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The Gonium pectorale genome demonstrates
co-option of cell cycle regulation during the
evolution of multicellularity
Erik R. Hanschen1, Tara N. Marriage2, Patrick J. Ferris1, Takashi Hamaji3, Atsushi Toyoda4,5, Asao Fujiyama4,5,

Rafik Neme6, Hideki Noguchi4, Yohei Minakuchi5, Masahiro Suzuki7, Hiroko Kawai-Toyooka7, David R. Smith8,

Halle Sparks2, Jaden Anderson2, Robert Bakarić9, Victor Luria10,11, Amir Karger12, Marc W. Kirschner10,

Pierre M. Durand1,13,14, Richard E. Michod1,11, Hisayoshi Nozaki7 & Bradley J.S.C. Olson2,11

The transition to multicellularity has occurred numerous times in all domains of life, yet its

initial steps are poorly understood. The volvocine green algae are a tractable system for

understanding the genetic basis of multicellularity including the initial formation of coop-

erative cell groups. Here we report the genome sequence of the undifferentiated colonial alga,

Gonium pectorale, where group formation evolved by co-option of the retinoblastoma cell

cycle regulatory pathway. Significantly, expression of the Gonium retinoblastoma cell cycle

regulator in unicellular Chlamydomonas causes it to become colonial. The presence of these

changes in undifferentiated Gonium indicates extensive group-level adaptation during the

initial step in the evolution of multicellularity. These results emphasize an early and formative

step in the evolution of multicellularity, the evolution of cell cycle regulation, one that may

shed light on the evolutionary history of other multicellular innovations and evolutionary

transitions.
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M
ulticellular organisms have independently evolved
numerous times throughout the tree of life including
plants, animals, fungi, cyanobacteria, amoeba, brown

algae, red algae and green algae1,2. In animals, multicellularity
emerged 600–950 million years ago (Myr ago) correlating with a
large expansion of genes encoding transcription factors, signalling
pathways, and cell adhesion genes that were co-opted from their
unicellular ancestors3,4 Similarly, multicellular, terrestrial plants
emerged B750 Myr ago correlating with an expansion of many
signalling pathways present in their unicellular relatives5,6.
However, because most multicellular lineages have long
diverged from their unicellular relatives, the genomic signature
of the transition to multicellularity has been obscured, and
consequently this evolutionary process remains enigmatic.

The volvocine green algae are a unique model system for the
evolution of multicellularity because the unicellular ancestry is
clear, the emergence of multicellularity occurred B230 Myr ago,
and species exhibit a stepwise increase in morphological
complexity ranging from undifferentiated colonies to differen-
tiated multicellular species7,8 (Fig. 1, Supplementary Figs 1,2).
Unicellular Chlamydomonas reinhardtii is thought to resemble
the unicellular ancestor of multicellular volvocines, including
undifferentiated Gonium pectorale and differentiated Volvox
carteri (Fig. 1).

Chlamydomonas undergoes a variant cell cycle (Supplementary
Fig. 2), regulated by homologues of the retinoblastoma cell
cycle pathway, termed multiple-fission where it divides by a series
of rapid cell divisions producing individual daughter cells9–11.
Gonium typically forms 8- or 16-celled undifferentiated colonies,
where each constituent cell resembles a Chlamydomonas cell
(Fig. 1). Gonium also undergoes multiple fission forming daughter
colonies by keeping cells attached after multiple-fission, suggesting
either cell cycle regulation12, or cell–cell adhesion has been
modified to promote multicellularity. In Gonium, like
Chlamydomonas, growth and cell division are uncoupled13,14.
Asexual juvenile Gonium colonies grow (without cell division) into
adults. After cell division through multiple-fission, juvenile
colonies hatch forming 8 or 16 daughter colonies of 8 or 16 cells
(Supplementary Fig. 2). Volvox contains approximately 2,000
small, terminally differentiated, somatic cells on the surface of the
spheroid and approximately 16 large reproductive cells embedded
in extracellular matrix (ECM) inside the spheroid (Fig. 1). Volvox
also has modified multiple fission where germ–soma separation is
established after an asymmetric cell division8,14.

The transition to multicellularity in the Volvocales was thought
to involve at least 12 steps (Supplementary Fig. 1)15,16 though
the genetic basis of these steps remains enigmatic.
Genomic comparison of the extremes of morphological

complexity, Chlamydomonas and Volvox, suggests few
genetic changes are required17, but it is unclear how and when
the genes important for multicellularity evolved during these 12
steps14.

