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Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany

Coat complexes are important for cargo selection and vesicle formation. Recent evidence

suggests that they may also be involved in vesicle targeting. Tethering factors, which

form an initial bridge between vesicles and the target membrane, may bind to coat

complexes. In this review, we ask whether these coat/tether interactions share some

common mechanisms, or whether they are special adaptations to the needs of very

specific transport steps. We compare recent findings in two multisubunit tethering

complexes, the Dsl1 complex and the HOPS complex, and put them into context with the

TRAPP I complex as a prominent example for coat/tether interactions. We explore where

coat/tether interactions are found, compare their function and structure, and comment

on a possible evolution from a common ancestor of coats and tethers.
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INTRODUCTION

In eukaryotic cells, vesicles pass material from one membrane compartment to the other. The cells
use elaborate systems of cytoplasmic factors to control the luminal content as well as membrane
constituents of the different vesicles (Rothman and Orci, 1992). Factors on the cytosolic side of
vesicles and target membrane also impose directionality to the transport process. This is achieved
through the recognition of the cargo by cargo receptors at the donor membrane and through the
correct identification of the vesicle at the target membrane. Both cargo and vesicle recognition
are controlled by small GTPases. GTPases of the ARF family control the cargo selection by coat
complexes, while GTPases of the Ypt/Rab family are required for the fusion of vesicles with the
appropriate target membrane (Behnia and Munro, 2005).

The main players during vesicle formation are coat complexes. They consist of soluble proteins
and are recruited from the cytosol by cargo molecules. The coat formation leads to the bending
of the donor membrane and, finally, vesicle release. Members of the SNARE family of membrane
proteins are among these cargo molecules (Kuehn et al., 1998; Rein et al., 2002; Lee et al., 2005).
They are the actual catalysts of membrane fusion (Söllner et al., 1993). Thus, SNARE proteins have
two roles, one in vesicle formation and one in vesicle fusion. The packaging of specific SNAREs
into vesicles is one important means to convey vesicle identity and ensure the fusion at the correct
target membrane: Each transport step in the cell uses a specific set of SNAREs (McNew et al.,
2000). The formation of helical bundles from SNAREs on vesicle and target membrane provides
the energy to fuse the apposed membranes. However, SNAREs are not sufficient to guarantee that
vesicles find their right target membrane (Brandhorst et al., 2006). Instead, additional components
are recruited, often by the combined action of SNAREs and GTPases. These so-called tethering
factors are thought to mediate the first contact between membranes that are bound to fuse
(Cao et al., 1998; Whyte and Munro, 2002). They bind to proteins on opposite membranes, and
at least some of these tethering factors also can bind specific phospholipids directly. Whether
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the tethering factors in fact form bridges between two different
membranes and thus represent real tethers has not been shown
for all putative tethering factors (Brunet and Sacher, 2014).

All SNAREs share a strongly conserved core structure, and
the tetrameric SNARE complexes assemble mostly in a 3:1 ratio
from three SNAREs on the target membrane and one SNARE
on the vesicle membrane. Compared to SNAREs, the tethering
factors are a much more heterogeneous group of proteins. In
particular, the number of subunits making up multisubunit
complexes ranges from 3 to 10 and cannot be identified by
conserved sequence motifs or easily recognized by Hidden
Markov model profiles, as is the case for SNARE proteins
(Kloepper et al., 2007). Some Golgi-associated tethering factors
are homodimers made up of long coiled–coil proteins (Yu and
Hughson, 2010).

Tethering factors (or complexes) interact with SNAREs and/or
GTPases to control the specificity of vesicle fusion. In recent
years, however, a number of papers came out where evidence was
presented that tethering complexes can also interact with coat
complexes (Trahey and Hay, 2010; Angers and Merz, 2011). This
indicates that cells may use the coats not only for vesicle budding,
but they may also keep them as stick-on labels that carry address
information.

Beside the coat/tether interactions discussed below in more
detail, evidence was presented for a number of other coat/tether
interactions. Most of them involve interactions of the COPI
coat and different Golgi tethering factors: In yeast, the Trs120p
subunit of Golgi tether TRAPP II co-purifies with the COPI
subunit α-COP, while experiments with the homologous subunit
of the mammalian TRAPP II complex showed interaction with
γ-COP but not ε-COP (Yamasaki et al., 2009). γ-COP in
yeast (Sec21p) is also the interacting partner of the intra-Golgi
COG tethering complex (Suvorova et al., 2002). Analogously,
β-COP co-purifies with Cog3 from mammalian cells (Zolov
and Lupashin, 2005). A non-COPI/tether interaction was
observed in mammalian cells, where the TGN-localized tether
Rab6IP1 (Rab6 interacting protein 1) interacts with the retromer
component SNX1 (sorting nexin 1; Wassmer et al., 2009). An
overview of currently known coat/tether interactions is given in
Figure 1.

