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We study the excitonic coupling and homogeneous spectral line width of brick layer J-aggregate
films. We begin by analysing the structural information revealed by the two-exciton states probed in
two-dimensional spectra. Our first main result is that the relation between the excitonic couplings
and the spectral shift in a two-dimensional structure is different (larger shift for the same nearest
neighbour coupling) from that in a one-dimensional structure, which leads to an estimation of
dipolar coupling in two-dimensional lattices. We next investigate the mechanisms of homogeneous
broadening—population relaxation and pure dephasing—and evaluate their relative importance in
linear and two-dimensional aggregates. Our second main result is that pure dephasing dominates
the line width in two-dimensional systems up to a crossover temperature, which explains the linear
temperature dependence of the homogeneous line width. This is directly related to the decreased den-
sity of states at the band edge when compared with linear aggregates, thus reducing the contribution
of population relaxation to dephasing. Pump-probe experiments are suggested to directly measure
the lifetime of the bright state and can therefore support the proposed model. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4944980]

I. INTRODUCTION

Organic molecules are promising candidates for the
next generation of electronic devices and for solar energy
conversion.1–6 Among these, assemblies of dye molecules
in the form of J-aggregates have attracted attention for
their special optical properties.7,8 These are understood from
delocalization of the exciton formed upon the absorption
of light over tens to hundreds of monomers.9 Because the
dominant resonant transfer interactions between molecules
are negative in a J-aggregate, the optically bright state is
found at the bottom of the band, leading to a redshift of
the absorption peak compared to a single chromophore.
Other properties resulting from this exciton delocalization
are superradiance and a hidden level structure at the band
edge.10,11 The exciton delocalization in linear aggregates is
reflected in the pump-probe spectrum12,13 and in the two-
dimensional optical spectrum.14

Most early studies focused on J-aggregates for which
the optical properties can be explained with a model of a
linear aggregate, which self-assemble in solution and are
often studied at low temperature in a glass environment.15

Over the past years there has been an intense interest in
tubular J-aggregates.16–22 It is also possible to manufacture
two-dimensional thin film J-aggregates of chromophore
molecules, which were found to exhibit a redshift in the
absorption.23,24 Nonlinear optical experiments produced a
two-dimensional spectrum similar to the spectrum of a linear

aggregate, consisting of a single pair of positive and negative
peaks.23

In order to analyse these findings, a model of a truly two-
dimensional aggregate must be used,25,26 which goes beyond
weakly coupled linear aggregates.27 In general, the transfer
interactions between molecules depend strongly on their
relative orientation. This means that the absorption spectrum
is sensitive to the details of the molecular arrangement.
Therefore, modeling of the spectrum can help in determining
the structure. This is particularly helpful in cases where the
structure is not known from other measurements.23

It is clear from experiment, as well as from consideration
of the molecular structure, that the excitons in J-aggregates
must couple to their environment. This coupling leads to
scattering between exciton states and to pure dephasing.
The total dephasing process can be studied by measuring
the homogeneous line width in experiments such as photon
echos, hole burning, or two-dimensional spectroscopy. In
particular, the dependence of the homogeneous line width
on temperature can be analysed in order to understand
the exciton phonon coupling mechanism. Understanding the
interaction with the environment is also important to assess
how many molecules in the aggregate are entangled upon
optical excitation. This entanglement, or delocalization, is
the key quantity that causes the interesting properties of
these systems. However, interactions with phonons limit the
localization size, and determining this quantity as a function
of temperature is an important goal. It has been shown that
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the energy dependent localization size can be extracted from
two-dimensional spectra.28

Studies of the homogeneous line width have been
performed on J-aggregates for which linear chain models
explain the optical properties. Fidder et al.29 measured the
homogeneous width in PIC-Br for temperatures between 1.5
and 190 K. The temperature dependence is clearly nonlinear
and was modeled by coupling of the excitons to three harmonic
modes with frequencies of 9 cm−1, 305 cm−1, and 973 cm−1.
Hirschmann and Friedrich30 measured the homogeneous line
width in PIC-I for temperatures from 0.35 K to 80 K. The
temperature dependence can be fitted by a sum of two
exponentials or be explained by a theory that predicts a
power law dependence.31 The homogeneous line shape is well
approximated by a Lorentzian for all temperatures.

In contrast to this work, experiments on thin films using
two-dimensional optical spectroscopy have found a linear
scaling of the homogeneous line width with temperature.23

This suggests that a different mechanism is responsible for the
line width.

In this work, we use an excitonic model of two-
dimensional brick layer J-aggregates and study the homoge-
neous line width as a function of temperature. Our theoretical
model is presented in Section II and the results are presented
in Section III. Specifically, we predict the excitonic coupling
in molecular aggregates and thus correlate two-dimensional
spectra with molecular arrangements. These calculations are
the topic of Sections III A–III C. Then we consider population
relaxation and the exciton lifetime in Sec. III D and calculate
the homogeneous line width as a function of temperature in
Sec. III E. Finally, we analyse experimental measurements
in Sec. IV and conclude in Section V. In the Appendix, we
consider alternative aggregate geometries.