By sequencing the genome of the undifferentiated, chlorophy-
cean Gonium pectorale, a species without a differentiated
ancestor16, we find co-option of cell cycle regulation, which
occurred during the initial transition to cell groups, as the genetic
basis for the evolution of multicellularity. The cell cycle regulation
found in undifferentiated Gonium, co-opted in a multicellular
context and shared with germ–soma-differentiated Volvox,
indicates group-level adaptations in undifferentiated colonies.
The early co-option of cell cycle regulation for group-level life
cycle and reproduction is a critical and formative step in the
evolution of multicellularity.

Results
Genomic comparisons of volvocine algae. At the genomic level,
the genomes of Chlamydomonas, Gonium and Volvox are similar,
though various measures of genome compactness correlate with
cell number, consistent with a long-term increase in organismal
size18,19. Chlamydomonas and Gonium have similar GC content
near 64%, while Volvox has 56% GC (Table 1). Otherwise,
Chlamydomonas, Gonium and Volvox have decreasing gene
densities of 159.6, 120.9 and 113.7 genes per megabase, with an
increasing average intron length of 279, 349 and 500 base pairs,
respectively. Although intron length increases with organismal
complexity, the number of introns per gene (Chlamydomonas,
7.46; Gonium, 6.5; Volvox 6.8, Table 1) does not. GC content,
intron length and gene density correlate with morphological
complexity.

We next examined genome-wide evolution in all three species
to better understand the genetic basis for the evolution of
multicellularity. A prediction of lineage-specific genes20 shows
few genes correlate with the evolution of multicellularity in the
Volvocales (phylostratum 7; PS7) with a maximum of 180–357
genes (Fig. 2a). This suggests that the evolution of multicellularity
does not rely upon the evolution of de novo genes. Though gene
regulation may be important during multicellular innovation, the
diversity and abundance of transcription factors is similar in
Chlamydomonas, Gonium and Volvox (Fig. 2b, Supplementary
Table 1, Supplementary Fig. 3). Although enrichment of
transcription factors can correlate with the evolution of
multicellularity3, this is not always the case21; we found that
Gonium and Volvox have fewer transcription factors than in
Chlamydomonas (Fig. 2b). These include PHD domains
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Table 1 | Summary statistics for genome level analyses for
Chlamydomonas, Gonium and Volvox.

Characteristic Chlamydomonas
v5.3

Gonium Volvox
v1

Volvox
v2

Genome size (Mb) 111.1 148.8 137.8 131.1
Scaffold N50 (Mb) 7.78 1.27 1.49 2.6
Number of contigs/
scaffolds

54 2,373 1,265 434

% G and C 64.1 64.5 56.0 56.1
Protein coding loci 17,737 17,984 15,669 14,971
Gene density
(genes/Mb)

159.6 120.9 113.7 114.1

Introns/gene 7.46 6.50 6.78 6.29
Average intron
length (bp)

279.17 349.83 496.67 399.50

% genes w/introns 92.4 92.6 82.8 84.0
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(transcription and chromatin binding), DNA binding trans-
cription factors and histones (Fig. 2b, Supplementary Tables 2
and 3, Supplementary Fig. 3).

Using all published chlorophyte green algae genomes, we
constructed Markov-based gene families (Chlamydomonas, 73%;
Gonium, 73%; Volvox, 70% of genes in gene families of size
greater than one). Compared with 2,844 net gene families gained,
which correlate with the origin of the Chlorophyceae, a
phylogenetic analysis of these gene families suggests little protein
innovation (110 net gene families) during the evolution of
multicellularity (Fig. 2c). These same green algae genomes
allowed analysis into Pfam domain innovation, which may
correlate with the evolution of multicellularity. We found
innovation of only nine Pfam domains correlating with the
evolution of multicellularity (Fig. 2d, Supplementary Table 4).
Moreover, multicellular algae (Gonium and Volvox) have reduced
Pfam domain diversity and abundance (compared with nine
unicellular green algae, Supplementary Data 1); 394 Pfam
A domains are significantly under-represented versus 129 over-
represented Pfam domains (Supplementary Fig. 4). Interestingly,
there is an excess of species-specific genes (Fig. 2a,c) and Pfam
domains (Fig. 2d) compared with multicellularity-correlated
genes and Pfam domains, suggesting that species-specific

adaptations are more numerous than changes correlating with
the evolution of multicellularity. We observe more evidence of
species-specific, rather than multicellular-specific, protein inno-
vations, suggesting species-specific adaptation (Fig. 2a,c,d,
Supplementary Tables 5–8) rather than genome-wide differences
correlating with the evolution of multicellularity. The evolution of
multicellularity in the volvocine algae does not require large-scale
genomic innovation.

