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FIG. S1. Analytical modeling of measured diffraction patterns. The experimental images in 
the left column are modeled by analytically derived diffraction patterns as shown in the 
center column. The right column shows the spatial arrangements of Xe clusters (black) inside 
He droplets (gray) that give rise to the simulated diffraction patterns. The data displayed in A 
and D are identical and correspond to Fig. 2B1 of the main article, except here they are 
plotted against a black background. Similarly, panel G corresponds to Fig. 2C1 and panels J, 
M to Fig. 2D1 of the main article.  
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S1: Calculation of Cluster Coordinates from Symmetric Diffraction Images 

Although the cluster configurations presented in the main text were ultimately 

obtained by the application of an iterative phase retrieval algorithm [1], the highly symmetric 

diffraction patterns also invite an analytic estimate of the cluster arrangements. A comparison 

of the results of these independent approaches validates the results presented in the main text. 

We model the recorded images by comparison with X-ray diffraction arising from a droplet 

of radius RD containing a small number, N, of spherical Xe clusters, each having the same 

radius RC << RD. The total scattering amplitude of these systems is given by the coherent 

superposition of the scattering amplitudes SD and SC from the droplet and the embedded 

identical clusters, respectively; the intensity recorded at the detector is given by 
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Herein, qq


  is the change in the incident wavevector upon scattering and jd


represents the 

position of the jth cluster with respect to the droplet center. For the current case of small-angle 

scattering (Θ < 0.02 rad) jyjxj yqxqdq 


, in which xj and yj are cluster coordinates in 

the plane perpendicular to the X-ray beam.  

The amplitude of a diffracted plane wave due to a spherical object of radius R is 

given by [2] 
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in which n is the complex refractive index of the scattering medium, e.g. He or Xe. We 

assume, for simplicity, that the ratio of the (1 - n) values for Xe and He is real and given by 

9.191/1
22  HeXe nn . This estimate is based on atomic scattering factors and the 

assumption that clusters and droplets have densities of solid Xe and liquid He, respectively 

[3]. Although we consider spherical clusters here, we note that Xe clusters formed inside 
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vortices may have irregular or even filament-like shapes (Figs. 2E2 and 2F2 of the main 

text).  

We first discuss a He droplet containing a single Xe cluster (N = 1), displaced by a 

distance, d, relative to the droplet center along the Y-axis. In this case, the diffraction 

intensity is given by  
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The zero-order diffraction maximum of the small Xe cluster will occupy most, if not all, of 

the detector, and can be approximated by a positive constant due to the order-of-magnitude 

size difference between the Xe clusters and the He droplets. Outside the central detector hole, 

the signal intensity variations due to the droplet are well approximated by a negative cosine 

function. Therefore, eq. (3) can be approximated by 
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wherein AD and AC are the He droplet and Xe cluster amplitude factors, respectively. The 

third term in eq. (4) represents the interference between the droplet and cluster diffraction 

patterns. Interference maxima occur either when ,...1,0,1..., ; 2  mmdqy   and 

,...2,1,0 ; )12(  kkqRD  , or when ,...1,0,1..., ; )12(  mmdqy   and 

,...2,1,0 ; 2  kkqRD  . Geometrically, this occurs when the linear fringes that align 

perpendicular to the cluster displacement axis (i.e. along the X-axis) intersect in phase with 

the rings from the droplet. The coordinates of the interference maxima, DX, DY, in detector 

space are  
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in which Z is the distance between the scattering center and the detector and the indices k and 

m enumerate the droplet rings and interference fringes, respectively. 

 We used eqs. (1-5) to simulate the experimental diffraction intensities shown in the 

left column of Fig. S1 using the model cluster arrangements shown in the right column. The 

simulated diffraction pattern shown in Fig. S1B, for example, emerges from a single cluster 

in the droplet, depicted in Fig. S1C. The positions of the diffraction maxima from two 

symmetrically displaced clusters in a He droplet (Fig. S1F) are also described by eq. (5), the 

corresponding pattern is depicted in Fig. S1E. It resembles the experimental data much more 

closely than the simulation in Fig. S1B. The single cluster pattern in Fig. S1B has much less 

contrast and fails to reproduce the linear fringes. Therefore, we ascribe the diffraction in 

Fig. 2B1 of the main text to a droplet containing two clusters that are symmetrically 

separated from the droplet center as depicted in Fig. S1F. Values of the droplet radius (RD = 

107 nm) and the cluster displacement (d = 81 nm) were calculated by measuring DX and DY 

in Fig. S1A. The spacing between the linear fringes was measured between the parallel white 

lines, while the spacing between the rings was measured along the single red line emanating 

from the center. The positions of the maxima obtained from inserting these values into eq. (5) 

are shown in Fig. S1D as white dots, demonstrating excellent agreement with the 

experimental data.   

