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[1] We provide quantitative estimates for the spatial
variability of CO2, crucial for assessing representativeness
of observations. Spatial variability determines the mismatch
between point observations and spatial averages simulated
by models or observed from space-borne sensors. Such
‘‘representation errors’’ must be properly specified in
determining the leverage of observations to retrieve
surface fluxes or to validate space-borne sensors. We
empirically derive the spatial variability and representation
errors for tropospheric CO2 over the North American
continent and the Pacific Ocean, using in-situ observations
from extensive aircraft missions. The spatial variability and
representation error of CO2 is smaller over the Pacific than
the continent, particularly in the lowest altitudes, and
decreases with altitude. Representation errors resulting from
spatial variability in the summer continental PBL are as
large as 1�2 ppmv for typical grid resolutions used in
current models for inverse analyses. INDEX TERMS: 0315

Atmospheric Composition and Structure: Biosphere/atmosphere

interactions; 0322 Atmospheric Composition and Structure:

Constituent sources and sinks; 0365 Atmospheric Composition

and Structure: Troposphere—composition and chemistry; 1610

Global Change: Atmosphere (0315, 0325); 1640 Global

Change: Remote sensing. Citation: Lin, J. C., C. Gerbig, B. C.

Daube, S. C. Wofsy, A. E. Andrews, S. A. Vay, and B. E.

Anderson (2004), An empirical analysis of the spatial variability

of atmospheric CO2: Implications for inverse analyses and space-

borne sensors, Geophys. Res. Lett., 31, L23104, doi:10.1029/

2004GL020957.

1. Introduction

[2] Current knowledge about global CO2 sources and
sinks has been derived principally from the distribution
of atmospheric CO2 concentrations, often using inverse
modeling approaches [Gurney et al., 2002]. Most CO2

observations have been acquired in the marine boundary
layer, at remote sites separated by distances of order 1000 km
[National Oceanic and Atmospheric Administration
(NOAA), 1997]. These stations provide a measure of
global trends and seasonal variation but do not adequately
characterize CO2 variations in the vertical dimension, in the

horizontal at scales smaller than 1000 km, and over
continents. Spatial variability determines the representation
error associated with comparing point observations with
model values averaged over finite gridcells [Gerbig et al.,
2003a], or with pixel-mean values measured by space-borne
sensors [Rayner et al., 2002]. As horizontal spatial hetero-
geneity increases, point observations characterize smaller
areas and representation errors increase, with implications
for design of observational networks [Wofsy and Harriss,
2002]. Variability in the vertical determines the number of
observations needed to characterize tracer column amounts
to specified accuracy, an important consideration in design-
ing flask-sampling networks [Bakwin et al., 2003].
[3] Representation errors have to be properly specified

within assimilation/inversion frameworks as part of error
covariance matrices [Rodgers, 2000]. Neglect of these
errors causes overestimation of the observational constraint
derived from atmospheric observations or satellite-observed
columns and may produce biased solutions [Gerbig et al.,
2003a, 2003b]. Further, quantifying representation errors
addresses the following question, critical for validation of
space-borne sensors: Can differences between validation
and satellite observations be explained by spatial variability,
or does the difference reveal instrument problems?
[4] This paper analyzes aircraft observations to charac-

terize the spatial variability of CO2 and the associated
representation error over North America and the Pacific
Ocean. Only one study to-date [Gerbig et al., 2003a] has
quantified CO2 variability in the PBL at scales of 101–
102 km2 (relevant scales for resolution of atmospheric
models and satellites) using aircraft data collected during
August 2000 over North America. Aircrafts provide the
unique capability to observe spatial variability at the
relevant scales by three-dimensional sampling over a short
period of time, covering distances from a few km up to
hundreds to even thousands of km. Here we significantly
expand on the analyses of Gerbig et al. [2003a] by
examining CO2 variability at altitudes above the PBL,
including observations over the Pacific from the NASA
Global Tropospheric Experiment (GTE) missions
[McNeal, 1983] and a recent mission over North America
(COBRA-2003).

