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Abstract
Plasma fibronectin is a circulating protein that facilitates
phagocytosis by connecting bacteria to immune cells. A fibro-
nectin isoform, which includes a sequence of 90 AA called
extra-domain B (EDB), is synthesized de novo at the messen-
ger RNA (mRNA) level in immune cells, but the reason for its
expression remains elusive.We detected an 80-fold increase in
EDB-containing fibronectin in the cerebrospinal fluid of pa-
tients with bacterial meningitis that was most pronounced in
staphylococcal infections. A role for this isoform in phagocy-
tosis was further suggested by enhanced EDB fibronectin re-
lease after internalization of Staphylococcus aureus in vitro.
Using transgenic mouse models, we established that immune
cell production of fibronectin contributes to phagocytosis,
more so than circulating plasma fibronectin, and that accentu-
ated release of EDB-containing fibronectin by immune cells
improved phagocytosis. In line with this, administration of
EDB fibronectin enhanced in vitro phagocytosis to a larger
extent than plasma fibronectin. This enhancement was medi-

ated by αvβ3 integrin as shown using inhibitors or cells from
β3 integrin knockout mice. Thus, we identified both a novel
function for EDB fibronectin in augmenting phagocytosis
over circulating plasma fibronectin, as well as the mediating
receptor. Our data also establish for the first time, a direct role
for β3 integrin in bacterial phagocytosis in mammals.

Key messages
• Fibronectin containing an extra domain called EDB is re-
leased in bacterial meningitis.

• EDB-containing fibronectin enhances phagocytosis more
than plasma fibronectin.

• The enhancement is mediated by activation ofαvβ3 integrin
in the presence of EDB.
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Introduction

Fibronectin is an extracellular matrix protein that is produced
by almost all mammalian cells [1]. It affects proliferation,
migration, differentiation, and survival [2, 3]. These different
functions are made possible by both the presence of several
isoforms and the binding to a variety of integrins. Two of the
isoforms of fibronectin are defined by the presence of extra
domains called extra domain A (EDA) and extra domain B
(EDB). Even though most of the studies were performed with
the circulating isoform of fibronectin, which lacks both EDA
and EDB and is called plasma fibronectin (pFN), studies using
isoform-specific knockouts lacking either EDA, EDB, or both
domains found that these two isoforms contribute to
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vasculogenesis in embryos and angiogenesis in cancer [4–7].
In addition, EDA-containing fibronectin plays a role in a va-
riety of pathologic entities such as liver fibrosis and diabetes
mellitus, but no further functions of EDB-containing fibronec-
tin have been characterized [8, 9]. Furthermore, while a
specific binding site to integrins was characterized for EDA,
no receptor for EDB has been identified in vivo yet [1, 10].

Studies on the circulating isoform of fibronectin (plasma
fibronectin) have shown that fibronectin facilitates adherence
of bacteria to other cells and thus acts as an adhesion molecule
on mammalian cells [11]. Strains of Staphylococcus aureus
for example express several molecules such as fibronectin-
binding proteins (Fnbp) that enable bacteria to attach to and
invade tissues [12, 13]. The most widely known function of
fibronectin in phagocytosis is as a bridge between the bacteria
and integrin α5β1, the classical fibronectin receptor [14, 15].
Even though fibronectin was originally shown to act as an
opsonin by marking the bacteria and enhancing phagocytosis
[16, 17], experimental data also show that fibronectin en-
hances phagocytosis irrespective of whether it binds to bacte-
ria or not [17]. Neither EDA- nor EDB-containing fibronectin
was studied in the context of phagocytosis.

Phagocytosis is evolutionally critical and beneficial. There-
fore, much overlap in the stimulators and enhancers of phago-
cytosis exists, and several integrins are involved in phagocy-
tosis. The only β2 subunit-containing integrin involved in
phagocytosis isαMβ2 integrin (also called complement recep-
tor 3 or CD11b/CD18) which affects complement-activated
phagocy t o s i s o f s e v e r a l p a t hog en s i n c l ud i ng
lipopolysaccharide-expressing bacteria [18–20]. Therefore,
upregulation of β2 enhances phagocytosis [18]. Another
mechanism of phagocytosis involves the Fcγ receptor, which
mediates phagocytosis of IgG-opsonized (i.e., IgG - coated)
bacteria [21]. No evidence exists however that fibronectin
directly binds to either β2 integrin or the Fcγ receptor. A
report suggested that β3 integrin is able to induce phagocyto-
sis in insect cells [22]. Apoptotic cells marked with the soluble
glycoprotein called milk fat globule-EGF factor 8 (MFG-E8)
were phagocytosed by macrophages through αvβ3 [23]. Fur-
thermore, an interaction between β1 and β3, both of which
bind to fibronectin, has been documented, whereby αvβ3 is
required to allow α5β1-mediated phagocytosis [24]. Thus,
while fibronectin supports phagocytosis and can bind to
integrins involved in phagocytosis, it is not known whether
its isoforms containing EDA and EDB play any role in phago-
cytosis and if they do, which receptors are involved.

In this paper, we show that EDB-containing fibronectin is
elevated in the cerebrospinal fluid of patients with bacterial
meningitis. Indeed, phagocytosis is associated with increased
production and release of EDB fibronectin, whereby this iso-
form by itself is able to enhance phagocytosis by up to 40 %
compared to untreated cells. This effect is mediated through
β3 integrin in cooperation with β2-mediated phagocytosis.

Furthermore, deletion of β1 does not diminish phagocytosis
as suggested by the literature [24]. Instead, it increases β2 and
β3 expression on the surface of polymorphonuclear cells and
hence increases phagocytosis. This paper thus shows a novel
role for the fibronectin isoform containing EDB and offers
new insights on the role of integrins in phagocytosis.

