
Fast Iterative Solvers for Cahn–Hilliard Problems

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

von M. Sc. Jessica Bosch

geb. am 15.10.1988 in Leinefelde

genehmigt durch die Fakultät für Mathematik

der Otto-von-Guericke Universität Magdeburg

Gutachter: Dr. Martin Stoll

Prof. Dr. Luise Blank

eingereicht am: 21.03.2016

Verteidigung am: 21.06.2016

Publications

Large parts of this thesis have been published in journals.

Chapter 3 is an extended version of

[34]: J. Bosch, M. Stoll, and P. Benner, Fast solution of Cahn–Hilliard varia-
tional inequalities using implicit time discretization and finite elements, J. Com-
put. Phys., 262 (2014), pp. 38–57.

This publication has its origins in the author’s Master’s thesis [30]. Hence, parts
of this Master’s thesis appear in Chapter 3. However, more important are the ex-
tensions developed during the author’s PhD studies. In this sense, Chapter 3 is an
enhanced version of both, the publication [34] and the Master’s thesis [30]. Moreover,
the subsequent chapters build on the substance of Chapter 3 and extend the studies
therein. Therefore, it plays an important part in contributing to make a whole story
out of the author’s PhD projects.

Chapter 4 is an extended version of

[33]: J. Bosch and M. Stoll, Preconditioning for vector-valued Cahn–Hilliard
equations, SIAM J. Sci. Comput., 37 (2015), pp. S216–S243.

Moreover, we were able to improve the preconditioners proposed in [33] with some
fine tuning. Chapter 5 is a combination of

[31]: J. Bosch, D. Kay, M. Stoll, and A. J. Wathen, Fast solvers for Cahn–
Hilliard inpainting, SIAM J. Imaging Sci., 7 (2014), pp. 67–97.

[32]: J. Bosch and M. Stoll, A fractional inpainting model based on the vector-
valued Cahn–Hilliard equation, SIAM J. Imaging Sci., 8 (2015), pp. 2352–2382.

Note that the latter focuses on the numerical solution via Fourier spectral methods.
This is not addressed in this thesis since the central theme is the development of effi-
cient preconditioners for the iterative solution of the large and sparse linear systems
that arise from classical finite element methods. Hence, Chapter 5 presents another
perspective for solving the problem discussed in [32].

Acknowledgments

This thesis would not exist without the support of the professionals I met and my
family.

First and foremost, I want to thank my supervisor Martin Stoll for his constant sup-
port and guidance from my Master’s thesis on. He always made great efforts to
get the most out of me. I admire his insight and enthusiasm which have boosted
the whole project. I am extremely grateful for all discussions with him. They have
always been very fruitful and inspiring. It was a great time working with him under
a friendly working atmosphere.

I would also like to thank Luise Blank for her helpful advices and for a productive
cooperation. Her article on “Solving the Cahn–Hilliard variational inequality with a
semi-smooth Newton method“ laid the foundation of my Master’s thesis and hence
of this dissertation. Therefore, I am grateful that she agreed to be one of the referees
for this thesis.

I am very grateful for the friendly support and financial assistance from Peter Benner.
Moreover, I want to thank all my colleagues from the research groups “Numerical
Linear Algebra for Dynamical Systems“ and “Computational Methods in Systems
and Control Theory“ for the pleasant cooperation. In particular, I am happy about
the enjoyable moments with my office colleagues Pawan Goyal, Martin Redmann,
and Hamdullah Yuecel. I would also like to acknowledge the financial support from
the “International Max Planck Research School (IMPRS) for Advanced Methods in
Process and Systems Engineering (Magdeburg)“.

Parts of this thesis were performed while I was visiting the Oxford Centre for Col-
laborative Applied Mathematics (OCCAM) at the University of Oxford. I should
like to express the warmest of thanks to Andy Wathen and David Kay. Both con-
tributed greatly to my PhD studies and my lovely time in Oxford. Thank you for
your assistance and effort — not only during my time in Oxford but also afterwards.
My Oxford visit was supported in part by Award No. KUK-C1-013-04, made by
King Abdullah University of Science and Technology (KAUST), and I would like to
acknowledge this financial support as well.

I want to give thanks to several other external professionals. First, I would like to

VI

appreciate the collaboration with Christian Kahle and his patience regarding our
jointly project. Then, there are Jim Varah and Chen Greif — thank you for an exciting
week in Vancouver. Thanks to Arieh Iserles for a fantastic week in Cambridge. And
I am grateful to Iain Duff for a fabulous week in Toulouse.

A special thanks goes to the founding members of the Student Chapter of SIAM
Magdeburg — Martin Hess, Heiko Weichelt, Kristin Simon, Norman Lang, and Con-
stantin Kwiatkowski. Together, we have led the Chapter for about two and a half
years. Two and a half years full of discussions, ideas, ups and downs, organizational
stuff, networking, and fun. I want to thank you for your effort and love that you
have invested in our Chapter. I am also very grateful for the faculty assistance of our
Chapter by Martin Stoll, Sebastian Sager, and Peter Benner. Moreover, I would like
to acknowledge the financial support from SIAM, IMPRS, as well as the Otto-von-
Guericke Graduate School.

A further special thanks goes to my piano teacher. She always transported me to
another world — the world of harmony and freedom. Thank you for the wonderful
time we had every Wednesday afternoon. You made me forget my everyday life and
made me laugh. Thanks for being such a fantastic teacher.

Abschließend möchte ich mich bei den wichtigsten Menschen in meinem Leben
bedanken. Das sind an erster Stelle meine Eltern. Ihr steht hinter mir und unterstützt
mich, wo Ihr nur könnt. An unseren gemeinsamen Wochenenden gabt Ihr mir
stets neue Energie und erfülltet mein Herz mit großer Freude. Liebe Mutti, lieber
Papa — vielen Dank für Eure Liebe, Zeit, Geduld und Unterstützung. Ich möchte
mich bei meinen Großeltern bedanken für Ihre Liebe, Fürsorge und Ihren Rückhalt.
Ohne Muttis und Omas Essensrationen wäre meine Zeit in Magdeburg nur halb so
schmackhaft gewesen. Liebe Mutti, lieber Papa, liebe Omas, lieber Opa — Diese
Doktorarbeit widme ich Euch. Ich habe Euch lieb!

Abstract

In this thesis, we study efficient numerical solution techniques for various types of
Cahn–Hilliard problems. Originally, the Cahn–Hilliard equation was introduced to
model phase separation in two-component alloys. In praxis, often more than two
components occur, and the model has been extended to the multi-component case.
The solution of these two types of Cahn–Hilliard problems form the first part of this
theses. The underlying energy functional includes a potential for which different
types were proposed in the past. In this thesis, we consider smooth and nonsmooth
potentials with a focus on the latter. Whereas the use of smooth potentials leads
to a system of parabolic partial differential equations, the nonsmooth ones result
in a system of variational inequalities. Due to accuracy reasons, we propose fully
implicit time discretization schemes. In the smooth case, we derive criteria for the
stability and uniqueness of solutions and extend the theory to the vector-valued
case. In the nonsmooth setting, we interpret the system of variational inequalities
as the first-order optimality system of an optimization problem for which we derive
existence and uniqueness conditions. In particular, we extend the analysis to the
multi-component case. In order to deal with the variational inequalities, we apply
a function space-based algorithm, which combines a Moreau–Yosida regularization
technique with a semismooth Newton method. We apply classical finite element
methods to discretize the problems in space. The core of our approach is the solution
of the arising large and sparse fully discrete systems of linear equations. An impor-
tant aim of this thesis is the development of efficient practical preconditioners for the
iterative solution of the linear systems. In particular, our preconditioners are tailored
to the Cahn–Hilliard problems. We present block preconditioners using effective
Schur complement approximations. For the smooth systems, we derive optimal
preconditioners, which are proven to be robust with respect to crucial model pa-
rameters. Even for the nonsmooth systems, extensive numerical experiments show
an outstanding behavior of our developed preconditioners. In combination with an
adaptive mesh refinement approach, we are able to perform three-dimensional ex-
periments in an efficient way. As another application, we apply our preconditioner to
a coupled Cahn–Hilliard/Navier–Stokes system, which governs the hydrodynamics
of two-phase flows. The numerical results illustrate the effectiveness of our approach.

VIII

In the second part of this thesis, we consider an application of the Cahn–Hilliard
model in image processing. In particular, we consider the image inpainting prob-
lem, which can be solved by a modified Cahn–Hilliard equation. This model was
proposed in the literature and is based on the two-component Cahn–Hilliard equa-
tion equipped with a smooth potential. We extend this approach in two ways: First,
we apply a nonsmooth potential, which again results in the solution of variational
inequalities. The numerical results show an increase of the color intensity when
the nonsmooth potential is used. Second, we generalize the black-and-white Cahn–
Hilliard inpainting model to gray value images. This new model is based on the
multi-component Cahn–Hilliard equation. We study efficient numerical solution
techniques for the scalar and in particular for the vector-valued modified Cahn–
Hilliard equation using the techniques developed in first part of this thesis. An
important difference to the first part is that the modified Cahn–Hillard equation as a
whole is not given by a gradient flow. Especially, the model arises as a superposition
of two gradient flows. We apply the convexity splitting technique, which yields
under the right conditions an unconditional gradient stable time-discrete scheme.
In the case of a smooth potential, we extend the proof of consistency, unconditional
stability and convergence of the time-discrete scheme to the vector-valued case. In
the nonsmooth case, we apply as before the Moreau–Yosida regularization technique
with a semismooth Newton method. Again, the core of our approach consists in the
development of efficient practical preconditioners for the iterative solution of the
large and sparse linear systems that arise from classical finite element methods. For
the smooth systems, we derive the conditions for optimal preconditioners. Even for
the nonsmooth systems, our developed preconditioners are shown to be reliable.

Zusammenfassung

In der vorliegenden Arbeit entwickeln wir effiziente numerische Methoden zur
Lösung verschiedener Probleme, die auf der Cahn–Hilliard Gleichung basieren. Ur-
sprünglich wurde die Cahn–Hilliard Gleichung eingeführt, um die Phasentrennung
in einer Metalllegierung aus zwei Spezies zu modellieren. Da in der Praxis oft
mehr als zwei Spezies vorkommen, wurde das Modell auf den mehrkomponenti-
gen Fall erweitert. Der erste Teil dieser Arbeit beschäftigt sich mit dem Lösen
dieser beiden Modelle. Das zugrunde liegende Energiefunktional besteht aus einem
Potential, für welches in der Vergangenheit verschiedene Arten entwickelt wur-
den. In dieser Arbeit betrachten wir die beiden Typen eines glatten und nicht-
glatten Potentials, wobei der Fokus auf dem Letztgenannten liegt. Während die
Verwendung glatter Potentiale zu einem System aus parabolischen partiellen Dif-
ferentialgleichungen führt, erhalten wir bei der Verwendung nichtglatter Potentiale
ein System aus Variationsungleichungen. Aus Genauigkeitsgründen verwenden
ein implizites Zeitdiskretisierungsschema. Im Falle des glatten Potentials leiten wir
Kriterien für die Stabilität und Eindeutigkeit der zeitdiskreten Lösung her und er-
weitern die Theorie auf den vektorwertigen Fall. Im nichtglatten Fall fassen wir
das System aus Variationsungleichungen als Lösung eines Optimierungsproblems
erster Ordnung auf. Für dieses Minimierungsproblem leiten wir Kriterien für die
Existenz und Eindeutigkeit einer Lösung her. Insbesondere erweitern wir die Theo-
rie auf den vektorwertigen Fall. Die Variationsungleichungen behandeln wir mit
der Moreau–Yosida Regularisierung, welche wir mit einem halbglatten Newton-
Verfahren kombinieren. Zur räumlichen Diskretisierung verwenden wir die klassi-
sche Finite Elemente Methode, was zu großen, dünnbesetzten linearen Gleichungs-
systemen führt. Das Lösen dieser Systeme bildet den Kern unserer Verfahren.
Der Hauptschwerpunkt dieser Arbeit ist die Entwicklung effizienter, praktischer
Vorkonditionierer für das iterative Lösen der linearen Gleichungssysteme. Insbeson-
dere sind unsere Löser auf die verschiedenen Cahn–Hilliard Probleme zugeschnit-
ten. Wir erarbeiten Blockvorkonditionierer, die auf effektiven Schurkomplement-
Approximationen beruhen. Im glatten Fall zeigen wir die Optimalität unserer
Vorkonditionierer im dem Sinne, dass sie robust bezüglich wesentlicher Modellpa-
rameter sind. Ausgiebige numerische Experimente zeigen auch ein vielversprechen-
des Verhalten unserer Vorkonditionierer im nichtglatten Fall. Zusammen mit einer
adaptiven Gitterverfeinerung können wir dreidimensionale Probleme effizient lösen.
Als zusätzliche Anwendung wenden wir unseren nichtglatten Vorkonditionierer auf
ein gekoppeltes Cahn–Hilliard/Navier–Stokes System an. Solch ein Modell wird zur

X

Simulation von Zwei-Phasen Strömungen verwendet. Die numerischen Resultate
zeigen die Leistungsfähigkeit unserer Vorkonditionierer.

Im zweiten Teil dieser Arbeit betrachten wir eine Anwendung des Cahn–Hilliard
Modells in der Bildbearbeitung. Eine modifizierte Version der Cahn–Hilliard Glei-
chung kann als Tool für das Inpainting verwendet werden. Das Ausgangsmodell
basiert auf der skalaren Cahn–Hilliard Gleichung mit einem glatten Potential. Dieses
Modell erweitern wir in zweierlei Hinsicht: Als erstes statten wir es mit einem nicht-
glatten Potential aus, was wiederum das Lösen von Variationsungleichungen ver-
langt. Die numerischen Ergebnisse zeigen, dass diese Änderung die Farbintensität in
den rekonstruierten Bildern erhöht. Zweitens erweitern wir das schwarz-weiß Cahn–
Hilliard Inpainting Modell auf Graubilder. Unser entwickeltes Modell basiert auf
der vektorwertigen Cahn–Hilliard Gleichung. Basierend auf den Techniken, die wir
im ersten Teil dieser Arbeit erarbeitet haben, entwickeln wir effiziente numerische
Methoden zur Lösung der skalaren und insbesondere vektorwertigen modifizier-
ten Cahn–Hilliard Gleichung. Ein wichtiger Unterschied zum ersten Teil ist, dass
die modifizierte Cahn–Hilliard Gleichung als Ganzes nicht als ein Gradientenfluss
beschrieben werden kann, sondern als Superposition zweier Gradientenflüsse. Wir
wenden die konvexe Splitting Technik an, welche unter den richtigen Bedingungen
ein stabiles zeitdiskretes Schema liefert. Im Falle des glatten Potentials erweitern wir
den Beweis zur Konsistenz, Stabilität und Konvergenz des zeitdiskreten Systems
auf den vektorwertigen Fall. Im Falle des nichtglatten Potentials wenden wir wie
im ersten Teil die Moreau–Yosida Regularisierung mit einem halbglatten Newton-
Verfahren an. Wie zuvor liegt der Hauptschwerpunkt unseres Verfahrens in der
Entwicklung effizienter, praktischer Vorkonditionierer für das iterative Lösen der
großen, dünnbesetzten diskreten linearen Gleichungssysteme, die aus der Anwen-
dung der klassischen Finite Elemente Methode entstehen. Im glatten Fall leiten wir
Bedingungen für die Optimalität unserer Vorkonditionierer her. Im nichtglatten Fall
zeigen ausgiebige numerische Experimente die Effizienz unserer Vorkonditionierer.

Contents

List of Figures XV

List of Tables XIX

List of Algorithms XXIII

List of Acronyms XXV

Notation XXVII

1 Introduction 1
1.1 Phase separation in binary alloys . 1
1.2 Extensions of the Cahn–Hilliard equation 7
1.3 Outline of the thesis . 10

2 Mathematical Foundations 13
2.1 Functional analysis . 14

2.1.1 Normed spaces and Banach spaces 14
2.1.2 Convergence in normed spaces 16
2.1.3 Inner product spaces and Hilbert spaces 17
2.1.4 Lp and Sobolev spaces . 18
2.1.5 Gradient flows . 23
2.1.6 Unconditional stability, consistence and convergence 24

2.2 Basic matrix theory . 25
2.2.1 Matrix properties . 25
2.2.2 Spectrum of matrices . 26
2.2.3 Vector and matrix norms . 29
2.2.4 Block and saddle point matrices 31

2.3 Iterative solution of linear systems . 34
2.3.1 Krylov subspace solvers . 36
2.3.2 Preconditioning . 42
2.3.3 Saddle point preconditioners . 44

3 Scalar Cahn–Hilliard Equations 49
3.1 Introduction . 49

XII CONTENTS

3.2 Derivation . 51
3.2.1 Smooth systems . 51
3.2.2 Nonsmooth systems . 52

3.3 Time discretization . 53
3.3.1 Smooth systems . 54
3.3.2 Nonsmooth systems . 57

3.4 Moreau–Yosida regularization . 62
3.5 Semismooth Newton method . 66
3.6 Finite element approximation . 71
3.7 Preconditioning . 73

3.7.1 Smooth semi-implicit systems 74
3.7.2 Smooth implicit systems . 79
3.7.3 Nonsmooth semi-implicit systems 81
3.7.4 Nonsmooth implicit systems . 83

3.8 Numerical results . 86
3.8.1 Eigenvalue plots . 88
3.8.2 Robustness . 90
3.8.3 Mesh adaptation . 97
3.8.4 Implicit versus semi-implicit time discretization 101
3.8.5 Long-time evolution . 104
3.8.6 Three-dimensional dumbbell . 107
3.8.7 Two-phase flows . 108

3.9 Existing solvers . 112
3.10 Conclusions . 113

4 Vector-Valued Cahn–Hilliard Equations 115
4.1 Introduction . 115
4.2 Derivation . 118

4.2.1 Smooth systems . 118
4.2.2 Nonsmooth systems . 121

4.3 Time discretization . 122
4.3.1 Smooth systems . 122
4.3.2 Nonsmooth systems . 127

4.4 Moreau–Yosida regularization . 133
4.5 Semismooth Newton method . 138
4.6 Finite element approximation . 139
4.7 Preconditioning . 142

4.7.1 Smooth systems . 142
4.7.2 Nonsmooth systems . 151

4.8 Numerical Results . 154
4.8.1 Robustness . 155
4.8.2 Mesh adaptation . 159
4.8.3 Long-time evolution . 164
4.8.4 Three-dimensional example . 168

4.9 Existing solvers . 168
4.10 Conclusions and future research perspectives 170

5 Modified Cahn–Hilliard Equations 173
5.1 Introduction . 173

CONTENTS XIII

5.2 Derivation . 176
5.2.1 Smooth systems . 176
5.2.2 Nonsmooth systems . 177

5.3 Time discretization . 178
5.3.1 Smooth systems . 179
5.3.2 Nonsmooth systems . 193

5.4 Semismooth Newton method . 195
5.5 Finite element approximation . 197
5.6 Preconditioning . 200

5.6.1 Smooth systems . 200
5.6.2 Scalar nonsmooth systems . 204
5.6.3 Vector-valued nonsmooth systems 207

5.7 Numerical results . 211
5.7.1 Eigenvalue plots . 214
5.7.2 Robustness . 218
5.7.3 Image inpainting . 230
5.7.4 Three-dimensional example . 237
5.7.5 Comparison with existing inpainting methods 238

5.8 Conclusions and future research perspectives 240

6 Conclusions and Outlook 243

Theses 245

Bibliography 247

Schriftliche Ehrenerklärung 257

List of Figures

1.1 Simulation of the phase separation and coarsening process of a binary
mixture. 1

1.2 Different types of the potential function ψ. 4
1.3 Interface profiles for two different types of the potential function and

varying interface parameters ε: ε = 0.2 (), ε = 0.1 () and ε = 0.05
(). 4

1.4 A three-dimensional simulation of the phase separation and coarsening
process of a binary mixture. 7

1.5 Evolution of five phases using the Cahn–Hilliard model. 7
1.6 Black-and-white Cahn–Hilliard inpainting applied to a zebra image. . . . 8
1.7 Cahn–Hilliard inpainting applied to a gray value image. 9
1.8 Simulation of a rising bubble using a coupled Cahn–Hilliard/Navier–

Stokes model. 9

3.1 Illustration of the Moreau–Yosida regularized potential for different val-
ues of the penalty parameter c. 62

3.2 Spectrum of Ŝ−1S for the smooth semi-implicit system (3.90) with the
Schur complement approximation (3.92). 91

3.3 Spectrum of Ŝ−1S for the nonsmooth semi-implicit system (3.108) with
the Schur complement approximation (3.112). 92

3.4 Spectrum of Ŝ−1S for the nonsmooth implicit system (3.117) with the
Schur complement approximation (3.119). 93

3.5 Results for the solution of the smooth semi-implicit system (3.90) with the
preconditioner (3.91) and the Schur complement approximation (3.92).
The x-axis shows the time t and the y-axis the average number of MINRES
iterations per Newton step. 95

3.6 Results for the solution of the nonsmooth semi-implicit system (3.108)
with the preconditioner (3.110) and the Schur complement approximation
(3.112). The x-axis shows the time t and the y-axis the average number of
BiCG iterations per SSN step. 96

3.7 Results for the solution of the nonsmooth semi-implicit and implicit sys-
tem. The x-axis shows the time t and the y-axis the average number
of BiCG iterations per SSN step. h j = 2− j−6, ε j = 9 h j/π, τ1 = 2 · 10−5,
τ2 = 3.125 · 10−6, τ3 = 4 · 10−7, cpmax = 10−7 for j = 1, 2, 3. 97

XVI List of Figures

3.8 Results for the solution of the nonsmooth implicit system (3.117) with the
preconditioner (3.118) and the Schur complement approximation (3.119).
The x-axis shows the time t and the y-axis the average number of BiCG
iterations per SSN step. 98

3.9 Results for the solution of the nonsmooth implicit system (3.117) with the
preconditioner (3.118) and the Schur complement approximation (3.119)
using adaptive meshes. The x-axis shows the time t, the left y-axis displays
the average number of BiCG iterations per SSN step, and the right y-axis
illustrates the number of degrees of freedom. 102

3.10 Computations with adaptive meshes: The final phase variable with the
corresponding spatial mesh for the three simulations in Figure 3.9. 103

3.11 Results for the analytical example using the nonsmooth implicit and semi-
implicit Cahn–Hilliard model. 103

3.12 Results for the analytical example: Solutions of the nonsmooth semi-
implicit Cahn–Hilliard model with different values of the time step size τ
at time T = 1.85 · 10−3. 104

3.13 Results for the analytical example: Solutions of the smooth semi-implicit
Cahn–Hilliard model with different values of the time step size τ at time
T = 1.85 · 10−3. 105

3.14 Long-time evolution using the smooth (upper row) and nonsmooth (lower
two rows) implicit Cahn–Hilliard model. 105

3.15 Results for the long-time evolution using the smooth (left) and nonsmooth
(right) implicit Cahn–Hilliard model. The x-axis shows the time t. On
the left, the y-axis displays the average number of BiCG iterations per
Newton step. On the right, the left y-axis displays the average number of
BiCG iterations per SSN step and the right y-axis illustrates the number of
degrees of freedom. Since we use a uniform mesh for the smooth model,
we do not display the number of degrees of freedom on the left. 106

3.16 Evolution of a dumbbell. 107
3.17 Results for the evolution of a dumbbell: The x-axis shows the time t, the

left y-axis displays the average number of BiCG iterations per SSN step,
and the right y-axis illustrates the number of degrees of freedom. 108

3.18 The average number of FGMRES iterations per SSN step for the solution
of a coupled two-component Cahn–Hilliard/Navier–Stokes system. Here,
m(0)

1 and m(0)
2 denote the initial numbers of degrees of freedom. Note that

the numbers of degrees of freedom during every simulation stay in the
range of m(0)

1 and m(0)
2 , respectively. 112

4.1 Results for the solution of the smooth system (4.82) with L = I , the
preconditioner (4.83), and the Schur complement approximation (4.100).
The x-axis shows the time t and the y-axis the average number of BiCG
iterations per Newton step. 156

4.2 Results for the solution of the smooth system (4.82) with the precondi-
tioner (4.83) and the Schur complement approximation (4.100). The x-axis
shows the time t and the y-axis the average number of BiCG iterations
per Newton step. Set j: h j = 2− j−6, ε j = 9 h j/(4

√
2 · atanh(0.9)), τ1 = 10−5,

τ2 = 4 · 10−6, τ3 = 8 · 10−7, N = 5 for j = 1, 2, 3. 157

List of Figures XVII

4.3 Results for the solution of the smooth system (4.82) withL = I− 1
N11T, the

preconditioner (4.83), and the Schur complement approximation (4.100).
The x-axis shows the time t and the y-axis the average number of BiCG
iterations per Newton step. 158

4.4 Results for the solution of the nonsmooth system (4.82) with L = I , the
preconditioner (4.83), and the Schur complement approximation (4.109).
The x-axis shows the time t and the y-axis the average number of BiCGstab
iterations per SSN step. 160

4.5 Results for the solution of the nonsmooth system (4.82) with the precondi-
tioner (4.83) and the Schur complement approximation (4.109). The y-axis
shows the average number of BiCGstab iterations per SSN step. 161

4.6 Results for the solution of the nonsmooth system (4.82) with L = I −
1
N11T, the preconditioner (4.83), and the Schur complement approxima-
tion (4.109). The x-axis shows the time t and the y-axis the average number
of BiCGstab iterations per SSN step. 162

4.7 Results for the solution of the nonsmooth system (4.82) with the precon-
ditioner (4.83) and the Schur complement approximation (4.109) using
adaptive meshes. The x-axis shows the time t, the left y-axis the aver-
age number of BiCGstab iterations per SSN step and the right y-axis the
number of degrees of freedom. 165

4.8 Computation with adaptive meshes: Final phase variables with the cor-
responding spatial mesh for the three simulations in Figure 4.7. 166

4.9 Long-time evolution using the smooth (upper row) and nonsmooth (lower
row) vector-valued Cahn–Hilliard model. 167

4.10 Results for the long-time evolution using the smooth (left) and nonsmooth
(right) vector-valued Cahn–Hilliard model. The x-axis shows the time t
and the y-axis displays the average number of BiCG (left) and BiCGstab
(right) iterations per Newton/SSN step. 167

4.11 A three-dimensional simulation of the phase separation and coarsening
process of a five-component mixture. 169

4.12 Results for the three-dimensional simulation of the phase separation and
coarsening process of a five-component mixture: The x-axis shows the
time t, the left y-axis displays the average number of BiCGstab iterations
per SSN step, and the right y-axis illustrates the number of degrees of
freedom. 169

5.1 Spectrum of Ŝ−1S for the scalar smooth system (5.63) with the Schur
complement approximation (5.65). 215

5.2 Spectrum of Ŝ−1S for the scalar nonsmooth system (5.75) with the Schur
complement approximation (5.77). 216

5.3 Spectrum of Ŝ−1S for the scalar nonsmooth system (5.75) with the Schur
complement approximation (5.77). 217

5.4 Spectrum of Ŝ−1S for the scalar nonsmooth system (5.75) with the Schur
complement approximation (5.77). Set j: h j = 2− j−3, ε j = h j, τ = 1,

C(j)
1 = 3ε−1

j , ω(1)
0 = 104, ω(2)

0 = 5 · 104, ω(3)
0 = 105, C(j)

2 = 3ω(j)
0 , c = 10−7 for

j = 1, 2, 3 . 218
5.5 Initial images for the robustness tests of our preconditioners developed

for Cahn–Hilliard inpainting. 218

XVIII List of Figures

5.6 Results for the solution of the scalar smooth system (5.63) with the pre-
conditioner (5.64) and the Schur complement approximation (5.65). The
x-axis shows the time t and the y-axis the number of MINRES iterations. . 220

5.7 Results for the solution of the scalar smooth system (5.63) with the pre-
conditioner (5.64) and the Schur complement approximation (5.65). The
x-axis shows the time t and the y-axis the number of MINRES iterations. . 221

5.8 Results for the solution of the scalar nonsmooth system (5.75) with the
preconditioner (5.76) and the Schur complement approximation (5.77).
The x-axis shows the time t and the y-axis the average number of BiCG
iterations per SSN step. 222

5.9 Results for the solution of the scalar nonsmooth system (5.75) with the
preconditioner (5.76) and the Schur complement approximation (5.77).
The x-axis shows the time t and the y-axis the average number of BiCG
iterations per SSN step. 223

5.10 Results for the solution of the vector-valued smooth system represented in
(5.59). The x-axis shows the time t and the y-axis the number of MINRES
iterations. 225

5.11 Results for the solution of the vector-valued smooth system represented in
(5.59). The x-axis shows the time t and the y-axis the number of MINRES
iterations. 226

5.12 Results for the solution of the vector-valued nonsmooth system (5.79)
with the preconditioner (5.80) and the Schur complement approximation
(5.83). The x-axis shows the time t and the y-axis the average number of
BiCGstab iterations per SSN step. 228

5.13 Results for the solution of the vector-valued nonsmooth system (5.79)
with the preconditioner (5.80) and the Schur complement approximation
(5.83). The x-axis shows the time t and the y-axis the average number of
BiCGstab iterations per SSN step. 229

5.14 Initial images for image inpainting. 231
5.15 Inpainted black-and-white images using the smooth and nonsmooth scalar

modified Cahn–Hilliard model. 233
5.16 Inpainted gray value images using the smooth and nonsmooth vector-

valued modified Cahn–Hilliard model. 234
5.17 Results for the solution of four image inpainting examples: The x-axis

shows the time t. For the smooth Cahn–Hilliard inpainting models, the
y-axis displays the number of MINRES iterations. For the nonsmooth
Cahn–Hilliard inpainting models, the y-axis displays the average number
of BiCG iterations per SSN step. 235

5.18 Results for the solution of four image inpainting examples: The x-axis
shows the time t. For the smooth Cahn–Hilliard inpainting models, the
y-axis displays the number of MINRES iterations. For the nonsmooth
Cahn–Hilliard inpainting models, the y-axis displays the average number
of BiCGstab iterations per SSN step. 236

5.19 Three-dimensional inpainting. 237
5.20 Results for the three-dimensional inpainting: The x-axis shows the time t

and the y-axis the average number of BiCG iterations per SSN step. 237
5.21 Inpainted gray value image using different inpainting models. 239

List of Tables

3.1 Results for the solution of the smooth semi-implicit system (3.90) with the
preconditioner (3.91) and the Schur complement approximation (3.92):
The maximum and average number of Newton iterations, the maximum
and average number of MINRES iterations, the average CPU time (in
seconds) for MINRES, as well as the CPU time (in seconds) for the whole
simulation. 99

3.2 Results for the solution of the nonsmooth semi-implicit system (3.108)
with the preconditioner (3.110) and the Schur complement approxima-
tion (3.112): The maximum and average number of SSN iterations, the
maximum and average number of BiCG iterations, the average CPU time
(in seconds) for BiCG, and the CPU time (in seconds) for the whole sim-
ulation. 99

3.3 Results for the solution of the nonsmooth implicit system (3.117) with the
preconditioner (3.118) and the Schur complement approximation (3.119):
The maximum and average number of SSN iterations, the maximum and
average number of BiCG iterations, the average CPU time (in seconds)
for BiCG, and the CPU time (in seconds) for the whole simulation. 100

3.4 Results for the solution of the nonsmooth implicit system (3.117) with the
preconditioner (3.118) and the Schur complement approximation (3.119)
using adaptive meshes: The maximum and average number of SSN itera-
tions, the maximum and average number of BiCG iterations, the average
CPU time (in seconds) for BiCG, and the CPU time (in seconds) for the
whole simulation. 101

3.5 Results for the long-time evolution: The maximum and average number
of Newton/SSN iterations, the maximum and average number of BiCG
iterations, the average CPU time (in seconds) for BiCG, and the CPU
time (in seconds) for the whole simulation for the smooth and nonsmooth
Cahn–Hilliard model, respectively. 106

3.6 Minimum and maximum phase values during the simulation with the
smooth and nonsmooth Cahn–Hilliard model. 107

XX List of Tables

4.1 Results for the solution of the smooth system (4.82) with L = I , the
preconditioner (4.83), and the Schur complement approximation (4.100):
The maximum and average number of Newton iterations, the maximum
and average number of BiCG iterations, the average CPU time (in seconds)
for BiCG, and the CPU time (in seconds) for the whole simulation. 157

4.2 Results for the solution of the smooth system (4.82) withL = I− 1
N11T, the

preconditioner (4.83), and the Schur complement approximation (4.100):
The maximum and average number of Newton iterations, the maximum
and average number of BiCG iterations, the average CPU time (in seconds)
for BiCG, and the CPU time (in seconds) for the whole simulation. 159

4.3 Results for the solution of the nonsmooth system (4.82) with L = I , the
preconditioner (4.83), and the Schur complement approximation (4.109):
The maximum and average number of SSN iterations, the maximum and
average number of BiCGstab iterations, the average CPU time (in seconds)
for BiCGstab, and the CPU time (in seconds) for the whole simulation. . . 163

4.4 Results for the solution of the nonsmooth system (4.82) with L = I −
1
N11T, the preconditioner (4.83), and the Schur complement approxima-
tion (4.109): The maximum and average number of SSN iterations, the
maximum and average number of BiCGstab iterations, the average CPU
time (in seconds) for BiCGstab, and the CPU time (in seconds) for the
whole simulation. 164

4.5 Results for the solution of the nonsmooth system (4.82) with the precon-
ditioner (4.83) and the Schur complement approximation (4.109) using
adaptive meshes: The maximum and average number of SSN iterations,
the maximum and average number of BiCGstab iterations, the average
CPU time (in seconds) for BiCGstab, and the CPU time (in seconds) for
the whole simulation. 166

4.6 Results for the long-time evolution: The maximum and average num-
ber of Newton/SSN iterations, the maximum and average number of
BiCG/BiCGstab iterations, as well as the average CPU time (in seconds)
for BiCG/BiCGstab and the CPU time (in seconds) for the whole simula-
tion for the smooth and nonsmooth Cahn–Hilliard model, respectively. . . 166

4.7 Minimum and maximum phase values during the simulation with the
smooth and nonsmooth vector-valued Cahn–Hilliard model. 168

5.1 Results for the solution of the scalar smooth system (5.63) with the pre-
conditioner (5.64) and the Schur complement approximation (5.65): The
maximum and average number of MINRES iterations, the average CPU
time (in seconds) for MINRES, and the CPU time (in seconds) for the
whole simulation. 219

5.2 Results for the solution of the scalar nonsmooth system (5.75) with the
preconditioner (5.76) and the Schur complement approximation (5.77):
The maximum and average number of SSN iterations, the maximum and
average number of BiCG iterations, the average CPU time (in seconds)
for BiCG, and the CPU time (in seconds) for the whole simulation. 224

5.3 Results for the solution of the vector-valued smooth system represented
in (5.59): The maximum and average number of MINRES iterations, the
average CPU time (in seconds) for MINRES, and the CPU time (in seconds)
for the whole simulation. 227

List of Tables XXI

5.4 Results for the solution of the vector-valued nonsmooth system (5.79) with
the preconditioner (5.80) and the Schur complement approximation (5.83):
The maximum and average number of SSN iterations, the maximum and
average number of BiCGstab iterations, the average CPU time (in seconds)
for BiCGstab, and the CPU time (in seconds) for the whole simulation. . . 230

5.5 Results for the solution of image inpainting examples: The maximum and
average number of SSN iterations, the maximum and average number of
MINRES/BiCG/BiCGstab iterations, the average CPU time (in seconds) for
MINRES/BiCG/BiCGstab, and the CPU time (in seconds) for the whole
simulation. 232

5.6 Results for the solution of image inpainting examples: The PSNR value
as well as the minimum (min) and maximum (max) phase variable value. 232

5.7 Performance of different inpainting models: The total number of iter-
ations (iter), CPU time (in seconds) for the whole simulation, average
CPU time (in seconds) per time step (CPU), PSNR value, as well as the
minimum (min) and maximum (max) pixel value of the final image. . . . 239

List of Algorithms

2.1 The biconjugate gradient method . 42
2.2 The preconditioned biconjugate gradient method 43

3.1 The numerical solution of the nonsmooth implicit time-discrete Cahn–
Hilliard problem via an SSN method combined with a Moreau–Yosida
regularization technique on a uniform mesh. 87

3.2 The numerical solution of the nonsmooth implicit time-discrete Cahn–
Hilliard problem via an SSN method combined with a Moreau–Yosida
regularization technique on an adaptive mesh. 89

5.1 The numerical solution of the nonsmooth (vector-valued) modified
Cahn–Hilliard problem via an SSN method combined with a Moreau–
Yosida regularization technique on a uniform mesh. 213

List of Acronyms

AMG algebraic multigrid method . 44

BiCG biconjugate gradient method . 41

BiCGstab biconjugate gradient stabilized method. .41

CG conjugate gradient method . 38

CPU central processing unit . 94

FEM finite element method . 5

FFT fast Fourier transform . 150

FGMRES flexible generalized minimum residual method . 111

GMRES generalized minimum residual method . 41

MG multigrid method . 43

MINRES minimum residual method . 40

PDE partial differential equation . 5

PSNR peak signal-to-noise ratio . 232

SSN semismooth Newton . 10

Notation

Ω spatial domain
a.e. almost everywhere
C(Ω) space of continuous functions on Ω
Ck(Ω) space of k-times continuously differentiable functions on Ω
L(X,Y) vector space of all bounded linear operators from a normed spaceX into

a normed spaceY
X
∗ dual space of a normed space X
〈·, ·〉X∗×X duality pairing between a normed space X and its dual space X∗

Lp(Ω) set of measurable and p-integrable functions on Ω
Lp(Ω)N Lp space of vector-valued functions
(·, ·) Lp(Ω)- and Lp(Ω)N-inner product
‖ · ‖ Lp(Ω)- and Lp(Ω)N-norm
Hk(Ω) Sobolev spaces
Hk(Ω)N Sobolev spaces of vector-valued functions
(·, ·)1 H1(Ω)- and H1(Ω)N-inner product
‖ · ‖1 H1(Ω)- and H1(Ω)N-norm
‖ · ‖∗ H1(Ω)∗-norm
〈·, ·〉 duality pairing between H1(Ω)∗ and H1(Ω)
H−1(Ω) B

{
u∗ ∈ H1(Ω)∗ : 〈u∗, 1〉 = 0

}
(v1, v2)−1 B

∫
Ω
∇(−∆)−1v1 · ∇(−∆)−1v2 dx

xk → x (strong) convergence
xk ⇀ x weak convergence
∇u B [∇u1, . . . ,∇uN]T for u = [u1, . . . , uN]T

∈ H1(Ω)N

∆u B [∆u1, . . . ,∆uN]T for u = [u1, . . . , uN]T
∈ H2(Ω)N

N set of natural numbers
R,C field of real and complex numbers
S closure of the set S
Rn×m vector space of real n ×m matrices
Rn = Rn×1

I identity matrix
1 column vector where each entry is equal to one
0 zero matrix or zero vector
ei column vector where the ith entry is equal to one and all remaining

entries are zero

XXVIII LIST OF ALGORITHMS

[A]i j (i, j) entry of a matrixA
AT transpose of a matrixA
A−1 inverse of a nonsingular matrix
det(A) determinant of a matrixA
ker(A) kernel of a matrixA
σ(A) spectrum of a matrixA
ρ(A) spectral radius of a matrixA
λmax(A) maximum eigenvalue of a symmetric matrixA
λmin(A) minimum eigenvalue of a symmetric matrixA
κ(A) condition number of a matrixA
‖u‖p, ‖A‖p p-norm of a vector u and a matrixA
‖u‖, ‖A‖ 2-norm of a vector u and a matrixA
Kl(A, b) Krylov subspace spanned by {b,Ab, . . . ,Al−1b}
⊗ Kronecker product

Chapter 1

Introduction

1.1 Phase separation in binary alloys

In 1958, Cahn and Hilliard [44] proposed a model which describes the phenomenon
of phase separation in binary alloys. In particular, they considered a molten iron-
nickel alloy and aimed to describe how it separates into its two components. Such a
separation occurs if the alloy is rapidly quenched below a critical temperature. Very
soon, small formations of pure iron and nickel appear. As time goes by, these forma-
tions slowly coarsen into larger ones. This coarsening process is also called aging.
In principle, spatially separated areas with different physical properties develop.
It is important for material scientists to understand the dynamics of the occurring
processes, how fast they are, and how they influence the material properties. As
laboratory experiments are time- and cost-consuming, sophisticated computer sim-
ulations are desirable.

Figure 1.1 illustrates a simulation of such a separation process. It shows the concen-
trations of the two components at four different times. Let us denote the two species,

(a) Mixture of two
components.

(b) Phase separation
starts very quickly.

(c) The two pure
components have
emerged to small
formations in a

short time.

(d) As time goes by,
the formations

slowly coarsen into
larger ones.

Figure 1.1: Simulation of the phase separation and coarsening process of a binary
mixture.

2 CHAPTER 1. INTRODUCTION

also referred to as phases, by A and B. We characterize them by their concentrations
cA(x, t) ∈ [0, 1] and cB(x, t) = 1 − cA(x, t) ∈ [0, 1]. Here, x denotes a spatial point and t
refers to the time. During the evolution, three different types of spatial regions can
be characterized:

1. Regions of pure iron, i.e., the pure phase A. This case is represented by cA = 1
and cB = 0.

2. Regions of pure nickel, i.e., the pure phase B. This case is represented by cB = 1
and cA = 0.

3. Mixed regions of iron and nickel. This case is represented by cA ∈ (0, 1) and
cB ∈ (0, 1) with cA + cB = 1.

The two characteristics cA and cB can be combined into one variable. This gives the
phase variable1 u = u(x, t), which describes the difference of the local concentrations,
e.g., u(x, t) = cB(x, t) − cA(x, t) = 1 − 2cA(x, t) ∈ [−1, 1]. Hence, if u(x, t) = −1, then only
phase A (the pure phase A) is present at point x at time t. The case u(x, t) = 1 means
only phase B (the pure phase B) exists at point x at time t. Values of u between −1
and 1 represent mixed regions. For the simulation in Figure 1.1, we use the square
[−1, 1]2 as the spatial domain. The two scales appearing in this figure display the
variable u(x, t). The scale in Figure 1.1(a) only belongs to this picture. The second
scale in Figure 1.1(b) holds for the Figures 1.1(b)–1.1(d). Figure 1.1(a) represents the
initial state, which is built by a uniform mixture. The scale indicates that no pure
phase is present at that time. Only five time steps later, phase separation occurs
as can be seen in Figure 1.1(b). We observe the formation of small bubbles of pure
concentrations. From now on, the pure phase A is represented by the color blue and
the pure phase B by the color red. Then in a first stage, the bubbles quickly coarsen
into larger ones. Figure 1.1(c) displays the system after 50 time steps. In a second
stage, this process happens more slowly. Figure 1.1(d) is taken after 500 time steps.

The above simulation was done using the Cahn–Hilliard model. The Cahn–Hilliard
model belongs to the class of phase field models, which are used to solve interfacial
problems. The role of the interface can be understood by having a second look at
Figure 1.1(c) or 1.1(d). The interface is the small boundary layer that separates the
pure phases A and B from each other. Hence, it acts as a diffuse phase transition. Its
width is present as a model parameter, the interfacial parameter ε > 0 introduced
below in (1.1), and is aimed to be as small as possible. There is also the limit case
ε ↓ 0, which gives the sharp interface model [74, 72, 131, 42].

The theory of Cahn and Hilliard [44] is based on the Ginzburg–Landau energy

E(u) =
∫
Ω

ε
2
|∇u|2 +

1
ε
ψ(u) dx. (1.1)

Here, Ω denotes the spatial domain, which contains the molten alloy. An equilib-
rium profile of our considered mixture minimizes the Ginzburg–Landau energy (1.1)

1The phase variable u is also known as the order parameter, which describes the state of the
considered system at any given time.

1.1. PHASE SEPARATION IN BINARY ALLOYS 3

subject to the mass conservation2

d
dt

∫
Ω

u dx = 0.

The parameter ε > 0 is proportional to the thickness of the interfacial region as
mentioned above. The first part of (1.1) is large whenever u changes rapidly. Hence,
its minimization gives rise to the interfacial area. The potential function ψ in (1.1)
gives rise to phase separation. It has two distinct minima, one for each of the two pure
phases A and B. Hence, its minimization penalizes values away from the pure phases.
Different types of potential functions have been considered in the literature [27]. To
explain this, we have to expand on the phase separation process. Such a separation
occurs if a high-temperature mixture, existing in a state of isothermal equilibrium,
is rapidly quenched to a uniform temperature θ below a critical temperature θc.
Depending on the temperature reduction, various types of the potential function ψ
have been introduced. Originally, Cahn and Hilliard [44] suggested a logarithmic
potential of the form

ψlog(u) =
θ
2

[
(1 + u) ln

(1 + u
2

)
+ (1 − u) ln

(1 − u
2

)]
+
θc

2

(
1 − u2

)
(1.2)

for θ < θc; see also [43]. According to [27], the minima of ψlog are ±β, where β is the
positive root of

2
θc

θ
=

1
β

ln
(

1 + β
1 − β

)
.

Figure 1.2(a) illustrates the logarithmic potential function (1.2) for θc = 1 and dif-
ferent values of the temperature θ. For a numerical analysis of the Cahn–Hilliard
equation with a logarithmic potential, we refer to [50].

When the quench θ < θc is additionally shallow, i.e., θ is close to θc, ψ is usually
approximated by a quartic polynomial like

ψpol(u) =
1
4

(u2
− β2)2, (1.3)

see, e.g., [127, 57]. This type of function is called double-well potential. The minima
of ψpol are ±β. Figure 1.2(b) shows the polynomial potential function (1.3) for β = 1.
In contrast to the logarithmic potential, the polynomial one allows violations of
u ∈ [−β, β]. Using the double-well potential, the interfacial equilibrium profile in one
space dimension can be described by

û(x) = β tanh
(

x
√

2ε

)
,

see, e.g., [56, Section 7.9] or the note in [6, p. 374]. This profile is shown in Figure
1.3(a) for different values of the interface parameter ε. Let us describe the interface
thickness as the distance between x1 and x2 with u(x1) = −0.95 β and u(x2) = 0.95 β.
Then, we can express the equilibrium thickness via ε by

0.95 = tanh
(

x2
√

2ε

)
,

2Note that the mass conservation is not a general characteristic of phase field models. Instead, it is
an element of the Cahn–Hilliard model.

4 CHAPTER 1. INTRODUCTION

−1 −0.5 0 0.5 1
−0.1

0

0.1

0.2

u

ψ
lo

g
(u

)

(a) The logarithmic potential ψlog

for θc = 1 and varying
temperatures θ: θ = 0.4θc

(), θ = 0.6θc () and
θ = 0.8θc ().

−2 −1 0 1 2
0

1

2

u

ψ
po

l(u
)

(b) The double-well potential
ψpol for β = 1.

−1 1
0

0.5

∞

u

ψ
ob

s(
u)

(c) The double-obstacle
potential ψobs.

Figure 1.2: Different types of the potential function ψ.

which is equivalent to
x2 =

√

2ε · atanh(0.95).

Similar, we obtain
x1 = −

√

2ε · atanh(0.95).

Hence, the equilibrium interfacial thickness is given by 2
√

2ε · atanh(0.95) using a
polynomial potential. Experiments show that it is essential to ensure that at least
eight spatial mesh points lie on the interface in order to avoid mesh effects; see
also [29]. Hence, numerically we want to have eight or nine grid points across the
interface transition. If we denote by h the spatial mesh size across the interface, this
leads to the condition

h ≤
2
√

2ε · atanh(0.95)
9

≈ 0.5757 ε.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

u

(a) The double-well potential ψpol.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

u

(b) The double-obstacle potential
ψobs.

Figure 1.3: Interface profiles for two different types of the potential function and
varying interface parameters ε: ε = 0.2 (), ε = 0.1 () and ε = 0.05 ().

1.1. PHASE SEPARATION IN BINARY ALLOYS 5

Up to here, we have presented logarithmic potential functions for the case θ < θc and
polynomial potential functions under the additional condition θ ≈ θc. For the deep
quench limit θ→ 0, i.e., a very rapid cooling of the mixture resulting in temperatures
θ� θc, Oono and Puri [128] introduced the nonsmooth double-obstacle potential

ψobs(u) =
{

1
2 (1 − u2) |u| ≤ 1,

∞ |u| > 1.
(1.4)

We refer to [27, 28] for a mathematical and numerical analysis for this setting. The
minima of ψobs are attained at ±1. Figure 1.2(c) visualizes the obstacle potential
function (1.4). This type of function admits a sharper interface than the polynomial
potential. As stated in [42, p. 17], the equilibrium interface thickness is proportional
to επ, i.e., the interfacial equilibrium profile in one space dimension can be described
by

û(x) ≈ sin
(x
ε

)
,

where x ∈ [−0.5επ, 0.5επ]. Again, numerically we want to have eight or nine grid
points across the interface transition. This leads to the condition

h ≤
επ
9
≈ 0.3491 ε.

Figure 1.3(b) displays the equilibrium interface profile for the double-obstacle po-
tential setting.

During the rest of this thesis, we will always consider the case β = 1 when referring
to the polynomial potential in (1.3). Moreover, in this thesis we consider potential
functions of polynomial and obstacle type with a main focus on the latter.3 Besides
the different interfacial profiles, these two variants of the potential function exhibit
another distinctive feature. The differentiable potential leads to a parabolic partial
differential equation (PDE). In this thesis, we will name this formulation the smooth
system. In contrast, the obstacle potential results in variational inequalities, which
are much harder to solve. We will call this formulation the nonsmooth system.

Only in very simple cases it is possible to find exact solutions of the Cahn–Hilliard
model. Hence, numerical techniques have to be developed for finding approximate
solutions. The basic idea is to discretize the continuous problem to obtain a discrete
problem with only a finite number of unknowns. In this thesis, we are focused on
the classical finite element method (FEM) [144]. Moreover, due to the nonlinearity,
linearization techniques have to be applied in order to end up with linear equations.
To obtain the desired accuracy, the resulting discrete problems consist of huge linear
systems of the general form

Az = b. (1.5)

Here, A ∈ R2m×2m is the given coefficient matrix, z ∈ R2m is the unknown solution
vector, and b ∈ R2m is the given right-hand side vector. By the term ’huge’ we mean
sizes of m in the range of millions. Moreover, the use of FEM results in a sparse
matrixA. The coefficient matrixA has a 2 × 2 block structure of the form

A =

[
A B
B −C

]
, (1.6)

3Logarithmic potentials may be discussed in future research.

6 CHAPTER 1. INTRODUCTION

where every block itself is a huge matrix. In particular,A is a saddle point matrix.
The unknown solution vector z contains the discrete version of the phase variable u.

Iterative methods form a general procedure for solving the system (1.5) approxi-
mately. They aim to generate a sequence of vectors {z(l)

}l∈N, which converges to
the solution z. Key points regarding the efficiency of iterative methods include the
rate of convergence, the computational costs per iteration, and storage requirements.
The convergence is often dependent on system parameters. Various parameters are
involved in A. For the present Cahn–Hilliard problem, these are the spatial mesh
size, the time step size, the interfacial parameter, and, for our treatment of the obsta-
cle potential, a penalty parameter. Broadly speaking, the penalty parameter forces
the phase variable u to stay in the desired concentration range [−1, 1] as described
above. The higher the penalization is, the more accurate is the fulfillment of the
concentration range condition.4 In contrast, the remaining parameters have to be
chosen much smaller. Typically, for finer mesh discretizations, i.e., for larger values
of m, not only the costs per iteration increase but also the the number of iterations
until convergence. It would be ideal to prevent the growth of iteration numbers
when the mesh is refined. This property is called robustness with respect to the
mesh size. And it would be even more ideal if we have the robustness also with
respect to other relevant parameters. Hence, in order to improve the performance
of the iterative method we have to incorporate an accelerator, also referred to as a
preconditioner. The basic idea is to construct a matrixP ∈ R2m×2m and replace (1.5) by

P
−1
Az = P−1b. (1.7)

Both systems, (1.5) and (1.7), have the same solution. In order to be effective, P
should be designed such that it approximatesA and is cheap to apply. Theoretical
optimal preconditioners, which capture the block structure of A, have been pro-
posed (see, e.g., [124, 97]) and will be recalled in Chapter 2.3.3. In fact, the authors
have proven to yield convergence of an iterative method after only a small number of
iterations. However, in order to make these preconditioners also efficient in praxis,
clever approximations have to be developed. Efficient approximations typically re-
sult in outstanding convergence performances.

The development of powerful preconditioners allows us to solve huge linear sys-
tems in a reasonable time. In particular, preconditioning is necessary to make the
computation of very large three-dimensional problems feasible. A simulation of
the phase separation and coarsening process of a binary mixture in the unit cube
[0, 1]3 is shown in Figure 1.4. The design, implementation, and numerical analysis
of preconditioners tailored to Cahn–Hilliard problems are the focus of this thesis.
In particular, the preconditioners are aimed to be robust with respect to parameter
changes.

The Cahn–Hilliard model has also been used in different other contexts, e.g., in
materials science [126, 72], image processing [54], or chemistry [152]. In the following,
we give a flavor of the Cahn–Hilliard applications that are discussed in this thesis.

4Note that the smooth Cahn–Hilliard formulation does not need such a penalization. We will also
discuss them in this thesis.

1.2. EXTENSIONS OF THE CAHN–HILLIARD EQUATION 7

(a) Mixture of two
components.

(b) Phase separation
starts very quickly.

(c) The two pure
components have
emerged to small

formations in a short
time.

(d) As time goes by,
formations slowly
coarsen into larger

ones.

Figure 1.4: A three-dimensional simulation of the phase separation and coarsening
process of a binary mixture.

1.2 Extensions of the Cahn–Hilliard equation

Besides the phase separation and coarsening process in binary alloys, we study two
more applications of the Cahn–Hilliard equation in this thesis. These are

• the phase separation and coarsening process in multi-component alloys and

• image inpainting.

All three topics form individual chapters in this thesis. Moreover, we have applied
our solver from Chapter 1 to a coupled two-component Cahn–Hilliard/Navier–Stokes
system, which models the hydrodynamics of two-phase flows. This is another appli-
cation of scalar Cahn–Hilliard equations. We will briefly present this problem and
some results in Chapter 3.8.7.

Multicomponent systems
The major part of this thesis deals with the treatment of multi-component Cahn–
Hilliard problems. Instead of two phases as we have discussed so far, we consider
N > 2 components now. Figure 1.5 shows a simulation of the phase separation and
coarsening process of a five-component alloy. The numerical solution via FEM and
preconditioning involves two additional difficulties. First, the coefficient matrixA
has the form as in (1.6), but now every of the four blocks has an additional N × N
block structure. Hence, the problem size has increased manifold. Second, strong
couplings between the N phases appear inA.

Figure 1.5: Evolution of five phases using the Cahn–Hilliard model.

8 CHAPTER 1. INTRODUCTION

Image inpainting
Modified versions of the Cahn–Hilliard equation can be used for the solution of
problems in imaging science. One example is inpainting [17, 45]. Inpainting is the
art of modifying parts of an image such that the resulting changes are not easily
detectable by an ordinary observer. Applications include the restoration of damaged
paintings and photographs, the replacement of selected objects, or the reduction of
artifacts in medical images.

Black-and-white image inpainting can be done via a modification of the two-compo-
nent Cahn–Hilliard model from Section 1.1. Figure 1.6(a) shows an example image,
where the inpainting domain is marked by the gray color (which could be seen as
cracks or scratches). Figure 1.6(b) illustrates the inpainted reconstruction using a
modified Cahn–Hilliard equation.

(a) Destroyed image. (b) Reconstructed image.

Figure 1.6: Black-and-white Cahn–Hilliard inpainting applied to a zebra image.

In Section 1.1, we have explained the underlying system in general terms of phases.
Remember that we have called u the phase variable, which describes the concentra-
tion of two phases A and B. Now, we want to explain the underlying system in terms
of image inpainting. In this setting, the two phases A and B represent the colors black
and white. Their interface consists of gray values and forms a smooth transition.
Basically, we can imagine u as a black-and-white image that evolves in time.

Imagine we have a given damaged black-and-white image as in Figure 1.6(a). In the
following, we will label it by f . The parts that are going to be modified are denoted by
the inpainting domain. These parts are often called missing or damaged regions since
the observer (usually) does not know the original image. The task is to reconstruct
the image f in this damaged region in an undetectable way. The reconstructed im-
age is represented by our phase variable u. Without any modification of the original
Cahn–Hilliard equation, the resulting image u would have nothing in common with
the original image. But the reconstructed image should be (almost) identical with
the given image f in the undamaged parts. This means, information about f as well
as the location of the inpainting domain have to be added to the Cahn–Hilliard model.

Bertozzi, Esedoḡlu, and Gillette [19] introduced the Cahn–Hilliard inpainting ap-
proach for binary images using a smooth potential. Our main contributions are
threefold. First, we extend this approach to nonsmooth potentials. Our second
input is the development of effective preconditioners for both settings, the smooth

1.2. EXTENSIONS OF THE CAHN–HILLIARD EQUATION 9

and nonsmooth one. The arising coefficient matrixA is of the same size as the one
we deal with in Section 1.1. However, new parameters appear. Our third contri-
bution combines the multi-component framework with inpainting. We develop an
inpainting model based on the multi-component Cahn–Hilliard model. This ap-
proach generalizes Bertozzi et al’s binary Cahn–Hilliard inpainting model to gray
value images. Figure 1.7 shows an example.

(a) Destroyed image. (b) Reconstructed image.

Figure 1.7: Cahn–Hilliard inpainting applied to a gray value image.

When a smooth potential is used, we are aware that Fourier spectral methods pro-
vide a powerful solver for Cahn–Hilliard inpainting on simple domains; see, e.g. [32].
However, the computation of missing information on arbitrary domains is a motiva-
tion for the use of FEM and preconditioning.

Two-phase flows
Our last project arose from a collaboration with the University of Hamburg, Germany.
In [73], Garcke, Hinze, and Kahle developed discretization techniques for a coupled
Cahn–Hilliard/Navier–Stokes system. Such a model is used for the numerical sim-
ulation of two-phase flows. Figure 1.8 illustrates a simulation of a rising bubble.
The authors were interested in three-dimensional experiments, which are not possi-
ble without having efficient iterative solution techniques. Hence, our contribution
concerns the iterative solution of the arising linear systems. This is based on the
preconditioning techniques we have developed for the Cahn–Hilliard model in Sec-
tion 1.1 together with the methods that have been developed for the Navier–Stokes
equations [99, 63].

Figure 1.8: Simulation of a rising bubble using a coupled
Cahn–Hilliard/Navier–Stokes model.

10 CHAPTER 1. INTRODUCTION

1.3 Outline of the thesis

We begin with a review of mathematical terms and concepts that are relevant for
this thesis in Chapter 2. It consists of of two parts — a functional analysis and a
numerical linear algebra part. The former briefly introduces normed spaces, Hilbert
spaces, and Sobolev spaces. Moreover, we introduce the concept of gradient flows
since the Cahn–Hilliard equation is one example. The first part ends with a review
of unconditional stability, consistence, and convergence for PDEs, which do not arise
from a gradient flow. We will need them in Chapter 5, where we utilize an uncon-
ditional time discretization scheme to a modified Cahn–Hilliard equation. Each of
the Chapters 3–5 starts with the problem formulation and a discussion in function
space. That is where basic functional analysis background is needed. The numerical
linear algebra part of Chapter 2 starts with setting up the basics in matrix theory
and notations used throughout this thesis. Then, we give an overview of iterative
solution techniques for systems of linear equations. In each of the Chapters 3–5, we
end up with systems of linear equations after proper discretizations. Their solution
is the focus of this thesis and this is where the numerical linear algebra part is re-
quired. Further, we present the concept of preconditioning, which is needed to make
iterative methods powerful.

Chapter 3 is devoted to the numerical solution of scalar Cahn–Hilliard equations.
We focus on the variational inequality formulation but also study the simpler PDE
version that is based on the smooth potential. Despite the inherent time step re-
striction, we utilize an implicit time discretization scheme. This is due to accuracy
reasons, which will be discussed in the numerical examples. We prove a uniqueness
and stability result for the time-discrete scheme in the smooth setting. The nonlinear
time-discrete systems are solved via standard Newton methods. The time-discrete
Cahn–Hilliard variational inequality is formulated as an optimal control problem
with pointwise constraints on the control. Again, we prove a uniqueness result
for the time-discrete problem. By applying a semismooth Newton (SSN) method
combined with a Moreau–Yosida regularization technique for handling the control
constraints, we show superlinear convergence in function space. For both settings,
smooth and nonsmooth, we use FEM for the discretization in space. At the heart
of our approach lies the solution of large and sparse linear systems for which we
propose the use of preconditioned Krylov subspace solvers using effective Schur
complement approximations.

Chapter 4 proceeds to the numerical solution of vector-valued Cahn–Hilliard equa-
tions. These generalize the two-component problems discussed in Chapter 3 to
multi-component ones. As in Chapter 3, we discuss strategies for the two model
formulations, which are on the one hand a system of PDEs based on the smooth
potential, and on the other hand a system of variational inequalities based on the
nonsmooth potential. Regarding the smooth setting, we extend the proof of the
energy stability and uniqueness of the solution of the time-discrete scheme from the
two-component to the multi-component case. The time-discrete system of Cahn–
Hilliard variational inequalities is interpreted as the first-order optimality system
of an optimization problem for which we have derived existence and uniqueness
conditions. Motivated by Chapter 3, we apply an SSN method combined with a
Moreau–Yosida regularization technique for handling the pointwise constraints. For

1.3. OUTLINE OF THE THESIS 11

both settings, smooth and nonsmooth, we use FEM for the discretization in space.
Again, at the heart of our approach lies the solution of large and sparse linear systems.
We develop effective preconditioners using efficient and cheap Schur complement
approximations that are tailored to the vector-valued Cahn–Hilliard equations.

Chapter 5 studies the numerical solution of scalar and vector-valued modified Cahn–
Hilliard equations. These extend the Cahn–Hilliard problems discussed in Chapter
3 and 4 to a tool in image inpainting. As before, we discuss strategies for the two
model formulations based on the smooth and nonsmooth potential. An important
difference to the previous two chapters is that the modified Cahn–Hillard equation
as a whole is not given by a gradient flow. Especially, the model arises as a superposi-
tion of two gradient flows. We apply the convexity splitting technique, which under
the right conditions yields an unconditional gradient stable time-discrete scheme.
Regarding the smooth setting, we extend the proof of consistency, unconditional
stability, and convergence of the time-discrete scheme from the two-component to
the multi-component case. Concerning the nonsmooth framework, we follow the
previous two chapters and apply an SSN method combined with a Moreau–Yosida
regularization technique. For both settings, smooth and nonsmooth, we use FEM for
the discretization in space. At the heart of our approach lies the solution of large and
sparse linear systems. We develop effective preconditioners using efficient and cheap
Schur complement approximations that are tailored to the modified Cahn–Hilliard
model.

Finally, in Chapter 6, we summarize the results of this thesis and discuss possible
future directions.

