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Genome-wide association study identifies 74 loci 
associated with educational attainment
A list of authors and their affiliations appears in the online version of the paper.

Educational attainment is strongly influenced by social and 
other environmental factors, but genetic factors are estimated to 
account for at least 20% of the variation across individuals1. Here 
we report the results of a genome-wide association study (GWAS) 
for educational attainment that extends our earlier discovery 
sample1,2 of 101,069 individuals to 293,723 individuals, and a 
replication study in an independent sample of 111,349 individuals 
from the UK Biobank. We identify 74 genome-wide significant loci 
associated with the number of years of schooling completed. Single-
nucleotide polymorphisms associated with educational attainment 
are disproportionately found in genomic regions regulating gene 
expression in the fetal brain. Candidate genes are preferentially 
expressed in neural tissue, especially during the prenatal period, and 
enriched for biological pathways involved in neural development. 
Our findings demonstrate that, even for a behavioural phenotype 
that is mostly environmentally determined, a well-powered GWAS 
identifies replicable associated genetic variants that suggest 
biologically relevant pathways. Because educational attainment 
is measured in large numbers of individuals, it will continue 
to be useful as a proxy phenotype in efforts to characterize the 
genetic influences of related phenotypes, including cognition and 
neuropsychiatric diseases.

Educational attainment is measured in all main analyses as the 
number of years of schooling completed (EduYears, n = 293,723, 
mean = 14.3, s.d. = 3.6; Supplementary Information sections 1.1–1.2). 
All GWAS were performed at the cohort level in samples restricted to 
individuals of European descent whose educational attainment was 
assessed at or above age 30. A uniform set of quality-control proce-
dures was applied to the cohort-level summary statistics. In our GWAS 
meta-analysis of ~9.3 million SNPs from the 1000 Genomes Project, 
we used sample-size weighting and applied a single round of genomic 
control at the cohort level.

Our meta-analysis identified 74 approximately independent genome-
wide significant loci. For each locus, we define the ‘lead SNP’ as the SNP 
in the genomic region that has the smallest P value (Supplementary 
Information section 1.6.1). Figure 1 shows a Manhattan plot with 
the lead SNPs highlighted. This includes the three SNPs that reached 
genome-wide significance in the discovery stage of our previous GWAS 
meta-analysis of educational attainment1. The quantile–quantile (Q–Q) 
plot of the meta-analysis (Extended Data Fig. 1) exhibits inflation 
(λGC = 1.28), as expected under polygenicity3.

Extended Data Fig. 2 shows the estimated effect sizes of the lead 
SNPs. The estimates range from 0.014 to 0.048 standard deviations 
per allele (2.7 to 9.0 weeks of schooling), with incremental R2 in the 
range 0.01% to 0.035%.

To quantify the amount of population stratification in the GWAS 
estimates that remains even after the stringent controls used by the 
cohorts (Supplementary Information section 1.4), we used linkage- 
disequilibrium (LD) score regression4. The regression results indi-
cate that ~8% of the observed inflation in the mean χ2 is due to bias 
rather than polygenic signal (Extended Data Fig. 3a), suggesting that 
stratification effects are small in magnitude. We also found evidence 
for polygenic association signal in several within-family analyses, 
although these are not powered for individual SNP association testing 
(Supplementary Information section 2 and Extended Data Fig. 3b).

To further test the robustness of our findings, we examined the within- 
sample and out-of-sample replicability of SNPs reaching genome-
wide significance (Supplementary Information sections 1.7–1.8). We 
found that SNPs identified in the previous educational attainment 
meta-analysis replicated in the new cohorts included here, and con-
versely, that SNPs reaching genome-wide significance in the new 
cohorts replicated in the old cohorts. For the out-of-sample replica-
tion analyses of our 74 lead SNPs, we used the interim release of the 
UK Biobank5 (UKB) (n = 111,349). As shown in Extended Data Fig. 4,  
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Figure 1 | Manhattan plot for EduYears associations (n = 293,723). 
The x axis is chromosomal position, and the y axis is the significance on 
a −log10 scale (two-tailed test). The black dashed line shows the genome-