This review explores whether coat/tether interactions were a
fundamental feature of primordial tethering complexes in early
eukaryotic cells, or whether they developed independently. We
will focus on three prominent coat/tether interactions for our
analyses: The interaction of (i) the COPI coat and the Dsl1
complex involved in Golgi to ER retrograde transport, (ii) the AP-
3 coat and the HOPS complex, an interaction that mediates direct
transport of transmembrane proteins of the limiting vacuolar
membrane from the trans-Golgi to the lysosome. We will put
our findings into context with the interaction of (iii) the COPII
coat and the TRAPP I complex, which is required for ER
to Golgi forward transport (recent evidence in fact calls into
question the classification of TRAPP complexes as tethers, as
discussed later). Table 1 lists the constituents of the coats and
tethers mentioned, and some of their properties and interaction
partners.

TIMING AND FACTORS OF VESICLE COAT
REMOVAL

The uncoating of vesicles is initiated during or shortly after
scission of the newly formed vesicles, either by the recruitment
of uncoating factors or by inactivating GTPases that control the
coat formation. Clearly, the presence of a complete coat would
prevent the SNARE-mediated fusion of the vesicles with the
target membrane. It is thus crucial to examine what is known
about the uncoating processes in transport steps, and how this
may interplay in a timely manner with a possible recognition of
the vesicle through its coat.

The removal of coat elements is best studied for clathrin,
where the disassembly of the triskelia is catalyzed by the ATPase
Hsp70. The uncoating enzyme is recruited to the vesicle by a
co-chaperone with binding sites for clathrin and Hsp70, either
neuronal auxilin 1 or the ubiquitously expressed GAK/auxilin
2 (Ungewickell et al., 1995; Greener et al., 2000). In clathrin-
coated endocytic AP-2 vesicles, where adaptor proteins (AP-2)
and cargo can be analyzed by TIRF (total internal reflection
fluorescence) microscopy, the removal of the clathrin cage and
the adaptor layer may happen independently (Rappoport et al.,
2006). A large part of the clathrin disappears from vesicles shortly
after scission, before the vesicles move away from the plasma
membrane (Massol et al., 2006;Mattheyses et al., 2011). Auxilin is
recruited in a burst, shortly before the coat formation is complete
(Massol et al., 2006). This observation could point toward a
simple stochastically driven loss of the coat. An alternative
interpretation, however, is that the observed heterogeneity of the
kinetics is due to different populations of clathrin-coated vesicles.
Differences in the persistence of the coat may reflect differences
in cargo and in the sites to which the vesicles are headed.

AP-1 and AP-3 dependent intracellular transport is more
difficult to analyze. Three-dimensional time-lapse movies had
to be recorded for AP-1 and AP-3 vesicles, and their lifetime
is comparable to that of AP-2 vesicles (Kural et al., 2012). The
apparently heterogeneous disassembly behavior of the clathrin
cage makes it rather unlikely that clathrin is typically involved
in vesicle recognition through tethers at the target membrane.
Currently, no evidence exists that the clathrin cage is recognized
by tethers or used for recognition at the target membrane,
even though this is not a conclusive argument to rule out
such a function. The adaptor complexes on the other hand are
candidates for coat/tether interactions; and indeed one example
of such an interaction has been reported, as discussed later.

Initial evidence for an early removal of the COP coats

came from the analysis of factors that stimulate the activity
of small GTPases required for coat and vesicle formation. The
stimulation of their low intrinsic GTPase activity inactivates them
and induces their release from the membrane (Pucadyil and
Schmid, 2009). In the case of the COPII coat, this activation is
achieved by the fully assembled coat itself, where components
of the inner and the outer layer of the coat act synergistically
on the small GTPase Sar1p (Antonny et al., 1997). In contrast,
the GTPase Arf1p that is required for COPI coat assembly is
activated by proteins that can sense the curvature of the vesicle
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FIGURE 1 | Coat/tether interactions at different target organelles. Schematic overview of currently known coat/tether interactions on their respective

organelles. Arrows indicate the transport pathway with the involved coats in yellow circles. Direct interactions of coats with tethers on the target membranes

(crescents) are marked in red, or light red if they require additional factors (orange boxes). Where known, the precise subunits involved in the coat/tether interaction are

listed in italic writing in the order coat subunit/tether subunit. A few selected tethers with no known coat interactions on the respective membrane are depicted in gray

crescents. ER, endoplasmic reticulum; TGN, trans Golgi network; Lys/Vac, lysosome/vacuole; LE/MVB, late endosome/multivesicular body; EE, early endosome; RE,

recycling endosome; PM, plasma membrane.

membrane (Antonny et al., 2001). Both findings, however, were
interpreted in a way that COPI and COPII vesicles lose their
coat quite early after fission. However, more recent findings
suggest that these results may not fully reflect the physiologically
occurring processes. Mutations in subunits of the Dsl1 complex
or the HOPS complex as well as mutations in the corresponding
SNAREs led to the accumulation of large amounts of coated
vesicles (Angers and Merz, 2009; Zink et al., 2009), suggesting
that the tethering complexes are involved in uncoating. In
addition, CHO cells depleted of a COG subunit accumulate
COPI-coated vesicles (Zolov and Lupashin, 2005). These results
indicate that vesicles still carry their coat when they arrive at the
target membrane, and that coat/tether interactions are possible in
vivo. The recently determined structure of the COPI coat revealed
that the building blocks of the coat, the triads, are connected by
those domains that are the binding sites for Dsl1p of the Dsl1
tethering complex. The µ-domain of δ-COP at some linkages,
or ε-COP and the C-terminus of α-COP at others (Andag
and Schmitt, 2003; Zink et al., 2009; Hsia and Hoelz, 2010;
Dodonova et al., 2015; Suckling et al., 2015). This indicates that
the Dsl1 complex may be involved in the removal of triads from
the vesicle, possibly by competitively binding COPI complexes

at these connection sites thus disassembling the coat units.
Further proof for this is required since uncoating could not be
reconstituted in vitro so far. Interestingly though, these findings
suggest that the timed coat removal of COPI vesicles differs from
that of clathrin coats, at least in yeast: The coat of COPI vesicles
appears to be released only after vesicle recognition on the target
membrane.