Chapter 2

Mathematical Foundations

In this chapter, we review mathematical terms and basic ideas that are relevant for
this thesis. We start with a functional analysis part and briefly go through normed
spaces, Hilbert spaces, and Sobolev spaces. All stated definitions and results are
mainly collected from [109, 141] and we refer the reader to these books for the proofs
and further details. We continue with a brief concept of gradient flows taken from
[20]. The last section of the functional analysis part collects the principles of uncon-
ditional stability, consistence, and convergence for PDEs, which do not arise from
a gradient flow. Hence, the mathematical definitions have to be adapted to these
kind of problems. The presented methodology is taken from [139]. We will need
it in Chapter 5, where we utilize an unconditional time discretization scheme to a
problem in image processing.

The remainder of this chapter summarizes basic concepts in the field of numerical
linear algebra taken mainly from [136, 80]. First, we set up basic matrix properties
and notations used throughout this thesis. Then, we briefly review the concept
of eigenvalues. They play the crucial role in the development of efficient iterative
solvers for systems of linear equations. Next, we recall common vector and matrix
norms. They are important for the numerical analysis of our developed solvers. The
matrix systems in this thesis are of block form. In particular, the Kronecker product
and saddle point matrices play a key role and we briefly go through these concepts.
The last section gives an overview of the iterative solution techniques. First, we
give an idea of classical iterative methods. Then, we go over to Krylov subspace
solvers, which form the state-of-the-art iterative solvers for large and sparse linear
systems. Their convergence can be enhanced by applying an accelerator, also called
preconditioner. We present the idea of preconditioning and recall a class of theoretical
optimal preconditioners for saddle point problems. These optimal preconditioners
form the basis for the development of efficient practical preconditioners in this thesis.

14 CHAPTER 2. MATHEMATICAL FOUNDATIONS

2.1 Functional analysis

This section recalls the basis and main theorems from functional analysis that are
relevant as background information for this thesis. Besides the definition of Banach,
Hilbert, and Sobolev spaces we go through the concepts of operators, (weak) conver-
gence and derivatives, and dual spaces. Moreover, we collect important inequalities
and integral identities. The last two sections review the principles of gradient flows
as well as unconditional stability, consistence, and convergence for PDEs that do not
arise from a gradient flow.

2.1.1 Normed spaces and Banach spaces

In the following, we review the basic concepts of important metric spaces — normed
spaces and in particular Banach spaces. These include the methodology of linear
operators defined on those spaces. Further, the idea of dual spaces belongs to the
theory. The presented tools are taken from the textbooks [109, 102].

A normed space is a vector space with a metric defined by a norm. If the normed
space is a complete metric space, then it is called a Banach space. If X and Y are
normed spaces, then a mapping from X into Y is called an operator. A functional is
a special operator. It is a mapping from X into the scalar field R or C. The set of all
bounded linear functionals on X is called the dual space X∗ of X. The dual space is
again a normed space.

Definition 2.1 (Linear operator [109, p. 82]). A linear operator T is an operator such that

(i) the domain D(T) of T is a vector space and the range R(T) lies in a vector space over
the same field,

(ii) for all x, y ∈ D(T) and scalars α, T(αx + βy) = αTx + βTy.

In what follows, we use the following notations. If T is a linear operator, thenD(T)
denotes the domain of T and R(T) denotes the range of T.

Definition 2.2 (Bounded linear operator [109, p. 91]). Let X and Y be normed spaces
and T : D(T)→Y a linear operator, whereD(T) ⊂ X. The operator T is said to be bounded
if there is a real number c such that for all x ∈ D(T)

‖Tx‖Y ≤ c‖x‖X.

Then, we can define the norm of T as

‖T‖ = sup
x∈D(T), x,0

‖Tx‖Y
‖x‖X

= sup
x∈D(T), ‖x‖X=1

‖Tx‖Y.

Theorem 2.1 (Continuity and boundedness [109, p. 97]). LetX andY be normed spaces.
Let T : D(T)→Y be a linear operator, whereD(T) ⊂ X. Then

(i) T is continuous if and only if T is bounded.

(ii) If T is continuous at a single point, it is continuous.

2.1. FUNCTIONAL ANALYSIS 15

For two normed spacesX andY (both real or both convex), we define the setL(X,Y)
of all bounded linear operators from X intoY.

Theorem 2.2 (The spaceL(X,Y) [109, p. 118]). The vector spaceL(X,Y) of all bounded
linear operators from a normed space X into a normed space Y is itself a normed space with
the norm defined by

‖T‖L(X,Y) = sup
x∈X, x,0

‖Tx‖Y
‖x‖X

= sup
x∈X, ‖x‖X=1

‖Tx‖Y.

Definition 2.3 (Linear functional [109, p. 104]). A linear functional f is a linear operator
with domain in a vector space X and range in the scalar fieldK of X. Thus,

f : D(f)→K ,

whereK = R if X is real andK = C if X is complex.

Definition 2.4 (Bounded linear functional [109, p. 104]). Let X be a normed space. A
bounded linear functional f is a bounded linear operator with range in the scalar field of X
in which the domainD(f) lies. Thus, there exists a real number c such that for all x ∈ D(f)

| f (x)| ≤ c‖x‖X.

Furthermore, the norm of f is

‖ f ‖ = sup
x∈D(f), x,0

| f (x)|
‖x‖X

= sup
x∈D(f), ‖x‖X=1

| f (x)|.

Theorem 2.3 (Continuity and boundedness [109, p. 104]). A linear functional f with
domainD(f) in a normed space is continuous if and only if f is bounded.

Definition 2.5 (Dual space [109, p. 119]). Let X be a normed space. The dual space X∗ of
X is the set of all bounded linear functionals on X. It constitutes a normed space with the
norm defined by

|| f ||X∗ = sup
x∈X, x,0

| f (x)|
‖x‖X

= sup
x∈X, ‖x‖X=1

| f (x)|.

In particular, X∗ is a Banach space.

Definition 2.6 (Duality pairing [102, p. 8]). LetX,X∗ be normed spaces withX∗ being the
dual space of X. For x ∈ X and f ∈ X∗, we denote by 〈 f , x〉X∗×X and 〈x, f 〉X×X∗ the duality
pairing defined via

〈 f , x〉X∗×X = 〈x, f 〉X×X∗ B f (x).

Theorem 2.4 (Cauchy’s inequality [102, p. 8]). LetX,X∗ be normed spaces withX∗ being
the dual space of X. Let x ∈ X and f ∈ X∗, then

|〈 f , x〉X∗×X| ≤ ‖ f ‖X∗ ‖x‖X.

16 CHAPTER 2. MATHEMATICAL FOUNDATIONS

2.1.2 Convergence in normed spaces

In the following, we review the basic concepts of convergence in normed spaces. In
particular, we summarize the ideas of strong and weak convergence. The presented
tools are taken from the textbooks [109, 116, 98]. At the end, we recall the notion of
Newton differentiability [92]. We will see in Chapter 3–5 that we are dealing with
nonlinear operators that are not Fréchet-differentiable. Hence, we need the weaker
concept of Newton differentiability.

Definition 2.7. [Strong convergence [109, p. 256]] Let X be a normed space. A sequence
{xk} ⊂ X is said to be strongly convergent (or convergent in the norm) if there is an x ∈ X
such that

lim
k→∞
||xk − x||X = 0.

This is written as xk → x.

Definition 2.8 (Weak convergence [109, p. 257]). Let X be a normed space. A sequence
{xk} ⊂ X is said to be weakly convergent if there is an x ∈ X such that for every f ∈ X∗

lim
k→∞

f (xk) = f (x).

This is written as xk ⇀ x.

Lemma 2.5 (Weak convergence [109, p. 258]). Let X be a normed space and {xk} ⊂ X a
weakly convergent sequence in X. Then:

(i) The weak limit x of {xk} is unique.

(ii) Every subsequence of {xk} converges weakly to x.

(iii) The sequence {‖xk‖} is bounded.

Theorem 2.6 (Strong and weak convergence [109, p. 259]). Let X be a normed space
and {xk} ⊂ X a strongly convergent sequence in X with xk → x. Then xk ⇀ x.

Definition 2.9 ([116, p. 125]). Let X be a normed space and S ⊂ X. Then, S is said to be
weakly closed inX if for all weakly convergent sequences {xk} ⊂ S with xk ⇀ x inX it holds
x ∈ S.

Lemma 2.7 ([116, p. 126]). Let X be a normed space and S ⊂ X be closed and convex.
Then, S is weakly closed in X.

Definition 2.10 ([98, p. 89]). Let X be a real Banach space.

(i) A functional F : X → (−∞,∞] is called convex if

F((1 − λ)x1 + λx2) ≤ (1 − λ)F(x1) + λF(x2)

for all x1, x2 ∈ X and 0 ≤ λ ≤ 1. It is called proper if it is not identically∞.

(ii) A functional F : X → (−∞,∞] is said to be lower semicontinuous at x ∈ X if

F(x) ≤ lim inf
y→x

F(y).

A functional F is lower semicontinuous if it is lower semicontinuous at all x ∈ X.

2.1. FUNCTIONAL ANALYSIS 17

(iii) A functional F : X → (−∞,∞] is said to be weakly lower semicontinuous at x ∈ X if

F(x) ≤ lim inf
k→∞

F(xk)

for all sequences {xk} converging weakly to x. F is weakly lower semicontinuous if it is
weakly lower semicontinuous at all x ∈ X.

In this thesis, we need the following weaker notion of Newton differentiability; see
[92, 91].

Definition 2.11 ([92, p. 866]). Let X and Y be Banach spaces, D ⊂ X an open subset. A
mapping F : D→ Y is called Newton-differentiable in the open subsetU ⊂ D if there exists
a family of mappings G : U → L(X,Y) such that

lim
d→0

‖F(x + d) − F(x) − G(x + d)d‖Y
‖d‖X

= 0 ∀x ∈ U.

The operator G is called a Newton derivative of F onU.

For such mappings, the following convergence result for the (semismooth) Newton
iteration

x(k+1) = x(k)
− G(x(k))−1F(x(k)), k = 0, 1, . . . (2.1)

holds true.

Theorem 2.8 ([92, p. 867]). Let X and Y be Banach spaces, D ⊂ X an open subset. Let
F : D → Y be Newton-differentiable in an open neighborhood U ⊂ D containing x∗ with
Newton derivative G(x). Suppose that x∗ is a solution of F(x) = 0. If G(x) is nonsingular for
all x ∈ U and {‖G(x)−1

‖L(Y,X) : x ∈ U} is bounded, then the sequence {x(k)
} generated by

(2.1) converges superlinearly to x∗, provided that ‖x(0)
− x∗‖X is sufficiently small.

2.1.3 Inner product spaces and Hilbert spaces

In this section, we refine the concepts from the previous sections to certain classes of
normed spaces and Banach spaces — the inner product spaces and Hilbert spaces.

An inner product space is a vector space X with an inner product (·, ·)X defined on
X. An inner product on X defines a norm on X given by

‖x‖X =
√

(x, x)X

and a metric on X given by

d(x, y)X = ‖x − y‖X =
√

(x − y, x − y)X.

If the inner product space is a complete metric space, then it is called a Hilbert space.

Theorem 2.9 (Riesz’s Theorem [109, p. 188]). Every bounded linear functional f on a
Hilbert spaceH can be represented in terms of the inner product, namely,

f (x) = (x, z)H ,

where z depends on f , is uniquely determined by f and has norm

‖z‖H = ‖ f ‖H ∗ .

18 CHAPTER 2. MATHEMATICAL FOUNDATIONS

Proposition 2.10 (Strong convergence [94, p. 115]). LetH be a Hilbert space. A sequence
{xk} ⊂ H converges strongly to x ∈ H if and only if lim supk→∞ ||xk||H ≤ ||x||H .

Definition 2.12 (Weak convergence [116, p. 121]). LetH be a Hilbert space. A sequence
{xk} ⊂ H is said to converge weakly to x ∈ H if

lim
k→∞

(xk, y)H = (x, y)H

for every y ∈ H .

Lemma 2.11 (Continuity of inner products [109, p. 138]). Let X be an inner product
space. If xk → x and yk → y in X, then (xk, yk)X → (x, y)X.

2.1.4 Lp and Sobolev spaces

The Lp spaces are important Banach spaces in the study of PDEs. They control the
regularity of functions. The Sobolev spaces Wk,p are subspaces of Lp spaces, which
control additionally the regularity of the derivatives. The presented tools are mainly
taken from the textbook [141].

In the following, letΩ ⊂ Rd be an open set. We denote the closure ofΩ byΩ= Ω∪∂Ω.

Definition 2.13 (Lp spaces [141, p. 377]). Let 1 ≤ p < ∞. The space Lp(Ω) is defined as

Lp(Ω) = {u : Ω→ R : u is measurable, ‖u‖Lp < ∞}

with the norm

‖u‖Lp(Ω) = ‖u‖Lp =

(∫
Ω
|u(x)|p dx

) 1
p

.

An inner product in L2(Ω) is given by

(u, v)L2(Ω) = (u, v)L2 =

∫
Ω

u(x) v(x) dx,

which defines the above declared norm ‖ · ‖L2 . The space L∞(Ω) is defined as

L∞(Ω) = {u : Ω→ R : u is measurable, ‖u‖L∞ < ∞}

with the norm
‖u‖L∞(Ω) = ‖u‖L∞ = ess sup

x∈Ω
|u(x)|.

The essential supremum of a function is defined as

ess sup
x∈Ω

u(x) = inf
Z∈Ω,|Z|=0

sup
Ω\Z

u(x).

The generalization to vector-valued functions u = [u1, . . . , uN]T : Ω → RN is denoted by
(Lp(Ω))N, where

(Lp(Ω))N =
{
u : Ω→ RN : u j ∈ Lp(Ω), j = 1, . . . ,N

}

2.1. FUNCTIONAL ANALYSIS 19

for 1 ≤ p < ∞, with the norm

‖u‖(Lp(Ω))N = ‖u‖Lp =

 N∑
j=1

‖u j‖
p
Lp


1
p

.

An inner product in (L2(Ω))N is given by

(u,v)(L2(Ω))N = (u,v)L2 =

∫
Ω

 N∑
j=1

u j(x) v j(x)

 dx,

which defines the above declared norm ‖ · ‖(L2(Ω))N .

Remark 2.1. 1. More precisely, Lp(Ω) and (Lp(Ω))N are spaces of equivalence classes of
functions. Two functions are equivalent if they are equal almost everywhere (a.e.).

2. For 1 ≤ p ≤ ∞, the spaces Lp(Ω) and (Lp(Ω))N are Banach spaces.

3. The spaces L2(Ω) and (L2(Ω))N are Hilbert spaces.

In what follows, we consider scalar functions. The definitions translate to the case of
vector-valued functions. The following version of Young’s inequality is also called
Young’s inequality with αY (modified Young’s inequality) or Cauchy’s inequality
with αY. It is an important inequality in the Lp spaces. Here, we do not formulate
the general inequality but the version which we need in this thesis.

Lemma 2.12 (Young’s inequality [114, p. 4]). Let αY > 0. For any a, b ∈ R, we have

|ab| ≤
αY

2
|a|2 +

1
2αY
|b|2.

Lemma 2.13 (Duality of Lp spaces [141, p. 386]). Let 1 < p < ∞. Then, the dual space of
Lp(Ω) can be identified with Lq(Ω) where p−1 + q−1 = 1.

For dealing with partial derivatives, we make use of the following compact notation.

Definition 2.14 (Multi-index [141, p. 414]). Let d be the spatial dimension. A multi-index
is a vector α = [α1, α2, . . . , αd]T

∈ Nd
0. By |α| =

∑d
i=1 αi we denote the length of the

multi-index α. Let u : Ω → R be a sufficiently often continuously differentiable function.
We define the αth partial derivative of u by

Dαu =
∂|α|u

∂xα1
1 ∂xα2

2 · · · ∂xαd
d

.

Definition 2.15 (k-times continuously differentiable functions [41, p. 107]). The space
of continuous functions on Ω is denoted by C(Ω), i.e.,

C(Ω) = {u : Ω→ R : u is continuous on Ω}.

Let k ∈ N0. The space of k-times continuously differentiable functions on Ω is denoted by
Ck(Ω), i.e.,

Ck(Ω) = {u : Ω→ R : Dαu exists and belongs to C(Ω) ∀|α| ≤ k}.

20 CHAPTER 2. MATHEMATICAL FOUNDATIONS

Further

Ck(Ω) = {u ∈ Ck(Ω) : Dαu has a continuous extension onΩ ∀|α| ≤ k}.

The case k = 0 gives C0(Ω) = C(Ω) and C0(Ω) = C(Ω). For the case k = ∞, the space C∞(Ω)
is defined as

C∞(Ω) = {u : Ω→ R : u is infinitely differentiable} = ∩∞k=0Ck(Ω).

Further
C∞(Ω) = ∩∞k=0Ck(Ω).

Definition 2.16 (Distributions [141, p. 415]). The space of distributions (infinitely smooth
functions with compact support) is defined by

C∞0 (Ω) = {u ∈ C∞(Ω) : supp(u) ⊂ Ω, supp(u) is compact}.

The support is given by
supp(u) = {x ∈ Ω : u(x) , 0}.

The following theorem is close to the definition of weak derivatives which will be
introduced afterwards.

Theorem 2.14 ([141, p. 416]). Let u ∈ Ck(Ω) and α a multi-index such that |α| ≤ k. It
holds ∫

Ω

Dαu(x)φ(x) dx = (−1)|α|
∫
Ω

u(x) Dαφ(x) dx ∀φ ∈ C∞0 (Ω).

Definition 2.17 (Space of locally-integrable functions [141, p. 416]). Let 1 ≤ p < ∞.
A function u : Ω → R is said to be locally p-integrable in Ω if u ∈ Lp(K) for every compact
subset K ⊂ Ω. The space of all locally p-integrable functions in Ω is denoted by Lp

loc(Ω).

Theorem 2.15 (Weak derivative [141, p. 417]). Let u ∈ L1
loc(Ω) and letα be a multi-index.

The function Dα
w u ∈ L1

loc(Ω) is said to be the weak αth derivative of u if∫
Ω

Dα
w u(x)φ(x) dx = (−1)|α|

∫
Ω

u(x) Dαφ(x) dx ∀φ ∈ C∞0 (Ω).

Lemma 2.16 (Uniqueness of the weak derivative [141, p. 417]). Let u ∈ L1
loc(Ω) and let

α be a multi-index. The weak αth derivative Dα
w u ∈ L1

loc(Ω) is defined uniquely in Ω up to
a zero-measure subset of Ω.

Lemma 2.17 (Compatibility of weak and classical derivatives [141, p. 417]). Let u ∈
Ck(Ω) and let α be a multi-index such that |α| ≤ k. Then, the classical αth derivative Dαu
is identical to the weak αth derivative Dα

w u.

Definition 2.18 (Sobolev spaces [141, p. 418]). Let 1 ≤ p ≤ ∞ and 1 ≤ k ∈ N. The
Sobolev space Wk,p(Ω) is defined as

Wk,p(Ω) = {u ∈ Lp(Ω) : Dα
w u exists and lies in Lp(Ω) ∀ |α| ≤ k}.

For every 1 ≤ p < ∞, the norm ‖ · ‖Wk,p is defined as

‖u‖Wk,p(Ω) = ‖u‖Wk,p =

∑
|α|≤k

‖Dα
w u‖pLp


1
p

.

2.1. FUNCTIONAL ANALYSIS 21

For p = 2, an inner product in Hk(Ω) BWk,2(Ω) is given by

(u, v)Hk(Ω) = (u, v)Hk =
∑
|α|≤k

∫
Ω

Dα
w u(x) Dα

wv(x) dx,

which defines the above declared norm ‖ · ‖Wk,2 = ‖ · ‖Hk .

In the Wk,p(Ω) spaces, we use the following standard seminorm

|u|Wk,p(Ω) = |u|Wk,p =

∑
|α|=k

‖Dα
w u‖pLp


1
p

for 1 ≤ p < ∞.

Remark 2.2. 1. For 1 ≤ p ≤ ∞ and k ∈N, the spaces Wk,p(Ω) are Banach spaces.

2. For k ∈N, the spaces Wk,2(Ω) = Hk(Ω) are Hilbert spaces.

For the following useful integral identities, we need to specify our open set Ω ⊂ Rd

a bit further.

Definition 2.19 (Domain [141, p. 412]). A subset Ω ⊂ Rd is said to be a domain if it is
nonempty, open, and connected.

Moreover, we need the notion of a Lipschitz-continuous boundary of a domain in
Rd. Roughly speaking, it means there exists a finite covering of the boundary ∂Ω
consisting of open d-dimensional rectangles such that in each rectangle ∂Ω can be
expressed as a Lipschitz-continuous function of d − 1 variables; see [141, p. 423]. In
what follows,Ω ⊂ Rd is a bounded domain with Lipschitz-continuous boundary. By
n(x) = [n1,n2, . . . , nd]T(x) we denote the unit outer normal vector to the boundary ∂Ω
(defined a.e. on ∂Ω). An important theorem related to the integration by parts is the
following.

Theorem 2.18 (Gauss’ theorem [141, p. 416]). For every u, v ∈ C1(Ω) ∩ C(Ω), we have∫
Ω

∂u
∂xi

v dx = −
∫
Ω

u
∂v
∂xi

dx +
∫
∂Ω

u v ni ds.

The above theorem generalizes to the divergence of vector fields.

Theorem 2.19 (Stokes’ theorem [141, p. 416]). Every smooth vector field w ∈ [C1(Ω) ∩
C(Ω)]d satisfies ∫

Ω

∇ ·w(x) dx =
∫
∂Ω

w(x) · n(x) ds.

Now, we recall important standard integral identities that are used in the weak
formulation of PDEs. The Theorems 2.18 and 2.19 generalize as follows.

Theorem 2.20 (Green’s theorem for H1-functions [141, p. 425]). For every u, v ∈ H1(Ω),
it holds ∫

Ω

∂u
∂xi

v dx = −
∫
Ω

u
∂v
∂xi

dx +
∫
∂Ω

u v ni ds.

22 CHAPTER 2. MATHEMATICAL FOUNDATIONS

Green’s theorem is the basis for the following two integral identities.

Lemma 2.21 ([141, p. 425]). For all u ∈ H1(Ω) and v ∈ H2(Ω), it holds∫
Ω

u∆v dx = −
∫
Ω

∇u · ∇v dx +
∫
∂Ω

u
∂v
∂n

ds,

where ∂v
∂n = ∇v(x) · n(x), x ∈ ∂Ω. For all u ∈ [H1(Ω)]d and v ∈ H1(Ω), it holds∫

Ω

(∇ · u) v dx = −
∫
Ω

u · ∇v dx +
∫
∂Ω

(u · n) v ds.

Theorem 2.22 (Poincaré inequality [121, p. 64]). There is a constant cP such that for
every u ∈ Hm(Ω), where m ≥ 1,

||u||2Hm ≤ cP

 ∑
|α|=m

‖Dα
wu‖2L2 +

∑
|α|<m

(∫
Ω

Dα
wu dx

)2
 .

In the special case m = 1 and u has a zero average
∫
Ω

u dx = 0, the Poincaré inequality
asserts that

||u||2H1 ≤ cP ||∇u||2L2 .

In this thesis, we will mainly use the L2(Ω)- and H1(Ω)-inner product or norm. Hence
during the rest of this thesis, we write (·, ·) and ‖ · ‖ for the L2(Ω)-inner product and
L2(Ω)-norm. We denote by (·, ·)1 and ‖ · ‖1 the H1(Ω)-inner product and H1(Ω)-norm.
Further, we will make use of the inner product

(u,v) =
∫
Ω

u · v dx =
N∑

i=1

(ui, vi)

in L2(Ω)N with the norm ‖ · ‖, and of the inner product

(u,v)1 = (u,v) + (∇u,∇v) =
N∑

i=1

((ui, vi) + (∇ui,∇vi)) =
N∑

i=1

(ui, vi)1

in H1(Ω)N with the norm ‖·‖1. For vector-valued functions u ∈ H1(Ω)N or u ∈ H2(Ω)N,
we use the notation ∇u = [∇u1, . . . ,∇uN]T and ∆u = [∆u1, . . . ,∆uN]T. Moreover, we
denote by 〈·, ·〉 the duality pairing between H1(Ω)∗ and H1(Ω) as well as its natural
extension to vector-valued functions. We define

H−1(Ω) =
{
u∗ ∈ H1(Ω)∗ | 〈u∗, 1〉 = 0

}
, (2.2)

which is equipped with the mass conserving H−1-inner product

(v1, v2)−1 B

∫
Ω

∇(−∆)−1v1 · ∇(−∆)−1v2 dx.

Here, y = (−∆)−1v is the weak solution of

−∆y = v,
∇y · n = 0 on ∂Ω.

2.1. FUNCTIONAL ANALYSIS 23

Note that the solution to this elliptic problem is only defined up to a constant.
We always choose y such that

∫
Ω

y dx = 0. Here, we finish the general functional
analytic setting. We refer the reader to the textbooks [109, 141] for further reading.
The following last two sections recall the definitions of gradient flows (taken from
[20]) as well as of unconditional stability, consistence, and convergence for PDEs,
which do not arise from a gradient flow (taken from [139]).

2.1.5 Gradient flows

According to [20], let Z be a vector space. Let U ⊂ Z be an affine subspace, i.e.,
there exists a ū ∈ Z and a linear space Y ⊂ Z such thatU = ū +Y. Let E : U → R
be a sufficiently smooth function.

Definition 2.20 (Variational derivative [20, p. 932]). The first variation of E at a point
u ∈ U in a direction v ∈ Y is defined by

δE
δu

(u)(v) B lim
δ→0

E(u + δv) − E(u)
δ

.

There exists a gradient of Ewith respect to the inner product (·, ·)Z onZ, denoted by
grad

Z
E(u), if

(grad
Z
E(u), v)Z =

δE
δu

(u)(v) ∀v ∈ Y. (2.3)

Now, the gradient flow of Ewith respect to the inner product (·, ·)Z is given as

∂tu(t) = −grad
Z
E(u(t)). (2.4)

Eyre [67] analyzed semi-implicit time discretization schemes of gradient flows, which
are constructed to be unconditional gradient stable. In particular, he concentrated
on the case where the underlying energy functional is not convex. The approach is
called convexity splitting, was originally introduced by Elliott and Stuart [61], and is
often attributed to Eyre [67]. In the following, we briefly illustrate its idea based on
Eyre’s setting. Note that this setting is a purely discrete one. However, as remarked
in [139, p. 420], the concept holds in a more general framework.

Let u(t) ∈ C1(R+,Rm), E(u) ∈ C2(Rm,R) and ∇E(u) be the gradient of E. Consider
the initial value problem

ut = −∇E(u), u(0) = u0. (2.5)

If E fulfills the following conditions

• E(u) ≥ 0 ∀u ∈ Rm,

• E(u)→∞ as ‖u‖ → ∞,

• (J(∇E)(u)u,u) ≥ λ ∀u ∈ Rm,

then (2.5) is called a gradient system and its solutions are called gradient flows. Here,
J(∇E)(u) is the Jacobian of ∇E(u) and λ ∈ R. If E(u) is not convex, then λ < 0, and
multiple equilibria of (2.5) may exist. The idea of convexity splitting is to write E(u)
as the sum of a convex plus a concave energy functional. The convex part is then

24 CHAPTER 2. MATHEMATICAL FOUNDATIONS

treated implicitly whilst the concave part is treated explicitly. In formulas, we write
E(u) as

E(u) = Ec(u) − Ee(u), (2.6)

where

Eo ∈ C2(Rm,R) and Eo(u) is strictly convex for all u ∈ Rm, o ∈ {c, e}. (2.7)

The semi-implicit discretization scheme of (2.5) is then given by

u(n)
− u(n−1) = −τ

(
∇Ec(u(n)) − ∇Ee(u(n−1))

)
, (2.8)

where u(n) approximates u(nτ) with time step size τ for n ∈N and u(0) = u0.

Theorem 2.23 ([67, p. 3]). If Ec(u) and Ee(u) satisfy (2.6)–(2.7) and Ee(u) satisfies

(J(∇Ee)(u)u,u) ≥ −λ

when λ < 0, then for any initial condition, the numerical scheme (2.8) is consistent, gradient
stable for all τ > 0, and possesses a unique solution for each time step.

Next, we recall the definitions of unconditional stability, consistence, and conver-
gence for PDEs, which do not arise from a gradient flow. The presented tools are
taken from [139].

2.1.6 Unconditional stability, consistence and convergence

Let u be an element of a suitable function spaceH defined onΩ× [0,T], withΩ ⊂ R2

open and bounded, and T > 0. Consider the PDE

ut = G(u,Dαu), (2.9)

where G is a real valued function and Dαu are the space derivatives with |α| ≤ 4. In
what follows, we write u(n) = u(nτ) for a solution of the continuous Equation (2.9) at
time nτ with time step size τ, where n ∈N. A corresponding discrete time stepping
method is denoted by

U(n) = U(n−1) + τG(n−1)(U(n−1),U(n),DαU(n−1),DαU(n)), (2.10)

where G(n−1) is a suitable approximation of G in U(n−1) and U(n). We denote by
capital U(n) the nth solution of the time-discrete Equation (2.10). We assume that
u(n),U(n)

∈ L2(Ω) for all n ∈N0.

Definition 2.21 ([139, p. 421].). The discrete time stepping method (2.10) is

1. unconditional stable if all solutions of (2.10) are bounded for all τ > 0 and all n such
that nτ ≤ T;

2. consistent if
lim
τ→0

η(n−1)(τ) = 0,

where η(n−1)(τ) is the local truncation error of the scheme and defined as

η(n−1)(τ) =
u(n)
− u(n−1)

τ
− G(n−1)(u(n−1),u(n),Dαu(n−1),Dαu(n)). (2.11)

2.2. BASIC MATRIX THEORY 25

Moreover, we define the global truncation error to be

η(τ) = max
n
‖η(n)(τ)‖H .

A numerical scheme is said to be of order p in time if

η(τ) = O(τp) for τ→ 0.

In this thesis, we will abbreviate η(n−1) and η for η(n−1)(τ) and η(τ).

With this brief introduction of unconditional stability, consistence, and convergence,
we finish the functional analytic part. Next, we change over to the fully discrete
setting and the field of numerical linear algebra.

2.2 Basic matrix theory

In this section, we set up basic matrix concepts and notations used throughout this
thesis. These include the theory of eigenvalues, which play the crucial role in the
development of efficient iterative solvers for systems of linear equations. We recall
common vector and matrix norms, which we need for the numerical analysis of our
developed solvers. The matrix systems that we are considering in this thesis are of
block form. In particular, the Kronecker product and saddle point matrices play a
key role and are summarized at the end of this section. The presented results are
mainly collected from [136, 80].

2.2.1 Matrix properties

The vector space of all n ×m matrices is denoted by Cn×m. LetA ∈ Cn×m with

A = (ai j)i=1,...,n,
j=1,...,m

=


a11 · · · a1m
...

. . .
...

an1 · · · anm

 .
We write ai j or [A]i j for the (i, j) entry ofA. The transpose ofA is given by

AT = (ai j) j=1,...,m,
i=1,...,n

=


a11 · · · an1
...

. . .
...

a1m · · · anm

 ∈ Cm×n.

The transpose conjugate matrix is indicated by AH = A
T
= AT, where the bar de-

notes the elementwise complex conjugation. The vector space of all m-vectors is
denoted by Cm. We write row vectors z ∈ C1×m as z = [z1, . . . , zm] and column
vectors z ∈ Cm = Cm×1 as z = [z1, . . . , zm]T.

A subspace of Cm is a subset of Cm that is also a complex vector space. Given the
vectors z1, . . . , zn ∈ Cm, then the set of all linear combinations of these vectors is a
subspace called the span of {z1, . . . , zn}

span{z1, . . . , zn} =

z ∈ Cm : z =
n∑

j=1

α jz j, α j ∈ C, j = 1, . . . , n

 .

26 CHAPTER 2. MATHEMATICAL FOUNDATIONS

If the set {z1, . . . , zn} is linearly independent, then each vector of span{z1, . . . , zn}

admits a unique expression as a linear combination of the α j’s. Two important
subspaces associated withA ∈ Cn×m are first the range ofA defined by

ran(A) = {Az : z ∈ Cm
} = span{a∗1, . . . ,a∗m},

where a∗ j denotes the jth column of A. Second, the kernel or nullspace of A given
by

ker(A) = {z ∈ Cm : Az = 0}.

The rank ofA is defined as

rank(A) = dim(ran(A)).

ForA ∈ Cn×m, it holds
m = dim(ker(A)) + rank(A).

During the rest of this thesis, we consider real matrices A ∈ Rn×m. The matrix A is
square if m = n. In the following, we assume A ∈ Rm×m if not stated otherwise. We
denote the identity matrix by

I = (δi j)i, j=1,...,m =


1

. . .
1

 ,
where δi j is the Kronecker delta. The identity matrix satisfies AI = IA = A. An
important property of matrices is invertibility. A is invertible if there exists a matrix
B ∈ Rm×m such that

BA = AB = I .

If this is the case, then B is called the inverse of A and A is called invertible or
nonsingular. Otherwise, we callA singular. The inverse ofA is uniquely determined
and we denote it by A−1. One criterion for determining the invertibility of A uses
the determinant. The matrix A is nonsingular if and only if det(A) , 0. A is called
orthogonal if ATA = I . Hence, the inverse of an orthogonal matrix A is given by
A−1 = AT.

2.2.2 Spectrum of matrices

Another important concept is built by the eigenvalues and eigenvectors of A. They
are in particular crucial for the development of powerful iterative solvers; see Section
2.3.1.

Definition 2.22 (Eigenvalues and eigenvectors [136, p. 3]). λ ∈ C is called an eigenvalue
of A if there exists a vector 0 , v ∈ Cm such that Av = λv. The vector v is called an
eigenvector of A associated with λ. We call the pair (λ,v) an eigenpair of A. The set of all
the eigenvalues ofA is called the spectrum ofA and is denoted by σ(A).

A can have at most m distinct eigenvalues. Based on Definition 2.22, we can introduce
the characteristic polynomial ofA. It is defined by

cA(t) = det(A − tI),

2.2. BASIC MATRIX THEORY 27

where t ∈ C. It can be shown that cA(t) is a polynomial of degree m; see [136,
Exercise 1.8]. During this thesis, we will denote byΠm the set of real polynomials of
degree m. It holds that λ ∈ C is an eigenvalue of A if and only if cA(λ) = 0. Hence,
A is nonsingular if and only if 0 < σ(A). The maximum modulus of the eigenvalues
ofA is called spectral radius and is denoted by

ρ(A) = max
λ∈σ(A)

|λ|.

Definition 2.23 (Similarity [136, p. 15]). Two matrices A and B are said to be similar if
there is a nonsingular matrix C such that

A = CBC−1.

The similarity ofA andB implies that they have the same eigenvalues.

Definition 2.24 (Diagonalizability [95, p. 59]). IfA is similar to a diagonal matrix, then
A is said to be diagonalizable.

Definition 2.25 (Simultaneously diagonalizability [95, p. 61]). Two matrices A,B ∈
Rm×m are said to be simultaneously diagonalizable if there exists a single nonsingular C ∈
Rm×m such that C−1AC and C−1BC are both diagonal.

Definition 2.26 (Commutativity [95, p. 21]). A,B ∈ Rm×m are said to commute if
AB = BA.

Theorem 2.24 ([95, p. 62]). LetA,B ∈ Rm×m be diagonalizable. ThenA andB commute
if and only if they are simultaneously diagonalizable.

The structure and properties ofAplays an important role in numerical linear algebra.
Examples include the development of efficient solution strategies for linear systems
of the form Az = b or the advancement of eigenvalue solvers. For some special
classes of matrices, one can specify their spectrum further. The most important type
relevant for this thesis are symmetric matrices. They have the propertyAT = A.

Theorem 2.25 (Spectrum of symmetric matrices [136, p. 25]). The eigenvalues of a
symmetric matrixA are real, i.e., σ(A) ⊂ R.

The maximum and minimum eigenvalues λmin(A) and λmax(A) of a symmetric
matrixA ∈ Rm×m can be estimated by the use of the Rayleigh quotient.

Definition 2.27 (Rayleigh quotient). Let A ∈ Rm×m be symmetric and 0 , z ∈ Rm. The
Rayleigh quotient ofA and z is defined by

RA(z) =
zTAz

zTz
.

Note that if z is an eigenvector ofA, then the Rayleigh quotient is the corresponding
eigenvalue.

Theorem 2.26 (Min-Max Theorem [136, p. 25]). The eigenvalues of a symmetric matrix
A satisfy

λmin(A) = min
z,0

RA(z),

λmax(A) = max
z,0

RA(z).

28 CHAPTER 2. MATHEMATICAL FOUNDATIONS

Theorem 2.27 (Symmetric Schur decomposition [80, p. 440]). IfA ∈ Rm×m is symmet-
ric, then there exists an orthogonalQ ∈ Rm×m such that

QTAQ = Λ =


λ1

. . .
λm

 .
Moreover,Aq j = λ jq j for j = 1, . . . ,m, where q j denotes the jth column ofQ.

Hence, any symmetric matrix is diagonalizable. In particular, a symmetric matrix
A ∈ Rm×m admits a set of orthonormal eigenvectors that forms a basis of Rm.

Theorem 2.28 (Sylvester Law of Inertia [136, p. 448]). If A ∈ Rm×m is symmetric and
C ∈ Rm×m is nonsingular, thenA andCTAC have the same numbers of negative, zero, and
positive eigenvalues.

A symmetric matrixA ∈ Rm×m is called

• positive definite if
zTAz > 0 ∀0 , z ∈ Rm,

• positive semidefinite if
zTAz ≥ 0 ∀0 , z ∈ Rm,

• negative definite if
zTAz < 0 ∀0 , z ∈ Rm, and

• negative semidefinite if

zTAz ≤ 0 ∀0 , z ∈ Rm.

A symmetric matrix, which is neither positive definite, positive semidefinite, neg-
ative definite, nor negative semidefinite, is called indefinite. Hence, A ∈ Rm×m is
symmetric

• positive definite if and only if σ(A) ⊂ R>0,

• positive semidefinite if and only if σ(A) ⊂ R≥0,

• negative definite if and only if σ(A) ⊂ R<0,

• negative semidefinite if and only if σ(A) ⊂ R≤0, and

• indefinite if and only if it has both, positive and negative, eigenvalues.

Theorem 2.29. Let A ∈ Rm×m be symmetric positive definite and B ∈ Rm×m symmetric.
Then, for all 0 , v ∈ Rm it holds

λmin(A−1B) ≤
vTBv

vTAv
≤ λmax(A−1B).

2.2. BASIC MATRIX THEORY 29

Proof. Since A−1B is similar to A
1
2 (A−1B)A−

1
2 = A−

1
2BA−

1
2 , it holds σ

(
A−1B

)
=

σ
(
A−

1
2BA−

1
2

)
. SinceA−

1
2BA−

1
2 is symmetric, we obtain for 0 , w ∈ Rm

λmin(A−1B) = λmin(A−
1
2BA−

1
2) ≤

wTA−
1
2BA−

1
2w

wTw
=
vTBv

vTAv

≤ λmax(A−
1
2BA−

1
2) = λmax(A−1B),

where v = A−
1
2w , 0. �

Lemma 2.30. Let A ∈ Rm×m be symmetric positive definite and B ∈ Rm×m symmetric
positive semidefinite. Then σ(A−1B) ⊂ R≥0. If B is additionally symmetric positive
definite, then σ(A−1B) ⊂ R>0.

Proof. Since A−1B is similar to A
1
2 (A−1B)A−

1
2 = A−

1
2BA−

1
2 , it holds σ

(
A−1B

)
=

σ
(
A−

1
2BA−

1
2

)
. It is clear thatA−

1
2BA−

1
2 is symmetric. Let 0 , z ∈ Rm. Then

zTA−
1
2BA−

1
2z = (A−

1
2z)TB(A−

1
2z) =: yTBy ≥ 0.

�

2.2.3 Vector and matrix norms

Next, we recall important vector and matrix norms. We utilize the Euclidean inner
product on Cm. For two vectors y = [y1, . . . , ym]T, z = [z1, . . . , zm]T

∈ Cm, it is defined
by

(y, z) = yHz =

m∑
j=1

y jz j.

The most commonly used vector norms are the p-norms defined by

‖z‖p = p

√√√ m∑
j=1

|z j|
p.

The case p = 2 gives the Euclidean norm

‖z‖ =

√√√ m∑
j=1

|z j|2 =
√

(z, z),

which is associated with the Euclidean inner product. The vector norms ‖ · ‖p and
‖ · ‖q induce the matrix norm ‖ · ‖pq, which is defined forA ∈ Rn×m as

‖A‖pq = max
z∈Rm,z,0

‖Az‖p

‖z‖q
= max
‖z‖q=1

‖Az‖p.

In the case p = q, we obtain the p-norm and write ‖ · ‖pq = ‖ · ‖p. These p-norms satisfy
the inequality

‖AB‖p ≤ ‖A‖p‖B‖p

30 CHAPTER 2. MATHEMATICAL FOUNDATIONS

forA ∈ Rn×m andB ∈ Rm×l. During this thesis, we denote the 2-norm simply by ‖ · ‖.
Important p-norms are

‖A‖1 = max
j=1,...,m

n∑
i=1

|ai j| (maximum absolute column sum norm),

‖A‖∞ = max
i=1,...,n

m∑
j=1

|ai j| (maximum absolute row sum norm),

‖A‖ =

√
ρ(ATA) =

√
ρ(AAT) (spectral norm).

It holds
‖A‖ ≤

√
‖A‖1‖A‖∞, (2.12)

see [80, pp. 72–73]. Note that for a symmetric matrixA, we have

‖A‖ = ρ(A).

Theorem 2.31. LetA ∈ Rm×m. For each k ∈N, it holds

ρ(A) ≤ ‖Ak
‖

1
k
p .

Proof. Let λ be an eigenvalue ofAwith corresponding eigenvector v. It holds

|λ|k‖v‖p = ‖λ
kv‖p = ‖A

kv‖p ≤ ‖A
k
‖p‖v‖p.

Since 0 , v, we get |λ|k ≤ ‖Ak
‖p and therefore |λ| ≤ ‖Ak

‖

1
k
p . Since λ is any eigenvalue

ofA, it also holds for the maximum modulus of the eigenvalues. �

Theorem 2.32. LetA,B ∈ Rm×m be symmetric. Then,

ρ(AB) ≤ ρ(A)ρ(B).

IfA is additionally positive definite andB is additionally positive semidefinite, then

max
λ∈σ(AB)

λ ≤

(
max
λ∈σ(A)

λ

) (
max
µ∈σ(B)

µ

)
.

IfB is additionally positive definite, then

min
λ∈σ(AB)

λ ≥

(
min
λ∈σ(A)

λ

) (
min
µ∈σ(B)

µ

)
.

Proof. LetA,B ∈ Rm×m be symmetric. Then,

ρ(AB) ≤ ‖AB‖ ≤ ‖A‖ ‖B‖ = ρ(A)ρ(B). (2.13)

Now, letA additionally be positive definite andB additionally be positive semidef-
inite. Lemma 2.30 implies that σ(AB) ⊂ R≥0. Hence, (2.13) becomes

max
λ∈σ(AB)

λ ≤

(
max
λ∈σ(A)

λ

) (
max
µ∈σ(B)

µ

)
.

2.2. BASIC MATRIX THEORY 31

Now, letB additionally be positive definite. Lemma 2.30 implies that σ(AB) ⊂ R>0,
i.e., the productAB is nonsingular. Hence,

1
minλ∈σ(AB) λ

= ρ((AB)−1) = ρ(B−1A−1) ≤ ‖B−1A−1
‖

≤ ‖A−1
‖ ‖B−1

‖ = ρ(A−1)ρ(B−1) =
1(

minλ∈σ(A) λ
) (

minµ∈σ(B) µ
) .
�

An important concept in the matrix theory is the condition number of a matrix
A ∈ Rm×m. This quantity depends on the chosen norm. In this thesis, we will only
equip it with the 2-norm. Hence, we define the condition number as

κ(A) := ‖A‖ ‖A−1
‖.

In some sense, it measures the degree of singularity of a matrix. In general, if κ(A)
is large,1, then A is said to be an ill-conditioned matrix. Hence, an almost singular
matrix is usually expected to have a large condition number. We will see in Section
2.3.1 that the condition number can be used to characterize the convergence behav-
ior of iterative solution methods. It holds κ(A) ≥ 1. Moreover, if A is symmetric,
then κ(A) = |λmax(A)| |λmin(A)|−1, where λmax(A) and λmin(A) are the maximum and
minimum eigenvalue ofA.

Finally, we make use of the following notation. If A is a symmetric positive definite
matrix, we define theA-norm as

‖z‖A =
√

(z,Az).

2.2.4 Block and saddle point matrices

Matrices can be characterized via their outer structure. A special class are circulant
matrices, which appear in Chapter 4.

Definition 2.28 (Circulant matrix [80, pp. 220–222]). A circulant matrixC ∈ Cm×m has
the form

C =



c0 cm−1 . . . c2 c1
c1 c0 cm−1 . . . c2
... c1 c0

. . .
...

cm−2
...

. . .
. . . cm−1

cm−1 cm−2 . . . c1 c0


.

Hence, C can be described by the vector c = [c0, c1, . . . , cm−1]T.

Circulant matrices are diagonalized by the discrete Fourier transform matrix.

Definition 2.29 (Discrete Fourier transform matrix [80, pp. 33–36]). The discrete Fourier
transform matrix Fm = (fkj)k, j=1,...,m ∈ C

m×m is defined by

fkj = ω
(k−1)(j−1)
m

with ωm = exp(−2πi/m).
1Of course, this depends on the definition of ’large’; see, e.g., [80, Chapter 3.5].

32 CHAPTER 2. MATHEMATICAL FOUNDATIONS

Theorem 2.33 ([80, p. 222]). Let C ∈ Cm×m be a circulant matrix with the corresponding
vector c as described in Definition 2.28. If λ = Fmc, then

F −1
m CFm = diag(λ1, . . . , λm).

LetA ∈ Rm×m. Further important types of matrices relevant for this thesis are:

• diagonal matrices: ai j = 0 for j , i,A = diag(aii)i=1,...,m,

• upper triangular matrices: ai j = 0 for i > j,

• lower triangular matrices: ai j = 0 for i < j, and

• block matrices, which generalize the matrices by replacing each entry by a
matrix.

When we are coming to vector-valued Cahn–Hilliard problems in Chapter 4 and 5,
we make use of the notion of the Kronecker product. If B ∈ Rn1×m1 and C ∈ Rn2×m2

such that

B =


b11 · · · b1m1
...

. . .
...

bn11 · · · bn1m1

 ,
then their Kronecker productB ⊗C ∈ Rn1n2×m1m2 is given by

B ⊗C =


b11C · · · b1m1C
...

. . .
...

bn11C · · · bn1m1C

 .
Hence, B ⊗ C can also be seen as a n1 × m1 block matrix whose (i, j) block is the
n2 ×m2 matrix bi jC. Important Kronecker properties include (see [80, p. 27]):

(B ⊗C)T = BT
⊗CT, (2.14)

(B ⊗C)(D ⊗ F) = BD ⊗CF , (2.15)

(B ⊗C)−1 = B−1
⊗C−1, (2.16)

B ⊗ (C ⊗D) = (B ⊗C) ⊗D.

Note that the matrix sizes in (2.15) must be compatible, i.e., B ∈ Rn1×m1 , C ∈

Rn2×m2 , D ∈ Rm1×p1 , F ∈ Rm2×p2 . Moreover, B and C in (2.16) must be nonsin-
gular. Another property is the following:

IfB is


diagonal
lower triangular
upper triangular

 , thenB ⊗C is


block diagonal
block lower triangular
block upper triangular

 .
Theorem 2.34 ([142, p. 78]). LetB ∈ Rn×n with eigenvalues λ1, . . . , λn and corresponding
eigenvectors v1, . . . ,vn. Let C ∈ Rm×m with eigenvalues µ1, . . . , µm and corresponding
eigenvectors w1, . . . ,wm. Then, the matrix B ⊗ C has the eigenvalues λ jµk with the
corresponding eigenvectors v j ⊗wk, where 1 ≤ j ≤ n and 1 ≤ k ≤ m.

2.2. BASIC MATRIX THEORY 33

A major class of block matrices are 2 × 2 block matrices arising from saddle point
problems. Applications include computational fluid dynamics [79] or constrained
optimization [78]. In particular, such kind of matrices form the core of this thesis.
The discretization of Cahn–Hilliard type problems leads to linear systems of saddle
point type. The following results are collected from [16].

Consider the 2 × 2 block matrix

A =

[
A BT

1
B2 −C

]
, (2.17)

withA ∈ Rm×m, B1,B2 ∈ Rp×m, C ∈ Rp×p and m ≥ p. When (2.17) describes a saddle
point problem, its blocks satisfy one or more of the following conditions according
to [16, p. 3]:

• A is symmetric,

• the symmetric part ofA, i.e., 1
2 (A +AT) is positive semidefinite,

• B1 = B2 = B,

• C is symmetric positive semidefinite,

• C = 0.

Note that the saddle point problems in Chapter 3–5 have the property m = p. If
A is nonsingular, the saddle point matrix A admits the following block triangular
factorization:

A =

[
I 0

B2A
−1 I

] [
A 0
0 S

] [
I A−1BT

1
0 I

]
, (2.18)

where S = −(C +B2A
−1BT

1) is the Schur complement of A in A. It follows from
(2.18) thatA is nonsingular if and only if S is. Equivalent factorizations to (2.18) are

A =

[
A 0
B2 S

] [
I A−1BT

1
0 I

]
, (2.19)

A =

[
I 0

B2A
−1 I

] [
A BT

1
0 S

]
. (2.20)

Hence, we can formulate the determinant ofA as

det(A) = det(A) det(S). (2.21)

Similar to (2.18), we can write under the assumption that C is nonsingular

A =

[
I −BT

1C
−1

0 I

] [
T 0
0 −C

] [
I 0

−C−1B2 I

]
, (2.22)

where T = A + BT
1C
−1B2 is the Schur complement of A in −C. It follows from

(2.22) thatA is nonsingular if and only if T is. The three factorizations (2.18)–(2.20)
will be used later in Section 2.3.2 when we discuss optimal solution techniques for
problems of the formAz = b. In order forAz = b to have a unique solution,A has
to be nonsingular.

34 CHAPTER 2. MATHEMATICAL FOUNDATIONS

Theorem 2.35 ([16, pp. 15–16]). AssumeA is symmetric positive definite,B1 = B2 = B,
and C is symmetric positive semidefinite. If ker(C) ∩ ker(BT) = {0}, then the saddle point
matrixA is nonsingular. In particular,A is invertible ifB has full rank.

Remark 2.3. Assume that A is symmetric positive definite, B1 = B2 = B has full rank,
andC is symmetric positive semidefinite. Then, S is symmetric negative definite. It follows
from the Sylvester Law of Inertia (Theorem 2.28) thatA is indefinite, with m positive and p
negative eigenvalues.

Assume thatA andA are nonsingular. Then, according to (2.18)[
A BT

1
B2 −C

]−1

=

[
A−1 +A−1BT

1S
−1B2A

−1
−A−1BT

1S
−1

−S−1B2A
−1 S−1

]
. (2.23)

Similar, assume thatA and C are nonsingular. Then, according to (2.22)[
A BT

1
B2 −C

]−1

=

[
T −1 T −1BT

1C
−1

C−1B2T
−1
−C−1 +C−1B2T

−1BT
1C
−1

]
. (2.24)

Next, assuming thatA is nonsingular, we want to discuss the numerical solution of
systems of the form Az = b. We begin with a general matrix A and come back to
saddle point matrices in Section 2.3.3.

2.3 Iterative solution of linear systems

This section is devoted to the solution of linear systems of the general form

Az = b. (2.25)

Here, A ∈ Rm×m is the given coefficient matrix, z ∈ Rm is the unknown solution
vector, and b ∈ Rm is the given right-hand side vector. In order for the Equation
(2.25) to have a unique solution, we assume that A is nonsingular. Systems of the
form (2.25) arise after the discretization of a continuous problem like a system of
PDEs. The linear systems are usually of very large dimension in order to obtain an
acceptable quality in the approximate solutions. Moreover, discretizations coming
from FEM result in a sparse matrixA, i.e., most of its entries are zero. There are two
classes of approaches, which solve the linear system (2.25) — direct methods and
iterative methods.

Direct methods [80, Chapter 11] are based on Gaussian elimination. Without careful
modifications they suffer from the fill-in during the factorization process. Hence, for
large and sparse matrices they demand high storage requirements. Effective versions
like sparse elimination methods, which control the fill-in, build an own field of re-
search; see, e.g., [77, 55, 51, 52]. The effectiveness and applicability of those methods
depends on the matrix structure. But in general, direct methods are competitive
for moderate system sizes. However, for much larger problems and in particular
in combination with three-dimensional experiments the application of direct solvers
becomes infeasible.

This is where iterative methods come in. Iterative methods form a general procedure
for solving the system (2.25). Starting with an initial guess z(0)

∈ Rm, they aim to

2.3. ITERATIVE SOLUTION OF LINEAR SYSTEMS 35

generate a sequence of vectors {z(l)
}l∈N, which converges to the solution z of (2.25).

This section starts with an illustration of the strategy of iterative solvers on the ba-
sis of the Jacobi iteration. The Jacobi iteration is a well-known classic among the
iterative approaches. This part is followed by an introduction into state-of-the-art it-
erative solvers. These are called Krylov subspace solvers. Such methods are usually
only efficient in combination with an accelerator, which is called a preconditioner.
We recall a class of theoretical optimal preconditioners for saddle point systems on
which we want to build on. In fact, in theory the application of those precondition-
ers yield outstanding performances. A class of Krylov subspace solvers are proven
to converge after only a small number of iterations when optimal preconditioners
are included. These theoretical preconditioners form the basis for the development
of practical approximations for the Cahn–Hilliard type problems discussed in this
thesis. For an overview of iterative solvers and preconditioning techniques, we refer
to [70, 86, 136, 63, 16, 2, 15, 149].

Classical iterative methods
Classical approaches, such as the Jacobi or Gauss-Seidel iteration, have proved their
worth in the past. This is due to their easy derivation and implementation. Nowa-
days however, they often do not meet the desired demands of the rate of convergence.
Instead of using these techniques as standalone solvers, they are nowadays mostly
used as successful accelerators. This belongs to the concept of preconditioners, which
is briefly touched at the end of this section. Section 2.3.2 provides a more detailed
introduction into preconditioning techniques. We refer the reader to [136, Chapter 4]
to get familiar with the classical iterative methods. We will only briefly discuss the
Jacobi iteration as a representative. The following results are collected from [136,
Chapter 4].

We begin with the splitting
A =D −L −U ,

such that (2.25) becomes
(D −L −U)z = b. (2.26)

Here, D is the diagonal matrix of A, which is assumed to be nonsingular. Further,
−L is the strict lower triangular matrix of A and −U is the strict upper triangular
matrix ofA. SinceD is nonsingular, we can write (2.26) as

z −D−1(L +U)z =D−1b. (2.27)

This can be formulated as a stationary iteration

z(l+1) =D−1(L +U)z(l) +D−1b =: Gz(l) + f (2.28)

for l ∈N0. Let us denote the ith component of z(l) by z(l)
i and the ith component of b

by bi. Then, (2.28) reads componentwise as

z(l+1)
i = a−1

ii

bi −

m∑
j=1, j,i

ai jz
(l)
j

 .
The following theorem answers the question of convergence.

36 CHAPTER 2. MATHEMATICAL FOUNDATIONS

Theorem 2.36 (Convergence of stationary iterations [136, p. 115]). The stationary
iteration (2.28) converges to the solution z of (2.25) if and only if ρ(G) < 1.

From (2.28), we can realize the efficiency regarding the computational costs per
iteration step: We need to perform one matrix vector multiplication and one cheap
solve with the favorable matrix D. Moreover, we can bring out the connection to
preconditioning. SinceG = I −D−1A, Equation (2.27) is equivalent to

D−1Az =D−1b.

This is a preconditioned system of the original problem Az = b in (2.25). Both sys-
tems have the same solution. The matrix D is called preconditioner. In general, D
can be any nonsingular matrix. In the case of the Jacobi iteration, D is constructed
as the diagonal matrix ofA as derived above.

Here, we finish our discussion about classical iterative solvers. In the following, we
change over to the today’s techniques.

2.3.1 Krylov subspace solvers

This section gives a brief review of Krylov subspace solvers, which form the state-
of-the-art iterative solvers for large and sparse linear systems. The following results
are mainly collected from [136, 63].

As stated in the last section, classical iterative methods nowadays often do not meet
the desired demands of the speed of convergence. More efficient iterative methods
are projection methods. The idea of projection techniques is to extract the sequence
{z(l)
} of approximate solutions from an affine subspace z(0) +Kl of Rm of dimension

l. This is called the search subspace. The uniqueness of z(l) is typically realized via
the imposition of l orthogonality conditions. We denote by

r(l) = b −Az(l)

the residuum in the lth step of the iterative method. It is a measure for the quality of
the approximate solution z(l). The l orthogonality conditions consist of constraining
the lth residuum r(l) to be orthogonal to l linearly independent vectors, i.e.,

r(l)
⊥ Ll.

Here, Ll is another subspace of Rm of dimension l. It is called the subspace of
constraints. This framework is commonly known as the Petrov-Galerkin conditions
in diverse areas of mathematics, e.g., the FEM. The caseLl = Kl leads to the Galerkin
conditions. Let us write z(l) = z(0) + k(l), where k(l)

∈ Kl. Then

r(l) = b −Az(l) = b −A(z(0) + k(l)) = r(0)
−Ak(l). (2.29)

Hence, the approximate solution z(l) can be obtained from

z(l) = z(0) + k(l), k(l)
∈ Kl, (2.30)(

r(0)
−Ak(l),w

)
= 0 ∀w ∈ Ll. (2.31)

2.3. ITERATIVE SOLUTION OF LINEAR SYSTEMS 37

The Krylov subspace

Kl = Kl(A, r(0)) = span
{
r(0),Ar(0),A2r(0), . . . ,Al−1r(0)

}
(2.32)

has proven to be efficient. It makes use of the sparsity of A in which case matrix
vector products are cheap to apply. According to [16, p. 50], it is known that the
Krylov subspaces form a nested sequence. In particular,

K1(A, r(0)) ⊂ . . . ⊂ KdK(A, r(0)) = . . . = Km(A, r(0)),

where dK = dim
(
Km(A, r(0))

)
≤ m. Moreover, it holds dim

(
Kl(A, r(0))

)
= l for each

l ≤ dK. This choice ofKl forms the basis of Krylov subspace methods. Depending on
the properties ofA, different constraint subspaces Ll can be constructed which lead
to unique approximates z(l), l = 1, 2, The following theorem states two common
examples.

Theorem 2.37 ([16, pp. 50-51],[136, p. 136]). Suppose that dim
(
Kl(A, r(0))

)
= l. If

• A is symmetric positive definite andLl = Kl(A, r(0)) ({ conjugate gradient method),
or

• A is nonsingular and Ll = AKl(A, r(0)) ({ minimum residual method),

then there exists a uniquely defined iterate z(l) of the form (2.30) for which the residual r(l)

satisfies (2.31).

Various Krylov subspace methods arose from different possibilities of the subspace
Ll as well as from the way of preconditioning. We are going to recall the most
common Krylov subspace approaches further below. But first, we want to give an
explanation for the particular construction of the Krylov subspace in (2.32). In par-
ticular, one might ask why do we build the Krylov subspace with the vector r(0).

For this purpose, let us consider for a moment the Krylov subspace

Kl(A,v) = span
{
v,Av,A2v, . . . ,Al−1v

}
with an arbitrary given vector v ∈ Rm. For k(l)

∈ Kl(A,v), we can write

k(l) =

l−1∑
j=0

α jA
jv = ql−1(A)v, (2.33)

where α j ∈ R, j = 0, . . . , l−1, and ql−1(t) =
∑l−1

j=0 α jt j is a real polynomial of degree l−1.
Now we make use of the Cayley-Hamilton theorem, which states that every square
matrix satisfies its own characteristic equation. Formally, this means cA(A) = 0,
where cA(t) is the characteristic polynomial ofA. One can show that

cA(A) = (−1)mAm + . . . −

 m∑
i=1

m∏
j=1, j,i

λ j

A + det(A)I , (2.34)

38 CHAPTER 2. MATHEMATICAL FOUNDATIONS

where λ j, j = 1, . . . ,m, are the eigenvalues of A. The nonsingularity of A implies
det(A) , 0. Hence, we can multiply (2.34) by det(A)−1A−1 and rearrangements yield

det(A)−1

(−1)m+1Am−1 + . . . +

 m∑
i=1

m∏
j=1, j,i

λ j

 I
 = A−1.

Thus, we have
A−1 = qm−1(A)

and the exact solution z ofAz = b can be written as

z = A−1b = qm−1(A)b.

In general, we include an initial guess z(0) as stated in (2.30). Then,

z − z(0) = A−1b −A−1(b − r(0)) = A−1r(0) = qm−1(A)r(0),

and a comparison with (2.33) shows that v = r(0) is a natural choice. This answers
the question about the choice of the vector r(0) in the Krylov subspace (2.32). During
the explanation for this issue, another question might arise: How do we choose the
sequence of polynomials {ql}l∈N0 such that the approximations

z(l) = z(0) + ql−1(A)r(0)
∈ z(0) +Kl(A, r(0))

are successively closer to the exact solution z? Will will discuss this in a moment.
But first, let us express the residuum r(l) as well as the error e(l) = z − z(l) in terms of
the polynomial ql(A). The residuum in (2.29) can be written as

r(l) = r(0)
−Aql−1(A)r(0) = (I −Aql−1(A))r(0) = pl(A)r(0),

where pl(t) = 1 − tql−1(t) is a polynomial of degree l with pl(0) = 1. Regarding the
error, we first rewrite (2.29) in another way:

r(0) = Az −Az(0) = Ae(0). (2.35)

Now, the error can be formulated as

e(l) = z − z(0)
− (z(l)

− z(0)) = e(0)
− ql−1(A)r(0) (2.35)

= e(0)
−Aql−1(A)e(0)

= (I −Aql−1(A))e(0) = pl(A)e(0).

The first class of Krylov subspace solvers that we are going to briefly summarize are
the minimizing solvers. This means, they either minimize the error or the residuum
in a certain norm. In other words, the polynomials {ql}l∈N0 are constructed such that
these quantities will be minimized.

