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Zusammenfassung
In dieser Arbeit werden höchst nicht-triviale Phasen von Flüssigkristallen, sog. blue
phases mithilfe von Molekulardynamik Simulationen untersucht. Es wird dabei ein
großer Phasenraum in Abhängigkeit von Druck, Temperatur und Chiralität analy-
siert. Das Hauptaugenmerk wird hierbei auf die Disklinationslinien gelegt, mit denen
man kristallographische Symmetrien identifizieren kann. Außerdem wird das System
im Nicht-Gleichgewichtszustand im Fluss untersucht.

Stichwörter: Physik, Flüssigkristalle, Molekulardynamik Simulationen, Blaue
Phase, Gleichgewicht, Nicht-Gleichgewicht.

Abstract
The key focus of this work is the analysis of highly non-trivial blue phases of chiral
liquid crystals via molecular dynamics simulations. As a result the dependencies
of structure and thermodynamic phases on pressure, temperature and the chirality
are presented. Furthermore, crystallographic symmetries are identified with the
visualization of disclination lines. In addition, we drive the system out of equilibrium
with an added constant hydrodynamic flow.

Keywords: physics, liquid crystals, molecular dynamics simulations, blue phases,
disclination lines, equilibrium, nonequilibrium.
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1 Introduction

Liquid crystals can be found both in the natural world and in technological applica-
tions. A ubiquitous presence is the contemporary liquid crystal display technology
used in modern applications. Also biological systems offer examples of liquid crys-
tals, for example many proteins, cell membranes or spider silk are made out of
molecules exhibiting liquid crystalline phases.
In this work we will study the thermodynamic phases and dynamics of molecules

which exhibit chiral behaviour. An outstanding and interesting phase occurs be-
tween the cholesteric and the isotropic phase of highly chiral thermotropic liquid
crystals: the blue phase. Its orientational order can be characterized by crystallo-
graphic space group symmetries, with a typical lattice size in the regime of visible
light. The selective Bragg scattering makes this phase especially interesting for
optical purposes.
This thesis will briefly introduce liquid crystals and its different phases and will

then concentrate on the description, both phenomenologically and mathematically,
of blue phases in chiral liquid crystals.

1.1 Liquid Crystals

From our every day experience we have learned that matter undergoes phase changes.
The most common states are the solid, liquid and the gas state. One might think
that these are also the only ones. But this is not quite correct. Certain materials
do not show a single transformation from solid to liquid, but undergo a cascade of
transitions to new, intermediate phases [1]. Thereby they exhibit mechanical and
symmetry properties that are intermediate between those of a liquid and a crystal.
For this reason they have been called liquid crystals, or mesomorphic phases.
But what are the properties of a crystal and of a liquid? A crystal can be described

by a three-dimensional periodic array of identical building blocks, apart from any
imperfections and impurities that may occur [2]. This results in sharp Bragg peaks
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1 Introduction

in X-ray scattering. In contrast to that, one cannot find those Bragg peaks in a
conventional liquid. This is related to the fact that positional order in a liquid is
lost over a typical length scale ξ. Moreover a liquid is able to flow easily, in contrast
to the solid nature of a crystal.
A liquid crystal is made of molecules with anisotropic shape and a rigid core that

is typically composed of aromatic rings. The molecules of a liquid crystal exhibit
different degrees of positional or orientational order in at least one dimension. The
then remaining degrees of freedom characterize the different phases of liquid crystals.
Different types of liquid crystals can be observed in nature, depending on the

structure of the molecules. Without delving too deeply into the chemical properties
and details, we can distinguish between liquid crystals that have a phase transition
due to temperature change, thermotropic, and those that have a phase transition
due to changing the concentration of the molecules in a suitable solvent, lyotropic.
Furthermore, the shape of the liquid crystals dictates the different states. Rod-like
molecules, such as PPA or MBBA (see Fig. 1.1), exhibit the so-called nematic state,
whereas cholesterol esters exhibit the cholesteric state. In contrast to that disk-like
molecules arrange themselves in columnar phases. The focus of this work shall lie
in the thermotropic rod-like liquid crystals.

(a) Formula of p-azoxyanisole (PAA),
which is approximately a rod of the
length ∼ 20Å and a width of ∼ 5Å.

(b) Formula of N-(p-
methoxybenzylidene)-p-butylaniline,
a typical nematogen.

Figure 1.1: Structure formulas of typical liquid crystal molecules PPA [3] and
MBBA [4].
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1.1 Liquid Crystals

1.1.1 Nematics

In a nematic phase, the centers of gravity of the molecules have no long-range order,
but the orientations of the molecules have one preferred direction, in contrast to a
conventional liquid. All the molecules tend to align parallel to an arbitrary chosen
axis in space, labeled by a unit vector, the so called director n̂, as shown in Fig. 1.2.
Furthermore the molecules are head-tail symmetric, so the states of the director n̂

and −n̂ are not distinguishable, or if they are, there are as many particles pointing
up as there are particles pointing down.
It can be observed that nematic phases only occur for particles, that are achiral

or racemic (with equal numbers of left- and right-handed molecules) [1].

Figure 1.2: Schematic representation of an uniform director field in the nematic
phase [5].

1.1.2 Cholesterics

Cholesteric1 liquid crystals are also known as chiral nematic liquid crystals. A
chiral object is defined as an object with a geometrical structure different from its
mirror image, as for example human hands are. Cholesterics organize themselves in
nematic layers, where the director axis varies with the layers. This variation tends
to be periodic, and therefore a helical structure forms (see Fig. 1.3). Due to this
helical structure this phase will further be referred to as the helical phase. Since the
director n̂ is not constant in space but periodic, it can be described by a rotation

1The name cholesteric refers to cholesterol esters, which are chiral, where this kind of helical
distortion was first observed.
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1 Introduction

Figure 1.3: Schematic representation of a cholesteric phase of rod-like molecules.
The director rotates about 180° over the corresponding distance of half of a pitch
p/2 [6].

around its helical axis z:

nx = cos(q0z + φ) (1.1a)
ny = sin(q0z + φ) (1.1b)
nz = 0. (1.1c)

Both the helical axis z and φ are arbitrary. The spatial period L is equal to one-half
of the pitch:

L = π

|q0|
, (1.2)

where q0 = q0(T ) is a function of temperature and is a measure of the chirality.
Typical values for L are about 3000Å, which lies in the optical wavelength, due to
the periodicity it results in Bragg diffractions of light beams [1].

