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[1] We present a general framework for designing and analyzing Lagrangian-type aircraft
observations in order to measure surface fluxes of trace gases on regional scales.
Lagrangian experiments minimize uncertainties due to advection by measuring tracer
concentrations upstream and downstream of the study region, assuring that observed
concentration changes represent fluxes within the region. The framework includes (1) a
receptor-oriented model of atmospheric transport, including turbulent dispersion, (2) an
upstream tracer boundary condition, (3) a surface flux model that predicts the distribution
of tracer fluxes in time and space, and (4) a Bayesian inverse analysis that combines a
priori information with observations to yield optimal estimates of tracer fluxes by the flux
model. We use a receptor-oriented transport model, the Stochastic Time-Inverted
Lagrangian Transport (STILT) model, to simulate ensembles of particles representing air
parcels transported backward in time from an observation point (receptor), linking
receptor concentrations with upstream locations and surface inputs. STILT provides the
capability to forecast flight tracks for Lagrangian experiments in the presence of
atmospheric shear and dispersion. STILT may be used to forecast flight tracks that sample
the upstream tracer boundary condition, or to analyze the data and provide optimized
parameters in the surface flux model. We present a case study of regional scale surface
CO2 fluxes using data over the United States obtained in August 2000 in the CO2 Budget
and Rectification Airborne (COBRA-2000) study. STILT forecasts were obtained using
the National Centers for Environmental Prediction Eta model to plan the flight tracks.
Results from the Bayesian inversion showed large reductions in a priori errors for
estimates of daytime ecosystem uptake of CO2, but constraints on nighttime respiration
fluxes were weaker, due to few observations of CO2 in the nocturnal boundary layer.
Derived CO2 fluxes from the influence-following analysis differed notably from estimates
using a conventional one-dimensional budget (‘‘Boundary Layer Budget’’) on a typical
day, due to time-variable contributions from forests and croplands. A critical examination
of uncertainties in the Lagrangian analyses revealed that the largest uncertainties were
associated with errors in forecasting the upstream sampling locations and with aggregation
of heterogeneous fluxes at the surface. Suggestions for improvements in future
experiments are presented. INDEX TERMS: 0315 Atmospheric Composition and Structure:

Biosphere/atmosphere interactions; 0322 Atmospheric Composition and Structure: Constituent sources and
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1. Introduction

[2] The process of deriving emergent properties from
underlying processes occurring at smaller scales (‘‘upscal-
ing’’) represents a ‘‘classical conceptual problem in ecology,
if not all of science’’ [Levin, 1992]. Budgets of carbon and
water at the regional scale (length scale of 101�103 km)
cannot be reliably inferred from knowledge of leaf- or
tree-level physiology [Ehleringer and Field, 1993].
Nevertheless these large-scale budgets are extremely
important, representing the core data for managing natural
resources [Newson and Calder, 1989]. Furthermore, emis-
sion fluxes of radiatively and chemically active trace gases
to the atmosphere [Chameides et al., 1994; Crutzen and
Ramanathan, 2000], resulting from the sum of numerous
ecological processes and aggregated effects of decisions
made by many individual human beings, remain highly
uncertain due to errors in upscaling [Intergovernmental
Panel on Climate Change (IPCC), 2001]. Hence there is
strong societal motivation to develop methods to use
observations to quantify and validate estimates of large-
scale CO2 or other trace gas fluxes derived from scaling
up smaller scale processes.
[3] In this paper we discuss a receptor-oriented frame-

work to design and carry out Lagrangian atmospheric
experiments and to derive estimates of trace gas fluxes at
regional scales (Figure 1). Usually tracer mixing ratios are
sensitive to fluxes outside of the target region, and their
interpretation is subject to additional uncertainties from
these outside fluxes. Lagrangian observations, often con-
ceived as measurements over time and moving with an air
mass, restrict surface flux contributions to a limited domain

by comparing tracer concentrations measured upstream, at
an initial time, and values downstream, at a later time (at the
‘‘receptor’’ location). In this way, the Lagrangian experi-
ments provide tighter, integral constraints on surface fluxes
within the target domain and make results insensitive to
fluxes outside of the target domain.
[4] Air parcels are typically transported across hundreds

of km during a day, undergoing concentration changes due
to the intervening influence of surface fluxes. Lagrangian
experiments are generally thought to require ideal meteoro-
logical conditions with negligible shear and dispersion, a
rare circumstance that limits application of the technique
[Schmitgen et al., 2004]. The methods developed here
relax these constraints and broaden the application of the
Lagrangian strategy for determining regional fluxes.
[5] The framework (also see Figure 1 of Gerbig et al.

[2003b]) consists of (1) a model of atmospheric transport,
the Stochastic Time-Inverted Lagrangian Transport (STILT)
model [Lin et al., 2003], which simulates transport of air
parcels arriving at a receptor, thus linking the receptor with
upstream regions; (2) upstream tracer boundary conditions,
in this paper directly measured with an aircraft; (3) a surface
flux model that predicts the distribution of tracer fluxes in
time and space; and (4) a Bayesian inversion that combines
prior ground-based flux data with observations from the
Lagrangian experiments to adjust parameters of the surface
flux model, yielding optimal estimates of surface sources
and sinks in the measurement domain. The upstream influ-
ences simulated by STILT provide both the information to
plan flight tracks for sampling air that will later reach the
receptor (forecast mode) and the quantitative link needed to

Figure 1. The receptor-oriented analysis framework and the role played by the STILT model. Particle
ensembles simulated by STILT provide the influence functions I(xr, trjx, t) that link receptor measurement
C(xr, tr) to upstream surface fluxes F(x, y, t) and initial tracer field C(x, t0). The particle ensembles are
released at downstream receptors, and their locations prior in time mark out the upstream regions
influencing the receptors. To predict upstream sampling locations for Lagrangian experiments, particle
locations are calculated in advance using forecasted meteorology. For data analysis the particles are
driven with assimilated meteorology to link upstream observations to downstream receptors, quantifying
concentration changes that serve as signals from intervening sources/sinks. The simulated concentration
changes are quantified using particles that dip into the PBL (shown in grey), which accumulate
contributions from surface fluxes generated by a model Fmod(x, t; lll) that depends on parameters lll. The
analysis framework then uses the deviations between the observed and modeled concentrations to adjust
lll such that the modeled values are optimally consistent with the observed values.
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optimize parameters in the surface flux model (analysis
mode). Since STILT simulates the effects of wind shear and
dispersion that cause air parcels arriving at a receptor to
originate from different air masses, it is technically ‘‘influ-
ence following’’ rather than ‘‘air mass following.’’
[6] An aircraft is capable of sampling both the upstream

and the downstream in order to carry out Lagrangian
experiments. However, aircraft experiments are necessarily
constrained by restrictions related to flight safety, logistics,
weather, and cost. To be most useful, fluxes derived from
Lagrangian experiments must be scaled up to longer time
periods to provide regional budgets for trace gases. We use
the optimized empirical flux model to ‘‘scale up’’ in time.
Data from eddy covariance measurements (e.g., for CO2

fluxes) are particularly useful in constructing this empirical
model, providing detailed, mechanistic information about
processes at the surface with comprehensive temporal
coverage and high time resolution, but at a limited spatial
scale. Thus the framework ingests both aircraft observations
and ground-based measurements of concentrations and
fluxes in order to optimize parameters in the surface flux
model using a Bayesian inverse method. The optimized
surface flux model, simultaneously constrained by atmo-
spheric and ground-based data, can then be driven by
environmental forcing variables from assimilated meteoro-
logical fields in order to extend the fluxes in time to cover
periods when parameters of the flux model are deemed to
remain steady. This framework is thus an assimilation
procedure enabling detailed ground-based information
to be ‘‘scaled up’’ to the regional scale by enforcing
consistency with large-scale measurements of atmospheric
concentration gradients.
[7] We apply the framework to the analysis of regional

scale surface CO2 fluxes from data obtained over the United
States in August 2000 as part of the CO2 Budget and
Rectification Airborne (COBRA-2000) study. Current
knowledge of CO2 fluxes at the scale of ecosystems or
countries remains highly uncertain [cf. Schimel et al.,
2001; IPCC, 2001]. Carbon cycle models which incorporate
advances in satellite imagery and plant physiology [Potter
et al., 1993; Running and Hunt, 1993; Sellers et al., 1996]
have generated simulations of regional scale carbon fluxes
[Schimel et al., 2000], but data to critically evaluate these
models at regional scales have been lacking. Continuous
eddy covariance measurements on towers have elucidated
environmental controls on carbon exchange between the
biosphere and atmosphere [Baldocchi, 2003; Goulden et
al., 1996; Wofsy et al., 1993] at scales of �1 km, but
comprehensive spatial coverage is not possible. ‘‘Atmo-
spheric inversion’’ methods [Ciais et al., 1995; Fan et al.,
1998; Tans et al., 1990] combining CO2 data at remote
marine stations with modeled atmospheric transport have
characterized carbon fluxes on continental to global scales
(103�104 km) but have yet to yield results at the regional
scale due to the dearth of CO2 observations in proximity to
terrestrial sources and sinks [Sarmiento and Wofsy, 1999;
Tans et al., 1996] and due to difficulties in representing
transport processes over the continent in order to interpret
the observations [Gloor et al., 1999; Law et al., 1996].
Alternatively, one-dimensional boundary layer budget
techniques have been applied to atmospheric CO2 observa-
tions to derive regional scale carbon fluxes [Denmead et al.,

1996; Kuck et al., 2000; Levy et al., 1999; Lloyd et al.,
2001]. However, horizontal advection neglected in the one-
dimensional assumption introduces significant errors that
are difficult to account for [Lin et al., 2003; Cleugh and
Grimmond, 2001].
[8] Aircraft observations using the Lagrangian approach

are designed to provide constraints on carbon fluxes at
larger spatial scales than the ground-based methods, with
greater reliability than conventional boundary layer budgets,
addressing the current missing scale in carbon budgets.
[9] We illustrate the application of the analysis framework

for planning and analyzing Lagrangian observations—
which minimize errors arising from horizontal advection—
using data from the CO2 Budget and Rectification Airborne
(COBRA-2000) experiment, a pilot study aimed at testing
methods for quantifying regional- and continental-scale
fluxes of carbon [Stephens et al., 2000].
[10] In the next section we outline the analysis framework

in its general form. In section 3 we adapt the analysis
framework for CO2, presenting COBRA observations and
providing details of the surface flux model and the Bayesian
optimization. Results of the COBRA analysis are presented
in section 4, and an assessment of errors in the analysis and
necessary steps to improve current capabilities are presented
in section 5. Conclusions derived from this study are shown
in section 6.