We start with the conjugate gradient method (CG), which was developed indepen-
dently and in different versions by Lanczos [115] and Hestenes and Stiefel [90] in
1952. This is the state-of-the-art solver for symmetric positive definite matricesA. It
is based on the subspace of constraints Ll = Kl(A, r(0)). CG minimizes the A-norm
of the error e(l), i.e.,

‖e(l)
‖A = min

pl∈Πl,pl(0)=1
‖pl(A)e(0)

‖A. (2.36)

2.3. ITERATIVE SOLUTION OF LINEAR SYSTEMS 39

This expression can be simplified by utilizing the fact that A is symmetric. This
implies that Rm has a basis of orthonormal eigenvectors of A. Thus, we can write
the error in terms of this basis:

e(0) =

m∑
j=1

β jv j, (2.37)

where β j ∈ R andAv j = λ jv j. Thus, we can simplify (2.36) to

‖e(l)
‖A = min

pl∈Πl, pl(0)=1

∥∥∥∥∥∥∥∥
m∑

j=1

β jpl(A)v j

∥∥∥∥∥∥∥∥
A

= min
αi∈R, i=0,...,l−1

∥∥∥∥∥∥∥∥
m∑

j=1

β j

I −A l−1∑
i=0

αiA
i

v j

∥∥∥∥∥∥∥∥
A

= min
αi∈R, i=0,...,l−1

∥∥∥∥∥∥∥∥
m∑

j=1

β j

v j −

l−1∑
i=0

αiA
i+1v j


∥∥∥∥∥∥∥∥
A

= min
αi∈R, i=0,...,l−1

∥∥∥∥∥∥∥∥
m∑

j=1

β j

v j −

l−1∑
i=0

αiλ
i+1
j v j


∥∥∥∥∥∥∥∥
A

= min
αi∈R, i=0,...,l−1

∥∥∥∥∥∥∥∥
m∑

j=1

β j

v j − λ j

l−1∑
i=0

αiλ
i
jv j


∥∥∥∥∥∥∥∥
A

= min
pl∈Πl, pl(0)=1

∥∥∥∥∥∥∥∥
m∑

j=1

β jpl(λ j)v j

∥∥∥∥∥∥∥∥
A

≤ min
pl∈Πl, pl(0)=1

∥∥∥∥∥∥∥∥max
j
|pl(λ j)|

m∑
j=1

β jv j

∥∥∥∥∥∥∥∥
A

= min
pl∈Πl, pl(0)=1

max
j
|pl(λ j)| ‖e0‖A. (2.38)

If we know eigenvalue bounds of the form λ j ∈ [a, b], j = 1, . . . ,m, with a > 0, then
the bound (2.38) becomes

‖e(l)
‖A

‖e(0)‖A
≤ min

pl∈Πl, pl(0)=1
max
z∈[a,b]

|pl(z)|. (2.39)

The polynomial, which achieves this minimization, is the scaled and shifted Cheby-
shev polynomial. We will not discuss this polynomial further and refer the reader
to [133]. Of course, the best estimate is given if we know exactly the minimum and
maximum eigenvalue of A. The bound (2.38) gives a nice intuition about sufficient
conditions for fast convergence rates. Imagine a symmetric positive definite matrix
A ∈ Rm×m which has only two distinct eigenvalues a and b. Then, we can construct a
polynomial p2(t) of degree two that satisfies p2(a) = 0, p2(b) = 0 and p2(0) = 1. Then,
the bound (2.38) implies that CG will converge to the exact solution in at most two
iterations. This gives us an idea when we can expect CG to be a powerful solver: If
A is symmetric positive definite and has only few number of distinct eigenvalues,

40 CHAPTER 2. MATHEMATICAL FOUNDATIONS

then the approximations z(l) converge quickly to z. In praxis, we usually do not
have knowledge about the exact eigenvalues of a matrix. One could compute them
but this requires in general much more work than solving the linear systemAz = b.
In praxis, we can replace the knowledge about the location of exact eigenvalues by
eigenvalue clusters. Hence, if A is symmetric positive definite and has only few
number of eigenvalue clusters, then the approximations z(l) converge quickly to
z. An important note is that the concept of eigenvalue clustering forms the basic
methodology of Krylov subspace solvers to converge fast. Further below, we will
recall some other Krylov subspace solvers. Their applicability differs for instance in
the assumptions on A or in the choice of the subspace Ll. Moreover, some of them
are not constructed based on a minimization criterion of the form (2.38). However
in praxis, a small number of eigenvalue clusters usually results in fast convergence
rates for any Krylov subspace method.

Another criterion for the convergence behavior makes use of the condition number
ofA.

Theorem 2.38 ([63, p. 75]). After l steps of the CG method, the iteration error e(l) satisfies
the bound

‖e(l)
‖A

‖e(0)‖A
≤ 2


√
κ(A) − 1√
κ(A) + 1

l

.

Hence, if A has a small condition number, then CG will converge quickly. The con-
verse does not have to be true. For instance, imagine a matrix which has a large
condition number but only a few distinct eigenvalues. Then, the tighter eigenvalue
bound (2.38) implies convergence after a few iterations.

For an algorithm of CG, we refer to [63, p. 72]. The costs of CG per iteration add up
to two inner products, three vector updates, and one matrix vector multiplication.
CG requires to store only four vectors. We close the short discussion about CG here.
CG assumes a symmetric positive definite coefficient matrix. For many applications,
in particular in most of the problems of this thesis, this is not given. Hence, we
want to briefly touch more general Krylov subspace solvers. The minimum residual
method (MINRES) was introduced by Paige and Saunders [129] in 1975. It uses
Ll = AKl(A, r(0)) as subspace of constraints. In contrast to CG, MINRES only
assumes a symmetric coefficient matrixA. Moreover, it does not minimize the error
but the 2-norm of the residuum:

‖r(l)
‖

‖r(0)‖
≤ min

pl∈Πl, pl(0)=1
max
z∈[a,b]

|pl(z)|, (2.40)

where the eigenvalues λ j of A satisfy λ j ∈ [a, b] for all j = 1, . . . ,m. For an algorithm
of MINRES, we refer to [63, p. 87]. The costs of MINRES per iteration add up to two
inner products, five vector updates, and one matrix vector multiplication. MINRES
requires to store only six vectors.

Up to this point, we have considered Krylov subspace methods which assume a
symmetric coefficient matrix. Now, let us generalize this further. In the following,
A ∈ Rm×m is an arbitrary nonsingular matrix. For this general case, there are two

2.3. ITERATIVE SOLUTION OF LINEAR SYSTEMS 41

kinds of Krylov subspace solvers: First, we have minimizing solvers, which sat-
isfy a generalized version of the optimality condition (2.40). However, they suffer
from increasing costs per iteration. The second class requires a fixed amount of
computational work per iteration. However, this class forgoes the optimality condi-
tion. The generalized minimum residual method (GMRES) and biconjugate gradient
method (BiCG) are the two analogous methods to MINRES and CG for nonsymmet-
ric matrices. GMRES was developed by Saad and Schultz [137] in 1986. It uses
Ll = AKl(A, r(0)) as subspace of constraints. Similar as MINRES, the bounds on the
norm of the residuals are derived from the optimality condition.

Theorem 2.39 ([63, p. 169]). Let z(l) denote the lth iterate generated after l steps of GMRES
with residual r(l). IfA is diagonalizable, that is,A = V ΛV −1, where Λ = diag(λ1, . . . , λm)
is the diagonal matrix of eigenvalues of A, and V is the matrix whose columns are the
eigenvectors, then

‖r(l)
‖

‖r(0)‖
≤ κ(V) min

pl∈Πl, pl(0)=1
max

j
|pl(λ j)|.

If in addition S is any set that contains the eigenvalues ofA, then

‖r(l)
‖

‖r(0)‖
≤ κ(V) min

pl∈Πl, pl(0)=1
max
λ∈S
|pl(λ)|.

Compared to the case of a symmetric matrix in (2.39), the eigenvectors ofA enter the
bounds in the nonsymmetric case. However, the eigenvalue clustering still plays the
crucial role for fast convergence rates. One drawback of GMRES are the increased
work and storage requirements, which grow like O(lm). This can be improved for
example by restarting techniques; see, e.g., [122]. However, it is usually not clear
when to restart. For an algorithm of GMRES, we refer to [63, p. 168]. The costs
of GMRES per iteration add up to one matrix vector multiplication but many inner
products. As already hinted, we have to store the whole basis for the search subspace
Kl.

BiCG was originally introduced in 1952 by Lanczos [115] and later in 1976 redis-
covered by Fletcher [69]. It uses Ll = Kl(AT, r(0)) as subspace of constraints. BiCG
belongs to the class of Krylov subspace solvers which requires a fixed amount of com-
putational work per iteration. Moreover, it has fixed storage requirements. BiCG
requires two matrix vector products (one withA and one withAT), two inner prod-
ucts, and five vector updates. As a drawback, there is essentially no convergence
analysis available. However, in praxis the eigenvalue clustering still plays the crucial
role as we will see throughout this thesis. Another drawback is the possibility of
breakdowns, i.e., it may happen that no iterate z(l) satisfying both, (2.30) and (2.31),
exists. Variants of BiCG have been developed, e.g., the biconjugate gradient stabi-
lized method (BiCGstab) of van der Vorst [147]. In praxis such breakdowns are rare.
However, near-breakdowns may cause irregular convergence. In our experience
with the computational results in this thesis, we have not encountered any problems
due to breakdowns. Hence, we choose BiCG or BiCGstab as the numerical solver
for the nonsymmetric linear systems in this thesis. The procedure taken from [63,
p. 173] is illustrated in Algorithm 2.1.

We finish the presentation about the variants of Krylov subspace solvers. For a
deeper insight, we refer the reader to [136] and references therein. The important

42 CHAPTER 2. MATHEMATICAL FOUNDATIONS

Algorithm 2.1: The biconjugate gradient method

Choose z(0), compute r(0) = b −Az(0), set p(0) = r(0)

Choose r̂(0) such that (r(0), r̂(0)) , 0
Set p̂(0) = r̂(0)

for l = 0, 1, 2, . . . do

αl =
(r̂(l),r(l))

(p̂(l),Ap(l))

z(l+1) = z(l) + αlp
(l)

r(l+1) = r(l)
− αlAp

(l)

r̂(l+1) = r̂(l)
− αlA

Tp̂(l)

<Test for convergence >

β(l) =
(r̂(l+1),r(l+1))

(r̂(l),r(l))

p(l+1) = r(l+1) + βlp
(l)

p̂(l+1) = r̂(l+1) + βlp̂
(l)

end

message from the part above is the eigenvalue clustering, which typically results
in a fast convergence rate for any Krylov subspace solver. Of course, the matrices
coming from PDEs and applications usually do not have neither a nice eigenvalue
structure nor an acceptable small condition number. Hence, solving the resulting
linear systems with a Krylov subspace solver without any acceleration results in bad
convergence behaviors. This is where preconditioning techniques come in.

2.3.2 Preconditioning

We have already motivated the idea of preconditioning in the introduction part of
Section 2.3. We have seen that classical iterative methods like the Jacobi iteration
can be used as a preconditioner. The aim of a preconditioner is to enhance the
convergence of the iterative solver. In our case, we want to accelerate the speed of
convergence of Krylov subspace solvers. The basic idea is to construct a nonsingular
matrix P ∈ Rm×m and solve

P −1Az = P −1b (2.41)

instead of Az = b. In order for P to be efficient, it should satisfy the following
conditions:

• P should approximateA and

• the action of P −1 should require little work.

The construction process of P should incorporate the goal of eigenvalue clustering.
That means, P −1A is aimed to have a few number of eigenvalues or eigenvalue clus-
ters. This typically results in outstanding performances of Krylov subspace solvers.
The algorithms of Krylov subspace solvers have been modified to incorporate a pre-
conditioner. CG and MINRES need a symmetric positive definite preconditioner
in order to guarantee the inherent symmetry. GMRES and BiCG impose, besides
the nonsingularity, no additional requirements on P . As an example, Algorithm
2.2 depicts the preconditioned BiCG. The preconditioned system in (2.41) is called

2.3. ITERATIVE SOLUTION OF LINEAR SYSTEMS 43

Algorithm 2.2: The preconditioned biconjugate gradient method

Choose z(0), compute r(0) = b −Az(0)

Choose r̂(0) such that (r(0), r̂(0)) , 0
Solve Py(0) = r(0) and P Tŷ(0) = r̂(0)

Set p(0) = y(0) and p̂(0) = ẑ(0)

for l = 0, 1, 2, . . . do

αl =
(r̂(l),y(l))

(p̂(l),Ap(l))

z(l+1) = z(l) + αlp
(l)

r(l+1) = r(l)
− αlAp

(l)

r̂(l+1) = r̂(l)
− αlA

Tp̂(l)

Solve Py(l+1) = r(l+1) and P Tŷ(l+1) = r̂(l+1)

<Test for convergence >

β(l) =
(r̂(l+1),y(l+1))

(r̂(l),y(l))

p(l+1) = y(l+1) + βlp
(l)

p̂(l+1) = ŷ(l+1) + βlp̂
(l)

end

left-preconditioned system. There is also the right-preconditioned system

AP −1ẑ = b, ẑ = Pz,

and the centrally preconditioned system

P −1
1 AP −1

2 ẑ = P −1
1 b, ẑ = P2z.

In this thesis, we will apply left preconditioning. The development of efficient
preconditioners often depends on the structure and properties of A, which in turn
depends on the underlying PDE or problem. This is in particular the case for saddle
point systems. If we only consider the theoretical side of the construction, there are
preconditioners which are optimal for a wide range of problems. Optimal means that
they accelerate the convergence behavior of Krylov subspace solvers to a small num-
ber of iterations. However, these theoretically optimal preconditioners have crucial
drawbacks in praxis. They are usually built on inverses of large and dense matrices.
Hence, they typically cannot be explicitly used and clever practical approximations
have to be designed. Nevertheless, these theoretical preconditioners are of high
importance and form the basis for the development of practical solvers. Before we
are going to introduce a special class of such theoretical optimal preconditioners, we
briefly want to give another example of a preconditioner. We have already learned
about the Jacobi iteration as one example of a preconditioner. A powerful technique,
in particular for elliptic problems, is the multigrid method (MG).

Multigrid methods
It is known that classical iterative solvers like the Jacobi or Gauss-Seidel iteration
can damp high frequency errors rapidly. However, after the error is smoothed out
their convergence rates decelerate. Typically, they have difficulties in damping the
low frequency errors without special relaxation techniques. But the low frequency
errors can be generally seen as high frequency errors on a coarser mesh. Hence, if we

44 CHAPTER 2. MATHEMATICAL FOUNDATIONS

would have a proper mapping from the current mesh to a coarser mesh, we could
further effectively damp the error via a standard iterative solver. This procedure
could be repeated again and again until we reach a satisfied coarse grid on which we
are able to efficiently solve a reduced linear system. What remains is to interpolate
the calculated solution back to the starting grid and update the approximate solu-
tion. MGs exploit this knowledge and employ grids of different mesh sizes. Under a
careful construction, their convergence rates are independent of the problem size m.
In this sense, they provide an optimal solver. Basically, MGs can be divided into two
classes. Geometric multigrid methods [151, 88] require information of the underly-
ing spatial mesh of the discretized problem. The algebraic multigrid method (AMG)
[134, 68] works in a purely algebraic framework. That means, they only use the
knowledge of the underlying matrix. Hence, they work well even for complicated
geometries and meshes. For a detailed description to MG and its origins, we refer to
[40]. MG is a fast and efficient method to solve many classes of problems. However,
its implementation can be quite complex. In this thesis, we will use AMG as part of
our developed preconditioners.

Now, we want to turn to a special class of theoretical optimal preconditioners which
form the basis for this thesis.

2.3.3 Saddle point preconditioners

In Section 2.2.4, we have introduced saddle point type matrices since they form the
core theme of this thesis. This section considers saddle point type linear systems of
the form [

A BT
1

B2 −C

] [
u
w

]
=

[
f
g

]
, (2.42)

shortly written as Az = b, with A ∈ Rm×m, B1,B2 ∈ Rp×m, C ∈ Rp×p, and m ≥ p.
In particular, we recall theoretical optimal preconditioners for such kind of prob-
lems. The focus lies on preconditioners involving the Schur complement S =
−(C + B2A

−1B1). In the following, we assume that A as well as A and S are
nonsingular.

Block diagonal preconditioners
The basic block diagonal preconditioner is given by

PD =

[
A 0
0 −S

]
. (2.43)

Bank, Welfert, and Yserentant [9], Kuznetsov [113], as well as Murphy, Golub, and
Wathen [124] proposed it for the case C = 0. In that case, left preconditioning ofA
with PD results in the matrix

T D = P
−1
D A =

[
I A−1BT

1
−S−1B2 0

]
. (2.44)

The matrix T D is nonsingular by assumption, diagonalizable, and has only three
distinct eigenvalues, which are 1, 1

2 (1 +
√

5), and 1
2 (1 −

√
5). That means that any

Krylov subspace method with an optimality or Galerkin property, e.g., GMRES [137]
or BiCG [69], will converge in at most three iterations. Further, Ipsen [97] generalized

2.3. ITERATIVE SOLUTION OF LINEAR SYSTEMS 45

these results to the case C , 0.

Block triangular preconditioners
Block triangular preconditioners of the form

PT =

[
A 0
B2 −S

]
(2.45)

were first considered by Bramble and Pasciak [39]. They studied saddle point sys-
tems withAbeing positive definite,C being positive semidefinite, andB1 = B2 = B.

The block diagonal preconditioner PD can be presented in block triangular form in
two other ways:

P−T =

[
A BT

1
0 −S

]
and P+T =

[
A BT

1
0 +S

]
. (2.46)

In the following, we use the notation

P±T =

[
A BT

1
0 ±S

]
(2.47)

that combines both block tridiagonal preconditioners into one expression. Murphy,
Golub, and Wathen [124] proposed them for the case C = 0. In that case, right
preconditioning ofAwith P±T results in the matrix

T ±T =AP
−1
±T =

[
I 0

B2A
−1
±I

]
. (2.48)

The matrices T ±T are nonsingular by assumption. The preconditioned matrix T −T
is diagonalizable and has only the two distinct eigenvalues ±1. In contrast, T +T has
only a single eigenvalue of 1, but is not diagonalizable. The use of T ±T rather than
T D requires only one additional multiplication per iteration of a vector by BT

1 . As
in the diagonal case, Ipsen [97] generalized these results to the case C , 0. Further,
the same results apply for left preconditioning T ±T = P

−1
±TA. Moreover, the results

spread to the lower block triangular preconditioners[
A 0
B2 −S

]
and

[
A 0
B2 +S

]
.

Block preconditioners
Axelsson and Neytcheva [4, Proposition 5.1] considered saddle point matrices of the
form

A =

[
A −α2BT

β2B γ2A

]
, (2.49)

where A ∈ Rm×m is symmetric positive definite, the symmetric part 1
2 (B + BT) of

B ∈ Rm×m is positive semidefinite, and α, β, and γ are some real constants. They
derived an optimal preconditioner

P =

[
A −α2BT

β2B γ2A + αβγ(B +BT)

]
. (2.50)

46 CHAPTER 2. MATHEMATICAL FOUNDATIONS

The eigenvalues λ of the generalized eigenvalue problem

A

[
v1
v2

]
= λP

[
v1
v2

]
satisfy

λ ∈

{
[0.5, 1],
{1} for v2 ∈ ker(B +BT).

This preconditioner has been used for smooth Cahn–Hilliard equations by Boyanova
et al. [35, 37, 36, 3, 38]. Moreover, they showed in [35, p. 21] its connection to the block
diagonal and block triangular preconditioner discussed above. Their implementa-
tions turn out to contain the same steps and the computational amount of work is
almost the same.

The basis for most of the problems in this thesis is the lower block triangular pre-
conditioner PT in (2.45). In some simpler cases, we make use of its block diagonal
version. Both types need the application of the inverse of two matrices. These are
the (1, 1) blockA as well as the Schur complementS = −(C+B2A

−1BT
1). The crucial

part is the inversion of S, since it is usually large and dense. Hence, it typically
cannot be explicitly used and clever practical approximations have to be designed.
Depending on the properties ofA, it might also not be an easy task to apply the action
of its inverse. Hence, it is our task to develop practical nonsingular approximations
A0 ≈ A and S0 ≈ S. This results in the two preconditioners

PD0 =

[
A0 0
0 −S0

]
and PT0 =

[
A0 0
B2 −S0

]
(2.51)

that we are going to design in this thesis. The implementation that performs the
action of the inverse of PD0 requires the following two steps. The solution of the
problem PD0[yT

1 ,y
T
2]T = [gT

1 , g
T
2]T requires:

1. SolveA0y1 = g1.

2. Solve −S0y2 = g2.

The solution of the problem PT0[yT
1 ,y

T
2]T = [gT

1 , g
T
2]T requires one additional matrix

vector multiplication:

1. SolveA0y1 = g1.

2. Solve S0y2 = B2y1 − g2.

In many problems discussed in this thesis, the (1, 1) blockA is formed either by diag-
onal, symmetric positive matrices or by discretizations of elliptic operators. Hence,
in the former case we apply the action of the inverse of A by simple elementwise
multiplications. For the latter case, we already know that AMG provides a pow-
erful solver. Note that some other special cases for A arise, which need additional
consideration as we will see later in the corresponding chapters. Our general pro-
cedure for the approximation of the Schur complement S originates in the work
of Pearson and Wathen [130], who developed preconditioners for PDE-constrained
optimization. Their matching strategy is the following: Construct a preconditioner

2.3. ITERATIVE SOLUTION OF LINEAR SYSTEMS 47

of the form Ŝ = S1Â
−1S2, which captures the exact Schur complement S as close as

possible. Note that we need Ŝ to be nonsingular. The block Â is usually a symmetric
positive definite approximation of A if A does not already have these properties.
For symmetric positive definite matricesS1,S2, an approximate inverse ofS is given
by Ŝ−1 = S−1

2 ÂS
−1
1 . Suitable constructions of S1 and S2 are typically problem de-

pendent as we will see in the course of this thesis. Finally, S0 is constructed as an
approximation of Ŝ which uses AMGs for the approximations of S−1

1 and S−1
2 , i.e.,

S0 = AMG(S1)Â−1AMG(S2).

The construction of a Schur complement approximation of the form S1Â
−1S2 has

been derived in another context by Bänsch, Morin, and Nochetto [10]. They devel-
oped operator preconditioners for a class of fourth-order problems. These include
the smooth scalar Cahn–Hilliard equation for special time discretization schemes. In
particular, they provided theoretical results on the spectrum of their precondition-
ers. In contrast, we derive our preconditioners for smooth Cahn–Hilliard problems
from a different direction of view. This includes another theoretical perspective and
a different way to prove their optimality. Moreover, in this thesis we extend this
preconditioning strategy to nonsmooth Cahn–Hilliard problems and other Cahn–
Hilliard applications.

The design, implementation, and numerical analysis of preconditioners of the form
(2.51) tailored for Cahn–Hilliard problems are the focus of this thesis. In particular,
the preconditioners are aimed to be robust with respect to parameter changes. We
finish here the mathematical background setting. The next three chapters present
three different Cahn–Hilliard problems. Each chapter starts with the problem for-
mulation and a brief function space discussion. This is where we have to keep the
functional analysis in mind. After proper discretizations, we end up with systems of
linear equations where the numerical linear algebra part is required. In the following
chapter, we start with the scalar Cahn–Hilliard equation.

Chapter 3

Scalar Cahn–Hilliard Equations

3.1 Introduction

We start with the study of two-component systems as introduced in Chapter 1.1.
Imagine a molten binary alloy like iron and nickel inside the spatial domainΩ ⊂ Rd

with d ∈ {1, 2, 3}. The two pure phases are denoted by A (pure iron) and B (pure
nickel). We are interested in the evolution of the two components or their mixture in
the period (0,T) with a fixed time T > 0. Hence, we have to take the time t ∈ (0,T)
and the spatial point x ∈ Ω into account. Remember the phase variable u = u(x, t),
which describes the difference of the local concentrations of both components. If
u(x, t) ≈ 1, then only phase A (the pure phase A) is present at point x at time t. The
case u(x, t) ≈ −1 means only phase B (the pure phase B) exists at point x at time t.
Values of u between −1 and 1 represent mixed regions. In particular, these regions
include the interfacial area. The interface is a small boundary layer that separates
the pure phases A and B from each other. Hence, it acts as a diffuse phase transition.
We can control its width via the model parameter ε > 0, which is again introduced
in Equation (3.1) below.

The theory of Cahn and Hilliard [44] is based on the Ginzburg–Landau energy

E(u) =
∫
Ω

ε
2
|∇u|2 +

1
ε
ψ(u) dx. (3.1)

An equilibrium profile of our considered mixture minimizes the Ginzburg–Landau
energy (3.1) subject to the mass conservation

d
dt

∫
Ω

u dx = 0.

The parameter ε > 0 is proportional to the thickness of the interfacial region as
mentioned above. The first part of (3.1) is large whenever u changes rapidly. Hence,
its minimization gives rise to the interfacial area. The potential function ψ : R →
R≥0 ∪ {∞} in (3.1) gives rise to phase separation. It has two distinct minima, one for
each of the two pure phases A and B. Hence, its minimization penalizes values away

50 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

from the pure phases. As mentioned in Chapter 1, we consider potential functions
of polynomial and obstacle type with a main focus on the latter. The former is the
smooth double-well potential and is given as

ψpol(u) =
1
4

(u2
− 1)2. (3.2)

The latter is the nonsmooth double-obstacle potential

ψobs(u) =
{

1
2 (1 − u2) |u| ≤ 1,

∞ |u| > 1.
(3.3)

As we will show in the course of this chapter, the solution of linear systems of the
form Az = b with a large, sparse, and symmetric matrix A is at the heart of our
method. They have the following saddle point structure

A =

[
−A M
M K

]
withM ∈ Rm×m being symmetric positive definite,K ∈ Rm×m being symmetric posi-
tive semidefinite, andA ∈ Rm×m being symmetric and possibly indefinite. Due to the
possible indefiniteness ofA, a nonsymmetric Krylov subspace solver is our method
of choice. The crucial parameters represented in A are the spatial mesh size h, the
time step size τ, the interface parameter ε, as well as the Moreau–Yosida regulariza-
tion parameter c. We develop efficient preconditionersP for the solution of the linear
systems above. This is based on effective Schur complement approximations as well
as (algebraic) multigrid solvers developed for elliptic systems [68, 136, 134]. In par-
ticular, our preconditioners behave independent of all crucial parameters. Moreover,
we state a theoretical robustness proof for the smooth setting.

The structure of the chapter is as follows. The Cahn–Hilliard model is derived in
Section 3.2. We first consider the smooth double-well potential (3.2), which leads
to a fourth-order PDE. Then, we study the nonsmooth double-obstacle potential
(3.3), which yields a variational inequality. Both formulations are discretized in time
in Section 3.3. We focus on a fully implicit time-discrete scheme. This is due to
accuracy reasons and its motivation is investigated later in the numerical results.
Regarding the smooth setting, we proof the energy stability and uniqueness of the
solution of our time discretization scheme under reasonable assumptions. Concern-
ing the nonsmooth framework, we follow Hintermüller et al. [91] and extend the
analysis therein. Note that Hintermüller et al. developed the mathematical theory
for a semi-implicit time-discrete scheme for the Cahn–Hilliard variational inequality.
In contrast, we focus on a fully implicit time-discrete scheme. We show that the
time-discrete problem is equivalent to an optimal control problem with pointwise
constraints on the control. In Section 3.4–3.5, we apply Hintermüller et al’s function
space-based algorithm. It combines a Moreau–Yosida regularization technique with
an SSN method. The former handles the control constraints while the latter solves the
optimality systems of the resulting subproblems. This method allows for a conver-
gence analysis in function space [92, 146] for which one expects a mesh-independent
behavior of the algorithm [93]. We derive the linear systems arising from the dis-
cretization using finite elements in Section 3.6. In Section 3.7, we analyze the linear
systems and propose preconditioning strategies for the saddle point problems. We

3.2. DERIVATION 51

additionally introduce preconditioners for a smooth semi-implicit scheme derived in
[67] and for a nonsmooth semi-implicit scheme derived in [91]. Section 3.8 illustrates
the robustness of our preconditioners for both problem setups. In Section 3.9, we
discuss alternative approaches. Section 3.10 summarizes our findings.

3.2 Derivation

There are two ways of deriving the Cahn–Hilliard equation. First, it can be derived
as the H−1-gradient flow of the Ginzburg-Landau energy (3.1); see, e.g. [20]. The
second kind comes from the mass balance law; see, e.g. [57, 126]. We consider the
latter case and briefly review the derivation of the Cahn–Hilliard equation. First of
all, the smooth double-well potential (3.2) setting is used. Then, we go over to the
nonsmooth double-obstacle potential (3.3) setting.

3.2.1 Smooth systems

In the following, we focus on the smooth double-well potential (3.2). We briefly
derive the Cahn–Hilliard equation in the framework of [57]. For a more detailed
and physical study, we refer to [53, 127]. We assume that the considered system is
isothermal. The law of mass conservation is given as

d
dt

∫
R

u dx = −
∫
∂R

J · n ds

for any subregion R ⊂ Ω. Here, J denotes the mass flux. Due to Lemma 2.21, we
obtain

d
dt

∫
R

u dx = −
∫

R
∇ · J dx.

Since R is fixed and arbitrary, we can derive ∂tu = −∇ · J. The mass flux is defined
as J = −L(u)∇w, where L(u) ≥ 0 (L(u) . 0) denotes the mobility function and w
the chemical potential difference between the species A and B. The latter is defined
via the variational derivative of E with respect to u (see Definition 2.20), whereby
U = Y = H1(Ω):

d
dη
E(u + ηd) = lim

η→0

E(u + ηd) − E(u)
η

= lim
η→0

1
η

∫
Ω

ε
2
|∇(u + ηd)|2 +

1
4ε

((u + ηd)2
− 1)2

−
ε
2
|∇u|2 −

1
4ε

(u2
− 1)2 dx

=

∫
Ω

1
ε

(
u3
− u

)
d dx + ε

∫
Ω

∇u · ∇d dx

=

∫
Ω

(1
ε
ψ′pol(u) − ε∆u

)
d dx (3.4)

=

∫
Ω

w d dx.

The identity in (3.4) is supplemented with Lemma 2.21 together with the natural zero
Neumann boundary condition ∇u · n = 0 on ∂Ω. Here, n is the unit normal vector
to ∂Ω pointing outwards fromΩ. Finally, we impose the mass conserving boundary
condition

L(u)∇w · n = 0 on ∂Ω. (3.5)

52 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

In conclusion, we obtain the Cahn–Hilliard equation:

∂tu = ∇ · (L(u)∇w), (3.6)

w = −ε∆u + ε−1ψ′pol(u), (3.7)

∇u · n = L(u)∇w · n = 0 on ∂Ω. (3.8)

This formulation states the Cahn–Hilliard problem in form of two second-order
PDEs. Substituting Equation (3.7) into (3.6), results in the fourth-order formulation.
Note also the high nonlinearity presented by the potential ψpol. Differentiating the
energy E in (3.1) with respect to the time yields

d
dt
E(u) =

∫
Ω

ε∇u · ∇∂tu +
1
ε
ψ′pol(u) ∂tu dx =

∫
Ω

w ∂tu dx =
∫
Ω

w∇ · (L(u)∇w) dx

=

∫
∂Ω

w L(u)∇w · n ds −
∫
Ω

L(u)∇w · ∇w dx
(3.5)
= −

∫
Ω

L(u)|∇w|2 dx.

Therefore, the total energy is non-increasing in time. Differentiating the total mass∫
Ω

u dx with respect to the time, gives

d
dt

∫
Ω

u dx =
∫
Ω

∂tu dx =
∫
Ω

∇ · (L(u)∇w) dx =
∫
∂Ω

L(u)∇w · n dx
(3.5)
= 0.

Hence, the total mass is conserved.

In this paper, we assume a constant mobility and without loss of generality we use
L(u) ≡ 1. Concerning well-posedness and regularity of a solution of (3.6)–(3.8) with
L(u) ≡ 1 we refer to [62, 125]. Concentration dependent mobilities, and in particular
degenerate ones, are required for many applications; see, e.g. [58, 13, 117]. This is
for example the case if the mobility in the interface is larger than in the pure phases.
This motivates us to consider concentration dependent mobilities in the future in
order to model other physical situations.

3.2.2 Nonsmooth systems

In the last section, we focused on the smooth potentialψpol. We could easily calculate
the derivative of the smooth potential with respect to u. Now, we turn to the
nonsmooth potential ψobs given in (3.3). It can be written via the indicator function

I[−1,1](u) =
{

0 u ∈ [−1, 1],
∞ otherwise

as
ψobs(u) = ψ0(u) + I[−1,1](u),

where ψ0(u) = 1
2 (1 − u2). Differentiating I[−1,1] in the sense of subdifferentials [65,

p. 523], we get the following Cahn–Hilliard system

∂tu = ∆w, (3.9)

w = −ε∆u + ε−1
(
ψ′0(u) + µ

)
, (3.10)

µ ∈ ∂I[−1,1](u), (3.11)
|u| ≤ 1, (3.12)

∇u · n = ∇w · n = 0 on ∂Ω, (3.13)

3.3. TIME DISCRETIZATION 53

where ∂I[−1,1](u) is the subdifferential ofI[−1,1] at u, the nonsmooth part of the energy
E. We refer to, e.g., [20], for more details about the derivation. This system can be
formulated as a variational inequality

〈∂tu, v〉 + (∇w,∇v) = 0 ∀v ∈ H1(Ω), (3.14)

(w, v − u) ≤ ε(∇u,∇(v − u)) + ε−1(ψ′0(u), v − u) ∀v ∈ H1(Ω), |v| ≤ 1, (3.15)
|u| ≤ 1 a.e. in Ω, (3.16)

which is supplemented by the initial condition u0 ∈ H1(Ω) with |u0| ≤ 1 in Ω. The
existence, uniqueness, and regularity of a solution of (3.14)–(3.16) was shown in [27].

Due to the variational inequality, the nonsmooth Cahn–Hilliard problem poses a
harder challenge compared to the smooth one from the last section. This holds for
both, the mathematical as well as numerical analysis, as we shall see during the
following sections.

After the derivation of the constitutive Cahn–Hilliard equation or inequality, we are
going to study their discretizations in order to be able to solve them numerically. We
start with the discretization in time in the next section.

3.3 Time discretization

In this section, we focus on a fully implicit time discretization scheme. Indeed, this
results in a time step restriction for both, the smooth and nonsmooth setting, as we
will see below. This is not the case if a proper semi-implicit scheme is used. However,
as noted, e.g., in [140], semi-implicit schemes usually have larger truncation errors
and require smaller time steps than fully implicit schemes. Another motivation arises
in numerical simulations for the solution of Allen–Cahn or Cahn–Hilliard variational
inequalities [23, 25, 42, 138]: The experiments performed with a semi-implicit scheme
yield highly inaccurate results for large time steps. More precisely, these schemes
are not able to capture the evolution of the sharp interface limit anymore when the
time step is too large.

These arguments motivate us to apply a fully implicit time-discrete scheme.1 This
means, we use the backward Euler discretization for the time derivative ∂tu and treat
all the other terms implicitly. In particular, we treat the potential function implic-
itly. Let τ > 0 denote the time step size and tn−1 = (n − 1)τ, n ∈ N, discrete times.
We denote by u(n−1)

∈ H1(Ω) the time-discrete solution at time step tn−1. Further,
u(n), w(n)

∈ H1(Ω) form the time-discrete solution at time step tn = tn−1 + τ. In order
to ease the notation, from now on we write uold, u, and w instead of u(n−1), u(n), and
w(n), respectively.

Again, we start with the smooth setting and consider the weak formulation of
(3.6)–(3.8). We discretize this problem in time and give stability and uniqueness
conditions. Afterwards, we go over to the nonsmooth setting (3.14)–(3.16). We for-
mulate this problem as the first-order optimality system of an optimization problem.
This allows us to specify the conditions for a unique solution.

1Note that we draw on a semi-implicit scheme in the preconditioning part in Section 3.7.

54 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

3.3.1 Smooth systems

Let us focus on the smooth setting and the corresponding Cahn–Hilliard Equation
(3.6)–(3.8). We consider its weak formulation and utilize the implicit Euler scheme.
Then, (u,w) solves the following problem: Find u, w ∈ H1(Ω) such that(

u − uold, v
)
+ τ (∇w,∇v) = 0 ∀v ∈ H1(Ω), (3.17)

− (w, v) + ε (∇u,∇v) + ε−1
(
ψ′pol(u), v

)
= 0 ∀v ∈ H1(Ω). (3.18)

Choosing v = 1 in (3.17), we obtain the conservation of mass, i.e., (u, 1) = (uold, 1),
the specific feature of the Cahn–Hilliard model.

Now, we want to give stability and uniqueness conditions for the time step. However,
the quartic growth of ψpol(u) at infinity introduces various technical difficulties in
the analysis. Therefore, we consider a truncated double-well potential. To be more
precise, we restrict the growth of ψpol(u) to be quadratic for |u| ≥ M for a given
constant M. This can be done by replacing ψpol(u) with

ψ̃(u) B


3M2
−1

2 u2
− 2M3u + 1

4

(
3M4 + 1

)
u > M,

1
4

(
u2
− 1

)2
u ∈ [−M,M],

3M2
−1

2 u2 + 2M3u + 1
4

(
3M4 + 1

)
u < −M,

as done, e.g., in [140]. This gives

ψ̃′′(u) =


3M2

− 1 u > M,
3u2
− 1 u ∈ [−M,M],

3M2
− 1 u < −M,

and hence the following condition is satisfied: There exists a constant S such that

max
u∈R
|ψ̃′′(u)| ≤ S. (3.19)

Truncating the polynomial potential is in fact a common practice; see, e.g. [140] and
references therein. In particular, the authors of [140] have proven stability conditions
for Allen–Cahn and Cahn–Hilliard equations with a truncated double-well potential.
They considered various numerical schemes except for the fully implicit one that we
are looking at. In the following, we state a uniqueness and stability result for our
time-discrete scheme.

Theorem 3.1. The solution of (3.17)–(3.18) is unique provided that τ < 4ε3

S2 and ψ = ψpol

is replaced by ψ̃.

Proof. Assume there exist two solutions (u,w) and (ũ, w̃) of (3.17)–(3.18). Then, we
get

(u − ũ, v) + τ (∇(w − w̃),∇v) = 0 ∀v ∈ H1(Ω), (3.20)

− (w − w̃, v) + ε (∇(u − ũ),∇v) + ε−1 (
ψ′(u) − ψ′(ũ), v

)
= 0 ∀v ∈ H1(Ω). (3.21)

Choosing v = w − w̃ in (3.20) gives

0 = (u − ũ,w − w̃) + τ ‖∇(w − w̃)‖2 . (3.22)

3.3. TIME DISCRETIZATION 55

Choosing v = u − ũ in (3.21) gives

0 = − (u − ũ,w − w̃) + ε ‖∇(u − ũ)‖2 + ε−1 (
ψ′(u) − ψ′(ũ),u − ũ

)
. (3.23)

The last term in (3.23) can be reformulated using the Taylor expansion of the potential

ψ(u) = ψ(ũ + u − ũ) = ψ(ũ) + (u − ũ)ψ′(ũ) +
1
2

(u − ũ)2 ψ′′(s),

ψ(ũ) = ψ(u + ũ − u) = ψ(u) + (ũ − u)ψ′(u) +
1
2

(u − ũ)2 ψ′′(s̃),

where s and s̃ lie between u and ũ. Adding these two equations, gives

(
ψ′(u) − ψ′(ũ)

)
(u − ũ) =

1
2

(u − ũ)2 (
ψ′′(s) + ψ′′(s̃)

) (3.19)
≥ −S(u − ũ)2.

Therefore, we obtain in (3.23)

0 ≥ − (u − ũ,w − w̃) + ε ‖∇(u − ũ)‖2 −
S
ε
‖u − ũ‖2 . (3.24)

For the last equation, we multiply (3.20) by S
ε and choose v = u − ũ:

0 =
S
ε
‖u − ũ‖2 +

τS
ε

(∇(w − w̃),∇(u − ũ))

=
S
ε
‖u − ũ‖2 +

(
τS

ε
√

2ε
∇(w − w̃),

√

2ε∇(u − ũ)
)

≥
S
ε
‖u − ũ‖2 −

τ2S2

4ε3 ‖∇(w − w̃)‖2 − ε ‖∇(u − ũ)‖2 . (3.25)

In (3.25), we have used Young’s inequality with αY = 1 (Lemma 2.12). Now, adding
(3.22), (3.24), and (3.25), we get

0 ≥ τ
(
1 −

τS2

4ε3

)
‖∇(w − w̃)‖2 .

Hence, we obtain uniqueness if 1 − τS2

4ε3 > 0, which is equivalent to τ < 4ε3

S2 . Since
then, it follows that ‖∇(w − w̃)‖ = 0, which implies that w− w̃ is constant. Using this,
(3.20) yields (u − ũ, v) = 0 for all v ∈ H1(Ω) and therefore u = ũ almost everywhere.
Finally, (3.21) gives w = w̃ almost everywhere. �

Theorem 3.2. Under the condition τ < 8ε3

S2 and provided that ψ = ψpol is replaced by ψ̃, the
time discretization scheme (3.17)–(3.18) is energy stable. This means its solution satisfies
E(u(n)) ≤ E(u(n−1)) for all n ≥ 1.

Proof. Choosing v = w in (3.17), gives

0 =
(
u − uold,w

)
+ τ ‖∇w‖2 . (3.26)

Choosing v = u − uold in (3.18), gives

0 = −
(
u − uold,w

)
+
ε
2

(
‖∇u‖2 −

∥∥∥∇uold
∥∥∥2
+

∥∥∥∥∇ (
u − uold

)∥∥∥∥2)
+

1
ε

(
ψ′(u),u − uold

)
. (3.27)

56 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

The last term in (3.27) can be reformulated using the Taylor expansion of the potential

ψ(uold) = ψ(u + uold
− u) = ψ(u) + (uold

− u)ψ′(u) +
1
2

(u − uold)2 ψ′′(s),

where s lies between u and uold. This yields

ψ′(u)
(
u − uold

)
= ψ(u)−ψ(uold)+

1
2

(
u − uold

)2
ψ′′(s)

(3.19)
≥ ψ(u)−ψ(uold)−

S
2

(
u − uold

)2
.

Therefore, we obtain in (3.27)

0 ≥ −
(
u − uold,w

)
+
ε
2

(
‖∇u‖2 −

∥∥∥∇uold
∥∥∥2
+

∥∥∥∥∇ (
u − uold

)∥∥∥∥2)
+

1
ε

(
ψ(u), 1

)
−

1
ε

(
ψ(uold), 1

)
−

S
2ε

∥∥∥u − uold
∥∥∥2
.

(3.28)

For the last equation, we multiply (3.17) by S
2ε and choose v = u − uold:

0 =
S
2ε

∥∥∥u − uold
∥∥∥2
+
τS
2ε

(
∇w,∇

(
u − uold

))
=

S
2ε

∥∥∥u − uold
∥∥∥2
+

(
τS

2ε
√
ε
∇w,
√
ε∇

(
u − uold

))
(3.29)

≥
S
2ε

∥∥∥u − uold
∥∥∥2
−
τ2S2

8ε3 ‖∇w‖2 −
ε
2

∥∥∥∥∇ (
u − uold

)∥∥∥∥2
. (3.30)

In (3.30), we have used Young’s inequality with αY = 1 (Lemma 2.12). Now, adding
(3.26), (3.28), and (3.30), we get

0 ≥ τ
(
1 −

τS2

8ε3

)
‖∇w‖2 +

ε
2

(
‖∇u‖2 −

∥∥∥∇uold
∥∥∥2

)
+

1
ε

(
ψ(u), 1

)
−

1
ε

(
ψ(uold), 1

)
.

Now, we can bound the energy in (3.1):

E(u)−E(uold) =
ε
2

(
‖∇u‖2 −

∥∥∥∇uold
∥∥∥2

)
+

1
ε

(
ψ(u), 1

)
−

1
ε

(
ψ(uold), 1

)
≤ τ

(
τS2

8ε3 − 1
)
‖∇w‖2 .

Hence, we obtain energy stability if τS2

8ε3 − 1 ≤ 0, which is equivalent to τ ≤ 8ε3

S2 . �

Remark 3.1. The time step conditions in Theorem 3.1 and 3.2 differ by a factor of two. This
factor is introduced in the right term of (3.29) in order to cancel out the second last term in
the right-hand side of (3.27). Hence, the real reason for the factor of two appears in (3.27),
where we replace

ε
(
∇u,∇(u − uold)

)
by

ε
2

(
‖∇u‖2 −

∥∥∥∇uold
∥∥∥2
+

∥∥∥∥∇ (
u − uold

)∥∥∥∥2)
in order to match the gradient energy term in E(u) and E(uold), respectively.

3.3. TIME DISCRETIZATION 57

The resulting time step restrictions are similar to the stability conditions in [140].
Although these conditions appear to be quite restrictive for ε � 1, the authors of
[140] pointed out that they are in fact needed for the sake of convergence. Moreover,
note that explicit schemes usually lead to even more severe time step restrictions.

The approach of the truncated polynomial is only used for the theoretical part. In
praxis, the polynomial potential ψpol behaves quite well and does not result in blow
ups of the solution. Violations of u ∈ [−1, 1] in form of u ∈ [−1 − δ(ε), 1 + δ(ε)] occur.
However, δ(ε) is relatively small. We investigate this issue further in Section 3.8.5.

After having stated and analyzed our time-discrete Cahn–Hilliard equations in the
smooth setting, we proceed to the nonsmooth case.

3.3.2 Nonsmooth systems

In the following, we concentrate on the nonsmooth setting and the corresponding
Cahn–Hilliard variational inequality (3.14)–(3.16). By utilizing the implicit Euler
scheme, we obtain the following problem: Find u, w ∈ H1(Ω) such that

(u, v) + τ(∇w,∇v) = (uold, v) ∀v ∈ H1(Ω), (3.31)

(w, v − u) ≤ ε(∇u,∇(v − u)) + ε−1(ψ′0(u), v − u) ∀v ∈ H1(Ω), |v| ≤ 1, (3.32)
|u| ≤ 1 a.e. in Ω. (3.33)

The system (3.31)–(3.33) is supplemented by the initial condition u0 ∈ H1(Ω) with
|u0| ≤ 1 inΩ. As in the smooth case, choosing v = 1 in (3.31), we obtain the conserva-
tion of mass, i.e., (u, 1) = (uold, 1) = m where m ∈ (−1, 1). Without loss of generality,
we assume that m = 0 and |Ω| = 1, with |Ω| being the Lebesgue measure of Ω, hold
true.

During the next three sections, we follow the analysis presented in Hintermüller et
al. [91]. Note that they studied the Cahn–Hilliard variational inequality with a semi-
implicit Euler scheme. The difference between our and their scheme is the treatment
of the potential term ψ′0 in (3.32). We handle it implicitly whilst Hintermüller et
al. handle it explicitly. In this sense, we extend parts of Hintermüller et al’s analysis
from the semi-implicit time-discrete problem to the fully implicit one.

As done in [28, 83, 91, 20], we rewrite (3.31)–(3.33) as the first-order optimality system
of an optimization problem. For this, we define

K B
{
v ∈ H1(Ω) : |v| ≤ 1 a.e. in Ω

}
, V0 B

{
v ∈ H1(Ω) : (v, 1) = 0

}
,

and consider the following minimization problem

min
(u,w)∈K×V0

J(u,w) B
ε
2
‖∇u‖2 +

1
ε

∫
Ω

ψ0(u) dx +
τ
2
‖∇w‖2 subject to (3.31). (P)

Let
F = {(u,w) ∈ K ×V0 : (u,w) achieves (3.31)}

be the admissible set of (P). Analogous to [91, Lemma 3.1], we have the following
result.

58 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

Lemma 3.3. The following properties hold true:

(i) F , ∅ and F ⊂ V0 ×V0.

(ii) F is a closed and convex set of H1(Ω) ×H1(Ω).

(iii) Let τ < 4ε3. Then, J is strictly convex on F .

(iv) Let τ < 4ε3. Then, for every sequence (um,wm)m∈N inF such that limm→∞ ‖um‖1 = ∞
or limm→∞ ‖wm‖1 = ∞, we have limm→∞J(um,wm) = ∞.

Proof. (i) F , ∅ since (uold, 0) ∈ F . Let (u,w) ∈ F . It follows w ∈ V0. By taking v = 1
in (3.31), we obtain (u, 1) = (uold, 1) = 0. Hence, u ∈ V0.

(ii) First, we proof that F is convex. Let (u1,w1), (u2,w2) ∈ F and λ ∈ [0, 1]. We have
to show that (λu1 + (1 − λ)u2, λw1 + (1 − λ)w2) ∈ F holds true. From

(λw1 + (1 − λ)w2, 1) = λ (w1, 1)︸ ︷︷ ︸
=0

+(1 − λ) (w2, 1)︸ ︷︷ ︸
=0

= 0,

it follows λw1 + (1 − λ)w2 ∈ V0. Further,

|λu1 + (1 − λ)u2| ≤ λ |u1|︸︷︷︸
≤1 a.e. in Ω

+ (1 − λ) |u2|︸︷︷︸
≤1 a.e. in Ω

≤ 1 a.e. in Ω

and hence λu1 + (1 − λ)u2 ∈ K . Finally,

(λu1 + (1 − λ)u2, v) + τ(∇(λw1 + (1 − λ)w2),∇v)

= λ[(u1, v) + τ(∇w1,∇v)︸ ︷︷ ︸
=(uold,v)

] + (1 − λ)[(u2, v) + τ(∇w2,∇v)︸ ︷︷ ︸
=(uold,v)

]

= (uold, v) ∀v ∈ H1(Ω),

which means that (λu1 + (1 − λ)u2, λw1 + (1 − λ)w2) fulfills (3.31). Altogether, F is
convex.

Now, let us proof the closedness of F in H1(Ω) × H1(Ω). Let (um,wm)m∈N ⊂ F

converge strongly to (u,w) ∈ H1(Ω) × H1(Ω) for m → ∞. We have to show that
(u,w) ∈ F . According to Theorem 2.6, every strongly convergent sequence is weakly
convergent, i.e.,

(um, v)1
m→∞
−→ (u, v)1 ∀v ∈ H1(Ω)

⇔ (um, v) + (∇um,∇v) m→∞
−→ (u, v) + (∇u,∇v) ∀v ∈ H1(Ω),

as well as

(wm, v)1
m→∞
−→ (w, v)1 ∀v ∈ H1(Ω)

⇔ (wm, v) + (∇wm,∇v) m→∞
−→ (w, v) + (∇w,∇v) ∀v ∈ H1(Ω).

Hence, we obtain

(u, v) + τ(∇w,∇v) = (uold, v) ∀v ∈ H1(Ω)

3.3. TIME DISCRETIZATION 59

and
(w, 1) = 0.

What is left to show is that u ∈ K . As stated in [91, p. 781], K is weakly closed in
H1(Ω). Hence, Definition 2.9 yields the desired result. Altogether, (u,w) ∈ F .

(iii) Let (u1,w1), (u2,w2) ∈ F and α ∈ (0, 1). We define

r(α) B αJ(u1,w1) + (1 − α)J(u2,w2) −J (αu1 + (1 − α)u2, αw1 + (1 − α)w2) .

We have to show r(α) > 0. We start with proving r(α) ≥ 0. It holds

r(α) = α
(
ε
2
‖∇u1‖

2 +
τ
2
‖∇w1‖

2 +
1
ε

(ψ0(u1), 1)
)
−
ε
2
‖∇(αu1 + (1 − α)u2)‖2

+ (1 − α)
(
ε
2
‖∇u2‖

2 +
τ
2
‖∇w2‖

2 +
1
ε

(ψ0(u2), 1)
)
−
τ
2
‖∇(αw1 + (1 − α)w2)‖2

−
1
ε

(ψ0(αu1 + (1 − α)u2), 1)

= α(1 − α)
[
ε
2

(
‖∇u1‖

2 + ‖∇u2‖
2
− 2 (∇u1,∇u2)

)
−

1
2ε

(
‖u1‖

2 + ‖u2‖
2
− 2 (u1,u2)

)
+
τ
2

(
‖∇w1‖

2 + ‖∇w2‖
2
− 2 (∇w1,∇w2)

)]
=
α(1 − α)

2

(
ε‖∇(u1 − u2)‖2 + τ‖∇(w1 − w2)‖2 −

1
ε
‖u1 − u2‖

2
)
.

Since (u1,w1), (u2,w2) ∈ F , they satisfy (3.31)

(u1, v) + τ(∇w1,∇v) = (uold, v) ∀v ∈ H1(Ω), (3.34)

(u2, v) + τ(∇w2,∇v) = (uold, v) ∀v ∈ H1(Ω). (3.35)

Choosing v = u1 − u2 in (3.34)–(3.35), we obtain

(u1,u1 − u2) + τ(∇w1,∇(u1 − u2)) = (uold,u1 − u2), (3.36)

(u2,u1 − u2) + τ(∇w2,∇(u1 − u2)) = (uold,u1 − u2). (3.37)

Subtracting (3.36)–(3.37) from each other, we get

− ‖u1 − u2‖
2 = τ(∇(w1 − w2),∇(u1 − u2)). (3.38)

Applying Young’s inequality with αY = 2β > 0 (Lemma 2.12) to the right-hand side
of (3.38), gives

−‖u1−u2‖
2 = τ(∇(w1−w2),∇(u1−u2)) ≥ −τβ‖∇(w1−w2)‖2−

τ
4β
‖∇(u1−u2)‖2. (3.39)

Substituting (3.39) into the equation for r(α) yields

r(α) ≥
α(1 − α)

2

[(
ε −

τ
4βε

)
‖∇(u1 − u2)‖2 +

(
τ −

τβ

ε

)
‖∇(w1 − w2)‖2

]
.

For the strict convexity, we require

ε −
τ

4βε
> 0 ⇔ β >

τ

4ε2 , (3.40)

τ −
τβ

ε
> 0 ⇔ β < ε. (3.41)

60 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

Hence,
τ

4ε2 < β < ε,

which leads to the time step restriction

τ

4ε2 < ε ⇔ τ < 4ε3.

Now, assume r(α) = 0. Then,

‖∇(u1 − u2)‖2 = ‖∇(w1 − w2)‖2 = 0. (3.42)

SinceF ⊂ V0×V0, we have
∫
Ω

u1 − u2 dx =
∫
Ω

w1 − w2 dx = 0. Hence, we can apply
the Poincaré inequality (Theorem 2.22)

‖u1 − u2‖
2
1 ≤ cP ‖∇(u1 − u2)‖2 ⇔ ‖u1 − u2‖

2 + ‖∇(u1 − u2)‖2 ≤ cP ‖∇(u1 − u2)‖2,

‖w1 − w2‖
2
1 ≤ cP ‖∇(w1 − w2)‖2 ⇔ ‖w1 − w2‖

2 + ‖∇(w1 − w2)‖2 ≤ cP ‖∇(w1 − w2)‖2.

It follows from (3.42) that ‖u1 − u2‖ = ‖w1 − w2‖ = 0. This implies (u1,w1) = (u2,w2)
almost everywhere inΩ. In summary,J is strictly convex onF provided that τ < 4ε3.

(iv) Let (u,w) ∈ F . Using∫
Ω

ψ0(u) dx =
∫
Ω

1
2

(1 − u2) dx =
1
2
|Ω| −

1
2

∫
Ω

u2 dx =
1
2
−

1
2
‖u‖2,

we obtain

J(u,w) =
ε
2
‖∇u‖2 +

τ
2
‖∇w‖2 +

1
2ε︸︷︷︸
>0

−
1
2ε
‖u‖2 >

ε
2
‖∇u‖2 +

τ
2
‖∇w‖2 −

1
2ε
‖u‖2.

Since (u,w) ∈ F , Equation (3.31) is fulfilled. Choosing v = u in (3.31) leads to

− ‖u‖2 = τ(∇w,∇u) − (uold,u). (3.43)

Applying Young’s inequality with αY = 2β1 > 0 to the left term in the right-hand side
of (3.43) and with αY = 2β2 > 0 to the right term in the right-hand side of (3.43), we
get

− ‖u‖2 = τ(∇w,∇u)− (uold,u) ≥ −τβ1‖∇w‖2 −
τ

4β1
‖∇u‖2 − β2‖uold

‖
2
−

1
4β2
‖u‖2. (3.44)

SinceF ⊂ V0×V0, we have
∫
Ω

u dx = 0. Hence, we can apply the Poincaré inequality
(Theorem 2.22)

||u||21 = ||u||
2 + ||∇u||2 ≤ cP ||∇u||2

⇒ ||u||2 ≤ cP ||∇u||2 − ||∇u||2 ≤ cP ||∇u||2
(3.45)

in (3.44) and obtain

−‖u‖2 ≥ −τβ1‖∇w‖2 −
(
τ

4β1
+

cP

4β2

)
‖∇u‖2 − β2‖uold

‖
2.

3.3. TIME DISCRETIZATION 61

Substituting this result into the equation of J(u,w) above, we get

J(u,w) >
(
ε
2
−

τ
8β1ε

−
cP

8β2ε

)
‖∇u‖2 +

(
τ
2
−
τβ1

2ε

)
‖∇w‖2 −

β2

2ε
‖uold

‖
2.

This inequality holds for all β1, β2 > 0. Now, we want to choose β1, β2 such that
ε
2
−

τ
8β1ε

−
cP

8β2ε
> 0 ⇔

ε
2
−

τ
8β1ε

>
cP

8β2ε
, (3.46)

τ
2
−
τβ1

2ε
> 0 ⇔ β1 < ε. (3.47)

Since β2 > 0, we need in (3.46)
ε
2
−

τ
8β1ε

> 0 ⇔ β1 >
τ

4ε2 .

Hence,
τ

4ε2 < β1 < ε,

which leads to the time step restriction

τ

4ε2 < ε ⇔ τ < 4ε3.

Under these conditions for τ and β1, we can choose β2 such that (3.46) is fulfilled.
Next, due to (3.45), it holds limm→∞ ‖∇um‖ = ∞ for every sequence um ∈ V0 with
limm→∞ ‖um‖1 = ∞. The same result is true if we replace um by wm. Therefore,
limm→∞J(um,wm) = ∞ for every sequence (um,wm)m∈N ⊂ F with limm→∞ ‖um‖1 = ∞
or limm→∞ ‖wm‖1 = ∞, provided that τ < 4ε3. �

Remark 3.2. Note the necessity of the time step restriction τ < 4ε3 for the implicit scheme,
which has not to be claimed for the semi-implicit one in [91]. Nevertheless, the time step
restriction is an essential characteristic of the nature of the problem. The results obtained
for large time steps within the semi-implicit system are highly inaccurate for capturing the
evolution of the sharp interface limit; see Section 3.8.4 or [42, 138, 20].

The relation between (P) and (3.31)–(3.33) is established next.

Theorem 3.4. Let τ ∈ (0, 4ε3). The problem (P) has a unique solution (u∗,w∗). Moreover,
there exists a unique Lagrange multiplier p∗ ∈ H1(Ω), such that w∗ = p∗− (p∗, 1) and (u∗, p∗)
is a solution of (3.31)–(3.33). Conversely, if (u∗, p∗) is a solution of (3.31)–(3.33), then (u∗,w∗)
with w∗ = p∗ − (p∗, 1) is the unique solution of (P).

Proof. The existence and uniqueness of the solution of (P) follow from the previous
lemma. In order to prove the existence of a Lagrange multiplier p∗, we need a
constraint qualification. For the semi-implicit time-discrete scheme, Hintermüller et
al. [91, pp. 781–782] make use of the constraint qualification by Zowe and Kurcyusz
[154]. The proof for our time-discrete system follows analogously and we refer
the reader to [91, pp. 781–782] for the complete proof. Moreover, Hintermüller et
al. proved the uniqueness of p∗, which can be adapted to our problem formulation
as well. The same holds true for the reverse implication stated in the last part of the
theorem. �

After having analyzed the nonsmooth implicit time-discrete Cahn–Hilliard system,
we want to tackle this problem. The presence of the variational inequality in (3.32)
makes this problem hard. In the next section, we make use of a technique which
transforms the variational inequality into an equation.

62 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

3.4 Moreau–Yosida regularization

Variational inequalities like (3.32) may be reformulated by introducing Lagrange
multipliers associated with the constraints inK as done, e.g., in [20]. However, they
are elements of H1(Ω)∗ and do not allow a pointwise interpretation. This complicates
the numerical treatment. Motivated by [91], we replace the optimization problem
(P) by its Moreau–Yosida regularized version

min
(u,w)∈H1(Ω)×V0

Jc(u,w) subject to (3.31) (Pc)

with the objective

Jc(u,w) = J(u,w) +
1
2c
‖max(0,u − 1)‖2 +

1
2c
‖min(0,u + 1)‖2.

Here, 0 < c � 1 denotes the associated regularization or penalty parameter. Note
that the constraint u ∈ K in (P) has been relaxed to u ∈ H1(Ω) in the regularized
problem (Pc). At the same time, a damped version of the box constraints in K has
been inserted into the objective function. The smaller c is the larger is the penal-
ization for the violation of the condition |u| ≤ 1. Hence, the limit c → 0 represents
the original minimization problem (P). Indeed, this convergence is proven below
in Proposition 3.6. Further, we will see in Theorem 3.5 that the regularization of the
box constraints answers for the disappearance of the variational inequality.

Besides the minimization perspective, there is another way to explain the regular-
ization. Basically, the double-obstacle potential ψobs in (3.3) is regularized by

ψc(u) =
1
2

(
1 − u2 +

ε
c

[max(0,u − 1) +min(0,u + 1)]2
)

= ψ0(u) +
ε
2c

[max(0,u − 1) +min(0,u + 1)]2 .

Figure 3.1 illustrates the regularized potential for different values of c. This figure is
not to scale and is intended for illustrative purposes only. Note that the black curve
represents the original double-obstacle potential. Analyzing (Pc), we obtain a result

−1 1
u

ψ
c(

u)

c = 10−1

c = 10−3

c = 10−7

c = 10−∞

Figure 3.1: Illustration of the Moreau–Yosida regularized potential for different
values of the penalty parameter c.

similar to Theorem 3.4.

3.4. MOREAU–YOSIDA REGULARIZATION 63

Theorem 3.5. Let τ ∈ (0, 4ε3). The problem (Pc) has a unique solution (uc,wc). Moreover,
there exists a unique pc ∈ H1(Ω) such that

pc − (pc, 1) = wc, (3.48)

τ(∇pc,∇v) + (uc, v) − (uold, v) = 0 ∀v ∈ H1(Ω), (3.49)

ε(∇uc,∇v) + c−1 (max(0,uc − 1) +min(0,uc + 1), v)
− (pc, v) − ε−1(uc, v) = 0 ∀v ∈ H1(Ω). (3.50)

Conversely, if (uc, pc) is a solution of (3.49)–(3.50), then (uc,wc) with wc = pc − (pc, 1) is the
unique solution of (Pc).

Proof. The functionals u → ‖max (0,u − 1)‖2 and u → ‖min (0,u + 1)‖2 are convex
and Fréchet-differentiable on H1(Ω) as noted in [91, p. 783]. We can show that Fc,
the feasible set of (Pc), andJc satisfy the analogue of Lemma 3.3 for (Pc). In fact, the
proof is exactly the same. Hence, (Pc) has a unique solution (uc,wc), provided that
τ < 4ε3. The rest of the proof follows analogously to [91, p. 783]. �

Proposition 3.6. Let τ ∈ (0, 4ε3). Let {(uc,wc)}c>0 be a sequence of solutions of (Pc) as
c→ 0. Then, there exists a subsequence still denoted by {(uc,wc)}c>0 such that

(uc,wc) −→ (u∗,w∗) in H1(Ω) ×H1(Ω) (3.51)

as c→ 0, where (u∗,w∗) is the unique solution of (P). In particular, u∗ is the order parameter
corresponding to the solution of (3.31)-(3.33).

Proof. First of all, we have

J(uc,wc) ≤ Jc(uc,wc) ≤ Jc(u∗,w∗) = J(u∗,w∗). (3.52)

Hence, there exists a constant β > 0 independent of c such that

Jc(uc,wc) ≤ β.