Patients, materials, and methods

Human samples

Cerebrospinal fluid from patients with meningitis or controls
with headache who received lumbar puncture for diagnostic
purposes was collected in the Neurology Department at the
University of Heidelberg. Sample rests were examined for
total fibronectin and the various isoforms after obtaining in-
formed consent. The first cohort consisted of six patients with
headache and six patients with bacterial meningitis. No further
data are available. The second confirmatory cohort consisted
of 14 patients with headache and 22 patients with bacterial
meningitis with the following pathogens: five patients had
proven Staphylococcus species, eight had Streptococcus
pneumoniae, four had other Streptococcus species, one had
Listeria monocytogenes, and four had Neisseria meningitides.
Samples for in vitro evaluation of phagocytosis were collected
at the Institute of Immunology of the University of Heidelberg
after obtaining informed consent.

Mice

Mice possessing an Mx or albumin promoter driving Cre
recombinase expression were crossed with mice carrying
loxP-flanked (floxed) fibronectin [25] or floxed β1 integrin
genes [26]. Mx was induced at 3 weeks with three injections
of polyinosinic–polycytidylic acid (250 μg/mouse)
(Amersham) [25]. Plasma fibronectin was determined by
ELISA, and β1 integrin deletion was determined by staining
for β1 integrin and flow cytometry of total blood from tail-
vein blood [27]. β3−/− mice were obtained from mating het-
erozygote β3+/− mice [28]. Their genotype was tested by
PCR, and knockout confirmed by flow cytometry of periph-
eral blood. Terminal bleeding was performed at the age of 6–
8 weeks. Animal studies were approved by the regulatory
authorities (Regierungspräsidium Karlsruhe of the State of
Baden-Württemberg).

Cell isolation and phagocytosis induction

Blood was drawn from human subjects or mice in heparin-
containing vials. Red blood cells were lysed by using 25 ml
for 1 ml blood of hypotonic NaCl 0.2 %, mixing briefly (10 s),
stopping with another 25 ml 1.6 % NaCl (to get an isotonic
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solution and prevent lysis of other cells), and centrifugation
for 5 min at 490×g. Lysis was repeated thrice. An average of
1 ml blood was obtained per mouse and a total of 10 ml from
healthy human subjects. One millimeter provides around 2×
106 cells. The pellet was resuspended in HBSS (Gibco).
FITC-conjugated S. aureus (Wood-strain without protein A,
Bioparticles, concentration 3.5×109/ml, Life technologies)
were opsonized by suspending with 10 % mouse or human
heparin-plasma in HBSS and gently mixing for 20 min at
37 °C. Alternatively, IgG was used for the same duration to
opsonize the bacteria at 2 mg/ml in HBSS (gamma-globulin,
human, Sigma-Aldrich). Bacteria were centrifuged, washed
with HBSS once, added to the cells at a ratio of 10:1, gently
mixed, and incubated for 45 min for mice cells and 10 min for
human cells at 4 or 37 °C. A control sample was not exposed
to bacteria and left at 4 °C. Samples were quenched by adding
crystal violet (2 g/l in 0.15 M NaCl) or trypan blue (Gibco),
which allows the evaluation by flow cytometry (LSR2, BD) of
the percentage of cells that phagocytosed the labeled bacteria.
The supernatant was stored at −80 °C until analysis. Cells
were either treated with TriFAST (Peqlab) for future RNA
analysis or with Triton X-100 lysis buffer (20 mM, 150 mM
NaCl, 10 % glycerol, 0.5 % Triton X-100, 2 mM EDTA,
10 mM NaF, 1 mM PMSF, and 1 mM Na3VO4) for future
protein analyses of the cells.

Phagotest (Glycotope Biotechnologies) was performed as
suggested by the manufacturer with one modification. Briefly,
blood was obtained in heparin vials, and 100 μl were vortexed
and kept on ice for 10 min. Bacteria (20 μl Escherichia coli
from the kit or 2×107 S. aureus not opsonized) were added.
The mixture was left 10 min at 37 °C, while the control was
left on ice. The samples were then placed on ice for another
10 min, quenched with 100-μl quenching solution, vortexed,
and washed twice. Lysis buffer was added to the pellet, sam-
ples vortexed and left at RT for 20 min. Centrifugation at
250xg at 4 °C was followed by two more wash steps. Lastly,
200-μl DNA staining solution was added to the pellet, sample
vortexed and put on ice and measured by flow cytometry after
10 min.

All fibronectin isoformswere added at a final concentration
of 20 ng/ml. Phorbol 12-myristate 13-acetate (PMA) was used
at 16 ng/ml (SIGMA) to induce degranulation, the inhibitory
monoclonal antibody directed against β2 (CD18) (Beckman
Coulter/Immunotech, IM1567, clone 7E4) at a concentration
of 4 μg/ml [29], the inhibitory antibody directed against
αvβ3 at 10 μg/ml (clone LM609, Merck Millipore), and as
a control for both MOPC 21 (Sigma) at the appropriate
concentrations.

Flow cytometry

Cells were collected and red blood cells lysed as described for
the phagocytosis. The pellet was then resuspended in 100 μl

FACS buffer (2.5 % FCS in D-PBS) and stained for 30 min at
4 °C with species-specific antibodies at a dilution of 1:100.
Murine antibodies used were CD18 (Integrin-ß2): PE rat anti
mouse, clone: M18/2 (Biolegend); CD29 (Integrin-ß1): PE
armenian hamster anti mouse, clone: HMß1-1 (Biolegend);
and CD61 (Integrin-ß3): PE armenian hamster anti mouse,
clone: HMß3.1 (AbD Serotec). Human samples were stained
with the following antibodies: CD29 (Integrin-ß1): Alexa Flu-
or 700 mouse anti human, clone: TS2/16 (Biolegend) and
CD61 (Integrin-ß3): Alexa Fluor 647 mouse anti human,
clone: VI-PL2 (Biolegend). Cells were then centrifuged,
washed once, and then resuspended in 100 μl buffer for anal-
ysis at the LSR2 (BD) with the appropriate channels. For
evaluation of actin polymerization, phalloidin staining was
performed as follows: after red blood cell lysis, PMNs were
incubated with opsonized bacteria in the presence of the dif-
ferent substances for 10 min at 37 °C, followed by fixation for
10 min with 4 % PFA, washing and staining with phalloidin
Alexa-647 (Invitrogen #A22287) in PBS 1:40 for 30 min at
RT. Cells were washed and mean fluorescence intensity
measured.

