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Abstract: The authors propose a two sided moment matching method for model reduction of quadratic-bilinear descriptor
systems. The goal is to approximate some of the generalised transfer functions that appear in the input–output representation of
the non-linear system. Existing techniques achieve this by utilising moment matching for the first two generalised transfer
functions. In this study, they derive an equivalent representation that simplifies the structure of the generalised transfer
functions. This allows them to extend the idea of two sided moment matching to higher subsystems which was difficult in the
previous approaches. Numerical results are given for some benchmark examples of quadratic-bilinear systems.

1 Introduction
Consider a multi-input multi-output (MIMO) quadratic-bilinear
descriptor system of the form

Σ:
��̇(�) = ��(�) + ∑� = 1

� ���(�)��(�) + � �(�) ⊗ �(�) + ��(�),�(�) = ��(�) .
(1)

Here �, �, �� ∈ ℝ� × �, � ∈ ℝ� × �2, � ∈ ℝ� ×� and � ∈ ℝ� × � are the
state-space matrices and �(�) ∈ ℝ�, �(�) ∈ ℝ� and �(�) ∈ ℝ� are
the state, input and output vectors, respectively. This class of non-
linear systems has applications in many areas including the
simulation of fluid flow, electrical circuits and some biological
systems, cf. [1]. Also, a large class of non-linear systems can be
written as quadratic-bilinear differential algebraic equations
(QBDAEs) by utilising exact transformations [2], extending its
application areas even further.

In this paper, we discuss the approximation of QBDAEs by
constructing reduced order models. That is, we construct

Σ̂:
�̂�̇̂(�) = �̂�̂(�) + ∑� = 1

� �̂��̂(�)��(�) + �̂ �̂(�) ⊗ �̂(�) + �̂�(�),�̂(�) = �̂�̂(�),
(2)

with �̂(�) ∈ ℝ� and � ≪ � such that �̂(�) is close to �(�) in an
appropriate norm. Recently, projection based (generalised-)
moment matching techniques [2–4] have been used in the literature
to construct such reduced order systems, in contrast to trajectory-
based methods such as proper orthogonal decomposition (POD)
[5], the reduced basis method, POD with discrete empirical
interpolation method [6], and, the trajectory piecewise linear
method [7]. Since all these trajectory based methods share the
disadvantage of input dependency, generalised moment matching

techniques are particularly useful for systems with varied input
function, which is common in control and optimisation problems.
For details on non-linear model reduction techniques, we refer a
recent survey paper [8].

Projection involves identifying suitable basis matrices � and �
(the columns of each matrix span a particular subspace),
approximating �(�) by ��̂(�) and ensuring Petrov–Galerkin
conditions. This leads to the following reduced state-space
matrices:�̂ = �T��, �̂ = �T��, �̂ = �T�(�⊗ �),�̂� = �T���, � = 1,…,�, �̂ = �T�, �̂ = �� . (3)

Clearly the reduced system matrices depend on the choice of the
basis matrices � and � for a given Σ. In moment matching
techniques, these projection matrices are constructed such that the
reduced system matches some of the generalised moments
associated with the underlying generalised transfer functions of the
QBDAE system at fixed interpolation points. In [2], the procedure
of moment matching is restricted to orthogonal projection (i.e.� = �) with the moments matched for each of the first two
generalised transfer functions. This idea has been extended recently
to oblique projection [4] which improves the approximation quality
of the reduced system, but because of the complex structure of the
moments corresponding to third and higher dimensional
generalised transfer functions, the higher dimensional moments are
again ignored.

In this paper, we utilise the known connection between different
forms of the generalised transfer functions in order to identify an
equivalent representation of the generalised transfer functions
which simplifies the structure of the moments. This allows us to
use two sided projection based moment matching techniques also
for higher dimensional transfer functions.

