast. It is
most efficient at the temperature optimal for yeast growth which is 30◦C. According
to our analysis we can confirm this assumption of increased efficiency. Indeed, we
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found a large impact of temperature on network growth which goes so far as to cause
networks grown at different temperatures but same mutation to be clustered with
networks of a different mutation.
The variation in network growth caused by different growing temperatures seems
to be caused only by the temperature’s impact on the gene knockdown: Table 4.2
shows p-values for a two sided t-test assuming the branching numbers were drawn
from different distributions. For the tests we averaged over all families for the same
(M, t) combination. We can see that only the Wild Type expresses no significant
variation for different growth temperatures.
The analysis of branching numbers also showed us how large the variation in network
size within one family can be: for example WT 29◦ C DG contains both a network
with 17 and a network with 106 branches which is a six-fold difference in junctions.

Variations in NoJ for different temperatures

t WT Betaint Crumbs Rab8 Talin

18◦ C vs. 29◦ C t = −0.26
p > 0.75

t = 2.71
p < 0.01

t = 6.58
p < 0.01

t = 2.49
p < 0.1

t = 2.52
p < 0.1

Table 4.2. t-values and p-values of two-sided t-tests for the null hypothesis that the two
samples are not drawn from the same distribution. Tests were performed for NoJ distributions
averaged over all families from one mutation-temperature-combination. p-values larger than
0.1 corresponding to similar distributions are emphasized in red.

4.3.3. Second Order Information

After exchanging results with our collaborators, who created the data set and an-
alyzing the experimental process, we concluded that we are not able to reliably
identify second order trends. This is the case because the error introduced by me-
chanical deformation of larvae during the imaging process is so large that given our
still relatively small sample sizes the noise should be far stronger than the signal.
The phenotypic trends we defined are especially prone to error by deformation as
characteristics like straight or wiggly growth, how spread out the network is and
even edge radius can easily be changed by slightly squeezing the larva. Variations in
the length of the edges can also be affected by these deformations as the networks
are only pseudo two-dimensional and can be squeezed shorter without the imaging
picking up on it.
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With this information we can only conclude that we cannot make any significant
statements about second order growth effects. Nevertheless, the definition of main
geometric growing characteristics seems to be quite concise and might be worth
further investigation if larger sample sizes are available.

4.3.4. Growth Models

The models for branching behaviour and radius distribution in a network we created
were approved by the biologists amongst our collaborators. It would be interesting
to see if we can grow artificial networks using these growth models and compare
them to their real counterparts. For metrics only dependent on edge length, number
of junctions and radius, this is already possible.
However, we still miss a model which describes growth direction to be able to cre-
ate a complete artificial network. Regarding the networks’ tendency to minimize
redundancy it was pointed out to us that the observed distance of 70 µm at which
the additional redundancy is minimal also matches the rough size of a cell (cell sizes
in eukaryotes range from 10-100 µm) in the surrounding tissue. Combined with the
fact that the cells in the surrounding tissue can be assumed to be close-packed in
space, this indicates that the network might designate roughly one branch to sup-
port one cell with oxygen which would also result in the average spread of branches
we observed.

4.4. Summary

Trachea Morphogenesis

In the first part of this chapter we have given a brief introduction into the mor-
phogenesis and function of Drosophila trachea. Trachea grow in several sequential
branching steps of which we are only interested in the terminal one. The terminal
branches consist of a single cell which is believed to express random growth patterns.
The growth of the terminal cell is influenced by several genes. The expression of
these genes is mediated to create mutants. The genes knocked down via RNA-
interference are Rab8, Betaint, Crumbs and Talin. In addition to their mutation,
larvae also have a distinct genetic background composed of the expression of one
or a combination of Dicer2, PIP2 and GFP. GFP is used to tag the cell’s lumen
for imaging. In theory, the genetic background influences the RNA-interference ma-
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chinery and therefore can lead to a variation in efficiency of the gene knockdown.
This also is true for the temperature at which the larvae are grown.
By varying genetic background and temperature we hoped to create different muta-
tion severities and therefore a range of small variations within the phenotypes.

Analysis Results in biological Context

In the second part we tried to put the results from the previous extensive quantita-
tive analysis into a biological context. We were able to confirm that the mutation
had a much larger impact on network growth than temperature or genetic back-
ground. This is consistent with the expected behaviour.
We also assessed that the effect of the genetic background on network growth is two-
fold: firstly it affects network growth on its own, as has been shown by quantifying
variations in Wild Type networks. Secondly it also affects the efficiency of the gene
knockdown which causes the mutants Betaint, Crumbs and Talin to express more
variations in network growth. The mechanism of Rab8 knockdown however does
not seem to be affected by genetic background.
We assumed that increased temperature would increase efficiency of gene knock-
down. We can confirm this assumption, as all the mutants expressed a significant
trend in networks growing smaller at higher temperatures.
Given the possibility of mechanical deformations during the imaging process and
resulting increased noise levels, we had to reject our findings concerning pheno-
typic trends. We still think that the definition of principal growth characteristics
is promising but to find phenotypic trends in these networks we would need larger
data sets.
Our growth models were approved by our collaborators. With regard to the net-
work’s preferred spatial branch frequency it was pointed out to us that this also
corresponds to the size of cells in the surrounding tissue. If every cell is on average
supplied with oxygen by one branch, this also yields a length close to the redundancy
minimum we found.
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5.1. Summary
During the course of this work our aim was to get a better understanding of the
networks forming vital transport systems in living organisms. We concentrated on
the formation of tubes and the impact on network growth caused by mutations of
genes crucial for vesicular transport. Humans or even small mammals are far too
complex to understand the interplay of genes and molecular processes in network
formation. Therefore, we used the processes observed in Drosophila terminal cells,
the final extensions of the respiratory network of the fly, as paradigm. The genes
βPS-integrin, Crumbs, Rab8 and Talin are known to play a role in network growth
in many organisms including humans. Therefore it is hoped that answers obtained
by observing their impact on network realization in fruit flies bear general validity.
We employed a highly automated and reproducible approach for the segmentation
and analysis of network data. A high degree of automation was necessary as the
dataset we were provided with was large: Our collaborators in Heidelberg created
a collection of 500 images of trachea terminal cells divided into 30 different families
labeled by mutation, genetic background and growing temperature. The extensive
size of the dataset is new to the field and provides us with the unique possibility to
make highly significant statistical statements about the networks.

Network Digitization

To extract the network information contained in the images we adapted an already
existing framework for the digitization of leaf venation patterns. As the terminal
cell networks are only approximately flat, we used a two-dimensional projection for
the processing, and needed to do a manual rewiring of false junctions. For this task
we developed a graphical user interface for the manipulation of graphs, the Graph
Manipulation GUI. We described the functionality of the digitization framework as
well as the adaptations we undertook in section 2.2. A description of the GUI’s
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functionality and of the necessary manual processing can be found in section 2.4.

Quantification of known Phenotypes

Our main focus was to quantify the impact of mutation as well as the genetic back-
ground of the organism and its growing temperature on the formation of trachea
terminal cells. We call the visibly different network realizations network phenotypes
induced by the larva’s growing conditions. We continued to ask the question whether
we could find hidden phenotypes spanning several of the induced phenotypes.
To quantify a network’s properties we defined a large set of metrics we were able
to measure on the networks. These metrics include topological measures like a net-
work’s number of junctions and asymmetry as well as geometric measures like its
length and area of convex hull. We defined and measured 15 different metrics which
yielded a high-dimensional set of data points to which in the course of the analysis
we applied techniques from machine learning and Bayesian reasoning for dimension-
ality reduction.
In section 3.4 we assessed the discriminative power of the impact of mutation, genetic
background and temperature on network growth. Using the supervised learning ap-
proach of linear discriminate analysis we were able to distinguish between networks
with different mutations. For temperature and genetic background the discernabil-
ity was not better than chance. This confirms the assumption that the phenotype
is primarily induced by the mutation whereas genetic background and temperature
serve to create subtle variations of this phenotype.

