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1 Introduction

This Bachelor thesis deals with computer simulations of a granular gas. A granular

gas consists of macroscopic particles which collide inelastically [1]. Due to the loss

of kinetic energy through collisions, the thermal energy inside the colliding particles

increases. This behavior contrasts with molecular gases, where exclusively elastic

collisions occur. Examples of a granular gas are sprayed sand, cosmic clouds of dust

and planetary rings [2].

To analyze and understand the behavior of granular gases, a variety of experi-

ments are necessary. It is particular helpful to perform these experiments on ground

instead of observing granular gases with telescopes and space probes, so that specific

parameters and properties of the gas could be tuned by the experimenter.

A characteristic phenomenon of granular gases, is the self-organized formation of

density patterns out of a homogeneous distribution. These pattern formation was

shown in many investigations based on computer simulations [3].

In order to measure such patterns in experiments and to determine its cooling char-

acteristics, microgravity experiments in suborbital rockets are performed. For this

cuboid containers are used which include the granular material [4].

The ideal starting point of these experiments is a homogeneous density distribution.

But, because gravity and other pertubations generate sedimentation or other inho-

mogeneities before the experiments start, these dense regions have to be dissolved.

Attempting to dissolve density inhomogeneities is exactly the aim of the thesis.

With the aid of computer simulations, which solve the hydrodynamic equations for

granular gases, an inhomogeneous density field should be homogenized to create

a starting condition for the experiments. The homogenization is made through a

vibration of the container walls, that is, through an external energy supply. We

discuss different protocols used, and whether they succeed or not.
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2 Overview

Chapter (3) gives an overview over the theoretical base and algorithms which will

be used during the thesis:

The assumptions that are chosen to describe the model of a granular gas and further

explanations are listed in Chap. (3.1). Sections (3.2)-(3.4) describe the hydrody-

namic theory of a granular gas. In Sec. (3.5), the cooling evolution in a force free

environment is derived. The theoretical part ends with a explanation of a stability

criterion and the explanation of a homogenous, steady state.

Chapter (4) gives the details of the numerical implementation.

The expedient steps to generate a homogenous state out of an inhomogeneous sys-

tem without gravity begin in Sec. (5.3) with the development of a certain functional

form of the wall-oscillation. In Sec. (6.1)-(6.3) we describe the impact of several

parameters such as shaking frequency, amplitude, packing fraction, system size and

parameters related to the protocol of the shaking. We explain appropriate parame-

ters for the simulations and specify which set of parameter gives the best homogenous

state. The last result in Sec. (6.3) shows a certain technique which is able to dissolve

an arbitrary initial state.

This thesis ends with a summary and discussion of the obtained results.
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3 Theoretical Description

3.1 Granular gases

In this section we give a detailed description of a granular gas. We follow the

description in Ref. [1]. The starting point of the microscopic description is the

pairwise collisions of macroscopic particles. One assume the occurrence of solely

pairwise interactions in order to simplify the model. This assumption is justifiable

if the mean free-flight time τf is much larger than the typical time of a collision

τcoll. In addition, it is assumed that even in denser regions, that is for a decreasing

τf , the fraction τcoll/τf is vanishing. These condition is fulfilled for particles with

insignificant elasticity and one therefore calls this approximation hard-particle ap-

proximation. Another simplification in this treatment is to consider identical particle

radii and spherical (circular) particle shapes in 3D (2D) before and after a collision.

During pairwise collisions the particles are temporally deformed and kinetic energy

is transformed into internal degrees of freedom of the particles. For example, due to

the lattice structure of the atoms inside the particles the kinetic energy turns into

phonons. Nevertheless the average particle temperature increase ∆TP per collision,

merely is in the range of 10−3K.

The loss of energy can be expressed through the rate of the relative velocities before

and after a collision

ε ≡ |v
′
1 − v′2|
|v1 − v2|

≡ |v
′
12|
|v12|

, (3.1)

where vi (v′i) is the velocity of particle i before (after) a collision and ε is called the

coefficient of restitution. Due to the energy loss ε takes on values between 0 and 1.

If we assume a viscoelastic model for the particles, ε will depend on the tangential

and normal velocity, particle masses, viscous constants, elastic constant, the Young

modulus, and the Poisson ratio. Because of the essential simplifications of the math-
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Chapter 3. Theoretical Description 3.2. Hydrodynamic description

ematics and algorithms describing a granular gas, a constant ε is used in the thesis.

The validity of this simplification, that is an ε which is independent of the above

quantities, is established in Sec. (3.7). Thus, there are only three material parame-

ters describing the particles: ε, the particle diameter σ and its mass m.

3.2 Hydrodynamic description

Alternative to the description of a granular fluid as composed of discrete particles,

one can also adopt a macroscopic approach by defining the density, temperature,

and velocity fields. The origin of the hydrodynamic approach is the microscopic

kinetic theory based on pairwise particle collisions.

First of all, to express the hydrodynamic equations describing a granular gas, one

need to introduce the velocity distribution function f(~r,~v, t) where ~v is the velocity,

~r the position, and t the time. It is defined such that

f(~r,~v, t) d3~r d3~v (3.2)

yields the number of particles inside the infinitesimal phase space volume d3~r d3~v

at the point (~r,~v) in phase space.

Due to this definition an integration over the whole phase space of a physical system

gives the total number of particles N inside this system.

∫
d3~r

∫
d3~vf(~r,~v, t) = N (3.3)

One uses f(~r,~v, t) to define the following macroscopic fields: number density n(~r, t),

average convective velocity ~u(~r, t) and granular temperature T (~r, t).

n(~r, t) =

∫
d3vf(~r,~v, t) (3.4)

n(~r, t)~u(~r, t) =

∫
d3v~vf(~r,~v, t) (3.5)

f

2
n(~r, t)T (~r, t) =

∫
d3v

m (~v − ~u(~r, t))2

2
f(~r,~v, t), T = kBT̄ . (3.6)
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Chapter 3. Theoretical Description 3.2. Hydrodynamic description

T is in units of energy, that is it includes the Boltzmann constant. As it can be seen

in Eq. (3.6) the granular temperature is proportional to the variance of the velocity.

In the following we describe the hydrodynamic equations for a granular gas in two

dimensions. These equations are derived from a corresponding Boltzmann trans-

port equation. The Boltzmann equation is the fundamental equation of kinetic gas

theory and combines the microscopic and macroscopic description of a gas. These

derivations can be found in [1].

In contrast to the equations in [1], which describe a force free granular gas, the more

general case with an external acceleration ~a(t) is presented.

The equations for the conservation of mass, momentum and energy are

∂n

∂t
+ ~∇ · (n~u) = 0 (3.7)

∂~u

∂t
+ ~u · ~∇~u+ (nm)−1~∇ · P̂ − ~a(t) = 0 with ~u =

(
ux
uy

)
(3.8)

∂T

∂t
+ ~u · ~∇T +

1

n

(
(P̂ : ~∇~u) + ~∇ · ~q

)
+ ζT = 0 (3.9)

where P̂ and ~q are the pressure tensor and heat flux, respectively

Pij = pδij − η
(
∇iuj +∇jui −

2

3
δij ~∇ · ~u

)
(3.10)

~q = −κ~∇T − µ~∇n (3.11)

p = nT [1 + (1 + ε)g(σ)ν] . (3.12)

p is the hydrostatic pressure, ν = 4n/(πσ2) the packing fraction in two dimensions

and g(σ) the pair correlation function (see Chap. (3.3)).