wide significance level (5 × 10−8). The red crosses are the 74 approximately 
independent genome-wide significant associations (lead SNPs). The black 
dots labelled with rs numbers are the three SNPs identified in ref. 1.
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72 out of the 74 lead SNPs have a consistent sign (P = 1.47 × 10−19), 52 
are significant at the 5% level (P = 2.68 × 10−50), and 7 reach genome-
wide significance in the UK Biobank data set (P = 1.41 × 10−42). For 
comparison, the corresponding expected numbers, assuming each 
SNP’s true effect size is its estimated effect adjusted for the winner’s 
curse, are 71.4, 40.3, and 0.6. (Supplementary Information section 
1.8.2). We also find out-of-sample replicability of our overall GWAS 
results: the genetic correlation between EduYears in our meta- 
analysis sample and in the UKB data is 0.95 (s.e. = 0.021; Supplementary  
Table 1.14).

It is known that educational attainment, cognitive performance, and 
many neuropsychiatric phenotypes are phenotypically correlated, and 
several studies of twins find that the phenotypic correlations partly 
reflect genetic overlap6–8 (Supplementary Information section 3.3.4). 
Here we investigate genetic correlation using our GWAS results for 
EduYears and published GWAS results for 14 other phenotypes, using 
bivariate LD score regression9 (Supplementary Information section 3).  
First, we estimated genetic correlations with EduYears. As shown in 
Fig. 2, based on overall summary statistics for associated variants, we 
find genetic covariance between increased educational attainment and 
increased cognitive performance (P = 9.9 × 10−50), increased intra-
cranial volume (P = 1.2 × 10−6), increased risk of bipolar disorder 
(P = 7 × 10−13), decreased risk of Alzheimer’s (P = 4 × 10−4), and lower 
neuroticism (P = 2.8 × 10−8). We also found positive, statistically signif-
icant, but very small, genetic correlations with height (P = 5.2 × 10−15) 
and risk of schizophrenia (P = 3.2 × 10−4).

Second, we examined whether our 74 lead SNPs are jointly associ-
ated with each phenotype (Extended Data Fig. 5 and Supplementary 
Information section 3.3.1). We reject the null hypothesis of no enrich-
ment at P < 0.05 for 10 of the 14 phenotypes (all the exceptions are 
subcortical brain structures).

Third, for each phenotype, we tested (in the published GWAS 
results) each of our 74 lead SNPs (or its proxy) for association at a 
significance threshold of 0.05/74. We found a total of 25 SNPs meet-
ing this threshold for any of these phenotypes, but only one reaching 
genome-wide significance. While these results provide suggestive 
evidence that some of these SNPs may be associated with other 
phenotypes, further testing of these associations in independent 
cohorts is required (Supplementary Tables 3.2–3.4, Extended Data  
Fig. 6).

To consider potential biological pathways, we first tested whether 
SNPs in particular regions of the genome are implicated by our GWAS 
results. Unlike what has been found for other phenotypes, SNPs in 
regions that are DNase I hypersensitive in the fetal brain are more likely 
to be associated with EduYears by a factor of ~5 (95% confidence inter-
val 2.89–7.07; Extended Data Fig. 7). Moreover, the 15% of SNPs resid-
ing in regions associated with histones marked in the central nervous 

system (CNS) explain 44% of the heritable variation (Extended Data  
Fig. 8a and Supplementary Table 4.4.2). This enrichment factor of  
~3 for CNS (P = 2.48 × 10−16) is greater than that of any of the other 
nine tissue categories in this analysis.

Given that our findings disproportionately implicate SNPs in regions 
regulating brain-specific gene expression, we examined whether genes 
located near EduYears-associated SNPs show elevated expression in 
neural tissue. We tested this hypothesis using data on mRNA tran-
script levels in the 37 adult tissues assayed by the Genotype-Tissue 
Expression Project (GTEx)10. Remarkably, the 13 GTEx tissues that are 
components of the CNS—and only those 13 tissues—show significantly  
elevated expression levels of genes near EduYears-associated SNPs 
(false discovery rate <0.05; Extended Data Fig. 8b and Supplementary 
Table 4.5.2).