Next, we estimateJc(uc,wc) from below. As in the proof of Lemma 3.3(iv) we obtain
with τ < 4ε3 and suitable β1, β2 > 0

Jc(uc,wc) >
(
ε
2
−

τ
8β1ε

−
cP

8β2ε

)
︸ ︷︷ ︸

>0

‖∇uc‖
2︸ ︷︷ ︸

≥
1

cP
‖uc‖

2
1

+

(
τ
2
−
τβ1

2ε

)
︸ ︷︷ ︸

>0

‖∇wc‖
2︸ ︷︷ ︸

≥
1

cP
‖wc‖

2
1

−
β2

2ε
‖uold

‖
2

+
1
2

∥∥∥∥∥∥ 1
√

c
max(0,uc − 1)

∥∥∥∥∥∥2

+
1
2

∥∥∥∥∥∥ 1
√

c
min(0,uc + 1)

∥∥∥∥∥∥2

≥ C1‖uc‖
2
1 + C2‖wc‖

2
1 −

β2

2ε
‖uold

‖
2 +

1
2

∥∥∥∥∥∥ 1
√

c
max(0,uc − 1)

∥∥∥∥∥∥2

+
1
2

∥∥∥∥∥∥ 1
√

c
min(0,uc + 1)

∥∥∥∥∥∥2

.

64 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

In order to ease the notation, we have introduced the constants C1,C2 > 0, which
depend on ε, τ, β1, β2, cP. This results in

{uc} bounded in H1(Ω),

{wc} bounded in H1(Ω),{
1
√

c
max(0,uc − 1)

}
bounded in L2(Ω), (3.53){

1
√

c
min(0,uc + 1)

}
bounded in L2(Ω). (3.54)

Since {(uc,wc)}c>0 is a bounded sequence in the Hilbert space H1(Ω) ×H1(Ω), it has a
weakly convergent subsequence. Hence, there exists a (u,w) ∈ H1(Ω) ×H1(Ω) and a
subsequence {(ucm ,wcm)}m∈N ⊂ H1(Ω) ×H1(Ω) such that

(ucm ,wcm)
m→∞
⇀ (u,w) in H1(Ω) ×H1(Ω).

Because of the compact embedding H1(Ω) ↪→ L2(Ω), weakly convergent sequences
in H1(Ω) are strongly convergent in L2(Ω), i.e.,

(ucm ,wcm) m→∞
→ (u,w) in L2(Ω) × L2(Ω). (3.55)

According to Proposition 2.10, the strong convergence in L2(Ω) implies

‖u‖2 ≥ lim sup
m→∞

‖ucm‖
2
≥ lim inf

m→∞
‖ucm‖

2. (3.56)

According to the proof of Lemma 3.3(ii), the weak convergence of {(ucm ,wcm)}m∈N in
H1(Ω) ×H1(Ω) implies

(u, v) + τ(∇w,∇v) = (uold, v) ∀v ∈ H1(Ω)

and
(w, 1) = 0.

From (3.55) and Lebesgue’s dominated convergence theorem, it follows

max(0,ucm − 1) m→∞
−→ max(0,u − 1) in L2(Ω),

min(0,ucm + 1) m→∞
−→ min(0,u + 1) in L2(Ω).

This together with (3.53)–(3.54) yields

− 1 ≤ u ≤ 1 a.e. in Ω. (3.57)

Hence, (u,w) ∈ F . It holds that the H1(Ω)-seminorm

|v|21 = ‖∇v‖2

is weakly lower semicontinuous. Hence, according to Definition 2.10, the weak
convergence of a sequence vm ⇀ v in H1(Ω) for m→∞ implies |v|1 ≤ lim infm→∞ |vm|1.

3.4. MOREAU–YOSIDA REGULARIZATION 65

Therefore, we have

J(u,w) =
ε
2
‖∇u‖2 +

1
2ε
−

1
2ε
‖u‖2 +

τ
2
‖∇w‖2

≤
ε
2

lim inf
m→∞

‖∇ucm‖
2 +

1
2ε
−

1
2ε
‖u‖2 +

τ
2

lim inf
m→∞

‖∇wcm‖
2

(3.56)
≤ lim inf

m→∞

(
ε
2
‖∇ucm‖

2 +
1
2ε
−

1
2ε
‖ucm‖

2 +
τ
2
‖∇wcm‖

2
)

= lim inf
m→∞

J(ucm ,wcm).

Together with (3.52), we obtain

J(u,w) ≤ lim inf
m→∞

J(ucm ,wcm) ≤ J(u∗,w∗). (3.58)

The pair (u∗,w∗) is the unique solution of (P). In contrast, (u,w) is a feasible solu-
tion of (P). Hence, J(u,w) ≥ J(u∗,w∗) and (3.58) becomes an equation. This gives
(u,w) = (u∗,w∗).

It remains to show the strong convergence in (3.51). We have already proven the
weak convergence. Hence, what is left to show is the following norm convergence:

‖ucm‖1
m→∞
−→ ‖u∗‖1,

‖wcm‖1
m→∞
−→ ‖w∗‖1.

(3.52) and (3.58) imply

1
2cm
‖max (0,ucm − 1)‖2 +

1
2cm
‖min (0,ucm + 1)‖2 m→∞

−→ 0.

Thus,

J(u∗,w∗) ≤ lim inf
m→∞

Jcm(ucm ,wcm) ≤ lim sup
m→∞

Jcm(ucm ,wcm) ≤ J(u∗,w∗).

This means
J(u∗,w∗) = lim

m→∞
Jcm(ucm ,wcm)

and it follows

lim
m→∞

‖∇ucm‖ = ‖∇u∗‖ and lim
m→∞

‖∇wcm‖ = ‖∇w∗‖.

From ‖ucm‖
2
1 = ‖ucm‖

2 + ‖∇ucm‖
2 and the strong convergence in (3.55), we imply

the norm convergence of ‖ucm‖
2
1. The same holds for wcm . The weak and norm

convergence yield the strong convergence result (3.51). �

We have seen how the application of a Moreau–Yosida regularization technique can
circumvent the treatment of the variational inequality in (3.32) as well as the box con-
straints in (3.33). Indeed, it results in an iterative way for solving the time-discrete
Cahn–Hilliard system (3.31)–(3.33): For a sequence {cp}p∈N with cp → 0, solve the
optimality system (3.49)–(3.50).

66 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

Now, we have arrived at a time-discrete nonlinear equation for both cases, the smooth
potential setting as well as the regularized nonsmooth one. In order to solve the
former system, we apply standard Newton methods. Since this is a straightforward
step, we will not discuss it here. Regarding the second case, we have to pay attention
to the maximum and minimum operator present in (3.50). However, we can solve
the corresponding nonlinear system via a weaker notion of Newton methods — the
SSN method. This will be the topic of the following chapter.

3.5 Semismooth Newton method

We apply the function space-based algorithm motivated in [91] for solving the time-
discrete Cahn–Hilliard problem (3.31)–(3.33). For a specified sequence c → 0, we
solve the optimality system (3.49)–(3.50), compactly written as

Fc(uc,wc) =
(
F(1)

c (uc,wc),F
(2)
c (uc,wc)

)
= 0, (3.59)

for every c by an SSN algorithm. In (3.59), the components are defined by〈
F(1)

c (u,w), v
〉
= τ(∇w,∇v) + (u, v) − (uold, v),〈

F(2)
c (u,w), v

〉
= ε(∇u,∇v) + c−1 (max(0,u − 1) +min(0,u + 1), v) − (w, v) − ε−1(u, v),

for all u,w, v ∈ H1(Ω). Due to the presence of the maximum and minimum operator,
Fc is not Fréchet-differentiable. However, it satisfies the weaker notion of Newton
differentiability; see Definition 2.11.

Lemma 3.7. The mapping Fc : H1(Ω)×H1(Ω)→ H1(Ω)∗×H1(Ω)∗ is Newton-differentiable.
Furthermore, the operator Gc(u,w) given by〈

Gc(u,w)(δu, δw), (φ,ψ)
〉
=

(
τ(∇δw,∇φ) + (δu, φ)

ε(∇δu,∇ψ) + c−1(χM(u)δu, ψ) − (δw, ψ) − ε−1(δu, ψ)

)
serves as a Newton derivative for Fc, where χM(u) is the characteristic function of the set

M(u) B {x ∈ Ω : |u(x)| > 1}.

For the proof, we refer to [91, p. 788] and [92, pp. 885-886].

Lemma 3.8. Let τ ∈ (0, 4ε3). For a given u ∈ H1(Ω) and (y1, y2) ∈ H1(Ω)∗ ×H1(Ω)∗, the
optimization problem

min
(δu,δp)∈H1(Ω)×V0

J(δu, δp) + c−1(χM(u)δu, δu) − 〈y2, δu〉

subject to τ(∇δp,∇φ) + (δu, φ) = 〈y1, φ〉 ∀φ ∈ H1(Ω)
(PGc)

admits a unique solution (δu, δp). Moreover, there exists a unique δw ∈ H1(Ω) such that

τ(∇δw,∇φ) + (δu, φ) = 〈y1, φ〉, (3.60)

ε(∇δu,∇ψ) + c−1(χM(u)δu, ψ) − (δw, ψ) − ε−1(δu, ψ) = 〈y2, ψ〉 (3.61)

for all φ,ψ ∈ H1(Ω). Conversely, if (δu, δw) is a solution of (3.60)–(3.61), then (δu, δp) with
δp = δw − (δw, 1) is the unique solution of (PGc).

3.5. SEMISMOOTH NEWTON METHOD 67

For the proof, one proceeds as in the proofs of Theorem 3.4 and 3.5.

Lemma 3.9. The SSN method (2.1) (with F and G replaced by Fc and Gc) converges super-
linearly to (uc,wc), the solution of (3.59), provided that ‖(u(0),w(0)) − (uc,wc)‖H1(Ω)×H1(Ω) is
sufficiently small and τ ∈ (0, 4ε3).

Proof. From Lemma 3.8, we deduce that for all (u,w) ∈ H1(Ω) × H1(Ω), Gc(u,w)
is invertible, i.e., for given (y1, y2) ∈ H1(Ω)∗ × H1(Ω)∗, there exists a unique pair
(δu, δw) ∈ H1(Ω) × H1(Ω), such that (3.60)–(3.61) is satisfied. Multiplying (3.60) by
ε−1, choosing φ = δu, and applying Young’s inequality with αY = 2β1 > 0 (Lemma
2.12) and β1 ∈

(
τ

4ε2 , ε
)

(note that τ < 4ε3), we get

1
ε
‖δu‖2 =

1
ε
〈y1, δu〉 −

τ
ε

(∇δw,∇δu)

≤
1
ε
〈y1, δu〉 +

τβ1

ε
‖∇δw‖2 +

τ
4β1ε

‖∇δu‖2. (3.62)

Taking (φ,ψ) = (δw, δu) in (3.60)–(3.61) and adding the two equations, we obtain

ε ‖∇δu‖2 + τ ‖∇δw‖2 = 〈y1, δw〉 + 〈y2, δu〉 − c−1
(
χM(u)δu, δu

)
︸ ︷︷ ︸

≥0

+ε−1
‖δu‖2 .

Together with (3.62), this yields(
ε −

τ
4β1ε

)
︸ ︷︷ ︸

≥0

‖∇δu‖2+
(
τ −

τβ1

ε

)
︸ ︷︷ ︸

≥0

‖∇δw‖2 hh

≤ 〈y1, δw〉 + 〈y2, δu〉 +
1
ε
〈y1, δu〉

≤
1

4β2
‖δw‖21 +

1
4β3

(
‖δu‖2 + ‖∇δu‖2

)
+ C

(∥∥∥y1

∥∥∥2
∗
+

∥∥∥y2
∥∥∥2
∗

)
, (3.63)

where we have used Cauchy’s inequality (Theorem 2.4) and Young’s inequality with
αY = 2β2 > 0 and αY = 2β3 > 0 (Lemma 2.12) in (3.63). The constant C > 0
possibly depends on ε, τ, c, β1, β2, or β3, but not on δu or δw. Taking (φ,ψ) = (1, 1) in
(3.60)–(3.61), we get

(δu, 1) = 〈y1, 1〉, (3.64)

(δw, 1) = c−1(χM(u)δu, 1) − ε−1
〈y1, 1〉 − 〈y2, 1〉. (3.65)

The Poincaré inequality (Theorem 2.22) yields

‖δu‖2 + ‖∇δu‖2 = ‖δu‖21 ≤ cP

[
‖∇δu‖2 + (δu, 1)2

] (3.64)
= cP

[
‖∇δu‖2 + 〈y1, 1〉2

]
.

Cauchy’s inequality (Theorem 2.4) applied to the last term gives

〈y1, 1〉2 = 〈y1, 〈y1, 1〉〉 ≤ ‖y1‖∗ 〈y1, 1〉 ‖1‖1 ≤ ‖y1‖
2
∗ ‖1‖

2
1 = ‖y1‖

2
∗ .

Note that we have made use of the assumption 1 = |Ω| = ‖1‖2 = ‖1‖21 imposed in
Section 3.3.2. Altogether, we obtain

‖δu‖2 ≤ cP

[
‖∇δu‖2 + ‖y1‖

2
∗

]
− ‖∇δu‖2 ≤ cP

[
‖∇δu‖2 + ‖y1‖

2
∗

]
. (3.66)

68 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

The Poincaré inequality (Theorem 2.22) applied to δw yields

‖δw‖21 ≤ cP

[
‖∇δw‖2 + (δw, 1)2

]
. (3.67)

From (3.65), we obtain

(δw, 1)2 =
[1

c
(χM(u)δu, 1) −

1
ε
〈y1, 1〉 − 〈y2, 1〉

]2

=
1
c2 (χM(u)δu, 1)2

−
2
cε

(χM(u)δu, 1)〈y1, 1〉 −
2
c

(χM(u)δu, 1)〈y2, 1〉 +
1
ε2 〈y1, 1〉2

+
2
ε
〈y1, 1〉〈y2, 1〉 + 〈y2, 1〉2

=
1
c2 (χM(u)δu, (χM(u)δu, 1)) −

2
cε

(χM(u)δu, 〈y1, 1〉) −
2
c

(χM(u)δu, 〈y2, 1〉)

+
1
ε2 〈y1, 〈y1, 1〉〉 +

2
ε
〈y1, 〈y2, 1〉〉 + 〈y2, 〈y2, 1〉〉. (3.68)

Now, we apply Cauchy’s inequality (Theorem 2.4) to each of the terms in (3.68).
Further, we again make use of the assumption 1 = |Ω| = ‖1‖2 = ‖1‖21 imposed in
Section 3.3.2. We obtain

(χM(u)δu, (χM(u)δu, 1)) ≤ ‖χM(u)δu‖ (χM(u)δu, 1) ‖1‖ ≤ ‖χM(u)δu‖2 ‖1‖2 ≤ ‖δu‖2,

(−χM(u)δu, 〈y1, 1〉) ≤ ‖χM(u)δu‖ 〈y1, 1〉 ‖1‖ ≤ ‖χM(u)δu‖ ‖y1‖∗ ‖1‖2

≤ δ2‖χM(u)δu‖2 +
1

4δ2
‖y1‖

2
∗ ≤ δ2‖δu‖2 +

1
4δ2
‖y1‖

2
∗ , (3.69)

(−χM(u)δu, 〈y2, 1〉) ≤ ‖χM(u)δu‖ 〈y2, 1〉 ‖1‖ ≤ ‖χM(u)δu‖ ‖y2‖∗ ‖1‖2

≤ δ3‖χM(u)δu‖2 +
1

4δ3
‖y2‖

2
∗ ≤ δ3‖δu‖2 +

1
4δ3
‖y2‖

2
∗ , (3.70)

〈y1, 〈y1, 1〉〉 ≤ ‖y1‖∗ 〈y1, 1〉 ‖1‖1 ≤ ‖y1‖
2
∗ ‖1‖

2
1 = ‖y1‖

2
∗ ,

〈y2, 〈y2, 1〉〉 ≤ ‖y2‖∗ 〈y2, 1〉 ‖1‖1 ≤ ‖y2‖
2
∗ ‖1‖

2
1 = ‖y2‖

2
∗ ,

〈y1, 〈y2, 1〉〉 ≤ ‖y1‖∗ 〈y2, 1〉 ‖1‖1 ≤ ‖y1‖∗‖y2‖∗ ‖1‖21

≤ δ1‖y1‖
2
∗ +

1
4δ1
‖y2‖

2
∗ , (3.71)

where we have applied Young’s inequality (Lemma 2.12) with αY = 2δ2 > 0 in (3.69),
αY = 2δ3 > 0 in (3.70), and αY = 2δ1 > 0 in (3.71). Substituting the inequalities above
into (3.68) gives

(δw, 1)2
≤

1
c

(1
c
+

2δ2

ε
+ 2δ3

)
‖δu‖2 +

1
ε

(1
2cδ2

+
1
ε
+ 2δ1

)
‖y1‖

2
∗

+
(1
2cδ3

+ 1 +
1

2εδ1

)
‖y2‖

2
∗ .

Hence, we get in (3.67)

‖δw‖21 ≤ cP

[
‖∇δw‖2 +

1
c

(1
c
+

2δ2

ε
+ 2δ3

)
‖δu‖2

+
1
ε

(1
2cδ2

+
1
ε
+ 2δ1

)
‖y1‖

2
∗ +

(1
2cδ3

+ 1 +
1

2εδ1

)
‖y2‖

2
∗

]
.

(3.72)

3.5. SEMISMOOTH NEWTON METHOD 69

Substituting (3.72) into (3.63) yields(
ε −

τ
4β1ε

)
︸ ︷︷ ︸

≥0

‖∇δu‖2 +
(
τ −

τβ1

ε

)
︸ ︷︷ ︸

≥0

‖∇δw‖2 hhh

≤
cP

4β2
‖∇δw‖2 +

1
4β3
‖∇δu‖2 +

[
1

4β3
+

cP

4cβ2

(1
c
+

2δ2

ε
+ 2δ3

)]
‖δu‖2

+

[
cP

4εβ2

(1
2cδ2

+
1
ε
+ 2δ1

)
+ C

]
‖y1‖

2
∗ +

[
cP

4β2

(1
2cδ3

+ 1 +
1

2εδ1

)
+ C

]
‖y2‖

2
∗

≤
cP

4β2
‖∇δw‖2 +

1 + cP

4β3
+

c2
P

4cβ2

(1
c
+

2δ2

ε
+ 2δ3

) ‖∇δu‖2

+

 cP

4β3
+

c2
P

4cβ2

(1
c
+

2δ2

ε
+ 2δ3

)
+

cP

4εβ2

(1
2cδ2

+
1
ε
+ 2δ1

)
+ C

 ‖y1‖
2
∗ (3.73)

+

[
cP

4β2

(1
2cδ3

+ 1 +
1

2εδ1

)
+ C

]
‖y2‖

2
∗ ,

where we have used (3.66) in (3.73). This can be written asε − τ
4β1ε

−
c2

P

4cβ2

(1
c
+

2δ2

ε
+ 2δ3

)
−

1 + cP

4β3

 ‖∇δu‖2

+

(
τ −

τβ1

ε
−

cP

4β2

)
‖∇δw‖2 ≤ C1

(∥∥∥y1

∥∥∥2
∗
+

∥∥∥y2
∥∥∥2
∗

)
.

(3.74)

The constant C1 > 0 possibly depends on ε, τ, c, cP, β1, β2, β3, δ1, δ2, δ3, but not on δu
or δw. Now, we have to choose β2, β3, δ1, δ2, δ3 such that

τ −
τβ1

ε
−

cP

4β2
> 0, (3.75)

ε −
τ

4β1ε
−

c2
P

4cβ2

(1
c
+

2δ2

ε
+ 2δ3

)
−

1 + cP

4β3
> 0. (3.76)

Due to our choice of β1, it holds τ − τβ1
ε > 0 and ε − τ

4β1ε
> 0. Hence, (3.75) yields

β2 >
ε cP

4τ(ε − β1)
. (3.77)

Next, in (3.76), we first require

ε −
τ

4β1ε
>

c2
P

4cβ2

(1
c
+

2δ2

ε
+ 2δ3

)
,

which leads to the choice

β2 >
c2

Pεβ1

(
1
c +

2δ2
ε + 2δ3

)
c
(
4ε2β1 − τ

)
for arbitrary δ2, δ3 > 0. Together with (3.77), we have to choose β2 > 0 with

β2 > max

 ε cP

4τ(ε − β1)
,

c2
Pεβ1

(
1
c +

2δ2
ε + 2δ3

)
c
(
4ε2β1 − τ

)  .

70 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

Second, we require in (3.76)

ε −
τ

4β1ε
−

c2
P

4cβ2

(1
c
+

2δ2

ε
+ 2δ3

)
>

1 + cP

4β3
,

which leads to

β3 >
εcβ1β2(1 + cP)

4cε2β1β2 − τcβ2 − εc2
Pβ1

(
1
c +

2δ2
ε + 2δ3

) .
Finally, we can write (3.74) as

C2

(
‖∇δu‖2 + ‖∇δu‖2

)
≤ C1

(∥∥∥y1

∥∥∥2
∗
+

∥∥∥y2
∥∥∥2
∗

)
,

where C2 > 0 with

C2 = min

ε − τ
4β1ε

−
c2

P

4cβ2

(1
c
+

2δ2

ε
+ 2δ3

)
−

1 + cP

4β3
, τ −

τβ1

ε
−

cP

4β2

 .
Hence

‖∇δu‖2 + ‖∇δw‖2 ≤ C̃
(∥∥∥y1

∥∥∥2
∗
+

∥∥∥y2
∥∥∥2
∗

)
. (3.78)

This leads to

‖(δu, δw)‖1×1 =
√
‖δu‖21 + ‖δw‖21 =

√
‖δu‖2 + ‖∇δu‖2 + ‖δw‖21

≤

√
Ĉ

(∥∥∥y1

∥∥∥2
∗
+

∥∥∥y2
∥∥∥2
∗

)
, (3.79)

where we obtained (3.79) after applying first (3.72), second (3.66), and finally (3.78).
For max

(∥∥∥y1

∥∥∥
∗
,
∥∥∥y2

∥∥∥
∗

)
≤ β for some constant β > 0, we consequently have

∥∥∥G−1
c (u,w)

∥∥∥
L((H1(Ω)∗)2,(H1(Ω))2) = sup

(y1,y2),(0,0)

∥∥∥G−1
c (u,w)(y1, y2)

∥∥∥
1×1

(y1, y2)∗×∗

= sup
(y1,y2),(0,0)

‖(δu, δw)‖1×1√
‖y1‖

2
∗ + ‖y2‖

2
∗

≤ sup
(y1,y2),(0,0)

√
Ĉ

(∥∥∥y1

∥∥∥2
∗
+

∥∥∥y2
∥∥∥2
∗

)
√
‖y1‖

2
∗ + ‖y2‖

2
∗

(3.80)

=
√

Ĉ

with some constant Ĉ > 0 possibly depending on ε, τ, c, cP, β1, β2, β3, δ1, δ2, δ3, but not
on u or w. In (3.80), we have used (3.79). Thus, Fc with associated Newton derivative
Gc fulfills the conditions of Theorem 2.8, which completes the proof. �

This finishes our analysis of the function space-based algorithm for solving the time-
discrete Cahn–Hilliard problem (3.31)–(3.33). In the next section, we derive the fully
discrete problems for both, the smooth system in (3.17)–(3.18) and the regularized
nonsmooth system in (3.49)–(3.50).

3.6. FINITE ELEMENT APPROXIMATION 71

3.6 Finite element approximation

In this section, we apply FEM [144] to the regularized nonsmooth Cahn–Hilliard
system in (3.49)–(3.50). We also want to apply it to the smooth version (3.17)–(3.18).
Since both procedures are similar, we only present the methodology based on the
nonsmooth setting. Regarding the smooth case, we will state the fully discrete linear
system at the end of this section.

In the following, we assume for simplicity that Ω is a polyhedral domain. General-
izations to curved domains are possible using boundary finite elements with curved
faces. Let {Rh}h>0 be a triangulation of Ω into disjoint open rectangular elements2

with maximal element size h. Let Jh be the set of nodes of Rh and p j ∈ Jh be the
coordinates of these nodes. We approximate the infinite-dimensional space H1(Ω)
by the finite-dimensional space

Sh B {φ ∈ C0(Ω) : φ |R ∈ Q1(R) ∀R ∈ Rh} ⊂ H1(Ω)

of continuous, piecewise multilinear functions. For instance, in the two-dimensional
case d = 2, we use bilinear functions, i.e., Q1 = span{xαi yαi : αi ∈ {0, 1}, i = 1, 2}.
We denote the standard nodal basis functions of Sh by ϕ j for all j ∈ Jh. They have
the property ϕ j(pi) = δi j, i, j = 1, . . . ,m. The discretized version of the problem
(3.49)–(3.50) is the following: Given uold

h ∈ Sh, find (uc,h,wc,h) ∈ Sh × Sh such that〈
F(1)

c,h(uc,h,wc,h), vh

〉
= 0 ∀vh ∈ Sh, (3.81)〈

F(2)
c,h(uc,h,wc,h), vh

〉
= 0 ∀vh ∈ Sh, (3.82)

where the components are〈
F(1)

c,h(uc,h,wc,h), vh

〉
= τ(∇wc,h,∇vh) + (uc,h, vh)h − (uold

h , vh)h,〈
F(2)

c,h(uc,h,wc,h), vh

〉
= ε(∇uc,h,∇vh) + c−1(max(0,uc,h − 1) +min(0,uc,h + 1), vh)h

− (wc,h, vh)h − ε
−1(uc,h, vh)h.

The semi-inner product (·, ·)h on C0(Ω) is defined by

(f , g)h B

∫
Ω

πh(f (x)g(x)) dx =
m∑

i=1

(1, ϕi) f (pi)g(pi) ∀ f , g ∈ C0(Ω),

where πh : C0(Ω) → Sh is the Lagrange interpolation operator. Within our finite
element framework, for a given (uh,wh) ∈ Sh × Sh, every step of the SSN method for
solving (3.81)–(3.82) requires to compute (δuh, δwh) ∈ Sh × Sh satisfying

τ(∇δwh,∇vh) + (δuh, vh)h = −F(1)
c,h(uh,wh), (3.83)

ε(∇δuh,∇vh) + c−1(χh
M(uh)δuh, vh)h − (δwh, vh)h − ε

−1(δuh, vh)h = −F(2)
c,h(uh,wh), (3.84)

for all vh ∈ Sh, where χh
M(uh) B

∑m
i=1 χ

h
M(uh)(pi)ϕi with χh

M(uh)(pi) = 0 if −1 ≤ uh(pi) ≤ 1

and χh
M(uh)(pi) = 1 otherwise. If we now write a function vh ∈ Sh by vh =

∑
j∈Jh

vh, j ϕ j

2The use of rectangles is motivated by performing the implementation with deal.II [8].

72 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

and denote the vector of coefficients by v, the fully discrete linear system per SSN
step reads in matrix form as[

−εK − c−1G + ε−1M M
M τK

] [
u(k+1)

w(k+1)

]
=

[
−c−1 (G+1 −G−1)

Muold

]
. (3.85)

Here, u(k+1),w(k+1)
∈ Rm and uold

∈ Rm is the solution vector from the previous time
step. Remember that k denotes the iteration step of the SSN method. The lumped
mass matrix and the stiffness matrix are defined as

M B ((ϕi, ϕ j)h)i, j=1,...,m = diag((1, ϕi))i=1,...,m ∈ R
m×m,

K B ((∇ϕi,∇ϕ j))i, j=1,...,m ∈ R
m×m.

Note that M is a diagonal, symmetric positive definite matrix and K is symmetric
positive semidefinite. In particular, they have the following eigenvalue characteri-
zation.

Proposition 3.10 ([63, pp. 57–60]). Let d ∈ {2, 3} be the spatial dimension.

c̃hd
≤

(Mv,v)
(v,v)

≤ Chd,

0 ≤
(Kv,v)

(v,v)
≤ C̃hd−2,

for all v ∈ Rm. The constants c̃,C, C̃ are positive and independent of h. In particular,K has
a one-dimensional kernel spanned by the constant vector 1 = [1, . . . , 1]T

∈ Rm.

In terms of the condition number, κ(M) ≤ c̃−1C and κ(K) = ∞. Note that the
original version of Proposition 3.10 in [63, pp. 57–60] is actually stated under proper
mesh subdivisions. We will not go into these details but note that they hold true in
our setting. Moreover, the stiffness matrix in [63, pp. 57–60] is symmetric positive
definite due to the imposition of Dirichlet boundary conditions instead of Neumann
ones. The matrix representations coming from the generalized derivative of the term
(χh
M(uh)δuh, vh)h are the following diagonal matrices

G = G(u(k)) = diag
(

[M]ii if |u(k)
h,i | > 1,

0 otherwise

)
i=1,...,m

∈ Rm×m,

G+ = G+(u(k)) = diag
(

[M]ii if u(k)
h,i > 1,

0, otherwise

)
i=1,...,m

∈ Rm×m,

G− = G−(u(k)) = diag
(

[M]ii if u(k)
h,i < −1

0 otherwise

)
i=1,...,m

∈ Rm×m,

where u(k) =
[
u(k)

h,1, . . . , u
(k)
h,m

]T
is the solution from the SSN step k.

At the very beginning of Section 3.1, we mentioned that we are also interested in the
FEM solution of the semi-implicit time-discrete Cahn–Hilliard problem. Remember
that we have motivated the use of an implicit scheme due to accuracy requirements.
However, the bottleneck of the time step restriction τ < 4ε3 arose. In contrast, no

3.7. PRECONDITIONING 73

time step restrictions are imposed on the semi-implicit scheme. The corresponding
fully discrete linear system per SSN step reads in matrix form as[

−εK − c−1G M
M τK

] [
u(k+1)

w(k+1)

]
=

[
−c−1 (G+1 −G−1) − ε−1Muold

Muold

]
. (3.86)

We also apply FEM to the implicit time-discrete smooth Cahn–Hilliard system
(3.17)–(3.18). The fully discrete linear system per Newton step reads in matrix form
as [

−εK − ε−1F M
M τK

] [
u(k+1)

w(k+1)

]
=

 −2ε−1M
(
u(k)

)3

Muold

 . (3.87)

The matrix representation coming from the derivative of the potential term is the
diagonal matrix

F = F (u(k)) = diag
(
[M]ii

[
3
(
u(k)

h,i

)2
− 1

])
i=1,...,m

∈ Rm×m.

Note that the powers of the form in
(
u(k)

)p
, p ∈ N, have to be understood elemen-

twise. The use of a semi-implicit time discretization scheme, where the potential
term ψ′pol(u) is treated explicitly, leads to a similar time step restriction as we have
in the fully implicit case. We refer the reader to [140, p. 12] for the analysis. A
scheme, which is known to be unconditional gradient stable, is the convexity split-
ting method by Eyre [67] presented in Chapter 2.1.5. Eyre [67, p. 12] proposed the
following splitting of the potential term ψ′pol(u) = u3

− u: The first part, u3, is treated
implicitly and the second part, u, is treated explicitly. This leads to the linear system[

−εK − ε−1H M
M τK

] [
u(k+1)

w(k+1)

]
=

 −2ε−1M
(
u(k)

)3
− ε−1Muold

Muold

 (3.88)

per Newton step. The matrix representation coming from the derivative of the
potential term u3 is the diagonal matrix

H =H(u(k)) = diag
(
[M]ii3

(
u(k)

h,i

)2
)

i=1,...,m
∈ Rm×m.

It holds
3
(
u(k)

h,i

)2
∈ [0, 3 ‖u(k)

‖
2
∞] =: [0, α] (3.89)

for i = 1, . . . ,m.

Now, we have arrived at the core of our numerical algorithms — the numerical
solution of systems of linear equations. Due to the use of FEM, all the matrix blocks
M ,K,G,F , and H are large and sparse. In the next section, we design optimal
practical preconditioners for each of the four linear systems (3.85)–(3.88).

3.7 Preconditioning

This section is devoted to the development of practical preconditioners for the ef-
ficient solution of the four linear systems (3.85)–(3.88). We begin with the simplest
problem and go step by step to the next harder one. Note that the construction of

74 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

efficient preconditioners in the smooth case is already well established by Boyanova
et al. [35, 37, 36, 3]. The authors discussed among others the fully implicit time-
discrete scheme. We apply their main procedure to the semi-implicit scheme (3.88).
However, our theoretical proofs differ halfway through. Moreover, we will gener-
alize these theoretical results to vector-valued problems in Chapter 4.7. Note that
this technique ignores the symmetry inherent in our coefficient matrices. Hence, we
develop another type of preconditioner, which preserves the symmetry. This allows
us to make use of symmetric Krylov subspace solvers, which are cheaper than the
nonsymmetric ones. In the following, we start with such a symmetry preserving
preconditioner.

3.7.1 Smooth semi-implicit systems

The smooth semi-implicit Cahn–Hilliard system (3.88) can be written as[
A M
M −τK

] [
u(k+1)

−w(k+1)

]
B

[
εK + ε−1H M

M −τK

] [
u(k+1)

−w(k+1)

]
=

 2ε−1M
(
u(k)

)3
+ ε−1Muold

Muold

 (3.90)

and is hence of saddle point form. In the following, we denote the coefficient matrix
byA. It can be easily seen thatA is symmetric. The matrix H cannot be identical
to the zero matrix since this would imply that the solution u(k) from the previous
Newton step k is identical to the zero vector. Hence, the (1, 1) block A is in general
symmetric positive definite. According to Theorem 2.35, A is nonsingular. Due to
Remark 2.3, the Schur complement

S = −(τK +MA−1M)

is symmetric negative definite, andA is indefinite with m positive and m negative
eigenvalues.

Next, we design a preconditioner. Since A is symmetric indefinite, our Krylov
method of choice is MINRES. Hence, we need to construct a symmetric positive
definite preconditioner. We propose the block diagonal preconditioner

P =

[
A 0

0 −Ŝ

]
. (3.91)

As Schur complement approximation, we design Ŝ as

Ŝ = −S1A
−1S1

= −
(
M +

√
τεK

)
A−1

(
M +

√
τεK

)
(3.92)

= −τεKA−1K −MA−1M −
√
τεMA−1K −

√
τεKA−1M . (3.93)

The second term in (3.93) matches the second term in the exact Schur complement.
The first term in (3.93) approximates the first term in the exact Schur complement.
Due to the balanced distribution of τε in form of

√
τε in the factor S1, the influence

of both remainder terms in (3.93) is reduced.

3.7. PRECONDITIONING 75

Lemma 3.11. Ŝ is symmetric negative definite.

Proof. It can be easily seen that Ŝ is symmetric. Let 0 , v ∈ Rm. We introduce the
vectors a = A−

1
2Mv and b =

√
τεA−

1
2Kv. Hence, we can write

vTŜv = −aTa − aTb − bTa − bTb = −(a + b)T(a + b) = −‖a + b‖2 ≤ 0.

It remains to show that vTŜv < 0. It holds ‖a + b‖ = 0 if and only if a + b = 0.
Assume there exists a vector 0 , v ∈ Rm such that a = −b. This is equivalent to

A−
1
2Mv = −

√
τεA−

1
2Kv.

If we multiply this equation from the left by −(τε)−
1
2M−1A

1
2 , we obtain

M−1Kv = −(τε)−
1
2v.

This means −(τε)−
1
2 ∈ σ(M−1K). However, due to Lemma 2.30, it holds σ(M−1K) ⊂

R≥0. Hence, vTŜv < 0 for all 0 , v ∈ Rm. �

To illustrate the performance of Ŝ−1S, we show eigenvalue plots in Section 3.8.1.
Let us conclude the discussion of the preconditioner P with a statement about its
practical realization. The action of the inverse of S1 is performed with an AMG since
S1 forms the discretization of an elliptic operator. The same holds for the (1, 1) block
A. Hence, the practical block diagonal preconditioner is given by

P0 =

[
A0 0
0 −S0

]
,

where A0 = AMG(A) and S0 = AMG(S1)A−1AMG(S1). In Section 3.8.2, we illus-
trate the robust performance of the preconditioner P0 applied with MINRES.

In the following, we discuss a second way to develop a preconditioner for the smooth
semi-implicit Cahn–Hilliard system (3.88). This can be achieved by applying the
steps in [35], which we explain below in the proof of Theorem 3.12. In fact, the
procedure is straightforward since our coefficient matrix in (3.88) has only a negligible
difference to the coefficient matrix in [35]. More precisely, the authors of [35] consider
a system of the form (3.87) (implicit discretization) while we focus on the form (3.88)
(semi-implicit discretization) in this section. Hence, the only difference occurs in the
matrix H or F . But this distinction is negligible for the following approach. More
importantly, the proof of the theorem below differs from the one in [35] at a marked
point. For the development of a preconditioner, we rewrite (3.90) again and consider[

M −A
τK M

] [
w(k+1)

u(k+1)

]
B

[
M −εK − ε−1H
τK M

] [
w(k+1)

u(k+1)

]
=

 −2ε−1M
(
u(k)

)3
− ε−1Muold

Muold

 . (3.94)

In the following, we denote this coefficient matrix byA. Since we obtainedA from
(3.90) by interchanging m columns and multiplying m rows by −1, its determinant
does not change. Hence, A remains nonsingular. Note that A is not symmetric
anymore as it was in the previous case. Hence, nonsymmetric Krylov subspace

76 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

solvers have to be used. Due to (3.89) together with Proposition 3.10, the diagonal
entries ofH lie in the interval [0, Chdα]. Hence, the estimated order for the diagonal
entries in ε−1H lie in the interval [0, 3Cεd−1

‖u(k)
‖

2
∞], since h is of order ε. Hence, as

in [35], we suggest to neglect the blockH inA. Therefore, we approximateA as

A0 =

[
M −εK
τK M

]
.

In what follows, we discuss the quality of the approximation A0. We denote the
Schur complement of A0 by S̃ = M + τεKM−1K. Note that both, the (1, 1) and
(2, 2) block ofA0, are nonsingular. In particular, they are symmetric positive definite.
Consider the generalized eigenvalue problem

A

[
q1
q2

]
= λA0

[
q1
q2

]
. (3.95)

Theorem 3.12. It holds
σ(A−1

0 A) ⊂ Bς(1),

where Bς(1) is a circle in the complex plane around one with radius ς. The radius is bounded

by ς ≤ 3
2

√
τ
ε3 ‖u

(k)
‖

2
∞. In particular, m eigenvalues are equal to one. We get ς ≤ 0.5 when

τ ≤ ε3/(9‖u(k)
‖

4
∞).

Proof. We transform (3.95) to

(A −A0)
[
q1
q2

]
= µA0

[
q1
q2

]
, (3.96)

where µ = λ− 1. The inverse ofA0 can be expressed via a combination of (2.23) and
(2.24) as

A
−1
0 =

[
S̃−1 εS̃−1KM−1

−τS̃−1KM−1 S̃−1

]
. (3.97)

This yields

A
−1
0 (A −A0) =

[
0 −ε−1S̃−1H
0 τε−1S̃−1KM−1H

]
. (3.98)

Hence, (3.96) has m zero eigenvalues corresponding to eigenvectors [qT
1 ,0

T]T. Thus,
(3.95) has m one eigenvalues. Next, we write (3.96) out as

−ε−1Hq2 = µ(Mq1 − εKq2), (3.99)
0 = µ(τKq1 +Mq2). (3.100)

We express µq1 from (3.99) and substitute it into (3.100)

τε−1KM−1Hq2 = µ
(
τεKM−1K +M

)
q2.

Multiplying this equation from the left by M−1 yields the following generalized
eigenvalue problem

τε−1M−1KM−1Hq2 = µ
(
I + τε(M−1K)2

)
q2.

3.7. PRECONDITIONING 77

We introduce
R B τε−1

(
I + τε(M−1K)2

)−1
M−1KM−1H

and estimate its eigenvalues in the following. Therefore, we first perform a similarity
transformation; see Definition 2.23, onR: M

1
2RM−

1
2 =: R̃. Note thatR and R̃ have

the same eigenvalues. Next, we analyze the eigenvalues of R̃. Therefore, we first
reformulate R̃ as

R̃ = τε−1M
1
2
(
I + τε(M−1K)2

)−1
M−1KM−1HM−

1
2

= τε−1
[(
I + τε(M−1K)2

)
M−

1
2
]−1
M−1KM−1HM−

1
2

= τε−1
(
M−

1
2 + τε(M−1K)2M−

1
2
)−1
M−1KM−1HM−

1
2

= τε−1
[
M−

1
2
(
I + τεM−

1
2KM−1KM−

1
2
)]−1

M−1KM−1HM−
1
2

= τε−1
(
I + τεM−

1
2KM−1KM−

1
2
)−1
M−

1
2KM−1HM−

1
2

= τε−1
(
I + τεK̃2

)−1
K̃H̃ , (3.101)

where K̃ = M−
1
2KM−

1
2 and H̃ = M−

1
2HM−

1
2 . Note that K̃ is symmetric pos-

itive semidefinite. From now on, this proof differs from the one in [35]. Due to
Theorem 2.27 (symmetric Schur decomposition), we can write K̃ = QΛQT, where
Q = [q1| . . . |qm] ∈ Rm×m is orthogonal and Λ = diag(λ1, . . . , λm) such that K̃q j = λ jq j
for j = 1, . . . ,m. Hence, K̃2 = Q̃Λ2QT. Using this Schur decomposition, we can

rewrite
(
I + τεK̃2

)−1
K̃ in (3.101) further as(

I + τεK̃2
)−1
K̃ =

(
QQT + τεQΛ2QT

)−1
QΛQT =

[
Q

(
QT + τεΛ2QT

)]−1
QΛQT

=
(
QT + τεΛ2QT

)−1
ΛQT =

[(
I + τεΛ2

)
QT

]−1
ΛQT

= Q
(
I + τεΛ2

)−1
ΛQT,

where
(
I + τεΛ2

)−1
Λ is a diagonal matrix. Hence,

(
I + τεK̃2

)−1
K̃ is symmetric. It

follows that (
I + τεK̃2

)−1
K̃q j =

λ j

1 + λ2
jτε
q j (3.102)

for j = 1, . . . ,m. Using the inequality

0 ≤ (1 − ab)2 = 1 + a2b2
− 2ab

with a, b ∈ R, we can bound the eigenvalues of (3.102) as

λ j

1 + λ2
jτε
≤

λ j

2λ j
√
τε
=

1
2
√
τε

for j = 1, . . . ,m. Here, we have used a2 = τε and b2 = λ2
j . This yields

ρ
((
I + τεK̃2

)−1
K̃

)
≤

1
2
√
τε
. (3.103)

78 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

Finally, we can estimate the eigenvalues of R̃. Note that, due to Theorem 2.31, it
holds ρ(R̃) ≤ ‖R̃‖. Further, we obtain

‖R̃‖ ≤ τε−1
‖

(
I + τεK̃2

)−1
K̃‖ ‖H̃‖ = τε−1ρ

((
I + τεK̃2

)−1
K̃

)
ρ(H̃)

≤
τ

2ε
√
τε
ρ(H̃), (3.104)

where the equality holds due to the symmetry of
(
I + τεK̃2

)−1
K̃ and H̃ . Moreover,

due to the diagonal structure ofH , we have

H̃ =M−
1
2HM−

1
2 = diag

(
3
(
u(k)

h,i

)2
)

i=1,...,m.

Due to (3.89), the diagonal entries of H̃ lie in the interval [0, α], where α = 3‖u(k)
‖

2
∞.

Thus, we obtain in (3.104)

‖R̃‖ ≤

√
τ

2ε
√
ε
α =

3
2

√
τ

ε3 ‖u
(k)
‖

2
∞. (3.105)

Therefore, for τ < ε3/(9‖u(k)
‖

4
∞), it holds σ(R̃) = σ(R) ⊂ B0.5(0) and hence σ(A−1

0 A) ⊂
B0.5(1). �

Remark 3.3. Note that the time step condition in Theorem 3.12 complies with the one in
Theorem 3.1 and 3.2 for the implicit time-discrete scheme. Due to accuracy requirements,
small time steps are needed in the semi-implicit scheme too; see Section 3.8.4.

After we have proven thatA0 is a reasonable approximation ofA, we can go over to
the construction of a suitable preconditionerP forA0 and hence forA. We propose
the block triangular preconditioner

P =

[
M 0

τK −Ŝ

]
.

As Schur complement approximation, we design Ŝ as

Ŝ = S1M
−1S1

=
(
M +

√
τεK

)
M−1

(
M +

√
τεK

)
=M + τεKM−1K + 2

√
τεK. (3.106)

The first two terms in (3.106) match the exact Schur complement S̃ =M+τεKM−1K
ofA0. The influence of the last term in (3.106) is reduced due to the factor

√
τε. In

fact, this approximation turns out to be an optimal Schur complement preconditioner
forA0 (see also [130]):

Lemma 3.13. It holds
σ
(
Ŝ−1S̃

)
⊂ [0.5, 1] .

3.7. PRECONDITIONING 79

Proof. Due to Proposition 3.10, S̃ and Ŝ are symmetric positive definite. Hence, we
may prove the result using the Rayleigh quotient argument in Theorem 2.29. We
write

vTS̃v

vTŜv
=

vT
(
M + τεKM−1K

)
v

vT
(
M + τεKM−1K + 2

√
τεK

)
v
=

aTa + bTb

aTa + bTb + 2aTb
,

where a = M
1
2v and b =

√
τεM−

1
2Kv. From the properties of M and K, it

follows aTa > 0 and bTb,aTb ≥ 0 and therefore vTS̃v
vTŜv

≤ 1. On the other hand,

(a− b)T(a− b) ≥ 0, which gives vTS̃v
vTŜv

≥ 0.5. �

Let us conclude the preconditioner P with a statement about its practical realiza-
tion. The action of the inverse of S1 is performed with an AMG since S1 forms the
discretization of an elliptic operator. The (1, 1) blockM is a diagonal matrix with pos-
itive entries. Hence, its inverse can be performed by elementwise multiplications.3

Hence, the practical block diagonal preconditioner is given by

P0 =

[
M 0
τK −S0

]
,

where S0 = AMG(S1)A−1AMG(S1).

Since the above theoretical analysis proves the optimality of the preconditioner P,
we will not study the numerical robustness. We will see in the next section that
we can apply the above procedure, i.e., approximating the coefficient matrix byA0
and applying the optimal block triangular preconditionerP0, to the smooth implicit
system as well.

3.7.2 Smooth implicit systems

The difference to the system from the last section occurs in the (1, 1) block of (3.87).
In particular, the matrix F is in general indefinite: Due to (3.89) together with
Proposition 3.10, the diagonal entries of F lie in the interval [−Chd, Chd(α− 1)]. This
implies that A = εK + ε−1F can be easily indefinite. In this case, A resembles
a discrete Helmholtz operator. In [64], it is described how difficult it is to solve
Helmholtz problems with classical iterative methods. For this reason, and also
because of the demand of a positive definite preconditioner for symmetric Krylov
subspace methods, we switch to the nonsymmetric system matrix as done in the
second part of the last section. We rewrite (3.87) and consider[

M −A
τK M

] [
w(k+1)

u(k+1)

]
B

[
M −εK − ε−1F
τK M

] [
w(k+1)

u(k+1)

]
=

 −2ε−1M
(
u(k)

)3

Muold

 . (3.107)

In the following, we denote the coefficient matrix by A. The estimated order for
the diagonal entries in ε−1F lie in the interval [−Cεd−1, Cεd−1(3‖u(k)

‖
2
∞ − 1)], since h

3For consistent mass matrices, the Chebyshev semi-iteration [81, 82] provides a powerful precon-
ditioner [150, 132].

80 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

is of order ε. Hence, as in the last section, we suggest to neglect the block F in A.
Therefore, we approximateA as

A0 =

[
M −εK
τK M

]
.

We denote the Schur complement ofA0 by S̃ =M + τεKM−1K. As in the semi-
implicit case, we can prove:

Theorem 3.14. It holds
σ(A−1

0 A) ⊂ Bς(1).

The circle radius is bounded by ς ≤ 1
2

√
τ
ε3 max

{
1, |3‖u(k)

‖
2
∞ − 1|

}
. In particular, m eigen-

values are equal to one. We get ς ≤ 0.5 when τ ≤ ε3/max2
{
1, |3‖u(k)

‖
2
∞ − 1|

}
.

Proof. The proof is the same as the one for Theorem 3.12. The only negligible differ-
ence appears at the end in (3.104), where we have to replace H̃ by F̃ =M−

1
2FM−

1
2 .

Due to the diagonal structure of F , we have

F̃ = diag
(
3
(
u(k)

h,i

)2
− 1

)
i=1,...,m.

Due to (3.89), the diagonal entries of F̃ lie in the interval [−1, α − 1], where α =
3‖u(k)

‖
2
∞. Thus, we obtain in (3.104)

‖R̃‖ ≤

√
τ

2ε
√
ε

max{1, |α − 1|} =
1
2

√
τ

ε3 max
{
1, |3‖u(k)

‖
2
∞ − 1|

}
.

Therefore, for τ ≤ ε3/max2
{
1, |3‖u(k)

‖
2
∞ − 1|

}
, it holds σ(R̃) = σ(R) ⊂ B0.5(0) and

hence σ(A−1
0 A) ⊂ B0.5(1). �

Remark 3.4. Note that the time step condition in Theorem 3.14 complies with the one in
Theorem 3.1 and 3.2.

The proposed block triangular preconditioner

P =

[
M 0

τK −Ŝ

]
,

where
Ŝ =

(
M +

√
τεK

)
M−1

(
M +

√
τεK

)
,

is exactly the same as before in the semi-implicit case. In fact, σ
(
Ŝ−1S̃

)
⊂ [0.5, 1]

as proved in Lemma 3.13. Again, since the above theoretical analysis proves the
optimality of the preconditioner P, we will not study the numerical robustness.

Here, we finish the discussion about preconditioning of smooth Cahn–Hilliard sys-
tems. Next, we come to the harder case of nonsmooth systems. We will see that a
simplification of the coefficient matrix in form ofA0 is not satisfying anymore. We
start with the nonsmooth semi-implicit Cahn–Hilliard system (3.86).

3.7. PRECONDITIONING 81

3.7.3 Nonsmooth semi-implicit systems

Consider the matrix system in (3.86) with the coefficient matrix

A =

[
−εK − c−1G M

M τK

]
=:

[
−A M
M τK

]
. (3.108)

It can be easily seen that A is symmetric. The (1, 1) block A is symmetric positive
semidefinite. In particular, A is symmetric positive definite when G . 0. This can
be seen by letting 0 , v ∈ Rm and considering the following two cases:

• v = 1 ⇒ vTGv = 0 if and only ifG ≡ 0,

• v , 1 ⇒ vTKv > 0, vTGv ≥ 0.

This means, only for the very first few time steps (as long as no pure phases are
present), we have |u(k)

h,i | ≤ 1 for i = 1, . . . ,m, and hence G ≡ 0. As soon as active

sets (pure phases) have formed, i.e., |u(k)
h,i | > 1 for some i, G . 0 and A remains

positive definite. Let us have a closer look at the matrix c−1G and assume that
G . 0. Then, penalized entries, i.e., the nonzero entries, are in general scattered
throughout its diagonal. The intensity of the penalization can be controlled by the
penalty parameter c. The smaller c is the stronger is the penalization and the more
accurate is the numerical approximation of the nonsmoothness. In particular, the
penalized entries of c−1G lie in the interval c−1hd[c̃,C]. The nonpenalized entries of
c−1G are equal to zero. Under the assumptionG . 0, the Schur complement ofA is
S = τK +MA−1M . A symmetric Schur complement preconditioner of the form(
M +

√
τεK

)
A−1

(
M +

√
τεK

)
= τεKA−1K +MA−1M +

√
τεMA−1K +

√
τεKA−1M ,

as done in (3.92), would only be satisfying if c ≥ εd−1 since

τεKA−1 = τK
(
K + c−1ε−1G

)−1

and the estimated order for the diagonal entries in c−1ε−1G lie in the interval
[0,Cc−1εd−1], where we have used that h is of order ε. Note that sufficient sizes
of c are c ≤ 10−4, and in our numerical examples we usually work with c = 10−7.
Moreover, we have in mind that we want to go over to adaptive mesh strategies,
where we coarsen the mesh inside the penalized regions. This excludes a symmetric
preconditioner P forA. Moreover, neglecting the block G, as done before with H
and F , would give a worse approximation for small penalization parameters, which
is summarized as follows:

Theorem 3.15. Let

A =

[
M −εK − c−1G
τK M

]
=:

[
M −A
τK M

]
and A0 =

[
M −εK
τK M

]
.

It holds
σ(A−1

0 A) ⊂ Bς(1).

The circle radius is bounded by ς ≤
√
τ

2c
√
ε
. In particular, m eigenvalues are equal to one. We

get ς ≤ 0.5 when τ ≤ εc2.

82 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

Proof. The proof is the same as the one for Theorem 3.12. The crucial difference
appears at the end in (3.104), where we obtain

‖R̃‖ ≤ τc−1
‖

(
I + τεK̃2

)−1
K̃‖ ‖G̃‖ ≤

τ

2c
√
τε
ρ(G̃) (3.109)

with G̃ =M−
1
2GM−

1
2 . Due to the diagonal structure ofG, we have

G̃ = diag
(

1 if |u(k)
h,i | > 1,

0 otherwise.

)
i=1,...,m

∈ Rm×m

Thus, we obtain in (3.109)

‖R̃‖ ≤

√
τ

2c
√
ε
.

Therefore, for τ ≤ εc2, it holds σ(R̃) = σ(R) ⊂ B0.5(0) and hence σ(A−1
0 A) ⊂ B0.5(1).

�

Hence, neglecting the block G would only be satisfying for tiny time step sizes τ,
which is far away from being practical.

In the following, we concentrate on the coefficient matrix in (3.108). The first block
triangular preconditioner we propose is

P =

[
−Â 0

M −Ŝ

]
. (3.110)

As mentioned, A is only symmetric positive semidefinite if G ≡ 0. Hence, we
suggest

Â =

{
A + ετI ifG ≡ 0,

A otherwise, (3.111)

where the shift ετ is an heuristic choice. As Schur complement approximation, we
design Ŝ as

Ŝ = S1Â
−1S2

=
(
M +

√
τK

)
Â−1

(
M +

√
τÂ

)
(3.112)

= τK +MÂ−1M +
√
τM +

√
τKÂ−1M . (3.113)

The first term in (3.113) matches the first term in the exact Schur complement S =
τK +MA−1M . The second term in (3.113) approximates the second term in the
exact Schur complement. Due to the balanced distribution of τ in form of

√
τ in both

factors S1 and S2, the influence of both remainder terms in (3.113) is reduced. To
illustrate the performance of Ŝ−1S, we show eigenvalue plots in Section 3.8.1. Let
us conclude the preconditioner P with a statement about its practical realization.
The action of the inverse of S1 and S2 is performed with an AMG each since both
form the discretization of an elliptic operator. The same holds for the (1, 1) block Â.
Hence, the practical block triangular preconditioner is given by

P0 =

[
−A0 0
M −S0

]
,

3.7. PRECONDITIONING 83

where A0 = AMG(Â) and S0 = AMG(S1)Â−1AMG(S2). In Section 3.8.2, we illus-
trate the robust performance of the preconditioner P0 applied with BiCG.

In the following, we discuss a second way to develop a preconditioner for the
nonsmooth semi-implicit Cahn–Hilliard system (3.86). We can avoid the case analysis
in (3.111), which is done to make the block A symmetric positive definite. By
interchanging the column blocks in (3.86), we obtain[

M −A
τK M

] [
w(k+1)

u(k+1)

]
B

[
M −εK − c−1G
τK M

] [
w(k+1)

u(k+1)

]
=

[
−c−1 (G+1 −G−1) − ε−1Muold

Muold

]
.

(3.114)

In the following, we denote the coefficient matrix by A. The Schur complement is
now S = M + τKM−1A. It can be easily seen that A is not symmetric anymore.
However, the preconditioner above has already been built based on a nonsymmetric
Schur complement approximation, which results in the use of nonsymmetric Krylov
subspace solvers anyway. Hence, without thought, we can work with the nonsym-
metric system in (3.114). This has the advantage that the (1, 1) block is now diagonal
and symmetric positive definite and hence cheap to invert. The block triangular
preconditioner we propose is

P =

[
M 0

τK −Ŝ

]
.

As Schur complement approximation we design Ŝ as

Ŝ = S1M
−1S2

=
(
M +

√
τK

)
M−1

(
M +

√
τA

)
(3.115)

=M + τKM−1A +
√
τA +

√
τK. (3.116)

The first two terms in (3.116) match the exact Schur complement. Due to the bal-
anced distribution of τ in form of

√
τ in both factors S1 and S2, the influence of both

remainder terms in (3.116) is reduced.

In fact, this is the preconditioner we suggest to solve the nonsmooth implicit system
(3.85).

3.7.4 Nonsmooth implicit systems

Consider the matrix system in (3.85). As before, the coefficient matrix is symmetric.
However, the (1, 1) block can easily become indefinite now. For this reason, and also
because of the demand of a positive definite preconditioner for symmetric Krylov
subspace methods, we switch to the nonsymmetric system[

M −A
τK M

] [
w(k+1)

u(k+1)

]
B

[
M −εK − c−1G + ε−1M
τK M

] [
w(k+1)

u(k+1)

]
=

[
−c−1 (G+1 −G−1)

Muold

]
.

(3.117)

84 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

In the following, we denote the coefficient matrix by A. The Schur complement is
now S =M +τKM−1A. The outer structure of (3.117) is the same as we have in the
second part of the last section. Again, neglecting the blocks G and M in A would
give a worse approximation for small penalization parameters, which is summarized
as follows:

Theorem 3.16. Let

A0 =

[
M −εK
τK M

]
.

It holds
σ(A−1

0 A) ⊂ Bς(1).

The circle radius is bounded by

ς ≤
1
2

√
τ

ε3

{
1 if c > ε

2 ,(
ε
c − 1

)
if c ≤ ε

2 .

In particular, m eigenvalues are equal to one. We get ς ≤ 0.5 when

τ ≤ ε3

 1 if c > ε
2 ,(

ε
c − 1

)−2
if c ≤ ε

2 .

Proof. The proof is almost the same as the one for Theorem 3.12. The matrix R
becomes

R = τ
(
I + τε(M−1K)2

)−1
M−1KM−1

(
c−1G − ε−1M

)
and hence R̃ becomes

R̃ = τ
(
I + τεK̃2

)−1
K̃

(
c−1G̃ − ε−1I

)
,

where G̃ =M−
1
2GM−

1
2 . We finally end up with

‖R̃‖ ≤ τ

∥∥∥∥∥(I + τεK̃2
)−1
K̃

∥∥∥∥∥ ‖c−1G̃ − ε−1I‖ = τρ
((
I + τεK̃2

)−1
K̃

)
ρ(c−1G̃ − ε−1I)

≤
τ

2
√
τε
ρ(c−1G̃ − ε−1I),

where the equality holds due to the symmetry of
(
I + τεK̃2

)−1
K̃ and c−1G̃ − ε−1I .

Moreover, due to the diagonal structure ofG, we have

G̃ =M−
1
2GM−

1
2 = diag

(
1 if |u(k)

h,i | > 1,
0 otherwise.

)
i=1,...,m

Therefore,

c−1G̃ − ε−1I = diag
(

c−1
− ε−1 if |u(k)

h,i | > 1,
−ε−1 otherwise,

)
i=1,...,m

which results in
ρ(c−1G̃ − ε−1I) = max

{
ε−1, |c−1

− ε−1
|

}
.

3.7. PRECONDITIONING 85

Now, we do a case analysis for c. Assume that |c−1
− ε−1

| < ε−1, which is equivalent
to

−ε−1 < c−1
− ε−1 < ε−1

⇔ 0 < c−1 < 2ε−1.

This is the case for small penalizations, i.e., large c > ε/2. We obtain

‖R̃‖ ≤

√
τ

2ε
√
ε
=

1
2

√
τ

ε3 .

Now, assume that |c−1
− ε−1

| ≥ ε−1, which is equivalent to

c−1
− ε−1

≥ ε−1
⇔ c−1

≥ 2ε−1.

This is the case for large penalizations, i.e., small c ≤ ε/2. We obtain

‖R̃‖ ≤

√
τ(c−1

− ε−1)
2
√
ε

=
1
2

√
τ

ε3

(
ε
c
− 1

)
.

Therefore, for

τ ≤ ε3

 1 if c > ε
2 ,(

ε
c − 1

)−2
if c ≤ ε

2 ,

it holds σ(R̃) = σ(R) ⊂ B0.5(0) and hence σ(A−1
0 A) ⊂ B0.5(1). �

Remark 3.5. Note that the time step condition in Theorem 3.16 for small penalizations, i.e.,
large c > ε/2, complies with the uniqueness condition in Lemma 3.3 and the subsequent
analysis. For large penalizations, i.e., small c ≤ ε/2, the above time step condition in
Theorem 3.16 is even more restrictive than the uniqueness condition in Lemma 3.3.

Hence, we build on the second part of the last section and propose the block triangular
preconditioner

P =

[
M 0

τK −Ŝ

]
. (3.118)

As Schur complement approximation, we design Ŝ as

Ŝ = S1M
−1S2

=
(
M +

√
τK

)
M−1

(
M +

√
τA

)
(3.119)

=M + τKM−1A +
√
τA +

√
τK. (3.120)

The first two terms in (3.120) match the exact Schur complement. Due to the balanced
distribution of τ in form of

√
τ in both factors S1 and S2, the influence of both

remainder terms in (3.120) is reduced. Note that we do not need to solve a linear
system with the difficult indefinite block A anymore. Instead, we have to solve a
shifted linear system withA. More precisely, if we write out the block S2

S2 =M +
√
τA =

√
τεK +

√
τ

c
G +

(
1 −
√
τ

ε

)
M ,

we see that S2 is positive definite if τ < ε2. Remember the uniqueness condition
τ < 4ε3 in Lemma 3.3 that is imposed on our time-discrete formulation anyway. For
ε ≤ 0.25, it holds that 4ε3 < ε2. In the numerical experiments, we never use interfacial

86 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

parameters larger than 0.25. Instead, ε should be as small as possible. Hence, the
positive definiteness of S2 is guaranteed if τ < 4ε3 and ε ≤ 0.25. In fact, the positive
definiteness of S2 is always guaranteed in our numerical experiments. To illustrate
the performance of Ŝ−1S, we show eigenvalue plots in Section 3.8.1. In Section 3.8.2,
we illustrate the robust performance of the preconditioner P0 applied with BiCG.

Here, we finish the theoretical discussion about the preconditioners. In the next
section, we illustrate their efficiency via various numerical experiments. Moreover,
we outline an algorithm for the numerical solution of the Cahn–Hilliard problems.

3.8 Numerical results

In this section, we show numerical results for the presented Cahn–Hilliard problems.
First, we explain our implementation framework.