Production of EDB, control fibronectin, and EDA

We introduced a construct containing the total fibronectin
complementary DNA (cDNA) as well as the EDB domain,
but not the EDA domain in a cancer cell line (MDA-MB-231)
in which fibronectin was previously deleted using 5′ UTR-
specific short hairpin RNA (shRNA) to delete endogenous
fibronectin such that this line can only produce fibronectin
containing the EDB domain as defined by the construct
(FNEDB+ also called EDB). As a control, we introduced the
total fibronectin cDNA that lacks EDA and EDB in the same
cancer cell line (FNEDB- also called plasma fibronectin or
pFN). A clone containing only the EDA, but not the EDB
domain, was also produced and introduced into the cell line
(EDA). A single clone was selected, conditioned media were
collected, fibronectin purified by affinity chromatography,
identity confirmed by protein gel electrophoresis, and ELISA
and the amount of fibronectin quantified.

Staining protocols and immunohistochemistry

To determine whether fibronectin is found in specific gran-
ules, PMNs isolated as described were fixed with 4 % PFA,
permeabilized with Triton X 100 0.2 % for 2 min, stained for
fibronectin with sheep anti-fibronectin antibody (1:100, #
Gentaur OBT0683), and then counterstained using donkey
anti-sheep antibody labeled with Alexa-555 at 1:500 (Thermo
Fischer A-21436). Lactoferrin was used to stain granules
(1:100 of mouse IgG1 anti-human from Acris, 1 mg/ml,
BM568) followed by a secondary goat anti-mouse antibody
labeled with Cy2 fromDianova (115225166 at 1:500) each for
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an hour. ProLong Diamond anti-fade mounting medium (Mo-
lecular probes) was used, slides dried and evaluated by mi-
croscopy. The experiments on the relationship of EDB fibro-
nectin, β3 integrin, and bacteria were performed as follows:
PMNs were exposed to IgG-opsonized bacteria for 30 s at a
ratio of 10:1, fixed and stained for EDB fibronectin using the
BC1 antibody (mouse anti human, Antisoma #FN7b89) at
1:100 followed by a secondary goat anti-mouse antibody la-
beled with Cy3 (Dianova 115116062, 1:500), β3 integrin
(CD61) was stained using a rabbit polyclonal anti-CD61 an-
tibody at 1:50 (Millipore AB1932) and goat anti-rabbit Alexa-
647 antibody (1:500, Abcam ab150079). Primary antibodies
were added together for 60 min at 4 °C, and secondary anti-
bodies for another 60 min. Nuclei were stained using DAPI.
Cells were centrifuged, washed, and a drop was added for
inverse fluorescence microscopy (ECLIPSE Ti, Nikon). Fi-
bronectin staining is presented in red in Fig. 5a. β3 integrin
labeled with Alexa-647 was pseudo-colored green to allow
visualization of colocalization of fibronectin andβ3 in yellow.
The bacteria are FITC-labeled, but were pseudo-colored
white.

RNA analysis

RNAwas isolated using TriFAST (Peqlab), and reverse tran-
scribed using iScript-Select (BioRad). Quantitative PCR
(qPCR) was performed using SensiMix™ Capillary Kit
(Bioline), and results were normalized to murine or human
HPRT. The primers used were those suggested by Roche uni-
versal probe library with modifications as follows: murine
EDB (Probe 31) , 5 ′ : cccc ta tc tc tga taccg t tg t , 3 ′ :
gaatcacagtagttgcggca; murine EDA (Probe 77), 5 ′:
ttgcacgatgatatggagag, 3′:aggcataaagccactgttcc; murine fibro-
n e c t i n ( P r o b e 6 6 ) , 5 ′ : t t t g c t c c t g c a c g t g t t t ,
3′:ctgtgtatactggttgtaggtgtgg; human EDA (Probe 32), 5′:
ttgcacgatgatatggagag, 3′: aattcattcagtagggcataaagc; human
EDB (Probe 31) , 5 ′ : t t t c cc t c t a t t t t c c t t t t gcc , 3 ′ :
ctgccgcaactactgtgatg; human fibronectin (Probe 76), 5′:
actgagactccgagtcagcc, 3′: ttccaacggcctacagaatt.

Protein analysis

For mass-spectrometry, 100 μg proteins, i.e., 5 μl from the
meningitis sample with the highest EDB and 20 μl from the
control sample with the lowest EDB, were run on a 2-D gel.
Five spots stained for EDB fibronectin (using BC1-clone) and
present only in the meningitis sample were evaluated bymass-
spectrometry with the question: can the sequence for EDB
fibronectin be identified, which it did [30]. For western blot
analysis, the following antibodies were used: murine anti-
EDB (clone BC1, courtesy D. Neri), rabbit anti-fibronectin
(Millipore), rabbit anti-EDA (clone FN3E2), rabbit GAPDH
(Sigma), ERK, pERK, AKT, pAKT (Cell signaling), anti

mouse-HRP (BioRad), and anti rabbit-HRP (Dianova). All
antibodies were diluted 1:1000 except for GAPDH, which
was used at a dilution of 1:10 000. Samples were loaded after
adjusting to protein content measured by BCA (Pierce).

ELISA

Fibronectin was quantified in mouse plasma, cell lysates, and
conditioned media by ELISA as reported [27, 31] and
corrected to protein content measured by BCA (Pierce) when
appropriate. Briefly, plates were coated with the primary anti-
body (0.12 μg/ml) (F3648, Sigma). For mouse plasma, ly-
sates, and conditioned media, the standard used was for mice
murine plasma fibronectin (#IMFBN, Dunn) or for human
samples human plasma fibronectin isolated as described [2].
As a secondary antibody, anti-fibronectin-HRP-conjugated
antibody (P0246, DAKO) was used. For EDA ELISA, the
plates were coated with a primary antibody at 1.195 mg/ml
(FN-3E2, Sigma). For EDB, the primary antibody was kindly
provided by Dr. D. Neri (Swiss Federal Institute of Technolo-
gy (ETH)) and applied to the plates at a concentration of
2.5 μg/ml, L19SIP) [7]. The secondary antibody used was
the same as for total fibronectin. The standard was established
in our lab after purifying the isoforms EDA and EDB using
antibody columns and quantifying fibronectin content.