In Section 2, we briefly overview some background theory and
existing moment matching techniques for model reduction of
QBDAEs. To extend the idea of moment matching to higher
subsystems, we derive a simplified form of multivariate transfer
functions in Section 3. Based on the simplified form, we propose
our moment matching framework using orthogonal as well as
oblique projections. These results are given in Section 4.
Numerical results are presented in Section 5 and, finally, the
conclusions and future work are given in Section 6.
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2 Background
The input–output representation for single input quadratic-bilinear
systems can be expressed by the Volterra series expansion of the
output �(�) with quantities analogous to the standard convolution
operator. That is (see (4)) where it is assumed that the input signal
is one-sided, �(�) = 0 for � < 0. In addition, each of the
generalised impulse responses, ℎ�(�1, …, ��), also called the �-
dimensional kernel of the subsystem, is assumed to be one-sided.
In terms of the multivariable Laplace transform, the �-dimensional
subsystem can be represented as��(�1, …, ��) = ��(�1, …, ��)�(�1)⋯�(��), (5)

where ��(�1, …, ��) is the multivariable transfer function of the �-
dimensional subsystem. The above equation follows by applying
the convolution property of the multivariable Laplace transform to
(4), see [9] for details. If the multivariable Laplace transforms of
all subsystems, that are ��(�1, …, ��)'s, and the input, �(�), are
known, then the inverse Laplace transforms can be computed to
identify ��(�1, …, ��). The output �(�) becomes

�(�) = ∑� = 1
∞ ��(�1, …, ��) |�1 = ⋯ = �� = � = ∑� = 1

∞ ��(�, …, �) (6)

The generalised transfer functions in the output expression (5) are
in what is called the triangular form [9] of the functions. We denote
the �-dimensional triangular form by �tri[�](�1, …, ��). There are
some other useful forms such as the symmetric and the regular
forms of the multivariable transfer functions as discussed in [9].
The triangular form is related to the symmetric form by the
following expression:

�sym[�] (�1, …, ��) = 1�! ∑�( ⋅ )�tri[�](��(1), …, ��(�)), (7)

where the summation includes all �! permutations of �1, …, ��.
Also, the triangular form can be connected to the regular form of
the transfer function by using�tri[�](�1, …, ��) = �reg[�] (�1, �1+ �2, …, �1+ �2+⋯+ ��) . (8)

According to [9], the structure of the generalised symmetric
transfer functions can be identified by the growing exponential
approach. The structure of these symmetric transfer functions for
the first three subsystems of the quadratic-bilinear system (1) can
be written as (see (9)) . Clearly, if a model reduction approach can
ensure that�sym[�] (�1, …, ��) ≃ �̂sym[�] (�1, …, ��), for � = 1,…, �, (10)

with �̂sym[�] (�1, …, ��) being the multivariate transfer functions of the
reduced system Σ̂, we can expect that the output �(�) is well
approximated by �̂(�). This idea was initially utilised in [2] to
construct a reduced quadratic-bilinear system with orthogonal
projection of the first two subsystems using the symmetric transfer
functions. Recently, this approach was extended in [4] to the
oblique projection framework in order to improve the quality of the
reduced model. The complex structure of the third and higher
symmetric transfer functions has again restricted these projection
techniques to the moment matching of the first two subsystems
only. In the following we briefly review the oblique projection
framework. Before proceeding further, we discuss some properties
and notations: �(�) := (�� − �), (11)�T�(�⊗ �) = �T�(2)(� ⊗ �) (12)

where �, �, � ∈ ℝ� are arbitrary and it is assumed that�(�⊗ �) = �(�⊗ �) holds. The matrix �(2) is the 2-
matricisation of the three-dimensional tensor ℋ ∈ ℝ� × � × � having� as its 1-matricisation, see [10]. To recycle vectors for
approximation subspaces, it is assumed in [4] that �1 = �2 = �.
With these settings, the second symmetric transfer function
becomes�sym[2] (�, �) = ��(2�)−1 � �(�)−1�⊗ �(�)−1� + ��(�)−1� .
The following summarises the result introduced in [4].
 