Comparable COPII clusters were only observed in COPII
budding mutants, and not in mutants with fusion defects
(Shindiapina and Barlowe, 2010). More precisely, the mutation
of the COPI tether Uso1p did not lead to accumulation of
coated COPII vesicles. However, independent evidence indicates
that COPII vesicles may remain partially coated: COPII vesicles
that are formed by permeabilized NRK cells carry more than
55% of the inner COPII shell and 15% of the outer COPII
shell (Cai et al., 2007; Bentley et al., 2010). Vesicles produced
in vitro by permeabilized yeast cells also retain most of their
coat, as determined for subunits from the inner and outer
shell (Lord et al., 2011). The results support the hypothesis
that coats or partially present coats on vesicles may be used
for identification at the target membrane (Trahey and Hay,
2010).
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TABLE 1 | Composition and properties of coats and tethers involved in transport between ER and Golgi and from the late Golgi to the lysosome in yeast.

COPI / Dsl1 COPII / TRAPP I AP-3 / HOPS

Acronym stands

for:

COPI (coat protein complex I)

Dsl1 (dependent on Sly1-20)

COPII (coat protein complex II)

TRAPP (transport protein particle)

AP-3 (adaptor protein complex 3)

HOPS (homotypic fusion and vacuole

protein sorting

Transport step Golgi-ER ER-Golgi Golgi-lysosome

Coat proteins α-, β-, β′-, γ-, δ-, ε-, ζ -COP Sec23p, Sec24p, Sec13p, Sec31p Apl5p, Apl6p, Apm3p, Aps3p

Subunits of the

tethering complex

Dsl1p, Dsl3(Sec39)p, Tip20p Bet3p, Bet5p, Trs20p, Trs23p, Trs31p,

Trs33p

Vps39p, Vps41p,

Vps11p, Vps16p, Vps18p, Vps33p

SNAREs R-SNARE Sec22p

Qa-SNARE Ufe1p

Qb-SNARE Sec20p

Qc-SNARE Use1p

R-SNARE Sec22p

Qa-SNARE Sed5p

Qb-SNARE Bos1p

Qc-SNARE Bet1p

R-SNARE Ykt6p

Qa-SNARE Vam3p

Qb-SNARE Vti1p

Qc-SNARE Vam7p

Type of MTC Member of the CATCHR family (complexes

associated with tethering containing helical

rods) including the COG, GARP and exocyst

complexes

TRAPP I shares five subunits with the TRAPP II

and III complexes which are required for

intra-Golgi transport and autophagosome

biosynthesis

The HOPS complex is a Class C Vps

complex. It shares four subunits

(Vps11-33) with the endosomal CORVET

complex: Unique CORVAT subunits are

Vps3p and Vps8p

Main structural

elements

α-helical bundles or “CATCHR domains”

(Dsl1p, Tip20p),

18 nm long α-solenoid Dsl3(Sec39)p

Small globular subunits, three of them are longin

domains

Five subunits consist of β-propellers

followed by an α-solenoid,

Vps33p is an SM protein

Conformational

changes

Can switch between an Y-shaped and an

closed conformation

No change in size and shape Size can vary between 28 to 40 nm

Size 20 nm long rod in its closed conformation

250 kDa

18 × 6.5 × 5 nm

170 kDa

650 kDa

Biochemical

activities

Bet3p, Bet5p, Trs23p, plus Trs31p act as GEF

for Ypt1p/Rab1

Yps41p is an effector of the Ypt/Rab

GTPase Ypt7p

Kinases involved Hrr25p Yck3p

Recruitment to ER COPII vesicle Lysosome or multivesicular body

TETHERING COMPLEXES COAT THE
TARGET MEMBRANE

The next question concerns the localization of the tethering
complexes. If the tethering indeed involves their interaction with
the vesicle coat, then the tethering complexes should either be
localized at the target membrane, or they must be recruited to it
during the tethering process.

The Dsl1 complex and its mammalian counterpart, the
syntaxin 18 or NRZ complex (Aoki et al., 2009; Civril et al.,
2010), are in a very tight complex with the ER-localized SNAREs,
and visualization of their constituents gave a pattern consistent
with an ER localization (Figure 2A; Reilly et al., 2001; Hirose
et al., 2004; Arasaki et al., 2006; Aoki et al., 2009; Meiringer
et al., 2011). For additional details on the more complex
functional aspects of themammalian ZW10 complex, see Schmitt
(2010).

