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I. INTRODUCTION

Since the early days of quantum mechanics, it
has been known that sufficiently accurate solutions of

Schrödinger’s equation for electrons and nuclei yield good
predictions of the properties of solids and molecules [1].
But the Coulomb repulsion between electrons causes the
computational cost of solving the Schrödinger equation to
grow rapidly with the number of electrons, N [2]. How-
ever, as Hohenberg and Kohn proved in 1964 [3], the
one-electron density may be used as the basic variable of
quantum mechanics instead of the wavefunction, greatly
reducing the complexity of the computational problem.
This is called density functional theory (DFT) [4]. In
principle, the mapping of the Schrödinger equation to
one with the electron density is exact, but in practice,
both the kinetic energy and the energy of the interaction
between electrons must be approximated. In the orig-
inal Thomas-Fermi theory [5, 6], a local density func-
tional approximation to the kinetic energy is used. How-
ever, Thomas-Fermi theory proved unsuitable for chemi-
cal and solid-state applications as it does not bind mat-
ter [7]. Shortly after the Hohenberg-Kohn theorems,
Kohn and Sham (KS) [8] found a middle ground by map-
ping the many-body system onto a fictitious system of
non-interacting electrons which reproduce the exact elec-
tron density. The main reason KS DFT became success-
ful is because the kinetic energy of these non-interacting
electrons is an excellent approximation to the many-body
kinetic energy. Simple approximations to the interac-
tion energy produce much greater accuracy and reliabil-
ity compared with the standard orbital-free DFT schemes
built on Thomas-Fermi theory. However, the accuracy of
the results are still sensitive to the approximation of the
exchange-correlation (XC) functional. In the past four
decades, there has been extensive research into improv-
ing density functional XC approximations. Development
of both empirical and non-empirical functionals require
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great intuition built on years of experience, as well as
painstaking trial and error [9–11].

Despite the great success KS DFT has enjoyed, the
computational cost scales as O(N3), which is much worse
than the linear scaling of orbital-free DFT [12]. Thus,
there continues to be strong interest in improving upon
existing orbital-free approximations to the kinetic en-
ergy [12–14]. A sufficiently accurate approximation to
TS[n], the kinetic energy of KS electrons as a functional
of the ground-state density n(r) would enable highly ac-
curate orbital-free DFT calculations with the same ac-
curacy as KS DFT at a fraction of the computational
cost. For example, benchmark orbital-free DFT calcu-
lations are capable of treating millions of atoms in met-
als [15] or proteins in solvent [16]. Note that accuracy in
TS beyond that of current XC approximations would be
unnecessary, since all standard orbital-free DFT schemes
utilize the KS decomposition of the energy, so that stan-
dard XC approximations developed for KS DFT can be
utilized. However, since TS is typically comparable to
the total energy of the system [4], an unavoidable prob-
lem is that a useful kinetic energy (KE) functional calls
for much stricter relative accuracy than XC functionals.
Additionally, accurate functional derivatives are required
because one finds the ground state density by solving an
Euler equation with the approximate kinetic energy func-
tional. Continued efforts have been made in this research
direction, with some notable progress [17–28]. For a re-
view of state-of-the-art orbital-free DFT functionals, we
refer the reader to Ref. [12].

In DFT, functionals typically fall into two categories.
Non-empirical functionals derived from first principles
tend to work well across a broad range of systems, and
may exhibit systemic errors in treating certain types of
interactions. Semi-empirical functionals introduce pa-
rameters that are fitted to standard data sets, and are
typically more accurate with less systematic errors.

Recently, some of us applied machine learning (ML)
in a completely new approach to approximating density
functionals [29, 30]. In a proof of principle, kernel ridge
regression was used to approximate the kinetic energy of
non-interacting fermions confined to a 1d box as a func-
tional of the electron density [29]. In that work, a modi-
fied orbital-free DFT scheme was able to produce highly
accurate self-consistent densities and energies that were
systematically improvable with additional training data.
ML algorithms are capable of learning high-dimensional
patterns by non-linear interpolation between given data.
These powerful methods have proved to be very success-
ful in many applications [31], including medical diag-
noses [32], stock market predictions [33], automated text
categorization [34], and others. Recently, ML has been
applied to quantum chemistry, including fast and accu-
rate modeling of molecular atomization energies [35–37],
optimizing transition state theory dividing surfaces [38],
and calculating bulk crystal properties at high tempera-
tures [39].

This new approach to density functional approxima-

tion suffers none of the typical challenges found in tra-
ditional approximations, but presents many new ones.
First and foremost, ML is data-driven: reference calcu-
lations are needed to build a model for the KE func-
tional. Since every iteration in a KS DFT calculation
provides an electron density and its exact non-interacting
KE, reference data is relatively easy to obtain. Addition-
ally, the ML approximation (MLA) to the KE may have
thousands or millions of parameters and satisfy none of
the standard exact conditions in DFT, such as positiv-
ity, scaling, and exactness for a uniform electron gas. On
the other hand, the form of the MLA is completely gen-
eral and thus directly approximates the functional itself,
suffering none of the typical issues plagued by standard
functionals starting from a local approximation. For ex-
ample, some of us recently showed that an MLA for the
KE has no problem accurately dissociating soft-Coulomb
diatomics in 1d—a huge challenge for standard approxi-
mations [30]. However, kernel ridge regression is strictly
a method of interpolation. An MLA can only be used on
systems it was designed for.

In this paper, we explore the properties of the MLA
derived in Ref. [29] in greater detail. In particular, we
investigate the use of various kernels and their proper-
ties and the efficiency of various cross validation meth-
ods. We discuss the issue of functional derivatives of
the MLA in greater detail, and explain how a modified
constraint to the standard Euler equation enables highly
accurate self-consistent densities, or constrained optimal
densities, to be found. Additionally, a projected gra-
dient descent algorithm is derived using local principal
component analysis in order to solve the modified Euler
equation. Finally, we explore the use of a sparse grid
representation of the electron density and its effects on
the method.