Co-option of cell cycle regulation for multicellularity. Notably,
we observe that the genetic innovation correlating with multi-
cellularity, shared between Gonium and Volvox, evolved through
co-option of existing developmental programs of cell cycle
control. Volvocine algae have a common multiple-fission life
cycle, with variation in timing and number of divisions
(Supplementary Fig. 1)14. Like most eukaryotes, including plants
and animals, their cell cycles are regulated by homologues
of the retinoblastoma cell cycle regulatory pathway (Fig. 3,
Supplementary Figs 5–8, Supplementary Table 9)9,10, in which
cyclin-dependent kinases (CDKs) bind cyclin proteins to
phosphorylate and regulate retinoblastoma (RB or MAT3 in the
Volvocales), which in turn de-represses the cell cycle (Fig. 3a).
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Although most of these regulators are nearly identical in
Chlamydomonas, Gonium and Volvox (Fig. 3b,e), there are two
notable differences. First, Volvox has a four gene expansion of
cyclin D1 genes (Fig. 3c)17. As Volvox has tissue differentiation,
these cyclin D1 genes may have been important for tissue
development as is the case in metazoans and land plants22,23,
supported by the fact that RB has moved into the mating locus of
Gonium and Volvox and is differentially expressed between
mating loci (Fig. 3d)24,25. However, the tandem array expansion
of the cyclin D1 genes is also found in Gonium (Fig. 3c), where
cyclin D genes display elevated dN/dS ratios compared with other
cell cycle regulators (Supplementary Fig. 8), suggesting the
function of these cyclin Ds may be important for the transition
to undifferentiated colonies, rather than tissue differentiation.

Second, there is modification of the RB gene in Gonium and
Volvox (Fig. 3d, Supplementary Figs 5–7). Protein dimers of
cyclins and CDKs primarily regulate RB by phosphorylating
serine or threonine residues, which is thought to regulate RB
binding of chromatin via E2F/DP transcription factors11,26,27.
Recently it has been shown in human cells that cyclin D and
CDK4/6 regulate monophosphorylation of RB proteins for G1

phase-specific RB functions27. If similar in Gonium, this would
suggest a role of the expanded cyclin D1 genes for regulating RB
to express multicellularity-related genes during G1 phase. If the
expanded cyclin D1 proteins found in Gonium regulate
multicellular cell cycle changes, modification of cyclin D-CDK
phosphorylation sites in RB is predicted. Indeed, the linker of the
E2F/DP binding pocket of RB is shorter in Gonium and Volvox
compared with Chlamydomonas (Fig. 3d, Supplementary Figs 5
and 6), potentially altering how RB binds to chromatin via E2F/
DP. In addition, phosphorylation sites between the E2F/DP
pocket region (RB-A and RB-B domains) and the conserved
carboxy (C)-terminal domain are absent in Gonium and Volvox

RB proteins (Fig. 3d). Interestingly, in animals the C terminus
of RB is intertwined with E2F/DP and changes in the
phosphorylation by cyclin–CDK complexes could also alter
E2F/DP binding28. As these phosphorylation sites are absent in
Gonium and Volvox RB proteins (Fig. 3d), this suggests that RB
co-option for multicellularity may result in differences in locus-
specific temporal expression of genes important for
multicellularity during G1, such as cell–cell adhesion genes.
Given the role the RB pathway plays in regulating the cell cycle in
Chlamydomonas, its early modification found in Gonium, and its
co-option for complex morphology in Volvox, RB pathway
regulation might be a key step towards multicellularity in the
volvocine algae.

To test whether RB modifications present in Gonium and
Volvox (compared with Chlamydomonas) are unrelated to, cause
or are a consequence of multicellularity, we expressed the
Chlamydomonas11 and Gonium RB genes in a Chlamydomonas
strain lacking its RB gene (rb, mat3–4 strain, Fig. 4a)9,11 using the
promoter and terminator from the Chlamydomonas RB gene to
ensure expression near wild-type levels (Fig. 4b,c)11. The
Chlamydomonas RB gene rescues the small cell size defect in
the rb mutant (HA-CrRB::rb, Fig. 4a), while the Gonium RB gene
rescues the cell size defect and causes the Chlamydomonas rb
mutant to become non-palmelloid colonial, ranging from
2 to 16 normal-sized cells (HA-GpRB::rb, Fig. 4a). Crossing
RB gain-of-function transformed Chlamydomonas strain to a
Chlamydomonas strain lacking DP1, a gene that dimerizes with
E2F to anchor RB to chromatin11, results in suppression of the
colonial phenotype and large-sized cells (HA-GpRB::rb::dp1,
Fig. 4a) consistent with the phenotype of the Chlamydomonas
dp1 mutant itself10. This demonstrates that the Gonium RB gene
causes colonial multicellularity (Fig. 4a) through the RB pathway
(Fig. 3a) and suggests differences in how RB binds chromatin and
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regulates the expression of cell cycle related genes in Gonium
and Volvox are important for co-option of these RB targeted
genes for multicellularity (Figs 3 and 4). This gain-of-function
demonstrates a causal link between cell cycle regulation and the
group level during the evolution of multicellularity, emphasizing
that multicellularity can evolve by co-option and modification of
regulatory genes rather than extensive genomic differences or
innovation.