The energy equation (3.9) describes the temporal evolution of the granular tempera-

ture. In contrast to the other equations and to molecular gases the total temperature

of an isolated system is not a conserved quantity.

In the case of a constant coefficient of restitution ε the cooling rate ζ, the shear

viscosity η, the coefficient µ and the thermal conductivity κ are a function of several
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Chapter 3. Theoretical Description 3.3. Equation of state

other quantities:

ζ = ζ(n, T,m, ε, σ), µ = µ(n, T,m, ε, σ), (3.13)

η = η(T,m, ε, σ), κ = κ(T,m, ε, σ). (3.14)

An exact derivation of these coefficients can be found in [1]. One should mention

that the coefficient µ does not exist in the conventional hydrodynamics which only

deals with elastic collisions. This coefficient µ appears in the term µ~∇n in the heat

flux. By considering a granular gas one has to keep in mind that due to inelastic

collisions, regions with higher densities n and therefore higher collision rates lose

energy more quickly than regions with lower densities. Because of this it has an

influence on the heat flux [5]. The term proportional to the density gradient is in

principle present also for molecular fluids but the Onsager theorem protects against

it yielding µ = 0 [6].

3.3 Equation of state

In this section we describe further details of the equation of state (3.12). We fol-

low Ref. [7]. Through the following rearrangement of the equation of state, a new

dimensionless pressure P is defined, which solely depends on the packing fraction.

P ≡ p

p0

− 1 =
p

nT
− 1 = (1 + ε)g(ν) (3.15)

A measurement of the dependence on ν can be seen in Fig. (3.1). It shows the

solid-liquid phase transition in a 2D simulation of a hard sphere gas occurring at a

critical packing fraction vc ≈ 0.7. The reason of this transition is due to ordering

effects close to νc which leads to an increased average free path-length and therefore

to a decreasing pressure and collision rate.

To derive an equation of state which is valid for the whole density range, an ap-

propriate functional form has to be found. The following functional form of the

pair-correlation-function is a composition of theoretical predictions for certain den-

sity ranges and results from nonlinear regressions. It is arranged so that it fits the

measured data in Fig. (3.1) as closely as possible. gQ is finally the form that is used
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Chapter 3. Theoretical Description 3.4. Conservative form of the hydrodynamic equations

in the performed simulations.

gQ = g4 +m(ν)[gdense − g4], (3.16)

g4 =
1− 7ν/16

(1− ν)2
− ν3/6

8(1− ν)4
, (3.17)

m(ν) = [1 + exp(−(ν − νc)/mv]
−1, (3.18)

gdense =
1

νm − ν
h(νm − ν)− 1, (3.19)

h(x) = 1 + c1x+ c3x
3, with fit parameters c1, c3 and mv (3.20)

where νm = π/(2
√

3) represents the maximum packing fraction in two dimensions.

Figure 3.1: The dimensionless pressure P in dependence of the packing fraction ν
is shown. The circles represent the measured data and the red curve displays PQ,
the best approximation [7].

3.4 Conservative form of the hydrodynamic equations

In order to prepare the hydrodynamic equations for the finite volume method, which

is presented in Sec. (4), it is necessary to rewrite the equations in conservative form

∂

∂t
w(~r, t) = −~∇ · f(w(~r, t)) + g(w(~r, t)), (3.21)
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Chapter 3. Theoretical Description 3.5. Haff’s law

where w(~r, t) is a hydrodynamical field, f(w(~r, t)) is its associated flux, and g(w(~r, t))

is a source term. If the source term g(w(~r, t)) is zero, then w(~r, t) is a conserved

physical quantity [8]. In the case of a force free molecular gas these quantities are

the total energy

ρE = ρE0(~u2 + 2T/m), (3.22)

ρ~u and ρ, where ρ is the mass density [9]. The hydrodynamic equations of a granular

gas expressed in conservative form are:

∂n

∂t
= −~∇ · (n~u), (3.23)

∂

∂t
(ρ~u) =

∂

∂t
(ρ)~u+ ρ

∂

∂t
(~u)

= −
(
m~∇ · (n~u)

)
~u− ρ

(
~u · ~∇~u+ (nm)−1~∇ · P̂ − ~a(t)

)
= −~∇ ·

(
ρ~u~u+ P̂

)
+ ρ~a(t), (3.24)

∂

∂t
(ρ · E) =

∂

∂t
(ρ) · E0(~u2 + 2T/m) + ρE02~u · ∂

∂t
~u+ 2nE0

∂

∂t
T

= −
(
~∇ · (ρ~u)

)
· E0(~u2 + 2T/m) + ρE02~u ·

(
~u · ~∇~u+ (nm)−1~∇ · P̂ − ~a(t)

)
− 2nE0

(
~u · ~∇T +

1

n

(
(P̂ : ~∇~u) + ~∇ · ~q

)
+ ζT

)
= ~∇ ·

(
~u2ρ~u+ 2(ρ~uT ) + 2(P̂ · ~u) + 2~q

)
E0 + 2E0(ζnT − ρ~u · ~a(t)).

(3.25)

3.5 Haff’s law

Because a granular gas loses thermal energy over time (see Eq. (3.9)), one is inter-

ested in the time dependent change of the granular temperature (Eq. (3.6)). We

follow the derivation in [1] which refers to a homogeneous, isotropic, force-free and

infinitely extended granular gas. It is valid during the transient state where the gas

density remains homogeneous which is known as “homogeneous cooling state”.

According to the model of a granular gas, the temperature decay ∆T during the

interval ∆t is proportional to the average energy loss 〈∆EKin〉 per collision and to

the number of collisions µ(∆t) per interval ∆t. With the aid of Eq. (3.1) one is able
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Chapter 3. Theoretical Description 3.5. Haff’s law

Figure 3.2: Schematic depiction of the collision cylinder [1].

to express the change of relative velocities before and after the collision v′12 = εv12.

∆T ∝ 〈∆EKin〉µ(∆t) (3.26)

〈∆EKin〉 =
meff

2

〈
v′12

2 − v12
2
〉

= −m
eff

2

〈
v12

2
〉

(1− ε2) ∝ −(1− ε2)T (3.27)

One is allowed to replace the average kinetic energy 〈v12
2〉 with cT because of the

absence of local flows, that is 〈v〉2 = 0. To determine the number of collisions per

interval µ(∆t) one assumes that a single particle i with diameter σ moves with

the average relative velocity 〈v12〉 whereas the other particles stay fixed. Because

of that, µ(∆t) depends on the particle density n and on the size of the collision

cylinder ∆V , which is the volume where particle i can collide with another particle

during the time ∆t (see Fig. (3.2)). A collision occurs if the geometric center of

another particle is inside ∆V . The length of the cylinder is 〈v12〉∆t.