II. THEORY AND BACKGROUND

Throughout this work, we consider only non-
interacting same-spin fermions in one-dimension. Thus,
all electron densities n(x) are fully spin-polarized.
Atomic units are used in symbolic equations, but energies
are usually presented in kcal/mol.

A. Model system

Consider N non-interacting same-spin fermions sub-
ject to a smooth external potential in one-dimension,
with hard walls at x = 0 and x = 1. We restrict this
study to a simple class of potentials, namely a sum of 3
Gaussian dips with varying heights, widths and centers:

v(x) =

3∑
j=1

aj exp(−(x− bj)2/(2c2j )), (1)
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FIG. 1. A few sample densities and their corresponding po-
tentials, for N = 1.

for x ∈ [0, 1], and v(x) = ∞ elsewhere. The Hamil-

tonian for this system is simply Ĥ = T̂ + V̂ , where
T̂ = −∂2/2∂x2 and V̂ = v(x). We solve the Schrödinger
equation (

−1

2

∂2

∂x2
+ v(x)

)
φ(x) = εφ(x), (2)

for the eigenvalues εj and orbitals φj(x). As our fermions
are same-spin, each orbital φj(x) is singly-occupied.
Thus, the electron density is given by

n(x) =

N∑
j=1

|φj(x)|2, (3)

and the kinetic energy is

T =
1

2

N∑
j=1

∫ 1

0

dx|φ′j(x)|2. (4)

A dataset is created by randomly sampling aj ∈
[1, 10], bj ∈ [0.4, 0.6], cj ∈ [0.03, 0.1], to generate 2000
different potentials. For each potential, the system is
occupied with up to 4 fermions, and the exact densi-
ties and kinetic energies are computed. Numerically, the
Schrödinger equation is solved by discretizing the density
on a grid:

xj = (j − 1)/(NG − 1), j = 1, . . . , NG (5)

and ∆x = 1/(NG − 1) is the grid spacing. Numerov’s
method [40] together with a shooting method is used to
solve for the eigenvalues and eigenfunctions of Eq. (2).
For NG = 500, the error in our reference kinetic energies
is less than 10−7. Fig. 1 gives a few sample densities and
their corresponding potentials.

The data used here is identical to that of Ref. [29].
The exact values of the parameters used in each sample
is given in the supplementary information of Ref. [29].
Of the 2000 samples generated, the first half is reserved
for training while the second half is reserved for testing
(which we refer to as the test set).

B. Orbital-free DFT

In orbital-free DFT, TS is approximated as a functional
of n(x). For our model system with non-interacting
fermions, the total energy is given as

Ev = min
n
{T [n] + V [n]} , (6)

for a given potential v(x). The potential is known exactly
as a functional of n(x):

V [n] =

∫ 1

0

dxn(x)v(x). (7)

Via the variational principle, the ground-state density is
found by the Euler-Lagrange constrained search

δ

{
Ev[n]− µ

(∫
n(x) dx−N

)}
= 0, (8)

where the chemical potential µ is adjusted to produce the
required particle number N . This becomes simply

δT [n]

δn(x)
= µ− v(x). (9)

The density that satisfies this equation, minimizing Ev[n]
with the normalization constraint, is found self consis-
tently.

Given the exact functional T [n], solving Eq. (9) will
yield the exact ground-state density of the system. But
in practice, T must be approximated. Let T̃ be such an
approximation, n(x) be the exact density, and ñ(x) be

the self-consistent density found with T̃ . There are two
measures of the error of such an approximate T̃ [41]. The
first is to compute the functional-driven error ∆TF =
T̃ [n] − T [n], which is simply the error in the KE evalu-
ated on the exact density. The second (and much more

difficult) test is to insert T̃ into Eq. (9), solve for the
approximate density ñ, and compute its error relative to
the KE of the exact density ∆E = Ẽv[ñ]− Ev[n]. Then
the density-driven error is defined as ∆ED = ∆E−∆TF
[41]. This is the additional error incurred by the ap-
proximate density. In practice, a functional which only
satisfies the first test is not much use, as the ground-state
density itself must also be obtained from this approxima-
tion. In orbital-free DFT, self-consistent results can be
much worse than energies of KS densities, as inaccuracies
in the functional derivative can cause large errors in the
corresponding density. In the case of the KE functional
for real systems, functional derivatives of traditional ap-
proximations can have singularities at the nuclei, making
all-electron calculations very difficult, if not impossible,
to converge [12]. Many of these problems can be avoided
through use of pseudopotentials [12, 28], but in general
the solution for Eq. (9) is nontrivial.

As mentioned above, the simplest density functional
approximation to TS is the local approximation [4], which
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for spin-polarized densities in 1d is

T loc[n] =
π2

6

∫
dxn3(x). (10)

For N = 1, the exact KE has the von Weizsäcker [17]
form:

TW[n] =

∫
dx

n′(x)2

8n(x)
. (11)

As was shown in Ref. [29], the local approximation does
poorly. The mean absolute error (MAE) on the test set
is 217 kcal/mol, and self-consistent results are even worse
at 1903 kcal/mol. A standard extension of the local ap-
proximation to a semi-local form is to add a fraction of
TW[n] to T loc[n], forming a modified gradient expansion
approximation. It was shown in Ref. [29] that this did
little to improve upon the local approximation.