Detection of hidden Phenotypes

To investigate the existence of possible hidden phenotypes in section 3.5 we used
clustering, an unsupervised learning approach, to see which networks were close
in metric space. We identified each cluster with a phenotype expressed by the
networks and found that some clusters span two or more mutations. This confirms
the existence of hidden phenotypes in the dataset. To find the directions of highest
variation in the dataset we applied PCA. We visualized the clustering by projecting
it onto the first two PCA components which already contributed around 50 % and
15 % to variance.
The visualization made clear that the clusters are not well-separated but rather
lie on a continuum along the first PCA-component. We suspected the information
contained in variation along this component to be the network’s size. By performing
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the same clustering on fake mutants created fromWild Type networks we were able to
confirm this suspicion: The fake mutants created by controlling Wild Type networks
only for their size clustered in exactly the same way as their real counterparts did.

Phenotypic Trends

After the existence of hidden phenotypes was confirmed we were interested in the
question whether there is information contained in the growth pattern of a network
independent of its size. We identified four main dimensions in the set of metrics we
defined earlier: information about edge radius, edge length and edge straightness as
well as growing direction.
In section 3.6 we determined metrics as representatives for these four dimensions
and assessed the metrics’ dependence on network size. By identifying significant
deviations from this dependance - “phenotypic trends” - we tried to uncover whether
certain network families would exhibit distinctive growing patterns.
Our collaborators at EMBL in Heidelberg pointed out that these growing patterns
are especially prone to deformations of the larvae during the imaging process. We
therefore can not reliably state that the phenotypic trends we found are significant
or merely a product of mechanical forces acting on the larvae from the outside.
Moreover as the phenotypic trends are only second order information and their
signal is much smaller than the signal coming from network size we would need a
much larger dataset to make robust statements.

Growth Models

After investigating the realizations of terminal cell networks in such great detail we
asked ourselves if we could create a model that describes the growth of these struc-
tures. In section 3.7 we split the general model into three sub-categories dealing
with branching behaviour, radius distribution and growth direction separately.
We assumed the event of branching to be a rare event and predicted that the number
of branches follows a Poisson distribution. Therefore the distribution of lengths of
the tubes in between branching points follows an exponential distribution. Analysis
of the data shows that the predicted distributions are in very good agreement to the
measured ones.
To model the radius distributions we reduced the problem to the question of how
radii behave at a branching point, given the radius of the mother branch RL. We

73



5. Conclusion

assumed that at each branching point, the intersection area is conserved and there-
fore R2

L = R2
I + R2

S. Analyzing the area ratio R2
L/(R2

I + R2
S) showed a Gaussian

distribution of area ratios with mean very close to one. This supports the assump-
tion that the intersection area at least on average is conserved.
For an accurate modeling of growth direction we lack information about the struc-
ture of the tissue the networks grow in. Using an approach evolving around the
networks redundancy as defined in 3.2.4 we were at least able to find that the net-
works seem to have a preferred spacing between branches. This can be explained by
the spacing of cells in the surrounding tissue which need to be supplied with oxygen.

5.2. Outlook

For the analysis of the terminal cell networks we followed a very broad approach.
Nevertheless there are some analysis methods and research directions which we were
not able to investigate due to lack of information or time constraints. In the following
we would like to give an outlook on topics that could be worth further investigation.

Dimensionality Reduction

We found out that all of the metrics are somehow dependent on each other but the
dimensionality of information contained in the network structure is still larger than
one. During our analysis of the phenotypic trends we established four main dimen-
sions for geometric characteristics. It would be interesting to investigate whether
four dimensions already contain all the information and if we chose the right in-
terpretations of these directions in metric space. We would suggest an approach
involving factor analysis [49] to see how many of the dimensions collapse and what
the dimensions that are left signify for network growth.

Growth Direction

The part that is missing from a complete model of network growth is a robust under-
standing of the direction in which a branch will grow. We established that close to
junctions a branch is subject to a repelling force from the other branches dependent
on their relative radius. We still do not know if this force is of mechanical or chem-
ical origin and therefore is caused by the growth mechanics or oxygen gradients in
the surrounding tissue. To investigate this further we would suggest measurements
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of oxygen concentrations close to junctions to see whether a gradient could be re-
sponsible for determination of the growth direction.
To model branch growth farther away from junctions we would first need a working
model of growth in inhomogeneous tissue. With this model and information about
the structure of the surrounding tissue we could predict in which direction a branch
is most likely to grow. On the other hand a model based on the functionality of
the network could be possible, predicting not the growth direction of every single
branch but a spatial distribution and spacing between branches.

Phenotypic Trends

We still believe that the networks we analyzed contain more information than only
their size. We have seen differences in straightness of branches or how clustered a
network will grow but we have not been able to quantify these differences. To be able
to make robust statements about this kind of second-order information we would
need a much larger dataset (maybe around 100 samples for each of the families) to
rule out systematic error due to mechanical deformation of the larva and minimize
the effect of noise.

Additional Mutants

For this work we used four mutants known to affect the molecular dynamics of tube
creation. Nevertheless there are around 70 different genes known so far which have
a confirmed impact on the machinery involved in network assembly in organisms. It
would be interesting to do the same analysis for additional mutants to create a more
complete picture of the possible network phenotypes. It would also be interesting
to see if any of these mutants are able to modify the underlying growth models in
a fundamental way, for example preventing branching entirely without hampering
edge length.

3D-Expansion and further Application

In theory it is possible to expand the digitization process to three dimensions. Given
images with high enough quality it would be great to develop a tool which can extract
three dimensional networks from image z-stacks. This could have many applications
in the research of three dimensional networks, including

• blood vessels in the organs of mammals,
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• neurons in the brain,

• mammal respiratory networks,

• roots of trees,

• animal dens.

With our extensive quantitative analysis of this very large dataset we were able
to make statistically significant statements about the phenotypes induced by mu-
tations, the impact of mutations on network size and the functionality of network
growth. The results of this work give a quantitative confirmation of the effects of
mutation on network growth patterns predicted from a biological point of view. We
hope that our results help to shed some light on the underlying processes governing
the formation of transport networks in organisms.
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A. Methods for Data Analysis

The following chapter contains a description of the methods used to analyze the
dataset of trachea terminal cell networks in more detail, including principal com-
ponent analysis, linear discriminant analysis and two clustering methods: KMeans
and the Gaussian mixture model.
In the following, each network is called a data point xj. We assume the networks to
be independent of each other because they either stem from entirely different larvae
or are sufficiently separated in space to not influence each others growth. Therefore
we are dealing with independent data points. Each data point is composed of a num-
ber of observations, the metrics we measured for each network such as its number
of junctions or its length. Therefore xj = (NoJ, LoN, . . .). The single observations
are not independent of each other as they are all measured within the same network
and might be correlated to a large degree.

A.1. Principal Component Analysis

The following description of principal component analysis (PCA) can be found in
more detail in [33].