Volvox innovations for morphological complexity. In Volvox,
somatic differentiation is causally regulated by the regA gene
cluster, a set of putative DNA-binding transcription factors
thought to regulate chloroplast biogenesis29–31. The regA gene
cluster is absent in Chlamydomonas and Gonium (Fig. 5a,b), but
is present in diverse Volvox ferrisii and Volvox gigas32, suggesting
early evolution and co-option of this cluster shortly after the split
of Gonium and Volvox lineages (Fig. 1)32. Interestingly, if the
absence of regA in Gonium is indicative of the absence of regA in
Astrephomene, with an independent evolution of somatic cells
(Fig. 1)16, Astrephomene may determine somatic cell fate through
a different pathway than Volvox suggesting multiple evolutionary
pathways and subsequent evolutionary consequences during the
evolution of multicellularity. Indeed, undifferentiated multi-
cellularity evolved once in the Volvocales16, while additional
morphological complexity (for example, cellular differentiation
and large Volvox body size) has repeatedly evolved, suggesting a
relative ease to gain and lose additional complexity.

We investigated proteins related to morphological complexity,
pherophorins and matrix metalloprotease (MMP) proteins, in the
volvocine algae17. These proteins are hypothesized to produce
ECM and break up cell wall components during reproduction in
Gonium and other Volvocales15,33,34. While Chlamydomonas
contains no ECM and Gonium contains little ECM, a Volvox

spheroid is largely composed of ECM (Fig. 1). Pherophorin
and MMP gene families are expanded in Volvox relative
to Chlamydomonas (Fig. 5c)17. We found the expansion of
pherophorins and MMP genes in Volvox (Fig. 5c, Supplementary
Data 2 and 3) is not present in Gonium, though some species-
specific expansion of MMP genes has occurred (Supplementary
Data 2 and 3). While some expansion of ECM gene families in
Gonium was expected14 to direct the cell wall layer synthesis of a
Gonium colony, this layer may instead be directed through
differential gene expression. Pherophorin, MMP expansion and
cellular differentiation correlate with expanded organismal size
rather than the origin of multicellularity, suggesting a subsequent
step in the evolution of multicellularity.

Discussion
We have investigated the evolution of multicellularity in the
volvocine algae by sequencing the genome of the undifferentiated
Gonium. Despite morphological differences, it was known that
the Chlamydomonas and Volvox genomes are strikingly similar,
suggesting that multicellularity required few genetic innova-
tions17,35. However, these two genomes, positioned at the
extremes of volvocine morphology, were unable to resolve
the tempo and mode36 of the evolutionary transition to
multicellularity.

The evolution of multicellularity in the volvocine algae is
thought to involve 12 morphological innovations (Supplementary
Fig. 1)15. Five of these steps correlate with the evolution of cell
groups7, a period of rapid evolutionary change (tempo). This view
emphasizes the importance, and subsequent modification, of
innovations correlating with undifferentiated colonies (mode).
Finding support for this view, we have generalized these 12 steps
into three major phases (Fig. 6): the evolution of cell cycle
regulation to form cooperative groups via cell–cell adhesion, the
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(b) Schematic Gonium RB tagged with 3XHA with its expression driven by the Chlamydomonas RB promoter and terminator11. (c) Anti-HA immunoblotting

of HA-CrRB::rb and HA-GpRB::rb with anti-tubulin loading controls. Arrows indicate proteins at their expected molecular mass.
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evolution of increased organismal size, and the evolution of
differentiated germ and soma cells. Having sequenced the
genome of Gonium, along with the published genomes of
Chlamydomonas and Volvox, we can now identify the genetic
pathways associated with each of these steps. The evolution of
undifferentiated colonies correlates with RB cell cycle regulatory
pathway evolution (Figs 3 and 4), which is further modified as
complexity increases in the Volvocales24. Increased organismal
size toward Volvox correlates with an expansion of pherophorins
and MMPs (Fig. 5c). Finally the evolution of the regA gene cluster
underlies somatic differentiation (Fig. 5a,b). Future sequencing of
additional Volvocales genomes should clarify the evolutionary
steps required for the evolution of germ and soma. Our three-
phase model for the emergence of multicellularity, supported by
the genetic pathways important for their evolution, changes our
understanding of the tempo and mode of multicellular evolution

previously obscured in other taxa such as plants, fungi and
animals due to genomic divergence (Fig. 6).