2. Receptor-Oriented Analysis Framework

2.1. Stochastic Time-Inverted Lagrangian Transport
(STILT) Model

[11] We use STILT to simulate the transport of air parcels
between the downstream and upstream sampling locations.
STILT [Lin et al., 2003] simulates the transport of air
parcels with ensembles of representative particles advected
with the mean wind, subject to stochastic perturbations
parameterized to capture the effects of turbulent transport.
The particle ensemble is released at the receptor and trans-
ported backward in time, tracing the trajectories of air
parcels arriving (in the forward-time sense) at the receptor
at a given time.
[12] The density of STILT particles is used to calculate

the influence function I(xr, trjx, t) and the footprint f (xr,
trjx, t) (see Lin et al. [2003] for more details). I(xr, trjx, t)
and f (xr, trjx, t) link concentration measurements at the
receptor, C(xr, tr), to the sum of all upstream contributions:

C xr; trð Þ ¼
X
i;j;m

f xr; tr j xi; yj; tm
� �

� F xi; yj; tm
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
contribution from sources=sinks

þ
X
i;j;k

I xr; tr j xi; yj; zk ; t0
� �

� C xi; yj; zk ; t0
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
contribution from advection of upstream tracer field

; ð1Þ

where F(xi, yj, tm) is the surface flux at location (xi, yj) and
time tm, and C(xi, yj, zk, t0) is the initial mixing ratio at time
t0. The first sum on the right-hand side of equation (1)
denotes the concentration change at the receptor due to
surface fluxes during the time interval between initialization
time t0 and tr. The second sum refers to the contribution to
the receptor concentration from advection of tracers from
the initial tracer field C(xi, yj, zk, t0).
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[13] Equation (1) suggests that the initial tracer distribu-
tion C(xi, yj, zk, t0) plays a role only where I(xr, trjxi, yj, zk,
t0) is nonzero, or where particles are found. Therefore I(xr,
trjxi, yj, zk, t0) can be used to forecast optimal locations for
sampling the upstream initial tracer mixing ratios. To carry
out an influence-following experiment, the upstream influ-
ence function I(xr, trjxi, yj, zk, t0) —a three-dimensional field
at each t—must be determined in advance of the measure-
ments in order to plan where and when the aircraft should
sample. Section 3.1.2 describes STILT as an operational
flight planning tool to determine I(xr, trjxi, yj, zk, t0).
[14] We now express equation (1) compactly in matrix

formulation, in which a single underline denotes a vector
and a double underline denotes a matrix:

C ¼ f Fþ ICt0: ð2Þ

C is a vector of tracer concentrations at different receptor
locations and times. f is a matrix of footprint elements
relating the receptor concentrations to a vector F of surface
fluxes, whose length equals the total number of surface flux
elements in the model domain, multiplied by the total
number of time steps. I is the matrix of influence elements
that advects the initial concentration field Ct0 at time t0 to
the receptors. Ct0 is a vector with length equal to the total
number of gridcells in the model domain.

2.2. Application of Receptor-Oriented Framework to
Constrain Tracer Fluxes

[15] Rearrangement of equation (2) illustrates how the
observed C and Ct0 can be quantitatively related to the
surface flux F:

C� ICt0

zffl}|ffl{C
up

Observational

constraint

¼ f F

Surface flux

contribution

: ð3Þ

Equation (3) suggests that knowledge of I, combined with
observations of C and Ct0, provides spatially integrated
constraints on F (Figure 1). We define Cup 	 I Ct0,
reflecting the fact that the upstream tracer concentrations
advected to the downstream receptors is given by the
product of I and Ct0.
2.2.1. Lagrangian Budget-Derived Flux
[16] The observed C and Ct0, plus information on I and f

from STILT, enables a ‘‘Lagrangian budget’’ that directly
provides a footprint-weighted estimate of tracer flux. To
show this, we first transform C in order to decrease the
variance associated with small-scale vertical gradients typ-
ical of the PBL [Gerbig et al., 2003a] by vertically
integrating over the receptor altitudes to derive column
tracer amounts [Wofsy et al., 1988], represented by g� � �ð Þ
below:

g� � �ð Þ xr; trð Þ ¼ m�1
air

ZH
zbot

� � �ð Þ xr; trð Þr xr; trð Þdz; ð4Þ

where mair is the molar mass of air, r is air density, and H is
chosen to be just above the maximum PBL height during

the day for each receptor. Column amounts are conserved
when vertical mixing simply redistributes tracers within the
column. This approach reduces errors if, for example, the
PBL height is slightly in error.
[17] Each element in the observational constraint eC� fI C

t0
derived from equation (3) is in units of [mole/m2], repre-
senting the total column-integrated change in tracer quantity
at a location along the downstream cross-section due to
fluxes between the upstream and the downstream. DividingeC� fIC

t0
by the elapsed time t between the downstream

and upstream measurements, we derive a vector of fluxes in
units of, e.g., [mole/m2/s]:

eC� fIC
t0

t
¼
eC� eCup

t
¼ hFi: ð5Þ

We refer to equation (5) as the ‘‘Lagrangian budget.’’ After
applying g� � �ð Þ to equation (3) and dividing by t, we find by
comparison to equation (5) that hFi ¼ ff F=t, suggesting
that hFi represents a vector of footprint-weighted fluxes.
[18] hFi is a direct estimate of the surface tracer flux if the

flux is assumed to be invariant within the footprint [Chou et
al., 2002]. Alternatively, a model of F can be used to
capture the spatiotemporal variability of the flux and opti-
mized as part of a Bayesian inverse analysis, as discussed in
the following section.
2.2.2. Flux Model and Bayesian Inverse Analysis
[19] F may be regarded as an implicit function of envi-

ronmental variables ggg—which depend on x and t—that
control the surface tracer fluxes (e.g., temperature, popula-
tion density, vegetation cover, phenology). We incorporate
these environmental variables into a surface flux model
Fmod(llll), in which a subset llll out of ggg are selected as
parameters to be optimized in the inverse analysis: F = F(ggg)
� Fmod(llll).
[20] The observed C and Ct0 can then be related to

Fmod(llll), using equation (3):

C� I Ct0

zffl}|ffl{C
up

Observational

constraint

¼ f Fmod lllð Þ
Estimate from

modeled surface fluxes

þ eeeee
Error

: ð6Þ

The analysis framework uses the observational constraint
C � I Ct0 to adjust the model parameters L such that the
modeled changes in tracer concentrations are optimally
consistent (in a least-square sense) with the observed values.
[21] In the general case, Fmod(llll) is a nonlinear function of

llll, and optimizing the correspondence between modeled and
observed C by adjusting llll requires use of iterative, numer-
ical techniques. However, the optimization problem has
a simple analytical solution if Fmod is linearly dependent
on llll:

Fmod lllð Þ ¼ l1jjjj1
þ l2jjjj2

þ � � � þ lnjjjjn

¼ jjjj
1
jjjj
2
� � �jjjj

n

h i
l1l2 � � �ln½ �T

¼ FFlll: ð7Þ

[22] Substituting FFllll for Fmod(llll) in equation (6) results
in an equation of the form y = K llll + eeeee, where the vector of
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observations y is linearly related to the state vector llll
through the Jacobian matrix K:

C� I Ct0|fflfflfflfflffl{zfflfflfflfflffl}
y

¼ f FF|{z}
K

llllþ eeeee
Error

: ð8Þ

[23] The inverse method optimizes the values of the n
parameters within the state vector llll. The Bayesian method
incorporates prior estimates and their errors in the optimi-
zation. We assume that the measurement error e and the
errors in llll prior—the prior estimates for llll—are unbiased
(mean = 0) and follow Gaussian statistics characterized by
error covariance matrices Se and S prior, which quantify the
degree of constraint provided by the measurements and
prior estimates of llll, respectively.
[24] Standard least squares optimization results in poste-

rior estimates for llll optimally consistent with both the
measurements and the prior estimates for gross fluxes,
weighted by Se and S prior. The estimate of the state vector
l̂lll is given by [Rodgers, 2000]:

bllll ¼ KTS�1

e
K þ S�1

prior

� ��1

KTS�1

e
yþ S�1

prior
llllprior

� �
ð9Þ

with the a posteriori error covariance matrix for L̂ given by

Ŝ
l
¼ KTS�1

e
K þ S�1

prior

� ��1

.