2. Observations

[5] Data sets used in this study are from several aircraft
missions. Continental observations derive from the CO2

Budget and Rectification Airborne (COBRA) missions in
August 2000 and June 2003 over North America [Gerbig et
al., 2003a, 2003b; Lin et al., 2004]. Data over the Pacific
come from NASA’s GTE missions [McNeal, 1983]:
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PEMWEST-A (Sept .�Oct . 1991) , PEMWEST-B
(Feb.�Mar. 1994), PEMTROPICS-A (Aug.�Oct. 1996),
PEMTROPICS-B (Mar.�Apr. 1999), and TRACE-P
(Feb.�Apr. 2001). Data from these Pacific missions are
pooled to comprise an ‘‘average’’ picture of CO2 variability.
Locations of vertical profiles used in this analysis are shown
in Figure 1. We limited the Pacific observations to those
away from the East Asian coast and north of 10�N.
[6] The COBRA CO2 instrument was a non-dispersive

infrared gas analyzer based on the design of the Harvard
ER-2 CO2 analyzer with measurement errors typically
±0.25 ppmv (2-s) or better [Daube et al., 2002]. The CO2

sensor on board the GTE missions was similar, with
comparable precision and accuracy [Anderson et al.,
1996]. An intercomparison between the ER-2 and GTE
instruments showed agreement within 0.1 ppmv [Daube et
al., 2002].

3. Analysis Methods

[7] We first analyze uncertainties in column-averaged
CO2, caused by both instrument errors and atmospheric
variability. Then we characterize the horizontal variability
of column-averaged CO2 and quantify the additional uncer-
tainty (‘‘representation error’’) due to spatial variability
when column averages are represented in transport models
with finite grids or when observed columns at point loca-
tions are compared with space-borne sensors that resolve
with finite pixels. See Gerbig et al. [2003a] for more details
concerning the analysis method summarized below.

[8] We assume that the signal used by models and
relevant for satellite validation [cf. Rayner et al., 2002] is
the density-weighted CO2 concentration averaged over a
finite atmospheric column (CO2). We defined columns for
four altitude ranges over the Pacific: 0.15�3 km, 3�6 km,
6�9 km, and <9 km. The lowest altitude (150 m) was
selected to remove contamination from airports but still
include enough observations within the marine boundary
layer. For continental observations we chose the PBL height
instead of the fixed altitude of 3 km as the top of the lowest
column due to strong tracer gradients across the PBL top
and large diurnal variability in PBL heights. The <9 km
column was selected to approximate total-atmosphere
column observations (neglecting the stratosphere) [e.g.,
Yang et al., 2002]. Note that a more detailed calculation
of CO2 should use weighting functions corresponding to the
specific averaging kernels for future space-borne sensors.
The <9 km column was based on profiles that span at least
20% of the lowest layer (PBL or 3 km) and 60% of the
entire 9 km column; not enough profiles spanned these
altitudes in COBRA-2000.
[9] The uncertainty in CO2, denoted s(CO2), reflects

variability in the column average introduced by instrument
errors and filaments in tracer profiles not represented by
transport models. Since measurement errors and filaments
cannot be cleanly separated, fluctuations around the column
average—s(CO2)—are regarded here as an upper bound for
variance arising from atmospheric variability.
[10] s(CO2) needs to account for effects of covariance

between observations at proximate altitudes associated with
layering of tracers. We estimated this covariance by calcu-
lating the autocorrelation between observations in different
altitude bins, defining the thickness of tracer filaments to be
the altitude range over which the autocorrelation decays
to �1/e.
[11] The spatial variability of CO2 was estimated using

variogram estimation. The variogram is the variance of
differences between signals S— Var(Si–Sj)—measured at
different locations, as a function of the distance h between
the measurement locations [Cressie, 1993]. The observed
CO2 served as the S in this study, and pairs of CO2 were
aggregated into bins of at least 20 pairs separated by
distance h. We used only CO2 pairs within a three-hour
window to minimize temporal variation. The average
separation time between pairs (Table 1) ranges from

Figure 1. Locations of vertical profiles used for analyzing
the spatial variability of CO2. The observations were
collected as part of various airborne experiments, show in
different colors (see text).

Table 1. Results of Statistical Analyses of CO2 Variability Within an Atmospheric Column That Gives Rise to s(CO2), the Uncertainty

in Column-Averaged Concentrationa

Altitude
[km ASL]

Average
s(CO2) [ppmv]

Average Layer
Thickness [m]

s(CO2) �
ffiffiffiffiffi
c0

p

[ppmv] C1 [km] l
Number of
CO2 Pairs

Average Separation
Time betw. Pairs

[hrs]