Interestingly, an emerging theme throughout the evolution of
multicellularity is that the genetic basis for the evolutionary
transition emerges much earlier than anticipated3,6,32. In plants
and animals, RB proteins are important for regulating both cell
proliferation and differentiation by highly complex locus
interactions with chromatin and chromatin remodelling
factors37,38. Our finding that the RB pathway was co-opted
early for multicellularity in undifferentiated colonies suggests that
the template for subsequent evolutionary innovations in
developmental programs was laid out during the transition to
undifferentiated multicellularity via RB and cell cycle
modifications, rather than with emergence of germ and somatic
cellular differentiation. Interestingly, RB has been further co-
opted for a role in sexual differentiation in Volvox, where there
are male- and female-specific isoforms of RB24. This suggests that
the evolution of multicellular cell cycle regulation was a critical
step for the evolution of multicellularity. By comparing the
genomes of these three volvocine green algae, we have determined
that the mechanism of multicellular evolution is primarily co-
option and regulatory modification of existing genetic
pathways39. Gene duplication forms the basis of subsequent
multicellular innovations.

The genomic age is illuminating the genetic pathways that are
important for the evolution of multicellularity in other organisms
where genes such as cadherins and integrins in animals3,4 and cell
wall biogenesis genes in plants6. These are roughly analogous to
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Figure 5 | Genetic changes present in the Volvox genome. (a) Gene synteny near the regA gene cluster and closely related regA-like genes (bold).

Chromosome or scaffold number is indicated. Conserved genes are linked by line segments for regA-like (thick, black) and neighbouring genes (thin, grey).

(b) Phylogenetic relationships of regA-like genes. The tree is a midpoint root and bootstrap values above 70% are indicated. (c) Comparison of number of

pherophorin and metalloprotease genes in Chlamydomonas, Gonium and Volvox.

Evolution of
cell cycle
regulation

Evolution of
cellular differentiation

Evolution of
increased body size

Figure 6 | Conceptual model for the evolution of multicellularity.

Multicellularity hinges on the evolution of cell cycle regulation in a

multicellular context with subsequent evolution of cellular differentiation

(here, cell size-based) and increased body size.
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metalloproteases and pherophorins in the volvocine algae
highlighting convergences on similar genetic innovations for
multicellularity. The substantial innovation and expansion of
transcription factors and signalling networks found in animals
and plants3,6 is not present in the volvocine algae. However, the
volvocine algae demonstrate the critical role of transcriptional
regulation of the cell cycle by RB for the formation of
undifferentiated colonies. RB proteins regulate the cell cycle of
most eukaryotes11,26, and are tumour suppressors in humans26,
suggesting a broader role for RB and cell cycle regulation during
the evolution of multicellularity.

The implications of these findings are greater than simply
identifying when genes evolved during the evolution of multi-
cellularity. Theoretical work has emphasized the need for greater
understanding of the origin of an integrated group life cycle
during the evolution of multicellularity12,40–42. The field has been
concerned with the evolution of germ–soma division of labour as
the defining step in the evolution of multicellularity40,43–45;
indeed, a recent review of animal multicellularity45 does not
mention the importance of cell cycle regulation and group
formation. The Gonium genome reflects the early evolution of cell
cycle regulation (Figs 3 and 4) in undifferentiated groups,
conserved and modified in differentiated Volvox, that is indicative
of the emergence of colony level adaptations. We highlight an
early and formative step, the co-option and expansion of cell cycle
regulation, as important for the evolution of cooperative groups
and impacting the evolution of more complicated body plans; one
that may shed light on the evolutionary history of other
multicellular innovations and evolutionary transitions.

Methods
Strain and genome sequencing. The Gonium pectorale strain K3-F3-4
(mating type minus, NIES-2863 from the Microbial Culture Collection at National
Institute for Environmental Studies, Tsukuba, Japan, http://mcc.nies.go.jp/)
was used for genome sequencing. Gonium was grown in 200–300 ml VTAC media
at 20 �C with a 14:10 h light–dark cycle using cool-white fluorescent lights
(165–175 mmol m� 2 s� 1).

For next-generation sequencing and construction of a fosmid library, total DNA
was extracted. Sequencing libraries were prepared using the GS FLX Titanium
Rapid Library Preparation Kit (F. Hoffmann-La Roche, Basel, Switzerland) and the
TruSeq DNA Sample Prep Kit (Illumina Inc., San Diego, CA, USA) and were run
on both GS FLX (F. Hoffmann-La Roche) and MiSeq (Illumina Inc.) machines.
Newbler v2.6 was used to assemble the GS FLX reads. A fosmid library was
constructed in-house using vector pKS300. The fosmid library (23,424 clones)
and BAC library (18,048 clones, Genome Institute (CUGI), Clemson University,
Clemson, SC, USA) were end-sequenced using a BigDye terminator kit v3
(Life Technologies, Carlsbad, CA, USA) analysed on automated ABI3730 capillary
sequencers (Life Technologies).