Lemma 1: Let �� ∈ ℂ be the interpolation points and�� ∉ {Λ(�, �), Λ(��, ��)}, where Λ(�, �) represents the generalised
eigenvalues of the matrix pencil �� − �. Assume that �̂ = �T��
is non-singular and �̂, �̂, �̂, �̂, �̂ are as in (3) with full rank
matrices �,� ∈ ℝ� × � such that (see equation below). Then the
reduced QBDAE satisfies the following (Hermite) interpolation
conditions: (see equation below).
 
Proof: See [4] for a proof. □

In the remaining part of this paper, our goal is to identify the
regular form of the multivariate transfer functions that can
hopefully simplify the moment matching concept and allows us to
use this new framework for third and higher subsystems.

3 Regular form of multivariate transfer functions
In this section, we utilise the connections between different forms
of the multivariate transfer functions discussed in the previous
section to identify the regular form of the corresponding functions.

�(�) = ∑� = 1
∞ ∫0 �∫0 �1⋯∫0 ��− 1ℎ�(�1, …, ��)�(� − �1)⋯�(� − ��)���⋯��1, (4)

����[1] (�1) = �(�1� − �)−1� =: �����[1] (�1)����[2] (�1, �2) = 12!�((�1+ �2)� − �)−1 �[����[1] (�1) + ����[1] (�2)]+�[����[1] (�1) ⊗ ����[1] (�2) + ����[1] (�2) ⊗ ����[1] (�1)]=: �����[2] (�1, �2)����[3] (�1, �2, �3) = 13!�((�1+ �2+ �3)� − �)−1 � ����[2] (�1, �2) + ����[2] (�2, �3)+����[2] (�1, �3) + � ����[1] (�1) ⊗ ����[2] (�2, �3) + ����[2] (�2, �3) ⊗ ����[1] (�1)+����[1] (�2) ⊗ ����[2] (�1, �3) + ����[2] (�1, �3) ⊗ ����[1] (�2)+����[1] (�3) ⊗ ����[2] (�1, �2) + ����[2] (�1, �2) ⊗ ����[1] (�3)
(9)
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The following theorem gives the regular form, which is one of our
main results.
 
Theorem 1: Given a quadratic-bilinear descriptor system, the
transfer functions in regular form are given as�reg[1] (�1) = ��(�1)−1� for � = 1 and for � ≥ 2

�reg[�] (�1, …, ��) = ��(��)−1 ��reg[�− 1](�1, …, ��− 1)+� ∑� = 1
� − 1�reg[�] (�̄1, …, �̄�) ⊗ �reg[�− �](�1, …, ��− �) , (13)

where �reg[�]  is defined such that �reg[�] = ��reg[�]  and{�̄1, �̄2, …, �̄�} := {��− �+ 1− ��− �, ��− �+ 2− ��− �, …, ��− ��− �} .
 
Proof: We begin with the � = 2 case where the regular form
becomes�reg[2] (�1, �2) = ��(�2)−1 ��reg[1] (�2− �1) ⊗ �reg[1] (�1) + ��reg[1] (�1)= ��(�2)−1 ��(�2− �1)−1�⊗ �(�1)−1� + ��(�1)−1�
Using (8) we have�tri[2](�1, �2) = �reg[2] (�1, �1+ �2)= ��(�1+ �2)−1 ��reg[1] (�2) ⊗ �reg[1] (�1) + ��reg[1] (�1) .
Since �reg[1] (�1) = �tri[1](�1), we have �reg[1] (�2) = �tri[1](�2). Therefore,
the triangular form becomes�tri[2](�1, �2) = ��(�1+ �2)−1 ��tri[1](�2) ⊗ �tri[1](�1) + ��tri[1](�1) .

