Automated Glycan Assembly of Complex Oligosaccharides Related to Blood Group Determinants

Heung Sik Hahm,^[a,b], Chien-Fu Liang,^[a,c] Chian-Hui Lai,^[a,d] Richard J. Fair,^[a] Frank Schuhmacher^[a,b] and Peter H. Seeberger^{*[a,b]}

^a Max Planck Institute of Colloids and Interfaces, Department of Biomolecular System, Am Mühlenberg 1, 14424, Potsdam, Germany

^b Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195, Berlin, Germany ^cDepartment of Chemistry, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan.

^dGenomic Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan.

Fax: (+49) 30 838 459301

E-mail: peter.seeberger@mpikg.mpg.de

NMR spectra for monomer building blocks	S2-24
Table S1 for automated reaction conditions	S24
Analytical NP-HPLC chromatogram for the linker stabililty study (Figure S1)	S25
NMR spectra and Analytical NP-HPLC chromatogram for protected oligosaccharides S	526 – 53
NMR spectra for the conjugation-ready unprotected oligosaccharides	54 - 59

¹H-¹³C-HSQC NMR, 400 MHz, CDCl₃

¹H-COSY NMR, 400 MHz, CDCl₃

¹H-¹³C-HSQC NMR, 400 MHz, CDCl₃

Hahm et al.

¹H-¹³C-HSQC NMR, 400 MHz, CDCl₃

4.0

3.5

41 1

2.5

2.0

3.0

5.9 4

1.0

0.5

0.0 -0

1.5

2.0 Å

5.5

5.0 4.5 f1 (ppm)

والالطر

7.0

6.5

6.0

7.5

9.5

9.0

8.5

8.0

¹H-COSY NMR, 400 MHz, CDCl₃

¹H-¹³C-HSQC NMR, 400 MHz, CDCl₃

Building Block	Promotor	T_{a} (°C)	t_1 (min)	<i>T</i> _i (°C)	t_2 (min)
2 , 6 , and 7		- 30	5	- 10	25
3 , 8 , 9 , 10 , and 11	NIS/TfOH	- 40	5	- 20	25
23		- 20	5	- 10	50
4 and 22		- 40	5	- 20	25
12	TMSOTf	- 10	5	0	50
24		- 20	5	- 10	50

Sequence	Module	Details	Condition
	1	2.5 eq. of TMSOTf solution	-20 °C, for 1 min
Ι	2	5 eq. building block (2, 3, 6, 7, 8, and 23), 5 eq. of NIS Solution	
	3	Fmoc Removal	r.t for 5 min
II	1	2.5 eq. of TMSOTf solution	-20 °C, for 1 min
	4-1	5 eq. building block (4 and 15), 5 eq. of TMSOTf Solution	
	3	Fmoc Removal	r.t for 5 min
111 -	1	2.5 eq. of TMSOTf solution	-20 °C, for 1 min
	2	5 eq. building block (9, 10, and 11) 5 eq. of NIS Solution	
III 1 2	1	2.5 eq. of TMSOTf solution	-20 °C, for 1 min
	2	5 eq. building block (22), 5 eq. of TMSOTf solution	
IV	1	2.5 eq. of TMSOTf solution	-20 °C, for 1 min
	4-1	5 eq. building block 12 and 24 , 5 eq. of TMSOTf Solution	
	5	Lev Removal	r.t for 5 min
V	1	2.5 eq. of TMSOTf solution	-20 °C, for 1 min
	4-2	5 eq. building block 12 , 5 eq. of TMSOTf Solution	
	5	Lev Removal	r.t for 5 min

Table S1. Sequences of the glycosylation cycle with the corresponding monomers and optimized conditions for "approved building block". Glycosylation condition: activation temperature (T_a) and time (t_1), incubation temperature (T_i) and time (t_2).

Figure S1. LC-MS of disaccharide 13 (blue arrow) including building block 11 (black arrow) as an Internal standard.

¹H-¹³C-HSQC NMR, 400 MHz, CDCl₃

¹H-¹³C-HSQC NMR, 600 MHz, CDCl₃

¹H-¹³C-HSQC NMR, 600 MHz, CDCl₃

¹H-¹³C-HSQC NMR, 600 MHz, CDCl₃

Figure S2. LC-MS of pentasaccharide 22. Condition: 17 dissolved in DCM and Et₂O (v/v, 1/3) for entries 1 and 2. 17 dissolved in DCM for entry 3.

Figure S3. LC-MS of H-type II using fucose building block 17 and 18.

Figure S5. Stereoselectivity of H-type II determined by ¹H NMR.

¹H-¹³C-HSQC NMR, 600 MHz, CDCl₃

Figure S7. LC-MS of 28.

¹H-¹³C-coupled-HSQC NMR, 600 MHz, CDCl₃

¹H-COSY NMR, 600 MHz, CDCl₃

¹H-¹³C-HSQC NMR, 600 MHz, CDCl₃

¹H-¹³C-coupled-HSQC NMR, 600 MHz, CDCl₃

Hahm et al.

¹H-COSY NMR, 600 MHz, CDCl₃

¹H-¹³C-coupled-HSQC NMR, 600 MHz, CDCl₃

Entry	Sequencce	Ratio (α/β)
1	Galα1→3Galβ1→4Glcβ1→linker	13.7
2	Galα1→3Galβ1→4GlcNTCAβ1→linker	10.8
3	$Gal\alpha 1 \rightarrow 3Gal\beta 1 \rightarrow 4GlcNTCA\beta 1 \rightarrow 3Gal\beta 1 \rightarrow 4Glc\beta 1 \rightarrow linker$	11.8

Table S2. The acceptor dependency of the formation of 1,2-cis-galactosidic linkages.

Figure S10. LC-MS of 28.

Figure S11. Optimization of automated synthesis of 34.

Figure S13. Purification of α -Gal epitope **35.** Conditions: column: C18-Nucleodur (21×250 mm; 5 μ m); flow rate: 10 mL·min⁻¹; eluents: 0.01 M NH₄HCO₃ in water/MeCN; gradient: 45% (5 min) \rightarrow 55% (in 40 min) \rightarrow 100% (in 5 min); detection: ELSD.

non-sulfated pentasaccharide 34

sulfated pentasaccharide 35

Supporting Information Hahm et al.