II. MODEL

The usual Frenkel exciton model of J-aggregates starts
from a single bright optical transition on each molecule. The
Hamiltonian includes a term which describes local excitation
of a molecule with an excitation energy ϵn and a term for
the coherent exciton motion from one molecule to the other,
and is given in terms of the Pauli creation and annihilation
operators c† and c by

HS =

n

ϵnc†ncn +

nm

Jnmc†ncm. (1)

In this Hamiltonian, the sums run over all molecules in
the aggregate. If the molecules are far enough apart, the
electrostatic interaction between them can be approximated
by dipole-dipole coupling, which gives

Jnm = C
µn · µm − 3(µn · r̂nm)(µm · r̂nm)

r3
nm

. (2)

Here, µn is the transition dipole vector of molecule n,
r⃗nm = r⃗n − r⃗m is the relative position vector, rnm = |r⃗nm| is
the distance, and r̂nm = r⃗nm/rnm. C is a constant that scales
the magnitude of the coupling and includes possible rescaling
effects due to vibrations.32 Here, we will use transition dipole
coupling for all pairs of molecules. For nearest neighbours,

a better understanding of the coupling can be obtained from
quantum chemical calculations.33,34

Each molecule in the aggregate is influenced by a different
local environment. This leads to static disorder in the site
energies ϵn, which are different for each aggregate in the
ensemble. This, in turn, leads to localization and a distribution
of effective sizes of the exciton. Furthermore, the excitons
in the aggregate interact with phonons in the surrounding
material. Their dynamic effect is usually modeled as a
reservoir of harmonic oscillators, which are described by
the bath Hamiltonian HB. The interaction of these oscillators
with the electronic excitations is assumed to be

HSB =

n

Xnc†ncn, (3)

where the effective bath coordinate is to be thought of as
the sum of couplings to individual bath modes, which can be
written as Xn = −


α gnαxα. Here, xα denote the coordinates

of the bath modes, while gnα are their coupling constants to the
system. The linear dependence on the bath coordinate can be
thought of as a lowest order expansion in the coordinate. The
properties of the system bath interactions are determined by
the correlation functions ⟨Xn(t)Xm(0)⟩. We will make the usual
but not completely general assumption that the fluctuations on
each site are uncorrelated and that their correlation function
is the same on each site, ⟨Xn(t)Xm(0)⟩ = δnmL(t).

The system Hamiltonian (for each realization of the static
disorder) can be diagonalized to give the exciton states φk,
which we choose to be real, and energies Ek, such that
HS =


k Ekc†

k
ck. The wave functions relate the exciton basis

to the site basis by the equation c†
k
=


n φknc†n. In the same
exciton basis, the system bath interaction can be written as
HSB = H (0)

SB + H ′SB, with the diagonal fluctuations

H (0)
SB =


kn

φ2
knXnc†

k
ck, (4)

and the off-diagonal fluctuations that couple two different
eigenstates

H ′SB =

q,k,n

φknφqnXnc†
k
cq. (5)

In modified Redfield theory,35,36 the diagonal fluctuations
are treated exactly, while the off-diagonal fluctuations are
included in second order perturbation theory. The zero order
Hamiltonian HS + H (0)

SB + HB does not couple the exciton
states. Therefore, the absorption spectrum for this Hamiltonian
is simply the sum of contributions from each exciton state.
In this case, where the system Hamiltonian commutes with
the system bath interaction, the linear and nonlinear response
functions can be calculated analytically with the cumulant
expansion. For the linear absorption in the time domain, we
find

A(0)(t) =

k

|µk |2e−iEk t−gk(t), (6)

where µk is the transition dipole from the ground state to
exciton state k. The spectrum A(0)(ω) is given as the Fourier
transform of A(0)(t). The line shape function for each exciton
state is given by gk(t) = g(t)/Nk, where Nk = 1/


n φ

4
kn

is
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the inverse participation ratio.35 The line shape function for a
single site is defined as

g(t) =
 t

0
dt1

 t1

0
dt2L(t2). (7)

If the harmonic bath is interpreted in the continuum limit,
the correlation function can be expressed in terms of the
spectral density J(ω) (although, in principle, the spectral
density can also contain delta functions which describe
discrete modes). The quantum correlation function L(t) is
given in terms of the spectral density by the expression

L(t) = 1
π

 ∞

0
dωJ(ω)(coth

βω

2
cosωt − i sinωt). (8)

The homogeneous line width, which can be measured
in photon echos or two-dimensional spectra can now be
explained by two broadening mechanisms. First, there
is the pure dephasing contribution contained in Eq. (6).
Second, there will be a contribution from H ′SB. In second
order perturbation theory with the Markov and secular
approximations, this term will lead to dephasing given as
the sum of population relaxation rates. This contribution
can be termed dephasing from population relaxation. The
perturbative treatment of H ′SB, which is known from
experiment to be weak in certain linear J-aggregates,31 leads
to scattering between exciton eigenstates. The scattering rate
between eigenstate q and k is given by