Statistical analyses

Analyses were performed using SPSS (V20). ANOVA and
repeated-measures ANOVA tests were used as appropriate.
If global probability values were smaller than 5%, subsequent
comparisons between selected group pairs were then per-
formed using Student’s t, Mann–Whitney, or Wilcoxon paired
tests as appropriate. Pearson correlations were estimated to
evaluate the relationship between the two variables. Results
are expressed as mean±standard error of the mean (M±SEM).

Results

Bacterial meningitis is associated with increased
EDB-containing fibronectin

Fibronectin enhances phagocytosis of bacteria by immune
cells [16, 17] and is increased in patients with bacterial men-
ingitis [32, 33]. We therefore asked whether we could confirm
these changes and whether the isoforms containing EDA or
EDB are also increased in bacterial meningitis.

We quantitated fibronectin and its isoforms in the cerebro-
spinal fluid (CSF) and found a 2.4-fold increase in the amount
of total fibronectin in the CSF of six patients with bacterial
meningitis compared to six controls (CT) with non-infectious
headaches (Fig. 1a). EDB-containing fibronectin was 80-fold
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increased in patients with bacterial meningitis, while EDA-
containing fibronectin did not differ (Fig. 1b–c). The presence
of the EDB domain detected by ELISAwas further confirmed
by Western blotting (Fig. 1d) as well as 2-D gel electrophore-
sis followed bymass spectrometry for the spots detected in the
meningitis samples but not in the control samples.

We then confirmed these findings in a larger group (14
controls with headache and 22 bacterial meningitis patients)
(Fig. 1e). In addition, EDB-containing fibronectin in the CSF
was 5.9-fold higher compared to EDB-containing fibronectin
in peripheral blood in patients with meningitis while the ratio
was much lower in healthy subjects (CT: 0.2+/−0.02 vs.

Fig. 1 Meningitis results in elevation of EDB-containing fibronectin
(EDB) in the cerebrospinal fluid (CSF). a Total fibronectin (total FN) is
elevated in CSF of patients with bacterial meningitis 2.4-fold compared to
healthy controls (n=6+6). b EDB-containing fibronectin (EDB) is
elevated in CSF of patients with bacterial meningitis 87-fold compared
to healthy controls. c EDA-containing fibronectin (EDA) does not differ
between patients with bacterial meningitis and healthy controls. CSF
obtained by lumbar puncture was tested by ELISA using specific
antibodies. Results represent the mean of six patients per group. d
Western blot analysis confirms an increase in total fibronectin (FN) and
EDB fibronectin in CSF from patients with bacterial meningitis. Protein

content was measured by BCA, and the same amount of CSF was added
in both wells in the top two lanes, while the same amount of total
fibronectin as determined by ELISAwas added in the bottom four wells
(two replicates for controls and tow for meningitis are shown). FN results
in two bands because it consists of a dimer. e EDB fibronectin was
increased in a larger cohort of 14 controls (CT) and 22 patients with
meningitis. f EDB/total fibronectin (%) is higher in patients with
staphylococcus species infections (5 vs. 17). g EDB fibronectin in CSF
shows a poor relationship with EDB fibronectin in serum in the whole
cohort (22 patients). h In the patients with staphylococcus infections (n=
5) both correlate well
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meningitis: 5.9+/−0.5 fold, n=14+22, p<0.0001). We
next asked whether the increase in EDB-containing fi-
bronectin in the CSF was related to the severity of the
disease or to the involved pathogen. The modified
RANKIN score at admission (higher values reflect
worse disease) did not show a relevant correlation with
the ratio of EDB/total fibronectin in the whole group of
patients with meningitis (r2=0.22, p=0.05, n=22) [34].
In patients with staphylococcal infections, however, al-
most all of the fibronectin detected in the CSF
contained the EDB domain in contrast to other patients
in which only about half of fibronectin contained the
EDB domain (Fig. 1f). In addition, in this cohort, the
concentration of EDB-containing fibronectin in the CSF
was closely related to its level in the serum (r2=0.91,
p<0.05, n=5), which was not the case in the whole
cohort (Fig. 1g–h).

Thus, in bacterial meningitis, EDB-containing fibronectin
is increased in the cerebrospinal fluid, and this increase is
related to the pathogen, whereby staphylococcal infections
result in more EDB-containing fibronectin in the CSF.

Phagocytosis of bacteria is associated with increased EDB
production and release

Bacterial meningitis is usually associated with increased white
blood cell numbers in the cerebrospinal fluid (CSF) [35]. In
particular, granulocytes (or polymorphonuclear leukocytes:
PMN) increase both in absolute and relative numbers [35]
and produce EDB-mRNA [36]. Therefore, these cells repre-
sent a possible source for EDB fibronectin protein in the CSF.
To evaluate for this possibility, opsonized S. aureus particles
were added to human PMNs. Exposure of PMNs to bacteria at
4 °C did not significantly affect EDB mRNA expression, the
amount of EDB fibronectin detected in the cell lysates
or released to the media (Fig. 2a–b). In contrast, incu-
bation of PMNs with opsonized bacteria at 37 °C in-
creased EDB mRNA expression, as well as both the
amount of EDB-containing fibronectin protein found in
the cell lysate and released into the media compared to
CT cells (Fig. 2c–d) suggesting that active phagocytosis
and not the mere exposure to bacteria increases EDB
fibronectin production and release. Treatment of PMNs
with a non-toxic dose of PMA (phorbol 12-myristate
13-acetate) for 10 min resulted in release of EDB fibro-
nectin. Since PMA induces degranulation, this finding is
compatible with release of EDB fibronectin from the
granules (Fig. 2e). Furthermore, co-staining of
lactoferrin (expressed in specific granules) [37, 38] and
fibronectin confirmed partial colocalization (Fig. 2f).