1.1.3 Blue Phase

Chiral liquid crystals also form blue phases, at temperatures immediately below
the transition from the isotropic phase, but not all chiral liquid crystals have blue
phases [5]. They received their name from their blue appearance in early investiga-
tions, but they are not always blue [7]. Blue phases are divided into three different
groups, which are called BP I, BP II and BP III, which are all thermodynamically
distinct phases and not metastable forms of the helical phase [5]. As shown in
Fig. 1.4, the transition region is a narrow temperature region of approximately 1K.
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1.1 Liquid Crystals

T

ISOTROPIC PHASE

BP III

BP II

BP I

HELICAL PHASE

BLUE PHASE≈ 350 K≈ 1 K

Figure 1.4: Schematic phase diagram showing the occurrence of blue phases in
relation to the helical and the isotropic phases to emphasize the narrow temperature
region of ∼ 1K [5].

It was shown that both a latent heat (see Fig. 1.5) and a density change at the blue-
helical transition can be observed [8]. Especially the heat-capacity measurements
prove that the three different blue phases are indeed three distinct phases with clearly
visible phase transitions in the expected narrow temperature region. Furthermore,
it was shown that all the transitions are of first order [9].

Figure 1.5: High-resolution heat-capacity measurements for the blue-phase region
of cholesteryl nonanoate [9]. General overview for the entire temperature range,
covering all phase transitions involving blue phases, with clearly visible peaks when
the phase transitions happen.
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1 Introduction

Additionally blue phases exhibit a non-zero elastic shear modulus, although they
flow like a liquid, with a bulk viscosity roughly up to 106 times larger than for a
conventional liquid [10]. This shear modulus is about one million times smaller than
that of a conventional solid [11, 12].
But why do blue phases occur? The fundamental cause for the helical phase

is that the molecules themselves are chiral. Twist arises because the interaction
energy of two adjacent molecules is minimized, when they are tilted of a slight angle
to each other. This condition is met only for one axis in the helical phase (Fig. 1.3).
However, the energy can be further minimized, when the twist also occurs in all
directions perpendicular to the local director. Such a configuration is called double
twist and is shown in Fig. 1.6. However, fitting these double twist cylinders into a
three-dimensional structure while conserving the director and securing a high filling
fraction is topologically impossible [7].

(a) Schematic representation of a dou-
ble twist from D. Wright and N. D. Mer-
min [5]. The dark lines show the orien-
tation of the director field. The configu-
ration is cylindrically symmetric around
the center of the figure.

(b) Cross-sectional view of a double
twist from P. P. Crooker [7]. The di-
rector is parallel to the tube axis at the
center and is twisting, as it approaches
the edge.

Figure 1.6: Schematic view for double twist tubes in comparison.

Because a single double-twist cylinder is energetically unfavorable, the blue phases
consist of many of these cylinders, arranged in a periodic lattice that corresponds
with already known cubic symmetries, as shown in Fig. 1.7. To be more specific,
BP I has body-centered cubic (bcc) orientational order and BP II a simple cubic
(sc) order [7]. In contrast to the cubic structures of BP I and BP II, the structure
of BP III may be characterized as a quasi-crystal [13], a spaghetti-like tangle of
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1.1 Liquid Crystals

double-twist cylinders [14] or an amorphous state formed by BP II domains [15].
Due to the different structures, polarized light gets deflected differently.

Figure 1.7: Schematic representation of the liquid crystal phases depending on
the temperature. At the top non-chiral molecules are shown, which only have the
nematic (N) and the isotropic (ISO) phase for higher temperatures. At the bottom
the representation of chiral molecules shows the helical (H) and isotropic phase
(ISO) and, depending on the chirality, up to three different blue phases (BP I,
BP II and BP III). Whereas the BP I has a bcc and the BP II a sc structure [7].
The structure of the BP III is represented by a spaghetti-like tangle (iso-like) of
double-twist cylinders.
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2 Model System

2.1 Molecular Dynamics Simulations

In this chapter we shall briefly introduce the basic concepts of molecular dynamics
(MD) simulations and its implementation.
MD simulations are often used for computing equilibrium and transport proper-

ties of an N particle system that follows the laws of classical physics [16]. The basic
algorithm is usually as follows: At the time t = 0 N particles are initialized. This
means, the initial positions and velocities are assigned. A common way is to pick
these values randomly from a given distribution that fits the experimental circum-
stances. In the next step all the forces on all particles are being computed. The core
of an MD simulation consists of the integration of Newton’s equations of motion for
each particle at each time step. The calculation of the force acting on every particle
is also the most time-consuming part of almost all MD simulations [16]. In order to
compute the force acting between the particles i and j, first their distance has to
be calculated. Excluding long-range potentials, such as gravitational or Coulombic
interactions, if the distance is smaller than a given cutoff radius rc, the particles are
close enough to each other to interact. The force acting between the particles comes
directly from the given conservative potential V (r),

F (r) = −∇V (r).

Now that all forces between the particles are calculated, they can be used to integrate
Newton’s equations of motion to get the new particle positions and velocities after a
small time step δt. The most common and effective algorithm is the velocity-Verlet
algorithm for integration [16]. The updated positions and velocities can now be used
to calculate the new forces between the particles. This step is being repeated until
the desired simulation time is reached.
After the core part is completed, various quantities like temperature or pressure,
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2.2 Potential Model

can be computed. In order to perform MD simulations in other than the micro-
canonical ensemble, a wide range of techniques has to be applied [16], like the use
of a thermostat to fix the temperature of the system or the use of a barostat to fix
the pressure of the system, just to name a few.

2.2 Potential Model

The potential used is the well studied Hess-Su potential [17] with the addition of
chirality according to Memmer et al. [18, 19]. The liquid crystal is confined in
one dimension between a pair of planar smooth walls where hybrid anchoring is
employed.
The model consists of N liquid crystal molecules within a simulation box of linear

sizes lx, ly, lz. The total potential may be decomposed into contributions from the
fluid-fluid (ff) and fluid-substrate (fs) interactions according to Melle et al.[20]:

Φ
(
R, Û

)
= Φff

(
R, Û

)
+ Φfs

(
Z, Û

)
, (2.1)

with the shorthand notation, Z ≡ {z1, z2, . . . , zN}, for the z-coordinates of the
center-of-mass positions, R ≡ {r1, r2, . . . , rN}, of the N mesogens and for their
orientations represented by the set of unit vectors, Û ≡ {û1, û2, . . . , ûN}, where a
caret will from now on be used to indicate a unit vector. The assumption of pairwise
additivity of the interactions of the particles i and j with the center-of-mass distance
rij ≡ ri − rj yields:

Φff

(
R, Û

)
= 1

2

N∑
i=1

N∑
j 6=i

ϕff (rij, ûi, ûj) , (2.2)

with the chiral version of the Hess-Su potential:

ϕff (rij, ûi, ûj) = 4εff


(
σ

rij

)12

−
(
σ

rij

)6

[1 + Ψ (rij, ûi, ûj)]
 , (2.3)

where σ is the particle diameter of a spherical Lennard-Jones reference particle and
εff the potential well depth. As one can notice, the Hess-Su potential is a Lennard-
Jones potential with a modified attractive term. This modification introduces the
fact that the molecules do not align parallel but slightly tilted to each other as it
is expected from chiral liquid crystals [1]. The orientation dependence of the inter
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2 Model System

molecular interactions is given by:

Ψ (ûi, ûj, r̂ij) = 5ε1P2 (ûi · ûj) + 5ε2 [P2 (r̂ij · ûi) + P2 (r̂ij · ûj)]
+ε3 [(ûi × ûj) · r̂ij] (ûi · ûj) ,

(2.4)

where P2(x) is the second Legendre polynomial P2(x) = 1
2 (3x2 − 1), ε1, ε2 the

anisotropy parameters and ε3 the chirality parameter. The term proportional to ε3

on the right-hand side of Eq. (2.4) is the simplest pseudo-scalar that induces chiral
ordering, according to Memmer [18], The achiral [21, 22] model as well as the chiral
one [20, 23] were proved to be capable of correctly reproducing properties of liquid
crystals. In order to achieve results comparable to experiments, a confinement of
the liquid crystals hast to be introduced. In this model this confinement is given by
parallel smooth walls normal to the z-axis and periodic boundary conditions in the
other dimensions. In analogy to experimental setups, the walls can be used to ma-
nipulate the preferred global orientation of the molecules due to a specific anchoring
at that surface. The fluid-substrate interaction for the total energy expression (2.1)
is given by:

Φfs

(
Z, Û

)
=

2∑
k=1

N∑
i=1

ϕfs (zi, ûi) (2.5)

with the fluid-substrate interaction:

ϕ
(k)
fs = εfs

[
a1

(
σ

∆zi

)10
− a2

exp (−η|∆zi|)
|∆zi|

g(k) (ûi)
]
. (2.6)

Here εfs determines the depth of the attractive well, ∆zi = zi±sz/2 is the distance of
the particle from either wall and the sign is chosen accordingly to the interaction with
the lower (k = 1) and the upper substrate (k = 2) . The dimensionless parameters a1

and a2 guarantee that the location of the minimum of the fluid-substrate potential
as well as the depth of the attractive well are fixed [20].
When it comes to fluid-substrate interactions, the orientation of the liquid crystal

close to the substrate is fixed by the surface. This phenomenon is called anchoring.
In this particular setup hybrid anchoring is applied in order to avoid any spurious
stress along the simulation box. Even if the dimensions of the simulation box do
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2.2 Potential Model

not correspond to a multiple half integer of the pitch:

g(1) = (ûi · êx)2 , (2.7a)
g(2) = (ûi · êx)2 + (ûi · êy)2 , (2.7b)

where the unit vector êα is pointing along the x- or y-axis of the Cartesian coordinate
system. This makes sure that mesogens located close to the lower substrate will align
preferably along the x-axis (2.7a) and mesogens closer to the upper substrate will
align their axes parallel to the x-y plane without any preference on the unit circle
(2.7b) [20].

2.2.1 Flow

In order to drive the system successfully out of equilibrium, first we have to recon-
sider the fluid-substrate interactions. In a steadily driven system there is a constant
input of energy that must be balanced by some mechanism of energy dissipation.
Viscosity is the main form of dissipation in a fluid. Thus, in a driven system it is
no longer sufficient to have smooth walls, since there is no friction at the walls. To
introduce friction we use walls made of discrete particles. This means that each wall
is composed from NW spherical particles that are arranged according to the (100)
configuration of the face-centered cubic (fcc) lattice. In analogy to Gruhn et al. [24],
the walls are in registry. This means that corresponding molecules in the two walls
are exactly opposite each other. We still employ hybrid anchoring g(k)(ûi) in the
same fashion and periodic boundary conditions in the x-y plane. This results in the
discrete fluid-substrate interaction:

ϕ
(k)
fs (ûi, rij) = εfs ρ0 σ

2

2
5

(
σ

rij

)10

−
(
σ

rij

)4

g(k)(ûi)
 , (2.8)

where εfs = 5
3εff and ρ0σ

2 ≈ 1.1 is the areal density of a single layer of substrate
particles. The implementation of the flow is done by adding a constant force Fflow to
each particle in the x-direction. The interplay between particle number, volume of
the system and value of Fflow determine the steady-state flow profile of the system.
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2 Model System

2.3 Methods

In order to extract physical quantities out of the simulations, various techniques
can be used. One of the most valuable quantities in a liquid crystal, as presented
in Sec. 1.1, is the local orientation of the liquid crystals. A suitable quantitative
measure of the local orientational order is provided through the local alignment
tensor, which can be defined as

Q (r) ≡ 1
2ρ (r)

N∑
i=1
〈[3ûi (ri)⊗ ûi (ri)− 1] δ (r − ri)〉 , (2.9)

where ρ (r) is the local density, 1 the unit tensor, δ (r − ri) the Dirac δ-function
and ⊗ the tensor product. As shown in [1], the local alignment tensor is a real,
traceless, symmetric, second-rank tensor, represented by a 3x3 matrix that satisfies
the eigenvalue equation:

Q (r) n̂ (r) = λ (r) n̂ (r) . (2.10)

Equation (2.10) has three eigenvalues, λ−(r) < λ0(r) < λ+(r), and the associated
eigenvectors are n̂− (r), n̂0 (r), n̂+(r). The largest local eigenvalue can now be seen
as the local nematic order parameter λ(r) and its eigenvector as the local nematic
director n̂(r) [20]. Both the local nematic order parameter, as well as the local
nematic director give valuable information about the structure of the system. As
presented by Schlotthauer et al. [23], defect lines ` in the system are being identified
by a small value of the local nematic order parameter δλ:

` ≡
{
r = (x, y, z)T |λ (r) ≤ δλ

}
, (2.11)

where the superscript T denotes the transpose of the three dimensional vector r.
The value of δλ is a priori unknown and is in practice chosen to enhance the visibility
of the defect lines. Furthermore, the rotation of the local nematic director n̂(r) is
being used together with Eq. (1.1) to measure the pitch in the system.