Evidence-based gene prediction. Introns hint file generation was done through a
two-step, iterative mapping approach using Bowtie/Tophat command lines
and custom Perl scripts written by Mario Stanke as part of AUGUSTUS46,
(available at: http://bioinf.uni-greifswald.de/bioinf/wiki/pmwiki.php?n=
IncorporatingRNAseq.Tophat). AUGUSTUS version 2.6.1 was selected because its
algorithm has been successfully tuned to predict genes in Chlamydomonas and
Volvox genomes, which contain high GC content46. Reads were first mapped to the
genome assembly with Tophat version 2.0.2 (ref. 47) and the raw alignments were
filtered to create an initial (intron) hints file, which was subsequently provided to
AUGUSTUS during gene prediction. An exon–exon junction database was
generated from the initial AUGUSTUS prediction via a Perl script. The twice-
mapped reads (once to the genome and once to the exon–exon sequences) were
then merged, filtered and a final intron hints file was created. From this, the final
gene prediction with AUGUSTUS was performed.

Pfam domain analysis. Diversity and abundance of Pfam domains was deter-
mined for all published green algae genomes. Chlorophyte genomes including
Bathycoccus prasinos48, Chlamydomonas reinhardtii35, Chlorella variabilis49,
Coccomyxa subellipsoidea C-169 (ref. 50), Micromonas pusilla CCMP1545 (ref. 51),
Micromonas pusilla RCC299 (ref. 51), Ostreococcus tauri52, Ostreococcus
lucimarinus53, Ostreococcus sp. RCC809 (US Department of Energy, Phytozome)
and Volvox carteri (both versions 1 and 2; ref. 17) were searched using direct
submission of Pfam A and Pfam B domains using Bioperl. Subsequent hits were

counted and produced a matrix of Pfam domain diversity and abundance across
green algae.

Analysis of transcription-associated proteins. Transcription-associated proteins
(TAPs) include transcription factors (enhance or repress transcription) and
transcription regulators (proteins which indirectly regulate transcription such as
scaffold proteins, histone modification or DNA methylation). We combined three
TAP classification rules for plants; PlantTFDB54, PlnTFDB55 and PlanTAPDB56 to
make a set of classification rules for 96 TAP families. Conflicts between the three
sets of rules were manually resolved using the rule that included more genes as
transcription-associated proteins.

Each transcription family includes at least one, up to three, mandatory domains.
Families may include up to six forbidden domains (that is, a gene G cannot be in
family F if domain D is present); not all families have defined forbidden domains.
All mandatory and forbidden domains were represented by a full-length, global,
Hidden Markov Model (HMM). Available HMMs were retrieved from Pfam_ls
database57,58. When HMMs were not available from the Pfam_ls database, custom
HMMs were made using multiple sequence alignments from PlnTFDB55 and the
HMM was calculated using HMMER version 3.0 (ref. 59) using ‘hmmbuild’ with
default parameters and ‘hmmcalibrate—seed 00 .

Gathering cutoff thresholds (GA) for the custom HMMs were set as the lowest
score of a true positive hit using a ‘hmmscan’ search against several complete
Chlorophyte genomes. Chlorophyte genomes including Bathycoccus prasinos48,
Chlamydomonas reinhardtii35, Chlorella variabilis49, Coccomyxa subellipsoidea
C-169 (ref. 50), Micromonas pusilla CCMP1545 (ref. 51), Micromonas pusilla
RCC299 (ref. 51), Ostreococcus tauri52, Ostreococcus lucimarinus53, Ostreococcus
sp. RCC809 (available on the DOE Phytozome website, version 10.1) and Volvox
carteri17 were searched using ‘hmmscan’ to search the library of 103 domains
against the predicted protein sequences. Analyses were replicated with both Volvox
version 1 and version 2; however, as results were not qualitatively different, results
from version 1 are provided (Supplementary Fig. 3). Subsequent hits were classified
into a TAP family. Conflicts between multiple TAP families were resolved by
assigning the gene to the TAP family with the highest score (Supplementary
Table 1).