To investigate possible functions of the candidate genes from the 
GWAS-implicated loci, we examined the extent of their overlap with 
groups of genes (‘gene sets’) whose products are known or predicted to 
participate in a common biological process11. We found 283 gene sets 
significantly enriched by the candidate genes identified in our GWAS 
(false discovery rate <0.05; Supplementary Table 4.5.1). To facilitate 
interpretation, we used a standard procedure11 to group the 283 gene 
sets into ‘clusters’ defined by degree of gene overlap. The resulting 34 
clusters, shown in Fig. 3, paint a coherent picture, with many clusters  
corresponding to stages of neural development: the proliferation of 
neural progenitor cells and their specialization (the cluster npBAF  
complex), the migration of new neurons to the different layers of the 
cortex (forebrain development, abnormal cerebral cortex morphology),  
the projection of axons from neurons to their signalling targets (axono-
genesis, signalling by Robo receptor), the sprouting of dendrites and 
their spines (dendrite, dendritic spine organization), and neuronal sig-
nalling and synaptic plasticity throughout the lifespan (voltage-gated 
calcium channel complex, synapse part, synapse organization).

Many of our results implicate candidate genes and biological path-
ways that are active during distinct stages of prenatal brain devel-
opment. To directly examine how the expression levels of candidate 
genes identified in our GWAS vary over the course of development, 
we used gene expression data from the BrainSpan Developmental 
Transcriptome12. As shown in Extended Data Fig. 9, these candi-
date genes exhibit above-baseline expression in the brain throughout 
life but especially higher expression levels in the brain during pre-
natal development (1.36 times higher prenatally than postnatally, 
P = 6.02 × 10−8).

A summary overview of some promising candidate genes for  
follow-up work is provided in Table 1.

We constructed polygenic scores13 to assess the joint predictive 
power afforded by the GWAS results (Supplementary Information 
section 5.2). Across our two holdout samples, the mean predictive 

–0.5

0.0

0.5

1.0

A
cc

um
b

en
s

C
au

d
at

e

H
ip

p
oc

am
p

us

P
al

lid
um

P
ut

am
en

Th
al

am
us

In
tr

ac
ra

ni
al

vo
lu

m
e

A
lz

he
im

er
's

B
ip

ol
ar

S
ch

iz
op

hr
en

ia

C
og

ni
tiv

e
p

er
fo

rm
an

ce

N
eu

ro
tic

is
m

B
M

I

H
ei

gh
t

Brain volume

G
en

et
ic

 c
or

re
la

tio
n 

w
ith

 E
d

uY
ea

rs

Neuropsychiatric Behavioural Anthropometric

Figure 2 | Genetic correlations between EduYears and other traits. Results from bivariate LD score regressions9: estimates of genetic correlation with 
brain volume, neuropsychiatric, behavioural, and anthropometric phenotypes using published GWAS summary statistics. The error bars show the 95% 
confidence intervals (CI).
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power of a polygenic score constructed from all measured SNPs is 
3.2% (P = 1.18 × 10−39; Supplementary Table 5.2 and Supplementary 
Information section 5).

Studies of genetic analyses of behavioural phenotypes have been 
prone to misinterpretation, such as characterizing identified asso-
ciated variants as ‘genes for education’. Such characterization is not 
correct for many reasons: educational attainment is primarily deter-
mined by environmental factors, the explanatory power of the indi-
vidual SNPs is small, the candidate genes may not be causal, and 
the genetic associations with educational attainment are mediated 
by multiple intermediate phenotypes14. To illustrate this last point, 
we studied mediation of the association between the all-SNPs poly-
genic score and EduYears in two of our cohorts. We found that 
cognitive performance can statistically account for 23–42% of the 

association (P < 0.001) and the personality trait ‘openness to experi-
ence’ for approximately 7% (P < 0.001; Supplementary Information  
section 6).