µ(∆t) = ∆V n = πσ2 〈v12〉∆tn ∝ σ2
√
T∆t (3.28)

By means of Eq. (3.26), (3.27) and (3.28) one can find an expression for the tem-

perature decay rate

dT

dt
≈ ∆T

∆t
∝ −(1− ε2)Tσ2

√
T∆t

∆t
(3.29)

By solving this differential equation with the initial condition T (0) = T0 one finally

finds Haff’s law

T (t) =
T0

(1 + t/τ0)2
with τ0 ∝ 1/(nσ2(1− ε2)

√
T0) (3.30)
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Chapter 3. Theoretical Description 3.6. Critical system size

3.6 Critical system size

In Fig. (5.1) the evolution of an initially homogenous, flux-free system can be seen.

The development of density heterogeneities shows the instability of the initial state

for the chosen parameters. One has to analyze the stability of the hydrodynamic

equations in order to find criteria for cluster formation or instability of such an

initial state. The extensive derivations of such criteria can be found in [1]. A short

description of the essential steps follows below.

To study in first approximation the nonlinear, partial differential equations of

granular hydrodynamics they have to be linearized. Otherwise it is not possible to

find analytical expressions for stability criteria. Thus one assumes that the func-

tional form of density and temperature field is the following:

T (~r, t) = Th(t) + δT (~r, t), (3.31)

n(~r, t) = nh + δn(~r, t), (3.32)

where Th(t) and nh are the homogeneous solutions. The δT (~r, t), δn(~r, t) terms

represent small, temporal and position-dependent perturbations around a homoge-

neous, time-dependent temperature field and a homogenous, steady density field,

respectively. The insertion of (3.31) into the hydrodynamic equations and other

assumptions allow to rewrite these equations into a linearized form.

In the next step this linearized form is transformed into Fourier space. This has

the advantage that derivations in the position space turn into multipliers in the

Fourier space. The definition of a Fourier-transformed field F [~a(~r, t)](~k, t) is

~a~k(t) ≡ F [~a(~r, t)](~k, t) =
1√
V

∫
d~re−i

~k·~r~a(~r, t). (3.33)

Now, it is possible to arrange the linearized form within the Fourier space into the

following structure, where M̂ consists only of algebraic combinations of the fields

but no derivatives:

∂~Ψ

∂t
= M̂~Ψ with ~Ψ ≡

(
n~k ~u~k T~k

)T

. (3.34)

Finally, the above equation can be written into an eigenvalue equation and the

12



Chapter 3. Theoretical Description 3.7. The homogeneous, steady state

eigenvalues λ(~k) are obtained by solving the secular equation. If for a value of ~k

Re(λ(~k)) ≥ 0, then the corresponding eigenvector is an unstable mode. Therefore

one can calculate a critical ~kcrit where a change of sign occurs and one obtains a

stability criterion.

Because of the fact that only modes with k ≥ 2π/L may exist in the system, there

is a connection between stability and system size. Thus the condition for instability

is kcrit ≥ 2π/L if it is the case that ∀k > kcrit : Re(λ(~k)) ≤ 0. Otherwise kcrit would

not be the critical size but the largest k+ for which k+ ≥ 2π/L and Re(λ( ~k+)) ≥ 0

is fulfilled. The dimensioned form of Lcrit in 2D is:

Lcrit =
π3/2
√

2σ

ν4g2(σ)

√
(κ∗(ε)− µ∗(ε))

ζ∗(ε)
, (3.35)

g2(σ) =
2− ν

2(1− ν)3
, (3.36)

where κ∗(ε), µ∗(ε) and ζ∗(ε) exclusively depend on ε. g2(σ) is the pair correlation

function at contact of a hard-sphere fluid. As a result, for L ≥ Lcrit, an initially

homogenous, flux-free system develops clusters. For L ≤ Lcrit the system stays

stable and therefore homogeneous.

3.7 The homogeneous, steady state

The homogenization is made through a vibration of the container walls, that is,

through an external energy supply. Through the wall-oscillation kinetic energy is

transferred to the granular gas in vicinity to the walls. Because of the underlying

microscopic collision rules this energy transforms into disordered movement [10], that

is granular temperature. The generated heated area next to the walls distributes its

thermal energy to the rest of the container because of Eq. (3.11).

The entire shaking process is limited in time and arranged so that it leads to a

homogeneous, flux-free, free cooling, granular gas after the process is finished. This

is because the aim is to generate a starting condition for experiments, which serve

to observe the free-cooling state. A homogenous, stimulated system is not part of

this thesis.

A requirement for the generated state is that it should be homogenous over at least

13



Chapter 3. Theoretical Description 3.7. The homogeneous, steady state

an order of magnitude in time and the homogeneity not be a short-lived, random

effect with local flows. We will refer to these states as homogeneous, steady states.

Below we provide a justification of the usage of a constant ε in the case of vibrating

walls.

In [1] an expression for ε in the viscoelastic case is derived:

ε = 1− c1g
1/5 = 1− (1− ε0)g1/5, (3.37)

∝ 1− (1− ε0)T 1/10, (3.38)

where g is the impact velocity, c1 includes material parameters and ε0 the initial

coefficient of restitution for T (t = 0) = T0. The expression g ∝
√
T is valid because

of the absence of local flows.

Suppose a temperature decay after time t′ in the form of T (t′) = T010−p, T (t = 0) =

T0 = 1, ε(T0) = 0.975 and define the relative deviation ∆ε ≡ ε(T0)−ε(T (t′))
ε(T0)

to 0.02.

With these values, which are also used during the simulations, the maximum per-

mitted value of p is ≈ 6. In other words, if T declines over six orders of magnitudes,

then the relative deviation of ε is still smaller then 2 %.

The above explanation that the temperature decay in a shaken system is balanced,

is supported through Fig. (5.7). It shows exemplary that the temperature varies

merely over two orders of magnitudes during the entire shaking process. Therefore

it is justified to use a constant coefficient of restitution in a shaken system.

14



4 Numerical and technical details

In the whole thesis, a square, two dimensional container, which is divided up in

square cells, is considered. The number of cells is fixed to 1282, the value of the

fields in Eq. (3.23)-(3.25) is calculated in each cell. Thus the resolution of the

physical quantities is high enough to represent the fields in an appropriate way

and low enough to keep computational cost to a reasonable level. This is because

higher resolutions increases the computing time. In addition, keeping the amount of

cells low saves computer memory. This saved memory can be used to increase the

temporal resolution of a simulation, that is to increase the frequency of stored time

steps.

Here follows a simple sketch of the finite volume method, which is used to solve

the conservative form of the hydrodynamic equations (3.23)-(3.25).

• First of all one choose an initial condition for the conservative variables in the

middle of each cell.

• The divergence theorem allows to transform the hydrodynamic equations into

surface integrals of the whole container which can be divided up into a sum of

surface integrals of each single cell [8].

• These integrals are approximated with the help of the Gaussian quadrature

method which uses four sampling points per cubic surface [11].

• To obtain the field values at the sampling points at the very beginning one

uses a seventh order WENO interpolation of the initial values.

• In the next step the fluxes between the cells can be approximated by means of a

MUSTA scheme and finally one obtains the cells inside values for the next time

step. WENO and MUSTA are commonly used numerical methods in compu-

tational fluid dynamics and stand for “weighted essentially non-oscillatory”,

and “multi stage”, respectively. [12]
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Chapter 4. Numerical and technical details

Since the numerical simulations are performed with dimensionless quantities, we

want to define the relation between the SI units, which are used in the thesis, and

the dimensionless units. From this point, we basically use SI units, otherwise it is

mentioned explicitly. The general form of the relation is qSI = qq̂Ref, where qSI is a

physical quantity in SI-units, q the dimensionless value and q̂Ref a reference value.