3. Application to Regional-Scale CO2 Fluxes

[25] We now apply the general receptor-oriented analysis
framework developed in section 2 to CO2. The flux of CO2

can be separated into contributions from the biosphere and
fossil-fuel combustion: F = Fveg + Ffoss. The receptor CO2

concentrations (CO2) can thus be decomposed into
contributions due to biospheric fluxes DCO2veg, fossil fuel
combustion DCO2 foss, and an advected upstream value
CO2up, and using equation (2):

CO2 ¼ f Fveg ggg

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

DCO2veg

þ f Ffoss|fflffl{zfflffl}
DCO2foss

þ I CO2t0|fflfflffl{zfflfflffl}
CO2up

: ð10Þ

[26] We directly observeCO2 and CO2t0 from Lagrangian
experiments in the COBRA study (section 3.1) and
calculate I and f from STILT particles simulated using
assimilated meteorology (section 3.2). Ffoss is derived
following the method of Gerbig et al. [2003b] and is
discussed in section 3.3. We introduce a simple model for
Fveg(ggg) that is linearly dependent on scaling factors that
adjust the photosynthetic (GEEv) and respiration (Rv)
fluxes for each vegetation type v:

Fveg ggg

� �
� Fvegmod llllð Þ ¼ l1jjjj1

þ l2jjjj2
þ � � � þ lnjjjjn

¼ FFllll

¼ lGEE;v¼1GEEv¼1 þ lR;v¼1Rv¼1

þ lGEE;v¼2GEEv¼2 þ lR;v¼2Rv¼2 þ � � �

ð11Þ

GEEv and Rv are, respectively, functions of downward
short-wave radiative flux and temperature (for more details
see section 3.4), fitted to biospheric flux observations from

AmeriFlux eddy covariance tower sites for different
vegetation classes, spatially distributed using the IGBP
land surface grid [Belward et al., 1999]. Errors in prior
estimates of regional scale carbon fluxes are also derived
from the AmeriFlux observations (section 3.4).
[27] We wish to reduce uncertainties in Fveg by optimiz-

ing Fvegmod through the Bayesian method shown in
section 2.2.2. We substitute Fveg(;) in equation (10) with
Fvegmod(L) and rearrange:

CO2 � ICO2t0
� f Ffoss ¼ f Fvegmod llllð Þ þ eeeee

CO2 � CO2up � DCO2foss|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DCO2veg

¼ f Fvegmod llllð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
DCO2vegmod

þ eeeee

DCO2veg ¼ f Fllllþ eeeee

: ð12Þ

The regional-scale spatial constraint from measuring CO2

and CO2t0 in the Lagrangian experiment, the STILT-
simulated I and F, and the prior information about the
biosphere incorporated in Fvegmod, are all combined in the
analysis framework as suggested by equation (12) to
optimize llll in the biospheric model.
[28] We integrate DCO2veg through the atmospheric

column (equation (4)) and, following the left-hand side of
equation (12):

DgCO2veg ¼gCO2 �gCO2up � DgCO2foss: ð13Þ

The observational constraint y consists of the changes in
vertically integrated CO2 amounts attributed to the bio-
sphere, with one element for each receptor j at location xrj,
and at time tr : y = DgCO2veg = [DfCO2,veg(xr1,
tr1)� � �DfCO2,veg(xrj, trj)� � �]T. The same vertical integration
is applied to f F to form the Jacobian matrix K, creating the
vertically integrated form of the equation y = K l + e that
creates a linear relationship between y and llll:

DgCO2veg|fflfflfflfflffl{zfflfflfflfflffl}
y

¼ ff FF|{z}
K

llllþ eeeeee: ð14Þ

We then apply the Bayesian optimization (equation (9)) to
optimize llll. The optimized biosphere model, incorporating
information from multiple datastreams, can then be forced
with meteorological variables driving GEEv, and Rv to
generate regional fluxes and trace gases.

3.1. CO2 Budget and Rectification Airborne
(COBRA-2000) Study

[29] The CO2 Budget and Rectification Airborne (CO-
BRA-2000) study tested the use of Lagrangian experiments
to quantify regional- and continental-scale fluxes of CO2.
COBRA collected in situ observations of CO2, CO, H2O, and
meteorological variables on the University of North Dakota
Cessna Citation II for 30 flight legs over the United States in
August 2000 (Figure 2). In addition to the Lagrangian
experiments, continental-scale flights were conducted for
analysis of large-scale fluxes [Gerbig et al., 2003a, 2003b].
3.1.1. Instrumentation
[30] The CO2 sensor was a modified nondispersive infra-

red gas analyzer [Boering et al., 1994; Daube et al., 2002]
frequently calibrated in-flight with gas mixtures traceable to
World Meteorological Organization (WMO) primary stand-
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ards [Conway et al., 1994]. Comparison with onboard flask
samples and internal ‘‘archive’’ standards indicated uncer-
tainty of the CO2 observations during COBRA of
±0.25 ppmv [Daube et al., 2002; Gerbig et al., 2003a].
CO2 mixing ratios were also measured continuously on
the WLEF 447-m tall tower in northern Wisconsin at 11, 30,
76, 122, 244, and 396 m above the ground [Bakwin et al.,
1998]. These measurements have been ongoing since
1994 and were likewise referenced to the WMO standards.
The presence of the WLEF tall tower and its long measure-
ment record provided the motivation to conduct several
Lagrangian experiments in northern Wisconsin during
COBRA-2000. The CO measurements were acquired using
a vacuum-UV resonance fluorescence instrument at 1 Hz
resolution with a precision of 2 ppbv and a long-term
accuracy of 3 ppbv [Gerbig et al., 1999, 2003a].
3.1.2. Flight Planning in the COBRA Lagrangian
Experiments
[31] Upstream influences I were predicted using STILT

with forecasted winds from the Eta model [Black, 1994],
and flight tracks were implemented to sample the regions, as
illustrated in Figure 3 for receptors in southern ND. Note
that the shaded regions represent two-dimensional densities
of three-dimensional particle locations projected onto the
Earth’s surface; some particles are located in the free
troposphere and separated by wind shear from the particles
in the PBL, e.g., in the long tail of influence stretching to
the west in Canada.

Figure 2. Flight paths conducted by the Cessna Citation II during the CO2 Budget and Rectification
Airborne study (COBRA) and locations of eddy covariance observations from the AmeriFlux network
(grey dots) used for generating prior biospheric CO2 fluxes. The COBRA flights were divided into
continental-scale surveys (grey) and the regional scale Lagrangian experiments (black). We examine
observations from the COBRA Lagrangian experiments in this paper.

Figure 3. Example of flight planning for Lagrangian
experiments. Locations of air parcels at �7 and �24 hours
upstream of receptors in southern North Dakota were
forecasted by driving the STILT model with forecasted
meteorology from the NCEP Eta model. Flight paths were
then planned (black lines) in order to sample the particle
locations. The greyscale represents particle densities,
showing the percentage of the total particles at each time
step on a logarithmic scale.
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[32] The northerly wind prevalent on 1 August translated
into southward shifting Citation flights over the 24 hours in
order to sample air parcels arriving at the receptor locations
in southern ND on the afternoon of 2 August. The Citation
acquired data near Lake Winnipeg in Canada during the
afternoon of 1 August and moved southward to central and
southern ND during the morning and afternoon of 2 August,
respectively, in order to isolate the effect of surface fluxes in
ND. During each time period sawtooth flight patterns were
conducted to collect numerous vertical profiles at the
locations specified by the STILT particle density.
[33] This example illustrates the potential role of a tool

like STILT for flight planning: the particles reveal the net
effect of turbulent dispersion and wind shear on the spread
in air parcel locations, as witnessed in the different hours in
this experiment; one cannot easily derive the spread in air
parcels from simply examining forecasted wind vectors or
mean wind trajectories. Furthermore, the backward-time
formulation of STILT yields simulations necessary to derive
the upstream influence I.
[34] Complete sampling of desired particle locations were

in some cases limited by logistical considerations: e.g.,
airspace restrictions, inclement weather conditions, finite
flight range, and limited radar coverage. For example, the
Citation was not able to dip into the PBL in Canada during
the ND flights and could not fully characterize the upstream
(t0 = �24 hours) influence. On the Maine flight, a naviga-
tion error changed the upstream sampling location, intended

for the red square in Figure 9a. Errors in forecasted wind
patterns occasionally caused parcels sampled upstream to
not arrive at the intended downstream receptors. Sometimes
flight patterns could be updated as changes were detected in
forecasted wind patterns, allowing relocation of the receptor
points to intercept air sampled upstream. Errors arising from
the spatial mismatch between the air parcel locations
actually sampled versus arriving at the receptor are evalu-
ated and discussed in section 3.5.
3.1.3. Observations
[35] The times and locations of COBRA-2000 Lagrangian

experiments in North Dakota (ND), Wisconsin (WI), and
Maine (ME) are listed in Table 1, denoted in the discussion
below by location and number (e.g., ‘‘WI#3’’). Receptor
observations (denoted CO2) took place during the after-
noon, with upstream observations (CO2 t0) on the morning
of the same day except for WI#1, where upstream flights
were carried out at noon. Observations and analysis results
from each Lagrangian experiment are grouped into separate
figures (Figures 4–9), in which panel a shows maps with
locations of the upstream and downstream flights as well as
results of STILT simulations, panel b displays the tracer
observations, panel c shows the simulated vegetation and
fossil CO2 fluxes, and panel d plots the observed CO2 flux
and the total simulated CO2 fluxes prior to and after
Bayesian optimization. The CO2 fluxes and results from the
Bayesian optimization will be discussed in sections 4.2 and
4.3, respectively.

Table 1. Summary of Lagrangian Experiments Conducted as Part of COBRA in August 2000a

Name

Downstream Upstream

Experiment TypeDate/Time Location Date/Time Location

ND 2 Aug., UT21 98.56�W, 46.32�N 2 Aug., UT14 98.51�W, 46.85�N diurnal (19 � t � 21)
WI#1 23 Aug., UT22 90.24�W, 46.07�N 23 Aug., UT18 91.62�W, 46.50�N daytime (t = 4)
WI#2 23 Aug., UT22 91.10�W, 46.67�N 23 Aug., UT15 92.51�W, 47.33�N diurnal (20 � t � 23)
WI#3 24 Aug., UT22 89.97�W, 45.82�N 24 Aug., UT14 90.65�W, 46.26�N diurnal (21 � t � 23)
WI#4 24 Aug., UT22 89.94�W, 46.20�N 24 Aug., UT14 90.65�W, 46.26�N diurnal (21 � t � 23)
ME 18 Aug., UT19 68.01�W, 46.07�N 18 Aug., UT14 68.70�W, 46.21�N daytime (t = 5)

aThe experiments are separated into diurnal and daytime, depending on whether or not the upstream cross-section sampled the residual layer with tracer
signatures remaining from the previous day. Here t is the number of hours contributing to the observed tracer difference and subject to some uncertainty
during the diurnal experiments.