Construction of protein families. Protein families were created using
OrthoMCL60 with a variety of inflation values ranging from 1.2 to 4.0 in steps of
0.1 (Supplementary Figs 16–17). This analysis was performed using Chlorophyte
genomes available on the DOE JGI Phytozome website, version 10.1 including
Bathycoccus prasinos48, Chlamydomonas reinhardtii35, Chlorella variabilis49,
Coccomyxa subellipsoidea C-169 (ref. 50), Micromonas pusilla CCMP1545 (ref. 51),
Micromonas pusilla RCC299 (ref. 51), Ostreococcus tauri52, Ostreococcus
lucimarinus53, Ostreococcus sp. RCC809 (available on the DOE Joint Genome
Institute website) and Volvox carteri17. This analysis was repeated for both Volvox
version 1 and Volvox version 2. The inflation value of 1.9 was used for both
analyses for consistency and was chosen to have relatively large, coarser grained
clusters that were robust to higher inflation values (Supplementary Figs 16–19). To
avoid bias introduced by not including all genes for each species, genes not
assigned to a gene family (singletons) were assigned to single gene families and
included in all subsequent phylogenetic gene family analyses.

A species tree was calculated by extracting OrthoMCL gene families containing
only one copy in each species, for a total of 1,457 genes. The OrthoMCL run with
an inflation value of 1.5 was chosen to use larger, coarser grained clusters, thus
increasing the likelihood of capturing true 1:1:1 orthologues. This species tree
included Volvox carteri version 2. These genes were independently aligned using
Muscle version 3.8.31 (ref. 61) and concatenated. A phylogenetic tree was produced
using RAxML version 8.0.20 (ref. 62) using the Protein Gamma model with
automatic model selection on a per gene basis via partitions for each protein.
A rapid bootstrapping analysis to search for the best-scoring ML tree was
run with 100 bootstraps. The resulting species tree is consistent with previous
results16,51,63–65 and had 100 bootstrap support at every node (Supplementary
Fig. 20). This result is also consistent with numerous morphological characteristics
supporting a closer relationship of Gonium and Volvox66.

Gene family evolution within the volvocine algae was analysed using Count
version 10.04 (ref. 67) to perform several parsimony analyses including symmetric
Wagner parsimony (each gene family may be gained or expanded multiple times
and the gain penalty is equal to the loss penalty) and asymmetric Wagner
parsimony (each gene family may be gained or expanded multiple times and the
gain penalty is two times higher than the loss penalty). This analysis was repeated
for both Volvox version 1 and version 2 genomes (Supplementary Tables 5–8).

dN/dS analysis. During our OrthoMCL construction of protein gene families, we
identified 6,154 clusters with exactly one copy in Chlamydomonas (version 5.3),
Gonium and Volvox (version 2). The number of genes from other unicellular (non-
Chlamydomonas) Chlorophyte species was ignored. This criteria is relatively strict
as it does not include any genes with a duplicate in any species (copy number
greater than one in any species) or any genes which are not essential (no copy
present in any species) resulting in 1:1:1 orthologues. Given the relatively high gene
duplication rates in volvocine algae (data not shown), these strict criteria support
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an interpretation of 1:1:1 orthology. Genome-wide pairwise comparisons of dN, dS
and dN/dS were calculated (Supplementary Fig. 21; Supplementary Table 11) using
PAML and codeml (ML analysis68) based on nucleotide translation based
alignments (proteins were aligned using MUSCLE61).

Prediction of lineage-specific genes. The phylostratigraphy method20 assumes
Dollo’s parsimony (that is, it is more likely that a gene observed in two distant
clades was present in the common ancestor and multiple independent gains are not
possible). This provides an entry point for testing evolutionary hypotheses related
to the age of genes and to quantify how much gene-level innovation has occurred
along each phylogenetic branch. Old genes are classified in low phylostrata (present
in distant species, PS1–PS7) and young genes are classified in higher phylostrata
(for example, genus- or species-specific genes, PS8–PS9). The resolution of each
phylostratum strictly depends on the availability of reliable outgroups (the
availability of reliable genomic outgroups is relatively low in Chlorophyte algae).
The phylogenetic classes were defined from those in each NCBI Taxonomy entry
for Chlamydomonas, Gonium and Volvox, resulting in nine expected phylostrata
for each species. All proteins were subjected to a BLASTP search with an E-value
threshold of 0.001 against the NCBI nr database. Placement in phylostrata was
derived from the taxonomic information of these hits for each protein, using the
most distant hit, and following Dollo’s parsimony.

Phylogenetic analyses. Unless otherwise stated, all phylogenetic analyses were
performed using a custom pipeline of SATe version 2.2.7 (ref. 69) coupled with
RAxML version 8 (ref. 62). Full gene protein sequences were passed to SATe
using a FASTTREE tree estimation with a RAxML search after tree formation
with a maximum limit of 10 iterations and the ‘longest’ decomposition strategy.
Bootstraps were made on the SATe output alignment and tree using RAxML with
automatic model selection, a rapid hill climbing algorithm (� f d) and 100
bootstrap partitions. Bipartition information (� f a) was obtained using the SATe
output tree and RAxML bootstraps.