(14)

Now using the connection between triangular and symmetric forms
given in (7), we get

�sym[2] (�1, �2) = 12��(�1+ �2)−1 ��(�2)−1�⊗ �(�1)−1� + ��(�1)−1� + ��(�1)−1�⊗ �(�2)−1� + ��(�2)−1� ,
which is exactly equal to the known symmetric form. Thus (13)
holds for � = 2.
Now we check the � = 3 case�reg[3] (�1, �2, �3) = ��(�3)−1 � �reg[1] (�3− �2) ⊗ �reg[2] (�1, �2)+�reg[2] (�2− �1, �3− �1) ⊗ �reg[1] (�1) + ��reg[2] (�1, �2) .
This means that

�tri[3](�1, �2, �3) = �reg[3] (�1, �1+ �2, �1+ �2+ �3)= ��(�1+ �2+ �3)−1 � �reg[1] (�3) ⊗ �reg[2] (�1, �1+ �2)+�reg[2] (�2, �2+ �3) ⊗ �reg[1] (�1) + ��reg[2] (�1, �1+ �2) .
As �tri[2](�1, �2) = �reg[2] (�1, �1+ �2), we can write�tri[2](�2, �3) = �reg[2] (�2, �2+ �3). The triangular form is then

�tri[3](�1, �2, �3) = ��(�1+ �2+ �3)−1 � �tri[1](�3) ⊗ �tri[2](�1, �2)+�tri[2](�2, �3) ⊗ �tri[1](�1) + ��tri[2](�1, �2) .
Using (7), we observe that the equivalent symmetric form is the
same as in (9). Similarly for higher values of �, one can show that
the regular form in (13) holds. □
 
Remark 1: The regular and triangular forms include � − 1 sums of
Kronecker products which is much smaller as compared to the
corresponding symmetric form. Also in the symmetric form, it is
difficult, if not impossible, to represent a general �th-dimensional
multivariate transfer function.
 
Remark 2: The symmetric form is exactly equal to the triangular
form if we assume that �1 = ⋯ = �� = � and the two forms are
equal to the regular form if the regular variables are�1 = �, �2 = 2�,…, �� = ��.
 
Example 1: Consider the second subsystem in symmetric form with�2 = �1 = �. That is�sym[2] (�, �) = ��(2�)−1 ��(�)−1� + ��(�)−1�⊗ �(�)−1� .
From (7) we have �sym[2] (�, �) = �tri[2](�, �), which clearly holds by
setting �2 = �1 = � in (14). Also from (8), we know that�tri[2](�, �) = �reg[2] (�, 2�). Thus by fixing � to 2 and �1 = �, �2 = 2�
in Theorem 1, the regular form �reg[2] (�, 2�) is equal to �sym[2] (�, �)
and �tri[2](�, �).

In the following, we use the regular form of the multivariate
transfer functions to construct a reduced interpolating quadratic-
bilinear system.

4 Multimoment-matching with the regular form
In this section, we propose orthogonal as well as oblique projection
techniques for model reduction of quadratic-bilinear systems using
the regular form. We begin with the case of multimoment-matching
for the first two subsystems only. The general case, where the
multimoments associated with third and higher subsystems are also
matched, is discussed later.

4.1 Case � = 2
The first two transfer functions in the regular form with the
assumption that �1 = �, �2 = 2� can be written as

span(�) = span� = 1,…, � {�(��)−1�, �(2��)−1[�(�(��)−1�⊗ �(��)−1�) + ��(��)−1�]}span(�) = span� = 1,…, � �(2��)−T�T, �(��)−T �(2)(�(��)−1�⊗ �(2��)−T�T) + 12�T�(2��)−T�T .
�sym[1] (��) = �̂sym[1] (��), �sym[1] (2��) = �̂sym[1] (2��),�sym[2] (��, ��) = �̂sym[2] (��, ��), ∂∂���sym[2] (��, ��) = ∂∂�� �̂sym[2] (��, ��), � = 1, 2.
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�reg1 (�) = �(�� − �)−1�,�reg2 (�, 2�) = �(2�� − �)−1 ��reg1 (�) + � �reg1 (�) ⊗ �reg1 (�) .
The above transfer functions are similar to symmetric transfer
functions, if in the symmetric case �1 = �2 = �, which is assumed
in Lemma 1. Thus, the framework for interpolation of the transfer
functions in the regular form is similar to Lemma 1. However, the
interpolation of the partial derivatives with respect to �1 or �2
varies. The following theorem shows the interpolation conditions
in the regular case for the first two subsystems.
 