Algorithm

Principal Component Analysis (PCA) is an unsupervised dimensionality reduction
method. PCA assumes that the data points we are looking at all lie close to a linear
subspace of the high dimensional space spanned by all metrics. Our aim, therefore, is
to discover a low-dimensional coordinate system which can approximately describe
the data points. We are looking for a coordinate system which captures most of
the variance present in the data as illustrated in figure A.1. The approximate
representation of the data points in the reduced coordinate system assuming that
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A. Methods for Data Analysis

Figure A.1. Illustration of a linear subspace
fitted to the data points (red) in a way such
that the squared distances of the projections
onto the subspace (black) are minimal. Fig-
ure borrowed from [33] P.316.

the data is centered is given by

xn ≈
M∑

j=1
yn

j bj ≡ x̃n , (A.1)

Where the bj are base vectors that span the linear subspace which are also called
principal component coefficients and the yn

j are the low dimensional coordinates of
the data which form a lower dimension yn for each data point n. We can collectively
write those lower dimensional vectors as Y = [y1, . . . ,yN ] Given the dimensionality
of the data-space D = dim (x) we hope to describe the data with only a small
number M � D of coordinates y.
We now want to find the optimal base B = [b1, . . . ,bM ] by minimizing the squared
distance error E(B,Y) between x and its reconstruction x̃

E(B,Y) =
N∑

n=1

D∑
i=1

(xn
i − x̃n

i )2 =
N∑

n=1

D∑
i=1

xn
i −

M∑
j=1

yn
j b

j
i


= trace

[
(X−BY)T (X−BY)

]
, (A.2)

where X = [x1, . . . ,xn]. Without loss of generality we can constrain B to be an
orthonormal matrix. We can now find the minimal squared distance error by differ-
entiating equation A.2 with respect to yn

k and using the orthonormality constraint
on B, we then obtain

−1
2
∂

∂yn
k

E(B,Y) =
∑

i

xn
i b

k
i − yn

k = 0

⇒ yn
k =

∑
i

xn
i b

k
i which can be written as Y = BT X .
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A.1. Principal Component Analysis

We can now substitute solution A.3 into equation A.2 and receive the squared error
as a function of only B

(X−BY)T (X−BY) = XT X−XT BBT X−((((((XT BBT X +
���

���
���XT BBT BT B︸ ︷︷ ︸

I

X .

(A.3)

Using trace(ABC) = trace(CAB) lets us write the above equation as

E(B) = trace
[
XXT (I−BBT )

]
= (N − 1)

[
trace(S)− trace(SBBT )

]
, (A.4)

with S the sample covariance matrix of the data. We use a set of Lagrange multi-
pliers L to minimize equation A.4 under the orthonormality constraint for B while
neglecting the constant prefactor (N −1) and the trace(S) term. We therefore want
to minimize

−trace
[
SBBT

]
+ trace

[
L(BT B− I)

]
, (A.5)

which yields, assuming that L is symmetric,

SB = BL . (A.6)

One case where the matrices B and L satisfy above matrix equation is when L is di-
agonal in which case the matrix equation is a form of Eigen-equation and the columns
of B are the corresponding Eigen-vectors of S. In this case trace(SBBT ) = trace(L)
and equation A.4 can be written as

1
N − 1E(B) = trace(S)− trace(L) = −

M∑
i=1

λi + const (A.7)

with Eigenvalues λi. As our goal is to minimize E(B) we choose the base with
the largest corresponding Eigenvalues. Ordering the Eigenvalues according to their
value λ1 ≥ λ2, . . . gives us

1
N − 1E(B) =

D∑
i=1

λi −
M∑

i=1
λi =

D∑
i=M+1

λi , (A.8)

but this solution to the Eigen-problem only serves to define the solution subspace
- we still may rotate and rescale B and Y such that E(B) remains the same. We
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can justify selecting the non-rotated solution by introducing another requirement:
that of maximal variance along the base vectors, this means that the base vectors
we choose represent interesting directions in the dataset.

Implementation

In this work we use the PCA algorithm provided by scikit learn which can be
found at http://scikit-learn.org/stable/modules/generated/sklearn.
decomposition.PCA.html which implements the method of Thomas P. Minka [50].

A.2. Linear Discriminant Analysis

The following description of linear discriminant analysis (LDA) can be found in
more detail in [51].
LDA or Fischer’s linear discriminant is a method from supervised learning. Its
ultimate goal is the reduction of dimensionality for improved classification of data.
We can use LDA if we have data points with a high number of observations (high
dimensionality of the problem) and also have some class information about the data
available. If we used PCA for this problem, when subsequently using the projected
data in a classification problem we would be unable to make use of the class labels
and therefore lose information. This loss of information leads to a lower dimensional
representation and therefore might lead to a suboptimal separation of the different
classes. This is illustrated in figure A.2 where dimension reduction using LDA and
PCA is shown.

A.2.1. Supervised Linear Projection

To understand how LDA works, let us at first look at the simplest case of two classes
χi = {x1

i , . . . ,x
Nj

i }, i ∈ (1, 2) with binary class data xj
i = (a, b). We now want to

find a linear projection

y = wT x

where dim w = D×L,L < D. Additionally we want for two data points xm
i ,xn

i from
the same class that the distance between their projections ym

i ,yn
i should be small.

If we take two data points from different classes xm
i ,xm

j the distance between their
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A.2. Linear Discriminant Analysis

(a) (b)

Figure A.2. Large crosses and circles in blue and red represent data from two classes, a
projection on one dimension is given by their smaller counterparts. (a) projection using Fis-
cher’s linear discriminant, the projection shows little overlap between classes. (b) unsupervised
dimension reduction using PCA, the projection shows considerable overlap. Picture borrowed
from [51] P. 344

projections ym
i ,ym

j should be large. This we can already use for classification: if we
add a new data point x∗ and its projection y∗ = W T x∗ is close to the projection of
data points from a certain class, we can assume that x∗ belongs to that class.
By applying this projection approach, we form the supervised projection where only
the class discriminative parts of the data are retained.

A.2.2. Fischer’s Linear Discriminant

Algorithm

We again look at only two classes χ1 and χ2 and model the data from each class
with a Gaussian, therefore

p(x1) = N(x1|m1,S1) , p(x2) = N(x2|m2,S2) , (A.9)

where mi are the sample means of class data and Si is the sample covariance and
N(xi|mi,Si) is the Gaussian distribution of a continuous variable xi

N(xi|mi,Si) = 1√
det(2πSi)

(Si)n · exp
[
−(xi −mi)T S−1

i (xi −mi)
]
. (A.10)
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Projections of the points are given by

yn
i = wT xn

i . (A.11)

The projections w are linear operations, therefore the projected distributions are
still Gaussian:

p(yi) = N(yi|µi, σ
2
i ) , µi = wT mi , σ2

i = wT Siw . (A.12)

We now want to search for a projection w where the projected distributions of
both classes have minimal overlap with each other. We can achieve this when
the projected means are maximally separated and therefore (µ1 − µ2)2 is maximal.
However if the variances σi are also large, there is still the possibility of large overlap.
We therefore define an objective function using the fraction πi of data points which
are in the class χi

(µ1 − µ2)2

π1σ1 + π2σ2
. (A.13)

In terms of the projection W the objective equation reads

F (W ) = wT (m1 −m2)(m1 −m2)T w
wT (π1S1 + π2S2)w

= wT Aw
wT Bw

(A.14)

A = (m1 −m2)(m1 −m2)T , B = π1S1 + π2S2 .