C. Data topology and representation

Typically in ML, the data has a finite representation.
For example, in Ref. [35], molecular structures are rep-
resented by a Coulomb matrix and the model predicts
atomization energies. In contrast, the electronic density
n(x) is a continuous function restricted to the domain [42]

JN ≡
{
n
∣∣∣n(x) ≥ 0, n1/2(x) ∈ H1(R),

∫
n(x) dx = N

}
,

(12)
where H1(R) is a Sobolev space1. Although JN is infinite
dimensional, in practice n(x) is expanded in a finite basis
(with NG basis functions). In this work, we use a real
space grid to represent the density, since our reference
calculations are done using the same grid. We use the L2

inner product and norm between densities ni(x), nj(x)

〈ni, nj〉 =

∫ ∞
−∞

dxni(x)nj(x), ‖n‖ =
√
〈n, n〉. (13)

(In actual calculations, all densities are represented on a
finite basis, and thus will have have a finite L2-norm).
Since the ML algorithm is expressed in terms of this in-
ner product, the results are independent of the specific
representation used as long as the basis is converged.

Even with a truncated basis, JN is still high-
dimensional and applying ML to learn the KE of all den-
sities in JN would not be feasible. Fortunately, we are
only interested in a subspace of JN related to a specific
class of potentials (e.g. Gaussian dips), which greatly

1 A Sobolev space Wk,p(R) is a vector space of functions with
a norm that is a combination of Lp-norms of the function itself
and its derivatives up to a given order k. It is conventional to
write W 1,2(R) as H1(R). f ∈ H1(R) means that f and its first
order derivative are in L2.
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FIG. 2. Example of the non-linear transformation of data to
feature space. (a) The data is non-linear (a circle) in Carte-
sian coordinates. The green dashed line is a linear fit to the
data points (blue crosses). (b) When the data is transformed
to feature space by x → ρ cos θ, y → ρ sin θ, the linear struc-
ture in the data is revealed (red solid line). (c) The model can
be transformed back to the original space to give a non-linear
fit of the data.

reduces the variety of possible densities. In general, let
the potential v(x) be parametrized by the parameters
{p1, . . . , pd}. We define the density manifold MN ⊂ JN
as the set of all densities that come from these poten-
tials with a given particle number N . In general, MN is
a d-dimensional manifold. The training densities, nj(x)
for j = 1, . . . , NT , are sampled fromMN . In the present
work, the external potential has 9 parameters, and thus
d is at most 9.

D. The kernel trick and feature space

In finding the structure of low-dimensional data, it
is often sufficient to optimize parametrized non-linear
forms (e.g., using a polynomial to fit a sinusoid). For
high-dimensional, nonlinear data this becomes increas-
ingly difficult. In kernel-based machine learning, the ap-
proach is to transform the data itself non-linearly to a
high-dimensional space known as feature space, such that
the data becomes linear [31, 43–46].

Fig. 2 illustrates data points that lie on a circle in the
Cartesian plane. As shown, the data becomes linear on
transformation to polar coordinates, and linear regression
can subsequently be used to fit the data. Transforming
back to Cartesian coordinates recovers the non-linearity.
Let the data points belong to a vector space χ, also called
input space, and let Φ : χ → F be the map to feature
space F . Assuming we wish to apply a linear method
such as regression in feature space F , we note that re-
gression can be expressed solely in terms of the inner
product between feature vectors Φ(x) and Φ(y), where
x, y ∈ χ. We define the kernel k such that

k(x, y) = 〈Φ(x), Φ(y)〉. (14)

The kernel can generally be thought of a measure of simi-
larity between data, but must satisfy Mercer’s condition:∫ ∫

k(x, y)g(x)g(y)dxdy ≥ 0, (15)
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for all g(x) satisfying
∫∞
−∞ |g(x)|2dx <∞. Mercer’s the-

orem [47] guarantees the existence of a feature space F ,
which is a reproducing kernel Hilbert space [48]. Since
the linear algorithm in F may be expressed in terms of
the kernel in Eq. (14), Φ need never be explicitly com-
puted. This procedure is known as the kernel trick, and
enables easy nonlinearization of all linear scalar product-
based methods that can be expressed via an inner prod-
uct [49].

E. Kernel ridge regression

Kernel ridge regression is a nonlinear version of regres-
sion with a regularization term to prevent overfitting [50].
Our MLA for the KE has the form

TML[n] =

NT∑
j=1

αjk[n, nj ], (16)

where NT is the number of training densities, αj are
weights to be determined, nj are training densities and
k[n, nj ] is the kernel. The weights are found by minimiz-
ing the quadratic cost plus regularization

C(α) =

M∑
j=1

(TML[nj ]− T [nj ])
2 + λα>Kα, (17)

where α = (α1, . . . , αNT
), K is the kernel matrix, Kij =

k[ni, nj ], and λ is called the regularization strength. The
second term penalizes weights with large magnitudes in
order to prevent overfitting.2 By setting the gradient of
Eq.17 to zero, minimizing C(α) gives

α = (K + λI)−1T , (18)

where I is the identity matrix and
T = (T [n1], . . . , T [nNT

]). The hyperparameters,
which include the regularization strength λ and the
parameters of the kernel such as the length scale σ, are
found via cross validation (see [36] and Sect. III).