Wkq =

n

φ2
knφ

2
qnJ(|ωkq |)n(ωkq), (9)

where the sum runs over all molecules in the aggregate,
ωkq = Ek − Eq, J is the spectral density, and n(ωkq) = n̄(ωkq)
for ωkq > 0 and n(ωkq) = n̄(−ωkq) + 1 for ωkq < 0, with
n̄(ω) = (exp(ω/kT) − 1)−1 the Bose-Einstein distribution. The
resulting dephasing rate of exciton state k is given by
Γk = (1/2)q,k Wqk. Then, the homogenous absorption line
with both pure dephasing and dephasing from population
relaxation is given by

A(t) =

k

|µk |2e−iEk t−gk(t)−Γk t . (10)

Note that we neglect the radiative life time in this
expression, which normally gives a negligible contribution
to the linewidth. Also, in this work we do not include an
ensemble of localization sizes caused by the presence of static
disorder. Finally, it should be observed that the homogeneous
line width is not equal to the sum of dephasing rates if multiple
transitions overlap in the spectrum.

III. RESULTS

A. Molecular arrangement and resonant
transfer interactions

We assume that the molecules are placed on a brick layer
lattice25,26 with aspect ratio A and slip s, see Figure 1. The grid
has Nx molecules in the x-direction and Ny in the y-direction.
These sizes should not be interpreted as the physical size of
the aggregate, but as the number of molecules over which
an exciton is delocalized. Different geometries can then be

FIG. 1. Top: Cartoon of the brick layer model with aspect ratio A, slip s,
and molecular size a. (Transition dipole indicated by the arrow.) Bottom:
Coupling between molecules above each other to the right (solid) and left
(dashed) as a function of the slip. Note that for a slip of 1.0 (half the unit
cell) both couplings are negative, leading to J-coupling for all three nearest
neighbours. The aspect ratio is A= 2 and parameters are chosen such that the
coupling in the horizontal direction is kept constant at J =−511 cm−1.

obtained by varying the slip, while we assume a constant
aspect ratio of A = 2, which is a reasonable number for
molecules typically used to form thin films. Note that with this
choice, a slip of 1.0 (half a unit cell) corresponds to a square
lattice with dipoles oriented at 45◦ with respect to the lattice
vectors. We note that, for the small aggregates considered in
this paper, the choice of boundary conditions is important.
We limit our study to the boundary conditions shown in
Fig. 1. In the Appendix, we consider the value of A = 3. Other
arrangements, for example, herringbone structures with two
molecules per unit cell, are outside the scope of this paper.
For a constant prefactor C the magnitude of the couplings
will change with s. This is shown in Figure 1. We define the
nearest neighbour coupling in the x-direction as J. Note that
we include all long range couplings in our model as well, and
that we do not use periodic boundary conditions.

In Figure 1 we observe that the values of s for which
an aggregate with negative couplings in both directions is
formed are quite limited. In most cases, the coupling in the
vertical direction is positive. Because of this combination
of negative and positive interactions, the system is not a
perfect J-aggregate, in the sense that the bright state is not
necessarily at the bottom of the band. We will see that this
has observable consequences for the two-dimensional optical
spectrum. Negative couplings in both the x and y directions
are found around s = 1.0, which is the structure close to the
one assumed in experimental work on brick layer PTCDA
aggregates.24

In Figure 2 we plot the density of states for a linear
aggregate and several two-dimensional aggregates. For each
geometry, we scale the parameter J (or, equivalently C), to
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FIG. 2. Density of states for a linear (N = 625) and various two-dimensional
(Nx = Ny = 25) aggregates. The bright state is at −2500 cm−1 for all cases, as
indicated by a vertical line. Couplings were scaled to place the bright state at
that position for this number of molecules. The width of the bins is 200 cm−1.

obtain a shift of approximately 2500 cm−1 of the aggregate
absorption peak with respect to the absorption peak of
the monomer. This choice is made to stay close to the
interpretation of experimental results, in which the spectral
shift upon aggregation can be measured, but the structure of
the aggregate (i.e., a two-dimensional bricklayer lattice or a
collection of semi-one-dimensional chains) is not always a
priori known. In particular, we are interested in comparing
with experimental data on BIC aggregates studied in Ref. 23,
where this shift was observed to be around 2500 cm−1. In
order to obtain this shift, we set J = −1050 cm−1 for the linear
aggregate, J = −903 cm−1 for s = 0.5, J = −472 cm−1 for s
= 0.75, and J = −416 cm−1 for s = 1.0. We note that, because
of differences in the electrostatic environment, the shift does
not necessarily directly reflect the excitonic coupling.

In the linear case, we observe a strong increase of the
density at the band edge, reflecting the 1/

√
E scaling in the

case of an infinite chain.37 The two-dimensional aggregate
with s = 0.5 mirrors this behaviour, but has additional states
at lower energy. For larger values of s, however, the density
of states decreases with decreasing energy, in line with the
expected constant behaviour in the limit of an infinite sheet.37

We note that the difference in density of states between a linear
and two-dimensional aggregate is quite dramatic. For example,
for the energy gap between the two lowest-lying states, we
find 9.2 cm−1 in a 25 × 25 lattice (s = 1.0, J = −416 cm−1),
while it is only 0.45 cm−1 in a linear chain with 625
molecules (J = −1050 cm−1). (Note that we include long
range interactions in the simulations leading to this number.)