We can now find the optimal projection by differentiating with regards to v

∂

∂w
wT Aw
wT Bw

= 2
(wT Bw)2

[
(wT Bw)Aw− (wT Aw)Bw

]
= 0 (A.15)

⇒ (wT Bw)Aw = (wT Aw)Bw . (A.16)

We now multiply by B−1 and get

B−1(m1 −m2) (m1 −m2)T w︸ ︷︷ ︸
a

= wT Aw
wT Bw︸ ︷︷ ︸

b

w , (A.17)
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where a, b are scalars, therefore

w ∝ B−1(m1 −m2) . (A.18)

The proportionality factor k still depends on w but since the objective function F (w)
in equation A.14 is invariant to rescaling of w we still can take k to be constant. It
is common to rescale w such that wT w = 1, therefore

w = kB−1(m1 −m2) (A.19)

k = 1√
(m1 −m2)T B−2(m1 −m2)

. (A.20)

Implementation

Using LDA for non-binary class data is no problem given the above derivation of
the method. However using LDA for more than two classes and projections onto
more than one dimension requires a generalization. Fischer’s method is generalized
by the Canonical Variates to projections of more than one dimension and more than
two classes [28]. Also, there can arise problems with the actual derivation of the
objective function: the matrix B might not be invertible which is the case when
there are fewer data points than observations. Also B can have zero entries when
there are elements in the input vectors that never vary. This causes the denominator
of the objective function A.14 to become zero and therefore the problem is ill defined.
The generalization as well as problem handling is implemented in scikit learn’s [52]
implementation of LDA which is used in this work and can be found at http://
scikit-learn.org/stable/modules/generated/sklearn.lda.LDA.html#sklearn.
lda.LDA.

A.3. Cluster Analysis

Cluster analysis is a form of unsupervised learning as we treat a dataset where we
explicitly do not know (or in our case do not utilize) class affiliations of data points
within the dataset. The task of cluster analysis is to group the data in such a
way that data points belonging to the same cluster are more similar to each other
than data points belonging to other clusters. In this work we utilize two different
clustering algorithms: the centroid-based approach KMeans and the distribution
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A. Methods for Data Analysis

based approach of a Gaussian Mixture Model (GMM).

A.3.1. k Means

Algorithm

The aim of the KMeans algorithm is to divide N data points into k clusters where
each cluster is represented by its mean. KMeans tries to minimize the within-cluster
sum of squares of data points (xi, . . . ,xN) belonging to k sets S = {S1, . . . , Sk},
therefore the objective function is

k∑
i

∑
x∈Si

‖xi − µi‖ . (A.21)

Solving this problem is NP-hard, therefore the algorithms implemented for finding
the best clustering utilize a heuristic approach which converge to a local optimum.
The standard algorithm also called Lloyd’s Algorithm alternates between two steps
until it converges. If we have a set of k means µ1, . . . , µk in the first step we assign
each data point to the cluster (represented by its mean) which yields the smallest
within cluster sum of squares, therefore for each time-step t the assignment step is

S
(t)
i = {xp : ‖xp − µ(t)

i ‖2 ≤ ‖xp − µ(t)
j ‖2 ∀j, 1 ≤ j ≤ k} .

After the assignment an update step is performed which calculates the new means
as representatives for the clusters:

µ
(t+1)
i = 1

|St
i |

∑
xj∈S

(t)
i

xj (A.22)

Implementation

In this work, the KMeans implementation of scikit learn is used which imple-
ments the method of Arthur, D. and Vassilvitskii, S. [53] for increased conver-
gence speed and can be found at http://scikit-learn.org/stable/modules/
generated/sklearn.cluster.KMeans.html.
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A.3. Cluster Analysis

A.3.2. Gaussian Mixture Model

Model

The following description of Gaussian Mixture Models (GMM) can be found in more
detail in [31].
Given the definition of a Gaussian distribution of a continuous variable x in equa-
tion A.10, a mixture of Gaussians with mixture weight p(i) can be expressed as

p(x) =
H∑

i=1
p(x|mi,Si)p(i) . (A.23)

For each set of data points χ = x1, . . . ,xN the log probability is then given as

log p(χ, θ) =
N∑

n=1
log

H∑
i=1

p(i) 1√
det(2πSi)

exp
[
−1

2(xn −mi)T S−1
i (xn −mi)

]
,

(A.24)

where the optimal parameters θ can be found using an expectation-maximization
algorithm as described in [31] P.415, where the component index i plays the role of
a latent variable.

Implementation

For this work, the GMM implementation of scikit learn is used. Its implemen-
tation corresponds to the frequentist (non-Bayesian) formulation of Gaussian Mix-
ture Models and can be found at http://scikit-learn.org/stable/modules/
generated/sklearn.mixture.GMM.html.
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B. Supporting Information

Edge Length over Depth
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Edge length over depth WT Figure B.1. The length of
edges in the graph does not
significantly change with
the edge’s position in the
graph, i.e., its depth.

Area Ratios for different Mutants

AR WT Betaint Crumbs Rab8 Talin
µ 1.11 0.96 1.07 1.05 0.93
σ 0.37 0.37 0.38 0.38 0.37

Table B.1. Means and variances of the area ratios for different mutants ant the Wild Type.
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C. Dataset

Number of Networks
temperature gen. background WT Betaint Crumbs Rab8 Talin

18◦ C
G 17 19 16 18 16
DG 19 23 15 16 19
PDG 16 18 16 13 17

29◦ C
G 17 10 18 27 20
DG 17 16 16 19 17
PDG 15 12 10 13 24

Table C.1. Number of networks contained in the dataset for each family.
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AoCH [px2]

t BGen WT Betaint Crumbs Rab8 Talin

18◦ C G µ = 6.67 · 105

σ = 1.31 · 105
µ = 6.71 · 105

σ = 1.65 · 105
µ = 3.11 · 105

σ = 8.14 · 104
µ = 7.74 · 105

σ = 1.69 · 105
µ = 3.10 · 105

σ = 5.46 · 104

18◦ C DG µ = 6.41 · 105

σ = 1.49 · 105
µ = 6.03 · 105

σ = 1.13 · 105
µ = 2.81 · 105

σ = 5.24 · 104
µ = 7.88 · 105

σ = 1.64 · 105
µ = 5.28 · 104

σ = 3.19 · 104

18◦ C PDG µ = 5.00 · 105

σ = 1.32 · 105
µ = 3.34 · 105

σ = 9.98 · 104
µ = 3.28 · 105

σ = 9.05 · 104
µ = 6.21 · 105

σ = 1.02 · 105
µ = 8.47 · 104

σ = 4.37 · 104

29◦ C G µ = 5.56 · 105

σ = 1.11 · 105
µ = 6.28 · 105

σ = 1.52 · 105
µ = 1.84 · 105

σ = 3.65 · 104
µ = 7.92 · 105

σ = 1.28 · 105
µ = 7.16 · 104

σ = 4.18 · 104

29◦ C DG µ = 3.58 · 105

σ = 1.16 · 105
µ = 3.08 · 105

σ = 9.89 · 104
µ = 1.10 · 105

σ = 4.35 · 104
µ = 8.23 · 105

σ = 2.37 · 105
µ = 0.00 · 100

σ = 0.00 · 100

29◦ C PDG µ = 4.28 · 105

σ = 1.02 · 105
µ = 4.81 · 105

σ = 1.06 · 105
µ = 1.66 · 105

σ = 6.19 · 104
µ = 6.53 · 105

σ = 1.33 · 105
µ = 7.16 · 104

σ = 5.37 · 104

Table C.2. Area of convex hull for each family: the table contains the mean µ as well as the
standard deviation σ.