The choice of the kernel will depend on the given data.
Some kernels are designed to be generally robust and
applicable (e.g., the Gaussian kernel), while others are
designed for a specific type of data (see e.g. [31, 52, 53]).
A good choice of kernel can reflect the characteristics of
the data (see [54]). In Ref. [29], we chose the Gaussian
kernel

k[ni, nj ] = exp
(
−‖ni − nj‖2/2σ2

)
, (19)

2 The regularization term accounts for the possibility of noisy data
(e.g. experimental data), and imposes certain smoothness condi-
tions on the model (see [51]). Our reference data is deterministic
and thus noise-free in this sense, but, because the precision of
our calculations is limited, we may consider the numerical un-
certainty to be noise.
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between all distinct pairs of densities in the dataset (2000
densities). The maximum distance between any pair is 0.9.
(b) Histogram of the KE in the dataset. The vertical dashed
line at 3093 kcal/mol is the ground-state energy of one fermion
in a flat box of length 1.
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FIG. 4. (a) An example 1d noisy data set. (b) Transformation
to feature space Φ(x). (c) Centering of data in feature space.

where σ is the length scale. Since the density is repre-
sented on a uniform grid, the L2-norm can be approxi-
mated by3

‖ni − nj‖2 = ∆x

NG∑
l=1

(ni(xl)− nj(xl))2 (20)

where xl is given by the grid defined in Eq. (5). This ap-
proximation becomes exact as ∆x→ 0. Fig. 3 shows the
range and distribution of Euclidean distances between all
pairs of densities and KE of all densities in the dataset
with N = 1.

Ordinary linear regression models frequently employ a
bias term to account for the fact that the data might
lie away from the origin. Without this term, the regres-
sion line is forced to go through the origin, causing a

3 Note that, in Ref. [29], the same representation for the density
was used, but the density were treated as vectors, so the standard
Euclidean distance was used in the kernel. This is equivalent to
the formulation here, except our notation is more general now
(e.g. Simpson’s rule could be used to approximation the L2-norm
instead of a Riemann sum), and the length scale in Gaussian
kernel here is related to the scale of the kernel in Ref. [29] by a
factor of

√
∆x.
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systematic error if the data does not. The bias term
can be implemented directly, or by centering the sam-
ples such that the mean is zero. Fig. 4 illustrates the
transformation to feature space for an example 1d data
set and linear regression in feature space. If the data is
centered in feature space, the bias term is unnecessary.
Here, we center the densities in features space such that∑NT

j=1 Φ(nj) = 0. We define the centered map to feature

space Φ̃(n) = Φ(n)−∑NT

j=1 Φ(nj)/NT . Then the centered

kernel is [49]

k̃[n, n′] = 〈Φ̃(n), Φ̃(n′)〉

= k[n, n′]− 1

NT

NT∑
j

(k[n′, nj ] + k[n, nj ])

+
1

N2
T

NT∑
i,j=1

k[ni, nj ]. (21)

For simplicity, all equations given in this work assume
that the data is centered (i.e. k = k̃). In fact, kernels
such as the Gaussian kernel Eq.(19) whose induced re-
producing kernel Hilbert space on a bounded domain is
dense in the space of continuous functions on this domain
do not require centering [55].

III. MODEL SELECTION

A. Kernels

Model selection refers to the process of selecting a ker-
nel and the corresponding hyperparameters. In kernel
ridge regression, this includes the regularization strength
λ and the kernel parameters (e.g. in the Gaussian ker-
nel, the length scale σ). Table I lists some standard ker-
nels. Radial basis function (RBF) kernels, which in-
clude the Gaussian, Cauchy, and Laplacian kernels, all
behave similarly and tend to work for a broad range of

Kernel k[n, n′]

Gaussian exp(−‖n− n′‖2/2σ2)

Cauchy (1 + ‖n− n′‖2/σ2)−1

Laplacian exp(−‖n− n′‖/2σ)

Wave
θ

‖n− n′‖ sin
‖n− n′‖

θ

Power ‖n− n′‖d

Linear 〈n, n′〉

TABLE I. Standard kernels. The parameters σ, θ, d are kernel
parameters. The linear kernel has no parameters.

problems. Other kernels work well for specific data struc-
tures [31, 52, 53] and regularization properties [49].

Fig. 5 shows the contours of the functional-driven
MAE over the test set as a function of the regulariza-
tion strength λ and the kernel parameter σ. We see
that the qualitative behavior is similar for the Gaussian,
Cauchy and Laplacian kernels. In the left region (where
the contour lines are vertical), the length scale σ is much
smaller than the distance between neighboring training
densities. Thus the RBF-type kernel functions centered
at each training density have minimal overlap, yielding
a poor approximation to the KE functional. The ker-
nel matrix becomes nearly unity, and the regularization
λ has negligible effect. On the right side of the contour
plot, the length scale is comparable to the global scale of
the data. In these regions, the kernel functions are slowly
varying and do not have enough flexibility to fit the non-
linearity in the data. The region with minimum MAE
lies in the middle. The Gaussian and Cauchy kernels
both give the same performance, with errors less than 1
kcal/mol in the middle region (enclosed by the dashed
line), while the Laplacian kernel behaves poorly in com-
parison. This is likely due to the cusp in the form of the
kernel, which cannot fit the smooth KE functional.
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FIG. 6. Cartoon shows the relation of each data set in MN .
Each black dot represents a sample (density and its corre-
sponding KE). Training, validation and test set are subsets of
the full data set.

B. Optimization of hyperparameters

After picking a kernel family, the values of the hyper-
parameters must be chosen. Ideally, we select the hy-
perparameters such that the generalization error, which
is the error not only on our training set but also on all
future data, is minimal. The out-of-sample error must
be estimated without looking at the test set (the test set
is never touched during model selection, so that it can
give a true test of the final performance of the model)
[31, 36]. This procedure, known as cross-validation, is
essential for model selection in preventing overoptimistic
performance estimates (overfitting).

Various schemes for cross validation exist [31, 36, 56],
but all obey a basic principle: the available data is sub-
divided into three parts: the training, validation and the
test sets. The ML model is built from the training set
and the hyperparameters are optimized by minimizing
the error on the validation set (Fig. 6). The test set
is never touched until the weights and hyperparameters
have been determined. Then and only then, the general-
ization ability of the model can be assessed with the test
data ([31, 36], see also [57]). Typically, the data is shuf-
fled to ensure its random distribution between training
and validation division. This can be repeated with differ-
ent subdivisions. A few schemes, which will be analyzed
for our kinetic energy functional estimation problem, are
described below. For each scheme, a test set of 1000 sam-
ples is used to estimate the generalization error after the
ML model is selected.