Thus, phagocytosis is associated with increased EDB fibro-
nectin production and release.

Fibronectin originating from the immune cells contributes
to phagocytosis

We next evaluated whether EDB fibronectin itself modulates
phagocytosis. To test this, we deleted fibronectin in immune
cells using the cre/loxP system, which allows for deletion of
fibronectin in the desired cell types. Since fibronectin is sticky
and attaches to most surfaces including immune cell surfaces,
simultaneous deletion of fibronectin in the circulation and in
the immune cells would be best for our purposes but requires a
control in which only circulating fibronectin is deleted. Dele-
tion of circulating fibronectin only can be achieved by using
the albumin promoter attached to Cre recombinase in mice
that carry floxed fibronectin genes on both alleles (Alb-
cre_FNfl/fl). The albumin promoter becomes activated in he-
patocytes only, and these cells contribute almost all of circu-
lating fibronectin. The production of Cre recombinase in he-
patocytes thus results in deletion of fibronectin in the circula-
tion (Albumin-driven conditional knockout: Alb-cKO-FN).
To delete fibronectin in both the circulation as well as in the
immune cells, theMx promoter attached to Cre was used (Mx-
cKO-FN), and Mx activated 3 weeks prior to the experiments
(Fig. 3a–b) [26]. These two models thus allow the differenti-
ation between the effect of deletion of fibronectin in the cir-
culation (Alb-cKO-FN) or deletion in both the circulation and
the immune cells (Mx-cKO-FN).

We first evaluated the phagocytic capability of the immune
cells in the presence of the mouse own plasma. Therefore, no
fibronectin-mediated enhancement of phagocytosis takes
place in cKO mice. This makes phagocytosis dependent on
the presence of other opsonins in the plasma. Phagocytosis of
S. aureus was significantly diminished in the absence of cir-
culating fibronectin in Alb-cKO-FN mice. Deletion of fibro-
nectin in the immune cells in addition to the circulation was
associated with a further decrease in phagocytosis as shown in
Fig. 3c. Interestingly, fibronectin did not affect phagocytosis
of E. coli measurably.

In order to establish that the difference in phagocytosis
between Alb-cKO-FN and Mx-cKO-FN mice is dependent
on immune cell fibronectin, we evaluated phagocytosis in
isolated PMNs from the various genotypes (after separation
from the plasma). Added bacteria were opsonized with control
plasma fromwild-type mice. Using this method, we detected a
significant difference in the degree of phagocytosis between
Alb-cKO-FN and Mx-cKO-FN (Fig. 3d), associated with a
difference in the release of total and EDB-containing fibronec-
tin (Fig. 3e–f). Indeed, we confirmed a positive correlation
between the efficiency of phagocytosis and release of EDB
fibronectin in vitro (r2=0.65, p<0.005), which suggests that
phagocytosis is increased whenever EDB fibronectin release
is higher (Fig. 3g).

Thus, fibronectin originating from the immune cells affects
the phagocytic function of these cells.
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T-cells are not involved in affecting phagocytosis
in the absence of fibronectin

T-cells produce EDB mRNA [39]. To evaluate whether
T-cells affect phagocytosis, we used Foxn1mut mice (nu/
nu mice). Homozygote mice are athymic and hence un-
able to develop thymus-derived T-lymphocytes. Because
the absence of fibronectin in immune cells suppressed
phagocytosis, we mated the mice such that we were
able to test the effect of loss of T-lymphocytes in the
presence and absence of fibronectin production by the
immune cells comparing controls (CT nu/nu) with Mx-
cKO-FN nu/nu mice. As shown in Fig. 4a, phagocytosis
was similar in the presence or absence of T-lymphocytes
in mice with normal fibronectin levels. Furthermore, de-
letion of fibronectin using the Mx-promoter resulted in

a similar decrease in phagocytosis independent of
whether mature T-cells were present or not.

Taken together, the loss of fibronectin in immune cells
results in decreased phagocytosis independent of the presence
or absence of thymus-schooled T-lymphocytes.

EDB fibronectin enhances phagocytosis both
in the presence and absence of plasma fibronectin

In order to determine whether a causal relationship between
EDB fibronectin and enhanced phagocytosis exists, we sought
to isolate pure fibronectin that either contains EDB or lacks it.
To achieve this, we first deleted endogenous fibronectin in a
cancer cell line using 5′ UTR-specific shRNA. We then intro-
duced a construct containing total fibronectin cDNA including
the EDB domain, but not the EDA domain. This line can thus

Fig. 2 Phagocytosis is associated
with the production and the
release of EDB fibronectin. a The
presence of bacteria does not
significantly affect the production
of EDB at the mRNA level. Cells
were obtained from six healthy
subjects and either left untreated
or subjected to the addition of
bacteria and left at 4 °C for
45 min. EDB was measured by
qPCR corrected to the
housekeeping gene HPRT. b
EDB-containing fibronectin in the
cell lysates and in the media was
measured by ELISA and
corrected to the protein content of
the cells measured by the BCA
method. N as in A. c Phagocytosis
results in an increase in EDB
mRNA. Cells were treated with
Staphylococcus aureus and left at
37 °C for 10min and compared to
cells treated with S. aureus, but
left at 4 °C. N as in A. d
Phagocytosis is associated with
an increase in EDB-containing
fibronectin in the cell lysate or
released in the media. e PMA,
which induces degranulation,
results in increased EDB
fibronectin in the media as
measured by ELISA. N=3. f
Fibronectin partially colocalizes
with lactoferrin found in specific
granules. PMNs were isolated,
fixed, permeabilzed, and stained
for fibronectin in red, lactoferrin
in green, and DAPI in blue to
visualize the nuclei. Bars
represent 2.5 μm
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only produce fibronectin containing the EDB domain as de-
fined by the construct (FNEDB+was called EDB). As a control,

we introduced the total fibronectin cDNA that lacks EDA and
EDB in the same cell line (FNEDB-: pFN, because it resembles