Similarly, the HOPS complex localizes to the target
membrane of AP-3 vesicles, the lysosome, but also to late
endosomes or multivesicular bodies (MVB) (Nakamura
et al., 1997; Cabrera et al., 2010). This reflects the fact
that the HOPS is involved in different transport steps: (i)
homotypic lysosome/lysosome fusion, (ii) late endosome
(MVB)/lysosome fusion and (iii) the fusion of AP-3 coated
vesicles with the lysosome (Bowers and Stevens, 2005). This
begs the question how the specific localization of tethers is
determined.

RECRUITMENT FACTORS OF TETHERS
(1): SNAREs

None of the tethers discussed here has subunits that carry a
transmembrane domain. In fact, only a few homodimeric coiled-
coil Golgi tethers like giantin are integral membrane proteins
(Gillingham andMunro, 2003). Therefore, the sites that the Dsl1,
HOPS, and TRAPP complexes are recruited to are determined
by additional factors on the surface of the membranes. Here,
a very interesting interaction comes into play: Both the Dsl1
and the HOPS complex were shown to bind single SNAREs via
N-terminal domains that lie in front of the SNARE domains.

In case of theDsl1 complex, these are the N-terminal domains
of the Qb-SNARE Sec20p and the Qc-SNARE Use1p (Ren et al.,
2009; Diefenbacher et al., 2011; Meiringer et al., 2011). Both
domains do not show any sequence similarities to other N-
terminal domains of SNARE proteins and were not predicted
to contain either a lipid binding domain, a longin or Habc α-
helical domain. Surprisingly, the formation of only one of these
two connections is still sufficient for cell viability (Kraynack
et al., 2005; Tripathi et al., 2009). Ren et al. (2009) also observed
binding to the fully assembled SNARE complex, while Meiringer
et al. (2011) observed very inefficient binding of the full set of
SNAREs to the Dsl1 complex in vitro. Instead, they found that
the lipid-anchored R-SNARE Ykt6p may act as an acceptor for
Sec22p, the R-SNARE that associates with the Q-SNAREs at
the ER.
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FIGURE 2 | Models for the interaction of the Dsl1 and HOPS complexes with COPI or AP-3 coats. (A) The structure of the Dsl tethering according to the

structures determined by the Hughson lab (Ren et al., 2009; Tripathi et al., 2009). Dsl1p binds COPI coat via an unstructured lasso domain (Andag and Schmitt, 2003;

Ren et al., 2009; Schmitt, 2010; Suckling et al., 2015) at the sites where the coat triads connect (Dodonova et al., 2015). They may represent the sites where coat

depolymerization begins. (B,C) Two different tethering modes of the HOPS complex at the surface of the lysosome (Cabrera et al., 2010). The arrangement of

subunits as shown here was determined by negative stain EM of different HOPS constructs (Kuhlee et al., 2015). (C) Depicts the HOPS complex as a tether bridging

two membranes very much like in homotypic lysosome-lysosome fusion. At the surface of the multivesicular body, however, the Vps41 subunit can bind to the curved

membrane via its curvature-sensing ALPS domain. In this conformation, the binding site for the δ-subunit of the AP-3 complex is masked (C). At the surface of the flat

lysosome, in contrast, the ALPS domain cannot bind efficiently to the membrane, (i) due to lower curvature of the membrane and, (ii), since the ALPS motif is

phosphorylated by the Yck3 kinase (B). For the interaction with the membrane, HOPS has to rely solely on the interaction of Vps41p with GTP-bound Ypt7p and on

the ability of other HOPS subunits to bind to acidic lipids (not illustrated here; Behrmann et al., 2014; Orr et al., 2015). Importantly, in this configuration the δ-subunit of

the AP-3 complex has access to its binding site at the Vps41p subunit, a double leucine motif marked as LL in this Figure. By using this specific binding mode,

Golgi-derived AP-3 coated vesicles preferentially bind to HOPS complexes at the surface of the lysosome thereby avoiding fusion with endosomes.

The Sly1 proteins may act as additional potential recruiting
factors for the Dsl1/NRZ complexes. They are members of the
Sec1/Munc18-like protein family (SM), which cooperate with
SNAREs during vesicle fusion. The Sly1 proteins act in transport
between ER and Golgi, and there is evidence that Sly1p is
required for retrograde transport (Reilly et al., 2001; VanRheenen
et al., 2001; Li et al., 2005). It associates with the tethering
complex in yeast and mammalian cells to varying degrees. It may
do so indirectly through its interaction with the SNAREs (Hirose
et al., 2004; Kraynack et al., 2005; Li et al., 2005).

TheHOPS complex also binds to individual SNARE proteins,
and contains a stably associated SNARE interacting SM protein
(Seals et al., 2000). It binds the Qa-SNARE Vam3p via its N-
terminal Habc-domain, and the Qc-SNARE Vam7p via the PX
lipid-binding domain (Krämer and Ungermann, 2011; Lobingier
and Merz, 2012; Lürick et al., 2015). In addition, the HOPS
complex can interact with partially or fully assembled bundles
of the SNARE domains (Baker et al., 2015; Lürick et al., 2015).
This interaction is mediated by the stable HOPS subunit Vps33p,
a member of the Sec1/Munc18 protein (SM) family. Vps33p,
unlike other SM proteins like Vps45 and Munc18, is not able to
recognize the N-terminal peptide or the Habc domain of Vam3p
on its own, and requires Vps16p in addition to fulfill this task
(Lürick et al., 2015). The same subunit plus Vps18p is involved in
binding of the PX-domain of Vam7p (Krämer and Ungermann,
2011).