Simple cross validation: The training data (NT sam-
ples) is randomly divided into a training set of 70%
and a validation set of 30%. The hyperparameters
are optimized by minimizing the MAE on the vali-
dation set.

k-fold cross validation:

Step 1: The NT training data is randomly divided
into k bins.

40 60 80 100 120 140
NT

1

0

1

2

3

4

|∆
T
F
|

Simple

2-fold

3-fold

4-fold

5-fold

10-fold

Leave-one-out

FIG. 7. Comparison of different cross validation methods, in-
cluding simple, 2-fold, 3-fold, 4-fold, 5-fold, 10-fold and leave-
one-out. The mean of the absolute functional-driven error
|∆TF | (in kcal/mol) is evaluated on the test set and the error
bars represent the standard deviation.

Step 2: The jth bin is used as the validation set
and the remaining k − 1 bins as training set.
The model is built on the training set and the
hyperparameters are selected by minimizing
the MAE on the validation set.

Step 3: Repeat step 2 k times such that all bins
have been used as validation sets. We will
then have k models in total and the final hy-
perparameters are selected as the median over
all models.

Because the mean cross validation error still de-
pends on the initial random partitioning of data
in cross validation, we repeat the procedure with
different subdivisions [31].

Leave-one-out: Leave-one-out (LOO) is a special case
of k-fold cross validation, when k = NT . Thus each
bin contains only one sample.

Typically, it is better to leave out as little data as pos-
sible to exploit the statistical power in the data. Simple
cross validation is computationally expedient, but waste-
ful since not all training data participates in the opti-
mization. k-fold cross validations are used in situations
where data is very limited, or expensive to collect. Leave-
one-out is often used with limited data and it becomes
computationally intensive if NT is large. k-fold cross val-
idation gives a good balance on all counts.

For the Gaussian kernel, Fig. 7 shows the MAE on the
test set with the hyperparameters optimized with differ-
ent cross validation methods. With 120 training densi-
ties, all schemes give a similar MAE, despite the large
variations in σ and λ. This means that multiple models
exist that give comparable performance. As expected,
the only variations in MAE occur for more limited data.

Fig. 5 shows how 10-fold cross validation performs in
selecting hyperparameters that generalize well to the test
set, for a few kernels. The gray dots represent the optimal
parameter choice for each repetition, and the black dot
is the median over all repetitions. In this case, the global
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Kernel λ p |∆TF | |∆TF |max

Gaussian 4.5 · 10−14 1.6 0.13 3.4

Cauchy 7.8 · 10−14 3.5 0.13 2.9

Laplacian 1.0 · 10−15 3.6 · 105 6.4 231

Linear 6.2 · 10−1 - 53.1 380

Wave 4.5 · 10−1 0.14 19.2 252

Power 1.0 · 10−13 1.96 3.3 104

TABLE II. The optimal hyperparameters found through 10-
fold cross validation and the MAE over the test set for various
kernels with N = 1 and NT = 100. The kernel parameter p
refers to σ for the Gaussian, Cauchy and Laplacian kernels,
θ for the wave kernel and d for the power kernel. The linear
kernel has no parameter. Errors are given in kcal/mol.

minimum of the MAE lies in a relatively flat basin. Each
randomized cross validation lies near the true minimum,
indicating the model generalizes well to the test set.

Finally, we use 10-fold cross validation (repeated 40
times) to optimize the hyperparameters. Table II shows
the optimal hyperparameters and functional driven errors
for the kernels listed in Table I. Some optimum values for
the Gaussian kernel are listed in Table III. Detailed infor-
mation with optimum values of other kernels are shown
in supplementary material.

IV. RESULTS AND DISCUSSION

In the main work of this paper, we test in greater detail
some of the methods that were introduced in Ref. [29]
using only the Gaussian kernel, as it performs the best.

A. Errors on exact densities

In Table III, we evaluate our MLA, constructed us-
ing the first NT training densities in our data set, on
the exact densities of the test set and compute the errors
∆TF = TML[n]−T [n]. The Gaussian and Cauchy kernels
give the best performance. For the Gaussian kernel with
N = 1 chemical accuracy is achieved (i.e. MAE less than
1 kcal/mol) at NT = 60. Just as we saw in Ref. [29], the
performance is systematically improvable with increas-
ing number of training densities. The Laplacian kernel
gives a mean absolute error (MAE) of 6.9 kcal/mol at
NT = 100 (still better than LDA), which improves as
NT increases. On the other hand, the performance of
the wave kernel does not improve as NT increases (see
supplemental information). This indicates the form of
the wave kernel is not flexible enough to fit the form of
the KE functional.

B. Sparse grid

Note that the choice of NG used in the reference cal-
culations is needed to converge our reference energies
and densities, but may be larger then the grid needed
to “converge” our ML functional. As the ML model de-
pends only on the inner product between densities, this
will typically converge much faster than, e.g. Numerov’s
method. To demonstrate this, we define a “sparse” grid,
{xs(j−1)+1|j = 1, . . . , NG/s}, using every sth point in the
grid (we only choose s such that NG is divisible by s).