In order to get an understanding of the positional and orientational dependence
of the liquid crystals, the radial distribution function

g (r) = V

N2

〈∑
i

∑
j 6=i

δ (r − |rij|)
〉

(2.12)
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2.3 Methods

and the pseudoscalar radial orientational pair correlation function

S221 (r) = −
√

3
10 〈[(ûi × ûj) · r̂ij] (ûi · ûj)〉 (2.13)

are useful. The average is calculated over all pairs of molecules of a configuration
separated by a distance r [25].
The main key dimensionless quantity that is commonly used to describe flowing

fluids is the Reynolds number R. The Reynolds number gives a measure of the ratio
of inertial forces to viscous forces:

R = ρ̄v∞l

η
, (2.14)

where ρ̄ is the global density, v∞ the streaming velocity at steady state, l the char-
acteristic length of the system and η the dynamic viscosity. In this case the typical
length scale is the box length in z-direction lz. In order to calculate the dynamic
viscosity η of the system, one has to look at the steady state streaming velocity vx(z)
of a uniform fluid within the weak-flow limit for planar Poiseuille flow, as Todd et
al. suggest [26]:

vx(z) = − ρ̄Fflow2η

[
z2 − lz

4

]
, (2.15)

where Fflow is the external driving force.
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3 Computational Details

In order to study the structure formation of chiral liquid crystals, an MD simulation
based on CUDA is employed.

3.1 Parameters used

The chiral liquid crystal is studied in a rectangular box at a constant number of
particles N , confined between smooth walls in the z-direction and with periodic
boundary conditions in the x-y plane, both in the isothermal-isobaric (NPT ), as
well as in the canonical (NV T ) ensemble, using standard molecular dynamics al-
gorithms [16]. While in the NV T ensemble the volume of the simulation box is a
constant, it varies in the NPT ensemble, in such a way that the distance between
the walls is held fixed, while the box dimensions along the other axes are changing
uniformly to match the desired pressure. Dimensionless units are used in this work.
In analogy to Melle et al. [20] all simulations were done with fixed anisotropy param-
eters ε1 = 0.04 = −ε2/2 which produce mesogens with an aspect ratio of 1.26 [27].
We solve the equations of motion using a velocity-Verlet algorithm with a time step
δt = 0.001.

3.2 Preparation and equilibration

In order to analyze the phase transitions, we first carried out a series of careful
equilibrations in the isothermal-isobaric ensemble. During this series the chiral-
ity parameter was being increased from ε3 = 0.00 (achiral) to ε3 = 0.98 in steps
of ∆ε3 = 0.02 while pressure, temperature and number of particles were fixed at
P = 1.8, T = 0.94 and N = 40 000, respectively. This choice of equilibrating the
system from an achiral state into a chiral one minimizes the impact of hysteresis.
Furthermore the isothermal-isobaric ensemble allows us to find the equilibrium den-
sity and, together with hybrid anchoring as presented in Eq. (2.7), the equilibrium

14



3.3 NPT ensemble

pitch can be reached during the equilibration process since these values are not
known a priori for the system. Each simulation was run for 400 000 time steps.
To explore the pressure-temperature dependency of the system, in the next step

the temperature is reduced from T = 0.94 to T = 0.86 in steps of ∆T = 0.02, for
fixed pressure P = 1.8 and for fixed selected values of
chirality ε3 = {0.02, 0.08, 0.14, 0.18, 0.28, 0.38, 0.48, 0.58, 0.68, 0.78, 0.88, 0.98}.
After the equilibration of these temperature-chirality pairs, each set underwent a
reduction of pressure from P = 1.8 to P = 1.0 in steps of ∆P = 0.2 The process of
preparing and equilibrating the system is schematically visualized in Fig. 3.1.

ε3

PT

Figure 3.1: Schematic representation of the equilibration process. The color gra-
dient indicates the transition through the phase space, starting from the origin of
the box.

3.3 NPT ensemble

Now that the simulations for a various range of parameters are equilibrated, we can
measure the pitch along the z-axis. This axis is naturally parallel to the helical
axis and is not directly affected by the changing volume of the simulation box. The
pitch along the z-axis can be calculated from the local nematic director nα (z), with
α = x, y. In order to get significant measurements, the data were averaged over
500 000 time steps. The average global number density ρ̄ (r) was averaged over the
last 100 000 time steps. For the sampling process a virtual sampling box was chosen
with dimensions smaller than the real simulation box for all times. This makes sure
that data were collected from an area that is not directly affected by the changing
wall sizes. The sampling box itself was then binned into boxes with a size of (0.3σ)3

15



3 Computational Details

in order to calculate the local director and local nematic order parameter in each
small bin via Eq. (2.9).

3.4 NVT ensemble

Because we want to study both the equilibrium properties and the dynamics of the
liquid crystal system, it is desirable to remove the perturbations to the dynamics
caused by the barostat. Thus, to reproduce the results from the NPT simulations
in an NV T ensemble, the calculations of the average pitch p̄ (z) and the average
density ρ̄ (r) are used to construct a simulation box whose side-lengths are half-
integer multiples of the average pitch and with a number of particles that matches
the equilibrium density at those specific values of T , P and ε3. Furthermore, the
particle number varies between 19 000 and 43 000 particles for the NV T simulations.
Hereby one has to keep in mind that the average pressure 〈P 〉 itself is an intensive
thermodynamic variable and cannot be explicitly controlled in the NV T ensemble,
but results directly from the Helmholtz free energy F (N, V, T ):

〈P 〉 = −∂F
∂V

. (3.1)

In the following the pressure reported in the results of NV T simulations is the
corresponding NPT simulation pressure and not the explicitly measured one (see
Ch. 5). The simulations were done for chosen representative values as shown in

ε3 P T
0.18 1.0 0.86
0.18 1.4 0.90
0.18 1.8 0.94
0.48 1.0 0.86
0.48 1.4 0.90
0.48 1.8 0.94
0.78 1.0 0.86
0.78 1.4 0.90
0.78 1.8 0.94

Table 3.1: Overview of values from NPT simulations used to construct correspond-
ing NV T simulations.

Table 3.1. In contrast to theNPT simulations theNV T simulations did not undergo
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3.5 NVT flow

the tedious process of equilibration. Instead each simulation was started from a
random configuration of the molecules since the equilibrium conditions are now
known. Both the equilibration as well as the sampling of the data were done for
500 000 time steps each. For the sampling process this time the whole system was
divided into bins with a size of (0.3σ)3.