B. Two-dimensional spectra

We now turn our attention to the linear and two-
dimensional optical spectra for this model system. For all

models the simulation predicts a dominant bright peak in the
linear absorption spectra, which, by construction lies about
2500 cm−1 below the monomer absorption peak. However, we
find that s = 0.5 and s = 1.0 are clearly distinguishable when
the two-dimensional correlation spectrum is considered.

Two-dimensional optical spectroscopy is a third-order
nonlinear optical technique which correlates the evolution of
the electronic state of the system during two time periods,
called t1 and t3.38 The signal is plotted as a function of
the Fourier transforms of these two time periods, with
frequencies labeled ω1 and ω3. The technique can be used
to separate homogeneous broadening, which shows up as the
anti-diagonal width of peaks in the two-dimensional plot,
from inhomogeneous broadening, which contributes to the
diagonal width. It therefore provides a tool to measure the
homogeneous line width. When one looks at the real value
of a two-dimensional spectrum, both negative peaks, colored
in blue, and positive peaks, colored in red, are present. Blue
peaks arise from interactions where one excitation is created,
while red peaks correspond to processes where, during t3,
coherences between one- and two-quantum states (in which
two excitation quanta are present in the system) are present.
Positive peaks are blue shifted with respect to negative peaks
as a consequence of the Pauli exclusion principle. The vertical
distance between positive and negative peaks can be used
as a ruler from which the exciton localization size can be
determined.

We calculated two-dimensional optical spectra using
the sum over states method,39 assuming only homogeneous
broadening. This simple method will give a good idea of the
peak positions and relative intensities, but not of the details
of the line shape. Note that in the calculation of the spectra,
we have chosen to vary J in order to obtain similar peak
positions for all values of s considered. The reason for this
choice is that J is not known a priori in experiment, but the
spectral shift with respect to the monomer can be measured.
In our spectra, in the case s = 0.5, because of the presence
of both positive and negative couplings in the system, the
bright state is not at the bottom of the band. Because of the
Pauli exclusion principle, two excitons cannot populate the
same state.13,40 Induced absorption peaks will show up at
lower ω3 than the bleaching and stimulated emission peak.
This is most easily understood in the simplified case of a
linear aggregate with nearest neighbor interactions only, for
which the Hamiltonian can be diagonalized analytically using
a Jordan-Wigner transformation.41 The two-exciton states are
then given as anti-symmetric products of one-exciton states.
Because the “first” exciton is not at the bottom of the band,
the “second” exciton can go to a lower energy than the first
one. This leads to the induced absorption peak. Although this
picture of two independent excitons is not strictly valid when
long-range interactions are taken into account, the result that
an extra induced absorption peak appears at low ω3 is also
found numerically in the full calculation (see Fig. 3).

Note that for a linear aggregate the induced absorption
peak is weaker than the bleaching and stimulated emission
peak, while the two have approximately equal amplitude for
the 2D lattice with s = 1.0. Both of these systems have the
state with largest oscillator strength at the bottom of the band.
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FIG. 3. Simulated real part of the two-dimensional photon echo spectrum
of (a) a linear J-aggregate with 36 molecules and of ((b)-(d)) various two-
dimensional J-aggregates with a brick layer structure of 6×6 molecules. The
slip = (b) 0.5, (c) 0.75, and (d) 1.0. Homogeneous broadening with a single
Lorentzian line width is assumed and all contours are scaled to the amplitude
in the spectrum of the linear aggregate. Negative (bleaching and stimulated
emission) peaks are plotted in blue, while positive (induced absorption) peaks
are plotted in red and yellow. Contours are at the same absolute level in all
panels, and were drawn at −50%, −40%, −30%, −20%, 20%, 30%, 40%, and
50% of the maximum amplitude of the spectrum of the linear aggregate.

The presence of a large coupling in the y-direction makes
the 2D lattice different from a product of one-dimensional
aggregates, as considered in Arias et al.23 We will see that
the difference is crucial for a correct determination of the
couplings in the system. In this case the bright state is at
the bottom of the band, and the two-dimensional spectrum
shows a dominant pair of a positive and a negative peak (see
Fig. 3). Because the occurrence of positive and negative peaks
and their relative intensities in this spectrum are close to the
observed spectrum for BIC aggregates,23 this finding lends
support to the model with a slip around s = 0.75–1.0 for this
system. Finally, we note that in the 2D lattice spectrum, a
cross peak due to finite size effects is just visible to the right
of the main peak.