Fig. 8 shows that performance of the model is unaf-
fected until NG is reduced to about 10 grid points. The
model is cross-validated each time, but the hyperparame-
ters change only slightly. Thus, ML can accurately learn
the KE functional with a far less complete basis than
is required to accurately solve the Schrödinger equation.
This is possible because we have restricted the learning
problem to a simple type of potential with a limited range
of possible densities and energies. The underlying di-
mensionality of the data is about 9, comparable to the
number of parameters that determine the potential. The
model needs only enough degrees of freedom in the repre-
sentation of the density to distinguish between densities,
but no more. Thus it is no coincidence that the mini-
mum grid required is comparable to the dimensionality
of the data (i.e. the dimensionality of the density mani-
fold MN ).

However, we also need a sufficiently fine grid to com-
pute the integral in Eq. (7) to the desired accuracy. In
the problem shown here, the dimensionality of the data is
relatively small, and will increase for larger systems (e.g.
real molecules with many degrees of freedom). In general,
however, we need to consider both factors in choosing a
suitable basis. But, we may be able to use a basis that is
more sparse than that of the reference data, which would
greatly reduce the computational cost of the method.

C. Challenge of finding density

Thus far, we have focused on the discussion of the per-
formance of the MLA evaluated on exact densities (i.e.
the functional-driven errors). However, in order for a
functional to be useful, it must also predict the ground-
state density. As discussed previously, an accurate func-
tional derivative is necessary in order to solve Eq. (9)
and yield an accurate density. The functional derivative
of our MLA is given by:

δTML[n]

δn(x)
=

NT∑
j=1

αj
δk[n, nj ]

δn(x)
, (22)

where, for the Gaussian kernel,

δk[n, nj ]/δn(x) = (nj(x)− n(x))k[n, nj ]/σ
2. (23)

In Fig. 10, we plot the functional derivative of our model
compared with the exact derivative. The model displays
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|∆TF | |∆T | |∆E|
N NT λ · 1014 σ Mean Max Mean Max Mean Max

1 40 50. 4.2 1.9 30. 15 120 5.1 32

60 10. 1.8 0.62 11. 3.0 19 0.66 4.4

80 54. 1.5 0.23 3.1 1.1 11 0.44 2.6

100 4.5 1.6 0.13 3.5 1.4 16 0.41 2.3

150 1.2 1.3 0.06 1.0 0.81 5.1 0.27 1.9

200 1.3 1.0 0.03 0.87 0.67 10. 0.28 1.6

2 60 60. 3.0 0.46 4.8 1.79 9.9 0.73 3.6

100 1.0 2.2 0.14 1.7 1.25 5.0 0.44 2.5

3 60 6.0 5.8 0.31 3.9 1.03 5.0 0.82 6.5

100 1.9 2.5 0.13 1.7 1.11 8.3 0.59 3.8

4 60 0.6 14 0.46 5.4 2.44 9.5 0.93 6.3

100 1.4 2.7 0.08 2.6 1.12 9.8 0.63 5.0

1-4 400 1.7 2.2 0.12 3.0 1.28 12.6 0.52 5.1

TABLE III. Hyperparameters and errors measured over the test set using the Gaussian kernel, for different N and NT . The
regularization strength λ and length scale of the Gaussian kernel σ is optimized with 10-fold cross validation. The functional-
driven error ∆TF = TML[n] − T [n] is evaluated on the test set. Mean and max absolute errors are given in kcal/mol.
∆T = TML[ñ]− T [n], gives the error in the KE evaluated on constrained optimal densities. Likewise ∆E = EML[ñ]− E[n].
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T
F
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T
| (b)(10,8204)
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λ
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014

(c)
σ

λ×1014

FIG. 8. The effect of using a sparse grid to represent the den-
sity on the performance of the MLA, for N = 1, NT = 100,
with the Gaussian kernel. Here (a) |∆TF | = TML[n]− T [n] is
the mean absolute functional-driven error of the MLA eval-
uated on the test set in kcal/mol, (b) |∆T | = TML[ñ]− T [n]
gives the error of KE evaluated on constrained optimal densi-
ties in kcal/mol and (c) the corresponding re-cross validated
hyperparameters λ and σ. The MAE is completely unaffected
as NG is reduced until approximately NG = 10, when it jumps
sharply.

a highly inaccurate functional derivative, with a huge
amount of apparent “noise”, as was found in Ref. [29].

What is the source of this noise? In general, if the un-
derlying dimensionality of the data is much less than the
dimensionality of JN (which in this case is essentially

infinite), ML will be unable to capture the functional
derivative. The functional derivative contains informa-
tion on how the KE changes along any direction, but ML
cannot learn this because it only has information in di-
rections in which it has data (i.e. alongMN ). Fig. 11 il-
lustrates the problem: standard minimization techniques
will rapidly exit the “interpolation” region in which the
MLA is expected to be accurate. The MLA is only given
information about how the KE changes along the density
manifold MN . In the many dimensions orthogonal to
MN , the MLA produces an inaccurate derivative (each
of these dimensions produces a large relative error since
no data exists in these directions; the sum over many di-
mensions creates a large total error in functional deriva-
tive). A standard gradient descent will quickly venture
off ofMN into regions of JN where the model is guaran-
teed to fail. Fig. 9 shows the deviation of self-consistent
density if the search is not constrained to MN . To fix
this, we further constrain the minimization in Eq. (9) to
stay on MN . The Euler-Lagrange minimization for the
ground-state density can be expressed as

δ {E[n]− ζg[n]} = 0, (24)

where g is any function that is zero on MN and pos-
itive elsewhere. Thus g[n] = 0 implicitly defines the
density manifold MN . Since any n ∈ MN satisfies the
normalization condition, the previous constraint is no
longer necessary. Because the minimizing density (i.e.
the ground-state density) is inMN and thus satisfies the
constraint g[n] = 0, Eq. 24 gives the same solution as
Eq. 9. Essentially, we have vastly reduced the domain of
the search from JN to MN . To avoid confusion, we call
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FIG. 9. The first few steps in a standard gradient descent
solving the Euler equation in Eq. (9) using our MLA for the
KE with NT = 100 starting from a sample training density.
The dashed line shows the exact self-consistent solution. The
noise in the bare functional derivative quickly causes large
corresponding errors in the density.

the minimizing density of this equation the constrained
optimal density. It may be solved self-consistently in the
same sense of solving the standard Euler equation. How-
ever, the g[n] which exactly gives the density manifold is
unknown. In the next section, we develop an approxima-
tion which attempts to reconstruct the density manifold
from the training densities.