AoN [px2]

t BGen WT Betaint Crumbs Rab8 Talin

18◦ C G µ = 4.77 · 104

σ = 8.82 · 103
µ = 3.27 · 104

σ = 7.33 · 103
µ = 2.20 · 104

σ = 4.71 · 103
µ = 5.47 · 104

σ = 1.75 · 104
µ = 2.30 · 104

σ = 5.64 · 103

18◦ C DG µ = 4.92 · 104

σ = 1.35 · 104
µ = 3.41 · 104

σ = 7.91 · 103
µ = 2.31 · 104

σ = 4.80 · 103
µ = 5.45 · 104

σ = 1.16 · 104
µ = 5.36 · 103

σ = 1.61 · 103

18◦ C PDG µ = 3.73 · 104

σ = 8.77 · 103
µ = 1.88 · 104

σ = 5.91 · 103
µ = 2.58 · 104

σ = 8.54 · 103
µ = 4.02 · 104

σ = 8.93 · 103
µ = 6.56 · 103

σ = 2.55 · 103

29◦ C G µ = 4.57 · 104

σ = 1.45 · 104
µ = 3.42 · 104

σ = 9.00 · 103
µ = 1.94 · 104

σ = 3.33 · 103
µ = 5.65 · 104

σ = 1.26 · 104
µ = 6.54 · 103

σ = 3.05 · 103

29◦ C DG µ = 2.30 · 104

σ = 8.05 · 103
µ = 1.94 · 104

σ = 5.20 · 103
µ = 1.09 · 104

σ = 2.50 · 103
µ = 8.95 · 104

σ = 6.31 · 104
µ = 0.00 · 100

σ = 0.00 · 100

29◦ C PDG µ = 3.46 · 104

σ = 8.35 · 103
µ = 2.99 · 104

σ = 7.42 · 103
µ = 1.36 · 104

σ = 5.83 · 103
µ = 4.60 · 104

σ = 1.16 · 104
µ = 7.64 · 103

σ = 3.59 · 103

Table C.3. Area of the network for each family: the table contains the mean µ as well as
the standard deviation σ.
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LoN [px]

t BGen WT Betaint Crumbs Rab8 Talin

18◦ C G µ = 9.37 · 103

σ = 1.71 · 103
µ = 7.30 · 103

σ = 1.76 · 103
µ = 3.48 · 103

σ = 7.15 · 102
µ = 1.12 · 104

σ = 2.93 · 103
µ = 3.69 · 103

σ = 9.35 · 102

18◦ C DG µ = 8.61 · 103

σ = 2.38 · 103
µ = 6.87 · 103

σ = 1.69 · 103
µ = 3.34 · 103

σ = 7.24 · 102
µ = 1.21 · 104

σ = 2.53 · 103
µ = 7.29 · 102

σ = 2.15 · 102

18◦ C PDG µ = 6.82 · 103

σ = 1.44 · 103
µ = 3.82 · 103

σ = 1.38 · 103
µ = 4.65 · 103

σ = 1.58 · 103
µ = 8.91 · 103

σ = 2.09 · 103
µ = 1.14 · 103

σ = 3.85 · 102

29◦ C G µ = 9.97 · 103

σ = 3.09 · 103
µ = 7.33 · 103

σ = 1.83 · 103
µ = 2.22 · 103

σ = 3.31 · 102
µ = 1.26 · 104

σ = 2.44 · 103
µ = 1.04 · 103

σ = 5.59 · 102

29◦ C DG µ = 4.75 · 103

σ = 1.65 · 103
µ = 3.20 · 103

σ = 9.58 · 102
µ = 1.33 · 103

σ = 3.86 · 102
µ = 1.63 · 104

σ = 1.10 · 104
µ = 0.00 · 100

σ = 0.00 · 100

29◦ C PDG µ = 7.58 · 103

σ = 2.06 · 103
µ = 5.87 · 103

σ = 1.31 · 103
µ = 1.97 · 103

σ = 7.12 · 102
µ = 1.06 · 104

σ = 2.37 · 103
µ = 1.20 · 103

σ = 6.89 · 102

Table C.4. Length of the network for each family: the table contains the mean µ as well as
the standard deviation σ.

NoJ

t BGen WT Betaint Crumbs Rab8 Talin

18◦ C G µ = 3.21 · 101

σ = 7.69 · 100
µ = 2.07 · 101

σ = 5.51 · 100
µ = 1.71 · 101

σ = 4.39 · 100
µ = 3.95 · 101

σ = 1.47 · 101
µ = 1.92 · 101

σ = 7.17 · 100

18◦ C DG µ = 2.94 · 101

σ = 1.05 · 101
µ = 2.37 · 101

σ = 7.58 · 100
µ = 1.98 · 101

σ = 5.46 · 100
µ = 3.74 · 101

σ = 8.28 · 100
µ = 1.22 · 100

σ = 1.81 · 100

18◦ C PDG µ = 3.02 · 101

σ = 1.08 · 101
µ = 1.21 · 101

σ = 4.23 · 100
µ = 2.52 · 101

σ = 1.10 · 101
µ = 2.62 · 101

σ = 9.30 · 100
µ = 4.81 · 100

σ = 3.38 · 100

29◦ C G µ = 4.94 · 101

σ = 2.04 · 101
µ = 2.05 · 101

σ = 4.90 · 100
µ = 1.37 · 101

σ = 3.45 · 100
µ = 4.09 · 101

σ = 1.00 · 101
µ = 5.70 · 100

σ = 5.75 · 100

29◦ C DG µ = 2.08 · 101

σ = 8.05 · 100
µ = 1.19 · 101

σ = 4.17 · 100
µ = 5.30 · 100

σ = 2.47 · 100
µ = 5.16 · 101

σ = 1.99 · 101
µ = 0.00 · 100

σ = 0.00 · 100

29◦ C PDG µ = 3.92 · 101

σ = 1.11 · 101
µ = 2.05 · 101

σ = 5.23 · 100
µ = 1.00 · 101

σ = 5.06 · 100
µ = 4.30 · 101

σ = 1.40 · 101
µ = 7.92 · 100

σ = 5.20 · 100

Table C.5. Number of junctions for each family: the table contains the mean µ as well as
the standard deviation σ.
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DTL
[px]

t BGen WT Betaint Crumbs Rab8 Talin

18◦ C G µ = 4.93 · 103

σ = 4.14 · 103
µ = 3.55 · 103

σ = 2.92 · 103
µ = 1.16 · 103

σ = 1.18 · 103
µ = 6.37 · 103

σ = 5.13 · 103
µ = 1.63 · 103

σ = 1.48 · 103

18◦ C DG µ = 3.45 · 103

σ = 2.87 · 103
µ = 3.29 · 103

σ = 2.98 · 103
µ = 1.10 · 103

σ = 1.03 · 103
µ = 6.90 · 103

σ = 4.62 · 103
µ = 6.23 · 102

σ = 1.27 · 102

18◦ C PDG µ = 2.70 · 103

σ = 2.70 · 103
µ = 2.12 · 103

σ = 1.99 · 103
µ = 2.12 · 103

σ = 1.89 · 103
µ = 5.71 · 103

σ = 4.39 · 103
µ = 7.34 · 102

σ = 5.18 · 102

29◦ C G µ = 5.76 · 103

σ = 4.93 · 103
µ = 3.34 · 103

σ = 2.91 · 103
µ = 8.88 · 102

σ = 7.97 · 102
µ = 7.13 · 103

σ = 4.60 · 103
µ = 7.20 · 102

σ = 6.27 · 102

29◦ C DG µ = 2.23 · 103

σ = 2.02 · 103
µ = 1.65 · 103

σ = 2.21 · 103
µ = 7.09 · 102

σ = 4.75 · 102
µ = 7.39 · 103

σ = 5.05 · 103
µ = 0.00 · 100

σ = 0.00 · 100

29◦ C PDG µ = 4.50 · 103

σ = 3.83 · 103
µ = 2.96 · 103

σ = 2.56 · 103
µ = 1.29 · 103

σ = 1.56 · 103
µ = 6.53 · 103

σ = 4.12 · 103
µ = 9.25 · 102

σ = 9.31 · 102

Table C.6. Averaged tree-distance from leaf to root for each family: the table contains the
mean µ as well as the standard deviation σ.