Figure 4. (a) (left) Locations of the upstream (green) and downstream (blue) cross-sections flown by the Citation as part
of the ND Lagrangian experiment, as well as the locations of simulated particles (grey and orange) from STILT—started
from the downstream cross-section—at the earlier time when the upstream flights were conducted. The particles shown in
orange denote those that traveled within the PBL—i.e., particles recently affected by local surface fluxes. The black arrow
shows the orientation of the x-axis in the cross-sections shown in Figure 4b, pointing in the direction of increasing x. (right)
The time-integrated ‘‘footprint’’ f of the downstream receptors—sensitivity of concentration changes to upstream surface
fluxes—derived from particle locations traveling within the PBL shown in orange in the left panel of Figure 4a. The
greyscale shows the logarithm (base 10) of the footprint in each 1/6� latitude by 1/4� longitude gridcell. Darker areas denote
regions where a unit surface flux leads to a greater change in concentration at the downstream. Note that the left panel
shows particles at only a single time when upstream sampling was conducted, but the time-integrated footprint is derived
from particle locations at all hours t separating the times when the downstream and upstream tracer concentrations were
affected by surface fluxes. (b) Observed upstream and downstream tracer cross-sections from the ND experiment, showing
CO2, CO, and q. Flight paths are shown in grey. The origin refers to the mean horizontal position of the aircraft during the
sampling of the cross-section. The x-axis represents the horizontal location along the first principal component of the
aircraft locations. (c) The modeled CO2 fluxes attributed to fossil fuel combustion (red dashed), forest (green), and cropland
(orange). The modeled results from assuming a maximum value for t are shown. The error bars are the 1-s spread resulting
from the measurement error Se (equation (17)). (d) The total modeled biospheric CO2 flux (black dashed)—sum of the
separate components in Figure 4c, the optimized flux after Bayesian inverse analysis (blue dashed), and the observed
biospheric flux derived from the Lagrangian budget (solid black; see equation (5)).
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Figure 4
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Figure 5. Same as Figure 4, but for the WI#1 experiment. The two panels in Figure 5a show particle
distributions (left) before and (right) after adjustment for transport errors (see text). The red triangle
shows the location of the WLEF tall tower.
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[36] We interpolate observations from the sawtooth flight
patterns using an inverse distance squared weighting
method to generate continuous tracer cross-sections that
facilitate visualization and analysis. We apply subsequent
analyses to the continuous tracer cross-sections provided
by the interpolation. The tracer cross-sections from the

Lagrangian experiments are shown in Figures 4b–9b, with
flight paths in grey lines. The x-axis refers to the distance
along the direction that explains the most variance (the first
principal component) in the aircraft’s horizontal coordi-
nates, and the origin of the x-axis refers to the mean
horizontal position of the aircraft path during sampling.

Figure 6. Same as Figure 4, but for the WI#2 experiment. The arrow in light green in Figure 6d refers to
the observed CO2 flux from eddy covariance at WLEF for the same period between 22 and 23 August.
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Figure 7. Same as Figure 4, but for the WI#3 experiment. The labels (1) and (2) denote the two separate
upstream cross-sections shown in Figure 7b. The arrow in light green in Figure 7d refers to the observed
CO2 flux from eddy covariance at WLEF for the same period between 23 and 24 August.
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Figure 8. Same as Figure 4, but for the WI#4 experiment. The labels (1) and (2) denote the two separate
upstream cross-sections shown in Figure 8b. The arrow in light green in Figure 8d refers to the observed
CO2 flux from eddy covariance at WLEF for the same period between 23 and 24 August.
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Figure 9. Same as Figure 4, but for the ME experiment. The red triangle in Figure 9a shows the location
of the Howland eddy covariance tower. The red square in Figure 9a denotes the original planned flight
location for the end of the upstream cross-section (see text). The labels (1) and (2) refer to the two
separate upstream cross-sections shown in Figure 9b. The arrow in light green in Figure 9d refers to the
observed CO2 flux from eddy covariance at Howland for the same period (daytime of 18 August).
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Figures 4a–9a show the locations of the cross-sections; the
orientations of the cross-sections are labeled as black arrows
that point in the direction of increasing x in Figures 4b–9b.
[37] The ND experiment (Figure 4) illustrates general

features of the observations. The upstream concentrations
CO2 t0 in the morning (Figure 4b) show �4 ppm less CO2

in the lower altitudes, up to �2 km, with well-mixed
profiles of potential temperature (q) and elevated values of
H2O (not shown) up to the same altitudes. From these tracer
signatures we concluded that the morning cross-section in
ND mainly characterized the residual boundary layer,
showing well-mixed tracer signatures up to the maximum
PBL height during the previous day that remained
unchanged after cessation of vertical mixing in the late
afternoon. The Citation dipped into the shallow morning
mixed-layer on only a few occasions, evidenced by
excursions of higher CO2, CO, q, and H2O in the lowest
altitudes below 1000 m. By afternoon, the mixed-layer had
grown to an altitude similar to the prior residual layer.
Depletion of CO2 at the lower altitudes had grown to
�12 ppm for flights at the receptor.
[38] The CO cross-sections exhibit significantly elevated

concentrations, over 200 ppbv in the lower atmosphere,
reflecting emissions from forest fires east of Lake Winnipeg
on 30 July. The distinctive CO label imparted by the fires,
sampled both upstream and downstream, support the STILT
analysis indicating that the same general air mass was
sampled by the aircraft upstream and downstream on this
day. Furthermore, the low CO layer observed at �3 km
during the morning subsided and was resampled again in
the afternoon at �2.5 km. These tracer-derived diagnostics
lend confidence to the STILT simulations. We will further
use CO as a tracer of combustion to quantify fossil fuel CO2

emissions (section 3.3) and isolate biospheric contributions
to CO2 changes.
[39] The morning observations in WI#2, WI#3, and

WI#4 profiled the residual layer, similar to the ND exam-
ple. We took care to identify the few observations that
dipped into the new morning mixed-layer, as indicated by
sharp changes in the other continuously observed tracers
(CO, H2O, and q). Since these few observations could not
be confirmed to be representative of the entire morning
mixed-layer, we cannot characterize nighttime or early
morning concentrations near the surface, and we excluded
the sporadic data in this layer from the analysis. Hence
tracer concentrations in the morning reflect values in the
residual mixed-layer from the previous day, and column-
integrated tracer changes observed between the two cross-
sections can then be attributed to the time-integrated fluxes
between afternoon of the previous day and downstream
(receptor) observations the following afternoon. We thus
refer to ND, WI#2, WI#3, and WI#4 as ‘‘diurnal experi-
ments’’ (Table 1), making small corrections for the fact that
t is slightly less than 24 hours, between the time that air in
the residual layer was last affected by surface fluxes and
when the afternoon mixed-layer was sampled on the fol-
lowing day. This analysis relies on the assumption that the
transport of tracers into the residual layer at night may be
neglected.
[40] These ‘‘diurnal’’ experiments are contrasted with

the ‘‘daytime experiments’’ WI#1 and ME, in which repre-
sentative observations of concentrations in the PBL were

available in the upstream cross-sections (Figure 5b and
Figure 9b). The WI#1 upstream flights took place at noon,
when the PBL had already grown to altitudes accessible by
aircraft. Upstream observations in ME took place at a later
time in the morning when vigorous mixing was available, as
confirmed by other in situ tracers (not shown). Differences
between upstream and downstream concentrations in this
case reflect only daytime fluxes.
[41] Large horizontal gradients in CO2 were observed in

the ND and WI#1 experiments, reflecting the spatial het-
erogeneity in upstream source/sink distributions [Gerbig et
al., 2003a]. The marked WI#1 gradient was observed in CO
as well as H2O (Figure 5b). The gradient in WI#1 coincided
with land-water contrasts: the left part of the cross-section
was more inland, while the right portion was closer to Lake
Superior. The air closer to the lake exhibited higher CO2,
lower CO, and lower H2O.
[42] We were able to carry out one nighttime Lagrangian

experiment using the WLEF CO2 observations as the
downstream receptor. We used the aircraft to sample air
9 hours upstream from the nighttime observations at WLEF
on 24 August, starting near Lake Superior during the
previous afternoon. The overnight buildup of CO2 led to
elevated concentrations of 530 and 383 ppmv at the 11 and
30 m levels on the tower, respectively, notably higher than
the 360 ppmv observed aloft. These observations were
suitable to constrain nighttime respiratory fluxes of CO2.