Theorem 2: Let �� ∈ ℂ be the interpolation points and� × �� ∉ {Λ(�, �), Λ(��, ��)}, � = 1,…, �. Assume that �̂ = �T��
is non-singular and �̂, �̂, �̂, �̂, �̂ are as defined in (3) with�,� ∈ ℝ� × � such that (see (15)) Then the reduced QBDAE
ensures that the following holds:�reg[1] (��) = �̂reg[1] (��), �reg[2] (��, 2��) = �̂reg[2] (��, 2��) (16)

and, in addition, interpolates all combinations of the multimoments
that can be written as �T�� and �T(�� + �(�⊗ �)), where� ∈ span(�) and � ∈ span(�).
 
Proof: Equation (16) holds due to the structure of � and its proof is
as in Lemma 1. To prove the second part, let �̂ ∈ ℝ� × �� and�̂ ∈ ℝ� × �� be defined such that (see (17)) Also let �̂ ∈ span(�̂)
and �̂ ∈ span(�̂). Assume that �, �̂ (and �, �̂ ) are the same
linear combination of the columns of the matrices on the right-hand
side of (15) and (17), respectively. Then analogous to the
discussion of one-sided projection, it is easy to show that� = ��̂, � = ��̂ . (18)

This means that �T�� = �̂T�T���̂,= �̂T�̂�̂ .

Similarly, �T(�� + �(�⊗ �)) = �̂T(�̂�̂ + �̂(�̂ ⊗ �̂)). □
The complete approach of one-sided projection for interpolatory

model reduction of quadratic-bilinear systems, using regular
generalised transfer functions, is shown in algorithm 1 (Fig. 1). 

4.2 General case

The transfer function of the �th subsystem in the regular form with
the assumption that �1 = �, �2 = 2�,…, �� = �� can be written as

�reg� (�, …, ��) = �(��� − �)−1 ��reg�− 1(�, …, (� − 1)�)+� ∑� = 1
� − 1�reg� (�, …, ��) ⊗ �reg�− �(�, …, (� − �)�) ,

The transfer function shows that one can recycle vectors in the
construction of the projection matrix. This is shown in the
following lemma which extends the orthogonal projection
technique [2] for mutimoment matching to third and higher
subsystems.
 
Lemma 2: Let �� ∈ ℂ be the interpolation points and� × �� ∉ {Λ(�, �), Λ(��, ��)}, � = 1,…, �. Assume that �~ = �T��
is non-singular and �~ = �T��, �~ = �T�(�⊗ �), �~ = �T��,�~ = �T�, �~ = �� with � ∈ ℝ� × � having full rank such that

span(�) = span� = 1,…, �� �(��)−1��1�
, …,

�(���)−1 ���− 1� + � ∑� = 1
� − 1��� ⊗��− ��

���
(19)

Then the reduced QBDAE ensures moment matching for the first �
subsystems. That is, the following holds:�reg[�] (��, 2��, …, ���) = �~reg[�] (��, 2��, …, ���), (20)

span(�) = span� = 1,…,�� ([�(��)−1��1�
, �(2��)−1(��1� + �(�1� ⊗�1�))]),span(�) = span� = 1,…,�� ([�(��)−����1�
, �(2��)−����1� + �(��)−��(2)(�1� ⊗�1�)�2�

]) . (15)

�̂ = �̂(��)−1�̂�̂1�
, �̂(2��)−1 �̂�̂1� + �̂(�̂1� ⊗ �̂1�) � = 1,…, ���̂= �̂(��)−T�̂T�̂1�
, �̂(2��)−T�̂��̂1� + �̂(��)−T�̂(2)(�̂1� ⊗ �̂1�)�̂2� � = 1,…, �� (17)

Fig. 1  Algorithm 1 Oblique projection with regular transfer functions, K = 2
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for � = 1,…, �� and � = 1,…, �.
 