DGL
[px]

t BGen WT Betaint Crumbs Rab8 Talin

18◦ C G µ = 5.76 · 102

σ = 2.17 · 102
µ = 5.84 · 102

σ = 2.16 · 102
µ = 4.85 · 102

σ = 1.82 · 102
µ = 5.71 · 102

σ = 2.29 · 102
µ = 4.81 · 102

σ = 1.83 · 102

18◦ C DG µ = 5.95 · 102

σ = 2.35 · 102
µ = 5.22 · 102

σ = 1.84 · 102
µ = 4.34 · 102

σ = 1.66 · 102
µ = 5.70 · 102

σ = 2.20 · 102
µ = 4.40 · 102

σ = 1.03 · 102

18◦ C PDG µ = 5.13 · 102

σ = 2.10 · 102
µ = 4.68 · 102

σ = 1.92 · 102
µ = 5.02 · 102

σ = 2.02 · 102
µ = 5.41 · 102

σ = 2.24 · 102
µ = 4.04 · 102

σ = 1.44 · 102

29◦ C G µ = 4.87 · 102

σ = 1.96 · 102
µ = 5.53 · 102

σ = 2.05 · 102
µ = 3.62 · 102

σ = 1.59 · 102
µ = 5.81 · 102

σ = 2.24 · 102
µ = 3.35 · 102

σ = 1.17 · 102

29◦ C DG µ = 4.92 · 102

σ = 1.89 · 102
µ = 4.33 · 102

σ = 1.90 · 102
µ = 3.27 · 102

σ = 1.37 · 102
µ = 5.84 · 102

σ = 2.39 · 102
µ = 0.00 · 100

σ = 0.00 · 100

29◦ C PDG µ = 4.76 · 102

σ = 2.24 · 102
µ = 4.91 · 102

σ = 1.82 · 102
µ = 3.73 · 102

σ = 1.68 · 102
µ = 5.49 · 102

σ = 2.35 · 102
µ = 3.38 · 102

σ = 1.50 · 102

Table C.7. Averaged geometric distance from leaf to root for each family: the table contains
the mean µ as well as the standard deviation σ.
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LoE [px]

t BGen WT Betaint Crumbs Rab8 Talin

18◦ C G µ = 1.44 · 102

σ = 1.22 · 102
µ = 1.72 · 102

σ = 1.31 · 102
µ = 9.87 · 101

σ = 9.13 · 101
µ = 1.40 · 102

σ = 1.22 · 102
µ = 9.37 · 101

σ = 8.23 · 101

18◦ C DG µ = 1.44 · 102

σ = 1.25 · 102
µ = 1.42 · 102

σ = 1.05 · 102
µ = 8.23 · 101

σ = 7.63 · 101
µ = 1.59 · 102

σ = 1.16 · 102
µ = 2.12 · 102

σ = 2.38 · 102

18◦ C PDG µ = 1.11 · 102

σ = 1.03 · 102
µ = 1.51 · 102

σ = 1.11 · 102
µ = 9.03 · 101

σ = 7.76 · 101
µ = 1.67 · 102

σ = 1.43 · 102
µ = 1.06 · 102

σ = 1.34 · 102

29◦ C G µ = 9.99 · 101

σ = 9.52 · 101
µ = 1.75 · 102

σ = 1.48 · 102
µ = 7.83 · 101

σ = 6.96 · 101
µ = 1.52 · 102

σ = 1.35 · 102
µ = 8.36 · 101

σ = 9.48 · 101

29◦ C DG µ = 1.11 · 102

σ = 9.16 · 101
µ = 1.30 · 102

σ = 1.13 · 102
µ = 1.14 · 102

σ = 1.06 · 102
µ = 1.56 · 102

σ = 2.77 · 102
µ = 0.00 · 100

σ = 0.00 · 100

29◦ C PDG µ = 9.54 · 101

σ = 8.75 · 101
µ = 1.40 · 102

σ = 1.15 · 102
µ = 9.39 · 101

σ = 8.36 · 101
µ = 1.22 · 102

σ = 1.14 · 102
µ = 7.12 · 101

σ = 7.18 · 101

Table C.8. Average edge length for each family: the table contains the mean µ as well as
the standard deviation σ.

RoE [px]

t BGen WT Betaint Crumbs Rab8 Talin

18◦ C G µ = 5.70 · 100

σ = 2.84 · 100
µ = 5.18 · 100

σ = 3.02 · 100
µ = 6.61 · 100

σ = 4.18 · 100
µ = 5.48 · 100

σ = 3.05 · 100
µ = 6.37 · 100

σ = 3.50 · 100

18◦ C DG µ = 6.26 · 100

σ = 3.05 · 100
µ = 5.76 · 100

σ = 3.71 · 100
µ = 7.20 · 100

σ = 5.11 · 100
µ = 5.31 · 100

σ = 3.13 · 100
µ = 7.16 · 100

σ = 2.77 · 100

18◦ C PDG µ = 6.03 · 100

σ = 3.06 · 100
µ = 5.49 · 100

σ = 2.59 · 100
µ = 6.06 · 100

σ = 3.98 · 100
µ = 5.26 · 100

σ = 2.69 · 100
µ = 5.55 · 100

σ = 3.01 · 100

29◦ C G µ = 4.93 · 100

σ = 3.04 · 100
µ = 5.33 · 100

σ = 3.27 · 100
µ = 8.85 · 100

σ = 5.42 · 100
µ = 4.91 · 100

σ = 2.30 · 100
µ = 5.99 · 100

σ = 2.99 · 100

29◦ C DG µ = 5.12 · 100

σ = 3.34 · 100
µ = 6.73 · 100

σ = 4.00 · 100
µ = 8.45 · 100

σ = 5.16 · 100
µ = 5.94 · 100

σ = 3.29 · 100
µ = 0.00 · 100

σ = 0.00 · 100

29◦ C PDG µ = 4.76 · 100

σ = 2.75 · 100
µ = 5.55 · 100

σ = 3.04 · 100
µ = 7.28 · 100

σ = 4.69 · 100
µ = 4.60 · 100

σ = 2.28 · 100
µ = 6.05 · 100

σ = 3.05 · 100

Table C.9. Average edge radius for each family: the table contains the mean µ as well as
the standard deviation σ.
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C. Dataset

NA [px]

t BGen WT Betaint Crumbs Rab8 Talin

18◦ C G µ = 1.39 · 103

σ = 2.73 · 103
µ = 7.57 · 102

σ = 1.67 · 103
µ = 2.05 · 102

σ = 4.29 · 102
µ = 2.79 · 103

σ = 6.33 · 103
µ = 3.47 · 102

σ = 9.50 · 102

18◦ C DG µ = 1.07 · 103

σ = 2.40 · 103
µ = 5.96 · 102

σ = 1.71 · 103
µ = 2.13 · 102

σ = 5.66 · 102
µ = 2.01 · 103

σ = 4.26 · 103
µ = 1.21 · 102

σ = 2.77 · 102

18◦ C PDG µ = 9.65 · 102

σ = 2.43 · 103
µ = 4.49 · 102

σ = 1.59 · 103
µ = 5.61 · 102

σ = 1.51 · 103
µ = 1.20 · 103

σ = 2.39 · 103
µ = 1.71 · 102

σ = 4.99 · 102

29◦ C G µ = 1.83 · 103

σ = 4.27 · 103
µ = 7.11 · 102

σ = 1.51 · 103
µ = 1.99 · 102

σ = 5.85 · 102
µ = 2.09 · 103

σ = 4.41 · 103
µ = 1.28 · 102

σ = 3.23 · 102

29◦ C DG µ = 5.40 · 102

σ = 1.44 · 103
µ = 2.48 · 102

σ = 6.63 · 102
µ = 1.37 · 102

σ = 2.91 · 102
µ = 1.24 · 103

σ = 3.82 · 103
µ = 0.00 · 100

σ = 0.00 · 100

29◦ C PDG µ = 1.15 · 103

σ = 2.63 · 103
µ = 7.46 · 102

σ = 1.55 · 103
µ = 3.50 · 102

σ = 2.01 · 103
µ = 1.88 · 103

σ = 3.38 · 103
µ = 1.35 · 102

σ = 2.82 · 102

Table C.10. Average normalized area of edges for each family: the table contains the mean
µ as well as the standard deviation σ.