• space reference: x̂Ref = Lcell = σC,

where Lcell is the length of a single cell in m, σ the particle diameter in m and

C a multiplier. The value of σ is set in the following chapter,

• container size (in SI units): L = x̂Ref128,

• time reference: t̂Ref = x̂Ref/vth,0,

where vth,0 = 0.1 m/s is the initial thermal velocity of particles in the absence

of local flows,

• temperature reference: T̂Ref = mv2
th,0/d = 〈TSI(0)〉,

where d = 2 is the system dimension and m the mass per particle,

• energy reference: ÊRef = mv2
th,0/2,

• velocity reference: v̂Ref = vth,0,

• density reference: n̂Ref = 4〈ν〉/(πσ2) = 〈n〉.

The source code is written in C and parallelized with CUDA, a programming tech-

nique which takes advantage of the architecture of graphic processing units (GPU).

Therefore, additional computing capacity is provided. The simulations were made

on computers of type Dell R720, with 64 GB RAM, two CUDA-cards (Tesla K20Xm)

and two processors (Xeon E5-2650). Each processor consists out of eight cores with

a frequency of 2.6 GHz.

16 of those computers were available for the simulations, with a 120 GB hard drive

in each case.

The required power during full capacity is about 900 W for each computer. Since all

16 computers are stored in one computer cabinet, the resulting heat emission has to

be absorbed by means of a water-to-air cooling.

The data analysis is basically performed with scripts in Matlab and Gnuplot.
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5 Preparations

5.1 General system parameter

Here, we introduce the parameters that stay constant during the evolution of a

simulation. The wall-gas interaction underlies so called “hard walls”, which means

that the velocity component is reflected inelastically and the tangential component

remains constant. We tune the first set of parameters according to microgravity

experiments carried out in suborbital rockets [4]. We do this to find an access point

into a multidimensional parameter space. These are:

• particle diameter: σ ∝ 10−3 m;

• average packing fraction: 〈ν〉 = 0.02;

The packing fraction used in Ref. [4] was ≈ 0.008 but in Chap. (5.5) we justify

a minimal packing fraction of 0.02.

• system size: LSys ≈ 10 cm.

The choice of ε varies throughout the chapters. When studying the freely cooling

of granular gases it is set to 0.975. To solely consider the reference frame in (5.3.2)

the cooling of the granular gas is switched off through ε = 1. Finally in Sec. (6.2)

ε is set to 0.85, which represents a realistic value for γ − Al2O3 granules [13].

5.2 Freely cooling granular gases

Before we consider inhomogeneous density distributions and influencing them with

external forces, we first want to deal with the evolution of initially homogeneously

distributed, force-free systems. As mentioned in Chap. (1) these so-called freely

cooling granular gases are the subject of recent, experimental research. In Chap. (1)
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Chapter 5. Preparations 5.2. Freely cooling granular gases

Figure 5.1: The evolution of the density (top row) and temperature (bottom row)
in a freely cooling granular gas for L > Lcrit.

and (3.6) it was already elucidated that these freely cooling granular gases may

develop self organized density patterns. According to Sec. (3.6) the occurrence of

such a pattern formation depends on the system size L, that is, for systems with

L ≤ Lcrit no patterns appear. In Fig. (5.1) the temporal development of the density

with parameters chosen so that L ≥ Lcrit can be seen.

The distributions of the number density n(~x, 0) and velocity field ~v(~x, 0) are chosen

randomly with small, realistic fluctuation ranges with 〈~v(~x, 0)〉 = 0. One uses these

fluctuations in order to avoid numerical errors. These occur due to equal values of

the main physical quantities of adjacent finite volumes.

In the whole system the hydrostatic pressure p is initially set to a constant to

avoid local mass flows, generated through initial pressure gradients. Thus the initial

temperature field is defined through Eq. (3.12) with p(~x, t = 0) ≡ const.:

T ∝ 1

n [1 + (1 + ε)gQ(σ)ν]
. (5.1)

The definition of the initial set of variables is completed and the energy density ρE

can be calculated according to Eq. (3.22).

The following is a short, descriptive explanation of the structure formation in Fig.
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Figure 5.2: Theoretical prediction of Haff’s law (black curve) in units of the initial
temperature T0 together with the calculations.

(5.1): The origin of the patterns is due to small, spatial density fluctuations [1]. As

already explained in (3.2) in comparison to dilute density regions the collision rate

in denser regions is higher. As the energy loss for constant coefficient of restitution

merely depends on the total number of collisions, denser regions lose more kinetic

energy. Hence the local pressure decays faster in these regions and therefore local

flows towards dense regions are generated. This reinforces the effect and leads to a

formation of stable clusters.

In Chap. (3.5) Haff’s law, a rule for the time dependent change of granular

temperature, was derived and is substantiated by means of a typical simulation

shown in Fig. (5.2).

5.3 Description of the shaking process

5.3.1 Introduction

The key component of the thesis are the shaking walls. First of all we consider

a one dimensional oscillation, which means one pair of opposite walls are moving

synchronously and the container volume remains temporarily constant. Here, we

define this direction as the x−axis in a Cartesian coordinate system. To realize the

shaking inside the numerical solver one generates an oscillating force field at the two
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opposite ends. This force field has the form

~E(t) = − ~Acos(2πft+ φ)(2πf)2, (5.2)

with spatial constant amplitude ~A =
(
Ax , 0

)T

, frequency f , phase φ and time t.

This leads to a spatial constant, instantaneous acceleration ~a(t) of the gas within

every cell, where ~a(t) = ~E(t). In other words, a centered particle, which does not

touch the walls, would be subject to an acceleration ~a(t).

The previous example illustrates that this oscillating gravitational field describes a

shaken system in a comoving frame, that is a frame where all walls are at rest. As

a consequence the temporal evolution of the kinetic energy and position ~x of the

described particle is oscillating.

5.3.2 Shifting the reference frame

Since we are interested in the kinetic energy change transmitted through the walls,

that is through wall-particle collisions, we have to switch to an inertial reference

frame where the box center remains stationary (for A < L) and the walls oscillate.

However, for our representations of the position ~x we stay in the accelerated system.

Consider an oscillating amplitude larger than the box size, for such a system we find

more clear to represent the trajectory of the barycenter relative to resting walls. In

the following the transformation of the velocity field, and kinetic energy is listed:

• to achieve the inertial velocity field ~vI(~x, t), one has to subtract the spatial

constant oscillation velocity ~vwall(t) of the velocity field in the accelerated

frame ~vA(~x, t). ~vwall(t) is defined in (5.8)

~vI(~x, t) = ~vA(~x, t)− ~vwall(t) (5.3)

• as a consequence EKinI(~x, t) results in:

EKinI(~x, t) =
m

2
~vI(~x, t)

2. (5.4)
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5.3.3 Choice of the initial phase

The choice of the phase in ~a(t) (see Eq. (5.2)) follows from the following deliberation.