In summary, both the Dsl1 and the HOPS complexes are
able to bind to individual SNAREs as well as assembled SNARE
complexes (Ren et al., 2009; Krämer and Ungermann, 2011;
Lobingier and Merz, 2012; Baker et al., 2015). This suggests that
their function lasts across the SNARE zippering process, possibly
by acting as SNARE complex assembly factors (Baker et al.,
2015).

As mentioned above, SNAREs are promiscuous, so
additional recruiting factors are needed. In fact, the tethering
complex/SNARE interactions may not be essential for the
actual tethering step (Hickey and Wickner, 2010), since the
HOPS complex can rely on GTPase or direct binding to
lipids for the docking of membranes, as discussed in the next
paragraph.

RECRUITMENT FACTORS OF TETHERS
(2): SMALL GTPases AND LIPIDS

Another class of proteins that are both key to membrane
identity and act as recruiting factors for tethering complexes
are the small GTPases of the Ypt/Rab family. For the Dsl1

complex-dependent retrograde transport, the Spang lab has
used a YPT1 (Rab1) knock-out strain to show that this
GTPase is not only required for forward transport, but is also
involved in Golgi-ER retrograde transport in yeast (Kamena
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et al., 2008). Mammalian cells express a much larger set of
Ypt/Rab GTPases, and the retrograde transport is regulated by
a specialized small GTPase Rab18. Evidence for an involvement
of Rab/Ypt GTPase in the tethering process of COPI vesicles
in mammalian cells was presented recently by Gillingham et al.
(2014) who identified the Dsl1/NRZ complex as an effector of
Rab18.

For the HOPS complex-dependent tethering to vacuolar
membranes, the small Ypt/Rab GTPase Ypt7p was shown to be
more important than the interaction of HOPS with SNAREs
(Hickey et al., 2009; Hickey and Wickner, 2010). In fact, the
HOPS complex is an effector of Ypt7p, since it preferentially
binds to the GTP-bound form of this small GTPase (Price et al.,
2000) In addition, the HOPS complex can bind to the membrane
directly via the head groups of phosphoinositides and other acidic
lipids (Stroupe et al., 2006; Behrmann et al., 2014; Orr et al.,
2015).

The HOPS complex seems to be ideally suited as a tether
since it carries two different Ypt7-binding subunits, Vps39p
and Vps41p (also known as Vam6p and Vam2p; Price et al.,
2000; Brett et al., 2008). Both are positioned at the opposing
ends of its elongated structure (Bröcker et al., 2012). Thus, the
HOPS complex can form a bridge between late endosomes or
multivesicular bodies (MVBs) on one side and the lysosome
on the other side by interacting with Ypt7 GTPases on the
opposing membranes (Ho and Stroupe, 2015). Besides this two-
armed tethering mode, the lysosome-localized HOPS complex
can also act as a receptor for AP-3 vesicles via Apl5p, the δ-
adaptin-like subunit of the AP-3 coat (Rehling et al., 1999; Angers
and Merz, 2009; Figure 2B). This tethering mode requires the
presence of Ypt7p only on the target membrane. Transport
via the AP-3-coated vesicles is involved in a special transport
route between Golgi and lysosome, by which yeast cells avoid
fusion of vesicles carrying lysosome-bound membrane proteins
with multivesicular bodies. In yeast, this is achieved by direct
vesicular transport from the Golgi to the lysosome via AP-3
vesicles. A typical cargo for this step is the enzyme alkaline
phosphatase (ALP, Pho8p). Some other cargo proteins are
themselves part of the targeting machinery, like the SNAREs
Vam3p and Nyv1p and the lipid-anchored Type I casein kinase
Yck3p (Cowles et al., 1997; Ostrowicz et al., 2008). The AP-3
transport route prevents these proteins from being internalized
by the MVBs or from becoming active at the surface of
endosomes.

How can the HOPS complex switch between the different
tethering modes? One obvious possibility is through
posttranslational modifications. The phosphorylation of the
HOPS complex changes the dependence of HOPS on Ypt7-GTP
for its tethering function (Brett et al., 2008; Cabrera et al.,
2009; Ho and Stroupe, 2015). Recent in vitro experiments
with liposomes clearly showed that the phosphorylated HOPS
requires Ypt7-GTP for tethering, while non-phosphorylated
HOPS complex is active if Ypt7-GDP is present on both
membranes (Zick and Wickner, 2012; Ho and Stroupe, 2015).
This antagonistic relationship between phosphorylation and the
GTP/GDP status suggests that the phosphorylation adjusts the

balance between the different membrane recruitment modes for
HOPS.