DN

t BGen WT Betaint Crumbs Rab8 Talin

18◦ C G µ = 1.84 · 103

σ = 3.25 · 103
µ = 1.38 · 103

σ = 2.30 · 103
µ = 5.51 · 102

σ = 8.39 · 102
µ = 2.32 · 103

σ = 4.13 · 103
µ = 7.04 · 102

σ = 1.10 · 103

18◦ C DG µ = 1.35 · 103

σ = 2.24 · 103
µ = 1.27 · 103

σ = 2.25 · 103
µ = 5.13 · 102

σ = 7.54 · 102
µ = 2.50 · 103

σ = 4.11 · 103
µ = 3.55 · 102

σ = 2.77 · 102

18◦ C PDG µ = 1.07 · 103

σ = 1.95 · 103
µ = 8.63 · 102

σ = 1.47 · 103
µ = 8.74 · 102

σ = 1.42 · 103
µ = 2.09 · 103

σ = 3.61 · 103
µ = 3.80 · 102

σ = 4.31 · 102

29◦ C G µ = 2.09 · 103

σ = 3.86 · 103
µ = 1.30 · 103

σ = 2.23 · 103
µ = 4.17 · 102

σ = 5.94 · 102
µ = 2.58 · 103

σ = 4.18 · 103
µ = 3.52 · 102

σ = 4.71 · 102

29◦ C DG µ = 9.08 · 102

σ = 1.51 · 103
µ = 6.95 · 102

σ = 1.46 · 103
µ = 3.46 · 102

σ = 4.06 · 102
µ = 2.67 · 103

σ = 4.44 · 103
µ = 0.00 · 100

σ = 0.00 · 100

29◦ C PDG µ = 1.66 · 103

σ = 2.99 · 103
µ = 1.15 · 103

σ = 1.97 · 103
µ = 5.57 · 102

σ = 1.05 · 103
µ = 2.36 · 103

σ = 3.80 · 103
µ = 4.22 · 102

σ = 6.65 · 102

Table C.11. Averaged normalized distance from leaf to root for each family: the table
contains the mean µ as well as the standard deviation σ.
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DGV
[px]

t BGen WT Betaint Crumbs Rab8 Talin

18◦ C G µ = 6.22 · 100

σ = 3.44 · 100
µ = 5.84 · 100

σ = 3.85 · 100
µ = 6.74 · 100

σ = 4.70 · 100
µ = 5.94 · 100

σ = 3.72 · 100
µ = 6.51 · 100

σ = 4.09 · 100

18◦ C DG µ = 6.73 · 100

σ = 3.86 · 100
µ = 6.34 · 100

σ = 4.26 · 100
µ = 7.26 · 100

σ = 5.55 · 100
µ = 5.75 · 100

σ = 3.77 · 100
µ = 6.62 · 100

σ = 3.56 · 100

18◦ C PDG µ = 6.36 · 100

σ = 3.59 · 100
µ = 5.94 · 100

σ = 3.49 · 100
µ = 6.17 · 100

σ = 4.38 · 100
µ = 5.67 · 100

σ = 3.54 · 100
µ = 5.79 · 100

σ = 3.49 · 100

29◦ C G µ = 5.41 · 100

σ = 3.66 · 100
µ = 6.15 · 100

σ = 4.07 · 100
µ = 8.62 · 100

σ = 6.22 · 100
µ = 5.51 · 100

σ = 3.03 · 100
µ = 6.16 · 100

σ = 3.78 · 100

29◦ C DG µ = 5.69 · 100

σ = 4.28 · 100
µ = 7.25 · 100

σ = 4.98 · 100
µ = 8.17 · 100

σ = 5.99 · 100
µ = 5.71 · 100

σ = 3.68 · 100
µ = 0.00 · 100

σ = 0.00 · 100

29◦ C PDG µ = 5.08 · 100

σ = 3.38 · 100
µ = 6.14 · 100

σ = 3.83 · 100
µ = 7.39 · 100

σ = 5.30 · 100
µ = 5.10 · 100

σ = 2.95 · 100
µ = 6.15 · 100

σ = 3.70 · 100

Table C.12. Averaged geometric distance from each node to the root for each family: the
table contains the mean µ as well as the standard deviation σ.

DTV
[px]

t BGen WT Betaint Crumbs Rab8 Talin

18◦ C G µ = 6.22 · 100

σ = 3.44 · 100
µ = 5.84 · 100

σ = 3.85 · 100
µ = 6.74 · 100

σ = 4.70 · 100
µ = 5.94 · 100

σ = 3.72 · 100
µ = 6.51 · 100

σ = 4.09 · 100

18◦ C DG µ = 6.73 · 100

σ = 3.86 · 100
µ = 6.34 · 100

σ = 4.26 · 100
µ = 7.26 · 100

σ = 5.55 · 100
µ = 5.75 · 100

σ = 3.77 · 100
µ = 6.62 · 100

σ = 3.56 · 100

18◦ C PDG µ = 6.36 · 100

σ = 3.59 · 100
µ = 5.94 · 100

σ = 3.49 · 100
µ = 6.17 · 100

σ = 4.38 · 100
µ = 5.67 · 100

σ = 3.54 · 100
µ = 5.79 · 100

σ = 3.49 · 100

29◦ C G µ = 5.41 · 100

σ = 3.66 · 100
µ = 6.15 · 100

σ = 4.07 · 100
µ = 8.62 · 100

σ = 6.22 · 100
µ = 5.51 · 100

σ = 3.03 · 100
µ = 6.16 · 100

σ = 3.78 · 100

29◦ C DG µ = 5.69 · 100

σ = 4.28 · 100
µ = 7.25 · 100

σ = 4.98 · 100
µ = 8.17 · 100

σ = 5.99 · 100
µ = 5.71 · 100

σ = 3.68 · 100
µ = 0.00 · 100

σ = 0.00 · 100

29◦ C PDG µ = 5.08 · 100

σ = 3.38 · 100
µ = 6.14 · 100

σ = 3.83 · 100
µ = 7.39 · 100

σ = 5.30 · 100
µ = 5.10 · 100

σ = 2.95 · 100
µ = 6.15 · 100

σ = 3.70 · 100

Table C.13. Averaged tree-distance from each node to the root for each family: the table
contains the mean µ as well as the standard deviation σ.
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C. Dataset