A similar treatment has been applied to the data in Fig. S1G and Figs. S1J,M, which 

are identical to Fig. 2C1 and Fig. 2D1, respectively, in the main text, except on a black 

background. The modeling becomes more ambiguous as the system complexity grows due to 

the larger number of scattering centers. For this reason, the clusters were assumed to be 

identical in size and symmetrically distributed about the droplet center, which is justified by 

the high degree of symmetry of the observed patterns. The fourfold symmetry present in 

panel S1G suggests a square-symmetric cluster arrangement. The simplest example of this is 
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a constellation of four clusters arranged in a square centered in the droplet. This arrangement 

will produce linear interference fringes for each pair of oppositely placed clusters, 

intersecting at 90° angles. The separation between the fringes gives d = 73 nm, while the 

separation between the droplet circular fringes gives RD = 90 nm. The simulated pattern in 

Fig. S1H reproduces the data in Fig. S1G very well.  

At first glance, the six-fold symmetry of Fig. S1J suggests a triangular cluster 

arrangement, which is supported by the presence of linear fringes that intersect at 60°. RD = 

120 nm is straightforwardly determined from the droplet's circular fringes, while the linear 

fringe separation indicates a cluster displacement of d = 93 nm. However, the simulated 

diffraction in Fig. S1K, derived from the three clusters depicted in Fig. S1L, lacks 

correspondence with Fig. S1J just as Fig. S1B fails to reproduce the data in Fig. S1A. Note 

that two superimposed triangles rotated 60° with respect to one another form a regular 

hexagon, which also produces linear diffraction fringes that intersect at 60°. Figure S1N 

shows the simulated diffraction pattern produced by the hexagonal arrangement in Fig. S1O, 

which reproduces the central regions of the experimental image much more closely than 

Fig. S1K. Figure S1P shows the simulated diffraction pattern produced by a hexagonal 

arrangement with a central cluster as depicted in Fig. S1Q. Similarly to the triangular cluster 

arrangement, this cluster configuration leads to noticeable deviations in the diffraction pattern 

at large q compared to the six-membered ring in Fig. S1O. However, the deviations between 

the different models occur in the intensity distribution, whereas the symmetry of the 

diffraction patterns remains the same. Strong support for a cluster configuration similar to the 

one illustrated in Fig. S1O is also provided by the DCDI density reconstruction discussed 

here and in the main text.  

The droplet radii and average distances of the clusters from the droplet center 

obtained from the modeling are listed in Table S1. Table S2 shows the Xe atom partitioning 



7 
 

between the clusters and the radial displacements and azimuthal angles of the clusters taken 

from the density reconstructions in Figs. 2B2-D2 of the main text.  The phase retrieval results 

provide more detailed information on the cluster arrangement, and they are also in good 

agreement with the analytical modeling, providing independent support for the density 

calculations.   

We have also tested the effect of the presence of a central cluster in the hexagonal 

configuration on the quality of the reconstruction, as determined by the normalized root mean 

square deviation (NRMSD) of the calculated and measured diffraction patterns [1].  The 

NRMSD between the diffraction patterns in Fig.1D1 and D3 of the main article was found to 

be 0.3952, which is mainly determined by the shot noise in the experimental diffraction.  For 

comparison, we have artificially magnified the central feature in Fig.1D2 so that the total Xe 

density remains the same and the central feature contains 1/7 of the total density.  The 

resulting diffraction pattern leads to an NRMSD value of 0.4313, which is larger than that in 

the original reconstruction.  This deviation is statistically significant because the shot noise 

uncertainty of the NRMSD determination is 2σ = 0.0015. On the other hand, removing the 

central feature altogether gives the NRMSD = 0.3970. Thus the change of the NRMSD 

between the structures with and without the central feature is comparable to the NMRSD 

uncertainty due to shot noise and is not statistically significant.   
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TABLE S1. Droplet radius (RD), average distance (d) of the clusters from the droplet center, 

and average radius (RC) of the clusters obtained from modeling the data in Figs. S1D, G, M 

by diffraction patterns from symmetric arrangements of identical spheres.  

Number of clusters 2 4 6 

RD [nm] 107 90 120 

d [nm] 81 73 93 

RC [nm] 10 7 8 

 

TABLE S2. Xe atom partitioning between the clusters, radial displacements, and azimuthal 
angles  of the cluster positions as obtained from the iterative phase retrieval density 
reconstructions. The angle is counted counterclockwise from the horizontal axis in Figs. 2B2, 
C2, and D2 of the main text. Uncertainties are root mean square deviations of the measured 
values and the averages. 
 