3.5 NVT flow
To investigate the influence of flow on the system, the selected simulation for values
of ε3 = 0.78, T = 0.94 and P = 1.8 with N = 19209 particles is equilibrated for
500 000 time steps in an NV T ensemble with discrete walls. After the equilibration,
three different flow forces Fflow = 0.2, 0.4 and 0.8 were used. To calculate a velocity
profile, the x-y plane is divided into 320 slices, so one can display the x-component
of the velocity in dependency of the z-position vx(z). In order to monitor the time
evolution of the velocity profile, this is done every 100 000 time steps for 500 000 time
steps in total. To have a good estimate of the steady-state velocity v∞, the average
velocity over all particles for t = 500 000 is calculated. Since we drive our system
out of equilibrium, we now have do differentiate between the true particle velocities
and the local streaming velocity of the fluid at the particle position. This has to be
taken into account to calculate friction, in order to conserve energy and momentum
of the system. Especially sensitive is the thermostat. In order to preserve the
hydrodynamic properties of the system, a Galilean invariant thermostat has to be
introduced, first presented by Stoyanov and Groot [28], which is a combination of
pairwise Nosé-Hoover and Lowe-Andersen thermostat.
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4 Results

4.1 NPT pitch

The pitch is a highly sensitive physical quantity of chiral systems. It depends pri-
marily on the chirality ε3 of the molecules, as presented in Eq. (1.2). But also the
temperature, pressure and the molecular density influence the pitch of the system.
Since the molecular density is not known a priori in the NPT ensemble, we will put
our focus onto the dependencies of the pitch on chirality, pressure and temperature.
For all parameters the pitch was calculated in the following way.
The system was divided into a three dimensional grid as described in Sec. 3.3.

For the measurement of the pitch, only the x and y components of the local nematic
director in z direction are of interest, while the remaining x-y plane is used to
average the local nematic director and the local nematic order parameter λ̄(z). This
results in two components of the director n̄α(z), with α = x, y and one constant
zero component n̄z(z) as it is shown in Fig. 4.1 and Fig. 4.2. The pitch was then
obtained via fitting Eq. (1.1) with a nonlinear least-squares Marquardt-Levenberg
algorithm to the data. Furthermore, the local nematic order parameter is being used
to distinguish between a helical phase and a blue phase. This is possible since both
phases exhibit a characteristic pitch, yet the helical phase is highly ordered. This
results in an overall high nematic order parameter for the helical phase, whereas the
blue phase is isotropic in all directions [1] which is accompanied with a low nematic
order parameter. This is shown in Fig. 4.1 and Fig. 4.2. In both figures the average
nematic director follows perfectly the theoretical behavior as presented in Eq. (1.1).
Yet the nematic order parameter for Fig. 4.1 is overall high. This indicates a helical
phase. Figure 4.2 has instead a low nematic order parameter. This indicates a blue
phase.
In order to get a more vivid image of the simulated system, Fig. 4.3 shows a

snapshot of a typical helical phase of the system and Fig. 4.4 of a typical blue
phase. One can notice a strong symmetry in the paper plane. This structure can
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4.1 NPT pitch
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Figure 4.1: Plots of the three components of the average nematic director n̄α(z),
with α = x (red), y (green), z (blue) and the average nematic order parameter λ̄(z)
(light blue) along the z-axis with the corresponding least-square fit (solid line). The
plot was made for constant values of ε3 = 0.08, p = 1.8, T = 0.94, N = 40 000. The
nematic order parameter indicates a helical phase.

be identified as double-twist helices arranged in an sc lattice, which means, in other
words, that the presented phase has the form of a BP II. Yet, as one can notice in
Fig. 4.4, the double-helix tubes are not perfectly aligned along the line of vision.
More regarding that topic can be found in Ch. 5. This analysis has been repeated for
the different values of ε3 as presented in Sec. 3.2, while the pressure and temperature
are held fixed at P = 1.8 and T = 0.94. Figure 4.5 shows that the pitch is inversely
proportional to the chiral coupling constant ε3, as shown in [20]. We repeated
that procedure for all temperature and pressure pairs, as presented in Sec. 3.2 and
could verify the same pitch-chirality dependency for all parameters (see Fig. 4.6).
Table 4.1 shows the temperature and pressure dependency of the fitting parameters.
Furthermore, we investigated the dependency of temperature and the dependency

of pressure on the pitch. In order to do so, this time the pitch was plotted against
the pressure and chirality, or against the temperature and chirality. The results are
shown in Fig. 4.7(a) and Fig. 4.7(b). For a small pitch, or a high chiral coupling
constant ε3, the dependency between chirality and pressure and temperature can
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Figure 4.2: Plots of the three components of the average nematic director n̄α(z),
with α = x (red), y (green), z (blue) and the average nematic order parameter λ̄(z)
(light blue) along the z-axis with the corresponding reduced chi-square fit (solid line).
The plot was made for constant values of ε3 = 0.48, p = 1.8, T = 0.94, N = 40 000.
The nematic order parameter indicates a blue phase.

be seen as nearly constant. This changes with an increasing pitch for the pressure
dependency, as it can be seen in Fig. 4.7(a). For a small value of ε3 = 0.02 the pitch
is proportional to the temperature. These complex dependencies interfere with the
idea of a simple master equation that takes care of the interplay between chirality,
temperature and pressure in a correct way.
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4.1 NPT pitch

(a) (b)

Figure 4.3: Snapshot of a configuration with ε3 = 0.08, P = 1.8, T = 0.94 in the
NPT ensemble. Shown is the x-y plane. The helical axis is parallel to the z-axis.
The color code shows molecules pointing in the x-direction in blue and those whose
orientation deviates from that in other colors. Since the molecules are head-tail
symmetric, the orientation can maximally deviate by 90° (red). The helical phase
evolves cleanly from the bottom wall (left side) to the top wall (right side). In order
to enhance visibility, the aspect ratio of the mesogens in (a) is exaggerated. To make
the structure more visible this visualization is dropped in (b).
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(a) (b)

Figure 4.4: Snapshot of a configuration with ε3 = 0.48, P = 1.8, T = 0.94 in
the NPT ensemble. The color code denotes mesogens oriented along the line of
vision in blue whereas mesogens that are lying in the paper plane are colored in red.
In order to enhance the visibility the aspect ratio is exaggerated in (a). To make
the structure more visible, the 3D visualization in (b) is dropped. While (a) is a
snapshot that shows the view of the top layer of mesogens, (b) is chosen to show a
layer at the bottom wall. As one can notice, the double-helix tubes are not perfectly
parallel to the line of vision.
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4.1 NPT pitch
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Figure 4.5: Plot of the dimensionless pitch p/σ as a function of the chirality ε3.
Data obtained for constant pressure P = 1.8 and temperature T = 0.94 with a
least-square fit (solid line) of p/σ = a/|ε3| + b, with a = 3.50 and b = 7.50. The
region ε3 ∈ [0.14, 0.20] is the transition region from the helical phase into the blue
phase. This explains the slight deviation from the theoretical prediction.
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Figure 4.6: Plot of the dimensionless pitch p/σ as a function of chirality ε3 for
different temperatures at constant pressures. In analogy to Fig. 4.5 the function
p = a/ε + b was fitted to the data with a least-square fit. The final fit parameters
a and b are presented in Tab. 4.1. The influence of the temperature on the pitch
decreases significantly with increasing pressure.
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4.2 NVT disclination lines