C. Estimating the nearest neighbour couplings

We now consider the difference between a linear (N2 × 1)
and a brick layer (N × N) aggregate. In both cases, a dominant
pair of positive and negative peaks is found in the 2D
spectrum.23,42

The relation between the nearest neighbor coupling and
the peak shift of the aggregate compared to the monomer,
which can be measured by finding the maximum in the linear
spectra, is different. This simple method, which relies on
the fact that excitonic coupling shifts the peak, is frequently
used to determine the coupling from experimentally obtained
spectra, even though it neglects the shift in the single molecule
transition frequency due to the electrostatic effect of the
different environment in both cases. The difference is easily
explained from the fact that there are more neighbors and

that there is therefore more coupling in the 2D aggregate.
Quantitatively, the peak shift in a linear aggregate is 2.4
times the nearest neighbor coupling.15 In the 2D system with
s = 1.0, we find that the shift is several times larger (4.9 J for a
6 × 6 bricklayer lattice). Thus, while estimating the couplings
from the spectral shift, it is important to take the aggregate
geometry into account. Here, we established the rule that can
be used to estimate the coupling in a two-dimensional brick
layer aggregate from the measured linear absorption spectrum
for parameters s = 1, A = 2. For other parameters a similar
rule can be established, which will, in general, be different
from the rule derived from calculations on linear aggregates.
We note that the magnitude of the couplings and, therefore,
spectral shifts strongly depend on the aggregate under study.
In particular, in Ref. 24 much smaller couplings were found
than in Ref. 23. However, the relation between spectral shift
and coupling does not depend on the absolute value of these
numbers. We note that the practical rule described here is
related to well established results derived from sum rules.43

D. Population relaxation

We next consider the life time of the bright state, which for
both the linear aggregate and the brick layer lattice with A = 2
and s = 1.0 lies at the bottom of the band. This life time can
be measured experimentally using pump-probe spectroscopy.
For the well studied system of linear aggregates in a glass,
the temperature dependence of the life time of this state
is mostly determined by scattering to higher states with
the absorption of phonons. The dephasing associated with
population relaxation is found to dominate, leading to a T3.5

dependence of the homogeneous line width.31 This result is
obtained from perturbation theory, where the scattering rate
between two eigenstates is the product of three contributions:
the Boltzmann factor of the phonons n evaluated at the energy
gap between both states, the exciton-phonon spectral density
evaluated at the energy gap, which is taken cubic for the glass
environment, and the overlap of the wave functions of the two
states. We refer to Ref. 31 for further details. In this model,
it is clear that the density of states at the band edge is very
important for the life time.

As was shown before, this density of states is very
different in linear and 2D aggregates. As a result, the
established theory for linear aggregates in a glass must be
used with caution here. The Boltzmann factor is much larger
and more strongly peaked in the linear chain, leading to larger
scattering rates, and a smaller life time. Although the spectral
density typically increases with energy, this is counteracted
by the stronger exponential decay of the Boltzmann factor.
We also expect different behavior of the life time as a function
of temperature, because the argument used in Heijs et al. to
arrive at the T3.5 dependence is valid only for kT > E2 − E1.
We therefore expect a different behaviour of the temperature
dependence of the homogeneous line width, irrespective of
the details of the interaction with the phonons.

As the numerical calculations presented in Fig. 4 show,
the life time is up to more than an order of magnitude larger
in the brick layer system than in the linear aggregate for the
same system (delocalization) size. Life times were computed
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FIG. 4. Calculated intraband scattering life time of the bright exciton state
with the model of Heijs et al. in an N×N brick layer lattice (crosses,
A= 2, s = 1) and an N2×1 linear chain (circles) (left) as a function of the
system size (N 2) at a temperature of 100 K and (right) as a function of
temperature for N = 6. The coupling in the x-direction is J =−500 cm−1.

for the same cubic spectral density in all cases and, in contrast
to Secs. III A–III C, for a nearest neighbour coupling strength
of J = −500 cm−1, which is a typical value for the aggregates
considered. All long range couplings were included as well.
We note that the population relaxation rate as a function
of temperature exhibits a power law dependence for linear
aggregates, while a kink is observed for a 2D lattice. The kink
can be understood as follows. In the argument leading to a
power law dependence of the scattering rates as a function of
temperature, the summation over discrete states is replaced by
an integration.31 This replacement is valid if the temperature
is large compared to the energy gap between the relevant
exciton states, which are the lowest two states in the band. For
the 10 × 10 brick layer lattice used in Fig. 4, the energy gap
between these states is found to be 71 cm−1, which corresponds
to a temperature of roughly 100 K. Therefore, the power law
dependence, which holds for high temperatures compared to
the energy gap, breaks down and a kink is observed in the
life time. We also note that the temperature dependence of the
life time depends very strongly on A and s. As discussed in
the Appendix, there is almost no temperature dependence for
certain values, while for other values the life time varies over
orders of magnitude.

Note that, to make a direct comparison possible, these
calculations assume that the spectral density is the same
for linear and two-dimensional aggregates. We will argue
later, based on the analysis of the experimentally measured
temperature dependence of the homogeneous line width, that
there is a linear component in the spectral density for the
two-dimensional aggregates. However, the suppression of
relaxation rates in the two-dimensional aggregates based on
the much smaller Boltzmann factor will occur irrespective of
the spectral density.