Due to the fact that we start our simulations with a system at rest and afterwards

apply an oscillation, the wall velocity vwall and the average gas velocity 〈~v〉 at t = 0

has to be zero. Since∫
~a(t) dt = − ~Asin(2πft+ φ)2πf = vwall , (5.5)

φ is determined to be zero. The case φ 6= 0 results in vwall(0) 6= 0 and therefore there

is no continuous transition between vwall and 〈~v〉. This leads to an acceleration pulse

in the direction of the first amplitude. As a consequence the gas receives a total

momentum and the barycenter shifts into this direction. For the visualization of this

evolution, the barycenter ~RM of the density field is calculated and its x coordinate

RMx is plotted against time t. We renounce to plot RMy because it remains constant

in this process. Figure (5.3) compares the cases φ = 0 and φ 6= 0. In order to avoid

the barycenter shift we choose φ = 0 throughout the thesis.

The barycenter is defined as

~RM =
1

M

N∑
i=1

ρi∆V ri (5.6)

where M is the total system mass, N the total number of cubic cells, ρi the mass

density in cell i and ∆V the volume of a single cell.
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Figure 5.3: The left panel represents the barycenter shift in the accelerated reference
frame for φ = π/2. In comparison the right plot shows the same case for φ = 0 and
an oscillation with constant mean value is apparent.
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5.3.4 Measuring the oscillation of a Gaussian density distribution

To substantiate the main statement of Sec. (5.3.1), that one consider an accelerated

reference frame, we simulate a physical system similar to a sole particle in a shaken

box. The position of the barycenter is centered. Due to the fact that our simulations

are based on hydrodynamics we cannot simulate single particles. The appropriate

density distribution is the Dirac delta function which can be approximated through

a 2D-Gaussian distribution with small standard deviation σ.

Since the walls in x-direction (parallel to the shaking direction) have no friction

with the gas, it does not change the wall-gas interaction to confine a 1D-Gaussian

distribution with a gradient parallel to the x-axis (see Fig. (5.4)). This has the

advantage to reduce areas close to zero in the density field. It is necessary to

avoid these areas, because they pose the problem to increase numerical errors which

is a common issue in computational hydrodynamics [14, 15]. We tried to keep

σ preferable low which means that for decreasing σ the numeric solver is able to

deal with the ever declining density values at the border of the box. For the same

arguments as in (5.2) to each initial density value a small, random value is added. As

in Sec. (5.2) an initially constant hydrostatic pressure and the same initial velocity

distribution is chosen. The density distribution ρgaus can be seen in Fig. (5.4).

Finally the temporal development of the kinetic energy of ρgaus is considered in

the inertial and the accelerated reference frame (see Fig. (5.4)). We observe that

the energy oscillation is even present in the inertial system. This can be explained

by the fact that there even exists a dilute mass layer in vicinity to the walls which

is accelerated and therefore contains the kinetic energy.

5.3.5 Transient and decay procedure

When considering initial states with near-wall densities higher than in the previous

chapter, the wall velocity vwall can be better transmitted into the system. This

leads to stronger collisions in the middle of the box (see Fig. (5.6)), that is denser

regions occur during the collisions. These regions tend to stay dense (see Chap.

(5.2)) and it is difficult to dissolve these areas afterwards. In addition to that,

the probability of numerical errors rises, due to higher gradients of the physical
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Figure 5.4: (a) The initial 1D Gaussian density distribution ρgaus. (b) The temporal
development of the kinetic energy per particle of ρgaus in the accelerated reference
frame EKinA(t) and the inertial reference frame EKinI(t) is shown with parameters
f = 100 Hz, A = 0.14σ.

quantities. In order to avoid these kind of effects one has to revise the oscillation

procedure. The highest impact of vwall to the system is during the first oscillations,

since near-wall mass layers become thinner and further oscillations accelerate lighter

mass layers. Because of that it is sufficient to develop a starting procedure which

we call “transient procedure”.

In order to build a transition from the oscillation process to the freely cooling state,

after the inhomogeneous state is dissolved, one has to develop a decay procedure,

too. We tried different kinds of transient and decay times and finally figured out that

it is quite important to keep vwall in the very first period of time as slow as possible.

The following, parabolic functional form of the wall acceleration has appropriate

properties:

awall(t) = −Axω
2 cos(ωt)



(
t

Ttr

)2

, for t ≤ Ttr

1 , for Ttr ≤ t ≤ TE(
t−(TA+TE)

TA

)2

, for TE ≤ t ≤ TE + TA

0 , for TE + TA ≤ t

(5.7)

Where Ttr is the end of the transient procedure, TE the beginning of the decay

procedure, TA the duration of the decay procedure and ω ≡ 2πf . The integration
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of Eq. (5.7) with respect to time yields the wall velocity vwall and the wall position

xwall, respectively (vwall(0) = xwall(0) = 0).

vwall = Axω



2sin(ωt)−ωt[2cos(ωt)+ωtsin(ωt)]
(Ttrω)2

, for t ≤ Ttr

−sin(ωt) , for Ttr ≤ t ≤ TE

2ω(TA+TE−t)[cos(ωt)−ω(TA+TE−t)sin(ωt)]+2sin(ωt)
(TAω)2

, for TE ≤ t ≤ TE + TA

0 , for TE + TA ≤ t

(5.8)

xwall = Ax



((ωt)2−6) cos(ωt)−4ωt sin(ωt)+6

(ωTtr)
2 , for t ≤ Ttr

cos(ωt) , for Ttr ≤ t ≤ TE

[T 2
Aω2+2TAω2(TE−t)+ω2(TE−t)2−4] cos(ωt)+3ω(TA−t+TE) sin(ωt)

(ωTA)2
, for TE ≤ t ≤ TE + TA

0 , for TE + TA ≤ t

(5.9)

In Fig. (5.5) the normalized wall acceleration awall(t), velocity vwall and amplitude

xwall are compared.

Another advantage of the transient procedure over a harmonic oscillation process

is discussed below. A symmetrical oscillation around the initial position xwall(0)

has the advantage to avoid a transmission of an average momentum to the gas.

Otherwise the direction of the first amplitude is singled out and an average mo-

mentum is transferred in this direction. A harmonic oscillation process of the form

v(t) = Axω sin(ωt) with v(0) = 0 and x(0) = Ax, does not oscillate around its initial

position x(0) since the distance x(T )− x(0) is ≥ 0

x(T )− x(0) =

∫ T

0

Axω sin(ωt) = Ax(1− cos(ωT )) ≥ 0. (5.10)

However, a harmonic oscillation of the form v(t) = Axω cos(ωt) with v(0) = Axωt

and x(0) = 0 oscillates symmetrically but in Chap. (5.3.3) we already excluded this

kind of oscillation.

Now, we calculate the distance xwall(Ttr) − xwall(0) for the revised procedure in
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Figure 5.5: The normalized wall acceleration, velocity, and amplitude of the entire
shaking process for Ttr = 3 s, TE = 5 s, TA = 3 s and f = 1.5 Hz are shown.

Eq. (5.7). Using Ttr instead of TE + TE is due to the crucial influence of the first

oscillations (see beginning of this Sec.).

xwall(Ttr)− xwall(0) = Ax

[
cos(ωTtr) +

−6 cos(ωTtr)− 4ωTtr sin(ωTtr) + 6

ω2Ttr
2

]
(5.11)

For ωTtr � 1 the previous expression can be approximated to Ax cos(ωTtr), which

results into displacements between -Ax and Ax and therefore to a symmetrical os-

cillation around xwall(0) = 0. Ax is scaling the asymmetrical term, but this occurs

for a harmonic oscillation, too (see Eq. (5.10)).