It would also be a mistake to infer from our findings that the genetic 
effects operate independently of environmental factors. Indeed, a 
recent meta-analysis of twin studies found that genetic influences 
on educational attainment are heterogeneous across countries and 
birth cohorts15. We conducted exploratory analyses in the Swedish 
Twin Registry to illustrate how environmental factors may amplify or 
dampen the impact of genetic influences (Supplementary Information 
section 7). We found that the predictive power of the all-SNPs polygenic 
score is heterogeneous by birth cohort, with smaller explanatory power 
in younger cohorts (Extended Data Fig. 10; see also Supplementary 
Information section 7.4 for discussion of the contrast between these 
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Figure 3 | Overview of biological annotation. Thirty-four clusters of 
significantly enriched gene sets. Each cluster is named after one of its 
member gene sets. The colour represents the permutation P value of 
the member set exhibiting the most statistically significant enrichment. 
Overlap between pairs of clusters is represented by an edge. Edge width 

represents the Pearson correlation ρ between the two vectors of gene 
membership scores (ρ < 0.3, no edge; 0.3 ≤ ρ < 0.5, thin edge; 0.5 ≤ ρ < 0.7, 
intermediate edge; ρ ≥ 0.7, thick edge), where each cluster’s vector is the 
vector for the gene set after which the cluster is named.

Table 1 | Selected candidate genes implicated by bioinformatics analyses
Gene SNP Syndromic Score Top-ranking gene sets

TBR1 rs4500960 ID, ASD 6 Developmental biology, decreased brain size, abnormal cerebral cortex morphology
MEF2C rs7277187 ID, ASD 5 ErbB signalling pathway, abnormal sternum ossification, regulation of muscle cell differentiation
ZSWIM6 rs61160187 – 5 Transcription factor binding, negative regulation of signal transduction, PI3K events in ErbB4 signalling
BCL11A rs2457660 ASD 5 Dendritic spine organization, abnormal hippocampal mossy fibre morphology, SWI/SNF-type complex
CELSR3 rs11712056 SCZ 5 Dendrite morphogenesis, dendrite development, abnormal hippocampal mossy fibre morphology
MAPT rs192818565 ID 5 Dendrite morphogenesis, abnormal hippocampal mossy fibre morphology, abnormal axon guidance
SBNO1 rs7306755 SCZ 5 Protein serine/threonine phosphatase complex
NBAS rs12987662 – 5 –
NBEA rs9544418 SCZ 4 Developmental biology, signalling by Robo receptor, dendritic shaft
SMARCA2 rs1871109 ID 4 –
MAP4 rs11712056 ASD 4 Developmental biology, signalling by Robo receptor, SWI/SNF-type complex
LINC00461 rs10061788 – 4 Decreased brain size, abnormal cerebral cortex morphology, abnormal hippocampal mossy fibre 

morphology
POU3F2 rs9320913 – 4 Dendrite morphogenesis, developmental biology, decreased brain size
RAD54L2 rs11712056 SCZ 4 Decreased brain size, SWI/SNF-type complex, nBAF complex
PLK2 rs2964197 – 4 Negative regulation of signal transduction, PI3K events in ErbB4 signalling

Fifteen candidate genes implicated most consistently across various analyses. To assemble this list, each gene in a DEPICT-defined locus (Supplementary Information section 4.5) was assigned a score 
equal to the number of criteria it satisfies out of ten (see Supplementary Table 4.1 for details). The DEPICT prioritization P value was used as the tiebreaker. SNP, the SNP in the gene’s locus with the 
lowest P value in the EduYears meta-analysis. Syndromic, which, if any, of three neuropsychiatric disorders have been linked to de novo mutations in the gene (Supplementary Information section 4.6).  
Top-ranking gene sets, DEPICT reconstituted gene sets of which the gene is a top-20 member (Supplementary Table 4.5.1). The three most significant gene sets are shown if more than three are 
available. ID, intellectual disability; ASD, autism spectrum disorder; SCZ, schizophrenia; ErbB, erythroblastosis oncogene B; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; SWI/SNF, SWitch/
sucrose non-fermentable; nBAF, neuronal BRG1- or HRBM-associated factors.