The connection between the spatial mesh size h, the interfacial parameter ε, and the
time step size τ is as follows. As discussed in Chapter 1.1, it is essential to ensure
that at least eight grid points lie on the interface. Using smooth potentials, this leads
to the condition h ≤ 2

√
2ε · atanh(0.95)/9; see, e.g., [56, Section 7.9] or the note in

[6, p. 374]. Using nonsmooth potentials, this leads to the condition h ≤ επ/9; see,
e.g., [42, p. 17]. As far as we know, there is no theory available for the case of the
regularized nonsmooth potential. In our numerical examples, we use the condition
h ≤ επ/9 for the regularized nonsmooth potential. Regarding the time step size, we
have analyzed the time step conditions for the smooth and (regularized) nonsmooth
implicit time-discrete system in Section 3.3. For the former, we use τ < ε3 and for the
latter it is τ < 4ε3.

Our finite element implementation is done in C++ on a 64-bit server with CPU type
Intel R© Xeon R© X5650 @2.67 GHz, with 2 CPUs, 12 Cores (6 Cores per CPU), and
48 GB main memory available. We make use of the open source finite element li-
brary deal.II version 7.1.0 [8], which generates finite elements on rectangles. Deal.II
works with the Trilinos library [89], version 10.4.2 in our case, which we use for our
multilevel approximations. More precisely, we use the smoothed aggregation AMG
implemented as part of the Trilinos Multi Level Preconditioning Package (ML) [76].
The ML package allows for a variety of smoothers. In our experiences, ten steps of a
Chebyshev smoother were superior to similar or smaller numbers of Gauss-Seidel or
Jacobi smoothing steps. The Chebyshev smoother is the recommended option for the
discretization of elliptic operators; see, e.g., [89]. The use of two AMG V-cycles was
always sufficient for our experiments, and, in fact, we did not observe improvements
when a larger number of V-cycles was used.

In the following, we present two algorithms for the numerical solution of the implicit
time-discrete Cahn–Hilliard problem with a nonsmooth potential. Algorithm 3.1 is
based on a uniform spatial mesh. Algorithm 3.2 is based on an adaptive spatial
mesh. For a description of our adaptive mesh strategy, we refer to Section 3.8.3. If
not mentioned otherwise, we consider the unit squareΩ = [0, 1]2 as spatial domain.
Let us explain some parts of Algorithm 3.1. We provide an initial solution u(0) and
set w(0) = 0. If not mentioned otherwise, we set the entries of the initial vector

3.8. NUMERICAL RESULTS 87

Algorithm 3.1: The numerical solution of the nonsmooth implicit time-discrete
Cahn–Hilliard problem via an SSN method combined with a Moreau–Yosida
regularization technique on a uniform mesh.

Choose h, ε, τ, c1, c2, . . . , cpmax ,nc, εrel, εabs
Build the spatial mesh
InitializeM ,K, and the AMG solver for S1

Set u(0),w(0)

for n = 1, . . . , nT do
Update the second right-hand side of the linear system
for p = 1, 2, . . . , pmax do

if n > nc then
p = pmax

end
c = cp
if p = 1 or n > nc then

Set u(n,p,0) = u(n−1),w(n,p,0) = w(n−1)

else
Set u(n,p,0) = u(n,p−1),w(n,p,0) = w(n,p−1)

end
for k = 0, 1, 2, . . . until convergence do

Update the first right-hand side of the linear system
Update the blockA
Update the AMG solver for S2

Solve the linear system and obtain u(n,p,k+1),w(n,p,k+1)

if ‖Fc,h(u(n,p,k+1),w(n,p,k+1))‖ ≤ εrel‖Fc,h(u(n,p,0),w(n,p,0))‖2 + εabs then
Set u(n,p) = u(n,p,k+1),w(n,p) = w(n,p,k+1)

break
end

end
end
Set u(n) = u(n,pmax),w(n) = w(n,pmax)

end

u(0) randomly between −0.3 and 0.5, i.e., no pure phases are present at time t = 0.
The first loop we enter is the one over the time step n. Therein is the second loop,
which runs over the Moreau–Yosida regularization parameter c. In Algorithm 3.1,
we run this loop over an integer p, which serves as a subindex for the sequence
of regularization parameters {cp}p=1,...,pmax . Inside this second loop, we solve the
regularized subproblem Fcp,h(u(n,p),w(n,p)) = 0 by the SSN method. Hence, the third
loop is the SSN iteration, which runs over the SSN step k. But first, let us say a few
more words about the second loop and the sequence of regularization parameters.
In our numerical experiments, we set c1 = 10−1

≥ c2 = 10−2
≥ . . . ≥ cpmax = 10−7

if not mentioned otherwise. In praxis, it is sufficient to loop over the sequence of
penalization parameters {cp}p=1,...,pmax only for the very first few time steps as soon as
pure phases exist. From then on, it suffices to solve only for the smallest parameter
c = cpmax . This is because the initial solution might not be a good starting point for

88 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

the SSN method. If not mentioned otherwise, we set nc = 5. This means, we fix
c = cpmax from time step 6 onwards, and the loop over p becomes unnecessarily. Now,
we come to the SSN iteration, which forms the third loop. Except for the very first
SSN call, each is initialized by the approximate solution of the previous one. The
very first SSN call is initialized with (u(0),w(0)). As stopping criterion, we use

‖Fc,h(u(n,p,k+1),w(n,p,k+1))‖ ≤ εrel‖Fc,h(u(n,p,0),w(n,p,0))‖ + εabs, k = 1, . . . , kmax,

given in [91]. We set kmax = 20, εrel = 10−12, and εabs = 10−6 in all examples.
In each SSN step, we solve the system of linear equations by a Krylov subspace
solver. This forms the core of the overall algorithm. We choose either precon-
ditioned BiCG, BiCGstab, or MINRES as pointed out in Section 3.7. We set the
BiCG/BiCGstab/MINRES tolerance to be 10−7 for the preconditioned relative resid-
ual in all examples. Except for the very first Krylov subspace solver call, each is
initialized by the approximate solution (u(n,p,k),0) of the previous one. The very first
Krylov subspace solver call is initialized with (u(0),0).

Algorithm 3.2 is a version of Algorithm 3.1, which uses adaptive finite elements.
This results in hanging nodes. Hence, additional constraints have to be imposed to
insure that the solutions of the systems of linear equations are continuous at these
nodes. We just note that deal.II handles these constraints via a special object called
ConstraintMatrix. Hence, we do not have to take care of these issues. However, the
mass matrixM might not be diagonal anymore. Hence, in the adaptive case, we ap-
proximate the inverse ofM with an AMG. More details about our mesh refinement
and coarsening technique are given in Section 3.8.3.

The formulation with a smooth potential is a simplification of the presented two
algorithms. Basically, the second loop over the penalty parameter drops out and the
SSN method becomes a standard Newton method.

Now, we are ready for numerical results.

3.8.1 Eigenvalue plots

In Section 3.7, we have developed different Schur complement approximations and
referred to this section for some corresponding eigenvalue plots. The following
eigenvalue plots are simply generated with MATLAB R©. The mass and stiffness ma-
trix M and K are generated in C++ using the FEM library deal.II [8] as described
above. For the following simple demonstrations, we consider uniform refinements
of the unit square [0, 1]2 with three different mesh sizes hi = 2−i−3 for i = 1, 2, 3. Let
us denote the diagonal matrix H in (3.88) for each mesh by H (i) for i = 1, 2, 3. It
is implemented in MATLAB as a random vector with MATLAB’s command rand.
We choose δ = 0.03 in (3.89) and generate three vectors hi = [r1, . . . , rmi]

T
∈ Rmi ,

where mi = (h−1
i + 1)2 for i = 1, 2, 3, from the uniform distribution on the interval

[0, 3 + 6δ + 3δ2]. The diagonal values of H (i) are then set to be [H (i)] j j = [M] j jr j for
j = 1, . . .mi. Similarly, let us denote the diagonal matrixG in (3.85) for each mesh by
G(i) for i = 1, 2, 3. It is implemented in MATLAB as a random vector with MATLAB’s
command randperm. First, we initialize three vectors gi = [p1, . . . , pmi]

T
∈ Rmi as one

vectors. Then, we set randomly 25 percent of each vector gi to zero via randperm.
The diagonal values of G(i) are then set to be [G(i)] j j = [M] j jp j for j = 1, . . .mi. The

3.8. NUMERICAL RESULTS 89

Algorithm 3.2: The numerical solution of the nonsmooth implicit time-discrete
Cahn–Hilliard problem via an SSN method combined with a Moreau–Yosida
regularization technique on an adaptive mesh.

Choose h, ε, τ, c1, c2, . . . , cpmax ,nc, εrel, εabs
Build the initial spatial mesh
InitializeM ,K, and the AMG solver for S1

Set u(0),w(0)

for n = 1, . . . , nT do
if n ≥ 2 then

Refine/coarsen the spatial mesh
UpdateM ,K, and the AMG solver for S1

Transfer the solution u(n−1) to the new mesh
end
Update the second right-hand side of the linear system
for p = 1, 2, . . . , pmax do

if n > nc then
p = pmax

end
c = cp
if p = 1 or n > nc then

Set u(n,p,0) = u(n−1),w(n,p,0) = w(n−1)

else
Set u(n,p,0) = u(n,p−1),w(n,p,0) = w(n,p−1)

end
for k = 0, 1, 2, . . . until convergence do

Update the first right-hand side of the linear system
Update the blockA
Update the AMG solver for S2

Solve the linear system and obtain u(n,p,k+1),w(n,p,k+1)

if ‖Fc,h(u(n,p,k+1),w(n,p,k+1))‖ ≤ εrel‖Fc,h(u(n,p,0),w(n,p,0))‖2 + εabs then
Set u(n,p) = u(n,p,k+1),w(n,p) = w(n,p,k+1)

break
end

end
end
Set u(n) = u(n,pmax),w(n) = w(n,pmax)

end

90 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

action of all inverses are performed with MATLAB’s backslash command. This is
a direct solver based on the LU-factorization, which works well for our small sized
two-dimensional problems. In total, three inverses occur in the implementation:
One in the Schur complement S, one in the Schur complement approximation Ŝ, as
well as one in Ŝ−1S. Finally, we have used MATLAB’s eigs command to obtain the
eigenvalues of the generated matrix Ŝ−1S.

We start with the smooth semi-implicit system (3.90) with the Schur complement ap-
proximation (3.92). Each subplot in Figure 3.2(a)–3.2(c) demonstrates the robustness
with respect to a different model parameter. In Figure 3.2(a), we vary the mesh size
h while fixing ε = 9 · 2−4/(2

√
2 · atanh(0.95)), τ = 10−3. In Figure 3.2(b), we vary the

interfacial parameter ε while fixing h = 2−6, τ = 6 · 10−6. In Figure 3.2(c), we vary
the time step size τ while fixing h = 2−6, ε = 9 · 2−6/(2

√
2 · atanh(0.95)). Finally, in

Figure 3.2(d), we vary simultaneously all three parameters h, ε, τ. In fact, this is the
practical procedure: Choose ε as small as possible (depending on h) and τ as large as
possible (depending on the accuracy). Each of the four subplots illustrates nicely the
eigenvalue clustering around one. Moreover, all eigenvalues are real and positive as
expected from Lemma 2.30.

Next, we go over to the nonsmooth semi-implicit system (3.108) with the Schur com-
plement approximation (3.112). Each subplot in Figure 3.3(a)–3.3(d) demonstrates
the robustness with respect to a different model parameter. In Figure 3.3(a), we vary
the mesh size h while fixing ε = 9 ·2−4/π, τ = 10−2, c = 10−7. In Figure 3.3(b), we vary
the interfacial parameter ε while fixing h = 2−6, τ = 10−4, c = 10−7. In Figure 3.3(c),
we vary the time step size τ while fixing h = 2−6, ε = 9 · 2−6/π, c = 10−7. In Figure
3.3(d), we vary the penalty parameter c while fixing h = 2−6, ε = 9 · 2−6/π, τ = 10−4.
Finally, in Figure 3.3(e), we vary simultaneously all three parameters h, ε, τ while
fixing c = 10−7. Each of the five subplots illustrates nicely the eigenvalue clustering
around one. Moreover, all presented eigenvalues are real and positive.

We proceed with the nonsmooth implicit system (3.117) with the Schur complement
approximation (3.119). Figures 3.4(a)–3.4(e) demonstrate the robustness with respect
to different model parameters. In Figure 3.4(a), we vary the mesh size h while fixing
ε = 9 · 2−4/π, τ = 10−2, c = 10−7. In Figure 3.4(b), we vary the interfacial parameter
ε while fixing h = 2−6, τ = 10−4, c = 10−7. In Figure 3.4(c) and 3.4(d), we vary the
time step size τ while fixing h = 2−6, ε = 9 · 2−6/π, c = 10−7. Here, we observe the
appearance of complex eigenvalues. In Figure 3.4(e), we vary the penalty parameter
c while fixing h = 2−6, ε = 9 · 2−6/π, τ = 10−4. Finally, in Figure 3.4(f), we vary
simultaneously all three parameters h, ε, τ while fixing c = 10−7. Again, each of the
six subplots illustrates nicely the eigenvalue clustering around one.

3.8.2 Robustness

In this section, we demonstrate the robustness of our proposed preconditioners re-
garding all model parameters. We will not present numerical results for the smooth
implicit system in (3.107) since the theory in Section 3.7.2 already promises the inde-
pendence of the preconditioner regarding any model parameter.

3.8. NUMERICAL RESULTS 91

0 1,000 2,000 3,000 4,000
10−0.2

10−0.1

100

100.1

Index

σ
(Ŝ
−

1 S
)

h = 2−4

h = 2−5

h = 2−6

(a) ε = 9 · 2−4/(2
√

2 · atanh(0.95)), τ = 10−3.

0 1,000 2,000 3,000 4,000
10−0.3

10−0.2

10−0.1

100

100.1

Index

σ
(Ŝ
−

1 S
)

ε = 0.02
ε = 0.04
ε = 0.06

(b) h = 2−6, τ = 6 · 10−6.

0 1,000 2,000 3,000 4,000
10−0.3

10−0.2

10−0.1

100

100.1

Index

σ
(Ŝ
−

1 S
)

τ = 1 · 10−5

τ = 5 · 10−6

τ = 1 · 10−6

(c) h = 2−6, ε = 9 · 2−6/(2
√

2 · atanh(0.95)).

0 1,000 2,000 3,000 4,000
10−0.2

10−0.1

100

100.1

Index

σ
(Ŝ
−

1 S
)

h1, ε1, τ1
h2, ε2, τ2
h3, ε3, τ3

(d) h j = 2− j−3, ε j = 9 h j/(2
√

2 · atanh(0.95)),
τ j = 10− j−2 for j = 1, 2, 3.

Figure 3.2: Spectrum of Ŝ−1S for the smooth semi-implicit system (3.90) with the
Schur complement approximation (3.92).

92 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

0 1,000 2,000 3,000 4,000
10−3

10−2

10−1

100

Index

σ
(Ŝ
−

1 S
)

h = 2−4

h = 2−5

h = 2−6

(a) ε = 9 · 2−4/π, τ = 10−2, c = 10−7.

0 1,000 2,000 3,000 4,000
10−2

10−1

100

Index

σ
(Ŝ
−

1 S
)

ε = 0.04
ε = 0.06
ε = 0.08

(b) h = 2−6, τ = 10−4, c = 10−7.

0 1,000 2,000 3,000 4,000
10−2

10−1

100

Index

σ
(Ŝ
−

1 S
)

τ = 1 · 10−4

τ = 5 · 10−5

τ = 1 · 10−5

(c) h = 2−6, ε = 9 · 2−6/π, c = 10−7.

0 1,000 2,000 3,000 4,000
10−2

10−1

100

Index

σ
(Ŝ
−

1 S
)

c = 10−7

c = 10−5

c = 10−3

(d) h = 2−6, ε = 9 · 2−6/π, τ = 10−4.

0 1,000 2,000 3,000 4,000
10−2

10−1

100

Index

σ
(Ŝ
−

1 S
)

h1, ε1, τ1
h2, ε2, τ2
h3, ε3, τ3

(e) h j = 2− j−3, ε j = 9 h j/π, τ j = 10− j−1 for
j = 1, 2, 3, c = 10−7.

Figure 3.3: Spectrum of Ŝ−1S for the nonsmooth semi-implicit system (3.108) with
the Schur complement approximation (3.112).

3.8. NUMERICAL RESULTS 93

0 1,000 2,000 3,000 4,000
10−3

10−2

10−1

100

Index

σ
(Ŝ
−

1 S
)

h = 2−4

h = 2−5

h = 2−6

(a) ε = 9 · 2−4/π, τ = 10−2, c = 10−7.

0 1,000 2,000 3,000 4,000
10−2

10−1

100

Index

σ
(Ŝ
−

1 S
)

ε = 0.04
ε = 0.06
ε = 0.08

(b) h = 2−6, τ = 10−4, c = 10−7.

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2
·10−2

Re[σ(Ŝ−1S)]

Im
[σ

(Ŝ
−

1 S
)]

τ = 1 · 10−4

τ = 5 · 10−5

τ = 1 · 10−5

(c) h = 2−6, ε = 9 · 2−6/π, c = 10−7.

0 1,000 2,000 3,000 4,000
10−2

10−1

100

Index

R
e[
σ

(Ŝ
−

1 S
)]

τ = 1 · 10−4

τ = 5 · 10−5

τ = 1 · 10−5

(d) h = 2−6, ε = 9 · 2−6/π, c = 10−7.

0 1,000 2,000 3,000 4,000
10−2

10−1

100

Index

σ
(Ŝ
−

1 S
)

c = 10−7

c = 10−5

c = 10−3

(e) h = 2−6, ε = 9 · 2−6/π, τ = 10−4.

0 1,000 2,000 3,000 4,000
10−2

10−1

100

Index

σ
(Ŝ
−

1 S
)

h1, ε1, τ1
h2, ε2, τ2
h3, ε3, τ3

(f) h j = 2− j−3, ε j = 9 h j/π, τ j = 10− j−1 for
j = 1, 2, 3, c = 10−7.

Figure 3.4: Spectrum of Ŝ−1S for the nonsmooth implicit system (3.117) with the
Schur complement approximation (3.119).

94 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

We start with the smooth semi-implicit system (3.90) with the preconditioner (3.91)
and the Schur complement approximation (3.92). Each subplot in Figure 3.5(a)–3.5(c)
demonstrates the robustness with respect to a different model parameter. In Figure
3.5(a), we vary the mesh size h while fixing ε = 9 · 2−7/(2

√
2 · atanh(0.95)), τ = 10−6,

and T = 10−4. In Figure 3.5(b), we vary the interfacial parameter ε while fixing
h = 2−7, τ = 10−6, and T = 10−2. In Figure 3.5(c), we vary the time step size τ while
fixing h = 2−7, ε = 9 · 2−7/(2

√
2 · atanh(0.95)), and T = 10−4. All in all, the three

subplots illustrate the independence of our developed preconditioner regarding the
mesh size, the interfacial parameter, as well as the time step size. Finally, in Figure
3.5(d), we vary simultaneously all three parameters h, ε, τ while fixing T = 10−4.
Although the smooth semi-implicit system is unconditionally stable, we use in the
numerical examples of this section the time step condition τ < ε3, which was investi-
gated for smooth implicit systems in Section 3.3.1. This is because experiments yield
highly inaccurate results for large time steps; see Section 3.8.4. Table 3.1 illustrates
the maximum and average number of Newton iterations, the maximum and average
number of MINRES iterations, the average central processing unit (CPU) time (in
seconds) for MINRES, and the CPU time (in seconds) for the whole simulation for
each of the four subplots, respectively.

Next, we go over to the nonsmooth semi-implicit system (3.108) with the precon-
ditioner (3.110) and the Schur complement approximation (3.112). Each subplot in
Figure 3.6 demonstrates the robustness with respect to a different model parameter.
In Figure 3.6(a), we vary the mesh size h while fixing ε = 9 ·2−7/π, τ = 2 ·10−5, cpmax =
10−7, and T = 4 · 10−4. In Figure 3.6(b), we vary the interfacial parameter ε while
fixing h = 2−7, τ = 2 · 10−5, cpmax = 10−7, and T = 2 · 10−2. In Figure 3.6(c), we
vary the time step size τ while fixing h = 2−7, ε = 9 · 2−7/π, cpmax = 10−7, and
T = 4 · 10−4. In Figure 3.6(d), we vary the penalty parameter cpmax while fixing
h = 2−7, ε = 9 · 2−7/π, τ = 2 · 10−5, and T = 4 · 10−4. All in all, except for Figure 3.6(a),
the subplots illustrate the independence of our developed preconditioner regard-
ing the interfacial parameter, the time step, size as well as the penalty parameter.
In fact, we observe a decrease of iteration numbers when cpmax is decreased. We
observe a benign increase of iteration numbers when the mesh is refined. Finally,
in Figure 3.7(a), we vary simultaneously all three parameters h, ε, τ while fixing
cpmax = 10−7 and T = 4 · 10−4. Although the nonsmooth semi-implicit system has
no time step restrictions, we use in the numerical examples of this section the time
step condition τ < 4ε3, which was investigated for nonsmooth implicit systems in
Section 3.3.2. This is because experiments yield highly inaccurate results for large
time steps; see Section 3.8.4. Table 3.2 illustrates the maximum and average number
of SSN iterations, the maximum and average number of BiCG iterations, the average
CPU time (in seconds) for BiCG, and the CPU time (in seconds) for the whole simu-
lation for each of the five subplots, respectively. Note that the higher number of SSN
iterations in row three and four can be reduced by choosing nc in Algorithm 3.1 larger.

We proceed with the nonsmooth implicit system (3.117) with the preconditioner
(3.118) and the Schur complement approximation (3.119). Each subplot in Figure 3.8
demonstrates the robustness with respect to a different model parameter. In Figure
3.8(a), we vary the mesh size h while fixing ε = 9 · 2−7/π, τ = 2 · 10−5, cpmax = 10−7,
and T = 4 · 10−4. In order to reduce the number of SSN iterations, we have set

3.8. NUMERICAL RESULTS 95

0 5 · 10−5 1 · 10−4

22

24

26

28

h = 2−7

h = 2−8

h = 2−9

h = 2−10

(a) ε = 9 · 2−7/(2
√

2 · atanh(0.95)), τ = 10−6.

0 5 · 10−3 1 · 10−2

16

18

20

22

24

26

ε = 0.0600
ε = 0.0400
ε = 0.0200
ε = 0.0136

(b) h = 2−7, τ = 10−6.

0 5 · 10−5 1 · 10−4

16

18

20

22

24

26

τ = 1.0 · 10−6

τ = 5.0 · 10−7

τ = 2.5 · 10−7

τ = 8.0 · 10−8

(c) h = 2−7, ε = 9 · 2−7/(2
√

2 · atanh(0.95)).

0 5 · 10−5 1 · 10−4

22

24

26

h1, ε1, τ1
h2, ε2, τ2
h3, ε3, τ3

(d) h j = 2− j−6, ε j = 9 h j/(2
√

2 · atanh(0.95)),
τ1 = 10−6, τ2 = 10−7, τ3 = 1.25 · 10−8 for j = 1, 2, 3.

Figure 3.5: Results for the solution of the smooth semi-implicit system (3.90) with
the preconditioner (3.91) and the Schur complement approximation (3.92). The

x-axis shows the time t and the y-axis the average number of MINRES iterations per
Newton step.

96 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

0 2 · 10−4 4 · 10−4
30

35

40

45

50

55

(a) ε = 9 · 2−7/π, τ = 2 · 10−5, cpmax = 10−7, and
h = 2−7 (), h = 2−8 (), h = 2−9 (),

h = 2−10 ().

0 1 · 10−2 2 · 10−2

20

25

30

35

40

ε = 0.0800
ε = 0.0600
ε = 0.0400
ε = 0.0224

(b) h = 2−7, τ = 2 · 10−5, cpmax = 10−7.

0 2 · 10−4 4 · 10−4
28

30

32

34

36

38

40

(c) h = 2−7, ε = 9 · 2−7/π, cpmax = 10−7, and
τ = 2 · 10−5 (), τ = 10−5 (), τ = 5 · 10−6

(), τ = 2.5 · 10−6 ().

0 2 · 10−4 4 · 10−4

25

30

35

40

cpmax = 10−3

cpmax = 10−5

cpmax = 10−7

cpmax = 10−9

(d) h = 2−7, ε = 9 · 2−7/π, τ = 2 · 10−5.

Figure 3.6: Results for the solution of the nonsmooth semi-implicit system (3.108)
with the preconditioner (3.110) and the Schur complement approximation (3.112).
The x-axis shows the time t and the y-axis the average number of BiCG iterations

per SSN step.

3.8. NUMERICAL RESULTS 97

0 2 · 10−4 4 · 10−4
30

35

40

45

50

55 h1, ε1, τ1
h2, ε2, τ2
h3, ε3, τ3

(a) Nonsmooth semi-implicit system (3.108)
with the preconditioner (3.110) and the Schur

complement approximation (3.112).

0 2 · 10−4 4 · 10−4

10

20

30

40

h1, ε1, τ1
h2, ε2, τ2
h3, ε3, τ3

(b) Nonsmooth implicit system (3.117) with the
preconditioner (3.118) and the Schur
complement approximation (3.119).

Figure 3.7: Results for the solution of the nonsmooth semi-implicit and implicit
system. The x-axis shows the time t and the y-axis the average number of BiCG

iterations per SSN step. h j = 2− j−6, ε j = 9 h j/π, τ1 = 2 · 10−5, τ2 = 3.125 · 10−6,
τ3 = 4 · 10−7, cpmax = 10−7 for j = 1, 2, 3.

nc = 20 in Algorithm 3.1. For the following tests, we use nc = 5. In Figure 3.8(b), we
vary the interfacial parameter ε while fixing h = 2−7, τ = 2 · 10−5, cpmax = 10−7,
and T = 2 · 10−2. In Figure 3.8(c), we vary the time step size τ while fixing
h = 2−7, ε = 9 · 2−7/π, cpmax = 10−7, and T = 4 · 10−4. In Figure 3.8(d), we vary
the penalty parameter cpmax while fixing h = 2−7, ε = 9 · 2−7/π, τ = 2 · 10−5, and
T = 4 · 10−4. All in all, except for Figure 3.8(b), the subplots illustrates the indepen-
dence of our developed preconditioner regarding the mesh size, the time step size,
as well as the penalty parameter. We observe a benign increase of iteration numbers
when the interfacial parameter decreases. Finally, in Figure 3.7(b), we vary simulta-
neously all three parameters h, ε, τwhile fixing cpmax = 10−7 and T = 4 ·10−4. Table 3.3
illustrates the maximum and average number of SSN iterations, the maximum and
average number of BiCG iterations, the average CPU time (in seconds) for BiCG,
and the CPU time (in seconds) for the whole simulation for each of the five subplots,
respectively.

3.8.3 Mesh adaptation

Experiments show that it is essential to ensure that at least eight spatial mesh points
lie across the interface in order to avoid mesh effects; see also [29]. This results in the
huge linear systems. The thinner we model the interface, the higher is the number of
spatial mesh points and hence the system size m. This number can be reduced by the
use of adaptive meshes. Hence, we refine the interface up to a level where at least
eight mesh points are found across the interface. We coarsen the mesh in areas where
the concentration u is (almost) constant. Using the nonsmooth potential, we can eas-
ily identify the interfacial and constant areas. The constant areas are the spatial points

98 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

0 2 · 10−4 4 · 10−4
0

10

20

30

h = 2−7

h = 2−8

h = 2−9

h = 2−10

(a) ε = 9 · 2−7/π, τ = 2 · 10−5, cpmax = 10−7.

0 1 · 10−2 2 · 10−2
0

10

20

30

ε = 0.0800
ε = 0.0600
ε = 0.0400
ε = 0.0224

(b) h = 2−7, τ = 2 · 10−5, cpmax = 10−7.

0 2 · 10−4 4 · 10−4
0

10

20

30

τ = 2.0 · 10−5

τ = 1.0 · 10−5

τ = 5.0 · 10−6

τ = 2.5 · 10−6

(c) h = 2−7, ε = 9 · 2−7/π, cpmax = 10−7.

0 2 · 10−4 4 · 10−4
0

10

20

30

cpmax = 10−3

cpmax = 10−5

cpmax = 10−7

cpmax = 10−9

(d) h = 2−7, ε = 9 · 2−7/π, τ = 2 · 10−5.

Figure 3.8: Results for the solution of the nonsmooth implicit system (3.117) with
the preconditioner (3.118) and the Schur complement approximation (3.119). The
x-axis shows the time t and the y-axis the average number of BiCG iterations per

SSN step.

3.8. NUMERICAL RESULTS 99

Simulation Newton MINRES

Figure Plot Max Avg Max Avg CPU (s) CPU (s)

3.5(a) () 3 2 27 26 9 2041
() 3 2 27 25 36 7916
() 2 2 27 25 177 35257
() 2 2 28 25 670 122054

3.5(b) () 2 1 28 20 7 82822
() 2 1 27 22 7 89353
() 3 1 27 22 8 100229
() 3 1 27 25 9 123230

3.5(c) () 3 2 27 26 9 2041
() 3 2 26 23 8 3718
() 3 2 24 22 8 6910
() 3 1 23 20 7 13190

3.5(d) () 3 2 27 26 9 2050
() 3 2 26 25 36 78165
() 3 1 26 24 175 2143690

Table 3.1: Results for the solution of the smooth semi-implicit system (3.90) with the
preconditioner (3.91) and the Schur complement approximation (3.92): The maxi-
mum and average number of Newton iterations, the maximum and average number
of MINRES iterations, the average CPU time (in seconds) for MINRES, as well as the
CPU time (in seconds) for the whole simulation.

Simulation SSN BiCG

Figure Plot Max Avg Max Avg CPU (s) CPU (s)

3.6(a) () 5 2 46 32 23 2888
() 7 2 48 36 99 12709
() 10 2 54 41 551 74768
() 18 3 60 47 2447 395285

3.6(b) () 4 2 36 28 20 40680
() 5 2 37 31 27 64461
() 6 2 42 32 33 85393
() 5 2 46 33 47 122221

3.6(c) () 5 2 46 32 23 2943
() 5 2 47 31 24 4859
() 5 2 44 32 25 7831
() 4 2 45 33 27 13524

3.6(d) () 5 2 40 32 21 1691
() 5 2 43 32 22 2236
() 5 2 46 32 23 2885
() 6 2 44 31 21 2886

3.7(a) () 5 2 45 32 23 2954
() 6 3 55 38 143 80432
() 6 3 60 45 620 2033630

Table 3.2: Results for the solution of the nonsmooth semi-implicit system (3.108)
with the preconditioner (3.110) and the Schur complement approximation (3.112):
The maximum and average number of SSN iterations, the maximum and average
number of BiCG iterations, the average CPU time (in seconds) for BiCG, and the
CPU time (in seconds) for the whole simulation.

100 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

Simulation SSN BiCG

Figure Plot Max Avg Max Avg CPU (s) CPU (s)

3.8(a) () 4 2 31 20 10 4016
() 5 3 32 19 37 17211
() 5 3 42 19 189 91930
() 5 3 41 19 683 322118

3.8(b) () 5 2 19 12 6 14165
() 5 2 22 16 9 24015
() 5 2 25 19 13 34711
() 6 2 34 25 23 62833

3.8(c) () 6 2 34 16 9 1922
() 5 2 30 13 8 2299
() 5 2 28 15 9 3348
() 4 2 27 16 9 5593

3.8(d) () 6 3 31 19 9 1078
() 6 3 34 17 8 1440
() 6 2 34 16 9 1900
() 7 2 34 15 8 2153

3.7(b) () 6 2 34 16 9 1882
() 7 4 46 28 71 46596
() 6 3 51 33 328 1121900

Table 3.3: Results for the solution of the nonsmooth implicit system (3.117) with
the preconditioner (3.118) and the Schur complement approximation (3.119): The
maximum and average number of SSN iterations, the maximum and average number
of BiCG iterations, the average CPU time (in seconds) for BiCG, and the CPU time
(in seconds) for the whole simulation.

x that satisfy |u(x)| = 1. The interfacial area is formed by those spatial points x that
satisfy |u(x)| < 1. Using the regularized potential, the interfacial area is specified in
the same way. The constant areas are the spatial points x that satisfy |u(x)| ≥ 1. Using
the smooth potential, it is not that clear where to separate the constant areas from
the interfacial area as pointed out in the introduction in Chapter 1.1. As our simple
approach is based on the knowledge about the location of constant and interfacial
areas, we apply our adaptive mesh strategy only to the nonsmooth case. Our mesh
adaptation strategy is similar to the one in [20]. As pointed out at the beginning of
Chapter 3.8, for a given ε > 0 we use the upper bound hmin ≤

επ
9 , where hmin is the

refinement level across the interface. Since we want to avoid meshes which are too
coarse, we additionally define hmax B 10 hmin, where hmax represents the maximal
mesh size. Our mesh adaptation is based on the following strategy: An element
R ∈ Rh is marked for refinement if it satisfies diam(R) > hmin and if it, or one of its
neighboring elements, satisfies |u(x)| < 1. Here, diam(R) denotes the largest diagonal
of R. An element R ∈ Rh is marked for coarsening if it satisfies diam(R) < hmax and
|u(x)| ≥ 1. Thereby, we refine in an area, which contains the interface and coarsen
within the pure phases. Since we also include the neighboring cells for the refinement
process, we do not coarsen too close to the interface. Note that it is also possible to
incorporate more sophisticated adaptation strategies. For instance, Hintermüller et
al. [91] designed an adaptive finite-element algorithm based on an a-posteriori error
analysis.

In Figure 3.9, we illustrate the performance of our preconditioner (3.118) with the

3.8. NUMERICAL RESULTS 101

Schur complement approximation (3.119) for the solution of the nonsmooth implicit
system (3.117) on adaptive meshes. We test three different settings with varying
values of h(0), ε, τ, where h(0) denotes the mesh size of the initial uniform mesh.
The x-axis shows the time t, the left y-axis displays the average number of BiCG
iterations per SSN step, and the right y-axis illustrates the number of degrees of
freedom, respectively. Except for the peak, which occurs as soon as pure phases
develop, the iteration numbers stay constantly low. Moreover, with the formation of
pure phases, the coarsening process begins and the number of degrees of freedoms
decreases. Table 3.4 illustrates the maximum and average number of SSN iterations,
the maximum and average number of BiCG iterations, the average CPU time (in
seconds) for BiCG, and the CPU time (in seconds) for the whole simulation for each
of the three subplots, respectively. The final phase variable for each simulation is
illustrated in Figure 3.10 together with the spatial mesh.

SSN BiCG

Figure Max Avg Max Avg CPU (s) CPU (s)

3.9(a) 9 3 100 26 62 13952
3.9(b) 9 4 94 33 314 230026
3.9(c) 10 5 248 52 2156 842244

Table 3.4: Results for the solution of the nonsmooth implicit system (3.117) with the
preconditioner (3.118) and the Schur complement approximation (3.119) using adap-
tive meshes: The maximum and average number of SSN iterations, the maximum
and average number of BiCG iterations, the average CPU time (in seconds) for BiCG,
and the CPU time (in seconds) for the whole simulation.

3.8.4 Implicit versus semi-implicit time discretization

This section confirms the argument in Section 3.3 that the time step restriction is
an essential characteristic of the nature of the problem. In the following, we study
the convergence of the nonsmooth Cahn–Hilliard model to the corresponding sharp
interface model ε → 0, which is the Mullins-Sekerka model. For more details, we
refer to [72, 131, 42]. Moreover, further convergence tests regarding the other model
parameters can be found in [42]. In the following, we compare the solutions obtained
by the implicit and semi-implicit nonsmooth Cahn–Hilliard model. Remember, the
implicit model involves the time step restriction τ < 4ε3, whereas no time step restric-
tion is imposed in the semi-implicit case. The numerical test is an analytic example
where the exact solution to the Mullins-Sekerka model is known and can be found,
e.g., in [42]. We consider the domain Ω = B1(0) ⊂ R2, which is a disc around the
origin (0, 0) with radius one. The initial state for the Mullins-Sekerka model consists
of two circles with radii r1 = 0.3 and r2 = 0.15. The innermost and outermost blank
area is initialized with the value 1, and the remaining intermediate area is initialized
with the value −1. The time evolution of the exact solution to the Mullins-Sekerka
model results in a shrinking of both radii until the smaller one vanishes at time
tc = 1.85 · 10−3. Now, we want to examine the quality of the solution of the Cahn–
Hilliard model with a small interface parameter. Due to the presence of an interface
in the Cahn–Hilliard model, we include an interfacial area between the phases in
the initial state. More precisely, the initial state given in Figure 3.11(a) is described

102 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

0

20

40

60

80

100

120

0 2 · 10−4 4 · 10−4
1

2

3

4

5

6

7
·104

(a) h(0) = 2−7, ε = 9 · 2−7/π, τ = 2 · 10−5, cpmax = 10−7.

0

25

50

75

100

125

150

0 2 · 10−4 4 · 10−4
0

1

2

3
·105

(b) h(0) = 2−8, ε = 9 · 2−8/π, τ = 3.125 · 10−6,
cpmax = 10−7.

0

50

100

150

200

250

300

0 1 · 10−5 2 · 10−5
0

0.5

1

1.5
·106

(c) h(0) = 2−9, ε = 9 · 2−9/π, τ = 4 · 10−7, cpmax = 10−7.

Figure 3.9: Results for the solution of the nonsmooth implicit system (3.117) with
the preconditioner (3.118) and the Schur complement approximation (3.119) using
adaptive meshes. The x-axis shows the time t, the left y-axis displays the average

number of BiCG iterations per SSN step, and the right y-axis illustrates the number
of degrees of freedom.

3.8. NUMERICAL RESULTS 103

(a) Result for Figure 3.9(a). (b) Result for Figure 3.9(b). (c) Result for Figure 3.9(c).

Figure 3.10: Computations with adaptive meshes: The final phase variable with the
corresponding spatial mesh for the three simulations in Figure 3.9.

as follows: From the origin, we draw two circles with radii r1 = 0.3 and r2 = 0.15.
Each of the two circles forms the median of an interfacial area. More precisely, each
of the two interfaces is a circular ring with a width of 1.35ε. We initialize the inter-
face with the value 0. Finally, the innermost and outermost blank area is initialized
with the value 1, and the remaining intermediate area is initialized with the value
−1. Now, we compare the evolution of the initial state using the implicit and semi-
implicit nonsmooth Cahn–Hilliard model. We set ε = 9 ·2−7/π, τ = 1.85 ·10−3/90 and
T = 1.85 · 10−3, where τ < 4ε3 holds true. Figure 3.11 shows that the smaller radius
vanishes later in time with the semi-implicit scheme.

(a) Initial state. (b) Solution of the nonsmooth
implicit Cahn–Hilliard model at

time T = 1.85 · 10−3.

(c) Solution of the nonsmooth
semi-implicit Cahn–Hilliard
model at time T = 1.85 · 10−3.

Figure 3.11: Results for the analytical example using the nonsmooth implicit and
semi-implicit Cahn–Hilliard model.

104 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

Now, we explore the evolution of the nonsmooth semi-implicit system for larger
values of τ as this scheme has no theoretical time step restrictions. In Figure
3.12, we consider the solutions at time T = 1.85 · 10−3 for the time step sizes
τ = 1.85 · 10−3/40, 1.85 · 10−3/20, and 1.85 · 10−3/10. Note that τ > 4ε3 holds for
the latter two simulations. Naturally, the approximation error gets larger for large

(a) τ = 1.85 · 10−3/40 (b) τ = 1.85 · 10−3/20 (c) τ = 1.85 · 10−3/10

Figure 3.12: Results for the analytical example: Solutions of the nonsmooth
semi-implicit Cahn–Hilliard model with different values of the time step size τ at

time T = 1.85 · 10−3.

time steps. Hence, the related sharp interface problem is no longer well approxi-
mated. We can see that the approximation is crude for larger time steps. Hence,
very small time steps are necessary to capture the evolution of the sharp interface
model. In conclusion, even though the time step size is allowed to be arbitrary large
for the nonsmooth semi-implicit system, the results obtained for large time steps are
highly inaccurate for capturing the evolution of the sharp interface limit. The time
step restriction is an essential characteristic of the nature of the problem. Note that
the same phenomenon was observed for the nonsmooth Allen–Cahn equation; see,
e.g., [138].

The same observation can be made with the smooth semi-implicit Cahn–Hilliard
model. The setting is the same as before except for the value of ε, which is now
ε = 9 · 2−7/(2

√
2 · atanh(0.95)). We use this value also for the width of the interface

between the circles in the initial state. In Figure 3.13, we consider the solutions at
time T = 1.85 · 10−3 for the time step sizes τ = 1.85 · 10−3/185, 1.85 · 10−3/18, and
1.85 · 10−3/4. Again, we can see that the approximation is crude for larger time steps.

This section has verified our preference for the implicit time discretization scheme
despite the inherent time step restriction. This observation also serves as the basis
for the next chapter, where we only focus on the implicit time discretization scheme.

3.8.5 Long-time evolution

In the following, we consider the long-time evolution of the smooth and nonsmooth
implicit Cahn–Hilliard model; see Figure 3.14. In the smooth case, we use the setting
Ω = [0, 1]2, h = 2−8, ε = 9 h/(2

√
2·atanh(0.95)), τ = 10−7, T = 10−3. In the nonsmooth

3.8. NUMERICAL RESULTS 105

(a) τ = 1.85 · 10−3/185 (b) τ = 1.85 · 10−3/18 (c) τ = 1.85 · 10−3/4

Figure 3.13: Results for the analytical example: Solutions of the smooth
semi-implicit Cahn–Hilliard model with different values of the time step size τ at

time T = 1.85 · 10−3.

case, we use the setting Ω = [−1, 1]2, nc = 0, h(0) = 2−5, ε = 0.02, τ = 10−5, cpmax =
10−7, T = 5 · 10−3, where h(0) denotes the mesh size of the initial uniform mesh.

(a) t = 0. (b) t = 6 · 10−6. (c) t = 5 · 10−5. (d) t = 10−3.

(e) t = 0. (f) t = 5 · 10−5. (g) t = 5 · 10−4. (h) t = 5 · 10−3.

Figure 3.14: Long-time evolution using the smooth (upper row) and nonsmooth
(lower two rows) implicit Cahn–Hilliard model.

In Figure 3.15, we illustrate the performance of our preconditioners for the solution
of the smooth and nonsmooth implicit system. Both x-axes show the time t. In Fig-
ure 3.15(a), the y-axis displays the average number of BiCG iterations per Newton
step. In Figure 3.15(b), the left y-axis displays the average number of BiCG iterations

106 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

0 5 · 10−4 10−3
6

8

10

12

(a) Results for Figure 3.14(a)–3.14(d). h = 2−8,
ε = 9 h/(2

√
2 · atanh(0.95)), τ = 10−7.

0

25

50

75

100

0 2.5 · 10−3 5 · 10−3
0

1

2

3

4
·105

(b) Results for Figure 3.14(e)–3.14(h). h(0) = 2−5,
ε = 0.02, τ = 10−5, cpmax = 10−7.

Figure 3.15: Results for the long-time evolution using the smooth (left) and
nonsmooth (right) implicit Cahn–Hilliard model. The x-axis shows the time t. On

the left, the y-axis displays the average number of BiCG iterations per Newton step.
On the right, the left y-axis displays the average number of BiCG iterations per SSN
step and the right y-axis illustrates the number of degrees of freedom. Since we use
a uniform mesh for the smooth model, we do not display the number of degrees of

freedom on the left.

Newton/SSN BiCG

Figure Max Avg Max Avg CPU (s) CPU (s)

3.14(a)–3.14(d) 3 1 13 8 17 239838
3.14(e)–3.14(h) 7 4 106 23 156 343433

Table 3.5: Results for the long-time evolution: The maximum and average number
of Newton/SSN iterations, the maximum and average number of BiCG iterations,
the average CPU time (in seconds) for BiCG, and the CPU time (in seconds) for the
whole simulation for the smooth and nonsmooth Cahn–Hilliard model, respectively.

per SSN step and the right y-axis illustrates the number of degrees of freedom. Since
we use a uniform mesh for the smooth model, we do not display the number of
degrees of freedom in Figure 3.15(a). Except for the peak, which occurs as soon as
pure phases develop, the iteration numbers stay constantly low. Moreover, with the
formation of pure phases, the coarsening process begins and the number of degrees
of freedoms decreases. Table 3.5 illustrates the maximum and average number of
Newton/SSN iterations, the maximum and average number of BiCG iterations, the
average CPU time (in seconds) for BiCG, and the CPU time (in seconds) for the whole
simulation for the smooth and nonsmooth case, respectively. Table 3.6 illustrates the
minimum and maximum phase values at some time steps. We observe that the con-
centrations may exceed one and become less than minus one for smooth potentials.
However, the overshoots and undershoots are not reported to blow up.

Note that one should not compare the above results in terms of smooth versus

3.8. NUMERICAL RESULTS 107

nonsmooth. The evolution with smooth and nonsmooth potentials is very different
and distinct parameters are used. Moreover, both types of potentials are used in
many applications. In some of them, like the deep-quench limit, the nonsmooth
potential must be used. In other applications, smooth potentials are preferred and
produce satisfactory results. Therefore, the development of efficient solvers is of
great interest in both cases.

t

value model 2 · 10−4 4 · 10−4 6 · 10−4 8 · 10−4 10−3

min smooth −1.03879 −1.03965 −1.03896 −1.03957 −1.03117
nonsmooth −1.00001 −1.00001 −1.00001 −1.00001 −1.00001

max smooth 1.02389 1.03046 1.0179 1.01093 1.00778
nonsmooth 1.00001 1.00001 1.00001 1.00001 1.00001

Table 3.6: Minimum and maximum phase values during the simulation with the
smooth and nonsmooth Cahn–Hilliard model.

3.8.6 Three-dimensional dumbbell

Next, we consider the three dimensional domainΩ = [−1, 1]3 and choose a dumbbell
as initial state. Figure 3.16 shows the evolution for this example using the nonsmooth
implicit Cahn–Hilliard model with nc = 0, h(0) = 2−5, ε = 0.03, τ = 5 · 10−5, cpmax =
10−5, T = 10−3, where h(0) denotes the mesh size of the initial uniform mesh. In
Figure 3.17, we illustrate the performance of our preconditioner. The x-axis shows
the time t, the left y-axis displays the average number of BiCG iterations per SSN step,
and the right y-axis illustrates the number of degrees of freedom. The maximum and
average number of SSN iterations are 10 and 5. The maximum and average number
of BiCG iterations are 77 and 43. The average CPU time for BiCG is 5983s and the
CPU time for the whole simulation is 732803s.

(a) t = 0. (b) t = 2 · 10−4. (c) t = 3.5 · 10−4. (d) t = 4 · 10−4.

Figure 3.16: Evolution of a dumbbell.

108 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

30

40

50

60

0 5 · 10−4 1 · 10−3
0

1

2

3
·106

Figure 3.17: Results for the evolution of a dumbbell: The x-axis shows the time t,
the left y-axis displays the average number of BiCG iterations per SSN step, and the

right y-axis illustrates the number of degrees of freedom.

3.8.7 Two-phase flows

In this section, we apply our preconditioning strategy to the solution of a coupled
two-component Cahn–Hilliard/Navier–Stokes system. We consider the diffuse inter-
face model for two-phase flows of two incompressible fluids with different densities,
which was introduced by Abels, Garcke, and Grün [1]. It is given as

ρ∂tv +
(
(ρv + J) · ∇

)
v − ∇ · (2ηDv) + ∇p = w∇u + ρg, (3.121)

∇ · v = 0, (3.122)
∂tu + v · ∇u − ∇ · (L(u)∇w) = 0, (3.123)

−σε∆u + ψ′(u) − w = 0, (3.124)
v = 0 on ∂Ω, (3.125)

∇u · n = L(u)∇w · n = 0 on ∂Ω, (3.126)

together with the initial conditions v(0, x) = v0(x) and u(0, x) = u0(x) for all x ∈ Ω ⊂ Rd

with d ∈ {2, 3}. Consistent with this chapter, u denotes the phase variable, w the
chemical potential, ε the interfacial parameter, ψ the potential function, and L(u) the
mobility. Moreover, we denote the two fluids by A and B. We indicate the specific
(constant) density of the pure fluid A by ρ̃A and of the pure fluid B by ρ̃B. Without
loss of generality, we assume 0 < ρ̃A ≤ ρ̃B. The mean density ρ is given as

ρ = ρ(u) =
ρ̃B − ρ̃A

2
u +

ρ̃A + ρ̃B

2
.

We indicate the specific (constant) viscosity of the pure fluid A by η̃A and of the
pure fluid B by η̃B. The viscosity of the mixture is denoted by η = η(u) > 0 and
fulfills η(−1) = η̃A and η(1) = η̃B. Further, v is the volume averaged velocity, p
the pressure, g the gravitational force, σ the scaled surface tension, J = − dρ

du L(u)∇w,
and Dv = 1

2

(
∇v + (∇v)T

)
denotes the symmetrized gradient. The above model by

Abels, Garcke, and Grün couples the Navier–Stokes Equations (3.121)–(3.122) to the
Cahn–Hilliard system (3.123)–(3.124) in a thermodynamically consistent way, i.e., an

3.8. NUMERICAL RESULTS 109

energy inequality holds. Moreover, as mentioned above, their model incorporates
the consideration of different densities ρ̃A and ρ̃B.

Recently, Garcke, Hinze, and Kahle [73] developed a special time and space dis-
cretization scheme for the model (3.121)–(3.126), which conserves the energy in-
equality. They considered nondegenerate mobilities L(u) > 0 and a Moreau–Yosida
regularization of the double-obstacle potential function in the form of

ψ = ψc(u) =
σ
2ε

(
1 − u2 +

1
c

[max(0,u − 1) +min(0,u + 1)]2
)
.

As before, 0 < c� 1 denotes the regularization parameter. For the rest of this section,
we consider constant mobilities L = L(u). The space discretization in [73] is designed
as an adaptive finite-element algorithm based on an a-posteriori error analysis. In
the following, we briefly summarize the arising fully discrete setting. Let {Th}h>0 be
a triangulation of Ω into disjoint open triangular elements. Garcke et al. define the
finite-dimensional spaces

Sh,1 B {φ ∈ C(Ω) : φ |T ∈ P1(T) ∀T ∈ Th} =: span{ϕi
1}

m1
i=1,

Sh,2 B {φ ∈ C(Ω)d : φ |T ∈ P2(T)d
∀T ∈ Th, φ |∂Ω = 0} =: span{ϕi

2}
m2
i=1,

where Pl(T) denotes the space of polynomials up to order l defined on T. In each
time step, the corresponding Cahn–Hilliard/Navier–Stokes system is solved by an
SSN method. As before, n − 1 denotes the previous time step, τ the time step size,
and k the previous SSN step. The coefficient matrix of the arising fully discrete linear
scheme is given as

A =

[
ANS CI
CT ACH

]
=


F BT I 0
B 0 0 0

0 0 M1 −σεK1 − σε−1c−1G
τT 0 τLK1 M1

 , (3.127)

where the matrices are defined as

F =M2 + Ta +K2 ∈ R
2m2×2m2 ,

[M2]i j =

(
ρ(n−1) + ρ(n−2)

2τ
ϕ

j
2,ϕ

i
2

)
,

[Ta]i j = a
(
ρ(n−1)v(n−1) + J (n−1),ϕ

j
2,ϕ

i
2

)
,

a(u,v,w) =
1
2

∫
Ω

((u · ∇) v) w dx −
1
2

∫
Ω

((u · ∇) w) v dx,

[K2]i j = (2η(n−1) Dϕ j
2,∇ϕ

i
2),

[B]i j = −(∇ ·ϕ j
2, ϕ

i
1), B ∈ Rm1×2m2 ,

[I]i j = −(ϕ j
1 ∇u(n−1),ϕi

2), I ∈ R2m2×m1 ,

[T]i j = −(ϕ j
2u(n−1),∇ϕi

1), T ∈ Rm1×2m2 ,

[M1]i j = (ϕ j
1, ϕ

i
1),M1 ∈ R

m1×m1 ,

[K1]i j = (∇ϕ j
1,∇ϕ

i
1), K1 ∈ R

m1×m1 ,

110 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

[G]i j = (χM(u(k))ϕ j
1, ϕ

i
1), G ∈ Rm1×m1 ,

χM(u(k)) =
{

1 |u(k)(x)| > 1,
0 otherwise.

Note that the mass matrices are not lumped here. The blocks ANS and ACH are
the discrete realizations of the linearized Navier–Stokes and Cahn–Hilliard system,
respectively. Their coupling is represented byCI, the coupling through the interfacial
force, andCT, the coupling through the transport at the interface. Garcke et al. solve
the systemAz = b by preconditioned GMRES with a restart after 10 iterations. They
use the block diagonal preconditioner

P =

[
ÂNS 0
0 ACH

]
. (3.128)

The (2,2) block ACH is inverted by LU decomposition. The (1,1) block ÂNS is an
upper block triangular preconditioner of the form

ÂNS =

[
F̂ BT

0 ŜNS

]
. (3.129)

F̂ is composed of the diagonal blocks of F and is inverted by LU decomposition.
ŜNS is an approximation of the exact Schur complement SNS = −BF

−1BT of the
Navier–Stokes system. Garcke et al. use

ŜNS = −KpF
−1
p Mp,

where Fp is the representation of F on the pressure space,Kp the pressure Laplacian
matrix, and Mp and the pressure mass matrix. This Schur complement approxima-
tion was proposed, e.g., in [99, 63].

Now, our contribution concerns the fully iterative solution of the systemAz = b. This
is based on the preconditioning techniques we have developed for the nonsmooth
Cahn–Hilliard system in Section 3.7 together with the above methods that have been
developed for the Navier–Stokes equations. We propose the upper block triangular
preconditioner

Pout =

[
ÂNS CI
0 Ŝ

]
, (3.130)

where Ŝ is an approximation of the exact Schur complement S = ACH −CTA
−1
NSCI

of the whole system. We choose ÂNS as

ÂNS =

[
F̂ BT

0 −ŜNS

]
. (3.131)

As above, F̂ is composed of the diagonal blocks of F . We perform the action of its
inverse via an AMG. ŜNS is given as above. The action of the inverse of Mp and of
Kp are performed with an AMG each. Now, let us consider the Schur complement
S, which can be approximated as

S ≈ ACH −CTÂ
−1
NSCI =

[
M1 −σεK1 − σε−1c−1G

τLK1 − τT F̂ −1I M1

]
=: S̃.

3.8. NUMERICAL RESULTS 111

We propose to approximate the action of the inverse ofS by a preconditioned GMRES
iteration applied to the system of the form S̃y = f . We call this iteration the inner
iteration. As preconditioner for the inner iteration, we suggest the upper block
triangular preconditioner

Pin =

[
M1 −σεK1 − σε−1c−1G

0 −ŜCH

]
. (3.132)

ŜCH is an approximation of the exact Schur complement

SCH =M1 + τ
(
LK1 − T F̂

−1I
)
M−1

1

(
σεK1 + σε

−1c−1G
)

of S̃. We design ŜCH as

ŜCH = S1M
−1
1 S2

=
(
M1 +

√

τσLK1

)
M−1

1

(
M1 +

√

τLσ−1
[
σεK1 + σε

−1c−1G
])

=M1 + τLK1M
−1
1

(
σεK1 + σε

−1c−1G
)
+
√

τLσK1

+
√

τLσ
(
εK1 + ε

−1c−1G
)
. (3.133)

The first term in (3.133) matches the first term in the exact Schur complement. The
second term in (3.133) approximates the second term in the exact Schur complement.
Due to the factor

√
τLσ, the influence of both remainder terms in (3.133) is reduced.

The action of the inverse of S1 and S2 is performed with an AMG each.

As we use GMRES as inner iteration, we apply the flexible generalized minimum
residual method (FGMRES) as outer iteration. FGMRES is a variant of GMRES and
was introduced by Saad [135]. This method allows changes in the preconditioner
at every step. In contrast to the rest of this thesis, we apply right preconditioning
here. Note that a left preconditioner modifies the right-hand side, whereas a right
preconditioner does not modify it. As stated in [46, p. 4], a major hurdle for devel-
oping variable preconditioners for left preconditioning is the disconnection between
the preconditioned residuals and the actual residuals.

We set the GMRES tolerance to be 10−1 for the preconditioned relative residual. We
use FGMRES with the tolerance min(10−4/‖b‖, 10−4) and a restart after 30 iterations.
The solution of the linear system Az = b is executed in MATLAB R© R2012a on a
32-bit server with CPU type Intel R© Core

TM
E6850 @3.00 GHz with 2 CPUs. Note that

Garcke et al. [73] implemented the whole numerical simulation in C++, and I would
like to thank Christian Kahle for providing his code. We use the MATLAB Engine
API in order to call MATLAB R© from C++.

In the following, we illustrate the performance of our proposed preconditioner with
respect to the mesh size and the Reynolds number. Further numerical tests are a topic
of ongoing research. As test example, we use a quantitative benchmark for rising
bubble dynamics; see [96]. A simulation is illustrated in Figure 1.8. The setup is
described as follows; see also [73, p. 168]. The spatial domain isΩ = (0, 1)×(0, 2) with
no-slip boundary conditions for the velocity field on the top and bottom wall and
free-slip boundary conditions on the left and right wall. The initial state consists of

112 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

a bubble of radius r = 0.25 centered at the spatial point (0.5, 0.5). The initial velocity
is zero. The fixed parameters in our experiments are given as σ = 15.5972, ρ̃2 =
100, η̃1 = 10, η̃2 = 1, g = [0,−0.98]T, c = 10−6. In Figure 3.18(a), we simultaneously
vary the mesh size via refinements of the initial spatial mesh {Th}

(0)
h>0, the interfacial

parameter ε, the time step size τ, as well as the mobility L. In Figure 3.18(b), we
vary the Reynolds number via increasing the density ρ̃1. In our experiments, the
Reynolds number is given as

Re =
0.35 ρ̃1

η̃1
.

Figure 3.18 illustrates the promising behavior when the Reynolds number is increased
as well as when the parameter set

(
{Th}

(0)
h>0 , ε, τ,L

)
is refined as a whole, which is the

practical procedure.

0 60 120
20

40

60

80

100

120

140

n

set 1
set 2
set 3

(a) set 1: m(0)
1 = 6599, m(0)

2 = 26213, ε = 0.04,
τ = 2 · 10−3, L = 4 · 10−5. set 2: m(0)

1 = 10399,
m(0)

2 = 41413, ε = 0.02, τ = 5 · 10−4, L = 2 · 10−5.
set 3: m(0)

1 = 17831, m(0)
2 = 71141, ε = 0.01,

τ = 1.25 · 10−4, L = 10−5. We fix Re = 35.

0 0.12 0.24
20

40

60

80

t
(b) m(0)

1 = 6599, m(0)
2 = 26213, ε = 0.04,

τ = 2 · 10−3, L = 4 · 10−5, and Re = 35 (),
Re = 350 (), Re = 700 ().

Figure 3.18: The average number of FGMRES iterations per SSN step for the
solution of a coupled two-component Cahn–Hilliard/Navier–Stokes system. Here,

m(0)
1 and m(0)

2 denote the initial numbers of degrees of freedom. Note that the
numbers of degrees of freedom during every simulation stay in the range of m(0)

1

and m(0)
2 , respectively.

3.9 Existing solvers

In this section, we briefly discuss existing solution methods for the nonsmooth Cahn–
Hilliard equation.

Traditional iterative solvers such as (nonlinear) Gauss-Seidel have been used for the
smooth and nonsmooth case, but these suffer from deteriorating convergence rates

3.10. CONCLUSIONS 113

for increasing refinements [57, 14, 120].

Gräser and Kornhuber [83] proposed a preconditioned Uzawa iteration method
for the saddle point formulation of the discrete (semi-implicit in time) Cahn–Hilliard
system with an obstacle potential. The method proceeds as follows. Consider the kth
Uzawa iteration, which consists of two sub-steps: First, an elliptic obstacle problem
with box constraints needs to be solved in order to obtain u(k) and the appropriate
coincidence set

N
∗

h(u(k)) = {p ∈ Jh : |u(k)(p)| = 1}.

This step includes the direct work with the inverse (A+ ∂IKh)−1, whereKh = K ∩ Sh,
∂IKh is the subdifferential of the indicator function of Kh, and 〈Au, v〉 = ε(∇u,∇v) +
ε〈u, 1〉〈v, 1〉 ∀v ∈ Sh. In order to solve this, Gräser and Kornhuber apply a mono-
tone multigrid method [107, 108], which can be stopped after a finite (usually quite
moderate) number of steps. With the help of the coincidence set, the second substep
reduces to a linear saddle point problem, which has to be solved for obtaining w(k+1).
In order to solve this problem, Gräser and Kornhuber apply a multigrid method with
a block Gauss-Seidel smoother. Once the exact coincidence setN ∗h(u) is detected, the
Uzawa iteration provides the exact solution (for the considered time step). The solu-
tion of the second substep in the Uzawa iteration forms the main computational cost.
About 15 multigrid steps are necessary to solve this problem to machine accuracy,
and the computational cost for each spatial problem is obtained approximately by
multiplying that number with the number of Uzawa steps. The first substep uses 4
to 7 monotone multigrid steps, which plays a minor role considering the CPU time.

Baňas and Nürnberg [7] proposed a fully nonlinear multigrid method for the dis-
crete Cahn–Hilliard problem. For a sequence of triangulations Tk, the algorithm
consists of alternating pre-smoothing steps for the approximate solution by projected
Gauss-Seidel iterations [14] and restrictions to the next coarser grid. On the coarsest
triangulation, the appropriate system is solved exactly. By prolongation to the next
finer grid, the solution is updated together with post-smoothing steps by projected
Gauss-Seidel iterations. In practice, this method exhibits mesh-independent conver-
gence properties for arbitrary time steps in 2D and 3D and also for a small interfacial
parameter ε. However, Baňas and Nürnberg are unable to prove convergence of
the multigrid solver (except for the case, when the discrete Cahn–Hilliard system
reduces to a linear problem, which occurs when |u(n)

| < 1). The same holds for
methods including a smooth potential; see [101, 105].

An important point for the future is a comparison with our approach.

3.10 Conclusions

In this chapter, we have investigated the numerical solution of the two-component
Cahn–Hilliard model. We have considered smooth and nonsmooth potentials with a
focus on the latter. For the discretization in time, we have used a fully implicit scheme.
This is due to accuracy reasons and the numerical examples justify this choice. Re-
garding the smooth setting, we have proved the energy stability and uniqueness of
the solution of the time-discrete scheme under reasonable assumptions. Concerning
the nonsmooth framework, following [91], we have extended the analysis from the

114 CHAPTER 3. SCALAR CAHN–HILLIARD EQUATIONS

semi-implicit to the implicit time-discrete case in terms of three aspects: First, we
have shown that the time-discrete problem is equivalent to an optimal control prob-
lem with pointwise constraints on the control. Second, we have handled the control
constraints by a Moreau–Yosida regularization. Third, we have applied a local super-
linear SSN method for solving the optimality systems of the resulting subproblems.
For the discretization in space, we have used classical FEM for both systems, the
smooth and regularized nonsmooth one. At the heart of our method lies the solu-
tion of large and sparse systems of linear equations of saddle point form. We have
introduced and studied block diagonal and block-triangular preconditioners using
efficient and cheap Schur complement approximations. For these approximations,
we have used multilevel techniques, algebraic multigrid in our case. Furthermore,
we have designed preconditioners for the linear systems arising from a semi-implicit
time-discrete scheme. For the smooth systems, we have derived optimal precondi-
tioners, which are proven to be robust with respect to crucial model parameters. For
the nonsmooth systems, extensive numerical experiments show a nearly parameter
independent behavior of our developed preconditioners. Additionally, we have im-
plemented a simple adaptive spatial mesh refinement approach, which reduces the
number of degrees of freedoms. Together with our preconditioners, this allows us
to perform three-dimensional experiments in an efficient way. As another applica-
tion, we have applied our preconditioner to a coupled Cahn–Hilliard/Navier–Stokes
system equipped with a nonsmooth potential. The numerical results illustrate the
efficiency of our approach.