Proof: We define �~reg[�] (�, 2�, …, ��) to be such that�~reg[�] (�, 2�, …, ��) = ��~reg[�] (�, 2�, …, ��) .
If � = 1, 2, then (20) holds, since��~reg[1] (��) = �reg[1] (��), (21)��~reg[2] (��, 2��) = �reg[2] (��, 2��), (22)

from Lemma 1 since �sym[1] (��) = �reg[1] (��) and�sym[2] (��, ��) = �reg[2] (��, 2��). For the third and higher dimensional
transfer functions, we proceed in the same way. To demonstrate
this, we provide the proof for the third subsystem. Define�~ = �(�T��)−1�T�, so that �~2 = �~ and range(�~) = range � .
Thus, if � ∈ range � , then �~� = �. Note that (see equation
below). Using (21) and (22) and using the fact that �(3��)�(3��)−1
is equal to the identity matrix, we have (see equation below). Since�~ is a projector onto range(�), it follows that:��~reg[3] (��, 2��, 3��) = �reg[3] (��, 2��, 3��) . (23)

Premultiplying the above equation by � proves the statement for
the third subsystem. Similarly we can prove the result for higher
subsystems. □

Based on Lemma 2, we propose Algorithm 2 that shows the
required steps for constructing a reduced interpolation-based
quadratic-bilinear model (Fig. 2). 

Thus we can construct a reduced quadratic-bilinear system that
is interpolating in the sense of (20). The following theorem
discusses an oblique projection framework in terms of the regular
form for model reduction of quadratic-bilinear systems.

 
Theorem 3: Let �� ∈ ℂ be the interpolation points and� × �� ∉ {Λ(�, �), Λ(��, ��)}, � = 1,…, �. Also let ��� := ��− ��

for � = 1,…, � and � = 1,…, � − 1. Assume that �̂ = �T�� is
non-singular and �̂ = �T��, �̂ = �T�(�⊗ �), �̂ = �T��,�̂ = �T�, �̂ = �� with � ∈ ℝ� × � as defined in Lemma 2 and� ∈ ℝ� × � is such that (see (24)) Then the reduced QBDAE
obtained via oblique projection ensures that for � = 1,…, ���reg[�] (��, …, ���) = �̂reg[�] (��, …, ���), � = 1,…, �, (25)

and, in addition, interpolates all combinations of the multimoments
that can be written as �T�� and �T(�� + �(∑� = 1� − 1 �⊗ �)),
where � ∈ span(�) and � ∈ span(�).

 
Proof: Equation (25) holds due to the structure of � and its

proof is given in Lemma 2. To prove the second part, the same
argument as used in Theorem 2 is valid here. That is�̂T�̂�̂ = �T�� and�̂T(�̂�̂ + �̂(∑� = 1� − 1 �̂ ⊗ �̂)) = �T(�� + �(∑� = 1� − 1 �⊗ �)), where�, �, �̂ and �̂ are as defined before. □