Significantly, the enzyme that phosphorylates the HOPS
complex was mentioned above already as cargo of the AP-3
pathway. This membrane-anchored kinase, Yck3p, depends on
this transport route for its proper localization to the lysosome
(Sun et al., 2004; LaGrassa and Ungermann, 2005). At the same
time, Yck3p was shown to be as equally required for proper
functioning of the AP-3 pathway as the subunits of the AP-3 coat
(Anand et al., 2009; Cabrera et al., 2009). A clue as to how Yck3p
can mechanistically bring about the switch in tethering modes
of the HOPS complex came when Christian Ungermann’s lab
identified the phosphorylation sites and the AP-3 binding site
within HOPS. Both are located in the N-terminal part of the
Ypt7p-interacting subunit Vps41p (Cabrera et al., 2009, 2010).
The binding site for the AP-3 subunit Apl5p lies in front of
the putative β-propeller domain (Cabrera et al., 2010), while the
phosphosites lie within an α-helical region that is adjacent to the
opposite end the putative β-propeller (Cabrera et al., 2009). This
means that the phosphosites and the Apl5p-binding site come
close to each other in the Vps41 protein and thus may affect each
other directly (The same region is also involved in the binding of
Ypt7p).

The α-helical region was predicted to constitute a so-called
ArfGAP1 lipid packing sensor or amphipathic lipid packing
sensor (ALPS) motif (Drin et al., 2007). Phosphomimetic
mutations in this domain prevent membrane binding in vivo
and in vitro (Cabrera et al., 2009, 2010). The binding to small
liposomes is also prevented when Vps41p is pre-incubated
with Apl5p (Cabrera et al., 2010). Thus, the N-terminus of
Vps41p can adopt two conformations, one in which Vps41p
binds to the membrane directly (without the help of Ypt7p)
and does not allow binding of the AP-3 coat. In the second
conformation, phosphorylation of the ALPS motif prevents
binding to the membrane and exposes the AP-3 binding site.
Two factors favor the transition on the first conformation to
the second: the low curvature of the lysosomal membrane and
the presence of the Yck3p on the surface of the lysosome.
According to the model proposed by Cabrera et al. (2010),
transition between these two states occurs after the recruitment of
endosomes/MVBs to the lysosome. Since the endosomes/MVBs
have a diameter of 100 nm (Luhtala and Odorizzi, 2004;
Balderhaar and Ungermann, 2013), the membrane curvature is
low and Yps41p can bind directly to it, while the AP-3 binding
site is masked (Figure 2C). After fusion with the lysosome,
Vps41p loses its contact with the flat lysosomal membrane,
the ALPS motif can be phosphorylated, thereby lowering the
affinity of the ALPS domain for membranes even more. As a
consequence, the binding site for the AP-3 complex becomes
accessible. This ensures that the coat/tether interaction occurs
only at the surface of the lysosome. Thus, the yeast cells use a
sophisticated mechanism to prevent AP-3 vesicles from fusing
with MVBs. They turn a two-armed tether, which links the
membranes of MVB and lysosome, to a monovalent tether
that uses a coat complex as additional linker to the second
membrane.
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CONSERVATION OF COAT/TETHER
INTERACTIONS BETWEEN YEAST AND
MAMMALIAN CELLS

The interaction between COPI and Dsl1p was first described in
2001 in Saccharomyces cerevisiae (Andag et al., 2001; Reilly et al.,
2001). An unstructured domain within the largest subunit of the
Dsl1 complex, Dsl1p itself, is required for the binding to the
COPI coat (Andag and Schmitt, 2003; Ren et al., 2009). This so-
called lasso domain is exposed at the tip of the whole complex
approximately 20 nm above the membrane surface (Ren et al.,
2009) and binds to δ-COP and α-COP via tryptophan-containing
binding motifs (Andag and Schmitt, 2003). The structure of
a δ-COP fragment in complex with such a W×W motif was
recently determined by Suckling et al. (2015). Another subunit
of the Dsl1 complex, Tip20p, may also contribute to COPI
binding (Diefenbacher et al., 2011). Curiously, all homologs of
Dsl1p from aquatic fungi, from plants and metazoans are lacking
the lasso domain (Hirose et al., 2004; Schmitt, 2010). Instead,
in mammalian cells an additional protein called UVRAG is
required for the interaction of the COPI coat with the NRZ
complex (He et al., 2013). UVRAG was hitherto known for
its role in endosomal transport and autophagy as part of the
Vps34 phosphatidylinositol 3-kinase complex II. According to
the new data, it is able to bind phosphoinositides, and it can
bind to RINT-1, the mammalian homolog of Tip20p, to perform
an additional role in Golgi-ER transport (He et al., 2013).
The UVRAG homolog in yeast, Vps38p, is involved vacuolar
protein sorting, and it has not been found to act at the ER
or to be involved in autophagy (Kihara et al., 2001). Thus, the
mechanism of COPI/ER tether interaction differs between yeast
and mammalian cells, but it is found, in variation, across species
boundaries.

The binding of AP-3 vesicles to the Vps41p HOPS subunit
was discovered by Rehling et al. (1999). Angers and Merz later
showed that the whole HOPS tethering complex, and not just
the Vps41p subunit alone, is involved in the interaction (Angers
and Merz, 2009). In metazoans, the phenotypes of AP-3 and
HOPS mutants are quite similar, indicating that the proteins act
in a similar pathway (Zlatic et al., 2011a). There are, however,
several discrepancies: (i) Unlike those from mammalian cells,
AP-3 vesicles in yeast do not carry an outer cage layer consisting
of clathrin. (ii) The units from mammalian HOPS are found to
associate with AP-3 adaptor proteins as well as clathrin subunits
(Zlatic et al., 2011b). (iii) AP-3 vesicles in yeast and mammalian
cells are destined for the lysosome. They form, however, at
different organelles, the late Golgi in yeast and a tubular early
endosome in mammalian cells (Dell’Angelica, 2009). (iv) In
mammalian cells, the HOPS complex is recruited to sites of
AP-3 vesicle formation, while in yeast it is recruited to the
target membrane of the AP-3 vesicles, the lysosome as well as
the late endosomes. (v) Most relevant for the context of this
review is that Vps41 from metazoans lacks the motif for AP-
3 binding and the ALPS domain for lipid binding (Cabrera
et al., 2010). However, a direct TGN to late endosome transport
route for lysosomal proteins was recently described that does not