3.2. Particle Simulations Using STILT

[43] To generate the influence I and footprint f for
analysis of the COBRA observations, STILT was driven
with assimilated meteorology from the Eta Data Assimila-
tion System (EDAS) [Rogers et al., 1995]. EDAS data,
available every 3 hours runs on a 32 km, 45 level grid, is
archived by the NOAA Air Resources Laboratory at 80 km
horizontal resolution and 22 vertical levels (see http://
www.arl.noaa.gov/ss/transport/archives.html).
[44] Particles were released in STILT at receptor points

located every 10 km in the horizontal and 200 m in the
vertical over the entire downstream cross-section, using
100 particles for each receptor. The column integrals are
calculated at each 10 km in the horizontal by vertically
integrating the receptor concentrations (equation (4)) avail-
able every 200 m up to H; thusgCO2,gCO2up, DgCO2foss, andgCO2veg are comprised of receptors every 10 km along the
downstream cross-section. zbot was chosen to lie below the
lowest altitude of the aircraft profiles (�500 m ASL).
Where there were systematic errors between modeled and
observed PBL heights, we adjusted the PBL heights in the
STILT model to match the tracer-derived heights, thereby
modifying the vertical extent of turbulent dispersion affect-
ing transport of the particles. This adjustment was applied
for the ND and WI#1 experiments. Maximum adjustments
were �400 m during the afternoon.
[45] The resulting footprint f will be shown and discussed

in section 4.1.2. The matching between I and CO2t0 to
generate CO2up (equation (11)), the advected upstream
tracer concentrations, is as follows. CO2 t0 was taken from
tracer concentrations at locations in the upstream cross-
section (created from interpolation between observations)
closest to the particles comprising I. We will conservatively
estimate the error in CO2up associated with the distance
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between a particle arriving at the receptor and the upstream
data points (see section 3.5).

3.3. Surface Fossil Fuel Emissions

[46] Three surface flux grids—modeled biospheric CO2

fluxes, fossil CO2 emissions, and CO emissions—were used
to compute DCO2vegmod

, DCO2foss
, and DCO, respectively.

DfCO2foss
(xr, tr) was estimated from multiplying the Lagran-

gian budget-derived CO flux hFCOi (equation (5)) by the
ratio of fossil CO2:CO enhancements at receptor (xr, tr)
from emission inventories for North America:

DgCO2fossðxr; trÞ ¼
dgCO2foss;grid

dfCOgrid

�����
xr ;tr

� hFCOi

where
dgCO2foss;grid

dfCOgrid

�����
xr ;tr

¼

m�1
air

ZH
zbot

r xr; trð Þdz
X
i;j;m

f xr; tr j xi; yj; tm
� �

� Ffoss;grid xi; yj; tm
� �

m�1
air

ZH
zbot

r xr; trð Þdz
X
i;j;m

f xr; tr j xi; yj; tm
� �

� FCO;grid xi; yj; tm
� �

ð15Þ

FCO,grid comes from combining the NAPAP 1990 inventory
for the northeastern United States (1/6�Lat. � 1/4�Lon.)
[Environmental Protection Agency (EPA), 1993] and the
GEIA inventory (1�Lat. � 1�Lon.) [Benkovitz et al., 1996],
with hour-of-day and day-of-week scaling factors applied
[Gerbig et al., 2003b]. Ffoss,grid comes from the 1� � 1�
inventory compiled by Marland et al. [1997], adjusted for
increases between 1995 and 2000 as discussed by Gerbig et
al. [2003b].
[47] Gerbig et al. [2003b] adopted the indirect approach

of equation (15) to reduce the sensitivity to transport errors,
using observed changes in CO instead of directly using the
fossil CO2 inventory. The fossil CO2:CO emission ratios
exhibit relatively little spatial variability, but emission rates
can vary over small spatial scales (e.g., at urban/rural
boundaries). Thus scaling by observed enhancements of
CO gives a better estimate of the combustion signal.
Photochemical loss of CO can be considered negligible
over timescales of one day.

3.4. Biospheric Flux Model

[48] The biospheric model Fvegmod, following Gerbig et
al. [2003b], was constructed with the aim of a simple
representation (see equation (11)) that captures the diurnal
variability in CO2 fluxes. For each vegetation type v the
CO2 flux at (xi, yj, tm) was modeled as the sum of a
temperature (T) -dependent respiration term Rv and a
photosynthetic uptake term GEEv that is a function of the
downward short-wave radiative flux (SWRF):

Fvegmod;v xi; yj; tm
� �

¼ lR;v � Rv xi; yj; tm
� �

þ lGEE;v � GEEi xi; yj; tm
� �

where Rv xi; yj; tm
� �

¼ av xi; yj
� �

� bvT xi; yj; tm
� �

GEEv xi; yj; tm
� �

¼ av xi; yj
� �

�
av � SWRF xi; yj; tm

� �
bv þ SWRF xi; yj; tm

� �

av(xi, yj) is the fractional areal coverage at (xi, yj) for
vegetation v (see below). We determined the parameters bv,
av, and bv (Table 2) by fitting equation (16) to eddy
covariance observations during July�August 2000 at sites
in the AmeriFlux network [Baldocchi et al., 2001]. Surface
T and SWRF were derived from EDAS assimilated fields.
The simplicity of the biospheric model facilitates incorpora-
tion of information from eddy covariance observations and
scaling of carbon fluxes to regional scales. Despite its
apparent simplicity, the biospheric model accounted for at
least 60% of the variance in hourly CO2 fluxes at numerous
AmeriFlux sites (Table 2).
[49] The areal coverage av(xi, yj) for each vegetation type

was derived from the IGBP 1-km resolution vegetation data
[Belward et al., 1999], regridded to 1/6�Lat. � 1/4�Lon.
resolution. We regrouped the 17 IGBP vegetation types into
three dominant classes in the regions covered by the
COBRA Lagrangian experiments: (1) forests (evergreen
needleleaf forest, evergreen broadleaf forest, deciduous
needleleaf forest, deciduous broadleaf forest, and mixed
forest) (2) croplands (croplands and cropland/natural vege-
tation mosaic), and (3) water (wetlands and water bodies).
[50] The scaling factors lR,v and lGEE,v for each vegeta-

tion type v were adjusted to minimize the deviation of the
modeled biospheric signal DgCO2vegmod from the observed
signal using the Bayesian inverse method (equations (9),
(12), and (14)). The elements of the state vector L are
composed of llll = [lGEE,forest, lR,forest, lGEE,crop, lR,crop]

T.
The prior values (llll prior) were set to 1.0.
[51] The net CO2 flux for water bodies and wetlands

was assumed to be zero. The upper limit of the magnitude
in air-sea fluxes over the open ocean was estimated to be
�0.1 mmoles/m2/s based on recent pCO2 data [Lefevre et al.,
1999]. The potential error for neglecting air-sea exchange
fluxes will be included in the Bayesian inversion (see
below). While carbon fluxes over the open ocean may not
be applicable to fluxes from inland water bodies and wet-
lands, we will later show that this error is negligible in
comparison with the other sources of errors because the
associated areas covered by water are very small.

3.5. Specification of Error Covariance Matrices in
Bayesian Inversion

[52] We calculated S prior, the error covariance matrix for
prior estimates of L, from comparison between modeled
CO2 fluxes and observed eddy covariance values at

Table 2. Parameters Used for the Prior Biospheric Fluxes in

Equation (16)

Experiment Vegetation Fitted Parameters
Eddy Covariance

Sites Used for Fit; R2

ND forest
bi = 0.28;

ai = �50; bi = 1864
WLEF (R2 = 0.58)

ND cropland
bi = 0.26;

ai = �515; bi = 9017
Bondville (R2 = 0.80)

WI forest
bi = 0.28;

ai = �50; bi = 1864
WLEF (R2 = 0.58)

WI cropland
bi = 0.26;

ai = �515; bi = 9017
Bondville (R2 = 0.80)

ME forest
bi = 0.29;

ai = �41; bi = 787
Howland (R2 = 0.74)

ME cropland
bi = 0.26;

ai = �515; bi = 9017
Bondville (R2 = 0.80)

(16)
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AmeriFlux sites. The spatiotemporal correlations between
different regions of the footprint were roughly accounted for
by integrating the daytime and nighttime residuals over one
day—the approximate timescale over which observed
signals due to fluxes in the footprint are integrated—and
dividing by the one-day integrated daytime and nighttime
net ecosystem exchange to derive prior errors in lGEE,v and
lR,v, respectively [Gerbig et al., 2003b]. Errors from spatial
extrapolation were incorporated into S prior for the forest
class by imposing biospheric parameters derived at a single
tower—WLEF for the WI experiments and Howland for the
ME experiment—to other eddy covariance sites in different
forests and calculating the residuals between modeled fluxes
using imposed parameters and observed CO2 fluxes. The
other eddy covariance sites were: Blodgett, BOREAS NSA
Black Spruce, BOREAS SSA Aspen, Duke, Harvard,
Metolius, Niwot, Walker Branch, Willow Creek, and Wind
River. The resulting prior uncertainties are 1.43 and 0.48 for
lGEE,forest and lR,forest in WI and 0.66 and 0.46 for
lGEE,forest and lR,forest in ME.
[53] We arbitrarily increased the uncertainty in scaling

factors for the cropland class by a factor of 10, to 2.89 for
lGEE,crop and 3.74 for lR,crop, in order to reflect the fact that
only a single cropland flux site, at Bondville, was available
(Table 2) while the footprint sampled diverse crop types and
management regimes.
[54] The measurement error covariance matrix Se is

treated as the sum of different components:

S
e
¼ S

foss
þ S

part
þ S

eddy
þ S

aggr
þ S

water
þ S

miss
: ð17Þ

Covariances reduce the degrees of freedom for the measure-
ment errors and serve as prior information (or constraint)
[Brillouin, 1956; Rodgers, 2000], but are currently not well
known for the error sources in equation (17) at the regional
scale. Thus we assumed no covariances in the errors making
up Se to minimize ad-hoc constraints on these errors. Note
that Se does not include contributions from instrument errors,
which are random and independent, thus expected to largely
cancel out, becoming negligible in comparison to the other
error sources, when integrated in the calculation of column
CO2 amounts.
[55] S foss is the error in determining fossil fuel contri-

butions DfCO2foss (equation (15)). We assumed a large
(conservative) standard deviation of 30% for the inventory-
based ratio of fossil CO2:CO enhancements dgCO2 foss,grid /
dfCOgrid; errors in hFCOi primarily resulted from uncertainties

in DfCOup in equation (17) (see Smiss below).
[56] S part is the error arising from using a finite number

of random particles in STILT, �13% for a typical signal in
the mixed-layer for 100 particles [Gerbig et al., 2003a].
Seddy specifies the fluctuations in column-integrated CO2

due to contributions from turbulent eddies, observed to be
�0.2 ppmv [Gerbig et al., 2003a].
[57] Saggr refers to the ‘‘aggregation error’’ arising

from aggregating heterogeneous fluxes into a single flux
[Kaminski et al., 2001]. Gerbig et al. [2003b] demonstrated
that a rough estimate of the aggregation error of CO2 can
be derived from the observed ‘‘representation error’’—i.e.,
the deviations between a point observation and a value
averaged over a specific grid size [Gerbig et al., 2003a].
From this result we can derive the corresponding aggregation

error of 1 ppmv for fluxes at spatial scales of �100 km for
these experiments (see Figure 10 of Gerbig et al. [2003b]).
[58] Swater results from neglecting the carbon fluxes

between the ocean and the atmosphere. We used the upper
limit flux for oceanic fluxes of 0.1 mmole/m2/s as the
standard deviation of these uncertainties [Lefevre et al.,
1999] and combined these fluxes with the footprint contri-
bution from water to arrive at the corresponding errors. We
see later that Swater is much smaller than other error sources
and remains negligible even if the error is increased by two
orders of magnitude, because the footprints do not include
large areas of open water.
[59] Smiss refers to the error due to the spatial mismatch

between the location of upstream air parcels and the actual
sampled locations that gives rise to uncertainties in the
advected upstream tracer concentrations CO2 up. We made
a conservative estimate of Smiss. The spatial mismatch arose
from shifts in winds between forecasted and analyzed mete-
orology as well as logistical limitations that prevented
complete sampling of the particle locations. We first deter-

mined the mean distanceDx separating the sampled upstream
cross-section from the particle locations during the same
hour simulated with the assimilated winds. Then the mean
observed gradient of fCO2up

in the upstream cross-section

was calculated over this distance Dx : @gCO2up=@x
� ����

Dx

. The

absolute value of @gCO2up=@x
� ����

Dx

was multiplied by the

mean separation distance to derive the potential variability
and uncertainty in fCO2up

that would exist over Dx:

dgCO2up ¼ abs
@gCO2up

@x

�����
Dx

 !
Dx: ð18Þ

The conservative nature of this error estimate arises from
the fact that equation (18) assumes the errors to be
correlated and additive; no cancellation of errors occurs
from random fluctuations [Taylor, 1997]. The inherent
assumption is that the tracer gradient observed in the
upstream cross-section is similar to the unobserved gradient
between the cross-section and the locations of the air
parcels. The squared values of dfCO2up

were used as the
diagonal elements of Smiss. The mean separation distance
between particles and the location of the upstream cross-
section in COBRA was 50 km, smaller than the lengths of
all the measured cross-sections, so we argue that the
gradients in the unobserved parts probably do not require
extensive extrapolation and are unlikely to be drastically
different from the observed values.

4. Results

4.1. Results of STILT Simulation

4.1.1. Lagrangian ‘‘Matches’’ Between Upstream
and Downstream
[60] We computed the locations of particles reaching the

downstream receptors using STILT driven by EDAS mete-
orology. The distributions of particles at the times of the
upstream flights are shown in Figures 4a–9a along with
the flight tracks for both the downstream and upstream
sampling times (see Table 1). These particles determine
I, f , and the matching with CO2t0

providing estimates
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for CO2up
(equation (10)), the advected upstream tracer

concentrations.
[61] The effects of wind shear are evident in the particle

distributions for WI#2, WI#3, and ME, particularly where
particles originating at higher altitudes (e.g., 2100 m ASL)
are disjoint from the rest of the particle ensemble. These
particles traveled above the PBL, isolated from drag at the
surface. Consequently, these particles were separated from
the rest of the ensemble.
[62] In general the aircraft sampled only a subset of the

upstream particle locations, as compared after the fact
with the particle locations simulated using analyzed
meteorology (Figures 4a–9a). The mean separation be-
tween the particle ensemble and the location of the
sampled upstream cross-section was �50 km. For exam-
ple, particles reaching the receptor were sampled upstream
on the southeastern part of the morning flights in North
Dakota (Figure 4a, left panel). Much better overlap was
found for particles started from higher altitudes, in the free
troposphere, as verified by the presence of the same layer
depleted in CO in both the upstream and downstream
observations (Figure 4b).
[63] Mismatches were caused by wind shifts between

the forecast and analysis: forecasted Eta winds in south-
ern ND were northeasterly, with minimal wind shear
between the PBL and the free troposphere, but the EDAS
assimilation showed that PBL winds were more easterly.
Forecasts for Maine (Figure 9a) agreed well with assim-
ilated winds, but a navigation error caused upstream
sampling to depart significantly from particles reaching
the receptor.
[64] In WI#1 (Figure 5) the analyzed winds transported

the particle ensemble to the north as it traveled backward in
time, missing the sampled upstream cross-section (left-hand
panel of Figure 5a). A flux could be estimated by subtract-
ing concentrations in the left portion of the downstream
cross-section (Figure 5b), which had depleted CO2 and
elevated CO concentrations, from the right portion of the
upstream cross-section with elevated CO2 and low CO
concentrations. This procedure results in large CO2 uptake
(�40 mmole/m2/s) and large CO emissions, almost an order
of magnitude larger than the values in the CO emission
grid. This result appears to be spurious, resulting from
errors in the wind field, probably due to the inability of the
EDAS to accurately model winds near the Great Lakes. A
comparison of EDAS winds with the aircraft-observed
winds showed that a large bias of 3 m/s in the north-south
direction was present at the location of the downstream
cross-section.
[65] The large tracer gradients in CO2, CO, H2O, and q

observed in both the upstream and downstream cross-
sections of WI#1 suggested the same air mass was sampled,
i.e., that the forecasted winds were better than the assimi-
lated in this case. The correct matching between upstream
and downstream requires proper alignment between the
gradients. We accomplished this by shifting particle loca-
tions parallel to the upstream cross-section and forcing the
mean particle location to match the mean position of flight
paths in the upstream cross-section (right-hand panel of
Figure 5a). The resulting shift in particle locations was
59 km, c1ose to the estimate of 43 km if the 3 m/s bias
accumulated over the 4 hours (Table 1) when particles

traveled between the downstream and the upstream cross-
sections. The resulting CO flux was lowered to more
reasonable values (not shown), and the CO2 uptake was
diminished to ��17 mmole/m2/s. Owing to the ad hoc
nature of the correction, we excluded WI#1 in the Bayesian
inversion.
4.1.2. Footprints
[66] The footprint elements f (xr, trjxi, yj, tm) comprising f

are shown in the right panel of Figures 4a and 6a–9a. f is
shown for all t, the number of hours separating the times
when the downstream and upstream tracer concentrations
were altered by surface fluxes. No footprint is shown for
WI#1 because of the large transport errors discussed in the
previous section.
[67] For daytime experiments t simply refers to the

number of hours separating the upstream and downstream
observations. In the case of diurnal experiments t refers to
hours elapsed since the time of cessation in vertical mixing
during the previous day—not directly observed and subject
to uncertainties—up until the time of the next day’s after-
noon observations. We estimated t for the diurnal experi-
ments by examining time series of simulated PBL heights at
the particle locations and choosing the hours during the
previous day when rapid collapse in PBL heights was
observed, ranging from 19 to 23 hours between the different
diurnal experiments (Table 1). We will attempt to bound the
errors due to uncertainties in t by conducting separate
inversions for minimum and maximum values of t.
[68] The footprint is the spatial region where the

Lagrangian experiments have leverage to constrain surface
fluxes. In the daytime ME experiment the footprint was
restricted to regions in Maine. For the diurnal experiments
ND and WI#2 the footprint extends much further upstream
from the location of the upstream cross-section, as the
residual layer observations in these cross-sections are influ-
enced by surface fluxes from the previous day, when air
parcels were further upstream. Stagnation during the diurnal
experiments WI#3 and WI#4 translated into footprints
restricted to northern Wisconsin.

4.2. Measured and Modeled Flux Signals

[69] We divide DgCO2veg, DgCO2vegmod, and DgCO2foss by t
(see equation (5)) and display the corresponding fluxes
hFvegi, hFvegmodi, and hFfossi in Figures 4c and 4d, and
Figures 6c and 6d through 9c and 9d. Here positive fluxes
represent emissions to the atmosphere and negative fluxes
uptake by the biosphere. We see that fossil combustion
emissions of CO2 are generally small in comparison to the
sum of forest and cropland fluxes, as expected during the
growing season for the nonurban regions covered by
the Lagrangian experiment.
[70] The total biospheric CO2 fluxes hFvegi inferred from

the data are shown in Figures 4d–9d as black lines. In the
case of ND (Figure 4d) a west-east gradient of net diel
uptake was obtained, increasing in magnitude from �1.6 to
�3.8 mmole/m2/s. The surface vegetation was dominated by
wheat during early August. The gradient in CO2 flux was
correlated with the land-use gradient, with more nonagri-
cultural grassland on the west, with smaller expected uptake
(National Agricultural Statistics Service, U.S. Department
of Agriculture, http://www.usda.gov/nass/). The a priori
modeled CO2 flux (dashed line, right panel) was dominated
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by contributions from croplands with a gradient similar to
the observed, but with uptake rates significantly greater
compared to observed values.
[71] The diurnal experiments WI#3 and WI#4 sampled air

arriving at the WLEF tall tower from the southwest, showing
uptake values between �3.3 and �1.7 mmole/m2/s. The
observed flux was �1.25 mmole/m2/s at WLEF during the
entire growing season in 1997 [Davis et al., 2003].
The corresponding CO2 flux measured at WLEF (shown
as green arrows in Figures 6d–8d) for the same period of
time from 23 to 24 August was �1.4 mmole m�2 s�1. The
daytime flux in ME was ca. �15 mmole/m2/s (Figure 9d).
Eddy covariance observations at Howland Forest [Hollinger
et al., 1999], whose location is indicated by the red triangle
in Figure 9a, showed a daytime flux of ca. �17 mmole/m2/s
for the same period, similar to the values estimated using
the Lagrangian budget. Most of the uptake can be attributed
to forests (Figure 9c).