If, indeed, a linear spectral density is more appropriate for
two-dimensional aggregates, we can also obtain population
relaxation rates for this case. The result is shown in Figure 5.
Parameters were estimated based on the experimental data for
a BIC aggregate, see Section IV. For this choice of the spectral
density, the pure dephasing can be characterized by a rate if the

FIG. 5. Population life time (crosses) and pure dephasing life time (line)
as a function of temperature for a linear spectral density in a 2D aggregate.
Parameters for the solid line, which show the pure dephasing life time, have
been extracted from the BIC experiment (see Sec. IV for details), from which
we can estimate the slope of the pure dephasing contribution as a function
of temperature, but not the delocalization size. For the calculation of the
dephasing due to population relaxation, which is plotted as crosses, the size
is used as an input parameter. Calculations were performed for two different
sizes, and the results plotted with black crosses are for a delocalization size
of Nk = 9 molecules (3×3 brick layer lattice), while blue crosses are for
Nk = 25 molecules (5×5 brick layer lattice).

temperature is low compared to the cut-off frequency of the
bath.44 The life time is also plotted in the figure. We observe
that pure dephasing dominates the homogeneous line width
up to a certain temperature, which depends on the system size
used in the simulations (i.e., the exciton localization size).
For higher temperatures, population relaxation becomes more
important. This finding can be used to determine an upper
limit for the delocalization size.

E. Dephasing in two-dimensional aggregates

Comparison with experiment shows that the predomi-
nance of dephasing from population relaxation, which is found
for linear aggregates, does not explain experiment for the thin
film. A perfectly linear relation between the homogeneous
line width and the temperature was measured.23 Although
this finding could be explained from population relaxation
with a different ω dependence of the spectral density, this
is not a plausible explanation of the experimental findings.
A sub-Ohmic power23 on the order of ω0.5 in the spectral
density would be needed. There is no clear microscopic
mechanism that would lead to this behavior. Furthermore, it
would be very surprising that the temperature dependence
of the homogeneous line width is exactly linear. Therefore,
it is more logical to assume that the mechanism leading
to homogeneous broadening is different in linear and 2D
aggregates.

The different mechanism can be understood by the
difference in population relaxation rates found in Sec. III D.
In linear aggregates, the density of states at the band edge
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is large, leading to strong scattering between exciton states
and fast relaxation of the population in the bright state. This
population relaxation leads to dephasing, which dominates
the homogeneous line width. In contrast, in two-dimensional
aggregates, the density of states at the band edge is orders
of magnitude smaller. Population relaxation, which depends
strongly on the difference in energy between eigenstates, is
suppressed for the smooth spectral densities that we assume
here. The accompanying dephasing is therefore also much
weaker than in the case of linear aggregates. Therefore,
pure dephasing becomes more important and can dominate
the homogeneous line width. This is the main finding of this
paper. This model predicts that the life time broadening is only
a small part of the homogeneous line width. This prediction
could be tested experimentally by measuring the life time of
the bright state with pump-probe spectroscopy.

We will now see how the dominance of pure dephasing
in two-dimensional aggregates leads to a linear scaling of the
homogeneous line width with temperature. We assume that
the spectral density is polynomial in frequency up to a cut-off
frequency ωC,

J(ω) = CJω
α fJ(ω/ωC), (11)

where fJ(x) is a cut-off function. Common forms for this
function are an exponential, a Lorentzian, or a Heaviside
step function. While this spectral density quite generally
describes the interaction with the bath, we assume here that
intramolecular vibrations do not play a role.

We are now in a position to analyse the pure dephasing
term g(t). In the fast modulation limit, which we assume here
because, as we will see, it leads to a linear relation between the
homogeneous line width and temperature, one can replace the
correlation function by a delta function, L(t) = Γpureδ(t). The
pure dephasing contribution to the spectrum is then given by a
rate Γpure, because g(t) = Γpuret. By comparing with Eq. (8) one
finds that the rate is related to the slope of the spectral density
at zero frequency,45,46 Γpure = limω→0 J(ω)/βω. Therefore,
there is no pure dephasing rate for a super-Ohmic spectral
density (α > 1). Note that this statement is also valid outside
the fast modulation limit because the linear term in the line
shape function is also given by the slope of the spectral
density at zero frequency in the more general case. There
is still pure dephasing, but g(t) has no linear term. For an
Ohmic spectral density (α = 1), which is the most commonly
used form, because it corresponds to a linear density of
states and a frequency independent exciton phonon coupling,
we see that the pure dephasing rate is linearly proportional
to temperature.47 Thus, for an Ohmic spectral density in
the fast modulation limit, we expect a linear scaling of the
homogeneous line width with temperature. We note that it
would be desirable to measure the time scale of the bath
directly to strengthen this argument.