N. Amer. Aug 2000 PBL 0.766 84 0.19 40.4 1.44 317 0.75
N. Amer. Aug 2000 3�6 0.777 273 0.23 370 0.58 150 0.97
N. Amer. Aug 2000 6�9 0.436 302 0.13 519 1.01 60 1.46
N. Amer. Jun 2003 PBL 1.06 115 0.33 53.5 1.08 353 1.11
N. Amer. Jun 2003 3�6 0.705 317 0.22 260 0.86 257 1.19
N. Amer. Jun 2003 6�9 0.475 241 0.14 494 1.08 114 1.14
N. Amer. Jun 2003 <9 - - 0.14 287 0.45 114 1.31
Pacific 0.15�3 0.515 331 0.17 1315 0.52 527 1.43
Pacific 3�6 0.446 300 0.13 1216 0.75 527 1.49
Pacific 6�9 0.374 295 0.11 1152 1.39 189 1.48
Pacific <9 - - 0.08 1453 1.02 135 1.82

aThe horizontal variability of CO2 is characterized by fitting the power variogram model (equation (1)) to pairs of observed CO2.
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0.75�1.82 hours; this means that part of the observed
spatial variability may be attributed to temporal changes
in CO2.
[12] Avariogrammodel characterizing the spatial variabil-

ityofCO2 was fit to thedata set ofVar(Si–Sj) versusdistanceh.
We attempted to provide a conservative (low-end) estimate
of the variability to assess whether even a low-end estimate
would give rise to non-negligible representation errors; thus
the power variogram model [Cressie, 1993] was chosen to
avoid overestimation at small distances typical of many
other variogram models [Gerbig et al., 2003a]:

Var Si � Sj
� �

¼ 2 c0 þ h=c1ð Þl
� �

ð1Þ

where c0 (the ‘‘nugget’’) represents the variability at h = 0
and was prescribed from the observed s2(CO2); c1 and l are
parameters to be estimated.
[13] The fitted variogram model was used in a Monte

Carlo simulation to generate stochastic realizations of CO2

fields to estimate the representation error as the standard
deviation, for a given gridcell size, of CO2 for all sub-grids
within the gridcell, averaged over 50 simulations.

4. Results

4.1. Variability Within Atmospheric Columns

[14] Table 1 summarizes the statistics of CO2 variability.
The s(CO2) shown is the average, over all profiles, of
the standard deviations around CO2. s(CO2) represents the
deviation of a point measurement (e.g., flasks) from the
column mean. s(CO2) is the largest in the lowest altitudes
and generally decreases with altitude. s(CO2) has values of
over 0.7 ppmv in the continental PBL and 0.5 ppmv below
3 km over the Pacific, much larger than the short-term
instrument precision of �0.05 ppmv [Anderson et al., 1996;
Vay et al., 2003]. This suggests that atmospheric variability
dominates over instrument errors and that s(CO2) is
controlled primarily by unresolved atmospheric variability
rather than instrument limitations.
[15] The covariance between CO2 at different altitudes

leads to estimates of the average thickness of tracer layers as
shown in Table 1. The mean tracer layer thickness within
the PBL was �100 m over North America. The layers were

thicker, approximately 300 m, at all altitudes over the Pacific
and in the continental free troposphere. The higher values of
s(CO2) and thinner layers within the PBL arise from
turbulent eddies. The free tropospheric variability and
thicker layering can be traced to signatures of boundary-
layer air transported into the free troposphere or stratospheric
air transported into the troposphere [Newell et al., 1999].
[16] The variability of column-averaged CO2 in the

continental PBL of 0.19 ppmv (Aug 2000) and 0.33 ppmv
(Jun 2003) reflects unresolved variance for CO2, irreducible
in practice due to inability of models to simulate individual
turbulent eddies exactly. In the free troposphere over North
America and the Pacific s(CO2) ranges between 0.1 and
0.2 ppmv, potentially resolvable if transport models can
simulate CO2 deviations at high fidelity. However, this is
challenging for current-generation models with free tropo-
spheric gridcells generally coarser than the �300 m thick-
ness of tracer layers. s(CO2) is an uncertainty that may be
avoided in validation efforts if the same tracer layers were
sampled by space-borne measurements and validation
sensors; however, this is difficult to achieve within the
PBL, where rapid turbulent fluctuations take place.

4.2. Spatial Variability and Representation Error

[17] Two examples of Var(Si–Sj) and the fitted power
variogram model are shown in Figure 2 for the PBL during
COBRA-2003 and 0.15�3 km over the Pacific. Marked
differences can be seen: Var(Si–Sj) at comparable distances
were an order of magnitude larger for the continental case.
[18] The striking difference in variograms of Pacific and

North America directly translated into differences in repre-
sentation error (Figure 3). At 200 km, a typical resolution of
atmospheric models used in inverse analyses, the represen-
tation error in the continental PBL is �1.0 ppmv for June
2003 and �1.4 ppmv for Aug 2000. The representation
error increases much more gradually for the Pacific results
(Figure 3c) than for the continental results, reflecting the
lower variability shown in the variograms (Figure 2b). The
representation error for the 0.15 � 3 km atmospheric
column at a gridcell size of 1000 km rises to only

Figure 2. The variance of differences (variogram) in
column-averaged CO2 as a function of separation distance
h. Points in grey are variogram estimates with one
observation deleted (Jackknife method). Vertical bars
represent 1-s errors derived from Jackknife statistics. The
solid line represents a power variogram model, and the
dashed lines correspond to the 95% confidence interval for
the variogram fit.