The impact of the transient procedure in terms of the symmetric oscillation, de-

pends on the basic conditions. For example it is negligible, if ρgaus is the initial

condition. On the other hand, in a system that is sensitively dependent on the

shaking procedure like in Sec. (6.3) an increasing Ttr has a considerable influence

on the barycenter (see Fig. (6.12)).

5.4 Critical system size

In Sec. (3.6) a stability criterion for homogeneous, flux-free initial states was given.

However we found out that it seems to be valid to actually use this criterion for
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Figure 5.6: (a) The initial Gaussian density distribution with a higher standard
deviation σ as in Fig. (5.4) and (b) the temporal evolution of νmax for two different
transient times Ttr.

initially inhomogeneous states with local flows. That means that systems below Lcrit

become completely homogeneous and flux-free. Whereas for L ≥ Lcrit a collapsing

gas can be detected. We proved this statement for systems with different initial

density distributions and a variety of initial, local flows. It should be mentioned

that the actual value of L differs from the theoretical prediction in Eq. (3.35). For

example Eq. (3.35) gives for ε = 0.9 and 〈ν〉 = 0.02 a critical system size of 50.4σ.

But even for a L = 133σ we found states that homogenized by its own. Only

in simulations with system sizes above 534.4σ a collapsing occurred (Fig. (5.9)).

To find out whether a system is in fact above the actual critical system size we

analyzed the standard deviation SD of the density of a freely cooling state of an

initially inhomogeneous distribution with SD(ν). If it grows larger than the initial

SD, then L > Lcrit and otherwise L < Lcrit. SD(ν) is a measure of the inhomogeneity

of the system.

In order to generate different kind of local flows, we oscillate the container with

different frequencies and system sizes according to the procedure in (5.3.5). Figure

(5.7) shows the L-f phase diagrams for L ≤ Lcrit. The main result is that after

the oscillation procedure finished and a local flow was generated, all systems below

L become homogenous and flux-free. This can be seen in Fig. (5.7), which shows

the typical evolution of the average kinetic energy per particle, a measure for local

flows. In Fig. (5.8) to (5.10) some exemplary snapshots of the density- and pressure
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and temperature T during the shaking procedure (t < 10 s) and afterwards. (b) A
f -L phase diagram. In both figures is L < Lcrit.

fields for both L ≤ Lcrit and L ≥ Lcrit are depicted.

5.5 The initial state

In this section we want to focus on the inhomogeneous state inside the two dimen-

sional box that is to be dissolved through vibrating walls.

One could choose different types of inhomogeneous initial states:

• prescribed states, one choose a functional form for the velocity, temperature

and density fields. Some examples are already given in the previous chapters,

e.g. a two dimensional Gaussian density distribution with constant pressure.

• sedimented states, that is, one simulates an initially homogenous gas with

gravity acceleration over a period of time. After the starting sedimentation

reaches a certain maximum density at the bottom of the box, one stops the

simulation and use the last state as initial state for the shaking process. Obvi-

ously the gravity force is turned off after the energy injection through vibrating

walls starts.

During the whole process of the Bachelor thesis we had to deal with numerical

problems caused by high gradients among others. This leads to an abortion of the

simulations. Nevertheless, to minimize the occurrence of numerical errors we decided
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Figure 5.8: The self-organized homogenization of the density field (top row) in
a freely cooling granular gas starting with a initially Gaussian density distribution
and L < Lcrit. The bottom row represents the corresponding pressure fields in units
of the initial pressure.

to use a prescribed starting state where the single fields can be changed simply and

the gradients be adopted. Additionally, sedimented states are difficult to control

and even tend to collapse further after the gravity force is turned off.

The functional form of a density distribution with a linear gradient m proved

to be appropriate. Because of the fact that areas whose density is close to zero

cause numerical problems (see Chap. (5.3.4)), the thinnest density area was set to

a fixed value c. This value is chosen in a way that it is large enough to minimize

numerical errors and small enough to still receive a distinct gradient. Since we

varied the average packing fraction 〈ν〉 in the box, c limits a minimal 〈ν〉. Finally,

the functional form of ν is:

ν(y) = c+my = c+
2(〈ν〉 − c)

L
y (5.12)

For our simulations we used c = 0.01 and a minimal 〈ν〉min = 0.02 throughout. With

that choice the above constraints are fulfilled and the packing fraction distribution

with the minimal possible gradient still goes from 0.01 to 0.03. In other words the
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Figure 5.9: The evolution of the density and pressure fields with the same param-
eters as an in Fig. (5.8) but L > Lcrit.

densest regions are still three times larger than the thinnest and therefore counts as

a distinct inhomogeneous system. Finally as in Sec. (5.2) to each density value a

small, random value is added, the distribution of the velocity field is the same and

the initial pressure field is constant, too. Due to the result of Sec. (5.4) that for

all L < Lcrit a self-organized homogenization occurs, we choose L > Lcrit and try

to dissolve the initial inhomogeneities in the following chapters. For the minimal

〈ν〉min we therefore set the minimum L to 285 σ. The pressure and density field of

such an initial state can be seen in the left side of Fig. (5.10).
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Figure 5.10: Snapshots of the density (top row) and pressure fields (bottom row)
before the shaking process (t = 0), at the end of the shaking process t = TE + TA,
and the beginning self-organized homogenization (t = 56 s) for L < Lcrit.
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6 Results

6.1 Shaking perpendicular to the density gradient

Now we focus on how to dissolve the initial state from Fig. (5.10) by shaking in a

direction perpendicular to the density gradient (see Fig. (6.1)). As in Fig. (5.7) the

Figure 6.1: Sketch of the system when shaking the 2D container perpendicular to
the density gradient.

f -L phase diagram in Fig. (6.2) presents an overview of the parameters we varied.

No combination of f and L produced a homogeneous state. A typical development of

the density field for the performed simulations can be seen in Fig. (6.3). “Typical”

means that almost every simulation evolved in a similar way and finally reached

densities too large for the algorithm to handle. These issues are due to very high

local packing fractions and pressures, and the limited resolution of the fields. Figure

(6.3) (c)-(d) represents one of the few cases where we obtained results after the

shaking procedure is over and demonstrates that the resulting dense region tends to

build a stable cluster with νmax = 0.88.

Considering different simulations with constant frequency and variable container

size, the density of layers moving to the middle of the container increases. This
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exhibit phase-points in the examined area where the gas becomes homogeneous. (b)
The f -A phase diagram with L = 285σ.

is due to the fact that the total system mass rises for increasing system size at

constant packing fraction. As mentioned before these denser layers tend to generate

numerical errors which lead to abortions and therefore we were not able to even

consider the collision of the layers. These layers can be seen in the upper row of Fig.

(6.3). Therefore our research was limited to maximum average packing fractions of

0.02 and maximum system sizes of 571σ.

In Fig. (6.4) simulations with different frequencies are compared. These simula-

tions aborted short after the collision of the layers when the shaking process was

still ongoing. The decrease of the standard deviation SD(ν) of the density and the

decrease of the maximum packing fraction νmax is due to an expansion directly af-

ter the collision. This temporarily, small expansion is a result of the compression

but the gas is still kept centered through the vibrating walls and does not lead to

an expansion over the whole container (see Fig. (6.3) (c)-(d)). It is striking that

the frequency merely influences the temporal development of the system, that is a

shifting of the graphs along the t-axis while SD(ν) and νmax are hardly affected.