To close this section, we briefly discuss Kubo stochastic
line shape theory,48 which is valid in the high temperature
limit, to estimate the temperature dependence of the pure
dephasing in the slow dephasing limit. The correlation
function in this case is given by

L(t) = σ2e−ωC t, (12)

where the variance of the fluctuations can be expressed
in terms of the reorganization energy λ and temperature
by calculating the correlation function from the Drude-
Lorentz spectral density J(ω) = 2λωCω/(ω2 + ω2

C). One finds
σ2 = 2λ/β. The lineshape function for this model is easily
calculated to be

g(t) = σ2

ω2
C

(ωCt − 1 + e−ωC t). (13)

One sees that in the fast modulation limit g(t) = 2λt/βωC, in
agreement with the pure dephasing rate introduced earlier. In
the slow modulation limit, g(t) = σ2t2/2, where σ is related to
the inhomogeneity in the energies of exciton states. The line
shape in the frequency domain is a Gaussian with standard
deviation proportional toσ. Because the varianceσ2 is linearly
proportional to temperature, the line width scales as the square
root of temperature in this regime. Note that this regime is less
relevant for our discussion of the homogeneous line width,
which is determined by fast fluctuations, while very slow
fluctuation contributes only to the inhomogeneous line width.
However, this analysis shows that if the fast modulation limit
is not strictly applicable,49 deviations from linear scaling of
the line width with temperature are expected.

Before presenting a comparison to experiment, we briefly
discuss the role of static disorder. As indicated by Eq. (13),
at low temperature, the line-shape and its T-dependence will
be dominated by inhomogeneous broadening resulting from
static disorder. In fact, a published calculation [see Fig. 7 of
Ref. 50] clearly shows the transition from inhomogeneous
broadening to homogenous broadening in the disordered
chain system. Interestingly, this transition corresponds to
optimal diffusion along the chain, suggesting optimization
when dynamics and static disorders balance. Another point is
that the relative contribution of pure dephasing decreases with
the size of localization, as shown in Fig. 5. It is known that
the Anderson localization size scales with the disorder and
this universal scaling depends critically on the dimensionality.
This scaling and its implication on diffusion were reported in a
recent study27 and will be further explored in two-dimensional
J-aggregates.

IV. EXTRACTING PARAMETERS FROM EXPERIMENT

By comparing the measured 2D spectra in Ref. 23 with
our calculated spectra, we observe that a slip around 1.0 is the
most plausible structure for these systems. A slip around 0.5
and smaller is ruled out, because an extra induced absorption
peak appears below the bleaching and stimulated emission
peak, which is not observed in experiment.

As explained in Section III C, the estimate of the resonant
transfer interactions in two-dimensional aggregates should be
done with a different formula than in linear aggregates. To
obtain an estimate of the coupling J, one should divide the
excitonic peak shift by a factor of 4.9. This factor depends
on s and A. By doing this, we find that the nearest neighbor
coupling in the aggregate studied by Arias et al. is around
−75 meV for BIC (instead of −153 meV based on a linear
model) and −104 meV for U3 (instead of −212 meV). In
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PTCDA aggregates considered by Mueller et al., the shift was
found to be 400 cm−1. This would lead to an interaction of
−82 cm−1. This value corresponds to−10 meV, and is therefore
significantly smaller than for the other two aggregates.

Under the assumption that the homogeneous line width
is completely determined by pure dephasing, we can extract
system parameters from the experimental data by following the
discussion in Sec. III. The slope of the homogeneous line width
versus temperature, Γ = ST , is given by S = 2λkB/ωCNk,
where Nk is the localization size of the exciton. Thus, we find
that 2λ/ωC = 0.268Nk for BIC. To proceed further, it would
be desirable to measure ωC independently, for example, from
the time dependent Stokes shift.

From this estimate, by assuming a value for Nk, we
can derive the parameters for the model by Heijs et al. and
calculate the population relaxation times as shown in Figure 5.
We used the same large value of ωC = 10 J, which means that
we are consistently in the Markovian regime. We conclude that
in order to obtain a linear relationship between homogeneous
life time and temperature up to 250 K, the exciton should
be localized on a segment smaller than 9 molecules (3 × 3).
For larger temperatures, deviations from linear behaviour are
expected, as can be seen in the figure. This is consistent with
the dynamic localization size estimated from experiments
on BIC and U3,23 and slightly smaller than values found
for PTCDA.24 Note that in our modified Redfield approach
dynamic localization is not included by construction and that
we therefore regard Nk as a parameter in the calculations.

V. CONCLUSION

In conclusion, we have used the standard Frenkel exciton
model to study the excitonic properties in brick layer thin film
J-aggregates. We have introduced a novel theory to explain
the experimentally measured linear temperature dependence
of the pure dephasing rate.

We have found that the exciton couplings determined
from peak shifts in the linear spectrum depend strongly on
the geometry of the system. In particular, the couplings in
two-dimensional aggregates are a few times smaller than
estimates based on a linear aggregate model.