Chlamydomonas strains culture conditions. Wild-type Chlamydomonas
reinhardtii 6145 and 21gr, and HA-CrRB (HA-MAT3::mat3–4, here referred to as
HA-CrRB::rb), mat3–4 (here referred to as rb), and dp1 have been previously
described9–11. Briefly, wild-type strains 6145 (MT� ) and 21gr (MTþ ) are mating
pairs that have been back crossed to eliminate the y1 mutation in 6145 (ref. 10).
The RB knockout strain has been previously characterized as a null allele, and the
knockout mutation is the rb allele9,11. The rb mutation can be complemented by a
amino (N)-terminally tagged version of the gene that behaves identical to wild type.
Previously, a knockout mutation in the Chlamydomonas DP1 gene, dp1, was
identified and characterized10,11. All the strains were maintained on TAP plates.
For phenotype analysis, the strains were grown in high salt media (HSM)
synchronously under 14 h of 150 mE of light, samples were fixed hourly and
examined by light microscopy10,11.

Cloning of Gonium pectorale RB and transformation into rb. A 3X haemagluttin
(HA) tagged copy of the Gonium pectorale RB gene was cloned using InFusion
Cloning (Clontech) to be driven by the Chlamydomonas RB promoter and
terminator that includes a AphVIII selectable marker for Chlamydomonas trans-
formation (Fig. 4, (ref. 11)). Gonium pectorale genomic DNA from K4F3 was used
as a template and the genomic region of RB was amplified without its ATG start
codon using the primers 50-CAGATTACGCTACTAGATCTGCCGAAGCTG
AACGTTTTACTGCG-30 , and 50-CTCCGGCCGCGGTGCCTAATTTGCG
CCGTACCGCCGGA-30. These primers overlap with the 3X HA tag and 30

terminator from the previously created HA-CrRB transformation clone that
complements the rb mutation11. The HA-CrRB plasmid was amplified by inverse
PCR with 50-TCTAGTAGCGTAATCTGGAACGTCATATGGATAGG-30 and
50-GCACCGCGGCCGGAGGT-30 primers. PCR products were gel purified with a
QiaQuick gel extraction kit (Qiagen). Purified PCR fragments were fused by
InFusion (Clontech) cloning based on overlaps in the amplified sequences and
transformed into chemically competent DH5-apha cells, after which the clone was
confirmed by sequencing.

Transformation of Chlamydomonas reinhardtii. The rb strain was transformed
with glass beads11, with the HA-GpRB clone (above) and as a control with
HA-CrRB and pSI103 (AphVIII selectable marker only) and selected on TAP plates
supplemented with 20mg ml� 1 paromycin11. Candidate strains were screened by
growth morphology10,11, and then screened for expression by immunoblotting with
an anti-HA antibody (Roche 3F10, high affinity11). Four independent strains
expressing the HA-GpRB, and five independent strains expressing HA-CrRB were
created. Control complementation of the rb mutation with HA-CrRB occurred at
rates similar to previous results11. The presence of the rb mutation was confirmed
by replica plating on TAP plates supplemented with 10 mg ml� 1 emetine9,11.

Genetic analysis of HA-GpRB-expressing strains. Two lines expressing HA-
GpRB were crossed to a dp1 null mutation10. Because both the HA-GpRB and dp1

mutations are linked to AphVIII, single tetrads were dissected. HA-GpRB
was genotyped with primers in the 3XHA tag 50-AGTGCTAACAGCATGTCT
AGTTAC-30 , and in the 50 portion of GpRB 50-TGCGAACAACCGCTGCAGA
CCTTC-30 . The dp1 mutation was genotyped as previously described10.

Immunoblotting HA-GpRB and HA-CrRB strains complementing rb. Whole-cell
lysates from strains were prepared, separated and immunoblotted11. Briefly, the
anti-HA antibody used for detection of HA-GpRB and HA-CrRB was an anti-HA
high affinity monoclonal antibody (clone 3F10, Roche) and anti-alpha-tubulin
monoclonal antibody (Sigma), as previously described11. The expression levels of
RB in HA-CrRB strains have been previously shown to be similar to wild-type
Chlamydomonas expression levels11. The expression levels of RB in HA-GpRB are
similar, if not slightly below, the expression levels of HA-CrRB, suggesting that
overexpression of RB is not causing the observed colonial phenotype, but rather
modification to the Gonium RB gene.

Measurement of cell or colony size distribution. The size of cells and groups of
cells was measured with a Moxi Z automated cell sizer/counter using type ‘S’
cassettes (ORFLO Technologies). Sizing is based on the Coulter principle used
previously with Chlamydomonas reinhardtii10,11.
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