Chapter 4

Vector-Valued Cahn–Hilliard
Equations

4.1 Introduction

In the last chapter, we have studied two-component systems. In practice, often more
than two phases occur; see, e.g., [123, 66, 60, 59, 22, 100, 75], and the phase field
model has been extended to deal with multi-component systems. Instead of two
phases, we consider N > 2 components now. Imagine a molten N-component alloy
inside a bounded spatial domain Ω ⊂ Rd with d ∈ {1, 2, 3}. The N pure phases are
denoted by Ai for i = 1, . . . ,N. As before, we are interested in the evolution of the N
components or their mixture in the period (0,T) with a fixed time T > 0. In the case
of two phases, we could describe their local concentrations via a single scalar phase
variable. However, this is not possible anymore in the case of N > 2 phases. Instead,
a vector-valued phase variable u = [u1, . . . , uN]T : Ω × (0,T) → RN is introduced.
Here, ui describes the concentration of phase Ai for i = 1, . . . ,N. If ui(x, t) ≈ 1, then
only phase Ai (the pure phase Ai) is present at point x at time t. The case ui(x, t) ≈ 0
means phase Ai is absent at point x at time t. Values of ui between 0 and 1 represent
mixed regions. In particular, these regions include the interfacial area. Here, the
interface is a small boundary layer that separates the pure phases Ai, i = 1, . . . ,N,
from each other. As in the previous chapter, it acts as a diffuse phase transition and
we can control its width via the model parameter ε > 0. For the limit case ε ↓ 0,
which gives the sharp interface model, we refer to, e.g., [74, 72, 131]. Due to the
model properties, it holds

N∑
i=1

ui = 1 (4.1)

and ui ≥ 0 for i = 1, . . . ,N, so that admissible states belong to the Gibbs simplex

G
N B

v = [v1, . . . , vN]T
∈ RN :

N∑
i=1

vi = 1, vi ≥ 0 for i = 1, . . . ,N

 . (4.2)

116 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

The motion of the interfaces separating N components can be modeled with the
Ginzburg–Landau energy. The energy (3.1) for two components generalizes to

E(u) =
∫
Ω

ε2

2

N∑
i=1

|∇ui|
2 + ψ(u) dx (4.3)

for N > 2 components. An equilibrium profile of our considered mixture minimizes
the Ginzburg–Landau energy (4.3) subject to the mass conservation

d
dt

∫
Ω

ui dx = 0, i = 1, . . . ,N.

The parameter ε > 0 is proportional to the thickness of the interfacial region as
mentioned above. The first part of (4.3) is large whenever ui changes rapidly for
some i ∈ {1, . . . ,N}. Hence, its minimization gives rise to the interfacial area. The
potential function ψ : RN

→ R≥0 ∪ {∞} in (4.3) gives rise to phase separation. It has
N distinct minima, one for each pure phase Ai. As in the last chapter, we consider
potential functions of polynomial and obstacle type with a main focus on the latter.
The former is the smooth multi-well potential; see, e.g., [57]. It is an extension of the
double-well potential (3.2) to N components and is given as

ψpol(u) =
1
4

N∑
i=1

u2
i (1 − ui)2. (4.4)

Following [119], the interfacial equilibrium profile in one space dimension can be

described by û1(x) = 1
2

(
1 + tanh

(
x

2
√

2ε

))
. Let us describe the interface thickness as

the distance between x1 and x2 with u1(x1) = 0.05 and u1(x2) = 0.95. Then, we can
express the equilibrium thickness via ε by

0.95 =
1
2

(
1 + tanh

(
x2

2
√

2ε

))
,

which is equivalent to
x2 = 2

√

2ε · atanh(0.9).

Similar, we obtain
x1 = −2

√

2ε · atanh(0.9).

Hence, the equilibrium interfacial thickness is given by 4
√

2ε · atanh(0.9) using a
polynomial potential. As in the previous chapter, we want to have eight or nine grid
points across the interface transition. If we denote by h the spatial mesh size across
the interface, this leads to the condition

h ≤
4
√

2ε · atanh(0.9)
9

≈ 0.9253 ε.

The second potential is the nonsmooth multi-obstacle potential; see, e.g., [12]. It is
an extension of the double-obstacle potential (3.3) to N components and is given as

ψobs(u) =
{
ψ0(u) = − 1

2 u · Tu u ∈ GN,
∞ otherwise.

(4.5)

4.1. INTRODUCTION 117

Here, T ∈ RN×N is a symmetric matrix, which contains constant interaction parame-
ters [T]i j. From physical considerations,T must have at least one positive eigenvalue.
During the rest of this chapter, we denote by λmax(T) the largest positive eigenvalue
of T . A typical choice is T = I − 11T with 1 = [1, . . . , 1]T

∈ RN and the identity
matrix I ∈ RN×N, which means that the interaction between all different components
is equal and no self-interaction occurs. As in the last chapter, we choose

h ≤
επ
9
≈ 0.3491 ε

in order to have at least eight or nine grid points across the interface transition.

For logarithmic potentials we refer to, e.g., [11]. Using a polynomial potential, the
Cahn–Hilliard model results in a system of time-dependent, nonlinear PDEs. As in
the last chapter, we will name this formulation the smooth system. Using an obstacle
potential, the Cahn–Hilliard model results in a system of variational inequalities. We
will call this formulation the nonsmooth system.

As we will show in the course of this chapter, the solution of linear systemsAz = b
with a large and sparse matrix A is at the heart of our method. They have the
following saddle point structure

A =

[
−A I ⊗M
I ⊗M L ⊗K

]
with I ∈ RN×N being the identity matrix, M ∈ Rm×m being symmetric positive def-
inite, K,L ∈ Rm×m being symmetric positive semidefinite, and A ∈ RNm×Nm being
nonsymmetric and possibly indefinite. In the last chapter, we could sometimes ex-
ploit the symmetry of A. However, this is not possible anymore in this chapter.
No matter how we rearrange the blocks in A, A is always nonsymmetric due to
the nonsymmetry of A. Moreover, the size of A has increased manifold. In the
last chapter, we have dealt with A ∈ R2m×2m. In contrast, in this chapter we have
A ∈ R2Nm×2Nm. Due to the nonsymmetry of A, a nonsymmetric Krylov subspace
solver is our method of choice. The crucial parameters represented in A are the
spatial mesh size h, the time step size τ, the interface parameter ε, the number of
phases N, as well as the Moreau–Yosida regularization parameter c. We develop effi-
cient preconditionersP for the solution of the linear systems above. This is based on
effective Schur complement approximations as well as (algebraic) multigrid solvers
developed for elliptic systems [68, 136, 134]. In particular, our preconditioners behave
promising regarding parameter changes. Moreover, we state a theoretical robustness
proof for the smooth setting.

The structure of the chapter is as follows. The Cahn–Hilliard model is derived in
Section 4.2. We first consider the smooth multi-well potential (4.4), which leads
to a system of fourth-order PDEs. Then, we study the nonsmooth multi-obstacle
potential (4.5), which yields a system of variational inequalities. Both formulations
are discretized in time in Section 4.3. We focus on a fully implicit time-discrete
scheme as motivated in the previous chapter. Regarding the smooth setting, we
proof the energy stability and uniqueness of the solution of our time discretization
scheme under reasonable assumptions. Concerning the nonsmooth framework, we

118 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

consider the underlying minimization problem for which we derive existence and
uniqueness conditions. In Section 4.4, we apply the Moreau–Yosida regularization
technique and derive a convergence result. Section 4.5 shortly introduces the SSN
method for solving the regularized subproblems. We derive the linear systems
arising from the discretization using finite elements in Section 4.6. In Section 4.7,
we analyze the linear systems and propose preconditioning strategies for the saddle
point problems. Section 4.8 illustrates the efficiency of our preconditioners for both
problem setups. In Section 4.9, we discuss alternative approaches. In Section 4.10,
we summarize our findings and discuss possible future directions.

4.2 Derivation

There are two ways of deriving the multi-component Cahn–Hilliard equation. First,
it can be derived as the H−1-gradient flow of the Ginzburg-Landau energy (4.3)
under the constraint (4.1). The second kind comes from the mass balance law; see,
e.g., [60, 59]. We consider the latter case and briefly review the derivation of the multi-
component Cahn–Hilliard equation. First of all, the smooth multi-well potential (4.4)
setting is used. Then, we go over to the nonsmooth multi-obstacle potential (4.5)
setting.

4.2.1 Smooth systems

In the following, we focus on the smooth multi-well potential (4.4). We briefly
derive the multi-component Cahn–Hilliard equation in the framework of [60, 59].
We assume that the considered system is isothermal. The law of mass conservation
is given as

d
dt

∫
R

ui dx = −
∫
∂R

Ji · n ds ∀i = 1, . . . ,N,

for any subregion R ⊂ Ω. Here, Ji denotes the mass flux for each component
i = 1, . . . ,N. Due to Lemma 2.21, we obtain

d
dt

∫
R

ui dx = −
∫

R
∇ · Ji dx ∀i = 1, . . . ,N.

Since R is fixed and arbitrary, we can derive

∂tui = −∇ · Ji ∀i = 1, . . . ,N.

As in [59, p. 243], we assume the thermodynamical principle that the fluxes Ji, i =
1, . . . ,N, are linear and homogeneous functions of the forces ∇w j, j = 1, . . . ,N, see
also [106, p. 136]. We make the ansatz

Ji = −

N∑
j=1

[L(u)]i j∇w j = − (L(u)∇w)i ,

where w = [w1, . . . ,wN]T is the vector of chemical potentials. The Onsager coefficients
[L(u)]i j may depend on u; see, e.g., [59]. This thesis deals with constant coefficients
[L]i j. During the rest of this chapter, we denote by L =

(
[L]i j

)
i, j=1,...,N

the mobility

matrix. Concentration dependent mobilities are a topic of future research. The vector

4.2. DERIVATION 119

of chemical potentials w is defined via the variational derivative of Ewith respect to
u (see Definition 2.20), whereby

U =

v = [v1, . . . , vN]T
∈ H1(Ω)N :

N∑
i=1

vi = 1

 ,
Y =

v = [v1, . . . , vN]T
∈ H1(Ω)N :

N∑
i=1

vi = 0

 .
Note that for all g = [g1, . . . , gN]T

∈ Y there exists a vector d = [d1, . . . , dN]T
∈ H1(Ω)N

such that

g = d −
1
N

 N∑
i=1

di

 1. (4.6)

For v = [v1, . . . , vN]T
∈ RN let

∂ψpol

∂u
(v) =

[
∂ψpol

∂u1
(v), . . . ,

∂ψpol

∂uN
(v)

]T

=: [ψ′pol(v1), . . . , ψ′pol(vN)]T =: ψ′pol(v)

in which ψ′pol(vi) = v3
i −

3
2 v2

i +
1
2 vi. Calculating the variational derivative of E, we

obtain for u ∈ U and g ∈ Y satisfying (4.6) with d ∈ H1(Ω)N

d
dη
E(u + ηg) = lim

η→0

E(u + ηg) − E(u)
η

= lim
η→0

1
η

∫
Ω

ε2

2

N∑
i=1

|∇(ui + ηgi)|2 +
1
4

N∑
i=1

(ui + ηgi)2(1 − ui − ηgi)2

−
ε2

2

N∑
i=1

|∇ui|
2
−

1
4

N∑
i=1

u2
i (1 − ui)2

 dx

=

∫
Ω

N∑
i=1

(
u3

i −
3
2

u2
i +

1
2

ui

)
gi dx + ε2

∫
Ω

N∑
i=1

∇ui · ∇gi dx

=

∫
Ω

N∑
i=1

(
ψ′pol(ui) − ε2∆ui

)
gi dx (4.7)

(4.6)
=

∫
Ω

N∑
i=1

(
ψ′pol(ui) − ε2∆ui

) di −
1
N

N∑
j=1

d j

 dx

(4.1)
=

∫
Ω

N∑
i=1

ψ′pol(ui) −
1
N

N∑
j=1

ψ′pol(u j) − ε2∆ui

 di dx =
∫
Ω

N∑
i=1

wi di dx.

The identity in (4.7) is supplemented with Lemma 2.21 together with the natural
zero Neumann boundary condition ∇ui · n = 0 on ∂Ω for i = 1, . . . ,N. Here, n is the
unit normal vector to ∂Ω pointing outwards fromΩ. Moreover, we impose the mass
conserving boundary condition

(L∇w)i · n = 0 on ∂Ω, i = 1, . . . ,N.

120 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

In conclusion, we obtain the vector-valued Cahn–Hilliard equation:

∂tui = (L∆w)i, (4.8)

wi = −ε
2∆ui + ψ

′

pol(ui) −
1
N

N∑
j=1

ψ′pol(u j), (4.9)

∇ui · n = (L∇w)i · n = 0 on ∂Ω, (4.10)

for i = 1, . . . ,N.

In order to fulfill Onsager’s reciprocity law, we require that L is symmetric; see [106,
p. 137] or [59, p. 243]. In order to ensure that the constraint (4.1) is fulfilled during
the evolution, a common way in the literature is to assume that

L1 = 0, (4.11)

see, e.g., [60, 26, 59]. Since summing (4.8) over i = 1, . . . ,N then leads to

∂
∂t

N∑
i=1

ui =

N∑
i=1

∂tui =

N∑
i=1

∇ · (L∇w)i = ∇ ·

N∑
i, j=1

[L]i j∇w j = ∇ ·

N∑
j=1

∇w j

N∑
i=1

[L]i j = 0.

Therefore, (4.1) is fulfilled during the evolution if
∑N

i=1 ui = 1 holds at time t = 0.
Summing (4.9) over i = 1, . . . ,N, then leads to

N∑
i=1

wi = −ε
2∆

N∑
i=1

ui = 0. (4.12)

It is further assumed thatL is positive semidefinite, which gives that the total energy
is non-increasing in time. Differentiating the energy E in (4.3) with respect to the
time yields

d
dt
E(u) =

d
dt

∫
Ω

ε2

2

N∑
i=1

|∇ui|
2 + ψpol(u) dx =

∫
Ω

N∑
i=1

[
ε2
∇ui · ∇∂tui +

∂ψpol(u)

∂ui
∂tui

]
dx

=

∫
Ω

N∑
i=1

[
−ε2∆ui + ψ

′

pol(ui)
]
∂tui dx

(4.9)
=

∫
Ω

N∑
i=1

wi +
1
N

N∑
j=1

ψ′pol(u j)

 ∂tui dx

(4.1)
=

∫
Ω

N∑
i=1

wi(L∆w)i dx = −
∫
Ω

N∑
i=1

∇wi · (L∇w)i dx ≤ 0,

where we have used Lemma 2.21 with (4.10). Therefore, the total energy is non-
increasing in time. Differentiating the total mass

∫
Ω

ui dx with respect to the time
gives

d
dt

∫
Ω

ui dx =
∫
Ω

∂ui

∂t
dx

(4.8)
=

∫
Ω

(L∆w)i dx = −
∫
∂Ω

(L∇w)i · n ds
(4.10)
= 0.

Hence, the total mass of each phase is conserved.

4.2. DERIVATION 121

Since L is symmetric positive semidefinite, we can make use of its symmetric Schur
decomposition

L = QΛQT = QΛ
1
2QTQΛ

1
2QT =: LsLs, (4.13)

where Λ
1
2 is a diagonal matrix containing the square roots of the eigenvalues of L

and QTQ = I . Note that Ls ∈ RN×N is symmetric positive semidefinite. Further, as
stated in [60, p. 7] or [26, p. 112], it holds

vTLv ≥ l0(Pv)TPv = l0vTPv = l0

vTv −
1
N

 N∑
i=1

vi

vT1

 , (4.14)

where l0 is the smallest positive eigenvalue of L and Pv = v − 1
N

(∑N
i=1 vi

)
1 for all

v = [v1, . . . ,vN]T
∈ RN. Note that P = P T = P 2.

Remark 4.1. We have explained above the common assumption L1 = 0. Nevertheless, it is
possible to work with L = I for convenience; see, e.g., [118]. Therefore, we also consider this
case in our work. We will see in Section 4.7 that our numerical solver simplifies in this case.

4.2.2 Nonsmooth systems

In the last section, we focused on the smooth potentialψpol. We could easily calculate
the derivative of the smooth potential with respect to u. Now, we turn to the
nonsmooth potential ψobs given in (4.5). It can be written via the indicator function

IGN (u) =
{

0 u ∈ GN,
∞ otherwise

as
ψobs(u) = ψ0(u) + IGN (u) = −

1
2

u · Tu + IGN (u).

As in Chapter 3.2.2, IGN can only be differentiated in the sense of subdifferentials.
The resulting system can be formulated as a system of variational inequalities; see
[60]: Find (u,w) ∈ H1(Ω)N

×H1(Ω)N such that

〈∂tu,v〉 = −(L∇w,∇v) ∀v ∈ H1(Ω)N, (4.15)

(w,v − u) ≤ ε2(∇u,∇(v − u)) − (Tu,v − u) +
1
N

N∑
j=1

((Tu) j1,v − u)

∀v ∈ H1(Ω)N,v ∈ GN a.e. in Ω,

(4.16)

u ∈ GN a.e. in Ω. (4.17)

The system (4.15)–(4.17) is supplemented by the initial condition u0 ∈ H1(Ω)N,u0 ∈

G
N a.e. in Ω. Existence and uniqueness of a solution to (4.15)–(4.17) was shown in

[60].

122 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

Remark 4.2. Another formulation was studied in [12]: Given u0 ∈ H1(Ω),u0 ∈ G
N a.e. inΩ,

find (u,w, η) ∈ H1(Ω)N
×H1(Ω)N

× L2(Ω) such that

〈∂tu,v〉 = −(L∇w,∇v) ∀v ∈ H1(Ω)N, (4.18)

(w + η1,v − u) ≤ ε2(∇u,∇(v − u)) − (Tu,v − u) +
1
N

N∑
j=1

((Tu) j1,v − u)

∀v ∈ H1(Ω)N,v ≥ 0 a.e. in Ω,

(4.19)

u ≥ 0 a.e. in Ω, (4.20)
N∑

i=1

wi = 0 a.e. in Ω. (4.21)

This formulation relaxes the condition u ∈ GN almost everywhere in Ω in (4.15)–(4.17) to
u ≥ 0 almost everywhere inΩ by introducing the Lagrange multipliers explicitly. Existence
and uniqueness of a solution to (4.18)–(4.21) was shown in [12].

Due to the system of variational inequalities, the nonsmooth vector-valued Cahn–
Hilliard problem poses a harder challenge compared to the smooth one from the last
section. This holds for both, the mathematical as well as numerical analysis, as we
shall see during the following sections.

After the derivation of the constitutive vector-valued Cahn–Hilliard equation or
inequality, we are going to study their discretizations in order to be able to solve
them numerically. We start with the discretization in time in the next section.

4.3 Time discretization

In Chapter 3.3, we have motivated the use of a fully implicit time discretization
scheme. This means we use the backward Euler discretization for the time deriva-
tives ∂tui, i = 1, . . . ,N, and treat all the other terms implicitly. In particular, we
treat the potential function implicitly. Let τ > 0 denote the time step size and
tn−1 = (n−1)τ, n ∈N, discrete times. We denote by u(n−1)

∈ H1(Ω)N the time-discrete
solution at time step tn−1. Further, u(n), w(n)

∈ H1(Ω)N form the time-discrete solution
at time step tn = tn−1+τ. In order to ease the notation, from now on we write uold, u,
and w instead of u(n−1), u(n), and w(n), respectively.

Again, we start with the smooth setting and consider the weak formulation of
(4.8)–(4.10). We discretize this problem in time and give stability and uniqueness con-
ditions. Afterwards, we go over to the nonsmooth setting (4.15)–(4.17). We consider
the corresponding optimization problem which allows us to specify the conditions
for a unique solution.

4.3.1 Smooth systems

Let us focus on the smooth setting and the corresponding system of Cahn–Hilliard
Equations (4.8)–(4.10). We consider their weak formulation and utilize the implicit
Euler scheme. Then, (u,w) solves the following problem: Find u, w ∈ H1(Ω)N such

4.3. TIME DISCRETIZATION 123

that (
ui − uold

i , v
)
+ τ ((L∇w)i ,∇v) = 0 ∀v ∈ H1(Ω), (4.22)

− (wi, v) + ε2 (∇ui,∇v) +
(
ψ′pol(ui), v

)
−

1
N

 N∑
j=1

ψ′pol(u j), v

 = 0 ∀v ∈ H1(Ω), (4.23)

for i = 1, . . . ,N. Choosing v = 1 in (4.22), we obtain the conservation of mass, i.e.,
(ui, 1) = (uold

i , 1) for i = 1, . . . ,N, the specific feature of the Cahn–Hilliard model.

Now, we want to give stability and uniqueness conditions for the time step. However,
the quartic growth ofψpol(u) at infinity introduces various technical difficulties in the
analysis. Therefore, as in Chapter 3.3.1, we consider a truncated multi-well potential.
To be more precise, we restrict the growth of ψpol(u) to be quadratic for ui ≤ 1 −M
and ui ≥ M for a given constant M. In the following, we write ψ̃ for the truncated
version of ψpol. Using the truncation technique, we obtain the following condition:
There exists a constant S such that

max
s∈RN

∣∣∣∣∣∣ ∂2ψ̃

∂ui2
(s)

∣∣∣∣∣∣ ≤ S ∀i = 1, . . . ,N. (4.24)

With the use of (4.24), we can prove:

Theorem 4.1. The solution of (4.22)–(4.23) is unique provided that τ < 4ε2

S2ρ(L) andψ = ψpol

is replaced by its truncated version ψ̃.

Proof. Assume there exist two solutions (u,w) and (ũ, w̃) of (4.22)–(4.23). Then, we
get

(u − ũ,v) + τ (L∇(w − w̃),∇v) = 0, (4.25)

− (w − w̃,v) + ε2 (∇(u − ũ),∇v) +
(
ψ′(u) − ψ′(ũ),v

)
−

1
N

 N∑
j=1

(
ψ′(u j) − ψ′(ũ j)

)
1,v

 = 0, (4.26)

for all v ∈ H1(Ω)N. Choosing v = w − w̃ in (4.25) gives

0 = (u − ũ,w − w̃) + τ(L∇(w − w̃),∇(w − w̃))
(4.13)
= (u − ũ,w − w̃) + τ(LsLs∇(w − w̃),∇(w − w̃))
= (u − ũ,w − w̃) + τ(Ls∇(w − w̃),Ls∇(w − w̃))

= (u − ũ,w − w̃) + τ ‖Ls∇(w − w̃)‖2 . (4.27)

Choosing v = u − ũ in (4.26) gives

0 = − (u − ũ,w − w̃) + ε2
‖∇(u − ũ)‖2

+
(
ψ′(u) − ψ′(ũ),u − ũ

)
−

1
N

 N∑
j=1

(
ψ′(u j) − ψ′(ũ j)

)
1,u − ũ

 . (4.28)

124 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

The last term in (4.28) is zero since we can reorder this term to N∑
j=1

(
ψ′(u j) − ψ′(ũ j)

)
1,u − ũ

 = N∑
i=1

 N∑
j=1

(
ψ′(u j) − ψ′(ũ j)

)
,ui − ũi


=

N∑
j=1

ψ′(u j) − ψ′(ũ j),
N∑

i=1

(ui − ũi)


and

∑N
i=1 (ui − ũi) = 0 for a.e. x ∈ Ω due to (4.1). The second last term in (4.28) can be

reformulated using the Taylor expansion of the potential

ψ(u) = ψ(ũ + u − ũ) = ψ(ũ) + ψ′(ũ) · (u − ũ) +
1
2

N∑
i=1

f ′(si)(ui − ũi)2,

ψ(ũ) = ψ(u + ũ − u) = ψ(u) + ψ′(u) · (ũ − u) +
1
2

N∑
i=1

f ′(s̃i)(ui − ũi)2,

where f ′(si) =
∂2ψ̃
∂ui2

(s) and s, s̃ lie between u and ũ. Adding these two equations gives

(
ψ′(u) − ψ′(ũ)

)
· (u − ũ) =

1
2

N∑
i=1

(
f ′(si) + f ′(s̃i)

)
(ui − ũi)2

(4.24)
≥ −S

N∑
i=1

(ui − ũi)2.

Therefore, we obtain in (4.28)

0 ≥ − (u − ũ,w − w̃) + ε2
‖∇(u − ũ)‖2 − S ‖u − ũ‖2 . (4.29)

For the last equation, we choose v = S (u − ũ) in (4.25) and get

0 = S ‖u − ũ‖2 + τS (L∇(w − w̃),∇(u − ũ))

= S ‖u − ũ‖2 +

τS
√
ρ(L)
√

2ε
Ls∇(w − w̃),

√
2ε√
ρ(L)

Ls∇(u − ũ)


≥ S ‖u − ũ‖2 −

τ2S2ρ(L)
4ε2 ‖Ls∇(w − w̃)‖2 −

ε2

ρ(L)
‖Ls∇(u − ũ)‖2 , (4.30)

where we have used Young’s inequality with αY = 1 (Lemma 2.12). Due to

‖Ls∇(u − ũ)‖2 = (Ls∇(u − ũ),Ls∇(u − ũ)) = (L∇(u − ũ),∇(u − ũ))

≤ ρ(L) ‖∇(u − ũ)‖2 ,

we can estimate (4.30) further to

0 ≥ S ‖u − ũ‖2 −
τ2S2ρ(L)

4ε2 ‖Ls∇(w − w̃)‖2 − ε2
‖∇(u − ũ)‖2 . (4.31)

Now, adding (4.27), (4.29), and (4.31), we get

0 ≥ τ
(
1 −

τS2ρ(L)
4ε2

)
‖Ls∇(w − w̃)‖2 . (4.32)

4.3. TIME DISCRETIZATION 125

Hence, we obtain uniqueness if 1 − τS2ρ(L)
4ε2 > 0, which is equivalent to τ < 4ε2

S2ρ(L) .
Since then, it follows with (4.14) that

‖Ls∇(w − w̃)‖2 = (L∇(w − w̃),∇(w − w̃)) ≥ l0 (P∇(w − w̃),∇(w − w̃))

= l0 ‖∇(w − w̃)‖2 ,

where the last equality is a result from (4.12) in a weak sense. Therefore, we obtain
in (4.32)

0 ≥ τ
(
1 −

τS2ρ(L)
4ε2

)
‖∇(w − w̃)‖2 .

Finally, ‖∇(w − w̃)‖ = 0 implies that w − w̃ is constant. Using this, (4.25) yields
(u − ũ,v) = 0 ∀v ∈ H1(Ω)N and therefore u = ũ almost everywhere. Finally, (4.26)
then gives w = w̃ almost everywhere. �

Theorem 4.2. Under the condition τ < 8ε2

S2ρ(L) and provided that ψ = ψpol is replaced by

its truncated version ψ̃, the time discretization scheme (4.22)–(4.23) is energy stable, i.e., its
solution satisfies E(u(n)) ≤ E(u(n−1)) for all n ≥ 1.

Proof. Choosing v = w in (4.22) gives

0 =
(
u − uold,w

)
+ τ (L∇w,∇w)

(4.13)
=

(
u − uold,w

)
+ τ (LsLs∇w,∇w)

=
(
u − uold,w

)
+ τ (Ls∇w,Ls∇w)) =

(
u − uold,w

)
+ τ ‖Ls∇w‖2 . (4.33)

Choosing v = u − uold in (4.23) gives

0 = −
(
u − uold,w

)
+
ε2

2

(
‖∇u‖2 −

∥∥∥∇uold
∥∥∥2
+

∥∥∥∇(u − uold)
∥∥∥2

)
+

(
ψ′(u),u − uold

)
−

1
N

 N∑
j=1

ψ′(u j) 1,u − uold

 . (4.34)

As in the proof before, we can show that the last term in (4.34) is zero, and the second
last term in (4.34) can be reformulated using the Taylor expansion of the potential

ψ′(u) ·
(
u − uold

)
= ψ(u) − ψ(uold) +

1
2

N∑
i=1

f ′(si)(ui − uold
i)2

(4.24)
≥ ψ(u) − ψ(uold) −

S
2

N∑
i=1

(ui − uold
i)2,

where s lies between u and uold. Therefore, we obtain in (4.34)

0 ≥ −
(
u − uold,w

)
+
ε2

2

(
‖∇u‖2 −

∥∥∥∇uold
∥∥∥2
+

∥∥∥∇(u − uold)
∥∥∥2

)
+

(
ψ(u), 1

)
−

(
ψ(uold), 1

)
−

S
2

∥∥∥u − uold
∥∥∥2
.

(4.35)

126 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

For the last equation, we choose v = S
2

(
u − uold

)
in (4.22) and get

0 =
S
2
‖u − ũ‖2 +

τS
2

(
L∇w,∇(u − uold)

)
=

S
2

∥∥∥u − uold
∥∥∥2
+

τS
√
ρ(L)

2ε
Ls∇w,

ε√
ρ(L)

Ls∇(u − uold)


≥

S
2

∥∥∥u − uold
∥∥∥2
−
τ2S2ρ(L)

8ε2 ‖Ls∇w‖2 −
ε2

2ρ(L)

∥∥∥Ls∇(u − uold)
∥∥∥2
, (4.36)

where we have used Young’s inequality with αY = 1 (Lemma 2.12). Due to∥∥∥Ls∇(u − uold)
∥∥∥2
=

(
Ls∇(u − uold),Ls∇(u − uold)

)
=

(
L∇(u − uold),∇(u − uold)

)
≤ ρ(L)

∥∥∥∇(u − uold)
∥∥∥2
,

we can estimate (4.36) further to

0 ≥
S
2

∥∥∥u − uold
∥∥∥2
−
τ2S2ρ(L)

8ε2 ‖Ls∇w‖2 −
ε2

2

∥∥∥Ls∇(u − uold)
∥∥∥2
. (4.37)

Now, adding (4.33), (4.35), and (4.37), we get

0 ≥ τ
(
1 −

τS2ρ(L)
8ε2

)
‖Ls∇w‖2 +

ε2

2

(
‖∇u‖2 −

∥∥∥∇uold
∥∥∥2

)
+

(
ψ(u), 1

)
−

(
ψ(uold), 1

)
.

Now, we can bound the energy

E(u) − E(uold) =
ε2

2

(
‖∇u‖2 −

∥∥∥∇uold
∥∥∥2

)
+

(
ψ(u), 1

)
−

(
ψ(uold), 1

)
≤ τ

(
τS2ρ(L)

8ε2 − 1
)
‖Ls∇w‖2 .

Hence, we obtain energy stability if τS2ρ(L)
8ε2 − 1 ≤ 0, which is equivalent to τ ≤ 8ε2

S2ρ(L) .
�

The resulting time step restrictions comply with the ones for the two-component
system in Chapter 3.3.1. Although these conditions appear to be quite restrictive for
ε � 1, the authors of [140] pointed out that they are in fact needed for the sake of
convergence. Moreover, note that explicit schemes usually lead to even more severe
time step restrictions of order O(ε4).

As in the previous chapter, the approach of the truncated polynomial is only used
for the theoretical part. In praxis, the polynomial potential ψpol behaves quite well
and does not result in blow ups of the solution. Violations of u ∈ [0, 1] in form of
u ∈ [−δ(ε), 1+ δ(ε)] occur. However, δ(ε) is relatively small. We investigate this issue
further in Section 4.8.3.

After having stated and analyzed our system of time-discrete Cahn–Hilliard equa-
tions in the smooth setting, we proceed with the nonsmooth case.

4.3. TIME DISCRETIZATION 127

4.3.2 Nonsmooth systems

In the following, we concentrate on the nonsmooth setting and the corresponding
system of Cahn–Hilliard variational inequalities (4.15)–(4.17). By utilizing the im-
plicit Euler scheme, we obtain the following problem: Find u, w ∈ H1(Ω)N such
that

(u,v) = −τ(L∇w,∇v) + (uold,v) ∀v ∈ H1(Ω)N, (4.38)

(w,v − u) ≤ ε2(∇u,∇(v − u)) − (Tu,v − u) +
1
N

N∑
j=1

((Tu) j1,v − u)

∀v ∈ H1(Ω)N,v ∈ GN a.e. in Ω,

(4.39)

u ∈ GN a.e. in Ω. (4.40)

As in the smooth case, choosing v = ei in (4.38), we obtain the conservation of
mass, i.e.,

∫
Ω

u dx = m = [m1, . . . ,mN]T. In other words, (u, ei) = (uold, ei) = mi for
i = 1, . . . ,N, where mi ∈ (0, 1) and

∑N
i=1 mi = 1. Here, ei is the function which is

identical to one in the ith component and zero otherwise. Without loss of generality,
we assume that |Ω| = 1, with |Ω| being the Lebesgue measure of Ω, holds true.

During the next three sections, we extend parts of the analysis presented in Chap-
ters 3.3.2–3.5 to the multi-component case. We define

K B

v = [v1, . . . , vN]T
∈ H1(Ω)N : v(x) ≥ 0,

N∑
i=1

vi(x) = 1 a.e. in Ω

 ,
V0 B

v = [v1, . . . , vN]T
∈ H1(Ω)N : (vi, 1) = 0, i = 1, . . . ,N,

N∑
i=1

vi(x) = 0 a.e. in Ω

 ,
and consider the following minimization problem

min
(u,w)∈K×V0

J(u,w) B
ε2

2
‖∇u‖2 +

∫
Ω

−
1
2

u · Tu +
τ
2
∇w ·L∇w dx

subject to (4.38).
(P)

Let
F = {(u,w) ∈ K ×V0 : (u,w) achieves (4.38)}

be the admissible set of (P). Analogous to Lemma 3.3, we have the following result.

Lemma 4.3. The following properties hold true:

(i) F , ∅ and F ⊂ (V0 +m) ×V0.

(ii) F is a closed and convex set of H1(Ω)N
×H1(Ω)N.

(iii) Let τ < 4ε2λmax(T)−2ρ(L)−1. Then, J is strictly convex on F .

(iv) Let τ < 4ε2λmax(T)−2ρ(L)−1. Then, we have limm→∞J(um,wm) = ∞ for every
sequence (um,wm)m∈N in F such that limm→∞ ‖um‖1 = ∞ or limm→∞ ‖wm‖1 = ∞.

128 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

Proof. (i)F , ∅ since (uold, 0) ∈ F . Let (u,w) ∈ F . It follows w ∈V0. By taking v = ei
in (4.38), we obtain (ui, 1) = (u, ei) = (uold, ei) = (uold

i , 1) = mi. Hence, u −m ∈ V0.

(ii) First, we proof that F is convex. Let (u,w), (y, z) ∈ F with u = [u1, . . . , uN]T, w =
[w1, . . . ,wN]T, y = [y1, . . . , yN]T, z = [z1, . . . , zN]T and λ ∈ [0, 1]. We have to show that
(λu + (1 − λ)y, λw + (1 − λ)z) ∈ F holds true. From

(λw + (1 − λ)z, 1) = λ (w, 1)︸︷︷︸
=0

+(1 − λ) (z, 1)︸︷︷︸
=0

= 0

and
N∑

i=1

λwi + (1 − λ)zi = λ
N∑

i=1

wi︸︷︷︸
=0 a.e. in Ω

+(1 − λ)
N∑

i=1

zi︸︷︷︸
=0 a.e. in Ω

= 0 a.e. in Ω,

it follows λw + (1 − λ)z ∈V0. Further,

λu + (1 − λ)y ≥ 0 a.e. in Ω,

since u,y ≥ 0 a.e. in Ω, and

N∑
i=1

λui + (1 − λ)yi = λ
N∑

i=1

ui︸︷︷︸
=1 a.e. in Ω

+(1 − λ)
N∑

i=1

yi︸︷︷︸
=1 a.e. in Ω

= 1 a.e. in Ω

and hence λu + (1 − λ)y ∈ K . Finally,

(λu + (1 − λ)y,v) + τ(L∇(λw + (1 − λ)z),∇v)

= λ[(u,v) + τ(L∇w,∇v)︸ ︷︷ ︸
=(uold,v)

] + (1 − λ)[(y,v) + τ(L∇z,∇v)︸ ︷︷ ︸
=(uold,v)

]

= (uold,v) ∀v ∈ H1(Ω)N,

which means that (λu+ (1−λ)y, λw+ (1−λ)z) fulfills (4.38). Altogether,F is convex.

Now, let us proof the closedness of F in H1(Ω)N
× H1(Ω)N. Let (um,wm)m∈N ⊂

F converge strongly to (u,w) ∈ H1(Ω)N
× H1(Ω)N for m → ∞, whereby um =

[um,1, . . . , um,N]T, wm = [wm,1, . . . ,wm,N]T, u = [u1, . . . , uN]T, w = [w1, . . . ,wN]T. We
have to show that (u,w) ∈ F . According to Theorem 2.6, every strongly convergent
sequence is weakly convergent, i.e.,

(um,v)1
m→∞
−→ (u,v)1 ∀v ∈ H1(Ω)N

⇔ (um,v) + (∇um,∇v) m→∞
−→ (u,v) + (∇u,∇v) ∀v ∈ H1(Ω)N

as well as

(wm,v)1
m→∞
−→ (w,v)1 ∀v ∈ H1(Ω)N

⇔ (wm,v) + (∇wm,∇v) m→∞
−→ (w,v) + (∇w,∇v) ∀v ∈ H1(Ω)N.

4.3. TIME DISCRETIZATION 129

Hence, we obtain

(u,v) + τ(L∇w,∇v) = (uold,v) ∀v ∈ H1(Ω)N

and
(w, ei) = 0

for i = 1, . . . ,N. What is left to show is that u ∈ K and w ∈ V0. As stated in [21,
p. 238], K is convex and closed in H1(Ω)N. According to Lemma 2.7, K is weakly
closed in H1(Ω)N. Hence, Definition 2.9 yields u ∈ K . Similarly, V0 is convex and
closed in H1(Ω)N. Altogether, (u,w) ∈ F .

(iii) Let (u,w), (y, z) ∈ F and α ∈ (0, 1). We define

r(α) B αJ(u,w) + (1 − α)J(y, z) −J
(
αu + (1 − α)y, αw + (1 − α)z

)
.

We have to show r(α) > 0. We start with proving r(α) ≥ 0. It holds

r(α) = α
(
ε2

2
‖∇u‖2 +

τ
2

(∇w,L∇w) −
1
2

(u,Tu)
)
−
ε2

2
‖∇(αu + (1 − α)y)‖2

+ (1 − α)
(
ε2

2
‖∇y‖2 +

τ
2

(∇z,L∇z) −
1
2
(
y,Ty

))
+

1
2
(
αu + (1 − α)y,T (αu + (1 − α)y)

)
−
τ
2

(∇(αw + (1 − α)z),L∇(αw + (1 − α)z))

= α(1 − α)
[
ε2

2

(
‖∇u‖2 +

∥∥∥∇y
∥∥∥2
− 2

(
∇u,∇y

))
−

1
2
(
(u,Tu) +

(
y,Ty

)
− 2

(
u,Ty

))
+
τ
2

((∇w,L∇w) + (∇z,L∇z) − 2 (∇w,L∇z))
]

=
α(1 − α)

2

(
ε2
‖∇(u − y)‖2 + τ (∇(w − z),L∇(w − z)) −

(
u − y,T (u − y)

))
=
α(1 − α)

2

(
ε2
‖∇(u − y)‖2 + τ ‖Ls∇(w − z)‖2 −

(
u − y,T (u − y)

))
.

Since
(u − y)TT (u − y) ≤ λmax(T)(u − y)T(u − y),

we can bound r(α) from above to

r(α) ≥
α(1 − α)

2

(
ε2
‖∇(u − y)‖2 + τ (∇(w − z),L∇(w − z)) − λmax(T)

∥∥∥u − y
∥∥∥2

)
. (4.41)

Since (u,w), (y, z) ∈ F , they satisfy (4.38)

(u,v) + τ(L∇w,∇v) = (uold,v) ∀v ∈ H1(Ω)N, (4.42)

(y,v) + τ(L∇z,∇v) = (uold,v) ∀v ∈ H1(Ω)N. (4.43)

Choosing v = u − y in (4.42)–(4.43), we obtain

(u,u − y) + τ(L∇w,∇(u − y)) = (uold,u − y), (4.44)

(y,u − y) + τ(L∇z,∇(u − y)) = (uold,u − y). (4.45)

130 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

Subtracting (4.44)–(4.45) from each other, we get

− ‖u − y‖2 = τ(L∇(w − z),∇(u − y)). (4.46)

Applying Young’s inequality with αY > 0 (Lemma 2.12) to the right-hand side of
(4.46), gives

−‖u − y‖2 = τ
(
√

2Ls∇(w − z),
1
√

2
Ls∇(u − y)

)
≥ −ταY‖Ls∇(w − z)‖2 −

τ
4αY
‖Ls∇(u − y)‖2. (4.47)

Due to∥∥∥Ls∇(u − y)
∥∥∥2
=

(
Ls∇(u − y),Ls∇(u − y)

)
=

(
L∇(u − y),∇(u − y)

)
≤ ρ(L)

∥∥∥∇(u − y)
∥∥∥2
,

we can estimate (4.47) further to

− ‖u − y‖2 ≥ −ταY‖Ls∇(w − z)‖2 −
τρ(L)
4αY

‖∇(u − y)‖2. (4.48)

Substituting (4.48) into (4.41) yields

r(α) ≥
α(1 − α)

2

[(
ε2
−
λmax(T)ρ(L)τ

4αY

)
‖∇(u − y)‖2 + (τ − ταYλmax(T)) ‖Ls∇(w − z)‖2

]
.

For the strict convexity, we require

ε2
−
λmax(T)ρ(L)τ

4αY
> 0 ⇔ αY >

λmax(T)ρ(L)τ
4ε2 , (4.49)

τ − ταYλmax(T) > 0 ⇔ αY <
1

λmax(T)
. (4.50)

Hence,
λmax(T)ρ(L)τ

4ε2 < αY <
1

λmax(T)
,

which leads to the time step restriction

λmax(T)ρ(L)τ
4ε2 <

1
λmax(T)

⇔ τ <
4ε2

λmax(T)2ρ(L)
.

Under these conditions, we can estimate r(α) further by using

‖Ls∇(w − z)‖2 = (L∇(w − z),∇(w − z)) ≥ l0 (P∇(w − z),∇(w − z)) = l0 ‖∇(w − z)‖2 ,

where the inequality results from (4.14), and the last equality is a result from∑N
i=1 wi − zi = 0 a.e. in Ω. Hence, we obtain

r(α) ≥
α(1 − α)

2

[(
ε2
−
λmax(T)ρ(L)τ

4αY

)
‖∇(u − y)‖2 + l0 (τ − ταYλmax(T)) ‖∇(w − z)‖2

]
.

Now, assume r(α) = 0. Then,

‖∇(u − y)‖2 = ‖∇(w − z)‖2 = 0. (4.51)

4.3. TIME DISCRETIZATION 131

Since u − y,w − z ∈ V0, we have
∫
Ω

ui − yi dx =
∫
Ω

wi − zi dx = 0 for i = 1, . . . ,N.
Hence, we can apply the Poincaré inequality (Theorem 2.22)

‖ui − yi‖
2
1 ≤ cP ‖∇(ui − yi)‖2 ⇔ ‖ui − yi‖

2 + ‖∇(ui − yi)‖2 ≤ cP ‖∇(ui − yi)‖2,

‖wi − zi‖
2
1 ≤ cP ‖∇(wi − zi)‖2 ⇔ ‖wi − zi‖

2 + ‖∇(wi − zi)‖2 ≤ cP ‖∇(wi − zi)‖2,

for i = 1, . . . ,N. Hence,

‖u − y‖2 + ‖∇(u − y)‖2 ≤ cP ‖∇(u − y)‖2,

‖w − z‖2 + ‖∇(w − z)‖2 ≤ cP ‖∇(w − z)‖2.

It follows from (4.51) that ‖u− y‖ = ‖w− z‖ = 0. This implies (u,w) = (y, z) a.e. inΩ.
In summary, J is strictly convex on F provided that τ < 4ε2λmax(T)−2ρ(L)−1.

(iv) Let (u,w) ∈ F . Using
uTTu ≤ λmax(T)uTu,

we obtain

J(u,w) =
ε2

2
‖∇u‖2+

τ
2

(∇w,L∇w)−
1
2

(u,Tu) ≥
ε2

2
‖∇u‖2+

τ
2
‖Ls∇w‖2−

λmax(T)
2

‖u‖2.

Since (u,w) ∈ F , (4.38) is fulfilled. Choosing v = u in (4.38) leads to

− ‖u‖2 = τ(L∇w,∇u) − (uold,u) = τ(Ls∇w,Ls∇u) − (uold,u). (4.52)

Applying Young’s inequality with αY = 2β1 > 0 (Lemma 2.12) to the left term in the
right-hand side of (4.52) and with αY = 2β2 > 0 to the right term in the right-hand
side of (4.52), we get

−‖u‖2 = τ(Ls∇w,Ls∇u) − (uold,u)

≥ −τβ1‖Ls∇w‖2 −
τ

4β1
‖Ls∇u‖2 − β2‖uold

‖
2
−

1
4β2
‖u‖2. (4.53)

Due to
‖Ls∇u‖2 = (Ls∇u,Ls∇u) = (L∇u,∇u) ≤ ρ(L) ‖∇u‖2 ,

we can estimate (4.53) further to

− ‖u‖2 ≥ −τβ1‖Ls∇w‖2 −
τρ(L)

4β1
‖∇u‖2 − β2‖uold

‖
2
−

1
4β2
‖u‖2. (4.54)

Applying the Poincaré inequality (Theorem 2.22) yields

‖ui‖
2
1 = ‖ui‖

2 + ‖∇ui‖
2
≤ cP

‖∇ui‖
2 +

(∫
Ω

ui dx
)2 = cP

(
‖∇ui‖

2 +m2
i

)
(4.55)

and hence
‖ui‖

2
≤ cP

(
‖∇ui‖

2 +m2
i

)
− ‖∇ui‖

2
≤ cP

(
‖∇ui‖

2 +m2
i

)
for i = 1, . . . ,N, which leads to

‖u‖2 ≤ cP‖∇u‖2 + cP mTm.

132 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

Hence, we can estimate (4.54) further to

− ‖u‖2 ≥ −τβ1‖Ls∇w‖2 −
(
τρ(L)

4β1
+

cP

4β2

)
‖∇u‖2 − β2‖uold

‖
2
−

cP

4β2
mTm. (4.56)

Substituting this result into the equation of J(u,w) above, we get

J(u,w) ≥
(
ε2

2
−
λmax(T)τρ(L)

8β1
−
λmax(T)cP

8β2

)
‖∇u‖2

+

(
τ
2
−
λmax(T)τβ1

2

)
‖Ls∇w‖2 −

λmax(T)β2

2
‖uold

‖
2
−
λmax(T)cP

8β2
mTm.

This inequality holds for all β1, β2 > 0. Now, we want to choose β1, β2 such that

ε2

2
−
λmax(T)τρ(L)

8β1
−
λmax(T)cP

8β2
> 0 ⇔

ε2

2
−
λmax(T)τρ(L)

8β1
>
λmax(T)cP

8β2
,

(4.57)

τ
2
−
λmax(T)τβ1

2
> 0 ⇔ β1 <

1
λmax(T)

. (4.58)

Since β2 > 0, we need in (4.57)

ε2

2
−
λmax(T)τρ(L)

8β1
> 0 ⇔ β1 >

λmax(T)τρ(L)
4ε2 .

Hence,
λmax(T)τρ(L)

4ε2 < β1 <
1

λmax(T)
,

which leads to the time step restriction

λmax(T)τρ(L)
4ε2 <

1
λmax(T)

⇔ τ <
4ε2

λmax(T)2ρ(L)
.

Under these conditions for τ and β1, we can choose β2 such that (4.57) is fulfilled.
Now, we can estimate J(u,w) further by using

‖Ls∇w‖2 = (L∇w,∇w) ≥ l0 (P∇w,∇w) = l0 ‖∇w‖2 ,

where the last equality is a result from
∑N

i=1 wi = 0 a.e. in Ω. Hence, we obtain

J(u,w) ≥
(
ε2

2
−
λmax(T)τρ(L)

8β1
−
λmax(T)cP

8β2

)
‖∇u‖2 + l0

(
τ
2
−
λmax(T)τβ1

2

)
‖∇w‖2

−
λmax(T)β2

2
‖uold

‖
2
−
λmax(T)cP

8β2
mTm.

Next, due to the Poincaré inequality stated in (4.55), which yields

‖u‖21 ≤ cP

(
‖∇u‖2 +mTm

)
, (4.59)

it holds limm→∞ ‖∇um‖ = ∞ for every sequence um ∈ K with limm→∞ ‖um‖1 = ∞. The
same result is true if we replace um by wm: Since w ∈ V0, the Poincaré inequality
(Theorem 2.22) yields

‖w‖21 ≤ cP‖∇w‖2. (4.60)

Therefore, it holds limm→∞J(um,wm) = ∞ for every sequence (um,wm)m∈N ⊂ F with
limm→∞ ‖um‖1 = ∞or limm→∞ ‖wm‖1 = ∞, provided that τ < 4ε2λmax(T)−2ρ(L)−1. �

4.4. MOREAU–YOSIDA REGULARIZATION 133

Remark 4.3. The time step condition is the same as in [12].

The existence and uniqueness of the solution of (P) immediately follow from the
previous lemma:

Theorem 4.4. Let τ ∈ (0, 4ε2λmax(T)−2ρ(L)−1). Then, the problem (P) has a unique
solution (u∗,w∗).

After having analyzed the nonsmooth implicit time-discrete Cahn–Hilliard system,
we want to tackle the solution of this problem. The presence of the variational
inequalities in (4.39) makes this problem hard. As in Chapter 3.4, we make use of
the Moreau–Yosida regularization technique.

4.4 Moreau–Yosida regularization

In Chapter 3.4, we have motivated the use of the Moreau–Yosida regularization. More
precisely, we have incorporated the bound constraints |u| ≤ 1 almost everywhere with
this technique. In this section, we apply it to the bound constraints u ≥ 0 almost
everywhere. We define

K1 B

v = [v1, . . . , vN]T
∈ H1(Ω)N :

N∑
i=1

vi(x) = 1 a.e. in Ω


and replace the optimization problem (P) by its Moreau–Yosida regularized version

min
(u,w)∈K1×V0

Jc(u,w) subject to (4.38) (Pc)

with the objective

Jc(u,w) = J(u,w) +
1
2c
‖min(0,u)‖2.

As before, 0 < c � 1 denotes the associated regularization or penalty parameter.
Note that the constraint u ∈ K in (P) has been relaxed to u ∈ K1 in the regularized
problem (Pc). At the same time, a damped version of the bound constraints inK has
been inserted into the objective function. The smaller c is the larger is the penalization
for the violation of the condition u ≥ 0. Hence, the limit c→ 0 represents the original
minimization problem (P). Indeed, this convergence is proven below in Proposition
4.6.

Remark 4.4. Note that we still have the condition
∑N

i=1 vi(x) = 1 a.e. in Ω inK1. We will
include it in the same manner as in the smooth case in Section 4.2.1. More precisely, we will
incorporate it via the variational derivative at the end of this section.

Analyzing (Pc), we obtain a result similar to Theorem 4.4.

Theorem 4.5. Let τ ∈ (0, 4ε2λmax(T)−2ρ(L)−1). Then, the problem (Pc) has a unique
solution (uc,wc).

Proof. As noted in the proof of Theorem 3.5, the functionals ui → ‖min (0,ui)‖2, i =
1, . . . ,N, are convex and Fréchet-differentiable on H1(Ω). We can show that F c, the
feasible set of (Pc), and Jc satisfy the analogue of Lemma 4.3 for (Pc). In fact, the
proof is exactly the same. Hence, (Pc) has a unique solution (uc,wc), provided that
τ ∈ (0, 4ε2λmax(T)−2ρ(L)−1). �

134 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

Proposition 4.6. Let τ ∈ (0, 4ε2λmax(T)−2ρ(L)−1). Let {(uc,wc)}c>0 be a sequence of
solutions of (Pc) as c → 0. Then, there exists a subsequence still denoted by {(uc,wc)}c>0
such that

(uc,wc) −→ (u∗,w∗) in H1(Ω)N
×H1(Ω)N (4.61)

as c→ 0, where (u∗,w∗) is the unique solution of (P).

Proof. First of all,

J(uc,wc) ≤ Jc(uc,wc) ≤ Jc(u∗,w∗) = J(u∗,w∗). (4.62)

Hence, there exists a constant β > 0 independent of c such that

Jc(uc,wc) ≤ β.

Next, we estimateJc(uc,wc) from below. As in the proof of Lemma 4.3(iv) we obtain
with τ < 4ε2λmax(T)−2ρ(L)−1 and suitable β1, β2 > 0

Jc(uc,wc) ≥
(
ε2

2
−
λmax(T)τρ(L)

8β1
−
λmax(T)cP

8β2

)
︸ ︷︷ ︸

>0

‖∇uc‖
2+l0

(
τ
2
−
λmax(T)τβ1

2

)
︸ ︷︷ ︸

>0

‖∇wc‖
2

−
λmax(T)β2

2
‖uold

‖
2
−
λmax(T)cP

8β2
mTm +

1
2

∥∥∥∥∥∥ 1
√

c
min(0,uc)

∥∥∥∥∥∥2

.

Next, due to the Poincaré inequality stated in (4.59) and (4.60), i.e.,

‖uc‖
2
1 ≤ cP

(
‖∇uc‖

2 +mTm
)
,

‖wc‖
2
1 ≤ cP‖∇wc‖

2,

we can estimate Jc(uc,wc) further to

Jc(uc,wc) ≥ C1‖∇uc‖
2+C2‖∇wc‖

2
−C3mTm−

λmax(T)β2

2
‖uold

‖
2+

1
2

∥∥∥∥∥∥ 1
√

c
min(0,uc)

∥∥∥∥∥∥2

.

In order to ease the notation, we have introduced the constants C1,C2,C3 > 0, which
depend on ε, τ, β1, β2, cP, λmax(T), ρ(L). This results in

{uc} bounded in H1(Ω)N,

{wc} bounded in H1(Ω)N,{
1
√

c
min(0,uc)

}
bounded in L2(Ω)N. (4.63)

Since {(uc,wc)}c>0 is a bounded sequence in the Hilbert space H1(Ω)N
×H1(Ω)N, it has

a weakly convergent subsequence. Hence, there exists a (u,w) ∈ H1(Ω)N
× H1(Ω)N

and a subsequence {(ucm ,wcm)}m∈N ⊂ H1(Ω)N
×H1(Ω)N such that

(ucm ,wcm) m→∞
⇀ (u,w) in H1(Ω)N

×H1(Ω)N.

Because of the compact embedding H1(Ω)N ↪→ L2(Ω)N, weakly convergent sequences
in H1(Ω)N are strongly convergent in L2(Ω)N, i.e.,

(ucm ,wcm) m→∞
→ (u,w) in L2(Ω)N

× L2(Ω)N. (4.64)

4.4. MOREAU–YOSIDA REGULARIZATION 135

According to Proposition 2.10, the strong convergence in L2(Ω)N implies

‖u‖2 ≥ lim sup
m→∞

‖ucm‖
2
≥ lim inf

m→∞
‖ucm‖

2. (4.65)

According to the proof of Lemma 4.3(ii), the weak convergence of {(ucm ,wcm)}m∈N in
H1(Ω)N

×H1(Ω)N implies

(u,v) + τ(L∇w,∇v) = (uold,v) ∀v ∈ H1(Ω)N

and
(w, ei) = 0

for i = 1, . . . ,N. Moreover, K1 andV0 are weakly closed in H1(Ω)N. Hence, Defini-
tion 2.9 yields (u,w) ∈ K1×V0. From (4.64) and Lebesgue’s dominated convergence
theorem, it follows

min(0,ucm) m→∞
−→ min(0,u) in L2(Ω)N.

Together with (4.63), this yields

u ≥ 0 a.e. in Ω. (4.66)

Hence, (u,w) ∈ F . Now, consider

J(u,w) =
ε2

2
‖∇u‖2 −

1
2

(u,Tu) +
τ
2

(∇w,L∇w) . (4.67)

In the following, we estimate each term on the right-hand side of (4.67) from above.
First, it holds that the H1(Ω)N-seminorm

|v|21 = ‖∇v‖2

is weakly lower semicontinuous. Hence, according to Definition 2.10, the weak con-
vergence of a sequence vm ⇀ v in H1(Ω)N for m→∞ implies |v|1 ≤ lim infm→∞ |vm|1.
Second, Lemma 2.11 together with the strong convergence ucm

m→∞
−→ u in L2(Ω)N

yields

(ucm ,Tucm) =
N∑

i=1

[T]i j(ucm,i,ucm, j)
m→∞
−→

N∑
i=1

[T]i j(ui,u j) = (u,Tu),

where ucm = [ucm,1, . . . , ucm,N]T and u = [u1, . . . , uN]T. Third, since (u,w) ∈ F and
(ucm ,wcm) ∈ F c, where F c is the feasible set of (Pc), both pairs achieve (4.38). Hence,
choosing v = w for the former pair and v = wcm for the latter, we get

τ(L∇w,∇w) = (uold,w) − (u,w),

τ(L∇wcm ,∇wcm) = (uold,wcm) − (ucm ,wcm).

Lemma 2.11 together with the strong convergence in (4.64) yields

τ(L∇wcm ,∇wcm) m→∞
−→ (uold,w) − (u,w) = τ(L∇w,∇w).

136 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

Therefore,

J(u,w) ≤
ε2

2
lim inf

m→∞
‖∇ucm‖

2
−

1
2

lim inf
m→∞

(
ucm ,Tucm

)
+
τ
2

lim inf
m→∞

(
∇wcm ,L∇wcm

)
≤ lim inf

m→∞

(
ε2

2
‖∇ucm‖

2
−

1
2
(
ucm ,Tucm

)
+
τ
2
(
∇wcm ,L∇wcm

))
= lim inf

m→∞
J(ucm ,wcm).

Together with (4.62), we obtain

J(u,w) ≤ lim inf
m→∞

J(ucm ,wcm) ≤ J(u∗,w∗). (4.68)

The pair (u∗,w∗) is the unique solution of (P). In contrast, (u,w) is a feasible solution
of (P). Hence, J(u,w) ≥ J(u∗,w∗) and (4.68) becomes an equation. This gives
(u,w) = (u∗,w∗).

It remains to show the strong convergence in (4.61). We have already proven the
weak convergence. Hence, what is left to show is the following norm convergence:

‖ucm‖1
m→∞
−→ ‖u∗‖1,

‖wcm‖1
m→∞
−→ ‖w∗‖1.

(4.62) and (4.68) imply
1

2cm
‖min (0,ucm)‖2 m→∞

−→ 0.

Thus,

J(u∗,w∗) ≤ lim inf
m→∞

Jcm(ucm ,wcm) ≤ lim sup
m→∞

Jcm(ucm ,wcm) ≤ J(u∗,w∗).

This means
J(u∗,w∗) = lim

m→∞
Jcm(ucm ,wcm),

and it follows

lim
m→∞

‖∇ucm‖ = ‖∇u∗‖ and lim
m→∞

‖∇wcm‖ = ‖∇w∗‖.

From ‖ucm‖
2
1 = ‖ucm‖

2 + ‖∇ucm‖
2 and the strong convergence in (4.64), we imply

the norm convergence of ‖ucm‖
2
1. The same holds for wcm . The weak and norm

convergence yield the strong convergence result (4.61). �

As already pointed out in Chapter 3.4, there is another way to explain the regular-
ization. The multi-obstacle potential ψobs in (4.5) is regularized by

ψobs(u) = ψ0(u) +
1
2c

N∑
i=1

min(0,ui)2.

Instead of the energy functional E in (4.3), we consider

Ec(u) =
∫
Ω

ε2

2

N∑
i=1

|∇ui|
2 + ψ0(u) +

1
2c

N∑
i=1

|min(0,ui)|2 dx

=

∫
Ω

ε2

2

N∑
i=1

|∇ui|
2
−

1
2

uTTu +
1
2c

N∑
i=1

|min(0,ui)|2 dx.

4.4. MOREAU–YOSIDA REGULARIZATION 137

As done for the smooth potential in Section 4.2.1, the vector of chemical potentials w
is defined via the variational derivative of Ec with respect to u (see Definition 2.20),
whereby

U =

v = [v1, . . . , vN]T
∈ H1(Ω)N :

N∑
i=1

vi = 1

 ,
Y =

v = [v1, . . . , vN]T
∈ H1(Ω)N :

N∑
i=1

vi = 0

 .
Note that for all g = [g1, . . . , gN]T

∈ Y there exists a vector d = [d1, . . . , dN]T
∈ H1(Ω)N

such that

g = d −
1
N

 N∑
i=1

di

 1. (4.69)

Calculating the variational derivative of Ec under the assumption u < 0, we obtain
for u ∈ U and g ∈ Y satisfying (4.69) with d ∈ H1(Ω)N

d
dη
Ec(u + ηg) = lim

η→0

Ec(u + ηg) − Ec(u)
η

= lim
η→0

1
η

∫
Ω

ε2

2

N∑
i=1

|∇(ui + ηgi)|2 −
1
2

N∑
i=1

(ui + ηgi)
(
T (u + ηg)

)
i

+
1
2c

N∑
i=1

(ui + ηgi)2
−
ε2

2

N∑
i=1

|∇ui|
2 +

1
2

N∑
i=1

ui (Tu)i −
1
2c

N∑
i=1

u2
i

 dx

=

∫
Ω

N∑
i=1

(
−(Tu)i +

1
c

ui

)
gi dx + ε2

∫
Ω

N∑
i=1

∇ui · ∇gi dx

=

∫
Ω

N∑
i=1

(
−(Tu)i +

1
c

ui − ε
2∆ui

)
gi dx (4.70)

(4.69)
=

∫
Ω

N∑
i=1

(
−(Tu)i +

1
c

ui − ε
2∆ui

) di −
1
N

N∑
j=1

d j

 dx

(4.1)
=

∫
Ω

N∑
i=1

−(Tu)i +
1
c

ui +
1
N

N∑
j=1

(
(Tu) j −

1
c

u j

)
− ε2∆ui

 di dx (4.71)

=

∫
Ω

N∑
i=1

wi di dx.

The identity in (4.70) is supplemented with Lemma 2.21 together with the natural
zero Neumann boundary condition ∇ui · n = 0 on ∂Ω for i = 1, . . . ,N. In conclusion,
we obtain the following time-discrete vector-valued Cahn–Hilliard equation: Find

138 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

uc,wc ∈ H1(Ω)N with uc = [uc,1, . . . , uc,N]T and wc = [wc,1, . . . ,wc,N]T such that(
uc,i − uold

i , v
)
+ τ ((L∇wc)i,∇v) = 0 ∀v ∈ H1(Ω), (4.72)

(wc,i, v) − ε2(∇uc,i,∇v) + ((Tuc)i, v) −
1
c

(min(0,uc,i), v)

+
1
N

N∑
j=1

[1
c

(min(0,uc, j), v) − ((Tuc) j, v)
]
= 0 ∀v ∈ H1(Ω), (4.73)

for i = 1, . . . ,N. We supplement (4.72)–(4.73) by the initial condition u0 ∈ H1(Ω)N,u0 ∈

G
N a.e. inΩ. As in Section 4.2, one can show that

∑N
i=1 ui = 1 and

∑N
i=1 wi = 0 hold true.