D. Manifold reconstruction using principal
component analysis

Our aim is to reconstruct MN locally around a given
density n(x), which is assumed to be on the density mani-
fold. A simple approach is to approximateMN as locally
linear, using principal component analysis (PCA) to de-
termine the tangent space empirically from the training
densities. This will work as long as there are enough
training densities covering the density manifold. First,
we define a weighted average density around density n:

n̄(x) =
1

Ω

NT∑
j=1

ωjnj(x) (25)

This generalized average is weighted by the function
ω(‖n−n′‖) that only depends on the distance from n(x)

to n′(x), ωj = ω(‖n−nj‖), and Ω =
∑NT

j=1 ωj . Note that

n′(x) refers to the density n′ evaluated at x and not the
derivative of n with respect to x.

The locality of the method comes from the choice of
ω. For standard PCA, the choice is ω(r) = θ(R − r),
where θ is the Heaviside function, and R is the distance
from n′ to the m-th nearest training density. This equally
weights the nearest m training densities, and ignores all
other training densities. This choice was used in Ref. [29].

(a)
0.0 0.5 1.0

x

8

4

0

4

exact

MLA

projected exact

projected MLA

(b)
0.0 0.5 1.0

x

10

0

exact

MLA

projected exact

projected MLA

FIG. 10. The functional derivative of our MLA (green) cannot
reproduce the exact derivative v(x) (blue dot dashed) evalu-
ated at the ground-state density, because this information is
not contained in the data. However, both agree when pro-
jected onto the tangent of the data manifoldMN at n (black
and red dashed). Shown for N = 1, for (a) NT = 40 and (b)
NT = 100, for a typical test sample.

Here, we choose a slightly smoother weighting function:

ω(r) = (1− r/R)θ(R− r) (26)

Next, PCA is performed by spectral analysis of the
empirical covariance operator [58], based on the weighted
average value around n(x). We define the centered neigh-
borhood by ñj(x) = nj(x)− n̄(x). In this problem, den-
sities are represented on a grid with NG = 500 points, so
let n = (n(x1), . . . , n(xNG

))> be the vector representa-
tion of n(x). The covariance matrix Γ ∈ RNG×NG is

Γ =
1

Ω

NT∑
j=1

ωjnjn
>
j , (27)

with eigendecomposition

Γuj = λjuj . (28)

The eigenvalues are ordered such that λj > λj+1. The
eigenvectors uj are called principal components (PCs),
and give the directions of maximum variance in the data.
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nj

g[n] = 0

Gradient descent

ñ
MN

JN

FIG. 11. Cartoon illustrating the difficulty in solving for the
self-consistent density with our MLA. Pictured are the density
manifold MN (curved solid line), the training densities nj ∈
MN (black circles), and the exact self-consistent density ñ
(red square). Here g is a function that is identically zero on
MN and positive elsewhere. Thus MN is defined implicitly
by g[n] = 0. The shaded area, called the interpolation region,
shows where the MLA is accurate. The solution of Eq. 9 via
exact gradient descent is given by the red dashed line, which
becomes unstable and soon leaves the shaded area.

R

T PCA[n]

nj

MN

JN

n

m = 3

FIG. 12. Cartoon showing the density manifoldMN (curved
line) that is contained in JN , the training densities nj for
j = 1, . . . , Nt (black circles). Also shown are the density
n ∈M (blue square) and the PCA approximation to tangent
space ofMN at n, T PCA(n) (dashed line). This tangent plane
is a local approximation to MN .

We define the variance lost in keeping d PCs as η =

1−∑d
j=1 λj

/∑NG

j=1 λj . In this case, there is little to no

variance in directions orthogonal to the tangent space of
MN , and maximum variance in directions aligned with
the tangent space. Thus, the first d PCs form a basis for
the tangent space, where d is the dimensionality of the
density manifold (and tangent space). The projection
operator onto this basis is:

P [n] =

d∑
j=1

uju
>
j . (29)

The tangent space using PCA is given by

T PCA[n] = {n | (1− P [n])(n− n̄) = 0}. (30)

Finally, we choose the PCA approximation to the con-
straint g[n] in Eq. (24) as the squared distance from n
to tangent plane T PCA[n]:

gPCA[n] = ‖(1− P [n])ñ‖2. (31)

The PCA approximate density manifold MPCA is then
defined implicitly by gPCA[n] = 0. The process is il-
lustrated in Fig. 12. In the next section we develop a
projected gradient descent method to solve Eq. (24).

E. Projected gradient descent algorithm

For a given ML approximation to the KE functional,

EML[n] = TML[n] + V [n], (32)

the algorithm to minimize the functional in Eq. (24) to
find a constrained optimal density is as follows (see Fig.
13). Choose an initial guess for the density, n0 ∈ MN

(e.g., a training density):

1. Evaluate the functional derivative

δEML[n]

δn(x)
=
δTML

S [n]

δn(x)
+ v(x). (33)

at n = nt.

2. Compute the local PCA projection operator P [nt]
from Eq. (29).

3. Project the functional derivative onto the tangent
space (see Fig. 13), and take a step:

n′t(x) = nt(x)− εP̂ [nt]
δEML[n]

δn(x)

∣∣∣∣
n=nt

, (34)

where ε is a constant such that 0 < ε ≤ 1. If
convergence is unstable, reduce ε, trading stability
for speed of convergence.