Fig. 3 The absence of immune cell fibronectin diminishes phagocytosis.
a Circulating total fibronectin (FN) is diminished when fibronectin is
deleted in the hepatocytes (Alb-cKO-FN) to a similar degree as the
decrease when fibronectin is deleted in the hepatocytes and in the
immune cells (Mx-cKO-FN). Blood obtained from the tail vein was
examined by ELISA. N=7–10 mice per group. b Cell lysates show a
decrease in total fibronectin and in EDB fibronectin in Mx-cKO-FN
mice, but not in Alb-cKO-FN mice as determined by ELISA of the cell
lysates and correcting to total protein measured by BCA. N=5/group. c In
a phagocytosis test (Phagotest) where bacteria are added to total blood
and phagocytosis is determined after 10 min, deletion of circulating
fibronectin diminished phagocytosis of S. aureus (Alb-cKO-FN), but

this decrease was more pronounced when both circulating and immune
cell fibronectin were deleted (Mx-cKO-FN). Phagocytosis of E. coli was
not affected by fibronectin availability. d In a phagocytosis test in which
the cells are separated from the serum and the bacteria opsonized with
control serum, phagocytosis with cells from Alb-cKO-FN is similar to
CT. Deletion of fibronectin in the immune cells in Mx-cKO-FN results in
a significant decrease in phagocytosis. N=5 pools of blood from 3–5
mice/pooled group. e–f The decrease in phagocytosis is associated with
a decrease in total (e) and EDB fibronectin (f) released in the media and
corrected to protein. N as in D. g The levels of EDB fibronectin released
in the media correlates with the degree of phagocytosis in CTmice.N=12
pools of blood from 2–3 mice/pooled group
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the circulating plasma fibronectin), as well as a construct that
contains the EDA but not the EDB domain (which we called
EDA in the figure). Single clones were selected, conditioned
media were collected, fibronectin purified by affinity chroma-
tography, the amount of fibronectin quantified, and identity
confirmed by ELISA and protein gel electrophoresis (Fig. 4b).

Opsonized bacteria were added to human PMNs at the
same time as fibronectin lacking EDB or EDA (pFN) or con-
taining EDB (EDB) or containing EDA (EDA). EDB addition

enhanced phagocytosis (Fig. 4c). The same effect was seen in
murine cells. The difference, however, was more pronounced
in Mx-cKO cells, which already had some response to pFN,
the control molecule. Presumably, this is due to the lack of
fibronectin production by these cells and the ability of plasma
fibronectin (pFN) to boost phagocytosis (Fig. 4d).

In summary, adding EDB-containing fibronectin augment-
ed phagocytosis more than control fibronectin lacking EDB
(pFN).

Fig. 4 T-cells do not affect phagocytosis in the absence of fibronectin. a
Independent of whether immune cells produced fibronectin or not, the
absence of T-cells did not measurably affect phagocytosis. N=2–5 mice
per measurement and six measurements/group. EDB-containing
fibronectin enhances phagocytosis. b The presence of the EDB domain,
but not the EDA domain was confirmed in isolated EDB fibronectin (FN)
by western blotting. Total fibronectin was detected in the three isolated
isoforms. Same amount of fibronectin was added in the wells of each gel
and blotted with either an antibody directed against EDA, against EDB or
against total fibronectin as shown on the right. In the gel for total
fibronectin, the amount of fibronectin added was 4-fold less than for the
isoforms. cAdding control fibronectin (plasma fibronectin: pFN) slightly
increased phagocytosis in human PMNs, but adding EDB fibronectin

prior to adding S. aureus enhances phagocytosis. EDA fibronectin
failed to enhance phagocytosis. Cells were isolated from four healthy
subjects and treated with plasma-opsonized S. aureus. Prior to adding
the bacteria to the cells, pFN or EDB fibronectin was added at a
concentration of 200 ng/ml, which is 5-fold the concentration of EDB
fibronectin in CSF. Phagocytosis measured after incubating the cells for
10 min at 37 °C and compared to cells treated similarly but left at 4 °C
instead. N=13 replicates except for EDA: five replicates. d Cells from
control (CT) mice are not affected by adding pFN, but EDB fibronectin
enhances phagocytosis. Mx-cKO-FN mice show enhanced phagocytosis
already by addition of pFN but EDB fibronectin effect is more
pronounced. Cells were similarly isolated and treated for 45 min. N=7
pools of blood from four to six mice each/pooled group

J Mol Med (2016) 94:567–581 575



β3 integrin interaction with EDB fibronectin contributes
to enhancement of phagocytosis

No receptor was yet identified for EDB fibronectin in cells.
However, binding between an EDB-containing fibronectin
fragment and αvβ3 was reported in electron microscopy stud-
ies using integrin molecules and EDB fragments that also
contain the RGD sequence [40]. This raises the possibility that
integrin αvβ3 mediates EDB fibronectin effects on phagocy-
tosis. In line with this notion, added bacteria were localized in
the proximity of both EDB fibronectin and β3 integrin
(Fig. 5a). Using an inhibitory antibody specific for αvβ3
integrin did not affect pFN-mediated phagocytosis, but dimin-
ished the enhancement of phagocytosis by EDB fibronectin
(Fig. 5c). Finally, we used PMNs isolated from β3 knockout
mice (β3−/−: β3 KO) and confirmed deletion of β3 integrin,
but no change in either β2 or β1 integrins on the cell surface
(Fig. 5d). In these cells, EDB failed to enhance phagocytosis
significantly in six experiments (Fig. 5e).

Based on these data, we conclude that the interaction of
EDB-containing fibronectin with αvβ3 integrin contributes
to phagocytosis.