4.3. Bayesian Inverse Analysis: Constraining the
Biospheric Model and Regional-Scale Fluxes

[72] The footprint of Lagrangian aircraft experiments is,
by design, several orders of magnitude larger (see right-
hand panel of Figures 6a–8a) than that sampled by eddy
covariance measurements (�1 km2), so direct comparisons
of fluxes require careful interpretation. Thus the aircraft
observations and the AmeriFlux data are used within the
context of the analysis framework presented in this study
and in Gerbig et al. [2003b] as part of a Bayesian inverse
analysis.
[73] DgCO2veg, shown in Figures 4d and 6d–9d as hFvegi,

was used within the Bayesian inverse method to optimize
scaling parameters llll within the simple biospheric flux
model Fvegmod (equation (16)). Separate optimizations for
llll were conducted for the ND, WI, and ME experiments in
each case using the minimum and maximum t (Table 1) as
noted above. Results from the Bayesian inverse procedure
are plotted in Figures 4d and 6d–9d as inferred CO2 fluxes
(blue dashed lines) assuming maximum t in the individual
Lagrangian experiments. In the same figures are dashed
lines denoting hFvegmodi, the total prior modeled biospheric
flux— sum of the forest (green) and cropland (orange)
fluxes plotted in Figures 4c–9c. The optimized fluxes in
Figures 4d–9d show improved agreement to the observed
values, as expected.
[74] Figure 10 shows the prior (white) and optimized llll

for cases assuming maximum (black) and minimum (grey)
values of t, with their corresponding error bars (1-s). The
reduction in prior uncertainty is pronounced for GEE,
lGEE,crop in ND, lGEE,crop and lGEE,forest in WI, and
lGEE,forest in ME. Almost no reduction in uncertainties
of lGEE,forest in ND and smaller uncertainty reductions
for lGEE,crop in ME were observed, as forest and cropland
contributions to the total biospheric uptake were minimal
in ND (Figure 4c) and ME (Figure 9c), respectively. The
reduction in uncertainty was generally small for R (lR,v)
for both forest and cropland in all of the regions. The
daytime flights, which seldom sample the nighttime CO2

buildup, provide little constraint on respiration, so it is not
surprising that the daytime experiment in ME provided
leverage on lGEE,v but not on lR,v. The diurnal experi-
ments in ND and WI (which excluded WI#1 due to large

uncertainties in winds) provided daily integrated con-
straints on uptake, a very useful number for carbon
budgets. This information principally constrains lGEE,v
rather than lR,v because, according to the AmeriFlux data,
daily integrated photosynthetic fluxes are notably larger
than respiration during the growing season, when COBRA
was conducted.
[75] Optimized lGEE,crop values are less than 1.0 in both

ND and WI, suggesting the magnitude of the prior GEE was
greater than actually observed. Overestimation of carbon
uptake by croplands was found in all of the ND and WI
experiments (Figures 4d–8d) due to several causes. Param-
eters for the cropland class were based solely on eddy
covariance observations at the Bondville site, which mea-
sured corn in 2001 and soybeans in 2000, whereas wheat
was the dominant crop in the ND experiment (National
Agricultural Statistics Service, U.S. Department of Agricul-
ture, http://www.usda.gov/nass/). Differences in character-
istics of those crops certainly exist. Additionally, the wheat
crop was close to being harvested (National Agricultural
Statistics Service, U.S. Department of Agriculture, http://
www.usda.gov/nass/) by the time of the ND Lagrangian

Figure 10. Results of the Bayesian inverse method solving
for scaling parameters lv that adjust upward and downward
the respiration (Rv) and photosynthetic (GEEv) CO2 fluxes
(equation (16)) for vegetation type v. The prior lv are shown
in white, while separate cases for optimized lv are derived
for cases assuming maximum (black) and minimum (grey)
values of t. The error bars represent the 1-s spread in lv.
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experiment and may not be photosynthesizing as quickly as
earlier periods of rapid growth. Moreover, the ‘‘cropland/
natural vegetation mosaic’’ class in the IGBP vegetation
grid, widespread in the WI experiment, was treated as
exclusively cropland cover in this analysis, which could
lead to erroneous attribution of noncropland contributions
as croplands. The photosynthetic carbon uptake from these
vegetation types (especially wetlands) will likely not be as
large as growing crops.
[76] In ME the optimized lGEE,forest was �1.5, suggesting

that the prior GEE may have underestimated the actual
value by 50%, albeit the optimized value lies within the
error bars of the prior estimate. The EDAS-derived SWRF
on this day was underestimated when compared to obser-
vations at Howland, highlighting uncertainties in meteoro-
logical variables other than wind vectors which propagate
into the modeled carbon fluxes. If regional solar radiation
were in fact higher than given by EDAS, our optimized
values for lGEE,forest would be too high.
[77] The differences in Figure 10 between optimized llll

using maximum and minimum values of t were small for
ND but large for WI, particularly for lR,crop. No differences
were present in ME, as the ME flights were part of a
daytime experiment with no uncertainty in t. The sensitivity
to t in WI can be explained as follows: increasing t resulted
in hours with more solar radiation in the model, driving
greater uptake and lowering the modeled DgCO2,veg to more
negative values. This was particularly pronounced for the
WI#2 experiment, with a large cropland influence and
sensitivity of GEE to solar radiation. To make the modeled
DgCO2,veg more positive and closer to the observed values,
the inverse method greatly increased lR,crop, with its large
prior errors, for maximum values of t. lR,forest, in contrast,
was more strongly constrained by the WLEF buildup of
CO2 on 24 August UT07, whose footprint covered more
forest than croplands.

5. Discussion

5.1. Comparison With One-Dimensional Eulerian
Budget Method

[78] We compare the Lagrangian budget for the biospheric
CO2 flux, hFvegi, with values from a conventional one-
dimensional Eulerian approach [Denmead et al., 1996; Kuck
et al., 2000; Levy et al., 1999; Lloyd et al., 2001]. The main
difference with the Lagrangian budget is that no upstream
profile was used in the calculation; instead, changes in
column amounts from vertical profiles observed over the
same location as part of the WI experiments, at WLEF
(Figure 11), were used to calculate fluxes from a one-
dimensional budget.
[79] The profiles from the midday and afternoon on 24

and 23 August are shown in Figure 11. The data gaps
resulted from in-flight calibrations by the CO2 sensor and
were filled by linear interpolation. The flux for a one-
dimensional treatment, calculated from the change in
column CO2 between the midday and afternoon of
23 August was �11.8 mmole m�2 s�1, lying within the
errors of �17.5 mmole m�2 s�1, the result from the
Lagrangian budget. But on the following day, the increase
in column CO2 between the afternoon of 23 and 24 August
implies net CO2 release of 0.97 mmole m�2 s�1 over a

diurnal period, opposite in sign and significantly different
than the net flux of �2.3 mmole m�2 s�1, suggesting uptake,
derived from the WI#3 experiment.
[80] We used the STILT model to compute f weighted by

areal coverage from forest, croplands, water bodies, grass-
lands, and remaining classes, integrated over the 3-day
travel period and displayed in Figure 10 as pie charts
indicating percentages of the total footprint contribution
from each vegetation type. The relative footprint contribu-
tions of different vegetation types were almost identical
between the midday and afternoon profiles of 23 August,
when the Lagrangian and one-dimensional methods yielded
more similar results. In contrast, the afternoon profile from
24 August shows much larger contributions from forest,
with a corresponding decrease in the contributions from
croplands. The lower column amount of CO2 on the
afternoon of 23 August is likely related to higher uptake
from croplands. This example highlights the need for
caution when using a one-dimensional budget method, as
differences in upstream vegetation contributions render

Figure 11. Vertical profiles conducted over the WLEF tall
tower during 23 and 24 August and used to conduct one-
dimensional Eulerian budgets for comparison with results
from the Lagrangian method. The pie charts show footprint
contributions from forest, croplands, water bodies, grass-
lands, and remaining IGBP classes as simulated by the
STILT model and integrated over a 3-day travel period
starting from WLEF.
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erroneous the homogeneity assumption necessary for the
method [Lin et al., 2003].