4. To ensure the constraint remains satisfied, we sub-
tract the (weighted) mean of the training densities
in the local neighborhood:

nt+1(x) = n′t(x)− (1− P̂ [n′t])(n
′
t − n̄[n′t]). (35)

We iterate these steps until convergence is achieved.
We measure convergence by setting a maximum itera-
tion step and tolerance threshold. If the total energy
difference is smaller than tolerance within max iteration
step, the density is converged. If no solution is found, ε
is reduced.
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ñt
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g[n] = 0

FIG. 13. Schematic of the projected gradient descent. The
functional derivative is projected onto the tangent space of the
data manifold MN at nt (dashed line). Next, a step is taken
along the projected functional derivative to n′t in the direction
of lower energy. Finally, g[n] is minimized orthogonal to the
tangent space to ensure the minimization stays on MN .

F. Errors on constrained optimal densities

With this new constrained minimization procedure via
a projected gradient descent, we solve for the constrained
optimal density for each test sample. We report the er-
rors in the total energy and KE relative to the exact
density in Table III. In general, we expect these errors to
be worse on the MLA evaluated on exact densities—by
roughly a factor of 10. However, errors on constrained
optimal densities decrease at the same rate with more
training data, so an accuracy of 1 kcal/mol in KE is
achieved with 150 training samples for N = 1, now on
constrained optimal densities. Additionally, errors are of
similar magnitude for multiple particles. In the last row
of Table III, we combine the training data from each N
(100 training densities per N value) into one model. This
combined MLA gives roughly the same error as each in-
dividual model. This is because, due to the locality of
the Gaussian kernel, the training densities from each N
are well separated (orthogonal in feature space) and the
individual models are unaffected.

In the projected gradient descent, there are two PCA
parameters that must be chosen: m, the number of near-
est neighbors and d, the number of PCs to form the pro-
jection operator. Fig. 14 shows the MAE evaluated by
the constrained optimal density and variance lost as a
function of the number of PCs d with m = 20. The
MAE decreases initially as d increases as more PCs cap-
ture the local structure of the density manifold. As can
be seen, d = 4 or 5 gives an optimal reconstruction of
the tangent space of the manifold. As d increases fur-
ther, the noise that was removed is re-introduced into
the projection, causing the gradient descent algorithm to
fail. For d = 7, many of the constrained searches do not
converge. Table IV reports the errors of the model eval-
uated on constrained optimal densities for NT = 40 and
NT = 100, giving a rough optimization of the PCA pa-
rameters. Although the potential which generates MN

has 9 parameters in this case, we observe that the opti-
mal choice of d is only 4. This is because the data used
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FIG. 14. The MAE, |∆T | = |TML[ñ]− T [n]|, evaluated on
100 constrained optimal densities (in kcal/mol) compared
with the variance lost η as a function of the number of PCs d
in the PCA projection, with m = 20 nearest neighbors.

(a)

@
@@d
m

10 20 30

2 12 (98) 15 (100) 24 (100)

3 12 (100) 16 (100) 22 (100)

4 12 (98) 15 (100) 25 (100)

5 23000 (18) 130 (27) (0)

(b)

@
@@d
m

10 20 30 40

3 4.1 (99) 3.2 (100) 2.7 (99) 2.8 (100)

4 1.7 (100) 1.4 (100) 1.4 (100) 1.7 (100)

5 1.6 (100) 1.3 (100) 1.5 (100) 2.0 (100)

6 1.7 (93) 2.1 (100) 1.7 (100) 2.2 (100)

TABLE IV. The error in the KE in kcal/mol evaluated on
constrained optimal densities using 100 densities for testing,
with N = 1 for (a) NT = 40 and (b) NT = 100. The per-
centage of converged optimal densities is given in parentheses.
Here m is the number of nearest neighbor densities used in
PCA and d is number of PCs used in the projection.

to build the model is only a small fraction of MN . If
we do not sample all relevant directions on MN , then
the model cannot learn the functional derivative in those
directions. The PCA projection will compensate by re-
moving those directions. Thus, the effectiveness of our
method depends on the sampling on the manifold.

V. CONCLUSION

In this work, we have explored in much greater detail
the methods presented in Ref. [29], in which ML methods
were used to directly approximate the KE of a quantum
system as a functional of the electron density, and used
this functional in a modified orbital-free DFT to obtain
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highly accurate self-consistent densities and energies.

We used a simple model as a proof of principle, to in-
vestigate how standard methods from ML can be applied
to DFT. In particular, we tested a variety of standard ker-
nels used in ML, and have found that the Gaussian kernel
gives the lowest errors (the Cauchy kernel also achieves
similar performance). All cross validation schemes that
were tested gave similar predictions of hyperparameters
that achieved low generalization error on the test set.
Our results highlight the importance of an appropriate
choice of kernel, as some of the kernels tested gave strik-
ingly bad performance. With the construction of the L2

norm that was used in the kernels, the method is basis
set independent (as long as a complete basis is used).
However, the ML method is capable of learning accurate
KEs using a sparse grid (i.e., an incomplete basis). Us-
ing a sparse representation for the density without losing
accuracy would speed up calculations further. These re-

sults warrant further exploration and will be the subject
of future work.

We explained the origin of the noise in the functional
derivative and developed a constrained search over the
density manifold via a modified Euler equation, effec-
tively projecting out the noise. We also introduced a local
approximation to the manifold using PCA, and solved for
constrained optimal densities using a projected gradient
descent algorithm. This worked well for our prototype
system, yielding highly accurate constrained optimal en-
ergies and densities.
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