We have seen again, how the application of a Moreau–Yosida regularization tech-
nique can circumvent the treatment of the variational inequalities in (4.39) as well
as the box constraint in (4.40). Indeed, it results in an iterative way for solving the
time-discrete Cahn–Hilliard system (4.38)–(4.40): For a sequence {cp}p∈N with cp → 0
solve the system (4.72)–(4.73).

Now, we have arrived at a system of time-discrete nonlinear equations for both
cases, the smooth potential setting as well as the regularized nonsmooth one. In
order to solve the former system, we apply standard Newton methods. Since this is
a straightforward step, we will not discuss it here. Regarding the second case, we
have to pay attention to the minimum operator present in (4.73). However, as in
Chapter 3.5, we can solve the corresponding nonlinear system via the SSN method.
This will be the topic of the following chapter.

4.5 Semismooth Newton method

For a specified sequence c→ 0, we solve the system (4.72)–(4.73), compactly written
as

Fc(uc,wc) =
(
F(1)

c (uc,wc),F
(2)
c (uc,wc))

)
= 0, (4.74)

for every c by an SSN algorithm. In (4.74), the components are defined by〈
F(1)

c (u,w),v
〉
= τ (L∇w,∇v) + (u,v) −

(
uold,v

)
,〈

F(2)
c (u,w),v

〉
= ε2(∇u,∇v) +

1
c

(min(0,u),v) − (w,v) − (Tu,v)

−
1
N

N∑
j=1

[1
c

(min(0,u j)1,v) − ((Tu) j1,v)
]
,

for all u,w,v ∈ H1(Ω)N. Fc is not Fréchet-differentiable due to the presence of the
minimum operator. However, the minimum operator satisfies the weaker notion
of Newton differentiability; see Definition 2.11. As for the two-component case in
Chapter 3.5, we can state a Newton derivative for Fc:

4.6. FINITE ELEMENT APPROXIMATION 139

Lemma 4.7. The mapping Fc : H1(Ω)N
×H1(Ω)N

→

(
H1(Ω)N

)∗
×

(
H1(Ω)N

)∗
is Newton-

differentiable. Furthermore, the operator Gc(u,w) given by

〈Gc(u,w)(δu, δw), (φ,ψ)〉 =
(

τ (L∇δw,∇φ)
ε2(∇δu,∇ψ) + 1

c (χM(u)δu,ψ) − (T δu,ψ)

+(δu,φ)
−(δw,ψ) − 1

N
∑N

j=1

[
1
c (χM(u j)δu j1,ψ) − ((T δu) j1,ψ)

])
,

serves as a Newton derivative for Fc. Here, χM(ui) is the characteristic function of the set

M(ui) B {x ∈ Ω : ui(x) < 0}.

The term χM(u)δu is given as

χM(u)δu =
[
χM(u1)δu1, . . . , χM(uN)δuN

]T
.

For the proof, we refer to [91, p. 788] and [92, pp. 885-886].

Lemma 4.8. Let τ ∈ (0, 4ε2λmax(T)−2ρ(L)−1). For a given u ∈ H1(Ω)N and (y1,y2) ∈(
H1(Ω)N

)∗
×

(
H1(Ω)N

)∗
, the optimization problem

min
(δu,δw)∈K1×V0

J(δu, δw) +
1
c

(χM(u)δu, δu) − 〈y2, δu〉

subject to τ (L∇δw,∇φ) + (δu,φ) = 〈y1,φ〉 ∀φ ∈ H1(Ω)N
(PGc)

admits a unique solution (δu, δw).

Proof. One proceeds as in the proofs of Theorems 4.4 and 4.5. �

In the next section, we derive the fully discrete problems for both, the smooth system
in (4.22)–(4.23) and the regularized nonsmooth system in (4.72)–(4.73).

4.6 Finite element approximation

In this section, we apply FEM [144] to the regularized nonsmooth Cahn–Hilliard
system in (4.72)–(4.73). We also want to apply it to the smooth version (4.22)–(4.23).
Since both procedures are similar, we only present the methodology based on the
nonsmooth setting. Regarding the smooth case, we will state the fully discrete linear
system at the end of this section. Moreover, the following presentation complies
with the FEM Section 3.6 for the two-component model.

In the following, we assume for simplicity thatΩ is a polyhedral domain. Let {Rh}h>0
be a triangulation ofΩ into disjoint open rectangular elements with maximal element
size h, Jh be the set of nodes of Rh, and p j ∈ Jh be the coordinates of these nodes. We
approximate the infinite-dimensional space H1(Ω) by the finite-dimensional space

Sh B {φ ∈ C0(Ω) : φ |R ∈ Q1(R) ∀R ∈ Rh} ⊂ H1(Ω),

of continuous, piecewise multilinear functions. We denote the standard nodal ba-
sis functions of Sh by ϕ j for all j ∈ Jh. They have the property ϕ j(pi) = δi j, i, j =

140 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

1, . . . ,m. The discretized version of the penalized problem (4.72)–(4.73) is the fol-
lowing. Given uold

h = [uold
h,1 , . . . , u

old
h,N]T

∈ SN
h , find (uc,h,wc,h) ∈ SN

h × SN
h , where

uc,h = [uc,h,1, . . . , uc,h,N]T, wc,h = [wc,h,1, . . . ,wc,h,N]T such that〈
F(1,i)

c,h (uc,h,wc,h), vh

〉
= 0 ∀vh ∈ Sh, i = 1, . . . ,N, (4.75)〈

F(2,i)
c,h (uc,h,wc,h), vh

〉
= 0 ∀vh ∈ Shi = 1, . . . ,N, (4.76)

where the components are〈
F(1,i)

c,h (uc,h,wc,h), vh

〉
= τ ((L∇wc,h)i,∇vh) + (uc,h,i, vh)h − (uold

h,i , vh)h,〈
F(2,i)

c,h (uc,h,wc,h), vh

〉
= ε2(∇uc,h,i,∇vh) +

1
c

(min(0,uc,h,i), vh)h − (wc,h,i, vh)h

− ((Tuc,h)i, vh)h −
1
N

N∑
j=1

[1
c

(min(0,uc,h, j), vh)h − ((Tuc,h) j, vh)h

]
.

Within our finite element framework, for a given (uh,wh) ∈ SN
h × SN

h , every step of
the SSN method for solving (4.75)–(4.76) requires to compute (δuh, δwh) ∈ SN

h × SN
h

satisfying

τ ((L∇δwh)i,∇vh) +
(
δuh,i, vh

)
h
= −F(1,i)

c,h (uh,wh),

ε2(∇δuh,i,∇vh) +
1
c

(χh
M(uh,i)

δuh,i, vh)h − (δwh,i, vh)h − ((T δuh)i, vh)h

−
1
N

N∑
j=1

[1
c

(χh
M(uh, j)

δuh, j, vh)h − ((T δu)h, j, vh)h

]
= −F(2,i)

c,h (uh,wh),

for all vh ∈ Sh and i = 1, . . . ,N. Here, uh = [uh,1, . . . , uh,N]T, wh = [wh,1, . . . ,wh,N]T,
and δuh = [δuh,1, . . . , δuh,N]T, δwh = [δwh,1, . . . , δwh,N]T. Further, we define χh

M(uh,i)
B∑m

j=1 χ
h
M(uh,i)

(p j)ϕ j with χh
M(uh,i)

(p j) = 0 if uh,i(p j) ≥ 0 and χh
M(uh,i)

(p j) = 1 otherwise. In

the following, we consider T = I − 11T, which is a typical example as mentioned in
Section 4.1. If we now write a function vh ∈ Sh by vh =

∑
j∈Jh

vh, j ϕ j and denote the
vector of coefficients by v, the fully discrete linear systems (smooth and nonsmooth)
per (semismooth) Newton step read in matrix form as[

−A I ⊗M
I ⊗M τL ⊗K

] [
u(k+1)

w(k+1)

]
=

[
b

(I ⊗M)uold

]
. (4.77)

Here, u(k+1) =
[(
u

(k+1)
1

)T
, . . . ,

(
u

(k+1)
N

)T
]T
, w(k+1) =

[(
w

(k+1)
1

)T
, . . . ,

(
w

(k+1)
N

)T
]T
∈ RNm,

and uold =
[(
uold

1

)T
, . . . ,

(
uold

N

)T
]T
∈ RNm is the solution vector from the previous

time step. Remember that k denotes the iteration step of the (semismooth) Newton
method. The first right-hand side is

b = (I ⊗M)
(
−2

(
u(k)

)3
+

3
2

(
u(k)

)2
)
+

1
N

(I ⊗M)

 N∑
j=1

2
(
u

(k)
j

)3
−

3
2

(
u

(k)
j

)2
1

for the use of the smooth potential, where u(k) =
[(
u

(k)
1

)T
, . . . ,

(
u

(k)
N

)T
]

and 1 =

[1, . . . , 1]T
∈ RNm. Note that the powers of the form in

(
u(k)

)p
or

(
u

(k)
j

)p
, p ∈ N,

4.6. FINITE ELEMENT APPROXIMATION 141

have to be understood elementwise. For the use of the nonsmooth potential, we
have

b = 0.

As in the last chapter, M ∈ Rm×m is the lumped mass matrix and K ∈ Rm×m is the
stiffness matrix. Remember thatM is a diagonal, symmetric positive definite matrix,
andK is symmetric positive semidefinite. Moreover, I ∈ RN×N is the identity matrix.
The blockA is given as

A =


A(1,1) A(2) · · · A(N−1) A(N)
A(1) A(2,2) · · · A(N−1) A(N)
...

...
. . .

...
...

A(1) A(2) · · · A(N−1,N−1) A(N)
A(1) A(2) · · · A(N−1) A(N,N)


,

where for i = 1, . . . ,N

A(i,i) = A(i,i)(u
(k)
i) = ε2K +

(
1 −

1
N

)
F(i) ∈ R

m×m,

A(i) = A(i)(u
(k)
i) = −

1
N
F(i) ∈ R

m×m, (4.78)

F(i) = F(i)(u
(k)
i) = diag

(
[M] j j

[
3
(
u(k)

h,i, j

)2
− 3u(k)

h,i, j + 0.5
])

j=1,...,m
∈ Rm×m,

in the smooth system and

A(i,i) = A(i,i)(u
(k)
i) = ε2K +

(
1 −

1
N

) (
c−1G(i) −M

)
,

A(i) = A(i)(u
(k)
i) = −

1
N

(
c−1G(i) −M

)
, (4.79)

G(i) = G(i)(u
(k)
i) = diag

 [M] j j if u(k)
h,i, j < 0,

0 otherwise


j=1,...,m

∈ Rm×m,

in the nonsmooth system. Here, u(k)
h,i, j denotes the jth element of the vector u(k)

h,i .
Regarding the blocks F(i), i = 1, . . . ,N, note that the smooth Cahn–Hilliard model
yields solutions which satisfy 0 . u(k)

h,i, j . 1 for i = 1, . . . ,N, j = 1, . . . ,m. Hence,

3(u(k)
h,i, j)

2
− 3u(k)

h,i, j + 0.5 ∈ [−0.25, 3δ2(u(k)) − 3δ(u(k)) + 0.5] =: [−0.25, α(u(k))] (4.80)

for i = 1, . . . ,N, j = 1, . . . ,m, where

δ(u(k)) = u(k)
h,p,q such that |u(k)

h,p,q − 0.5| = ‖u(k)
− 0.5 · 1‖∞. (4.81)

The lower bound follows from the fact that the function f : R→ R, z 7→ 3z2
−3z+0.5,

has a global minimum at z0 = 0.5 with f (z0) = −0.25. For the upper bound, we make
use of the symmetry of f around z0.

Now, we have arrived at the core of our numerical algorithms — the numerical
solution of systems of linear equations. Due to the use of FEM, all the matrix

142 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

blocksM ,K,G(i),F(i), i = 1, . . . ,N, are large and sparse. In particular, the higher the
number N of phases is the larger is every block of the system matrix in (4.77). In the
next section, we design effective practical preconditioners for the two linear systems
represented in (4.77).

4.7 Preconditioning

This section is devoted to the development of practical preconditioners for the effi-
cient solution of the two linear systems represented in (4.77). In both cases, smooth
and nonsmooth, a linear, nonsymmetric system in saddle point form is at the heart
of the computation. Hence, nonsymmetric Krylov subspace solvers have to be used.
Due to the complex structure of the blockA, we rewrite (4.77) and consider[

I ⊗M −A
τL ⊗K I ⊗M

] [
w(k+1)

u(k+1)

]
=

[
b

(I ⊗M)uold

]
. (4.82)

In the following, we denote the coefficient matrix in (4.82) by A. As in the last
chapter, we propose the block triangular preconditioner

P =

[
I ⊗M 0

τL ⊗K −Ŝ

]
, (4.83)

where Ŝ is an approximation of the Schur complement S = I ⊗M + τ(L ⊗K)(I ⊗
M)−1A. Inverting the block I ⊗M is cheap asM is a nonsingular diagonal matrix.
The remaining task is to design a Schur complement approximation Ŝ that is easy
to invert and resembles S. Finally, the practical block triangular preconditioner is
given by

P0 =

[
I ⊗M 0
τL ⊗K −S0

]
,

where we have to discuss an implementable Schur complement approximation S0 of
Ŝ. Overall, the two difficult points are the nondiagonal block matricesA andL⊗K,
which couple N equations of size m, respectively. The nonsymmetric block matrixA
contains the gradient energy parts, which only arise in the diagonal blocks, as well
as the interacting terms coming from the potential. These include in the case of the
nonsmooth potential the coupling of all penalization terms. In fact, the latter poses
the most challenging part; see Section 4.7.2 for details. As in the last chapter, we begin
with the simpler smooth problem and continue with the harder nonsmooth one. Note
that the construction of efficient preconditioners in the smooth case is already well
established by Boyanova et al. [38]; see also [35, 37, 36, 3] for the two-component
model. The authors discussed among others the fully implicit time-discrete scheme.
However, they only consider the caseL = I in the fully discrete problem. We extend
the procedure to the case whereL is symmetric positive semidefinite. Moreover, our
theoretical proofs differ halfway through. The following presentation generalizes
Chapter 3.7 to the vector-valued formulation.

4.7.1 Smooth systems

In the following, we develop a preconditioner for the smooth Cahn–Hilliard system
represented in (4.82). This can be achieved by applying the steps in [38], which we

4.7. PRECONDITIONING 143

explain below in the proof of Theorem 4.10. Note that the proof of Theorem 4.10
differs from the one in [38] at a marked point. Moreover, we generalize the proof
from the case L = I to the case of symmetric positive semidefinite matrices L. Due
to (4.80) together with Proposition 3.10, the diagonal entries of F(i), i = 1, . . . ,N, lie
in the interval [−0.25 Chd, Chdα(u(k))]. Hence, as in [38], we suggest to neglect the
blocks F(i), i = 1, . . . ,N inA. Therefore, we approximateA as

A0 =

[
I ⊗M −ε2I ⊗K
τL ⊗K I ⊗M

]
.

In what follows, we discuss the quality of the approximation A0. We denote the
Schur complement ofA0 by S̃ = I ⊗M + τε2(L ⊗K)(I ⊗M)−1(I ⊗K). Note that
both the (1, 1) and (2, 2) block ofA0 are nonsingular. In particular, they are symmetric
positive definite.

Theorem 4.9. A0 is nonsingular. In particular, S̃ is symmetric positive definite.

Proof. According to (2.18),A0 is nonsingular if and only if S̃ is. We rewrite S̃ as

S̃ = I ⊗M + τε2(L ⊗K)(I ⊗M)−1(I ⊗K)
(2.16)
= I ⊗M + τε2(L ⊗K)(I ⊗M−1)(I ⊗K)

(2.15)
= I ⊗M + τε2(L ⊗KM−1K).

Due to the symmetry ofM ,K, and L, as well as the identity (2.14), it follows that S̃
is symmetric. Moreover, Theorem 2.34 yields

σ(L ⊗KM−1K) =
{
λi(L)λ j(KM−1K), i = 1, . . . ,N, j = 1, . . . ,m

}
,

whereλi(L), i = 1, . . . ,N,denote the eigenvalues ofL, andλ j(KM−1K), j = 1, . . . ,m,
denote the eigenvalues ofKM−1K. Due to Proposition 3.10 as well as the symmetric
positive semidefiniteness of L, it holds σ(L ⊗KM−1K) ⊂ R≥0. Finally, using the
Rayleigh quotient argument (Definition 2.27), we obtain

vTS̃v = vT(I ⊗M)v︸ ︷︷ ︸
>0

+τε2 vT(L ⊗KM−1K)v︸ ︷︷ ︸
≥0

> 0

for all 0 , v ∈ RNm. This gives σ(S̃) ⊂ R>0. �

Consider the generalized eigenvalue problem

A

[
q1
q2

]
= λA0

[
q1
q2

]
. (4.84)

Theorem 4.10. It holds
σ(A−1

0 A) ⊂ Bς(1).

The circle radius is bounded by ς <
√
τρ(L)
ε max

{
0.25, |α(u(k))|

}
, where α(u(k)) is given

in (4.80)–(4.81). In particular, Nm eigenvalues are equal to one. We get ς < 0.5 when
τ ≤ 0.25 ε2ρ(L)−1 max−2

{
0.25, |α(u(k))|

}
.

144 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

Proof. We transform (4.84) to

(A −A0)
[
q1
q2

]
= µA0

[
q1
q2

]
, (4.85)

where µ = λ− 1. The inverse ofA0 can be expressed via a combination of (2.23) and
(2.24) as

A
−1
0 =

[
S̃−1 ε2S̃−1(I ⊗K)(I ⊗M)−1

−τS̃−1(L ⊗K)(I ⊗M)−1 S̃−1

]
. (4.86)

Note that we have used the symmetry of S̃. More precisely, S̃ is equal to the Schur
complement ofA0 in its (2, 2) block. This yields

A
−1
0 (A −A0) =

 0 S̃−1
[
−A + ε2(I ⊗K)

]
0 −τS̃−1(L ⊗K)(I ⊗M)−1

[
−A + ε2(I ⊗K)

]  . (4.87)

Hence, (4.85) has Nm zero eigenvalues corresponding to eigenvectors [qT
1 ,0

T]T. Thus,
(4.84) has Nm one eigenvalues. Next, we write (4.85) out

(−A + ε2(I ⊗K))q2 = µ((I ⊗M)q1 − ε
2(I ⊗K)q2), (4.88)

0 = µ(τ(L ⊗K)q1 + (I ⊗M)q2). (4.89)

We express µq1 from (4.88) and substitute it into (4.89)

τ(L ⊗K)(I ⊗M)−1
[
A − ε2(I ⊗K)

]
q2

= µ
[
τε2(L ⊗K)(I ⊗M)−1(I ⊗K) + (I ⊗M)

]
q2.

(4.90)

Multiplying (4.90) from the left by (I ⊗M)−1 yields the following generalized eigen-
value problem

τ(I ⊗M)−1(L ⊗K)(I ⊗M)−1
[
A − ε2(I ⊗K)

]
q2

= µ
[
I + τε2(I ⊗M)−1(L ⊗K)(I ⊗M)−1(I ⊗K)

]
q2.

(4.91)

Note that the first identity matrix on the right-hand of (4.91) is correctly written as
(IN × Im), where IN ∈ RN×N and Im ∈ Rm×m. Under this notation, the remainder
identity matrices in (4.91) are correctly written as IN. In order to ease the notation,
we write I for all identity matrices. We introduce

R B τ
[
I + τε2(I ⊗M)−1(L ⊗K)(I ⊗M)−1(I ⊗K)

]−1

(I ⊗M)−1(L ⊗K)(I ⊗M)−1
[
A − ε2(I ⊗K)

]
and estimate its eigenvalues in the following. Therefore, we first perform a similarity
transformation (Definition 2.23) on R in the form of (I ⊗M

1
2)R (I ⊗M−

1
2) =: R̃.

Note thatR and R̃ have the same eigenvalues. Next, we analyze the eigenvalues of

4.7. PRECONDITIONING 145

R̃. Therefore, we first reformulate R̃ as

R̃ = τ(I ⊗M
1
2)

[
I + τε2(I ⊗M)−1(L ⊗K)(I ⊗M)−1(I ⊗K)

]−1

(I ⊗M)−1(L ⊗K)(I ⊗M)−1
[
A − ε2(I ⊗K)

]
(I ⊗M−

1
2)

= τ
[(
I + τε2(I ⊗M)−1(L ⊗K)(I ⊗M)−1(I ⊗K)

)
(I ⊗M−

1
2)
]−1

(I ⊗M)−1(L ⊗K)(I ⊗M)−1
[
A − ε2(I ⊗K)

]
(I ⊗M−

1
2)

= τ
[
(I ⊗M−

1
2) + τε2(I ⊗M)−1(L ⊗K)(I ⊗M)−1(I ⊗K)(I ⊗M−

1
2)
]−1

(I ⊗M)−1(L ⊗K)(I ⊗M)−1
[
A − ε2(I ⊗K)

]
(I ⊗M−

1
2)

= τ
[
(I ⊗M−

1
2)

(
I + τε2(I ⊗M)−

1
2 (L ⊗K)(I ⊗M)−1(I ⊗K)(I ⊗M−

1
2)
)]−1

(I ⊗M)−1(L ⊗K)(I ⊗M)−1
[
A − ε2(I ⊗K)

]
(I ⊗M−

1
2)

= τ
[
I + τε2(I ⊗M)−

1
2 (L ⊗K)(I ⊗M)−1(I ⊗K)(I ⊗M−

1
2)
]−1

(I ⊗M)−
1
2 (L ⊗K)(I ⊗M)−1

[
A − ε2(I ⊗K)

]
(I ⊗M−

1
2)

= τ
(
I + τε2L̃K̃

)−1
L̃Ã, (4.92)

where K̃ = (I ⊗M−
1
2)(I ⊗K)(I ⊗M−

1
2), L̃ = (I ⊗M−

1
2)(L ⊗K)(I ⊗M−

1
2), and

Ã = (I ⊗M−
1
2)

[
A − ε2(I ⊗K)

]
(I ⊗M−

1
2). From now on, this proof differs from the

one in [38]. It can be easily seen that K̃ is symmetric. If we rewrite K̃ as

K̃ = I ⊗M−
1
2KM−

1
2 ,

Theorem 2.34 yields
σ(K̃) = σ(M−

1
2KM−

1
2) ⊂ R≥0.

Hence, K̃ is symmetric positive semidefinite. Due to Theorem 2.27 (symmetric Schur
decomposition), we can writeM−

1
2KM−

1
2 = QKΛKQ

T
K, whereQK = [qK,1| . . . |qK,m] ∈

Rm×m is orthogonal and ΛK = diag(λK,1, . . . , λK,m) such that M−
1
2KM−

1
2qK, j =

λK, j qK, j for j = 1, . . . ,m. Similarly, it can be easily seen that L̃ is symmetric since
L is symmetric. If we rewrite L̃ as

L̃ = L ⊗M−
1
2KM−

1
2 ,

Theorem 2.34 yields

σ(L ⊗M−
1
2KM−

1
2) =

{
λL,i λK, j, i = 1, . . . ,N, j = 1, . . . ,m

}
,

where λL,i, i = 1, . . . ,N, denote the eigenvalues of L. Due to Proposition 3.10 as
well as the symmetric positive semidefiniteness of L, it holds σ(L̃) ⊂ R≥0. Due to
Theorem 2.27 (symmetric Schur decomposition), we can write L = QLΛLQ

T
L , where

QL = [qL,1| . . . |qL,N] ∈ RN×N is orthogonal and ΛL = diag(λL,1, . . . , λL,N) such that
LqL, j = λL, j qL, j for j = 1, . . . ,N. Using the two introduced Schur decompositions, we
can rewrite K̃ and L̃ as

K̃ = I ⊗M−
1
2KM−

1
2 = QLQ

T
L ⊗QKΛKQ

T
K

(2.15)
= (QL ⊗QK)(I ⊗ΛK)(QT

L ⊗Q
T
K),

L̃ = L ⊗M−
1
2KM−

1
2 = QLΛLQ

T
L ⊗QKΛKQ

T
K

(2.15)
= (QL ⊗QK)(ΛL ⊗ΛK)(QT

L ⊗Q
T
K).

146 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

Hence,

L̃K̃ = (QL ⊗QK)(ΛL ⊗ΛK)(QT
L ⊗Q

T
K)(QL ⊗QK)(I ⊗ΛK)(QT

L ⊗Q
T
K)

(2.15)
= (QL ⊗QK)(ΛL ⊗Λ2

K)(QT
L ⊗Q

T
K), (4.93)

and we can rewrite
(
I + τε2L̃K̃

)−1
L̃ in (4.92) further as(

I + τε2L̃K̃
)−1
L̃ =

[
(QL ⊗QK)(QT

L ⊗Q
T
K) + τε2(QL ⊗QK)(ΛL ⊗Λ2

K)(QT
L ⊗Q

T
K)

]−1

(QL ⊗QK)(ΛL ⊗ΛK)(QT
L ⊗Q

T
K)

=
[
(QL ⊗QK)

(
I + τε2(ΛL ⊗Λ2

K)
)

(QT
L ⊗Q

T
K)

]−1

(QL ⊗QK)(ΛL ⊗ΛK)(QT
L ⊗Q

T
K)

= (QL ⊗QK)
[
I + τε2(ΛL ⊗Λ2

K)
]−1

(ΛL ⊗ΛK)(QT
L ⊗Q

T
K), (4.94)

where
[
I + τε2(ΛL ⊗Λ2

K)
]−1

(ΛL ⊗ΛK) is a diagonal matrix. Hence,
(
I + τε2L̃K̃

)−1
L̃

is symmetric. It follows that(
I + τε2L̃K̃

)−1
L̃(qL,i ⊗ qK, j) =

λL,iλK, j

1 + τε2λL,iλ2
K, j

(qL,i ⊗ qK, j) (4.95)

for i = 1, . . . ,N, j = 1, . . . ,m. Using the inequality

0 ≤ (1 − ab)2 = 1 + a2b2
− 2ab

with a, b ∈ R, we can bound the eigenvalues of (4.95) as

λL,iλK, j

1 + τε2λL,iλ2
K, j

≤
λL,iλK, j

2ε
√
τλK, j

√
λL,i
=

√
λL,i

2ε
√
τ

for j = 1, . . . ,m. Here, we have used a2 = τε2λK, j and b2 = λL,iλK, j. This yields

ρ
((
I + τε2L̃K̃

)−1
L̃
)
≤

√
ρ(L)

2ε
√
τ
. (4.96)

Finally, we can estimate the eigenvalues of R̃. Note that due to Theorem 2.31, it
holds ρ(R̃) ≤ ‖R̃‖. Further, we obtain

‖R̃‖ ≤ τ‖
(
I + τε2L̃K̃

)−1
L̃‖ ‖Ã‖ = τ ρ

((
I + τε2L̃K̃

)−1
L̃
)
‖Ã‖ ≤

τ
√
ρ(L)

2ε
√
τ
‖Ã‖,

(4.97)

where the equality holds due to the symmetry of
(
I + τε2L̃K̃

)−1
L̃. Moreover, due

to the diagonal structure of each block inA − ε2(I ⊗K) we have

Ã = (I ⊗M−
1
2)

[
A − ε2(I ⊗K)

]
(I ⊗M−

1
2)

=
1
N


(N − 1)F̃(1) −F̃(2) · · · −F̃(N−1) −F̃(N)
−F̃(1) (N − 1)F̃(2) · · · −F̃(N−1) −F̃(N)
...

...
. . .

...
...

−F̃(1) −F̃(2) · · · (N − 1)F̃(N−1) −F̃(N)
−F̃(1) −F̃(2) · · · −F̃(N−1) (N − 1)F̃(N)


,

4.7. PRECONDITIONING 147

where
F̃(i) = F̃(i)(u

(k)
i) = diag

(
3(u(k)

h,i, j)
2
− 3u(k)

h,i, j + 0.5
)

j=1,...,m.

Due to (4.80)–(4.81), the diagonal entries of F̃(i), i = 1, . . . ,N, lie in the interval
[−0.25, α(u(k))]. Since each block in Ã is diagonal, the number of nonzero entries per
row or column is N. Moreover,

‖Ã‖1 ≤ 2
N − 1

N
max

{
0.25, |α(u(k))|

}
and ‖Ã‖∞ ≤ 2

N − 1
N

max
{
0.25, |α(u(k))|

}
.

Thus, (2.12) yields

‖Ã‖ ≤

√
‖Ã‖1‖Ã‖∞ ≤ 2

N − 1
N

max
{
0.25, |α(u(k))|

}
.

Hence, we obtain in (4.97)

‖R̃‖ ≤
N − 1

N

√
τρ(L)
ε

max
{
0.25, |α(u(k))|

}
<

√
τρ(L)
ε

max
{
0.25, |α(u(k))|

}
. (4.98)

Therefore, for τ ≤ 0.25 ε2ρ(L)−1 max−2
{
0.25, |α(u(k))|

}
, it holds σ(R̃) = σ(R) ⊂ B0.5(0)

and hence σ(A−1
0 A) ⊂ B0.5(1). �

Remark 4.5. Note that the time step condition in Theorem 4.10 complies with the one in
Theorem 4.1 and 4.2.

After we have proven that A0 is a reasonable approximation of A, we can go
over to the construction of a suitable preconditioner for A0 and hence for A. We
propose the block triangular preconditionerP in (4.83), where we design Ŝ to be an
approximation of S̃ = I ⊗M + τε2(L ⊗K)(I ⊗M)−1(I ⊗K), which is the Schur
complement ofA0. More precisely, we use

Ŝ = S1(I ⊗M)−1S2 (4.99)

=
(
I ⊗M + ε

√
τ(L ⊗K)

)
(I ⊗M)−1

(
I ⊗M + ε

√
τ(I ⊗K)

)
(4.100)

= I ⊗M + τε2(L ⊗K)(I ⊗M)−1(I ⊗K) + ε
√
τ(I ⊗K) + ε

√
τ(L ⊗K). (4.101)

The first two terms in (4.101) match the exact Schur complement S̃ ofA0. Due to the
balanced distribution of ε2τ in form of ε

√
τ in both factors S1 and S2, the influence

of both remainder terms in (4.101) is reduced.

Lemma 4.11. It holds
σ
(
Ŝ−1S̃

)
⊂ (0, 1].

In particular,
σ
(
Ŝ−1S̃

)
⊂

[
β(ε, τ,M ,K,L), 1

]
,

where

β(ε, τ,M ,K,L) = min

 1

1 + ε
√
τρ(M−

1
2KM−

1
2)
,

1

1 + 1+l0
2
√

l0

,
1

1 + 1+ρ(L)
2
√
ρ(L)


and l0 denotes the smallest positive eigenvalue of L.

148 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

Proof. As in the proof of Theorem 4.9, we can show that Ŝ is symmetric positive
definite. Hence, Lemma 2.30 implies σ(Ŝ−1S̃) ⊂ R>0. In order to obtain sharper
bounds, we proceed as in the proof of Theorem 4.10. First, we rewrite Ŝ−1S̃ as

Ŝ−1S̃ =
[
I ⊗M + τε2(L ⊗K)(I ⊗M)−1(I ⊗K) + ε

√
τ(I ⊗K) + ε

√
τ(L ⊗K)

]−1[
I ⊗M + τε2(L ⊗K)(I ⊗M)−1(I ⊗K)

]
=

[
(I ⊗M

1
2)

(
I + τε2(I ⊗M−

1
2)(L ⊗K)(I ⊗M)−1(I ⊗K)(I ⊗M−

1
2)

+ ε
√
τ(I ⊗M−

1
2)(I ⊗K)(I ⊗M−

1
2)

+ε
√
τ(I ⊗M−

1
2)(L ⊗K)(I ⊗M−

1
2)
)

(I ⊗M
1
2)
]−1

(I ⊗M
1
2)[

I + τε2(I ⊗M−
1
2)(L ⊗K)(I ⊗M)−1(I ⊗K)(I ⊗M−

1
2)
]

(I ⊗M
1
2)

= (I ⊗M−
1
2)

[
I + τε2(I ⊗M−

1
2)(L ⊗K)(I ⊗M)−1(I ⊗K)(I ⊗M−

1
2)

+ε
√
τ(I ⊗M−

1
2)(I ⊗K)(I ⊗M−

1
2) + ε

√
τ(I ⊗M−

1
2)(L ⊗K)(I ⊗M−

1
2)
]−1[

I + τε2(I ⊗M−
1
2)(L ⊗K)(I ⊗M)−1(I ⊗K)(I ⊗M−

1
2)
]

(I ⊗M
1
2)

= (I ⊗M−
1
2)

[
I + ε2τL̃K̃ + ε

√
τK̃ + ε

√
τL̃

]−1 [
I + ε2τL̃K̃

]
(I ⊗M

1
2).

Hence, Ŝ−1S̃ and R B
[
I + ε2τL̃K̃ + ε

√
τK̃ + ε

√
τL̃

]−1 [
I + ε2τL̃K̃

]
are similar

and have the same eigenvalues. Here, K̃ = (I ⊗M−
1
2)(I ⊗ K)(I ⊗M−

1
2) and

L̃ = (I⊗M−
1
2)(L⊗K)(I⊗M−

1
2) are the same matrices as in the proof of Theorem 4.10.

Again, we make use of the symmetric Schur decompositions of M−
1
2KM−

1
2 and L

in the form of M−
1
2KM−

1
2 = QKΛKQ

T
K, where QK = [qK,1| . . . |qK,m] ∈ Rm×m is

orthogonal and ΛK = diag(λK,1, . . . , λK,m) such that M−
1
2KM−

1
2qK, j = λK, j qK, j for

j = 1, . . . ,m, and L = QLΛLQ
T
L , where QL = [qL,1| . . . |qL,N] ∈ RN×N is orthogonal and

ΛL = diag(λL,1, . . . , λL,N) such that LqL, j = λL, j qL, j for j = 1, . . . ,N. Hence,

R =
[
(QL ⊗QK)(QT

L ⊗Q
T
K) + ε2τ(QL ⊗QK)(ΛL ⊗Λ2

K)(QT
L ⊗Q

T
K)

+ε
√
τ(QL ⊗QK)(I ⊗ΛK)(QT

L ⊗Q
T
K) + ε

√
τ(QL ⊗QK)(ΛL ⊗ΛK)(QT

L ⊗Q
T
K)

]−1[
(QL ⊗QK)(QT

L ⊗Q
T
K) + ε2τ(QL ⊗QK)(ΛL ⊗Λ2

K)(QT
L ⊗Q

T
K)

]
=

[
(QL ⊗QK)

(
I + ε2τ(ΛL ⊗Λ2

K) + ε
√
τ(I ⊗ΛK) + ε

√
τ(ΛL ⊗ΛK)

)
(QT

L ⊗Q
T
K)

]−1

(QL ⊗QK)
[
I + ε2τ(ΛL ⊗Λ2

K)
]

(QT
L ⊗Q

T
K)

= (QL ⊗QK)
[
I + ε2τ(ΛL ⊗Λ2

K) + ε
√
τ(I ⊗ΛK) + ε

√
τ(ΛL ⊗ΛK)

]−1[
I + ε2τ(ΛL ⊗Λ2

K)
]

(QT
L ⊗Q

T
K).

It follows that

σ(R) =

 1 + ε2τλL,iλ2
K, j

1 + ελK, j

(
ετλL,iλK, j +

√
τ +
√
τλL,i

) : j = 1, . . . ,m, i = 1, . . . ,N

 . (4.102)

4.7. PRECONDITIONING 149

Remember that λK, j, λL,i ≥ 0 for j = 1, . . . ,m, i = 1, . . . ,N. Hence, we obtain the upper
bound

1 + ε2τλL,iλ2
K, j

1 + ε2τλL,iλ2
K, j + ε

√
τλK, j + ε

√
τλL,iλK, j︸ ︷︷ ︸

≥0

≤

1 + ε2τλL,iλ2
K, j

1 + ε2τλL,iλ2
K, j

= 1.

If λK, j = 0, we obtain 1 ∈ σ(R). If λL,i = 0 and λK, j , 0, we obtain

1
1 + ε

√
τλK, j

∈ σ(R).

As a first lower bound for the spectrum ofR, we get

1
1 + ε

√
τλK, j

≥
1

1 + ε
√
τρ(M−

1
2KM−

1
2)
.

In the following, we assume λK, j, λL,i , 0. We can rewrite the eigenvalues in (4.102)
as

1 + ε2τλL,iλ2
K, j

1 + ε2τλL,iλ2
K, j + ε

√
τλK, j + ε

√
τλL,iλK, j

=
1

1 +
ε
√
τλK, j(1+λL,i)

1+ε2τλL,iλ2
K, j

.

Using the inequality
0 ≤ (1 − ab)2 = 1 + a2b2

− 2ab

with a, b ∈ R, we can bound

ε
√
τλK, j(1 + λL,i)

1 + ε2τλK, jλL,iλK, j
≤

ε
√
τλK, j(1 + λL,i)

2ε
√
τ
√
λK, j

√
λL,iλK, j

=
1 + λL,i

2
√
λL,i
≤ max

1 + l0
2
√

l0
,

1 + ρ(L)

2
√
ρ(L)

 ,
where l0 is the smallest positive eigenvalue of L. Here, we have used a2 = ε2τλK, j
and b2 = λL,iλK, j. �

Lemma 4.12. If L = I , then
σ
(
Ŝ−1S̃

)
⊂ [0.5, 1].

Proof. Due to Proposition 3.10, S̃ and Ŝ are symmetric positive definite. Hence, we
may prove the result using the Rayleigh quotient argument in Theorem 2.29. We
write

vTS̃v

vTŜv
=

vT
(
I ⊗M + τε2(I ⊗K)(I ⊗M)−1(I ⊗K)

)
v

vT
(
I ⊗M + τε2(I ⊗K)(I ⊗M)−1(I ⊗K) + 2

√
τε(I ⊗K)

)
v

=
aTa + bTb

aTa + bTb + 2aTb
,

where a = (I ⊗M)
1
2v and b =

√
τε(I ⊗M)−

1
2 (I ⊗K)v. From the properties of M

and K, it follows aTa > 0 and bTb,aTb ≥ 0 and therefore vTS̃v
vTŜv

≤ 1. On the other

hand, (a− b)T(a− b) ≥ 0, which gives vTS̃v
vTŜv

≥ 0.5. �

150 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

Now, let us discuss the practical realization ofP. The (1, 1) block I ⊗M is a diagonal
matrix with positive entries. Hence, its inverse can be performed by elementwise
multiplications. The block

S2 = I ⊗M + ε
√
τ(I ⊗K) = I ⊗

(
M + ε

√
τK

)
in (4.99) is block diagonal and contains the same discrete elliptic operator,M+ε

√
τK,

on each diagonal block. Therefore, we approximate the inverse of each diagonal block
with one and the same AMG preconditioner. The resulting practical approximation
of S2 is

I ⊗AMG
(
M + ε

√
τK

)
. (4.103)

It remains to discuss the action of the inverse of the block S2 in (4.99). Due to the
presence of L, S2 is in general not block diagonal. During the rest of this section,
we restrict the class of considerations to diagonal and circulant (see Definition 2.28)
matrices L. More general forms are a topic of further research and are not discussed
in this thesis. As reference examples, we take L = I (used, e.g., in [118]) and
L = I − 1

N11T (used, e.g., in [59, 85]). The latter is a circulant matrix. Moreover, it
satisfies the condition L1 = 0 in (4.11). In the former case L = I , we obtain S1 = S2.
Hence, the action of the inverse of S1 is implemented as in (4.103). This results in the
following practical Schur complement approximation

S0 =
[
I ⊗AMG

(
M + ε

√
τK

)]
(I ⊗M)−1

[
I ⊗AMG

(
M + ε

√
τK

)]
.

Independently from the number N of phases, we have to initialize only one AMG
preconditioner.

Now, let us study the case L = I − 1
N11T, which serves as a reference example for

circulant matrices L. Then, S1 is not block diagonal anymore. In fact, each block is
occupied byK. However, asL is a circulant matrix, it can be diagonalized using the
discrete Fourier transform matrix FN (see Definition 2.29 and Theorem 2.33), i.e.,

L = FN diag(λL,1, . . . , λL,N)F −1
N ,

see [47]. This property forms the basis of an efficient fast Fourier transform (FFT)
based preconditioner, which is used, e.g., in [143], and briefly reviewed in the fol-
lowing. In our case, we do not merely diagonalize L, but rather the whole block
matrix S1 since S1 is the matrix whose inverse we have to apply. More precisely, if
we apply the FFT to a system of the form S1y = g, we get an equivalent system with
the block diagonal system matrix

(F −1
N ⊗ I)S1(FN ⊗ I) = I ⊗M +

√
τεdiag(λL,1, . . . , λL,N) ⊗K. (4.104)

Inserting the eigenvalues of L, which are λL,1 = 0 and λL,2 = . . . = λL,N = 1, we see
that the resulting approximation in (4.104) is of block diagonal form, and almost all
diagonal blocks are equal. In fact, only two different diagonal blocks occur: M for
the case λL,1 = 0 andM +

√
τεK for all remaining eigenvalues λL, j = 1, j = 2, . . . ,N.

As the application of the Fourier transform will in general result in complex valued
systems, we formulate the N blocks in (4.104) to 2 × 2 real-valued block systems. In
detail, we have to solve two types of systems: One time

AL

[
ỹr
ỹc

]
=

[
M 0
0 M

] [
ỹr
ỹc

]
=

[
g̃r
g̃c

]
(4.105)

4.7. PRECONDITIONING 151

and (N − 1) times

AL

[
ỹr
ỹc

]
=

[
M +

√
τεK 0

0 M +
√
τεK

] [
ỹr
ỹc

]
=

[
g̃r
g̃c

]
. (4.106)

Again, the system (4.105) arises for the diagonal block with λL,1 = 0 and (4.106) for
all remaining eigenvalues λL, j, j = 2, . . . ,N. As in [143], we solve each of the above N
real-valued systems with a fixed number of steps of an inexact Uzawa-type method[

ỹr
ỹc

](l+1)

=

[
ỹr
ỹc

](l)

+ ωP−1
L

[
r̃r
r̃c

]
,

where [
r̃r
r̃c

](l)

=

[
g̃r
g̃c

]
−AL

[
ỹr
ỹc

](l)

is the lth residual, and ω is the relaxation parameter. In the case (4.105), we use the
preconditioner

PL =

[
M 0
0 M

]
,

and its inverse can be performed by elementwise multiplications. In the case (4.106),
we use the preconditioner

PL =

[
AMG(M +

√
τεK) 0

0 AMG(M +
√
τεK)

]
.

Again, independently from the number N of phases, we have to initialize only one
AMG preconditioner.

Here, we finish the discussion about preconditioning of smooth Cahn–Hilliard sys-
tems. In Section 4.8.1, we illustrate the robust performance of our developed pre-
conditioner applied with BiCG. Next, we come to the harder case of nonsmooth
systems. We will see that a simplification of the coefficient matrix in form ofA0 is
not satisfying anymore.

4.7.2 Nonsmooth systems

In the following, we develop a preconditioner for the nonsmooth Cahn–Hilliard
system represented in (4.82). The outer structure is the same as we have in the
smooth system. However, as in the previous chapter, neglecting the penalty blocks
G(i), i = 1, . . . ,N, in A would give a worse approximation for small penalization
parameters, which is summarized below in Theorem 4.13. The penalization is even
more crucial than in the last chapter. As can be seen from (4.79), penalized entries
are in general scattered throughout the diagonals of every block of A. In particular,
the penalized entries of the nondiagonal blocks A(i), i = 1, . . . ,N, of A lie in the
interval −hd

N

(
c−1
− 1

)
[C, c̃], since c < 1. The nonpenalized entries lie in the interval

hd

N [c̃,C]. This also applies to the diagonal blocksA(i,i), i = 1, . . . ,N, ofA, whereby the
matrix ε2K comes in addition. Again, this indicates a severe dependency between ε
and c and hence h. Note that sufficient sizes of c are c ≤ 10−4, and in our numerical
examples we usually work with c = 10−7. Moreover, we have in mind that we want to

152 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

go over to adaptive mesh strategies, where we coarsen the mesh inside the penalized
regions. All in all, the estimated order of penalized entries is usually of large size
and highly differs to the order of the remaining nonpenalized entries. Hence, they
should not be neglected.

Theorem 4.13. Let

A0 =

[
I ⊗M −ε2I ⊗K
τL ⊗K I ⊗M

]
.

It holds
σ(A−1

0 A) ⊂ Bς(1).

The circle radius is bounded by ς <
√
τρ(L)
cε . In particular, Nm eigenvalues are equal to one.

We get ς < 0.5 when τ ≤ 0.25 c2ε2ρ(L)−1.

Proof. The proof is almost the same as the one for Theorem 4.10. The modification
occurs at the end in (4.97)

‖R̃‖ ≤
τ
√
ρ(L)

2ε
√
τ
‖Ã‖, (4.107)

where ‖Ã‖ differs to the one in the smooth system. Due to the diagonal structure of
each block inA − ε2(I ⊗K), we have

Ã = (I ⊗M−
1
2)

[
A − ε2(I ⊗K)

]
(I ⊗M−

1
2)

=
1
N


(N − 1)

(
c−1G̃(1) − I

)
−

(
c−1G̃(2) − I

)
· · · −

(
c−1G̃(N) − I

)
−

(
c−1G̃(1) − I

)
(N − 1)

(
c−1G̃(2) − I

)
· · · −

(
c−1G̃(N) − I

)
...

...
. . .

...

−

(
c−1G̃(1) − I

)
−

(
c−1G̃(2) − I

)
· · · (N − 1)

(
c−1G̃(N) − I

)
 ,

where

G̃(i) = G̃(i)(u
(k)
i) = diag

 1 if u(k)
h,i, j < 0,

0 otherwise.


i=1,...,m

Therefore,

c−1G̃(i) − I = diag

 c−1
− 1 if u(k)

h,i, j < 0,
−1 otherwise,


i=1,...,m

and the maximum diagonal entry of each block c−1G̃(i) − I , i = 1, . . . ,N, is c−1
− 1.

This is because the penalty parameter c should be close to zero. Since each block in
Ã is diagonal, the number of nonzero entries per row or column is N. Moreover,

‖Ã‖1 ≤ 2
N − 1

N

(
c−1
− 1

)
< 2

N − 1
N

c−1 and ‖Ã‖∞ ≤ 2
N − 1

N

(
c−1
− 1

)
< 2

N − 1
N

c−1.

Thus, (2.12) yields

‖Ã‖ ≤

√
‖Ã‖1‖Ã‖∞ < 2

N − 1
N

c−1.

Hence, we obtain in (4.107)

‖R̃‖ ≤
N − 1

N
c−1

√
τ
√
ρ(L)
ε

<

√
τρ(L)
cε

. (4.108)

Therefore, forτ ≤ 0.25 c2ε2ρ(L)−1, it holdsσ(R̃) = σ(R) ⊂ B0.5(0) and henceσ(A−1
0 A) ⊂

B0.5(1). �

4.7. PRECONDITIONING 153

Hence, neglecting the blocks G(i), i = 1, . . . ,N, in A, as done in the last section for
smooth systems, would only be satisfying for tiny time step sizes τ, which is far
away from being practical. Therefore, we build on the last chapter and keep the
whole block A within our Schur complement approximation. Our proposed Schur
complement preconditioner is

Ŝ = S1(I ⊗M)−1S2

=

(
N

(N − 1)
√
ε

(I ⊗M) +
√
τ(L ⊗K)

)
(I ⊗M)−1

(
(N − 1)

√
ε

N
(I ⊗M) +

√
τA

)
(4.109)

= I ⊗M + τ(L ⊗K)(I ⊗M)−1A +

√
τε(N − 1)

N
(L ⊗K) +

√
τN

√
ε(N − 1)

A. (4.110)

The first two terms in (4.110) match the exact Schur complement. Due to the balanced
distribution of τ in form of

√
τ as well as the scaling with N

(N−1)
√
ε

and its inverse in

both factors, Ŝ1 and Ŝ2, the influence of both remainder terms in (4.110) is reduced.
Let us discuss the action of the inverses ofS1 andS2. The former was already studied
in the previous section. Therefore, let us concentrate on the latter now. The factor S2
still contains the nondiagonal block matrix A shifted by scaled mass matrices. This
shift ensures the positive definiteness of the diagonal blocks of S2. More precisely, if
we write out the diagonal blocks of S2,

√
τε2K +

√
τ(N − 1)

Nc
G(i) +

N − 1
N

(√
ε −
√
τ
)
M ,

for i = 1, . . . ,N, we see that they are positive definite if τ < ε. Remember the
uniqueness condition τ < 4ε2λmax(T)−2ρ(L)−1 that is imposed on our time-discrete
formulation anyway. For our choices of T and L, the uniqueness condition reads
τ < 4ε2. For ε ≤ 0.25, it holds 4ε2 < ε. In the numerical experiments, we never use
interfacial parameters larger than 0.25. Instead, it should be as small as possible.
Hence, the positive definiteness of the diagonal blocks of S2 is always guaranteed in
our numerical experiments.

Remark 4.6. For other choices of T or L, where λmax(T) or ρ(L) is not equal to one, one
might include this information in the Schur complement approximation. For instance,

Ŝ =

Nλmax(T)
√
ρ(L)

(N − 1)
√
ε

(I ⊗M) +
√
τ(L ⊗K)


(I ⊗M)−1

 (N − 1)
√
ε

Nλmax(T)
√
ρ(L)

(I ⊗M) +
√
τA


is a possible candidate. The discussion about further possibilities of T orL is a topic of future
research.

The proposed strategy concerning the solution of a system of the form S2y = g is the
use of a block Jacobi method with a fixed number of steps:

y(l+1) = y(l) + ωP−1
A r

(l),

154 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

where
r(l) = g − S2y

(l)

is the lth residual, and ω is the relaxation parameter. We use the preconditioner

PA =


AMG

(
(N−1)

√
ε

N M +
√
τA(1,1)

)
. . .

AMG
(

(N−1)
√
ε

N M +
√
τA(N,N)

)
 ,

which is an AMG approximation of the block diagonal matrix of S2. In contrast to
the previous section, we have to initialize N AMG preconditioners instead of one.
Moreover, they have to be recomputed in every Newton step since the position of pe-
nalized entries is changing with every Newton step. In detail, the penalized entries
in the blocksA(i) orA(i,i) depend on the phase u(k)

i . Since all phases are separated in
the domain (at least after a few time steps), one cannot expect the penalty parameter
to act in the same regions for all phases. That is why an approximation of the matrix
A, where all diagonal blocks are equal, seems not to be of good quality, and our
experiences confirm this observation. Nevertheless, Section 4.8.1 shows a promising
performance of our developed preconditioner applied with BiCGstab.

Here, we finish the theoretical discussion of the preconditioners. In the next section,
we illustrate their efficiency via various numerical experiments.

4.8 Numerical Results

In this section, we show numerical results for the presented vector-valued Cahn–
Hilliard problems. First, we explain our implementation framework. This is already
described at the beginning of Chapter 3.8 for the most part. Hence, we only add the
differences here.

The connection between the spatial mesh size h, the interfacial parameter ε, and the
time step size τ is as follows. As discussed in Chapter 1.1, it is essential to ensure that
at least eight grid points lie on the interface. Using smooth potentials, this leads to
the condition h ≤ 4

√
2ε · atanh(0.9)/9. Using nonsmooth potentials, this leads to the

condition h ≤ επ/9. As far as we know, there is no theory available for the case of the
regularized nonsmooth potential. In our numerical examples, we use the condition
h ≤ επ/9 for the regularized nonsmooth potential. Regarding the time step size,
we have analyzed the time step conditions for the smooth and nonsmooth implicit
time-discrete system in Section 4.3. For the former, we use τ < ε2/(3ρ(L)) and for the
latter it is τ < 4ε2/(λmax(T)2ρ(L)). As hinted in the previous two sections, we focus
in the following on the matrices T = I −11T, L = I , andL = I − 1

N11T. This leads to
the time step condition τ < ε2/3 in the smooth case and τ < 4ε2 in the nonsmooth case.

The algorithm for the numerical solution of the vector-valued Cahn–Hilliard prob-
lem with a nonsmooth potential is basically the same as in the last chapter; see
Algorithm 3.1 and 3.2. The formulation with a smooth potential is a simplification
of the presented two algorithms. If not mentioned otherwise, the initial state u(0)

is created via a number of randomly distributed circles with slightly different radii,

4.8. NUMERICAL RESULTS 155

which are separated by an interfacial area. The N phases are randomly distributed
among the circles and the surrounding area. Within the interfacial area, we set all
initial phase variables to the value 1/N such that they sum up to one.

Now, we are ready for numerical results.

4.8.1 Robustness

In this section, we demonstrate the robustness of our proposed preconditioners re-
garding all model parameters.

We start with the smooth system in (4.82) with L = I , the preconditioner (4.83) and
the Schur complement approximation (4.100). Each subplot in Figure 4.1 demon-
strates the robustness with respect to a different model parameter. In Figure 4.1(a),
we vary the mesh size h while fixing ε = 9 · 2−7/(4

√
2 · atanh(0.9)), τ = 10−5, N = 5,

and T = 5 · 10−4. In Figure 4.1(b), we vary the interfacial parameter ε while fix-
ing h = 2−7, τ = 10−5, N = 5, and T = 10−3. In Figure 4.1(c), we vary the
time step size τ while fixing h = 2−7, ε = 9 · 2−7/(4

√
2 · atanh(0.9)), N = 5, and

T = 5 · 10−4. In Figure 4.1(d), we vary the number of phases N while fixing
h = 2−7, ε = 9 · 2−7/(4

√
2 · atanh(0.9)), τ = 10−5, and T = 5 · 10−4. All in all, the four

subplots illustrate the independence of our developed preconditioner regarding all
parameters. Finally, in Figure 4.2(a), we vary simultaneously all three parameters
h, ε, τ while fixing N = 5 and T = 5 · 10−4. Table 4.1 illustrates the maximum and
average number of Newton iterations, the maximum and average number of BiCG
iterations, the average CPU time (in seconds) for BiCG, and the CPU time (in sec-
onds) for the whole simulation for each of the five subplots, respectively.

We repeat the tests above for the case L = I − 1
N11T. Each subplot in Figure

4.3 demonstrates the robustness with respect to a different model parameter. In
Figure 4.2(b), we vary simultaneously all three parameters h, ε, τ while fixing N = 5
and T = 5 · 10−4. Table 4.2 illustrates the maximum and average number of Newton
iterations, the maximum and average number of BiCG iterations, the average CPU
time (in seconds) for BiCG, and the CPU time (in seconds) for the whole simulation
for each of the five subplots, respectively.
We proceed with the nonsmooth system in (4.82) with L = I , the preconditioner
(4.83) and the Schur complement approximation (4.109). Each subplot in Figure 4.4
and 4.5(a) demonstrates the robustness with respect to a different model parameter.
In Figure 4.4(a), we vary the mesh size h while fixing nc = 20, ε = 9 · 2−7/π, τ =
10−3, N = 5, cpmax = 10−7, and T = 2 · 10−2. In Figure 4.4(b), we vary the interfa-
cial parameter ε while fixing nc = 20, h = 2−7, τ = 10−3, N = 5, cpmax = 10−7, and
T = 2 · 10−2. In Figure 4.4(c), we vary the time step size τ while fixing nc = 5, h =
2−7, ε = 9 · 2−7/π, N = 5, cpmax = 10−7, and T = 2 · 10−2. In Figure 4.4(d), we vary the
number of phases N while fixing nc = 20, h = 2−7, ε = 9·2−7/π, τ = 10−3, cpmax = 10−7,
and T = 2 · 10−2. In Figure 4.5(a), we vary the penalty parameter cpmax while fixing
nc = 20, h = 2−7, ε = 9 · 2−7/π, τ = 10−3, N = 5, and T = 2 · 10−2. All in all, the
five subplots illustrate the efficiency of our developed preconditioner regarding all
parameters. We observe a benign increase of iteration numbers when ε is decreased
as well as when N is increased. Finally, in Figure 4.5(b), we vary simultaneously
all three parameters h, ε, τ while fixing nc = 5, N = 5, cpmax = 10−7, and n = 20. Ta-

156 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

0 2.5 · 10−4 5 · 10−4
8

9

10

11

12

(a) ε = 9 · 2−7/(4
√

2 · atanh(0.9)), τ = 10−5, N = 5,
and h = 2−7 (), h = 2−8 (), h = 2−9 (),

h = 2−10 ().

0 5 · 10−4 10−3
7

8

9

10

11

12
ε = 0.0084
ε = 0.0100
ε = 0.0200
ε = 0.0400

(b) h = 2−7, τ = 10−5, N = 5.

0 2.5 · 10−4 5 · 10−4
6

7

8

9

10

11

(c) h = 2−7, ε = 9 · 2−7/(4
√

2 · atanh(0.9)), N = 5,
and τ = 10−5 (), τ = 5 · 10−6 (),
τ = 2.5 · 10−6 (), τ = 8 · 10−7 ().

0 2.5 · 10−4 5 · 10−4
8

9

10

11

(d) h = 2−7, ε = 9 · 2−7/(4
√

2 · atanh(0.9)),
τ = 10−5, and N = 3 (), N = 5 (), N = 10

(), N = 20 ().

Figure 4.1: Results for the solution of the smooth system (4.82) with L = I , the
preconditioner (4.83), and the Schur complement approximation (4.100). The x-axis
shows the time t and the y-axis the average number of BiCG iterations per Newton

step.

4.8. NUMERICAL RESULTS 157

0 2.5 · 10−4 5 · 10−4
8

9

10

11
set 1
set 2
set 3

(a) L = I .

0 2.5 · 10−4 5 · 10−4
8

9

10

11

12
set 1
set 2
set 3

(b) L = I − 1
N11T.

Figure 4.2: Results for the solution of the smooth system (4.82) with the
preconditioner (4.83) and the Schur complement approximation (4.100). The x-axis
shows the time t and the y-axis the average number of BiCG iterations per Newton

step. Set j: h j = 2− j−6, ε j = 9 h j/(4
√

2 · atanh(0.9)), τ1 = 10−5, τ2 = 4 · 10−6,
τ3 = 8 · 10−7, N = 5 for j = 1, 2, 3.

Simulation Newton BiCG

Figure Plot Max Avg Max Avg CPU (s) CPU (s)

4.1(a) () 2 1 11 9 25 1430
() 2 1 12 10 102 5589
() 2 1 11 10 470 25139
() 2 1 12 10 1785 95731

4.1(b) () 2 1 12 9 24 2632
() 2 1 10 9 24 2674
() 2 1 11 9 22 2502
() 2 1 10 8 22 2438

4.1(c) () 2 1 11 9 25 1443
() 2 1 10 9 24 2611
() 2 1 10 8 22 4763
() 2 1 10 7 19 12539

4.1(d) () 2 1 11 10 15 879
() 2 1 11 9 25 1440
() 2 1 11 9 51 2968
() 2 1 11 9 105 6021

4.2(a) () 2 1 11 9 25 1453
() 2 1 11 9 100 13064
() 2 1 11 9 435 275281

Table 4.1: Results for the solution of the smooth system (4.82) with L = I , the pre-
conditioner (4.83), and the Schur complement approximation (4.100): The maximum
and average number of Newton iterations, the maximum and average number of
BiCG iterations, the average CPU time (in seconds) for BiCG, and the CPU time (in
seconds) for the whole simulation.

158 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

0 2.5 · 10−4 5 · 10−4
8

9

10

11

12

h = 2−7

h = 2−8

h = 2−9

h = 2−10

(a) ε = 9 · 2−7/(4
√

2 · atanh(0.9)), τ = 10−5, N = 5.

0 5 · 10−4 10−3
8

9

10

11

12

(b) h = 2−7, τ = 10−5, N = 5, and ε = 0.0084
(), ε = 0.01 (), ε = 0.02 (), ε = 0.04

().

0 2.5 · 10−4 5 · 10−4
7

8

9

10

11

(c) h = 2−7, ε = 9 · 2−7/(4
√

2 · atanh(0.9)), N = 5,
and τ = 10−5 (), τ = 5 · 10−6 (),
τ = 2.5 · 10−6 (), τ = 8 · 10−7 ().

0 2.5 · 10−4 5 · 10−4
8

9

10

11

12

13

N = 3
N = 5
N = 10
N = 20

(d) h = 2−7, ε = 9 ·2−7/(4
√

2 ·atanh(0.9)), τ = 10−5.

Figure 4.3: Results for the solution of the smooth system (4.82) with L = I − 1
N11T,

the preconditioner (4.83), and the Schur complement approximation (4.100). The
x-axis shows the time t and the y-axis the average number of BiCG iterations per

Newton step.

4.8. NUMERICAL RESULTS 159

Simulation Newton BiCG

Figure Plot Max Avg Max Avg CPU (s) CPU (s)

4.3(a) () 2 1 11 10 102 5665
() 2 1 12 10 344 18552
() 2 1 12 10 1604 85169
() 2 1 12 10 5932 315821

4.3(b) () 2 1 12 10 101 10779
() 2 1 11 10 97 10289
() 2 1 11 9 95 10087
() 2 1 11 9 88 9380

4.3(c) () 2 1 11 10 102 5675
() 2 1 11 10 94 9998
() 2 1 11 9 91 18863
() 2 1 11 8 80 50744

4.3(d) () 2 1 11 10 65 3592
() 2 1 12 10 102 5665
() 2 1 12 11 202 11426
() 2 1 13 11 417 23518

4.2(b) () 2 1 11 10 101 5637
() 2 1 12 10 337 43440
() 2 1 11 9 1417 891781

Table 4.2: Results for the solution of the smooth system (4.82) with L = I − 1
N11T,

the preconditioner (4.83), and the Schur complement approximation (4.100): The
maximum and average number of Newton iterations, the maximum and average
number of BiCG iterations, the average CPU time (in seconds) for BiCG, and the
CPU time (in seconds) for the whole simulation.

ble 4.3 illustrates the maximum and average number of SSN iterations, the maximum
and average number of BiCGstab iterations, the average CPU time (in seconds) for
BiCGstab, and the CPU time (in seconds) for the whole simulation for each of the six
subplots, respectively.

We repeat the tests above for the case L = I − 1
N11T. Each subplot in Figure 4.6

and 4.5(c) demonstrates the robustness with respect to a different model parame-
ter. Except for the case when the mesh size is decreased, our preconditioner shows
promising performances. However, what is even more important in praxis, when the
mesh size is refined together with the interfacial parameter (and hence with the time
step size), the iteration numbers decrease significantly; see Figure 4.5(d). In this fig-
ure, we fix nc = 20, N = 5, cpmax = 10−7, and n = 20. Moreover, we observe a decrease
of iteration numbers when ε is decreased; see Figure 4.6(b). Table 4.4 illustrates the
maximum and average number of SSN iterations, the maximum and average num-
ber of BiCGstab iterations, the average CPU time (in seconds) for BiCGstab, as well
as the CPU time (in seconds) for the whole simulation for each of the six subplots,
respectively.