5.2. Potential for Constraining Carbon Fluxes

[81] The COBRA analyses have illustrated the potential
but also the challenges and need for future improvements
to the current application of the analysis framework to
constrain carbon fluxes. The Lagrangian airborne experi-
ments reduced prior errors in GEE (Figure 11) when
incorporated into observational constraints within the con-
text of a Bayesian inversion. The exact amount of uncer-
tainty reduction, i.e., the retrieved information [Rodgers,
2000; Shannon and Weaver, 1963], clearly depends on the
prior uncertainties. We attempted a conservative estimate
(upper estimates of prior uncertainties) of prior errors, so the
reduction in uncertainty may be overestimated. On the other
hand, we also attempted to conservatively estimate the
measurement errors Se, particular for Smiss (error due to
spatial mismatch between the location of upstream air
parcels and actual sampled locations), so the actual degree
of observational constraint to reduce uncertainties may be
higher than applied in this study.
[82] The biospheric model Fvegmod, using the optimized

scaling parameters llll, can be driven with environmental
drivers T and SWRF to derive regional scale carbon
fluxes with reduced uncertainty. The posterior errors in llll
(Figure 10) provide direct estimates of remaining uncer-
tainties in these fluxes. In this way our receptor-oriented
analysis framework made use of observations from
Lagrangian experiments combined with ground-based eddy
covariance measurements to provide estimates and the
associated errors of regional scale carbon fluxes, estimates
not currently available from alternative methods.
[83] The lack of constraints on respiration fluxes indicate

the need for more complete sampling of the CO2 buildup
over the night in future experiments. One option is to have
closer coordination between airborne observations and tall
tower-based CO2 measurements. The ground-based obser-
vations on the WLEF tall tower captured the nighttime
buildup of CO2 from respiration, poorly sampled by the
aircraft due to difficulties associated with flights during the
nighttime and within the early morning shallow PBL.
Alternatively, ‘‘missed approaches’’ enable the aircraft to
descend towards airports—into the shallow mixed layer—to
measure the nighttime CO2 accumulation, and then climb
out again.
[84] The potential of Lagrangian experiments can be

further realized in the future by reducing the size of the
measurement errors (Table 3). The total measurement error
Se was dominated by contributions from uncertainties in the
upstream Smiss, responsible for over 50% of the total error.
When converted into errors in the column averaged mixing
ratio, Smiss resulted in mean uncertainties (square root of the
diagonal elements) of over 1 ppmv. The prescribed
uncertainty of 1 ppmv for the aggregation error Saggr
accounted for the second largest percentage and dominated
the total error along with Smiss. Swater was negligible in all
experiment regions, at less than 0.001% of the total.
[85] Smiss is the largest source of measurement error

throughout most of the Lagrangian experiments, because
the strong spatial heterogeneity in CO2 over the continent
[Gerbig et al., 2003a] translates into large uncertainties in

fCO2up
(equation (18)) whenever the upstream sampling

locations are separated from the locations of upstream air
parcels (Figures 4a–9a). The mean separation distance
between the particle ensemble and the location of the
upstream cross-section was 50 km, out of which only
14 km was due to dispersion. This is the minimum mis-
match resulting from the two-dimensional sampling pattern
comprising the observed cross-sections. The remaining
mismatch, over 2/3 of the total, was due to operational
limitations encountered in the implementation of the flight
plan as well as errors in predicting upstream air parcel
locations. Improvements in the accuracy of flight planning
for future Lagrangian experiments are required. The flight
planning tool should incorporate advances in meteorologi-
cal forecasting—e.g., the NCEP operational Eta 12 km
model or the Weather Research and Forecasting (WRF)
community model [Michalakes et al., 2001]. The use of
forecasted meteorology from multiple models to derive
model-to-model spread as an indication of the forecast error
helps to identify situations with unpredictable winds and
enables planning of flight tracks that can span the model-to-
model spread to reduce sensitivity to forecast errors. These
improvements have been implemented as part of the recent
2003 COBRA campaign over North America and will be
reported in a future publication.
[86] The analysis presented here represents a step forward

in using data with high-frequency variability over the
continent in order to constrain carbon fluxes, minimizing
errors and loss of information associated with temporal
aggregation [Law et al., 2004; Peylin et al., 2002]. How-
ever, errors remain from spatial aggregation of fluxes over
large regions in order to reduce the degrees of freedom
needed to be constrained [Kaminski et al., 2001]. As
mentioned above, the resulting aggregation error Saggr is
the second largest source of measurement errors (Table 3).
One approach to reduce the contribution from Saggr is to
solve for fluxes at higher resolutions and to incorporate
prior information through spatiotemporal covariances
between the fluxes [Peylin et al., 2001]. Future efforts to

Table 3. Errors in the Separate Terms Comprising the Measure-

ment Error Se Used in the Bayesian Inverse Method (see Equation

(17))a

Error Type
Experiment
Region

Percent of
Total Variance

Uncertainty in
Column CO2, ppmv

Smiss ND 51.01 1.06
Saggr ND 39.23 1.00
Spart ND 6.63 0.41
Sfoss ND 1.55 0.17
Seddy ND 1.57 0.20
Smiss WI 68.05 1.42
Saggr WI 25.00 1.00
Spart WI 4.23 0.41
Sfoss WI 1.72 0.25
Seddy WI 1.00 0.20
Smiss ME 69.99 1.37
Saggr ME 24.81 1.00
S part ME 4.19 0.41
S foss ME 0.02 0.02
Seddy ME 0.99 0.20

aThe contribution from each error term is shown as both the percentage
of the total variance (sum of all the diagonal elements in Se) and the
resulting uncertainty in the column-averaged CO2 concentration. Swater was
negligible in all cases, at less than 0.001% of the total.
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reduce the aggregation error would also necessitate the use
of a biospheric model that improves upon the crude sim-
plification in this study, which divided the vegetation into
only two classes—forest and croplands—and assumed that
the biosphere behaved identically within each class. Addi-
tional information such as the crop planting and harvesting
cycles, remote sensing datastreams such as MODIS-derived
leaf area [Myneni et al., 2002] and Enhanced Vegetation
Index (EVI) [Huete et al., 1997] or soil moisture from the
HYDROS instrument (scheduled for launch in 2006)
[Reichle et al., 2001] would help improve the veracity of
the biospheric representation. Direct optimization of bio-
spheric parameters [Kaminski and Heimann, 2001] embed-
ded within a sophisticated biospheric model, rather than
solving for simple scaling parameters as presented in this
study, is expected to offer a further step forward. The
biospheric model provides powerful constraints on the
inversion that are more natural than the ad hoc constraint
generated by aggregation over crude vegetation classes.
[87] The Lagrangian method presented here employs

intensive aircraft flights which are necessarily restricted in
temporal coverage. Deriving carbon fluxes at longer time-
scales—up to a year—requires the use of the Lagrangian
observations within the context of a large-scale research
effort like the North American Carbon Program [Wofsy and
Harriss, 2002], which seeks to bring together intensive
experiments (such as Lagrangian aircraft experiments),
long-term observational sites, and modeling efforts. The
Lagrangian method provides a direct, independent con-
straint on fluxes that can be used to test fluxes derived
from other methods—e.g., regional inverse estimates from
CO2 observed by a long-term observational network. The
long-term observations can then be used to estimate fluxes
from times when the Lagrangian observations are not
available. The Lagrangian method can also be used to
optimize the biospheric model at selected times of the year.
The biospheric model could then be used as an ‘‘interpola-
tor’’ that captures the temporal dynamics of carbon fluxes
during other times. To accomplish this, the biospheric
model would need to incorporate the aforementioned
improvements to enhance its ability to capture the temporal
dynamics of carbon fluxes.
[88] The issue of errors in the assimilated meteorological

datasets remains unresolved in this study. EDAS may have
underestimated radiation in the ME experiment, leading to
underestimation in the modeled GEE (Figure 9d). Erroneous
winds were clearly seen in the WI#1 experiment (Figure 5).
To properly account for errors in the meteorological varia-
bles, direct comparisons with observations need to be
carried out. For instance, direct comparisons of assimilated
winds with radiosonde observations define error statistics
that characterize the magnitude of the transport errors as
well as how they correlate spatially and temporally. The
error statistics could then be incorporated into the motion of
STILT particles to propagate errors arising from incorrect
transport (J. C. Lin et al., manuscript in preparation, 2004).

6. Summary and Conclusions

[89] We have outlined a receptor-oriented analysis frame-
work to design and analyze Lagrangian experiments for
quantifying regional scale fluxes of trace gases. STILT

served as the natural tool for elucidating the locations of
air parcels upstream from receptors in the PBL for flight
planning and data analysis purposes, with its backward-time
formulation and explicit treatment of turbulent transport to
characterize effects from dispersion and wind shear. The
observations of upstream and downstream concentrations
provide direct measurements of regional fluxes (‘‘Lagrang-
ian budget’’), enhancing the potential to provide tighter
constraints on regional scale fluxes than from previous
experiments—e.g., one-dimensional budgets.
[90] In this paper we illustrated the use of the framework

for a case study, applying the framework to constrain
regional scale carbon fluxes as part of the COBRA aircraft
campaign. The constraints available from differences be-
tween upstream and downstream CO2 observations from
Lagrangian experiments provided estimates of regional
scale carbon fluxes, with especially effective constraints
on 24-hour mean CO2 exchange and on large-scale rates for
photosynthesis. Constraints on respiration were weak, but
this defect could be overcome if more tall towers were
available to measure the nocturnal buildup of CO2 below
aircraft operating altitudes. The framework incorporates
information from eddy flux towers as priors in a Bayesian
inverse analysis, thus using small-scale data in a consistent
manner to help constrain large-scale fluxes. We identified
current sources of uncertainties and outline clear steps to be
undertaken to further realize the potential of this approach:
improved flight planning, uncertainty analyses of meteoro-
logical variables, enhanced sophistication of the biospheric
model, and incorporation of satellite data such as the
Enhanced Vegetation Index.
[91] The analysis framework introduced in this study can

be extended to atmospheric species other than CO2. For
instance, experiments can be planned so that sampling
occurs upstream and downstream of a city to quantify urban
pollutants, helping to minimize the advection component of
the tracer budget and elucidate the surface emissions or
chemical transformations. For pollutant species the surface
flux model would not be a biospheric model, but a model of
pollutant emissions and their chemical transformations,
driven by variables such as temperature, population, and
radiation. Such experiments have already been attempted
for chemically active species like ozone, e.g., the TACIA
study [Kley et al., 1998], and for aerosols, the Aerosol
Characterization Experiment (ACE) [Bates et al., 1998].
The flight planning tool and footprint analysis introduced in
this paper would provide unique new information, comple-
menting the neutral balloons used in a study like ACE.
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