P = 1.0 P = 1.2 P = 1.4 P = 1.6 P = 1.8
T = 0.86 a = 3.67, b = 7.88 a = 3.59, b = 8.38 a = 3.60, b = 8.38 a = 3.91, b = 7.48 a = 3.80, b = 7.89
T = 0.88 a = 3.68, b = 7.39 a = 3.42, b = 9.33 a = 3.61, b = 8.54 a = 3.90, b = 7.17 a = 3.80, b = 7.51
T = 0.90 a = 3.63, b = 7.40 a = 3.47, b = 8.92 a = 4.36, b = 5.41 a = 3.47, b = 8.34 a = 3.71, b = 7.99
T = 0.92 a = 3.34, b = 8.16 a = 3.64, b = 7.63 a = 3.79, b = 7.67 a = 3.50, b = 8.27 a = 3.92, b = 7.40
T = 0.94 a = 1.51, b = 16.02 a = 2.62, b = 10.68 a = 3.44, b = 8.28 a = 3.70, b = 6.71 a = 3.50, b = 7.90

Table 4.1: Fit parameter of least-square fit of the dimensionless pitch p/σ = a/ε3+b,
as presented in Fig. 4.6.
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Figure 4.7: Plots show the dependency of pitch p/σ against pressure P for constant
temperature T = 0.94 (a) and against temperature T for constant pressure P =
1.8 (b) for different values of ε3. The color code denotes the measured pitch p/σ. As
seen in Figure (a), the pitch increases with increasing temperature for small values
of ε3. Whereas the pitch can be seen as constant for higher values of ε3. In Fig. (b)
the pitch can be seen as constant for P = 1.8 regarding the temperature T and is
inverse proportional to the chirality.

4.2 NVT disclination lines
Disclination lines are an important method for describing the structure of liquid
crystals. One can directly extrapolate the structure of the system from disclination
lines and vice versa. In complete analogy to Schlotthauer et al. [23], disclination
lines are being visualized by plotting only areas that have a small nematic order
parameter δλ. Its value is typically in the range 0.15 ≤ δλ ≤ 0.25. In this work the
upper limit was exceeded in rare occasions in order to enhance the visibility of the
disclination lines. The color code shall help to visualize the 3D disclination lines, as
it is presented in Fig. 4.8. Hereby each specific point of the defect lines ` is assigned
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a different color. As Fig. 4.9 shows, different complex networks of disclination lines

B

GR

(a) Frontal view.

B

GR

(b) Rear view.

Figure 4.8: Cube of unit-length where the spatial variation of color illustrates the
position of the disclination lines in a 3D space.

are being formed under different conditions. The most common structure here has
tetrahedral arranged lines. This kind of symmetry is expected for a BP II [29]. With
increasing chirality and hence decreasing pitch, the mesh of the disclination lines
becomes more subtle.
However, the disclination network for low values of ε3 is qualitatively different

from the others. As temperature and pressure increases (Fig. 4.9(a) - Fig. 4.9(c))
the structure changes from a tangled one, into a tetrahedral. This is an indicator
for a transition from BP III into BP II.
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(a) Disclination lines ` for ε3 = 0.18,
P = 1.0, T = 0.86.
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(b) Disclination lines ` for ε3 = 0.18,
P = 1.4, T = 0.90.
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(c) Disclination lines ` for ε3 = 0.18,
P = 1.8, T = 0.94.
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(d) Disclination lines ` for ε3 = 0.48,
P = 1.0, T = 0.86.
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(e) Disclination lines ` for ε3 = 0.48,
P = 1.4, T = 0.90.
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(f) Disclination lines ` for ε3 = 0.48,
P = 1.8, T = 0.94.
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(g) Disclination lines ` for ε3 = 0.78,
P = 1.0, T = 0.86.
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(h) Disclination lines ` for ε3 = 0.78,
P = 1.4, T = 0.90.
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(i) Disclination lines ` for ε3 = 0.78,
P = 1.8, T = 0.94.

Figure 4.9: Visualizations of disclination lines ` for different chiral coupling con-
stants ε3, temperatures T and pressures P .
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4.3 NVT radial orientation functions

Radial orientation functions are an important method to characterize local order.
While there are numerous different radial orientation functions, for this work it is
sufficient to concentrate on the radial distribution function (2.12) and the pseudo-
scalar radial orientational pair correlation function (2.13). Figures 4.10 - 4.18 show
the radial distribution as well as the orientational pair correlation function for se-
lected system parameters. As one can notice, the radial distribution functions show
the typical structure characteristics of a liquid. While we have a strong positional
correlation in the nearest neighbor regime, this correlation decreases towards one for
larger distances r. Although g(r) does not reach exactly one for large distances, the
function converges slightly below one. This occurs due to the walls in z-direction.
The volume close to the walls is being slightly overestimated which then results in a
too big a normalization value in the numerator, which leads to a correlation slightly
lower than one for large distances. Furthermore one can notice that the value of
the first peak increases with increasing chirality. With higher chirality higher filling
fraction values can be reached in the nearest neighbor region, since the particles are
stronger tilted against each other.

The radial orientational pair correlation functions S221(r) for selected system pa-
rameters are also presented. The pseudo scalar radial orientational pair correlation
functions are used to quantify helical superstructures. S221(r) is significantly nonzero
at short separations identifying chiral correlations. Due to the chosen handedness of
the mesogens, the peak has all negative values in the nearest neighbor regime and is
maintained over large distances. This indicates helical superstructures [25]. Yet the
correlation converges to values close to zero for large distances. This is in perfect
agreement with the fact that blue phases are isotropic in all directions and yet show
strong local order. In analogy to the radial distribution function these character-
istics amplify with increasing chirality which indicates increasing distinctiveness of
the blue phase.

To sum up, the radial orientation functions show that the system is liquid although
it exhibits strong local orientational order. Furthermore, it is shown that with
increasing chirality the characteristics of the blue phase are being excelled. With
other words, with higher chirality one goes deeper into the blue phase. Although
the disclination lines for low chiralities (see Fig. 4.9(a)) look qualitatively different
from those of a BP II, no significant difference in the radial orientation functions
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Figure 4.10: Dependence of the radial pair correlation function and radial orien-
tational pair correlation function on the intermolecular separation r∗ for ε3 = 0.18,
P = 1.0, T = 0.86.