© 2016 Macmillan Publishers Limited. All rights reserved
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results and findings from a seminal twin study that estimated educa-
tional attainment heritability by birth cohort16).

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Extended Data Figure 1 | Q–Q plot of the genome-wide association 
meta-analysis of 64 EduYears results files (n = 293,723). Observed 
and expected P values are on a −log10 scale (two-tailed). The grey 
region depicts the 95% confidence interval under the null hypothesis of 

a uniform P value distribution. The observed λGC is 1.28. (As reported 
in Supplementary Information section 1.5.4, the unweighted mean λGC 
is 1.02, the unweighted median is 1.01, and the range across cohorts is 
0.95–1.15.)
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Extended Data Figure 2 | The distribution of effect sizes of the 74 lead 
SNPs. a, SNPs ordered by absolute value of the standardized effect of 
one more copy of the education-increasing allele, with 95% confidence 
intervals. b, SNPs ordered by R2. Effects on EduYears are benchmarked 
against the top 74 genome-wide significant hits identified in the largest 
GWAS conducted to date of height and body mass index (BMI), and the 

48 associations reported for waist-to-hip ratio adjusted for BMI (WHR). 
These results are based on the GIANT consortium’s publicly available 
results for pooled analyses restricted to European-ancestry individuals: 
https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_
consortium.
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Extended Data Figure 3 | Assessing the extent to which population 
stratification affects the estimates from the GWAS. a, LD score 
regression plot with the summary statistics from the GWAS. Each point 
represents an LD score quantile for a chromosome (the x and y coordinates 
of the point are the mean LD score and the mean χ2 statistic of variants 
in that quantile). That the intercept is close to 1 and that the χ2 statistics 
increase linearly with the LD scores suggest that the bulk of the inflation 
in the χ2 statistics is due to true polygenic signal and not to population 

stratification. b, Estimates and 95% confidence intervals from individual-
level and within-family regressions of EduYears on polygenic scores, for 
scores constructed with sets of SNPs meeting different P value thresholds. 
In addition to the analyses shown here, we conduct a sign concordance 
test, and we decompose the variance of the polygenic score. Overall, these 
analyses suggest that population stratification is unlikely to be a major 
concern for our 74 lead SNPs. See Supplementary Information section 3 
for additional details.
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Extended Data Figure 4 | Replication of 74 lead SNPs in the UK 
Biobank data. Estimated effect sizes (in years of schooling) and 95% 
confidence intervals of the 74 lead SNPs in the meta-analysis sample 
(n = 293,723) and the UK Biobank replication sample (n = 111,349).  
The reference allele is the allele associated with higher values of EduYears 

in the meta-analysis sample. SNPs are in descending order of R2 in the 
meta-analysis sample. Of the 74 lead SNPs, 72 have the anticipated sign  
in the replication sample, 52 replicate at the 0.05 significance level, and  
7 replicate at the 5 × 10−8 significance level.
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Extended Data Figure 5 | Q–Q plots for the 74 lead EduYears SNPs 
(or LD proxies) in published GWAS of other phenotypes. SNPs with 
concordant effects on both phenotypes are pink, and SNPs with discordant 
effects are blue. SNPs outside the grey area pass Bonferroni-corrected 

significance thresholds that correct for the total number of SNPs we 
tested (P < 0.05/74 = 6.8 × 10−4) and are labelled with their rs numbers. 
Observed and expected P values are on a −log10 scale. For the sign 
concordance test: *P < 0.05, **P < 0.01 and ***P < 0.001.
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Extended Data Figure 6 | Regional association plots for four of  
the ten prioritized SNPs for mental health, brain anatomy, and  
anthropometric phenotypes identified using EduYears as a proxy  
phenotype. a, Cognitive performance; b, hippocampus; c, intracranial 
volume; d, neuroticism. The four were selected because very few  