The role of Fcγ receptors

We then investigated whether an interaction between EDB
fibronectin and the Fcγ receptor could be documented. We
therefore opsonized bacteria with IgG, which results in acti-
vation of the Fcγ receptor or plasma, which contains a variety
of other opsonins in addition to IgG. Phagocytosis at baseline
did not differ using the two opsonization methods (Fig. 6a).
Furthermore, EDB fibronectin addition enhanced phagocyto-
sis of bacteria to a larger degree than pFN alone, irrespective
of whether bacteria were opsonized with IgG or plasma, sug-
gesting that phagocytosis through the Fcγ receptor did not
interfere with enhanced phagocytosis by EDB fibronectin
(Fig. 6a).

The role of β2-containing integrins

Since αMβ2 integrins are also involved in phagocytosis [18],
we inhibited β2 and found diminished phagocytosis in EDB-
treated cells, despite using a dose of the β2 inhibitor that did
not affect phagocytosis in the presence of pFN (Fig. 6b). Thus,
phagocytosis enhancement by EDB involves β2 integrin.

The role of β1-containing integrins

EDB fibronectin contains the RGD-binding site of fibronectin
to integrins. It therefore can bind to α5β1, the classical fibro-
nectin receptor. EDA fibronectin enhances binding to α5β1
integrin, but no experimental data on EDB fibronectin affect-
ing β1 integrin have been reported. To test this, we deletedβ1

integrin in immune cells using Mx-cre, as for deletion of fi-
bronectin, in mice homozygous for floxed β1 integrin (Mx-
cKO-β1) (Fig. 6c) [26]. Deletion of β1 integrin was associat-
ed with an increase in both β2 and β3 expressions (Fig. 6c).
The absence ofβ1 integrin was associatedwith both enhanced
release of EDB fibronectin and enhanced phagocytosis
(Fig. 6d–e).

Taken together, these data show that EDB fibronectin in-
teracts with αvβ3 to enhance phagocytosis, and αMβ2 is in-
volved in this effect. Therefore, inhibiting either one dimin-
ishes phagocytosis but does not suppress it back to baseline,
while phagocytosis mediated by the Fcγ receptor could also
be enhanced by EDB fibronectin.

EDB fibronectin enhances phagocytosis by affecting actin
polymerization and intracellular signaling

Phagocytosis requires actin microfilament formation and the
activation of intracellular signaling cascades [12]. To investi-
gate whether EDB fibronectin affected intracellular events
differently from pFN, we evaluated phalloidin staining of po-
lymerized F-actin and found that it was significantly enhanced
by the presence of both bacteria and EDB (Fig. 7a). β2
(CD18) activation does not increase ERK phosphorylation
[41]. Nevertheless, EDB increased ERK phosphorylation
more so than pFN, which is in line with the increase in actin
polymerization and suggests β3 activation (Fig. 7b) [42]. In
contrast, AKT phosphorylation, which increases in response
to αMβ2 stimulation [43] failed to show statistically signifi-
cant changes in nine biological replicates, despite what
seemed to be a trend upwards (Fig. 7c).

Thus, EDB fibronectin enhances phagocytosis by activat-
ing β3 integrin and increasing ERK phosphorylation, without
marked effects on AKT phosphorylation.

Discussion

The principal findings of this study are (1) EDB-containing
fibronectin is released in the cerebrospinal fluid of patients
with bacterial meningitis, especially during infections with
staphylococcal species. (2) Phagocytosis is associated with
the production and release of EDB-containing fibronectin.
(3) The presence of the EDB domain in fibronectin augments
phagocytosis by acting on αvβ3 integrin. (4) This effect is
independent of the presence of β1 integrin. (5) β2 seems to
cooperate with β3 to enhance phagocytosis mediated by EDB
fibronectin.

Fibronectin is elevated in the cerebrospinal fluid of patients
with bacterial meningitis [44]. It was suggested that this ag-
gravates inflammation and increases the damage [32]. Our
data suggest that almost all the fibronectin released during
infections with staphylococcal organisms contains the EDB
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domain and enhances the phagocytic response towards bacte-
ria. The EDA isoform was diminished in children [45], but in
our cohort this finding could not be confirmed. In addition,
EDA fibronectin did not affect phagocytosis measurably in
our model. It is conceivable, however, that the increase in
the production and release of EDB fibronectin occurs at the
expense of the production of EDA fibronectin in pediatric
patients, but not in our adult subjects resulting in the discrep-
ancy between the two cohorts.

We evaluated the role of fibronectin produced by the im-
mune cells themselves. The Mx promoter deletes fibronectin

and β1 integrin in hematopoietic cells. However, it also de-
letes fibronectin in the liver. For this reason, we used as the
control the albumin promoter to delete fibronectin in hepato-
cytes and hence in the circulation [25, 26]. This allowed the
clarification of the role of PMN fibronectin as opposed to the
role of circulating plasma fibronectin, which, in our hands, is
limited. The limited effect of circulating fibronectin may ex-
plain the contradictions reported in the literature on fibronec-
tin involvement in phagocytosis [17, 46]. It should be noted
that only a small percentage of total circulating fibronectin
contains EDB [27], and therefore studies performed with

Fig. 5 EDB fibronectin enhances
phagocytosis through activating
β3 integrin. a EDB fibronectin
(FN) in red, β3 integrin in green,
and bacteria in white are found in
the proximity of each other. DAPI
(blue) was used as a nuclear stain.
PMNs were exposed to opsonized
bacteria for 30 s, followed by
fixation and staining. On the left,
details of one cell are shown. On
the right, a second example with a
higher magnification of a clump
of bacteria with fibronectin and
β3 integrin co-staining is shown.
N=3 experiments. Bars represent
2.5 μm. b Using an αvβ3
inhibitory antibody results in
diminished EDB-mediated
phagocytosis (concentration used,
10 μg/ml). N=8. c In β3
knockout mice, the percentage of
PMNs expressing β1 or β2
integrin is similar, but β3 is
deleted. d In the absence of β3,
phagocytosis is no longer
enhanced in the presence of EDB
fibronectin (n=5 pairs)

J Mol Med (2016) 94:567–581 577



fibronectin isolated from the plasma would have failed to
point an effect [17, 46]. In addition, our data point to de novo
synthesis of EDB-containing fibronectin during phagocytosis
in PMNs (Fig. 2c–d), which is in line with published reports
[36].