(see Fig. 4.10) can be found. Hence no clear verification of the existence of a BP III
for these parameters is possible.
In contrast to the other plots of the radial orientation functions, Figure 4.16 has

a rather bumpy progression. This indicates a transition to a solid state. With other
words, for these specific parameters the system is almost frozen.
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Figure 4.11: Dependence of the radial pair correlation function and radial orien-
tational pair correlation function on the intermolecular separation r∗ for ε3 = 0.18,
P = 1.4, T = 0.90.
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Figure 4.12: Dependence of the radial pair correlation function and radial orien-
tational pair correlation function on the intermolecular separation r∗ for ε3 = 0.18,
P = 1.8, T = 0.94.
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Figure 4.13: Dependence of the radial pair correlation function and radial orien-
tational pair correlation function on the intermolecular separation r∗ for ε3 = 0.48,
P = 1.0, T = 0.86.
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Figure 4.14: Dependence of the radial pair correlation function and radial orien-
tational pair correlation function on the intermolecular separation r∗ for ε3 = 0.48,
P = 1.4, T = 0.90.
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Figure 4.15: Dependence of the radial pair correlation function and radial orien-
tational pair correlation function on the intermolecular separation r∗ for ε3 = 0.48,
P = 1.8, T = 0.94.
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Figure 4.16: Dependence of the radial pair correlation function and radial orien-
tational pair correlation function on the intermolecular separation r∗ for ε3 = 0.78,
P = 1.0, T = 0.86. Since the graph is rather rough, we can assume that the system
is close to be in the solid state.
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Figure 4.17: Dependence of the radial pair correlation function and radial orien-
tational pair correlation function on the intermolecular separation r∗ for ε3 = 0.78,
P = 1.4, T = 0.90.
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Figure 4.18: Dependence of the radial pair correlation function and radial orien-
tational pair correlation function on the intermolecular separation r∗ for ε3 = 0.78,
P = 1.8, T = 0.94.
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4.4 Phase diagram

Based on the characterization of the structure seen in the previous sections, a phase
diagram in the NPT ensemble can be produced to get an overview of the highly
complex interplay between pressure, temperature and chirality. The presented phase
diagrams shall give a rough overview over the dependencies.
Figure 4.19 shows the behavior of the system for a small chirality ε3 = 0.02. The

system is very sensitive to temperature and pressure changes. A blue phase has not
been observed in that region. For slightly increased chirality (ε3 = 0.08), we find a
phase diagram that contains the phase transitions that Fig. 1.4 shows. As Fig. 4.20
shows, we observed the phase transition from a helical phase into a blue phase
into an isotropic phase for P = 1.2 with increasing temperature. Furthermore,
Fig. 4.20 shows that this transition can also happen if we decrease the pressure
from P = 1.8 to P = 1.0 for constant temperature T = 0.94. This observation
emphasizes the complex interplay between temperature and pressure. For increased
chirality, we observed blue phases over a wide range of temperature and pressure, as
Fig 4.21 presents. From that we can derive that the stability of blue phases increases
drastically with the chirality.
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1.8

0.86 0.88 0.9 0.92 0.94

P

T

isotropic helical

Figure 4.19: Temperature-Pressure phase diagram for a constant chirality of ε3 =
0.02. The transition between an isotropic phase and a helical phase depends highly
on the temperature and pressure for small chiralities.
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Figure 4.20: Temperature-Pressure phase diagram for a constant chirality of ε3 =
0.08. Phase transitions from helical into blue phase into isotropic are shown for
increasing temperature as well as for decreasing pressure.
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Figure 4.21: Temperature-chirality phase diagrams for different pressures. The
stability of blue phases increases with the chirality.
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4.5 Flow profile
In order to characterize and describe the dynamic state of our system, we will use
the dynamic viscosity η. Within the weak-flow limit for a planar Poiseuille flow
of a uniform fluid with constant average density ρ̄, one can calculate the steady
state streaming velocity as presented in Equation (2.15). Now we can calculate η by
fitting the velocity profile with a second-order even polynomial vx(z) = c2z

2 + c0, in
analogy to Stieger et al. [30]. Hence, the resulting viscosity is η = −ρ̄Fflow/2c2. This
procedure is done for the simulation time t = 500 000, to get as close to a steady state
as possible. The results for the viscosity η and the Reynolds number R for different
external driving forces are presented in Table 4.2. The flow profiles for the times
t = 100 000, 200 000, 300 000, 400 000, and 500 000 are presented in Figures 4.22 -
4.24. Furthermore, the viscosity of the system decreases with increased stream
velocity, as expected for a non-Newtonian liquid and the overall small Reynolds
number indicates a laminar flow. The second-order polynomial provides a good fit
for the center of the system channel but deviates from the data for the external
forces Fflow = 0.2 and Fflow = 0.4 closer to the walls (see Fig. 4.23 and Fig. 4.24).
For all tested flows a steady-state is reached after t = 200 000.

Fflow v∞ η R
0.1 0.09 166.97 0.019
0.2 0.21 150.07 0.049
0.4 0.57 129.54 0.153

Table 4.2: Reynolds number R and viscosity η for different external driving forces
Fflow and the corresponding steady state streaming velocities v∞ used for the system
ε3 = 0.78, T = 0.94, P = 1.8.
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Figure 4.22: Flow profile for Fflow = 0.1 for ε3 = 0.78, T = 0.94 and P = 1.8.
Data points in black circles and corresponding least-square fit as red line.

40



4.5 Flow profile

-0.1

0

0.1

0.2

0.3

-20 -15 -10 -5 0 5 10 15 20

v x

z

(a) t = 100000

-0.1

0

0.1

0.2

0.3

-20 -15 -10 -5 0 5 10 15 20

v x

z

(b) t = 200000

-0.1

0

0.1

0.2

0.3

-20 -15 -10 -5 0 5 10 15 20

v x

z

(c) t = 300000

-0.1

0

0.1

0.2

0.3

-20 -15 -10 -5 0 5 10 15 20

v x

z

(d) t = 400000

-0.1

0

0.1

0.2

0.3

-20 -15 -10 -5 0 5 10 15 20

v x

z

(e) t = 500000

Figure 4.23: Flow profile for Fflow = 0.2 for ε3 = 0.78, T = 0.94 and P = 1.8.
Data points in black circles and corresponding least-square fit as red line.
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Figure 4.24: Flow profile for Fflow = 0.4 for ε3 = 0.78, T = 0.94 and P = 1.8.
Data points in black circles and corresponding least-square fit as red line.
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5.1 NPT pitch

The measurement of the pitch and the classification in blue phase or helical phase
in the NPT ensemble is overall accurate and in agreement with the snapshots of the
system. The error of the least-squares fit is always ≤ 1%. As seen in Fig. 4.2, the
nematic order parameter is atypically high at the lower wall for blue phases. Yet it
decreases along the z-axis of the simulation box. This is a result of the anchoring
function Eq. (2.7). Since hybrid anchoring is employed, the mesogens located close to
the lower substrate will align preferably with the x-axis of the system. This results in
a higher nematic order parameter at the lower substrate. Furthermore, the inverse
proportionality of the pitch in dependency of the chirality has been shown, with
parameters that are in the same order of magnitude as presented by Schlotthauer
et al. [23]. However, functional dependencies of the temperature and pressure could
not be found. In order to do so, one should perform more simulations with a wider
range of temperature and pressure, as Fig. 4.7(a) and Fig. 4.7(b) suggest.