Figure 3. Representation error as a function of grid cell
size. The shaded grey regions refer to the 95% confidence
intervals (only for the lowest altitude).
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�0.5 ppmv over the Pacific. Representation errors decrease
markedly with altitude over North America; above the PBL
the errors are comparable to the Pacific values, but still
larger. Representation errors for the <9 km column, aver-
aging over variability at different altitudes, resulted in
values similar to the 3�6 km column over both North
America and the Pacific.
[19] Terrestrial CO2 fluxes are much stronger than

oceanic fluxes [Lefevre et al., 1999] and exhibit greater
spatiotemporal variability, contributing to the significantly
larger spatial variability in CO2 and representation errors
observed over the continent. Gerbig et al. [2003b] have
shown that the variance associated with representation
errors is directly attributable to sub-gridscale variations
in upstream surface fluxes. The activity of sources/sinks
probably accounts for the larger representation error in the
continental PBL during Aug 2000 than during Jun 2003:
biospheric CO2 fluxes are stronger and probably more
heterogeneous during Aug, deep into the growing season,
as compared to June, when leaf-out has just occurred and
soil moisture levels are generally high.
[20] Representation errors over the Pacific (Figure 3c) are

consistent with observed large-scale gradients within the
marine boundary layer [Nakazawa et al., 1992; NOAA,
1997]. We infer that representation errors over the Pacific
largely reflect hemispheric scale variations in fluxes that are
resolvable by typical models, with minimal contribution
from strong, localized sources/sinks.

5. Summary and Conclusions

[21] The variability of CO2 is important for determining
errors necessary for inversion studies and validation of
spaceborne sensors. We stress the importance of using
quantitative error estimates as shown in this study when
comparing observations and models. Point CO2 observa-
tions in the PBL are expected to deviate from the PBL
average simulated in models by as much as 1 ppmv due to
turbulent fluctuations (Table 1). Even when observations of
column averages are available, the presence of tracer layers
leads to errors of 0.1 to 0.3 ppmv (Table 1). These errors
should be included within error covariance matrices in any
framework for assimilation of CO2 data—e.g., from aircraft
or satellites that measure atmospheric columns.
[22] The horizontal variability in CO2 causes deviations

between values at a point location and spatial averages
measured by space-borne sensors or represented in models.
In the case of the proposed space-borne Orbiting Carbon
Observatory [http://oco.jpl.nasa.gov], the small footprint of
�1 	 1.5 km for column CO2 retrieval minimizes the scale
mismatch with validation observations from, e.g., aircrafts.
However, when these CO2 columns are used in current-
generation transport models—with typical horizontal reso-
lutions between 200 and 400 km [Gurney et al., 2002]—the
scale mismatch results in representation errors, as suggested
by the observed <9 km column, of 0.6�0.7 ppmv (continent)
and 0.2�0.3 ppmv (Pacific). The significantly higher vari-
ability in the continental PBL translates into representation
errors in current-generation models of 1.0�1.5 ppmv
(June 2003) and 1.4�2.2 ppmv (August 2000). These errors
can cause not only random noise but biases if the measure-
ment site is systematically influenced by sub-gridscale

fluxes that differ from grid-averaged values [Gerbig et al.,
2003a, 2003b]. Thus when interpreting CO2 observations in
the continental PBL, models with higher resolution are
necessary to resolve the large spatial variability, reduce the
representation error, and minimize any potential biases.
[23] In contrast to the continental PBL, representation

errors in the lowest 3 km over the Pacific are 0.4�0.5 ppmv
for gridcells between 200 and 400 km. The attribution of
spatial variability over the Pacific to large-scale gradients
implies that observed gradients from the current observa-
tional network can be used to quantify representation errors
at the different measurement sites. Since observed large-
scale gradients over the ocean can be resolved by current
atmospheric transport models, simple schemes which inter-
polate the model-resolved large-scale gradient and predict
concentrations at observation locations could be used to
minimize the representation error for atmospheric inverse
models. The problem is thus fundamentally simpler than
over land.
[24] This paper has highlighted errors arising from spatial

variability, but similar errors follow from temporal variabil-
ity. Modeled CO2 concentrations are often averaged to
coarser time windows (e.g., monthly, annual) before being
compared to observations, and validation measurements
may not take place at the same time as the space-borne
measurement. Discrepancies in these cases would arise from
variability within the time window. We point out the
importance of future analyses to quantify this temporal
variability and the associated representation error by, e.g.,
analyzing fast-response, continuous observations at moni-
toring stations.
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