To find out whether the amplitude changes the development of the density field,

we varied the parameters according to the f -A phase diagram in Fig. (6.2). Un-

fortunately it was only possible to show the area for relatively small values of the

product fA, because of problems of the stability of the simulations. This is because

the value fA scales the amplitude of the wall velocity which leads to large gradients

of the physical quantities. Nevertheless, as already explained, the frequency is not

a crucial parameter and the limited f -A phase diagram yields probably the main
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information.

All in all, since we did not obtain the desired results with the used sets of param-

eters, we decided to change the orientation between shaking direction and density

gradient.

Figure 6.3: (a), (b): A typical evolution of the density field in the event of the
perpendicular acceleration with the final collision of the layers and the abortion at
t = 7 s. (c), (d): Snapshots of the density fields at the end of the shaking process
t = TE + TA = 13 s and the further collapsing afterwards (t = 19 s). Parameters
(a),(b): L = 571σ, f = 10 Hz, A = 2.9σ, 〈ν〉 = 0.02; (c),(d): L = 285σ, f =
2 Hz, A = 11.4σ, 〈ν〉 = 0.02.
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Figure 6.4: The illustration of the impact of the frequency f in Hz on the evolution
of the maximum packing fraction νmax (a), (c) and the SD(ν) (b), (d). Parameters:
L = 285σ for (a) and (b), L = 571σ for (c) and (d).

6.2 Shaking parallel to the density gradient

As explained in Sec. (6.1) in order to avoid the generation of dense, stable regions

(Fig. (6.3)(d)) and to keep the total mass low, we chose 〈ν〉 = 0.02 and L = 285σ

which is close to Lcrit, but still large enough to lead to a distinct self-organized

collapsing of the initial state as in Fig. (5.9).

The shaking procedure leads to a collecting of the mass in one single layer in the

center of the system, which is symmetric about the x-axis (Fig. (6.8)). During the

shaking process its center of mass bounces in the middle of the box, perpendicular

to the shaking walls (see Fig. (6.6)). After the oscillation process is over, this layer

starts to expand over the whole system.

The position of the dense layer inside the box after the oscillation procedure

finishes, determines the evolution of the system. This means the middle layer expand

around its barycenter and therefore an off-centered layer leads to an inhomogeneous

density distribution (Fig. (6.9)). Varying the duration of the shaking procedure, for
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Chapter 6. Results 6.2. Shaking parallel to the density gradient

Figure 6.5: Sketch of the system when shaking the 2D container parallel to the
density gradient.

constant f and A in a way that the layer stays as centered as possible leads finally

to a homogeneous state. This behavior for f = 10 Hz, A = 2.9σ is represented

in Fig. (6.8). Whether such an evolution towards a homogeneous state occurs,

is sensitively dependent on the duration of the transient procedure. For example

the two sets of oscillation parameters TE1 = 6.15 s and TE2 = 6.8 s with constant

remaining Ttr1 = TA1 = Ttr2 = TA2 = 1 s generate a homogenous and inhomogeneous

state, respectively (see Fig. (6.8) and (6.9)).

For larger system sizes and constant 〈ν〉 this expanding of the middle layer dis-

appeared (see Fig. (6.7)). This is due to the fact that the density of the centered

layer increases which leads to a stable compacted region. This effect was already

treated in Chap. (6.1). Reducing the total mass of the system M ∝ 〈ν〉L2, might

avoid the occurrence of dense regions. Since 〈ν〉 cannot be reduced due to numerical

reasons one has to reduce L. To fulfill L > Lcrit, Lcrit has to be reduced through

an increasing 〈ν〉 (see Eq. (3.35)). As a result for decreasing L and L〈ν〉 = const.,

one obtains the desired reduced system mass. But in the simulations this does not

achieve the required result and actually leads to even denser layers (see green curves

in Fig. (6.7)). That is why only the case 〈ν〉 = 0.02 and L = 285σ is considered.
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Chapter 6. Results 6.2. Shaking parallel to the density gradient

Figure 6.8: The homogenization of the density field (left column) for a centered
barycenter at t = TE+TA = 7.15 s and the related pressure fields in units of the initial
pressure (right column). Parameters: L = 285σ, f = 10 Hz, A = 2.9σ, 〈ν〉 = 0.02
and Ttr = TA = 1 s
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Figure 6.9: The evolution of the density field (left column) for an off-centered
barycenter at t = TE + TA = 7.8 s and the related pressure fields (right column) in
units of the initial pressure. Parameters: L = 285 σ, f = 10 Hz, A = 2.9σ, 〈ν〉 =
0.02 and Ttr = TA = 1 s
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6.2.1 Varying f and A

As we found out in Sec. (6.1) that f strongly influences the temporal development

of a system one tried the approach Ti = ni/f in order to produce comparable

evolutions for different f . The index i represents one of the three parts of the

oscillation procedure and ni is the number of oscillations that is kept constant when

varying f . We already found that the values ntr = nA = 10 and , nE = 61.5 lead to

a homogeneous state for f = 10 Hz and A = 2.9σ.

The main result is that this approach actually leads to comparable evolutions and

homogeneous states. As in Sec. (6.1) the frequency basically influences the temporal

development of the system and SDmax, νmax increase slightly for rising f .

To prove this, the temporal dependence of νmax, Ry, and SD(ν) for several frequency

is depicted in Fig. (6.10). The slight increase of SD(ν) after its minimum also occurs

in the free-cooling state and is due to the gradually beginning clustering.

Varying A at constant f and ni leads to a different position of the barycenter

after the oscillation process is finished. It is striking that this barycenter shift stays

comparable for arbitrary frequency and fixed ni (see Fig. (6.10)). As a consequence,

adapting ni in a way the barycenter is centered at t = TE +TA, leads to homogenous

systems in the examined frequency range [1, 160] Hz. Nevertheless, this procedure

has the disadvantage that it simply dissolves the inhomogeneities that are symmet-

rical in one direction. To study a more general procedure, which is independent of

the initial state we discuss a different shaking protocol in the following chapter.

39



Chapter 6. Results 6.3. All-sided vibration

0.01

0.1

-6 -4 -2 2 4 6

ν m
a
x

log(t/s)

(a) f = 1
f = 10
f = 20
f = 40
f = 80
f = 160
f = 0

1e-005

0.0001

0.001

0.01

0.1

1

10

-6 -4 -2 2 4 6 8 10

S
D

(ν
(x

))

log(t/s)

(b) f = 1
f = 10
f = 20
f = 40
f = 80
f = 160
f = 0

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

-6 -4 -2 2 4 6 8

R
M

y
/L

log(t/s)

(c)

f = 1
f = 10
f = 20
f = 40
f = 80
f = 160
f = 0

0.4

0.45

0.5

0.55

0.6

0.65

0.7

-6 -4 -2 2 4 6

R
M

y
/L

log(t/s)

(d)

f = 10
f = 20
f = 40
f = 80
f = 160

Figure 6.10: The illustration of the impact of the frequency f in Hz on the evolution
of the maximum packing fraction νmax (a), the standard deviation SD(ν) of the
density (b) and the barycenter RMy (c). Parameters: L = 285σ, 〈ν〉 = 0.02, A =
2.9σ. (d) The barycenter shift for a changed amplitude A = 1.4σ, varied frequency
and otherwise equal parameters.