5.2 Pressure deviation between NPT and NVT
simulations

As already mentioned, the pressure in an NV T ensemble directly results from the
Helmholtz free energy, as presented in Eq. (3.1). Since the parameters used in the
NV T simulations are determined under equilibrium of pressure, temperature and
particle number, we expect the pressure of the NV T simulations PNV T to be similar
to the pressure of the NPT simulations PNPT . Yet the direct measurement of the
average pressure in the NV T ensemble shows a higher deviation from the desired
pressure than the deviation from the pressure in the NPT ensemble (see Tab. 5.1).
The average percentage deviation from the desired pressure is ∆̄NPT = 1.7% for the
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ε3 T PNPT PNV T ∆NPT ∆NV T

0.18 0.86 1.005(4) 0.932(4) 0.5% 6.8%
0.18 0.90 1.410(4) 1.349(4) 0.7% 3.6%
0.18 0.94 1.821(4) 1.690(3) 1.2% 6.1%
0.48 0.86 1.003(4) 0.889(4) 0.3% 11.1%
0.48 0.90 1.418(4) 1.296(4) 1.3% 7.4%
0.48 0.94 1.826(5) 1.688(4) 1.4% 6.2%
0.78 0.86 0.942(5) 0.875(6) 5.8% 12.5%
0.78 0.90 1.430(5) 1.603(6) 2.1% 14.5%
0.78 0.94 1.827(5) 2.001(6) 1.5% 11.2%

Table 5.1: Comparison between average pressure inNPT simulations to the average
pressure of corresponding NV T simulations. The average was taken for the last
100 000 time steps for each ensemble. The error results from the standard deviation.
The percentage deviation for the NPT and the NV T ensemble ∆NPT and ∆NV T

are calculated from the corresponding pressures P = 1.0, P = 1.4 and P = 1.8.

NPT pressure and ∆̄NV T = 8.8% for the pressure in the NV T ensemble. From that
we can deduce that the accuracy of the barostat is ≤ 1.7%. Since the volume of the
simulation box in NV T was chosen to have an integer number of pitch lengths in
each dimension, and the pitch is prone to errors and then cubed, the higher deviation
from the desired pressure in the NV T ensemble results most likely from an error in
the estimation of the appropriate volume used for the NV T simulations.

5.3 NVT disclination lines

When looking at the disclination lines of the system, one has to keep the results
presented in Tab. 5.1 mind. Since the structure of the system is highly sensitive to
pressure, temperature and chirality, the shown disclination lines (see Ch. 4.2) are
accurate in the context of the deviation of the pressure.

5.4 Radial orientation functions

The radial orientation functions, especially the radial distribution function, are cru-
cial to verify that the system is still in the liquid state. Otherwise are statements
about phase transitions invalid and lead to wrong conclusions. As we can see in
Fig. 4.16 the given model has the tendency to freeze for large chirality and low
temperature and pressure. One has to keep that in mind when looking at the phase
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diagrams in that parameter region.

5.5 Phase diagram
The presented phase diagrams show that we have been able to successfully repro-
duce the expected phase transitions. Furthermore, we could verify the temperature
dependency of the phases of chiral liquid crystals. In addition, we could show that
also the change of pressure can reproduce the same phase transitions for small chi-
ralities (see Fig. 4.20). Yet one has to treat the accuracy of the phase diagrams
with caution. Since the classification was done by visual inspection and supported
with the results of the previous analysis, a more detailed differentiation between the
phases, especially between the three distinct phases BP I, BP II and BP III, was not
possible. In order to do this, various radial orientational pair correlation functions
have to be analyzed for all parameter setups. This would go far beyond the scope
of this thesis.

5.6 Flow profile
The Reynolds numbers (see Tab. 4.2) for the given system are in the same order of
magnitude as presented from Stieger et al. [30] for a nematic system and indicate
a laminar flow. Yet the dynamic viscosity is up to three times higher for similar
steady-state streaming velocities v∞. This is in total agreement with the fact that the
blue phase can exhibit a up to 106 higher viscosity in comparison to a conventional
fluid [10].
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6 Summary

In this work, we employ molecular dynamics simulations in the canonical and
isothermal- isobaric ensemble to investigate the properties of blue phases, a highly
complex distinct phase of chiral liquid crystals. We show that the chiral version of
the Hess-Su potential is capable of reproducing helical and blue phases for a various
range of temperature, pressure and chirality values and present the results in de-
tailed phase diagrams. The phase diagrams show phase transitions from the helical
phase into the blue phase into the isotropic phase when increasing the tempera-
ture. In addition the same phase transitions can be observed for low chirality when
decreasing the pressure.
Furthermore, the phase diagrams indicate that higher values of chirality have a

stabilizing effect on the blue phase and make it less sensitive to temperature and
pressure changes. The investigation of the pitch shows that the pitch is overall
inversely proportional to the chirality ε3 for all combinations of pressure and tem-
perature used in this thesis. Yet a clear functional dependency between pressure
and pitch or temperature and pitch has not been found and seems rather complex.
The disclination lines show that the structure of the studied blue phases is char-

acterized by a three-dimensional simple-cubic lattice which is indicative for a blue
phase II. This is supported by the radial distribution functions. They clearly show
that the given system is locally highly ordered but globally isotropic, as expected
from a blue phase. For a chirality ε3 = 0.18 the disclination lines show a tan-
gled, rather spaghetti-like structure. This indicates a blue phase III. Yet the radial
distribution functions do not indicate a distinct BP III.
The addition of a constant hydrodynamic flow show that the system is in a laminar

regime for the investigated driving forces and exhibit a high viscosity, as expected
for blue phases driven out of equilibrium.
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