genome-wide significant SNPs have been previously reported for these 
traits. Data sources and methods are described in Supplementary 
Information section 3. The R2 values are from the hg19 / 1000 Genomes 
Nov 2014 EUR references samples. The figures were created with 
LocusZoom (http://csg.sph.umich.edu/locuszoom/). Mb, megabases.
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Extended Data Figure 7 | Application of fgwas to EduYears.  
See Supplementary Information section 4.2 for further details. a, The 
results of single-annotation models. ‘Enrichment’ refers to the factor 
by which the prior odds of association at an LD-defined region must be 
multiplied if the region bears the given annotation; this factor is estimated 
using an empirical Bayes method applied to all SNPs in the GWAS  
meta-analysis regardless of statistical significance. Annotations were 
derived from ENCODE and a number of other data sources. Plotted 
are the base 2 logarithms of the enrichments and their 95% confidence 
intervals. Multiple instances of the same annotation correspond to 
independent replicates of the same experiment. b, The results of 

combining multiple annotations and applying model selection and cross-
validation. Although the maximum-likelihood estimates are plotted, 
model selection was performed with penalized likelihood. c, Reweighting 
of GWAS loci. Each point represents an LD-defined region of the genome, 
and shown are the regional posterior probabilities of association (PPAs). 
The x axis gives the PPA calculated from the GWAS summary statistics 
alone, whereas the y axis gives the PPA upon reweighting on the basis of 
the annotations in b. The orange points represent genomic regions where 
the PPA is equivalent to the standard GWAS significance threshold only 
upon reweighting.
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Extended Data Figure 8 | Tissue-level biological annotation. a, The 
enrichment factor for a given tissue type is the ratio of variance explained 
by SNPs in that group to the overall fraction of SNPs in that group.  
To benchmark the estimates for EduYears, we compare the enrichment 
factors to those obtained when we use the largest GWAS conducted to date 
on BMI, height, and waist-to-hip ratio adjusted for BMI. The estimates 
were produced with the LDSC Python software, using the LD scores and 
functional annotations introduced in ref. 17 and the HapMap3 SNPs with 
minor allele frequency >0.05. Each of the ten enrichment calculations for 
a particular cell type is performed independently, while each controlling 

for the 52 functional annotation categories in the full baseline model. The 
error bars show the 95% confidence intervals. b, We took measurements of 
gene expression by the Genotype-Tissue Expression (GTEx) Consortium 
and determined whether the genes overlapping EduYears-associated 
loci are significantly overexpressed (relative to genes in random sets of 
loci matched by gene density) in each of 37 tissue types. These types are 
grouped in the panel by organ. The dark bars correspond to tissues where 
there is significant overexpression. The y axis is the significance  
on a −log10 scale.
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Extended Data Figure 9 | Gene-level biological annotation. a, The 
DEPICT-prioritized genes for EduYears measured in the BrainSpan 
Developmental Transcriptome data (red curve) are more strongly 
expressed in the brain prenatally rather than postnatally. The DEPICT-
prioritized genes exhibit similar gene expression levels across different 
brain regions (grey lines). Analyses were based on log2-transformed 
RNA-seq data. Error bars represent 95% confidence intervals. b, For 

each phenotype and disorder, we calculated the overlap between the 
phenotype’s DEPICT-prioritized genes and genes believed to harbour  
de novo mutations causing the disorder. The bars correspond to odds 
ratios. c, DEPICT-prioritized genes in EduYears-associated loci exhibit 
substantial overlap with genes previously reported to harbour sites where 
mutations increase risk of intellectual disability and autism spectrum 
disorder (Supplementary Table 4.6.1).
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Extended Data Figure 10 | The predictive power of a polygenic score 
(PGS) varies in Sweden by birth cohort. Five-year rolling regressions 
of years of education on the PGS (left axis in all four panels), share of 
individuals not affected by the comprehensive school reform (a, right 

axis), and average distance to nearest junior high school (b, right axis), 
nearest high school (c, right axis) and nearest college/university (d, right 
axis). The shaded area displays the 95% confidence intervals for the  
PGS effect.
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