6.3 All-sided vibration

We now discuss a shaking protocol where all walls vibrate with equal frequency

and amplitude. As in Sec. (6.1)-(6.2) the container volume remains temporarily

constant. An occurrence of a gravitational force in a certain direction would require

pairwise independent shaking walls, but here it is not necessary. As mentioned in

Sec. (5.1) hard walls are implemented and the velocity components tangential to

the walls remain unchanged. As a result a gas layer close to an arbitrary wall solely

achieves an acceleration perpendicular to that wall and the entire gas is pushed to

the center (see Fig. (6.13)). To obtain a homogenous state the process described in

the previous Chap. is used. Therefore one starts with constant f and A and vary

TE until one obtains a homogenous state. As before one starts with A = 2.9σ and

define f = 2 Hz.
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Chapter 6. Results 6.3. All-sided vibration

Figure 6.11: Schematic of the system in the all-sided vibrated case.

We vary TE in a range that it is always large enough so that the barycenter is

stabilized in the center at TE + TA. By stabilized we mean that its momentum

is approximately zero. Figure (6.12) shows the results. Every evolution leads to a

highly compacted area in the middle that starts to expand at approximately t = 20 s,

that is independent of TE. Unfortunately most simulations aborted shortly after

the expansion and therefore we were not able to examine whether this expansion

finally leads to a homogenous state like in Sec. (6.2). This is because it could

also be possible that the expansion stops at a certain point. This case arises for a

simulation with TE = 22.5 s (see orange curves in Fig. (6.12)). The expansion is

merely temporary and its maximum ν evolves towards one, after the shaking process

is terminated. This is comparable to the results in Sec. (6.1).

Nevertheless, in order to actually see a homogenous distribution, one has to avoid

these abortions. Therefore we tried quite small values of TE, which has the advantage

that νmax and SD(ν) actually decrease and therefore the simulation stability rises.

The downside is that the barycenter is still moving towards the center at TE + TA

or its location is not stabilized in the center. As in the previous Sec. we find

that off-centered expansions do not lead to homogenous state (see for example Fig.

(6.14)). The sensitive dependence of RM(x, y) on TE which we already noticed in

the previous Sec. is even higher.

A method to increase the stability of RM is, according to Sec. (5.3.5), to raise

Ttrf = ntr and to decrease A. A comparison between different Ttr can be seen in Fig.

(6.12) (d) and the transient procedure proves to have an impact on the stability.

Finally, we find that for the values A = 0.14σ, ntr = 100, f = 20 Hz and TE = 11.9 s

a homogenous state can be successfully produced, as shown in Fig. (6.13).
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Chapter 6. Results 6.3. All-sided vibration

The largest advantage of shaking in both directions is that it does not fail for

a different symmetry in the initial state. To demonstrate this, the initial density

gradient was rotated by 45 ◦. After adjusting the parameters of the driving protocol

we finally obtained a homogenous state, too (see Fig. (6.15)).
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Figure 6.12: The evolution of νmax in (a), SD(ν) in (b) in a all-sided vibrated box
with stabilized barycenter RM(x, y) for different values of TE (in s). (c) A typical
evolution of the barycenter of such a simulation. (d) illustrates the stabilizing effect
of ntr. The middle two trajectories result from ntr = 100, the external from ntr = 10
and otherwise equal parameters.
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Figure 6.13: The homogenization of the density (left column) for a centered expan-
sion and the related pressure fields in units of the initial pressure (right column).
Parameters: L = 285σ, 〈ν〉 = 0.02, f = 20 Hz, A = 0.14σ, Ttr = TA = 5 s and
TE = 11.9 s
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Figure 6.14: The evolution of the density (left column) for an off-centered ex-
pansion can be seen and the related pressure fields (right column). Parameters:
L = 285σ, 〈ν〉 = 0.02, f = 20 Hz, A = 0.14σ, Ttr = TA = 5 s and TE = 11.3 s
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Figure 6.15: Even a different initial symmetry in the density field can be dissolved
(left column) and the related pressure in the right fields (right column). Parameters:
L = 285σ, 〈ν〉 = 0.02, f = 2 Hz, A = 2.9σ, Ttr = TA = 5 s and TE = 7.5 s
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7 Summary and discussion

The main result of this thesis is that it is possible to obtain homogeneous states

from an initially inhomogeneous density distribution. The homogenization is due

to dense, high-pressure regions, generated by the shaking procedure which expand

after the shaking stops. These high-pressure regions arise through the vibrating

walls, which accelerate the gas perpendicular to the wall towards the center. A

necessary condition for an even expansion is the position of the barycenter during

the expansion. This means, an all time centered barycenter leads to a homogenized

state.

Another basic condition for this homogenization is the level of compaction during

the shaking process. That is, too dense layers do not have the ability to expand in

a way that leads to a homogenous state. The reason for this probably lies in the

pair-correlation-function gQ from Sec. (3.3). This includes the solid-liquid phase

transition around νc ≈ 0.7 which causes a drastic change in slope of the pressure

for this value of ν (see Fig. (3.1)). Because of that we throughout tried to avoid

the occurrence of too compacted areas, with several vibration techniques such as the

transient procedure, and a temporally limited vibration process which have delivered

the desired results. In the case of an oscillation parallel to the density gradient (Sec.

(6.2)) it is particularly simple to avoid these regions and to generate homogeneous

systems, since the most compacted area is distributed in a symmetrical, centered

stripe. The maximum packing fraction in Fig. (6.10) amounts merely to 0.11 for

all examined frequencies and the system is far away from a phase transition. In

comparison, the all-sided vibration generates compact areas in form of circles that

tend to collapse during the shaking process and the maximum packing fraction is

reached quite fast.

Another disadvantage of too compacted areas is the increased instability of the

simulations. Because of this and other numerical issues, the explorable parameter

space was limited to certain system sizes and packing fractions. A proposal to
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stabilize the simulations is, to increase the resolution of the system. That is using

higher resolutions such as 2562 cells will smooth out the gradients of the physical

fields. With an increased simulation stability, it would be possible to explore the

stability of compacted areas more detailed. Thereby, in the all-sided shaking case, it

could be possible to increase the total vibration time, which stabilizes the barycenter

as in Fig. (6.10), without an abortion during the expansion. A low wall velocity

vw ∝ fA may lead to a limited compaction of the high-pressure region (see Fig.

(6.10)) and afterwards to an evenly expansion into a homogeneous state. Thus, a

universal procedure is created, for which Ttr, TE and TA do not have to be tuned.

To actually be able to use theoretical predictions for experiments with granular

gases one has to implement a more realistic wall-gas interaction. Walls without

tangential friction may generate artificial states that are not observed in reality.

Especially the states produced in Sec. (6.2) would not arise in the case of tangential

friction. In addition, theoretical predictions in a 3D-system would be even more

useful for experimentalists. However, it might be difficult to control the compacted

areas because the hysteretic solid-liquid phase transition is even more apparent in

3D [7].

In conclusion, the all-sided shaking procedure is the single procedure to obtain a

homogeneous state out of an arbitrary distributed initial state.
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