Depth

t BGen WT Betaint Crumbs Rab8 Talin

18◦ C G µ = 1.22 · 101

σ = 2.13 · 100
µ = 9.89 · 100

σ = 1.70 · 100
µ = 9.62 · 100

σ = 1.69 · 100
µ = 1.15 · 101

σ = 1.79 · 100
µ = 9.00 · 100

σ = 2.03 · 100

18◦ C DG µ = 1.08 · 101

σ = 1.74 · 100
µ = 9.92 · 100

σ = 2.34 · 100
µ = 1.04 · 101

σ = 1.91 · 100
µ = 1.29 · 101

σ = 1.85 · 100
µ = 2.17 · 100

σ = 1.71 · 100

18◦ C PDG µ = 1.16 · 101

σ = 1.83 · 100
µ = 7.47 · 100

σ = 1.57 · 100
µ = 1.05 · 101

σ = 2.95 · 100
µ = 1.01 · 101

σ = 2.04 · 100
µ = 4.81 · 100

σ = 2.21 · 100

29◦ C G µ = 1.25 · 101

σ = 1.89 · 100
µ = 9.50 · 100

σ = 1.32 · 100
µ = 9.26 · 100

σ = 1.55 · 100
µ = 1.25 · 101

σ = 1.43 · 100
µ = 5.39 · 100

σ = 2.79 · 100

29◦ C DG µ = 9.06 · 100

σ = 2.32 · 100
µ = 7.48 · 100

σ = 1.69 · 100
µ = 5.40 · 100

σ = 1.46 · 100
µ = 1.32 · 101

σ = 2.90 · 100
µ = 0.00 · 100

σ = 0.00 · 100

29◦ C PDG µ = 1.18 · 101

σ = 1.60 · 100
µ = 8.62 · 100

σ = 1.33 · 100
µ = 7.83 · 100

σ = 2.66 · 100
µ = 1.26 · 101

σ = 1.89 · 100
µ = 5.83 · 100

σ = 2.70 · 100

Table C.14. Depth of the tree for each family: the table contains the mean µ as well as the
standard deviation σ.

Asymmetry

t BGen WT Betaint Crumbs Rab8 Talin

18◦ C G µ = 4.10 · 101

σ = 4.81 · 102
µ = 4.35 · 101

σ = 4.81 · 102
µ = 4.43 · 101

σ = 4.99 · 102
µ = 3.98 · 101

σ = 3.31 · 102
µ = 4.03 · 101

σ = 6.93 · 102

18◦ C DG µ = 4.29 · 101

σ = 4.92 · 102
µ = 4.25 · 101

σ = 8.22 · 102
µ = 4.64 · 101

σ = 7.52 · 102
µ = 4.28 · 101

σ = 5.11 · 102
µ = 5.23 · 101

σ = 5.85 · 102

18◦ C PDG µ = 4.41 · 101

σ = 4.78 · 102
µ = 4.28 · 101

σ = 8.43 · 102
µ = 4.32 · 101

σ = 5.86 · 102
µ = 4.05 · 101

σ = 5.18 · 102
µ = 4.89 · 101

σ = 9.80 · 102

29◦ C G µ = 3.90 · 101

σ = 5.60 · 102
µ = 4.23 · 101

σ = 6.10 · 102
µ = 4.66 · 101

σ = 7.30 · 102
µ = 4.15 · 101

σ = 5.45 · 102
µ = 5.31 · 101

σ = 9.96 · 102

29◦ C DG µ = 3.97 · 101

σ = 5.66 · 102
µ = 4.45 · 101

σ = 8.16 · 102
µ = 5.28 · 101

σ = 9.49 · 102
µ = 4.29 · 101

σ = 5.01 · 102
µ = 0.00 · 100

σ = 0.00 · 100

29◦ C PDG µ = 4.16 · 101

σ = 6.89 · 102
µ = 3.82 · 101

σ = 5.69 · 102
µ = 5.08 · 101

σ = 8.65 · 102
µ = 3.85 · 101

σ = 5.10 · 102
µ = 4.80 · 101

σ = 8.68 · 102

Table C.15. Asymmetry of the tree for each family: the table contains the mean µ as well
as the standard deviation σ.
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Cpl

t BGen WT Betaint Crumbs Rab8 Talin

18◦ C G µ = 7.15 · 103

σ = 8.79 · 103
µ = 1.61 · 102

σ = 1.17 · 102
µ = 1.85 · 102

σ = 2.09 · 102
µ = 1.01 · 102

σ = 1.05 · 102
µ = 2.94 · 102

σ = 2.40 · 102

18◦ C DG µ = 1.29 · 102

σ = 1.57 · 102
µ = 2.33 · 102

σ = 1.98 · 102
µ = 1.41 · 102

σ = 1.96 · 102
µ = 4.66 · 103

σ = 6.41 · 103
µ = 2.12 · 101

σ = 7.01 · 102

18◦ C PDG µ = 6.76 · 103

σ = 4.96 · 103
µ = 4.68 · 102

σ = 3.03 · 102
µ = 1.83 · 102

σ = 1.69 · 102
µ = 2.09 · 102

σ = 2.07 · 102
µ = 1.24 · 101

σ = 8.60 · 102

29◦ C G µ = 6.29 · 103

σ = 4.57 · 103
µ = 2.04 · 102

σ = 1.50 · 102
µ = 1.70 · 102

σ = 1.36 · 102
µ = 5.47 · 103

σ = 4.35 · 103
µ = 1.05 · 101

σ = 9.04 · 102

29◦ C DG µ = 3.59 · 102

σ = 3.68 · 102
µ = 4.78 · 102

σ = 3.31 · 102
µ = 8.47 · 102

σ = 6.27 · 102
µ = 7.06 · 103

σ = 8.65 · 103
µ = 0.00 · 100

σ = 0.00 · 100

29◦ C PDG µ = 8.52 · 103

σ = 6.60 · 103
µ = 3.52 · 102

σ = 2.62 · 102
µ = 4.24 · 102

σ = 4.06 · 102
µ = 6.48 · 103

σ = 6.84 · 103
µ = 9.68 · 102

σ = 7.44 · 102

Table C.16. Completeness of the tree for each family: the table contains the mean µ as well
as the standard deviation σ.

Sfn

t BGen WT Betaint Crumbs Rab8 Talin

18◦ C G µ = 7.24 · 102

σ = 9.89 · 103
µ = 4.94 · 102

σ = 8.20 · 103
µ = 7.34 · 102

σ = 1.28 · 102
µ = 7.05 · 102

σ = 1.50 · 102
µ = 7.40 · 102

σ = 1.20 · 102

18◦ C DG µ = 7.69 · 102

σ = 1.33 · 102
µ = 5.66 · 102

σ = 8.54 · 103
µ = 8.27 · 102

σ = 1.23 · 102
µ = 6.95 · 102

σ = 8.10 · 103
µ = 1.46 · 101

σ = 9.19 · 102

18◦ C PDG µ = 7.55 · 102

σ = 7.53 · 103
µ = 5.63 · 102

σ = 7.21 · 103
µ = 7.87 · 102

σ = 1.49 · 102
µ = 6.55 · 102

σ = 1.35 · 102
µ = 8.38 · 102

σ = 1.80 · 102

29◦ C G µ = 8.10 · 102

σ = 1.63 · 102
µ = 5.47 · 102

σ = 7.67 · 103
µ = 1.07 · 101

σ = 1.58 · 102
µ = 7.11 · 102

σ = 8.75 · 103
µ = 1.04 · 101

σ = 3.07 · 102

29◦ C DG µ = 6.42 · 102

σ = 9.10 · 103
µ = 6.44 · 102

σ = 9.25 · 103
µ = 1.14 · 101

σ = 4.19 · 102
µ = 1.15 · 101

σ = 9.62 · 102
µ = 0.00 · 100

σ = 0.00 · 100

29◦ C PDG µ = 8.17 · 102

σ = 1.19 · 102
µ = 6.20 · 102

σ = 7.70 · 103
µ = 8.33 · 102

σ = 1.73 · 102
µ = 7.04 · 102

σ = 8.24 · 103
µ = 1.96 · 101

σ = 2.09 · 101

Table C.17. Spacefillingness of the network for each family: the table contains the mean µ
as well as the standard deviation σ.
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