 
Remark 3: It is easy to see that for � = 2, Theorem 3 reduces to

the result shown in Theorem 2.
Using Theorem 3, an algorithm for the oblique projection

framework can be easily identified by extending Algorithm 1 to the

��~reg[3] (��, 2��, 3��) = ��~(3��)−1 �~�~reg[2] (��, 2��) + �~(�~reg[1] (��) ⊗ �~reg[2] (��, 2��) + �~reg[2] (��, 2��) ⊗ �~reg[1] (��))= ��~(3��)−1�T ���~reg[2] (��, 2��) + �(��~reg[1] (��) ⊗ ��~reg[2] (��, 2��) + ��~reg[2] (��, 2��) ⊗ ��~reg[1] (��)) .
��~reg[3] (��, 2��, 3��) = ��~(3��)−1�T�(3��)�(3��)−1 ��reg[2] (��, 2��) + �(�reg[1] (��) ⊗ �reg[2] (��, 2��) + �reg[2] (��, 2��) ⊗ �reg[1] (��))= ��~(3��)−1�T�(3��)�~�(3��)−1 ��reg[2] (��, 2��) + �(�reg[1] (��) ⊗ �reg[2] (��, 2��) + �reg[2] (��, 2��) ⊗ �reg[1] (��))= �~�(3��)−1 ��reg2 (��, 2��) + �(�reg[1] (��) ⊗ �reg[2] (��, 2��) + �reg[2] (��, 2��) ⊗ �reg[1] (��)) .

Fig. 2  Algorithm 2 Single sided projection with regular transfer functions
 

span(�) = span� = 1,…, �� �(��)−T�T�1�
, �(2��)−T���1� + �(��)−T�(2)�1� ⊗�1��2�

, …,
�(���)−T����− 1� + ( ∑� = 1

� − 1�(���)−T)�(2)( ∑� = 1
� − 1��− �� ⊗��− 1� )

���
(24)
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general � value, as done in the case of single sided projection
given in Algorithm 2

5 Numerical results
We demonstrate our results with two benchmark examples. These
include the non-linear RC circuit example [1] and the 1D Burgers'
equation [11]. In each case, we use the iterative rational Krylov
algorithm [12] on the corresponding linear part of the example to
identify Süditaliens interpolation points.

5.1 Non-linear RC circuit

We consider a non-linear RC circuit as shown in Fig. 3, which is a
benchmark example for non-linear model reduction [2, 4] 

The non-linearity in the system is due to the diode I–V
characteristics, given by �(�) = �40�− 1, where � is the node
voltage. The current � is treated as the input and the voltage �1(�) at
node 1 as the output of the system. Using Kirchhoff's current law at
each of the � nodes and assuming a normalised capacitance, � = 1,
we have �̇(�) = �(�(�)) + ��(�), �(�) = ��(�),
where �(�(�)) is the non-linear function and � = �T is the first
column of the � × � identity matrix. This non-linear model can be
transformed [2] to an equivalent quadratic-bilinear descriptor
system with size � = 2�. We choose � = 500, which results in a
quadratic-bilinear system of order 1000.

We reduce the order of the QBDAE system to � = 10 by using
orthogonal as well as oblique projections such that interpolation for
the first two subsystems with the regular form of the transfer
functions is ensured. The results are compared with the existing
interpolation results based on the symmetric form, for the
exponential decay function �−� as system input. The output
response and the relative error are shown in Fig. 4a and b,
respectively. 

As discussed in Remark 2, the symmetric form is equal to the
regular form under some interpolation conditions. Since we are
using these interpolation conditions in Section 4, the projection
matrix � will not change in the symmetric and the regular forms.
Thus the one sided projection results are the same in both the
symmetric and regular forms. The partial derivatives of the regular
and symmetric forms with respect to �1 and �2 are, however,
different and therefore the oblique projection matrix � is different
in the symmetric and regular forms. As shown in Figs. 4a and b,
the relative error associated with the proposed two-sided projection
technique in the regular case is comparable to the existing two-
sided projection technique in the symmetric case.