The presence of the EDB domain affects vasculogenesis,
but some overlap exists with EDA in that function [4, 5]. No
specific integrin that binds to the EDB domain was identified,
except in a single in silico study where the interaction between
a fragment containing EDB and αvβ3 integrin was reported

Fig. 6 Mechanistic studies on the
effect of EDB fibronectin and the
interaction with other receptors. a
Role of Fcγ receptor: Human
PMNs were exposed to bacteria
opsonized with plasma or with
IgG. EDB fibronectin resulted in
similar enhancement of
phagocytosis. N=5. b Role of
αMβ2: Inhibiting β2 (using an
inhibitory antibody) decreases
phagocytosis despite the presence
of EDB fibronectin. Human
PMNs were subjected to
phagocytosing plasma-opsonized
S. aureus at 37 °C for 10 min.
Prior to adding the bacteria, cells
were treated with the antibodies
(4 μg/ml), N=7. c Deletion of β1
integrin is successful in Mx-cKO-
β1 and is associated with an
increase in β2 and β3 expression.
Expression was determined by
flow cytometry. N=4 pools of
blood from two to three
mice/pooled group. d Deletion of
β1 integrin results in enhanced
phagocytosis that is further
increased by EDB fibronectin
administration. N=4 pools of
blood from two to three
mice/pooled group. e EDB
fibronectin release in the media is
enhanced in Mx-cKO-β1 cells
during phagocytosis. N as in D
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[40]. This interaction however could take place at the RGD
sequence, which is the known binding sequence of fibronectin
to αvβ3 [1]. In this case, the presence of EDB would only
change the characteristics of fibronectin binding to αvβ3,
presumably in a manner similar to the role of EDA in enhanc-
ing binding of the RGD sequence to α5β1 integrin [47]. Our
data demonstrate that αvβ3 integrin mediates EDB fibronec-
tin effects in cells. EDB fibronectin enhances phagocytosis by
augmenting β3-integrin-mediated signaling as evidenced by
activating actin polymerization and increasing ERK phos-
phorylation. How EDB fibronectin affects phosphorylation
of the cytoplasmic tail of β3 is not clear however [48]. Our
data also confirm the role of this integrin reported in phago-
cytosis by insect cells in mammalian cells [22].

Integrins consist of α and β subunits that diffuse freely in
the membrane and between an intracellular and a surface pool,
making the integrin pool very dynamic.α andβ subunits need
to combine in heterodimers to affect intracellular signals [20].
Each β subunit can bind to a limited number of α counter-
parts, but some pairs are found more often than others. Bind-
ing of integrins to extracellular proteins then stabilizes theαβ-
pair in focal adhesions [49]. The decrease in β1 on PMNs of
Mx-cKO-β1 was associated with increased β3 expression on
the cells (Fig. 6c), in line with the concept of a steady pool of

integrin subunits available for expression in which a decrease
in β1 allowsαv to bind to other β subunits, in this case β3, as
implied from the data of various groups [50–53]. Because
EDB fibronectin acts via αvβ3, an increase in αvβ3 could
contribute to the enhancement of phagocytosis by EDB fibro-
nectin in β1 cKO or alternatively result in boosted EDB fi-
bronectin release by yet undefined mechanisms (Fig. 6e). In-
terestingly, β2 expression on the cell surface was elevated in
the β1 cKO too. It therefore cannot be ruled out that enhanced
phagocytosis in these cells results from increased expression
of either one (β2 or β3) or both subunits.

In our experiments, we used S. aureus strain Wood 46,
which expresses relatively low amounts of fibronectin binding
proteins. Nevertheless, it is able to bind fibronectin effectively
as shown by others [54, 55] and confirmed by us
(supplementary figure 1). Furthermore, this strain lacks protein
A as does E. coli used in the experiment in Fig. 3c. Despite this
common feature, EDB enhanced phagocytosis of S. aureus, but
did not affect the phagocytosis of E. coli. This therefore
suggests that protein A is not required for EDB effects.

Because of the importance of phagocytosis for survival, its
control evolved such that much overlap exists and many pos-
sible pathways for activating phagocytosis can be simulta-
neously involved. Indeed, multiple receptors participate in

Fig. 7 Studies on the effect of
EDB fibronectin on actin
polymerization and intracellular
signaling. a Actin polymerization
was evaluated by phalloidin
staining in the presence of
opsonized bacteria and pFN or
EDB-containing fibronectin for
10 min and mean fluorescence
intensity measured. N=8. b
pERK/ERK ratio is increased in
PMNs treated with pFN and
further enhanced with EDB
fibronectin administration 10 min
prior to cell lysis. N=6. c An
apparent trend to an increase in
pAKT/AKT by Western blotting
fails to reach significance in nine
replicates/treatment. Human
PMNs were prepared as for
pERK/ERK ratio. GAPDH was
run on a separate gel using the
same amount of lysate for
technical reasons
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phagocytosis, including Fc receptors, complement receptors,
and pattern recognition receptors. For most bacteria species,
opsonization with IgG and engagement of the Fc receptors is a
prerequisite for efficient phagocytosis, while the other
receptor-ligand interactions exert various modulatory roles
[56]. Furthermore, a crosstalk sometimes takes place between
the Fc receptor and integrins [57]. This work establishes the
role of another modulator of phagocytosis of S. aureus, and
clearly indicates that EDB fibronectin released during phago-
cytosis, especially of staphylococcus species enhances bacterial
removal by mammalian immune cells through activating αvβ3
integrin. The experiments furthermore establish β3 integrin as
the receptor mediating EDB fibronectin enhancement of phago-
cytosis. Our findings highlight that this mechanism acts in
addition to other mechanisms of phagocytosis, but cannot be
completely replaced by other phagocytic systems, at least in
vitro. Lastly, this apparently important role played by αvβ3
integrin in phagocytosis needs to be taken into account in
studies examining inhibitors of αvβ3 in cancer treatment.
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