require clathrin or the AP-1 adaptor complex. The vesicles that
mediate this transport carry hVps41 and the SNARE VAMP7
(Pols et al., 2013). This shows a considerable diversification
in HOPS complex recruitment, but nevertheless its tethering
function appears to have remained conserved.

TETHERS AND COATS SHARE
STRUCTURAL MOTIFS

The last paragraphs have focused on functional interactions
between coats and tethers, and have found an, if not ubiquitous,
but notable range of interactions. Intriguingly, not only
the interactions found in several transport routes speak for
an interconnection between coats and tethers. Additionally,
recently solved protein structures have revealed a surprising
correspondence in structural motifs between coats and tethers.
The protocoatomer architecture, an N-terminal 7-bladed β-
propeller followed by extended α-solenoids or α-zigzag linker, is
found in many subunits of coat complexes (i.e., clathrin, Sec13p,
Sec31p, α-COP and β′-COP) as well as in nuclear porins (ter
Haar et al., 1998; Fath et al., 2007; Lee and Goldberg, 2010).
This β-α-fold architecture seems to be common to proteins that
can bend membranes (Devos et al., 2006). Remarkably, the β-α-
fold motif was also predicted for subunits of some multisubunit
tethering complexes, for most of the HOPS subunits (including
Vps3p and Vps8p from the related CORVET complex) and the
NAG subunit of the mammalian Dsl1/NRZ complex (Nickerson
et al., 2009; Civril et al., 2010; Figure 3). Experimental proof for
its occurrence in tethers was obtained for the Vps18 subunit of
the HOPS complex (Behrmann et al., 2014).

The β-propellers of clathrin heavy chains and of COPI
subunits are oriented toward the membrane (Kirchhausen
and Harrison, 1984; Dodonova et al., 2015). Similarly, the β-
propellers of the HOPS subunits Vps41p and Vps18p were
shown to bind to lipids (Cabrera et al., 2010; Behrmann et al.,
2014). In the Dsl1 complex of yeast the Dsl3/Sec39 protein, a
long a-solenoid, is also oriented with its N-terminus towards
the membrane (Ren et al., 2009). This would also position
the β-propeller present in the mammalian Dsl3/Sec39 homolog
NAG (neuroblastoma amplified gene) close to the membrane
(Civril et al., 2010). Since NAG shares all structural elements
with another protein, ROD, that acts together with ZW10 and
a third component in the recruitment of microtubules to the
kinetochore, the β-α architecture must be an ancient property
of the Dsl3/NAG proteins (Civril et al., 2010; Schmitt, 2010).
Fungi very likely lost the β-propeller encoding region from the
corresponding gene (Schmitt, 2010).

Recently, an additional similarity between COPI and
HOPS/CORVET subunits was noted. At the C-termini of
Vps11p, Vps18p, Vps8p,Vps39p, mammalian Vps41p and
α-COP from many different species, Zn2+-binding RING
domains were detected (Nickerson et al., 2009; Balderhaar and
Ungermann, 2013; Kaur and Subramanian, 2015). For Vps11p,
Vps18p, Vps8p, and α-COP the importance of this domain has
been proven (Eugster et al., 2000; Nickerson et al., 2009; Zink
et al., 2009).
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FIGURE 3 | Predicted and observed arrangement of structural protocoatomer elements in subunits of coat and tethering complexes. The protocoatomer

was identified as a potentially membrane-curving protein module in proteins of the nuclear pore complex and coat complexes (Devos et al., 2006). Blue color indicates

β-propellers or WD40 repeats, while α-solenoids are indicated by red color. RING like domains (yellow) were found near the C-termini of α-COP and several subunits of

the HOPS and CORVET complexes (Vps39p as shown above and in Vps8p, Vps11p and Vps18p; Nickerson et al., 2009; Kaur and Subramanian, 2015). According

to the protocoatomer theory, the β-α arrangement indicates a common evolutionary origin of coat complexes. Its occurrence in tethering complexes may indicate that

they also share a common origin with subunits of the coat and nuclear pore complexes. The domain organization of coat complexes was deduced from the structural

data (Fath et al., 2007; Lee and Goldberg, 2010). For NAG, the boundaries of the domains were depicted as determined by Civril et al. (2010). The Dsl3/Sec39 protein

is positioned below its mammalian homolog NAG (neuroblastoma amplified gene) in a region where both share some sequence similarities. The diagrams illustrating

the domain organization and specific binding sites of the HOPS subunits were depicted as proposed by Nickerson et al. (2009). ALPS, amphiphilic lipid-packing

sensor; RING, Really Interesting New Gene; WD40, 40 residue long repeat that ends with a tryptophan—aspartic acid motif; NAG, neuroblastoma amplified gene.