To explain the linear scaling of the homogeneous line
width with temperature, we propose pure dephasing as the
main homogeneous broadening mechanism. Because the
energy gaps between exciton states at the bottom of the band
are much larger in two-dimensional than in linear aggregates,
population relaxation is suppressed. This leads to a smaller
contribution to the line width from population relaxation
in two-dimensional aggregates, as well as to longer exciton
life times. From the experimental data, we can extract the
product of the reorganization energy and the typical bath
reorganization time scale. Pump-probe experiments, which
can measure the lifetime of excited states, are suggested to
confirm whether dephasing due to population relaxation is
indeed less important than pure dephasing. It will also be
valuable to determine the time scale of the reorganization of
the phonon environment experimentally.

A much simpler model could in principle explain the
exact linear temperature dependence. Stochastic line shape

theory for a single two-level system coupled to a bath in the
fast modulation limit predicts a Lorentzian homogeneous line
with a width ∆2τ, where ∆ is the standard deviation of the
fluctuations and τ their correlation time. Because the variance
of the fluctuations depends linearly on temperature, this would
explain the observed temperature dependence irrespective of
the form of the spectral density.

A microscopic model that could make the exciton state
behave as an effective two-level system is the presence of
correlated fluctuations. If the site energy fluctuations are not
independent, as in the model of Heijs et al.,31 but correlated
over a distance comparable to the exciton localization size,
they will not lead to scattering between eigenstates, and
therefore no contribution to the line width from scattering in
the exciton band occurs. We believe that the localization size
is large enough to make the model of correlated fluctuations
not plausible.

Our calculations are limited by the assumption in modified
Redfield theory, where off-diagonal fluctuations in the exciton
basis are treated perturbatively and therefore dynamic locali-
zation is not included. They could be improved by taking both
the diagonal and off-diagonal system bath coupling terms into
account non-perturbatively. This could be achieved with the
cumulant expansion method,51,52 stochastic path integrals,53 or
hierarchy of equation of motion simulations.54 These methods
can be used to study the effect of dynamic localization,55 but
are difficult to apply given the large reorganization energy and
low temperature compared to the excitonic coupling in the
system. They could also be used to calculate the localization
size, which is treated as a parameter in our work. We remark
that modified Redfield theory becomes more accurate with an
increase in the energy gap between the two states involved,
which means that the theory is more accurate for systems
of modest localization size, as we consider here. For some
aggregates, intermolecular vibrations are important,20,24 which
could be considered in future work. Experimental measure-
ment of the Stokes shift may help to improve our understanding
of the role of vibrations. Finally, it would be desirable to get
a better estimate of the resonant transfer interactions from
quantum chemical simulations and to include radiative decay
to the ground state in our calculations. On the experimental
side, collecting 2D spectra as a function of the waiting time
to elucidate energy transfer mechanisms56 would be a possible
future extension.

The results presented here contribute to the understanding
of the photophysics of two-dimensional J-aggregate thin films.
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APPENDIX: MORE GEOMETRIES

In this Appendix, we consider a wider range of geometries
than were presented in the main text, in particular, a brick
layer lattice with a larger aspect ratio A = 3.

In Figure 6 we plot the resonant transfer interaction for
an aspect ratio of 3. Similar as in the case of A = 2, we find
that there is only a limited range of values of the slip s for
which interactions are negative in the horizontal as well as the
vertical direction. In Figure 7 we plot the density of states for
A = 3. We observe a clear difference in the density of states
at the band edge between linear aggregates and brick layer
aggregates. We note that for a slip of s = 0.5, the state with
maximum oscillator strength is blue shifted with respect to
the monomer.

We calculated the life time of the bright state for a 6 × 6
brick layer lattice for different values of A and s, using
the same procedure as outlined in the main text. For A = 2,
with s = 0.25 and s = 0.5, the temperature dependence varies
dramatically less than for the value of s = 1.0 used in the main

FIG. 6. Resonant transfer interaction as a function of the slip s for A= 3. All
other parameters are the same as in Fig. 1.

FIG. 7. Density of states for A= 3 and various values of s. The bin size is
200 cm−1.

FIG. 8. Calculated intraband scattering life time with the model of
Heijs et al. in an N×N brick layer lattice (crosses: A= 3, s = 1, stars:
A= 3, s = 1.5) as a function of temperature for N = 6. The coupling in the
x-direction is J =−500 cm−1.

text (data not shown). In particular, for s = 0.25 the lifetime is
constant at the very small value of 1.5 · 10−7 ps over the entire
range of temperatures considered (20–350 K). For s = 0.5,
the life time decreases from 8 · 10−4 ps at 20 K to 2 · 10−4 ps
at 350 K, still a much smaller variation than was observed in
Fig. 4 for s = 1.0. We attribute the difference to the presence
of states which are lower in energy than the bright state. The
system can relax to these states by spontaneous emission of a
phonon, which is independent of temperature.

For A = 3 and s = 0.5, we also find a constant lifetime
over the range of temperature from 20 K to 350 K. For s = 1.0
and s = 1.5, we find a very strong dependence on temperature,
as can be seen from the data plotted in Fig. 8. We conclude
that measuring the temperature dependence of the life time of
the bright state can be used as a tool to probe the molecular
arrangement in brick layer aggregates.
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