Interpolation of third and higher subsystems requires some
simplifications in order to use the two-sided symmetric projection
approach. Since the primary source of two-sided symmetric
projection approach [4] is restricted to the first two subsystems, for
interpolation of higher subsystems, we are not comparing our
results with the two-sided symmetric case. The reduced model
through the one-sided symmetric projection, however, would be the
same as obtained from the use of regular form. Results for our
proposed one-sided and two-sided regular projection approaches

Fig. 3  RC circuit diagram
 

Fig. 4  Multimoment matching for non-linear RC-circuit for �(�) = �−�
(a,c) Transient responses, (b,d) Relative errors

 

IET Control Theory Appl., 2016, Vol. 10 Iss. 16, pp. 2010-2018
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

2015



are shown in Figs. 4c and d, where interpolation is achieved for the
first three subsystems, � = 3. The size of the reduced system
becomes � = 15.

The results show that the additional use of the third transfer
function improves the error of both the one-sided projection
approach and the two-sided approach. Although the improvement
is not significant in the one-sided projection, we gain basically one
order of accuracy for the two-sided approach. We believe that this
might be due to the choice of interpolation points. Since in the two-
sided approach, we are matching derivatives as well for the same
choice of interpolation points, the effect of interpolating the third
transfer function is more obvious in the two-sided case.

Now we change the system input to�(�) = cos(2�(�/10) + 1)/2 and use the same reduced models as
before for the � = 2 case to obtain the results are shown in Figs.
5a and b. Unlike trajectory based methods for model order
reduction, the results show that the approximation quality of the
projection based reduced models is not effected by the variation in
the control input. Next we consider interpolation of the first five
subsystems. The size of the reduced system is now � = 21 (which
should be ≤ 25). The results are shown in Figs. 6a and b. Although
we are using the same set of interpolation points as those used in
Fig. 4, here we get a significant improvement of the one-sided and
two-sided approximation errors. This is because we are now
interpolating the first five subsystems in the regular form.

5.2 Burgers' equation

As a second example, we consider a 1D Burgers' equation onΩ = (0, 1) × (0, �), resulting in a set of equations, cf. [11],��+ � ⋅ �� = � ⋅ ���, in (0, 1) × (0, �),��(0, ⋅ ) + ��(0, ⋅ ) = �(�), in (0, �),��(1, 0) = 0, in ((0, �),�(�, 0) = �0(�), in (0, 1), (26)

where � is the viscosity and �(0, �) is the initial condition of the
system. A semi-discretisation of the above PDE generates a
quadratic-bilinear system. We choose � = 0.05 and � = 1000
points for spatial discretisation of the system and reduce the order
of the quadratic-bilinear system to � = 10 using symmetric as well
as regular form for � = 2. The results are shown in Figs. 7 and 8
for �(�) = �−� and �(�) = cos(2�(�/10) + 1)/2, respectively. If
in addition, we ensure the interpolation of the third subsystem, our
reduced model is of size � = 15. These are also shown in Figs. 5
and 6 for two different inputs. 

The results clearly show that the additional interpolation of the
third subsystem improves the approximation error significantly in
both one-sided and two-sided projection approaches. The quality of
the reduced model varies with the choice of the interpolation
points. We used IRKA on the linear part of the system to select and
fix a choice of interpolation points.

6 Conclusion
We extended the orthogonal and oblique projection framework for
model reduction of quadratic-bilinear systems to multimoment
matching of higher subsystems. For this, we derive the regular
form of the multivariate transfer functions associated with the
quadratic-bilinear system. The structure of the regular multivariate
transfer functions is simpler as compared to the symmetric form of
the transfer functions. Multimoment matching of the regular form
is therefore easy to ensure for higher subsystems. The choice of
interpolation points is an important issue. We selected the
interpolation points so that the basis vectors can be reused for other
basis vectors. An important future work would be to improve the
choice of interpolation points.

Fig. 5  Multimoment matching for non-linear RC-circuit for �(�) = cos(2�(�/10) + 1)/2
(a) Transient response for � = 2, (b) Relative error �(�) = (�(�) − �̂(�))/�(�)

 

Fig. 6  Multimoment matching for non-linear RC-circuit for �(�) = cos(2�(�/10) + 1)/2
(a) Transient response and, (b) Relative error
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