These common features between coat proteins and tethers
make the hypothesis conceivable that the coats and tethers
were more alike in an ancient eukaryote, where both formed a
proteinaceous layer at the surface of intracellular membranes.
From that, they diversified and developed either to the cage-
forming proteins around the vesicle, or a layer of vesicle-
capturing proteins at the target membrane.

TRAPP I/COPII INTERACTIONS

One of the best characterized coat/tether interactions is that
between the TRAPP I complex and COPII coat (Yu et al.,
2006; Cai et al., 2007). The ability to bind vesicle coats and
its apparent steady-state Golgi localization suggested that the
TRAPP I complex acts as a COPII vesicle tether (Kim et al.,
2006). Recently, evidence has accumulated that the complex acts
upstream of tethering.

In general, the TRAPP 1 complex shows a quite distinct
behavior and structural features compared to the Dsl1 and
HOPS complexes: (i) TRAPP I is recruited to free COPII
vesicles (Cai et al., 2007). It appears Golgi-localized at steady
state since COPII vesicles fuse with their target membrane
very quickly (Wang J. et al., 2015). (ii) There is no direct
evidence for an interaction between the TRAPP I complex
and SNAREs, even though many genetic interactions of a bet3
mutation with SNARE-encoding genes have been described
(Sacher et al., 2000). (iii) The TRAPP I complex is an activator
(GEF) of the ER-Golgi-specific Rab/Ypt-GTPase Ypt1p (Jones

et al., 2000; Wang et al., 2000), rather than a GTPase effector
like for instance Vps41p of the HOPS complex. Accordingly, the
TRAPP I complex does not need Ypt1p for its recruitment to
vesicles.

The following observations indicate that the TRAPP I
complex acts before the actual tethering step. The TRAPP I
subunit Bet3p binds to the same site at the COPII subunit Sec23p
that is also the binding site for Sar1p, the GTPase that triggers
coat formation (Cai et al., 2007; Lord et al., 2011). Notably, Bet3p
and Sar1p are later displaced by the casein kinase Hrr25p (Lord
et al., 2011). This kinase is activated by Ypt1p on the vesicles
(Wang J. et al., 2015), and phosphorylation of Sec23p and Sec24p
by Hrr25p is required though not sufficient for uncoating (Lord
et al., 2011). The phosphorylation state of Sec23p determines
whether the coat subunit is ready for vesicle fusion or vesicle
formation (Murakami et al., 1999; Dudognon et al., 2004; Lord
et al., 2011; Bhandari et al., 2013). Taken together, these findings
suggests that the TRAPP I binding represents an intermediate
step of vesicle maturation that occurs well before the actual
tethering step, and that the complex is released before COPII
vesicles reach the Golgi membrane. The function of the TRAPP 1
complex rather appears to lie in determining the directionality of
transport. A more likely tether for COPII vesicles is the coiled-
coil homodimer tether Uso1p/p115 (Waters et al., 1992; Cao
et al., 1998; Allan et al., 2000). This tether is also activated by
Ypt1p/Rab1 (Allan et al., 2000), and binds to the SNAREs rbet1
and sec22b (Wang T. et al., 2015). Since Bet1p and Sec22p are
present on opposing membranes in yeast (Parlati et al., 2000),
Uso1p/p115 may bridge the gap between the membranes by
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interacting with single SNAREs at the vesicle and the target
membrane (Grabski et al., 2012).

CONCLUSIONS

To summarize, Dsl1/NRZ and HOPS complexes are
representatives of tethering complexes that interact with
coats. Both contain protocoatomer-like subunits. This indicates
that these two tethers could be derived from primordial coat
complexes. In ancestral eukaryotic cells, both donor and acceptor
membranes may have been covered by different coats and fusion
may have been initiated by the direct contact between them.
During evolution, one of these coats acquired and improved
its capability to induce membrane curvature, while the other
with preference for flat membranes developed into a tethering
factor. In line with this theory, the HOPS complex can bind
to flat and curved membranes in a regulated manner, but it
cannot induce curvature (Cabrera et al., 2010). The Dsl1/NRZ
complex, in contrast, is a mixture of protocoatomer and
CATCHR subunits. Notably, those two tethering complexes
that share some coat characteristics are able to bind coats.
Since these interactions were not conserved in metazoans or
require additional binding partners, it is not clear whether the
coat/tether interactions described here represent remainders
of an ancient fusion mechanism, or whether fungi simply
reinvented this tethering mode. The fact that they are still

in operation and can be used for specific targeting purposes
indicates that coat/coat contacts could indeed be considered as
a part of an ancient fusion mechanism. This notion is in line
with the organellar paralogy model (Dacks and Field, 2007).
Coat/tether interaction can be useful in preventing premature
mixing of different transport routes (Cabrera et al., 2010) or to
keep membrane domains, where COPI vesicles arrive, separated
from those where COPII vesicles form (Zink et al., 2009). Of
course, more research has to be done to find whether other
coat/tether interactions have specialized functions. At least one
example exists where the p115 tether is involved in the regulation
of COPI coat formation at the Golgi (Guo and Linstedt, 2013).
The structure determination of other tethering factors will be
extremely helpful in determining whether they too share motifs
with coats.
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