 

Fraction of NXe in a 
cluster 

Distance from the 
center of the droplet, 

nm 
φ, degrees 

Δφ, 
degrees 

Fig. 
2B2 

  RD = 108 ± 6 nm   
1 0.50 82 ± 12 33 ± 7 187 
2 0.50 83 ± 11 206 ± 8 173 

Ave 0.50 83 ± 8  180±8 
  

Fig. 
2C2 

  RD= 90 ± 5 nm   
1 0.26 73 ± 10 18 ± 6 87 
2 0.23 72 ± 10 108 ± 5 90 
3 0.25 68 ± 13 198 ± 5 90 
4 0.26 72 ± 10 291 ± 7 93 

Ave 0.25 ± 0.02 71±5  90 ± 4 
  

Fig. 
2D2 

  RD = 118 ± 6 nm   
1 0.18 91 ± 15 16 ± 7 57 
2 0.15 87 ± 15 77 ± 9 61 
3 0.16 98 ± 11 140 ± 8 63 
4 0.19 92 ± 15 198 ± 7 58 
5 0.14 90 ± 8 255 ± 7 57 
6 0.19 97 ± 13 319 ± 9 64 

Ave 0.17 ± 0.02 92 ± 5  60 ± 5 
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S2. Calculation of NXe from the Pickup Pressure and Observed Droplet Radius. 

The average initial droplet size and the average number of captured Xe atoms are 

determined at the beginning of each experimental run using a titration technique developed 

by Gomez et al [4]. However, the actual size of individually imaged droplets may deviate 

considerably from the average value due to the broad droplet size distribution in the beam 

[5]. For each specific imaged droplet, the number of captured Xe atoms is obtained from the 

radius of the doped droplet as determined from the diffraction image and the absolute Xe 

pickup pressure. Eq. (6) gives the instantaneous frequency of successive collisions for a 

droplet of radius RD traveling at a speed vD through Xe gas with a thermal velocity vXe and 

number density ηXe: 

fC Xe RD
2 vD

2  vXe
2             (6) 

 This equation is used to calculate the number of collisions the droplet experiences 

while traversing the pick-up cell, taking into account the reduction in droplet size upon 

collision-induced evaporative cooling. We assume the droplet evaporates 250 helium atoms 

per Xe collision, based on the thermal and cohesive energies of Xe atoms and the evaporation 

enthalpy of He. Thus, starting at the final droplet size and propagating the droplet backward 

in time through the pickup cell, we account for the instantaneous change in the droplet cross-

section and simulate the droplet evaporation in reverse to provide the number of captured Xe 

atoms, given in Table 1 of the main text.  

 

S3. Radial position of a doped vortex in a freely rotating cylindrical droplet. 

 In order to gain insight into the effect of doping on the vortex coordinates, we have 

studied the model of a freely rotating superfluid cylinder with constant total angular 

momentum, L.  The model is similar to that previously discussed in Ref. [6], however instead 
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of the rotation of the normal component, we have assumed that the droplet is entirely 

superfluid and the classical angular momentum is associated only with the Xe atoms 

embedded in the vortex core. The stable configuration of a vortex at distance r from the 

center corresponds to a minimum energy, E, in the laboratory frame. Neglecting any 

backflow effects, the energy and angular momentum per unit length are [7]: 
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where ρHe = 145 kg/m3 and ρXe = 3781 kg/m3- are the densities of liquid helium and of solid 

Xe, respectively, κ = 9.97×10-8 m2/s is the quantum of circulation, ω is the angular velocity of 

the vortex, RHe is the radius of the cylinder and RXe is the radius of the embedded Xe 

filament. In the absence of Xe the radius of a vortex is ξ = 10-10 m, whereas with Xe it is 

approximated by RXe. V(r) is the solvation potential, which was calculated from the Lennard-

Jones pair potential of the interaction between He and Xe atoms. V(r) is set to zero in the 

cylinder's center and increases sharply about 10 nm from the surface. 

The cross markers in Fig. S2 show the results of the calculations of r vs L for RHe = 

100 nm and RXe = 5 nm. For comparison, the corresponding results for a bare vortex line are 

shown by a continuous curve.  It is seen that the presence of a Xe filament generally leads to 

an increase of r that can be ascribed to a centrifugal force on the vortex. In addition, doped 

vortices cannot come too close to the surface due to the solvation potential, leading to a 

maximum radial position of rmax≈90 nm. In principle, similar equations should govern the 

behavior of multiple vortices in a droplet. However, this more complex situation cannot be 
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treated in an as straightforward fashion as outlined above since the shape of multiply doped 

(and bare) vortices in a spheroidal droplet requires state of the art calculations,[8] which are 

beyond the scope of the present paper.  

 

 
 
 
Figure S2. Calculated equilibrium distance r of a vortex from the center of an RHe = 100 nm 
cylinder filled with superfluid helium. The distance r is plotted versus the total angular 
momentum of the system, which is given in units of the angular momentum of a central bare 
vortex. The continuous curve and cross markers represent the results for a bare vortex and for 
a vortex containing a filament of solid Xe with RXe = 5 nm, respectively.  
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