4.8.2 Mesh adaptation

Similar to Chapter 3.8.3, we can reduce the number of spatial mesh points and hence
the system size m by going over to adaptive meshes. Again, we refine the interface
up to a level where at least eight mesh points are across the interface. We coarsen the

160 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

0 10−2 2 · 10−2
12

14

16

18

20

22

24

(a) nc = 20, ε = 9 · 2−7/π, τ = 10−3, N = 5,
cpmax = 10−7, and h = 2−7 (), h = 2−8 (),

h = 2−9 (), h = 2−10 ().

0 10−2 2 · 10−2

10

15

20

(b) nc = 20, h = 2−7, τ = 10−3, N = 5, cpmax = 10−7,
and ε = 0.0224 (), ε = 0.04 (), ε = 0.06

(), ε = 0.08 ().

0 10−2 2 · 10−2

10

20

30

40

(c) nc = 5, h = 2−7, ε = 9 · 2−7/π, N = 5,
cpmax = 10−7, and τ = 10−3 (), τ = 5 · 10−4

(), τ = 2.5 · 10−4 (), τ = 8 · 10−5 ().

0 10−2 2 · 10−2
10

20

30

40
N = 3
N = 5
N = 10
N = 20

(d) nc = 20, h = 2−7, ε = 9 · 2−7/π, τ = 10−3,
cpmax = 10−7.

Figure 4.4: Results for the solution of the nonsmooth system (4.82) with L = I , the
preconditioner (4.83), and the Schur complement approximation (4.109). The x-axis
shows the time t and the y-axis the average number of BiCGstab iterations per SSN

step.

4.8. NUMERICAL RESULTS 161

0 0.01 0.02

12

14

16

18

20

t
(a) L = I , nc = 20, h = 2−7, ε = 9 · 2−7/π,
τ = 10−3, N = 5, and cpmax = 10−3 (),
cpmax = 10−5 (), cpmax = 10−7 (),

cpmax = 10−9 ().

0 10 20
10

20

30

40

50

n

set 1
set 2
set 3

(b) Set j: L = I , nc = 5, h j = 2− j−6, ε j = 9 h j/π,
τ1 = 10−3, τ2 = 3.125 · 10−4, τ3 = 8 · 10−5, N = 5,

cpmax = 10−7 for j = 1, 2, 3.

0 0.01 0.02
10

20

30

40

t
(c) L = I − 1

N11T, nc = 20, h = 2−7,
ε = 9 · 2−7/π, τ = 10−3, N = 5, and cpmax = 10−3

(), cpmax = 10−5 (), cpmax = 10−7 (),
cpmax = 10−9 ().

0 10 20
10

20

30

40

50

n

set 1
set 2
set 3

(d) Set j: L = I − 1
N11T, nc = 20, h j = 2− j−5,

ε j = 9 h j/π, τ1 = 6 · 10−3, τ2 = 10−3,
τ3 = 3.125 · 10−4, N = 5, cpmax = 10−7 for

j = 1, 2, 3.

Figure 4.5: Results for the solution of the nonsmooth system (4.82) with the
preconditioner (4.83) and the Schur complement approximation (4.109). The y-axis

shows the average number of BiCGstab iterations per SSN step.

162 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

0 6 · 10−2 1.2 · 10−1
0

100

200

300

400 h = 2−6

h = 2−7

h = 2−8

(a) nc = 20, ε = 9 · 2−6/π, τ = 6 · 10−3, N = 5,
cpmax = 10−7.

0 10−2 2 · 10−2

20

30

40

50

(b) nc = 20, h = 2−7, τ = 10−3, N = 5, cpmax = 10−7,
and ε = 0.0224 (), ε = 0.04 (), ε = 0.06

(), ε = 0.08 ().

0 10−2 2 · 10−2
0

20

40

60

(c) nc = 5, h = 2−7, ε = 9 · 2−7/π, N = 5,
cpmax = 10−7, and τ = 10−3 (), τ = 5 · 10−4

(), τ = 2.5 · 10−4 (), τ = 8 · 10−5 ().

0 10−2 2 · 10−2
15

20

25

30

35

40

(d) nc = 20, h = 2−7, ε = 9 · 2−7/π, τ = 10−3,
cpmax = 10−7, and N = 3 (), N = 10 (),

N = 20 ().

Figure 4.6: Results for the solution of the nonsmooth system (4.82) with
L = I − 1

N11T, the preconditioner (4.83), and the Schur complement approximation
(4.109). The x-axis shows the time t and the y-axis the average number of BiCGstab

iterations per SSN step.

4.8. NUMERICAL RESULTS 163

Simulation SSN BiCGstab

Figure Plot Max Avg Max Avg CPU (s) CPU (s)

4.4(a) () 5 2 30 13 137 41794
() 5 3 31 13 573 184483
() 6 3 35 14 2425 771196
() 5 3 41 16 8763 2878150

4.4(b) () 5 2 28 14 147 42294
() 5 2 24 9 100 29883
() 5 3 20 8 74 24090
() 4 2 13 6 55 17810

4.4(c) () 6 3 59 17 191 35730
() 5 3 58 16 186 48658
() 6 3 47 14 162 65794
() 5 3 47 14 174 141358

4.4(d) () 5 2 23 12 68 18792
() 5 2 30 13 137 41794
() 5 3 47 17 441 149656
() 6 3 77 25 1313 549691

4.5(a) () 5 4 22 9 85 20648
() 6 3 28 12 108 31887
() 6 3 26 13 136 41770
() 5 2 25 14 169 53356

4.5(b) () 5 3 62 17 193 38629
() 6 3 66 20 980 202650
() 7 4 84 21 4195 1066722

Table 4.3: Results for the solution of the nonsmooth system (4.82) with L = I ,
the preconditioner (4.83), and the Schur complement approximation (4.109): The
maximum and average number of SSN iterations, the maximum and average number
of BiCGstab iterations, the average CPU time (in seconds) for BiCGstab, and the CPU
time (in seconds) for the whole simulation.

mesh in areas where the concentration u is (almost) constant. Using the nonsmooth
potential, we can easily identify the interfacial and constant areas. The constant areas
are the spatial points x that satisfy ui(x) = 1 for one i ∈ {1, . . . ,N} and u j(x) = 0 for all
j ∈ {1, . . . ,N} \ {i}. The interfacial area is formed by those spatial points x that satisfy
0 < ui(x) < 1 for some i ∈ {1, . . . ,N}. Using the regularized potential, the interfacial
area is specified in the same way. The constant areas are the spatial points x that
satisfy ui(x) ≥ 1 for some i ∈ {1, . . . ,N}. Using the smooth potential, it is not that
clear where to separate the constant areas from the interfacial area as already pointed
out in Chapter 3.8.3. As our simple approach is based on the knowledge about the
location of constant and interfacial areas, we apply our adaptive mesh strategy only
to the nonsmooth case. As in Chapter 3.8.3, for a given ε > 0 we use the upper
bound hmin ≤

επ
9 , where hmin is the refinement level across the interface. Since we

want to avoid meshes which are too coarse, we additionally define hmax B 10 hmin,
where hmax represents the maximal mesh size. Our mesh adaptation is based on
the following strategy: An element R ∈ Rh is marked for refinement if it satisfies
0 < ui(x) < 0.99999 for some i ∈ {1, . . . ,N} and if diam(R) > 2 · hmin. Here, diam(R)
denotes the largest diagonal of R. An element R ∈ Rh is marked for coarsening if it
satisfies ui(x) ≤ 0 or ui(x) ≥ 0.99999 for all i ∈ {1, . . . ,N} and if diam(R) ≤ hmax/2. Note
that more sophisticated adaptation strategies based on an a-posteriori error analy-
sis have been developed, e.g., by Hintermüller et al. [91] for the two-component case.

164 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

Simulation SSN BiCGstab

Figure Plot Max Avg Max Avg CPU (s) CPU (s)

4.6(a) () 7 2 104 35 166 41836
() 7 3 230 83 1614 405727
() 7 3 1200 196 12036 2928520

4.6(b) () 5 2 39 19 336 93934
() 5 2 81 25 455 114646
() 4 2 97 26 455 115610
() 4 3 98 32 544 136436

4.6(c) () 7 3 138 26 489 99505
() 5 3 93 21 402 106175
() 5 3 58 16 311 120697
() 5 3 56 15 298 236575

4.6(d) () 5 2 33 16 168 42543
() 5 3 41 20 759 273560
() 6 4 59 26 1977 868903

4.5(c) () 5 4 27 11 178 41627
() 5 3 64 15 245 68928
() 5 2 54 19 344 93893
() 5 2 43 21 403 118859

4.5(d) () 7 3 88 34 160 41189
() 5 2 47 18 324 92956
() 6 3 48 16 1031 329997

Table 4.4: Results for the solution of the nonsmooth system (4.82) withL = I− 1
N11T,

the preconditioner (4.83), and the Schur complement approximation (4.109): The
maximum and average number of SSN iterations, the maximum and average number
of BiCGstab iterations, the average CPU time (in seconds) for BiCGstab, and the CPU
time (in seconds) for the whole simulation.

In Figure 4.7, we illustrate the performance of our preconditioner (4.83) with the
Schur complement approximation (4.109) for the solution of the nonsmooth system
(4.82) on adaptive meshes. We consider the case L = I and test three different
settings with varying values of h(0), ε, τ, where h(0) denotes the mesh size of the initial
uniform mesh. The x-axis shows the time t, the left y-axis shows the average number
of BiCGstab iterations per SSN step, and the right y-axis the number of degrees of
freedom, respectively. We can see that the iteration numbers stay constantly low.
Moreover, the coarsening process acts in the pure phases and reduces the number of
degrees of freedoms. Table 4.5 illustrates the maximum and average number of SSN
iterations, the maximum and average number of BiCGstab iterations, the average
CPU time (in seconds) for BiCGstab, and the CPU time (in seconds) for the whole
simulation for each of the three subplots, respectively. The final phase variables for
each simulation is illustrated in Figure 4.8 together with the spatial mesh.

4.8.3 Long-time evolution

In the following, we consider the long-time evolution of the smooth and nonsmooth
vector-valued Cahn–Hilliard model; see Figure 4.9. In the smooth case, we use
h = 2−7, ε = 9 h/(4

√
2 · atanh(0.9)), τ = 10−5, T = 10−1. In the nonsmooth case, we

use the setting h = 2−7, ε = 9 h/π, τ = 10−3, cpmax = 10−7, T = 2. In both simulations,

4.8. NUMERICAL RESULTS 165

20

40

60

0 6 · 10−2 1.2 · 10−1
3,000

4,000

5,000

(a) L = I , h(0) = 2−6, ε = 9 · 2−6/π, τ = 6 · 10−3, N = 5,
cpmax = 10−7.

0

20

40

60

0 10−2 2 · 10−2
1.2

1.4

1.6

1.8
·104

(b) L = I , h(0) = 2−7, ε = 9 · 2−7/π, τ = 10−3,
N = 5, cpmax = 10−7.

20

40

60

0 3.125 · 10−3 6.25 · 10−3
4

6

8
·104

(c) L = I , h(0) = 2−8, ε = 9 · 2−8/π, τ = 3.125 · 10−4,
N = 5, cpmax = 10−7.

Figure 4.7: Results for the solution of the nonsmooth system (4.82) with the
preconditioner (4.83) and the Schur complement approximation (4.109) using

adaptive meshes. The x-axis shows the time t, the left y-axis the average number of
BiCGstab iterations per SSN step and the right y-axis the number of degrees of

freedom.

166 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

SSN BiCG

Figure Max Avg Max Avg CPU (s) CPU (s)

3.9(a) 7 4 104 34 93 19097
3.9(b) 6 4 91 29 305 67620
3.9(c) 6 4 100 32 1375 328189

Table 4.5: Results for the solution of the nonsmooth system (4.82) with the pre-
conditioner (4.83) and the Schur complement approximation (4.109) using adaptive
meshes: The maximum and average number of SSN iterations, the maximum and av-
erage number of BiCGstab iterations, the average CPU time (in seconds) for BiCGstab,
and the CPU time (in seconds) for the whole simulation.

(a) Result for Figure 4.7(a). (b) Result for Figure 4.7(b). (c) Result for Figure 4.7(c).

Figure 4.8: Computation with adaptive meshes: Final phase variables with the
corresponding spatial mesh for the three simulations in Figure 4.7.

we set N = 5 and L = I − 1
N11T.

Newton/SSN BiCG/BiCGstab

Figure Max Avg Max Avg CPU (s) CPU (s)

4.9(a)–4.9(d) 2 1 12 9 86 869137
4.9(e)–4.9(h) 6 2 162 39 822 3756234

Table 4.6: Results for the long-time evolution: The maximum and average number
of Newton/SSN iterations, the maximum and average number of BiCG/BiCGstab
iterations, as well as the average CPU time (in seconds) for BiCG/BiCGstab and
the CPU time (in seconds) for the whole simulation for the smooth and nonsmooth
Cahn–Hilliard model, respectively.

4.8. NUMERICAL RESULTS 167

(a) t = 0. (b) t = 10−2. (c) t = 5 · 10−2. (d) t = 10−1.

(e) t = 0. (f) t = 10−3. (g) t = 1. (h) t = 2.

Figure 4.9: Long-time evolution using the smooth (upper row) and nonsmooth
(lower row) vector-valued Cahn–Hilliard model.

0 0.05 0.1
8

9

10

11

12

(a) Results for Figure 4.9(a)–4.9(d). h = 2−7,
ε = 9 h/(4

√
2 · atanh(0.9)), τ = 10−5, N = 5.

0 1 2
0

20

40

60

80

100

(b) Results for Figure 4.9(e)–4.9(h). h = 2−7,
ε = 9 h/π, τ = 10−3, N = 5, cpmax = 10−7.

Figure 4.10: Results for the long-time evolution using the smooth (left) and
nonsmooth (right) vector-valued Cahn–Hilliard model. The x-axis shows the time t

and the y-axis displays the average number of BiCG (left) and BiCGstab (right)
iterations per Newton/SSN step.

168 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

In Figure 4.10, we illustrate the performance of our preconditioners for the solution of
the smooth and nonsmooth vector-valued Cahn–Hilliard system. The x-axis shows
the time t and the y-axis displays the average number of BiCG (in the smooth case)
and BiCGstab (in the nonsmooth case) iterations per Newton/SSN step. Table 4.6
illustrates the maximum and average number of Newton/SSN iterations, the maxi-
mum and average number of BiCG/BiCGstab iterations, the average CPU time (in
seconds) for BiCG/BiCGstab, and the CPU time (in seconds) for the whole simu-
lation for the smooth and nonsmooth model, respectively. Table 4.7 illustrates the
minimum and maximum phase values at some time steps. We observe that the
concentrations may become less than zero for smooth potentials. However, no blow
ups are reported.

Note that one should not compare the above results in terms of smooth versus
nonsmooth. The evolution with smooth and nonsmooth potentials is very different
and distinct parameters are used. Moreover, both types of potentials are used in
many applications. In some of them, like the deep-quench limit, the nonsmooth
potential must be used. In other applications, smooth potentials are preferred and
produce satisfactory results. Therefore, the development of efficient solvers is of
great interest in both cases.

t

value model 4 · 10−2 6 · 10−2 8 · 10−2 10−1

min smooth −0.0265432 −0.0225901 −0.0237592 −0.0277528
nonsmooth −1.19975 · 10−7

−1.21102 · 10−7
−1.19531 · 10−7

−1.178 · 10−7

max smooth 0.970885 0.978767 0.989315 0.995248
nonsmooth 1.00005 1.00004 1.00004 1.00004

Table 4.7: Minimum and maximum phase values during the simulation with the
smooth and nonsmooth vector-valued Cahn–Hilliard model.

4.8.4 Three-dimensional example

Next, we consider the three-dimensional domain Ω = [0, 1]3 and simulate the phase
separation and coarsening process. Figure 4.11 shows the evolution for this exam-
ple using the nonsmooth vector-valued Cahn–Hilliard model with h(0) = 2−6, ε =
9 h/π, τ = 10−3, N = 5, cpmax = 10−7, L = I , T = 10−2, where h(0) denotes the mesh
size of the initial uniform mesh. In Figure 4.12, we illustrate the performance of our
preconditioner. The x-axis shows the time t, the left y-axis displays the average num-
ber of BiCGstab iterations per SSN step, and the right y-axis illustrates the number
of degrees of freedom. The maximum and average number of BiCGstab iterations
for the simulation are 107 and 29.

4.9 Existing solvers

In this section, we briefly discuss existing solution methods for the smooth and non-
smooth vector-valued Cahn–Hilliard equation.

4.9. EXISTING SOLVERS 169

(a) t = 0. (b) t = 10−3. (c) t = 5 · 10−3. (d) t = 10−2.

Figure 4.11: A three-dimensional simulation of the phase separation and coarsening
process of a five-component mixture.

10

20

30

40

50

0 5 · 10−3 1 · 10−2
2.4

2.5

2.6

2.7

2.8
·105

Figure 4.12: Results for the three-dimensional simulation of the phase separation
and coarsening process of a five-component mixture: The x-axis shows the time t,

the left y-axis displays the average number of BiCGstab iterations per SSN step, and
the right y-axis illustrates the number of degrees of freedom.

A nonlinear multigrid method for the smooth vector-valued Cahn–Hilliard equa-
tion is proposed by Lee et al. [118, 119]. In [118], the authors consider the case
L = I . Moreover, they present a practically unconditionally gradient stable scheme,
which is based on a nonlinear splitting method. This allows a decoupling of the
N-component Cahn–Hilliard system into N − 1 scalar Cahn–Hilliard equations. The
efficiency of this approach is shown by means of the average CPU time, whose con-
vergence rate is linear with respect to the number of phases. In [119], the authors
consider the case of a concentration dependent mobility matrix. Moreover, they
apply Crank-Nicolson’s method for the discretization in time. The authors develop
a Full Approximation Storage multigrid method with a pointwise Gauß-Seidel re-
laxation scheme as a smoother. The nonlinearity is treated using one Newton step.
The authors demonstrated the second-order accuracy of the numerical scheme.

Gräser et al. [85] propose globally convergent nonsmooth Schur–Newton methods
(NSNMG) for the solution of discrete multi-component Cahn–Hilliard systems. They
consider logarithmic as well as obstacle potentials. NSNMG can be formulated in
primal-dual form and results in a preconditioned Uzawa method. Each step consists
first of the update of the primal variable, which includes the direct work with the

170 CHAPTER 4. VECTOR-VALUED CAHN–HILLIARD EQUATIONS

inverse (A + ∂ϕ)−1. Here, A is a symmetric positive definite matrix and ∂ϕ is the
subdifferential of the nonsmooth part of the potential, which includes the indicator
function

∑N
i=1 χ[0,∞)(ui). The second step of NSNMG is to compute the dual variable,

which can be done by solving a truncated linear saddle-point problem and updat-
ing the step size for the Uzawa method. The authors solve the linear systems by
preconditioned GMRES with a restart after 50 steps. They numerically investigated
the local mesh independence of NSNMG as well as a robust convergence speed of
NSNMG and of the truncated nonsmooth Newton method for different numbers of
phases.

An important point for the future is a comparison with our approach.

4.10 Conclusions and future research perspectives

In this chapter, we have investigated the numerical solution of the multi-component
Cahn–Hilliard model. We have considered smooth and nonsmooth potentials with
a focus on the latter. Motivated by the previous chapter, we have used a fully im-
plicit scheme for the discretization in time. Regarding the smooth setting, we have
extended the proof of the energy stability and uniqueness of the solution of the time-
discrete scheme from the two-component to the multi-component case. Concerning
the nonsmooth framework, we have interpreted the time-discrete problem as the
first-order optimality system of an optimization problem for which we have derived
existence and uniqueness conditions. In particular, we extended the analysis from
the two-component to the multi-component case. Motivated by Chapter 3, we have
applied an SSN method combined with a Moreau–Yosida regularization technique
for handling the pointwise constraints. For the discretization in space, we have used
classical FEM for both systems, the smooth and regularized nonsmooth one. At the
heart of our method lies the solution of large and sparse systems of linear equations
of saddle point form. We have introduced and studied block-triangular precon-
ditioners using an efficient and cheap Schur complement approximation. For these
approximations, we have used multilevel techniques, algebraic multigrid in our case.
For the smooth systems, we have derived optimal preconditioners which are proven
to be robust with respect to crucial model parameters. For the nonsmooth systems,
extensive numerical experiments show an outstanding behavior of our developed
preconditioners. Additionally, we have implemented a simple adaptive spatial mesh
refinement approach, which reduces the number of degrees of freedoms. Together
with our preconditioners, this allows us to perform three-dimensional experiments
in an efficient way.

As pointed out during this chapter, there are several aspects for further research.
First of all, we have not extended the whole analysis for the nonsmooth case from
the two-component to the multi-component case. Second, we have improved the
preconditioners proposed in [33] for the nonsmooth case when the mobility L = I
is used. The case L = I − 1

N11T still seems to be improvable with some fine tuning.
Third, we have restricted our attention to constant mobility matrices, likewise in
the previous chapter. However, in many applications, concentration dependent
mobilities are required. This is for example the case if the mobility in the interface
is larger than in the pure phases. Fourth, the study of preconditioners for the linear

4.10. CONCLUSIONS AND FUTURE RESEARCH PERSPECTIVES 171

systems arising from other time discretization schemes, e.g., a semi-implicit scheme,
might be of high interest for special applications. Finally, in the previous chapter,
we have employed our preconditioner to a coupled Cahn–Hilliard/Navier–Stokes
system, which governs the hydrodynamics of two-phase flows. An interesting field
of future research is the application of our preconditioners to the numerical solution
of multi-component flows.

Chapter 5

Modified Cahn–Hilliard Equations

5.1 Introduction

Image inpainting is the art of modifying parts of an image such that the resulting
changes are not easily detectable by an ordinary observer. Applications include the
restoration of damaged paintings and photographs [5], the replacement of selected
objects, or the reduction of artifacts in medical images [87].

Bertozzi et al. [19, 18] introduced the fourth-order Cahn–Hilliard inpainting approach
for binary, i.e., black-and-white, images. This model is based on the scalar smooth
Cahn–Hilliard equation discussed in Chapter 3. In [31], we extended the inpainting
approach to the scalar nonsmooth Cahn–Hilliard equation discussed in Chapter 3.
Further, Bertozzi et al’s binary Cahn–Hilliard inpainting model has been recently
generalized to gray value images [32, 48]. This model is based on the vector-valued
smooth Cahn–Hilliard equation discussed in Chapter 4. In this chapter, we will focus
on this gray value Cahn–Hilliard inpainting model. As in the previous two chapters,
we will discuss the two types of potential functions, smooth and nonsmooth. Note
that the presented study applies to the binary case as well.

Let f be the given gray value image, which is defined on the image domain Ω ⊂ Rd

with d ∈ {2, 3}. We denote by N the number of gray values which form the image
f . These N gray values are collected in the vector g = [g1, . . . , gN]T

∈ RN. Note
that 2 ≤ N ≤ 256. The parts of f that are going to be modified are denoted by the
inpainting domain D ⊂ Ω. The target is to reconstruct the image f in this region D in
an undetectable way. We denote the reconstructed image by fr. Let T > 0 be a fixed
time. We introduce a vector-valued phase variable u = [u1, . . . , uN]T : Ω×(0,T)→ RN.
Here, ui describes the concentration of gray value gi for i = 1, . . . ,N. If ui(x, t) ≈ 1,
then only gray value gi (the pure gray value gi) is present at point x at time t. The
case ui(x, t) ≈ 0 means gray value gi is absent at point x at time t. Values of ui
between 0 and 1 represent mixed regions. In particular, these regions include the
interfacial area. Here, the interface is a small boundary layer that separates the pure
gray values gi, i = 1, . . . ,N, from each other. As in the previous two chapters, it acts

174 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

as a diffuse phase transition, and we can control its width via the model parameter
ε > 0. Basically, we can imagine each component ui as a “binary“ image that evolves
in time. More precisely, ui represents the evolution of the gray value gi. We initialize
ui with ui(x, 0) = fi(x). Here, f = [f1, . . . , fN]T

∈ G
N, where GN is given in (5.2), is

the vector of given gray value distributions from the given image f . That means,
fi(x) ∈ {0, 1} describes the absence or presence of gray value gi in f at point x for
i = 1, . . . ,N. Above, we have put the term binary in quotation marks because ui is
actually binary only at the initial state t = 0. For t > 0, the thin interfacial areas are
present, which represent mixed regions. The evolution of the reconstructed image fr
is obtained from the components ui via

fr =
N∑

i=1

giui.

The final reconstructed image fr of f is fr(x,T). As in Chapter 4, it holds

N∑
i=1

ui = 1 (5.1)

and ui ≥ 0 for i = 1, . . . ,N, so that admissible states belong to the Gibbs simplex

G
N B

v = [v1, . . . , vN]T
∈ RN :

N∑
i=1

vi = 1, vi ≥ 0 for i = 1, . . . ,N

 . (5.2)

The Cahn–Hilliard inpainting model is based on the Ginzburg–Landau energy E,
which is used in Chapter 4. Here, it is given as

E(u) =
∫
Ω

ε
2

N∑
i=1

|∇ui|
2 +

1
ε
ψ(u) dx. (5.3)

The parameter ε > 0 is proportional to the thickness of the interfacial region as
mentioned above. The first part of (5.3) is large whenever ui changes rapidly for
some i ∈ {1, . . . ,N}. Hence, its minimization gives rise to the interfacial area. The
potential function ψ : RN

→ R≥0∪{∞} in (5.3) gives rise to phase separation. It has N
distinct minima, one for each pure gray value gi. We consider the same two potential
functions of polynomial and obstacle type as in the last chapter. For the sake of
clarity, we repeat them again: The first one is the smooth multi-well potential given
as

ψpol(u) =
1
4

N∑
i=1

u2
i (1 − ui)2. (5.4)

The second potential is the nonsmooth multi-obstacle potential given as

ψobs(u) =
{
ψ0(u) = − 1

2 u · Tu u ∈ GN,
∞ otherwise.

(5.5)

Again, T ∈ RN×N is a symmetric matrix, which contains constant interaction parame-
ters [T]i j. From physical considerations,T must have at least one positive eigenvalue.
During the rest of this chapter, we denote by λmax(T) the largest positive eigenvalue

5.1. INTRODUCTION 175

of T . A typical choice is T = I − 11T with 1 = [1, . . . , 1]T
∈ RN and the identity ma-

trix I ∈ RN×N, which means that the interaction between all different gray values is
equal and no self-interaction occurs. For logarithmic potentials, we refer to, e.g., [49].

As we have seen in the previous chapter, the vector-valued Cahn–Hilliard equation
is derived by minimizing the Ginzburg–Landau energy (5.3) subject to the mass
conservation

d
dt

∫
Ω

ui dx = 0, i = 1, . . . ,N. (5.6)

In particular, it can be derived as the H−1-gradient flow of the Ginzburg-Landau
energy (5.3) under the constraint (5.1).

Image inpainting is based on the knowledge about the given image f as well as the
inpainting domain D. Therefore, the actual starting point is the fidelity functional

F (u) =
∫
Ω

ω
2

N∑
i=1

(fi − ui)2 dx, (5.7)

where

ω = ω(x) =
{

0 if x ∈ D,
ω0 if x ∈ Ω \D, (5.8)

is the fidelity parameter. Its minimization keeps the reconstructed image fr =∑N
i=1 giui close to the given image f in the undamaged partsΩ \D. In order to obtain

Cahn–Hilliard inpainting, this fidelity functional is regularized by the Ginzburg–
Landau energy E in (5.3). As Bertozzi et al’s [19, 18] black-and-white Cahn–Hilliard
inpainting model, our proposed gray value Cahn–Hilliard inpainting model arises
as a superposition of two gradient flows: An H−1-gradient flow under the constraint
(5.1) for the Cahn–Hilliard part and an L2-gradient flow for the fidelity term. We will
derive the inpainting model in Section 5.2.

As we will show in the course of this chapter, the solution of linear systemsAz = b
with a large and sparse matrix A is at the heart of our method. They have the
following saddle point structure

A =

[
−A I ⊗M
I ⊗M I ⊗K

]
with I ∈ RN×N being the identity matrix, M ∈ Rm×m being symmetric positive def-
inite, and K ∈ Rm×m being symmetric positive semidefinite. In the smooth setting,
A ∈ RNm×Nm is a symmetric, block diagonal matrix. However, in the nonsmooth
case, A ∈ RNm×Nm is nonsymmetric and possibly indefinite. The crucial parameters
contained inA are the spatial mesh size h, the time step size τ, the interface parameter
ε, the number of phases N, the Moreau–Yosida regularization parameter c, as well as
two parameters that arise in our time discretization approach. We develop efficient
preconditioners P for the solution of the linear systems above. This is based on
effective Schur complement approximations as well as (algebraic) multigrid solvers
developed for elliptic systems [68, 136, 134]. For the smooth systems, we derive the
conditions for optimal preconditioners. For the nonsmooth systems, extensive nu-
merical experiments show a promising behavior of our developed preconditioners.

176 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

The structure of the chapter is as follows. The modified Cahn–Hilliard model is
derived in Section 5.2. We first consider the smooth multi-well potential (5.4), which
leads to a system of fourth-order PDEs. Then, we study the nonsmooth multi-obstacle
potential (5.5), which yields a system of variational inequalities. An important
difference to the previous two chapters is that the modified Cahn–Hillard equation as
a whole is not given by a gradient flow. Especially, the model arises as a superposition
of two gradient flows. The convexity splitting method can deal with such systems
and, under the right conditions, yields an unconditional gradient stable time-discrete
scheme. The smooth and nonsmooth formulations are discretized in time in Section
5.3 using the convexity splitting approach. In the smooth setting, we extend the proof
of consistency, unconditional stability, and convergence of the time-discrete scheme
from the two-component to the multi-component case. Concerning the nonsmooth
framework, following the previous two chapters, we apply an SSN method combined
with the Moreau–Yosida regularization technique. Section 5.4 shortly introduces the
SSN method for solving the regularized subproblems. We derive the linear systems
arising from the discretization using finite elements in Section 5.5. In Section 5.6,
we analyze the linear systems and propose preconditioning strategies for the saddle
point problems. Section 5.7 illustrates the efficiency of our preconditioners for both
problem setups. In Section 5.8, we summarize our findings and discuss possible
future directions.

5.2 Derivation

As mentioned in the previous section, the gray value Cahn–Hilliard inpainting model
is given as a superposition of the H−1-gradient flow for E in (5.3) under the constraint
(5.1) and the L2-gradient flow for F in (5.7), i.e.,

∂tu = −grad(5.1)
H−1 E(u) − gradL2F (u).

We have already derived the first part, the multi-component Cahn–Hilliard equation,
in Chapter 4.2. Hence, we will not repeat the details again. First of all, the smooth
multi-well potential (5.4) setting is used. Then, we go over to the nonsmooth multi-
obstacle potential (5.5) setting. As in the two chapters before, we handle this case
with the Moreau–Yosida regularization technique.

Remark 5.1. A different approach for image inpainting using the Cahn–Hilliard model was
studied in [104], see also [21, 24]. There, image inpainting is modeled as minimization
problem. In particular, the authors extended the projected gradient method to the arising type
of problems.

5.2.1 Smooth systems

In the following, we focus on the smooth multi-well potential (5.4). In Chapter 4.2.1,
we have derived the following vector-valued Cahn–Hilliard equation:

∂tui = (L∆w)i, (5.9)

wi = −ε∆ui +
1
ε
ψ′pol(ui) −

1
εN

N∑
j=1

ψ′pol(u j), (5.10)

∇ui · n = (L∇w)i · n = 0 on ∂Ω, (5.11)

5.2. DERIVATION 177

for i = 1, . . . ,N. Here,ψ′pol(vi) =
∂ψpol

∂ui
(v) = v3

i −
3
2 v2

i +
1
2 vi, andL ∈ RN×N is the mobility

matrix with constant entries. We have derived that L has to be symmetric positive
semidefinite with L1 = 0, where 1 = [1, . . . , 1]T

∈ RN. In Remark 4.1 as well as in
the numerical examples of Chapter 4, we have seen that it is nevertheless possible
to work with L = I . In order to simplify the inpainting model, we will focus on
the case L = I in this chapter. Now, if we superpose the system (5.9)–(5.11) with
the L2-gradient flow for F in (5.7), we obtain the smooth gray value Cahn–Hilliard
inpainting model:

∂tui = ∆wi + ω(fi − ui), (5.12)

wi = −ε∆ui +
1
ε
ψ′pol(ui) −

1
εN

N∑
j=1

ψ′pol(u j), (5.13)

∇ui · n = ∇wi · n = 0 on ∂Ω, (5.14)

for i = 1, . . . ,N. We call this system the smooth vector-valued modified Cahn–Hilliard
equation.

Remark 5.2. Recently, Cherfils et al. [48] considered and analyzed a similar model. More
precisely, they proved the existence and uniqueness of solutions as well as the existence of the
global attractor. Moreover, they constructed finite-dimensional attractors and proved that
that their model is algebraically consistent with the two-phase model. In contrast, our work
focuses on the numerical analysis of an unconditionally time stepping scheme as well as its
efficient numerical solution via FEM.

5.2.2 Nonsmooth systems

In the last section, we focused on the smooth potentialψpol. We could easily calculate
the derivative of the smooth potential with respect to u. Now, we turn to the
nonsmooth potentialψobs given in (5.5). In Chapter 4.2.2, we have seen that the Cahn–
Hilliard model results in a system of variational inequalities. We have circumvented
this difficulty by the Moreau–Yosida regularization technique in Chapter 4.4. We
apply this technique here as well. We regularize the multi-obstacle potential ψobs in
(5.5) by

ψc(u) = ψ0(u) +
ε
2c

N∑
i=1

min(0,ui)2 = −
1
2

u · Tu +
ε
2c

N∑
i=1

min(0,ui)2.

As before, 0 < c � 1 denotes the associated regularization or penalty parameter.
The smaller c is the larger is the penalization for the violation of the condition u ≥ 0.
Hence, the limit c → 0 represents the original multi-obstacle potential ψobs in (5.5).
Instead of the energy functional E in (5.3), we consider

E(u) =
∫
Ω

ε
2

N∑
i=1

|∇ui|
2 +

1
ε
ψ0(u) +

1
2c

N∑
i=1

|min(0,ui)|2 dx

=

∫
Ω

ε
2

N∑
i=1

|∇ui|
2
−

1
2ε

uTTu +
1
2c

N∑
i=1

|min(0,ui)|2 dx. (5.15)

178 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

In Chapter 4.4, we have derived the corresponding system of Cahn–Hilliard equa-
tions. As already mentioned, we focus on the caseL = I , and the strong formulation
reads as:

∂tui = ∆wi, (5.16)

wi = −ε∆ui −
1
ε

(Tu)i +
1
c

min(0,ui) +
1
N

N∑
j=1

[
−

1
c

min(0,u j) +
1
ε

(Tu) j

]
, (5.17)

∇ui · n = ∇wi · n = 0 on ∂Ω, (5.18)

for i = 1, . . . ,N. For the sake of clarity, we omit the subindex c in the solution (uc,wc)
of (5.16)–(5.18). Now, if we superpose the system (5.16)–(5.18) with the L2-gradient
flow for F in (5.7), we obtain the regularized nonsmooth gray value Cahn–Hilliard
inpainting model:

∂tui = ∆wi + ω(fi − ui), (5.19)

wi = −ε∆ui −
1
ε

(Tu)i +
1
c

min(0,ui) +
1
N

N∑
j=1

[
−

1
c

min(0,u j) +
1
ε

(Tu) j

]
, (5.20)

∇ui · n = ∇wi · n = 0 on ∂Ω, (5.21)

for i = 1, . . . ,N. We call this system also as the (regularized) nonsmooth vector-valued
modified Cahn–Hilliard equation.

After the derivation of the constitutive vector-valued Cahn–Hilliard equations, we
are going to study their discretizations in order to be able to solve them numerically.
We start with the discretization in time in the next section.

5.3 Time discretization

In Chapter 3.3 and 4.3, we have motivated the use of a fully implicit time discretiza-
tion scheme in order to accurately capture the dynamics. In this chapter, we pursue
a different objective: We wish to obtain a reconstructed image as fast as possible.
Hence, in this sense, time discretization schemes with time step restrictions are not
the best choice.

In the case of the smooth black-and-white Cahn–Hilliard inpainting model, Bertozzi
et al. [19] proposed a semi-implicit scheme, the convexity splitting scheme (see Chap-
ter 2.1.5). The authors conjectured unconditionally stability in the sense that solutions
of the numerical scheme are bounded within a finite time interval independent of the
time step size. Indeed, Schönlieb et al. [139] proved consistency, unconditional sta-
bility, and convergence of this scheme. The convexity splitting method was designed
to solve gradient systems. But it can also be applied in a modified form to evolution
equations that do not follow a variational principle. In particular, such equations
include our Cahn–Hilliard inpainting models (5.12)–(5.14) and (5.19)–(5.21) as de-
scribed further on.

In the following, we denote by τ > 0 the time step size and by tn−1 = (n − 1)τ, n ∈
N, discrete times. We start with the smooth setting (5.12)–(5.14). We will prove

5.3. TIME DISCRETIZATION 179

consistency, unconditional stability, and convergence of a semi-implicit time-discrete
scheme. Afterwards, we go over to the nonsmooth setting (5.19)–(5.21).

5.3.1 Smooth systems

Let us focus on the smooth setting and the fourth-order formulation of (5.12)–(5.14):

∂tui = −∆

ε∆ui −
1
ε
ψ′pol(ui) +

1
εN

N∑
j=1

ψ′pol(u j)

 + ω(fi − ui), (5.22)

∇ui · n = ∇(∆ui) · n = 0 on ∂Ω, (5.23)

for i = 1, . . . ,N. Let u be the exact solution of (5.22)–(5.23) and u(n) = u(nτ) the exact
solution at time nτ. We denote by U(n) be the n-th iterate of the time-discrete scheme
(5.26)–(5.27), which is derived next.

In the following, we extend the numerical analysis of the convexity splitting scheme
for the smooth binary Cahn–Hilliard inpainting model studied in [139] to the vector-
valued inpainting model (5.22)–(5.23).

As described in Chapter 2.1.5, the original idea of convexity splitting applied to
gradient systems is to write the considered energy functional as the sum of a convex
plus a concave energy functional. The convex part is then treated implicitly whilst
the concave part is treated explicitly. Under the right conditions, this approach leads
to an unconditionally gradient stable time discretization scheme. As pointed out in
the previous sections, the smooth vector-valued modified Cahn–Hilliard equation
as a whole is not given by a gradient flow. Especially, our proposed model arises as
a superposition of the H−1-gradient flow for E in (5.3) under the constraint (5.1) and
the L2-gradient flow for F in (5.7). In this case, convexity splitting is applied to each
of these energies. To be more precise, we split E as E = Ec − Ee, where

Ec(u) =
∫
Ω

ε
2

N∑
i=1

|∇ui|
2 +

C1

2

N∑
i=1

u2
i dx,

Ee(u) =
∫
Ω

−
1
ε
ψpol(u) +

C1

2

N∑
i=1

u2
i dx,

as well as F = Fc − Fe, where

Fc(u) =
∫
Ω

C2

2

N∑
i=1

u2
i dx,

Fe(u) =
∫
Ω

−
ω
2

N∑
i=1

(fi − ui)2 +
C2

2

N∑
i=1

u2
i dx.

The constants C1 and C2 are positive and need to be chosen large enough such that
the energies Ec, Ee, Fc, and Fe are strictly convex. It is easy to see that Ec and Fc are
already strictly convex for C1 > 0 and C2 > 0. The crucial points are the energy func-
tionals that contain the nonconvex potential function ψpol(u) as well as the fidelity

180 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

terms ω(fi − ui)2, i = 1, . . . ,N.

Now, we want to give the requirements for the constants C1 and C2 to make sure that
Ee and Fe are strictly convex. However, as in Chapter 4.3.1, the quartic growth of
ψpol(u) at infinity introduces various technical difficulties in the analysis. Therefore,
as in Chapter 4.3.1, we consider a truncated multi-well potential. To be more precise,
we restrict the growth of ψpol(u) to be quadratic for ui ≤ 1−M and ui ≥M for a given
constant M. In the following, we write ψ̃ for the truncated version of ψpol. Using the
truncation technique, we get the following condition: There exists a constant S such
that

max
s∈RN

∣∣∣∣∣∣ ∂2ψ̃

∂ui2
(s)

∣∣∣∣∣∣ ≤ S ∀i = 1, . . . ,N. (5.24)

With the use of (5.24) we can prove:

Lemma 5.1. Ee and Fe are strictly convex if C1 is comparable to 1
ε and C2 is comparable to

ω0 provided that ψ = ψpol is replaced by its truncated version ψ̃.

Proof. Let u = [u1, . . . , uN]T
∈ H1(Ω)N and v = [v1, . . . , vN]T

∈ H1(Ω)N. Based on [145,
p. 54], we have to show

Ee(u + v) − Ee(u) ≥ lim
δ→0

Ee(u + δv) − Ee(u)
δ

,

Fe(u + v) − Fe(u) ≥ lim
δ→0

Fe(u + δv) − Fe(u)
δ

.

We have

Ee(u + v) − Ee(u) =
∫
Ω

−
1
ε

(
ψ(u + v) − ψ(u)

)
+

C1

2

N∑
i=1

(
(ui + vi)

2
− u2

i

)
dx

=

∫
Ω

−
1
ε

(
ψ(u + v) − ψ(u)

)
+

C1

2

N∑
i=1

(
v2

i + 2uivi

)
dx. (5.25)

As ψ is a smooth function, we can consider its Taylor expansion

ψ(u + v) = ψ(u) +
N∑

i=1

(
vi
∂ψ

∂ui
(u) +

1
2

v2
i
∂2ψ

∂ui2
(s)

)
,

where s lies between u + v and u. Therefore, we obtain in (5.25)

Ee(u + v) − Ee(u) =
∫
Ω

−
1
ε

N∑
i=1

(
vi
∂ψ

∂ui
(u) +

1
2

v2
i
∂2ψ

∂ui2
(s)

)
+

C1

2

N∑
i=1

(
v2

i + 2uivi

)
dx.

Similarly, one can show

lim
δ→0

Ee(u + δv) − Ee(u)
δ

=

∫
Ω

−
1
ε

N∑
i=1

vi
∂ψ

∂ui
(u) +

C1

2

N∑
i=1

2uivi dx,

5.3. TIME DISCRETIZATION 181

which leads to

Ee(u + v) − Ee(u) − lim
δ→0

Ee(u + δv) − Ee(u)
δ

=

∫
Ω

−
1
2ε

N∑
i=1

v2
i
∂2ψ

∂ui2
(s) +

C1

2

N∑
i=1

v2
i dx

(5.24)
≥

∫
Ω

(C1

2
−

S
2ε

) N∑
i=1

v2
i dx.

Therefore, Ee is strictly convex if C1 is comparable to 1
ε . Proceeding the same way

with the second energy functional Fe gives

Fe(u + v) − Fe(u) − lim
δ→0

Fe(u + δv) − Fe(u)
δ

=

∫
Ω

(C2

2
−
ω
2

) N∑
i=1

v2
i dx

ω≤ω0
≥

∫
Ω

(C2

2
−
ω0

2

) N∑
i=1

v2
i dx.

Therefore, Fe is strictly convex if C2 > ω0.
�

Note that these convexity requirements are the same as the ones for the smooth
black-and-white Cahn–Hilliard inpainting model.

Remark 5.3. An assumption consistent with (5.24) is also made in the numerical analysis
for the smooth black-and-white Cahn–Hilliard inpainting model, see [139, Theorem 3.1].
There, the authors assume that the second derivative of the smooth potential evaluated at
the previous time step is bounded. In particular, this assumption is needed below as well
in order to prove the consistency, unconditional stability, and convergence of the resulting
time-discrete scheme.

The resulting time-discrete scheme is given by

U(n)
−U(n−1)

τ
= −grad(5.1)

H−1

(
Ec(U(n)) − Ee(U(n−1))

)
− gradL2

(
Fc(U(n)) − Fe(U(n−1))

)
.

This translates to a numerical scheme of the form

U(n)
i −U(n−1)

i

τ
+ ε∆2U(n)

i − C1∆U(n)
i + C2U(n)

i hhhhhhhhhhhhhhhhhhhhhhh

=
1
ε
∆ψ′pol(U

(n−1)
i) −

1
εN
∆

 N∑
j=1

ψ′pol(U
(n−1)
j)

 + ω(fi −U(n−1)
i) (5.26)

− C1∆U(n−1)
i + C2U(n−1)

i ,

∇Ui · n = ∇(∆Ui) · n = 0 on ∂Ω, (5.27)

for i = 1, . . . ,N. Next, we prove the consistency, unconditional stability, and con-
vergence of the time discrete scheme (5.26)–(5.27) in the sense of Definition 2.21. In
doing so, we follow [139, pp. 425–434] and extend the proof from the scalar to the
vector-valued case. In the following, we assume f ∈ L2(Ω)N, f ∈ GN a.e. in Ω, and
we write ψ instead of ψpol.

182 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

Theorem 5.2 (See [139, Theorem 3.1] for black-and-white Cahn–Hilliard inpainting.).
Let u be the exact solution of (5.22)–(5.23) and u(n) = u(nτ) the exact solution at time nτ.
Let U(n) be the n-th iterate of (5.26)–(5.27) with constants C1 >

1
ε , C2 > ω0. Then, the

following statements are true:

1. (Consistency). Under the assumption that ‖utt‖−1 and ‖∇∆ut‖ are bounded, the nu-
merical scheme (5.26)–(5.27) is consistent with the continuous Equation (5.22)–(5.23)
and of order one in time.

Under the additional assumption that∣∣∣∣∣∣ ∂2ψ

∂ui2

(
U(n−1)

)∣∣∣∣∣∣ ≤ S ∀i = 1, . . . ,N (5.28)

for a nonnegative constant S, we further have:1

2. (Unconditional stability). The solution sequence U(n) is bounded on a finite time
interval [0,T] for all τ > 0. In particular for nτ ≤ T, T > 0 fixed, we have for every
τ > 0

‖∇U(n)
‖

2 + τK1‖∆U(n)
‖

2

≤ eK2T
(
‖∇U(0)

‖
2 + τK1‖∆U(0)

‖
2 + τC(Ω,D, ω0, f)

)
,

(5.29)

for suitable constants K1 and K2, and a constant C depending on Ω, D, ω0, f only.

3. (Convergence). The discretization error e(n), given by e(n) = u(n)
−U(n), converges to

zero in L2(Ω) as τ→ 0. In particular, we have for nτ ≤ T, T > 0 fixed that

‖∇e(n)
‖

2 + τ
C1

C̃
‖∆e(n)

‖
2
≤

T
C̃

eK1TCτ2 (5.30)

for suitable constants C, C̃,K1.

We start with the proof for consistency.

Proof of consistency. By rearranging the terms in (5.26), we can write our time-discrete
scheme in the form of (2.10):

U(n)
i = U(n−1)

i + τG(n−1)
i (U(n−1),U(n),DαU(n−1),DαU(n)),

where

G(n−1)
i (U(n−1),U(n),DαU(n−1),DαU(n)) = C2(U(n−1)

i −U(n)
i)−ε∆2U(n)

i −C1∆(U(n−1)
i −U(n)

i)

+
1
ε
∆
∂ψ

∂ui
(U(n−1)) −

1
εN
∆

 N∑
j=1

∂ψ

∂u j
(U(n−1))

 + ω(fi −U(n−1)
i).

1Note that this assumption complies with the one in (5.24). It is even less restrictive, since we only
need the boundedness evaluated at the solution of the previous time step.

5.3. TIME DISCRETIZATION 183

Let η(n−1) = [η(n−1)
1 , . . . , η(n−1)

N]T be the local truncation error vector defined as in (2.11):

η(n−1)
i =

u(n)
i − u(n−1)

i

τ
− G(n−1)

i (u(n−1),u(n),Dαu(n−1),Dαu(n))

=
u(n)

i − u(n−1)
i

τ
− C2(u(n−1)

i − u(n)
i) + ε∆2u(n)

i + C1∆(u(n−1)
i − u(n)

i)

−
1
ε
∆
∂ψ

∂ui
(u(n−1)) +

1
εN
∆

 N∑
j=1

∂ψ

∂u j
(u(n−1))

 − ω(fi − u(n−1)
i). (5.31)

Then
η(n−1)

i = η(n−1),1
i + η(n−1),2

i , (5.32)

with

η(n−1),1
i =

u(n)
i − u(n−1)

i

τ
− ∂tu

(n−1)
i ,

η(n−1),2
i = ετ∆2

u(n)
i − u(n−1)

i

τ

 − C1τ∆

u(n)
i − u(n−1)

i

τ

 + C2τ

u(n)
i − u(n−1)

i

τ

 .
Here, we have used that u(n−1)

i = ui((n − 1)τ) is the exact solution at time (n − 1)τ.
That means it fulfills the continuous Equation (5.22)–(5.23):

∂tu
(n−1)
i = −∆

ε∆u(n−1)
i −

1
ε

∂ψ

∂ui
(u(n−1)) +

1
εN

N∑
j=1

∂ψ

∂u j
(u(n−1))

 + ω(fi − u(n−1)
i).

The partition of the local truncation error into the sum of η(n−1),1
i and η(n−1),2

i is exactly
the same as in the scalar inpainting model, see [139, p. 426]. Hence, the rest of the
proof follows the proof of [139, Proposition 3.2]. That means, assuming that ‖utt‖−1
and ‖∇∆ut‖ are bounded, the global truncation error η is given by

η = max
n
‖η(n)
‖−1 = O(τ) as τ→ 0.

�

Next, we will proof the unconditional stability.

Proof of unconditional stability. First, we multiply the ith row of the time-discrete
model (5.26) with −∆U(n)

i and integrate over Ω:

−

(1
τ
+ C2

)
(U(n)

i ,∆U(n)
i) − ε(∆2U(n)

i ,∆U(n)
i) + C1(∆U(n)

i ,∆U(n)
i)

= −
(1
τ
+ C2

)
(U(n−1)

i ,∆U(n)
i) − (ω(fi −U(n−1)

i),∆U(n)
i) + C1(∆U(n−1)

i ,∆U(n)
i)

−
1
ε

(
∆
∂ψ

∂ui
(U(n−1)),∆U(n)

i

)
+

1
εN

N∑
j=1

(
∆
∂ψ

∂u j
(U(n−1)),∆U(n)

i

)
. (5.33)

184 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

Lemma 2.21 applied to the second last term on the right-hand side of (5.33) yields∫
Ω

∆
∂ψ

∂ui
(U(n−1))∆U(n)

i dx

=

∫
∂Ω
∆U(n)

i ∇

(
∂ψ

∂ui
(U(n−1))

)
· n ds −

∫
Ω

∇

(
∂ψ

∂ui
(U(n−1))

)
· ∇∆U(n)

i dx

=

∫
∂Ω
∆U(n)

i

∂2ψ

∂ui2
(U(n−1))∇U(n−1)

i · n︸ ︷︷ ︸
=0

ds −
∫
Ω

∂2ψ

∂ui2
(U(n−1))∇U(n−1)

i · ∇∆U(n)
i dx

= −

∂2ψ

∂u2
i

(U(n−1))∇U(n−1)
i ,∇∆U(n)

i

 ,
where we have used the Neumann boundary conditions that are imposed in (5.27) as
well as the splitting assumption ψ(u) =

∑N
i=1 ψi(ui). The last term on the right-hand

side of (5.33) can be handled in the same way. Applying the Neumann boundary
conditions again to some remaining terms in (5.33), we obtain(1

τ
+ C2

)
‖∇U(n)

i ‖
2 + ε‖∇∆U(n)

i ‖
2 + C1‖∆U(n)

i ‖
2

=
(1
τ
+ C2

)
(∇U(n−1)

i ,∇U(n)
i) + (∇ω(fi −U(n−1)

i),∇U(n)
i)

+ C1

(
∆U(n−1)

i ,∆U(n)
i

)
+

1
ε

∂2ψ

∂u2
i

(U(n−1))∇U(n−1)
i ,∇∆U(n)

i


−

1
εN

N∑
j=1

∂2ψ

∂u2
j

(U(n−1))∇U(n−1)
j ,∇∆U(n)

i

. (5.34)

Using Young’s inequality (Lemma 2.12)

(∇U(n−1)
i ,∇U(n)

i) ≤
1
2
‖∇U(n−1)

i ‖
2 +

1
2
‖∇U(n)

i ‖
2,∂2ψ

∂u2
i

(U(n−1))∇U(n−1)
i ,∇∆U(n)

i

 ≤ 1
2δ1

∥∥∥∥∥∥∂2ψ

∂u2
i

(U(n−1))∇U(n−1)
i

∥∥∥∥∥∥2

+
δ1

2

∥∥∥∥∇∆U(n)
i

∥∥∥∥2
,

(
∆U(n−1)

i ,∆U(n)
i

)
≤

1
2
‖∆U(n−1)

i ‖
2 +

1
2
‖∆U(n−1)

i ‖
2,

(∇ω(fi −U(n−1)
i),∇U(n)

i) ≤
1
2
‖∇ω(fi −U(n−1)

i)‖2 +
1
2
‖∇U(n)

i ‖
2,

where δ1 > 0, we obtain in (5.34)

5.3. TIME DISCRETIZATION 185

0
(5.34)
=

(1
τ
+ C2

)
‖∇U(n)

i ‖
2 + ε‖∇∆U(n)

i ‖
2 + C1‖∆U(n)

i ‖
2
−

(1
τ
+ C2

)
(∇U(n−1)

i ,∇U(n)
i)

− (∇ω(fi −U(n−1)
i),∇U(n)

i) − C1

(
∆U(n−1)

i ,∆U(n)
i

)
−

1
ε

∂2ψ

∂u2
i

(U(n−1))∇U(n−1)
i ,∇∆U(n)

i


+

1
εN

N∑
j=1

∂2ψ

∂u2
j

(U(n−1))∇U(n−1)
j ,∇∆U(n)

i


≥

(1
τ
+ C2

)
‖∇U(n)

i ‖
2 + ε‖∇∆U(n)

i ‖
2 + C1‖∆U(n)

i ‖
2
−

1
2

(1
τ
+ C2

) (
‖∇U(n−1)

i ‖
2 + ‖∇U(n)

i ‖
2
)

−
1
2
‖∇ω(fi −U(n−1)

i)‖2 −
1
2
‖∇U(n)

i ‖
2
−

C1

2

(
‖∆U(n−1)

i ‖
2 + ‖∆U(n−1)

i ‖
2
)

−
1
2ε

 1
δ1

∥∥∥∥∥∥∂2ψ

∂u2
i

(U(n−1))∇U(n−1)
i

∥∥∥∥∥∥2

+ δ1

∥∥∥∥∇∆U(n)
i

∥∥∥∥2


−
1

2εN

N∑
j=1

 1
δ1

∥∥∥∥∥∥∥∂2ψ

∂u2
j

(U(n−1))∇U(n−1)
j

∥∥∥∥∥∥∥
2

+ δ1

∥∥∥∥∇∆U(n)
i

∥∥∥∥2
.

After rearranging, we get(1
2τ
+

C2

2
−

1
2

)
‖∇U(n)

i ‖
2 +

C1

2
‖∆U(n)

i ‖
2 +

(
ε −

δ1

ε

)
‖∇∆U(n)

i ‖
2

≤

(1
2τ
+

C2

2

)
‖∇U(n−1)

i ‖
2 +

1
2
‖∇ω(fi −U(n−1)

i)‖2 +
C1

2
‖∆U(n−1)

i ‖
2

+
1

2δ1ε

∥∥∥∥∥∥∂2ψ

∂u2
i

(U(n−1))∇U(n−1)
i

∥∥∥∥∥∥2

+
1

2δ1Nε

N∑
j=1

∥∥∥∥∥∥∥∂
2ψ

∂u2
j

(U(n−1))∇U(n−1)
j

∥∥∥∥∥∥∥
2

.

Using the estimate

‖∇ω(fi −U(n−1)
i)‖2 ≤ 2ω2

0 ‖∇U(n−1)
i ‖

2 + C(Ω,D, ω0, fi),

as stated in the middle of [139, p. 427], together with δ1 = ε2, we obtain(1
2τ
+

C2

2
−

1
2

)
‖∇U(n)

i ‖
2 +

C1

2
‖∆U(n)

i ‖
2

≤

(1
2τ
+

C2

2
+ ω2

0

)
‖∇U(n−1)

i ‖
2 +

1
2ε3

∥∥∥∥∥∥∂2ψ

∂u2
i

(U(n−1))∇U(n−1)
i

∥∥∥∥∥∥2

+
1

2Nε3

N∑
j=1

∥∥∥∥∥∥∥∂
2ψ

∂u2
j

(U(n−1))∇U(n−1)
j

∥∥∥∥∥∥∥
2

+
C1

2
‖∆U(n−1)

i ‖
2 + C(Ω,D, ω0, fi).

186 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

Summing up these inequalities over i = 1, . . . ,N, we get(1
2τ
+

C2

2
−

1
2

)
‖∇U(n)

‖
2 +

C1

2
‖∆U(n)

‖
2

≤

(1
2τ
+

C2

2
+ ω2

0

)
‖∇U(n−1)

‖
2 +

1
ε3

N∑
i=1

∥∥∥∥∥∥∂2ψ

∂u2
i

(U(n−1))∇U(n−1)
i

∥∥∥∥∥∥2

+
C1

2
‖∆U(n−1)

‖
2 + C(Ω,D, ω0, f).

Because of (5.28), we can estimate∥∥∥∥∥∥∂2ψ

∂u2
i

(U(n−1))∇U(n−1)
i

∥∥∥∥∥∥2

≤ S2
∥∥∥∥∇U(n−1)

i

∥∥∥∥2
,

and we have(1
2τ
+

C2

2
−

1
2

)
‖∇U(n)

‖
2 +

C1

2
‖∆U(n)

‖
2

≤

(
1

2τ
+

C2

2
+ ω2

0 +
S2

ε3

)
‖∇U(n−1)

‖
2 +

C1

2
‖∆U(n−1)

‖
2 + C(Ω,D, ω0, f).

This is (almost) the same estimation as the last inequality in [139, p. 427]. Therefore,
the rest of the proof follows the proof of [139, Proposition 3.3]. This results in the
desired estimation (5.29). �

In order to proof the convergence, we need two auxiliary lemmas. The first one is
the following:

Lemma 5.3 (See [139, Lemma 3.2] for black-and-white Cahn–Hilliard inpainting.).
The error e(n−1) between the exact and approximate solution, defined as in Theorem 5.2,
fulfills ∫

Ω

e(n−1) dx = O(τ2).

Proof. Because of the fidelity term in (5.22) and (5.26), solutions of these equations
are not mass preserving, i.e.,

∫
Ω

e(n−1) dx does not in general vanish. In fact, we have
for a solution u(n−1) of (5.22)–(5.23)

5.3. TIME DISCRETIZATION 187

d
dt

∫
Ω

u(n−1)
i dx = −ε

∫
Ω

∆2u(n−1)
i dx +

1
ε

∫
Ω

∆
∂ψ

∂ui
(u(n−1)) dx

−
1
εN

∫
Ω

∆

N∑
j=1

∂ψ

∂u j
(u(n−1)) dx +

∫
Ω

ω(fi − u(n−1)
i) dx

= −ε

∫
∂Ω
∇∆u(n−1)

i · n︸ ︷︷ ︸
=0

ds +
1
ε

∫
∂Ω
∇

(
∂ψ

∂ui
(u(n−1))

)
· n ds

−
1
εN

N∑
j=1

∫
∂Ω
∇

(
∂ψ

∂u j
(u(n−1))

)
· n ds +

∫
Ω

ω(fi − u(n−1)
i) dx

=
1
ε

∫
∂Ω

∂2ψ

∂u2
i

(u(n−1))∇u(n−1)
i · n︸ ︷︷ ︸
=0

ds

−
1
εN

N∑
j=1

∫
∂Ω

∂2ψ

∂u2
j

(u(n−1))∇u(n−1)
j · n︸ ︷︷ ︸
=0

ds +
∫
Ω

ω(fi − u(n−1)
i) dx

=

∫
Ω

ω(fi − u(n−1)
i) dx,

where we have used Lemma 2.21. In particular,

d
dt

∫
D

u(n−1)
i dx = 0 (5.35)

since ω(x) = 0 for all x ∈ D. A similar computation for the discrete solution of
(5.26)–(5.27) shows that(1

τ
+ C2

) ∫
Ω

(
U(n)

i −U(n−1)
i

)
dx =

∫
Ω

ω(fi −U(n−1)
i) dx,

and in particular (1
τ
+ C2

) ∫
D

(
U(n)

i −U(n−1)
i

)
dx = 0. (5.36)

Next, consider

e(n)
i − e(n−1)

i

τ
+ ε∆2e(n)

i − C1∆e(n)
i + C2e(n)

i

= −

U(n)
i −U(n−1)

i

τ
+ ε∆2U(n)

i − C1∆U(n)
i + C2U(n)

i


+

u(n)
i − u(n−1)

i

τ
+ ε∆2u(n)

i − C1∆u(n)
i + C2u(n)

i , (5.37)

where we have used the definition of the discretization error. In (5.37), we express
the terms in brackets using (5.26) and the remaining terms via the local truncation

188 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

error η(n−1)
i in (5.31). Hence, we obtain

e(n)
i − e(n−1)

i

τ
+ ε∆2e(n)

i − C1∆e(n)
i + C2e(n)

i

= −

1
ε
∆

(
∂ψ

∂ui
(U(n−1))

)
−

1
εN
∆

 N∑
j=1

∂ψ

∂u j
(U(n−1))


+ω(fi −U(n−1)

i) − C1∆U(n−1)
i + C2U(n−1)

i

)
+

(
C2u(n−1)

i − C1∆u(n−1)
i +

1
ε
∆

(
∂ψ

∂ui
(u(n−1))

)
−

1
εN
∆

 N∑
j=1

∂ψ

∂u j
(u(n−1))

 + ω(fi − u(n−1)
i)

 + η(n−1)
i

= −

1
ε
∆

(
∂ψ

∂ui
(U(n−1)) −

∂ψ

∂ui
(u(n−1))

)
−

1
εN
∆

N∑
j=1

(
∂ψ

∂u j
(U(n−1)) −

∂ψ

∂u j
(u(n−1))

)
−C1∆

(
U(n−1)

i − u(n−1)
i

)
+ C2

(
U(n−1)

i − u(n−1)
i

)
− ω(U(n−1)

i − u(n−1)
i)

]
+ η(n−1)

i . (5.38)

As before, integrating overΩ, applying Lemma 2.21 and the zero Neumann boundary
conditions for u(n), u(n−1), U(n), U(n−1), we get(1

τ
+ C2

) ∫
Ω

(e(n)
i − e(n−1)

i) dx +
∫
Ω

ω e(n−1)
i dx =

∫
Ω

η(n−1)
i dx, (5.39)

where∫
Ω

η(n−1)
i dx

(5.32)
=

∫
Ω

(
η(n−1),1

i + η(n−1),2
i

)
dx

=
(1
τ
+ C2

) ∫
Ω

(u(n)
i − u(n−1)

i) dx −
∫
Ω

∂tu
(n−1)
i dx

=
(1
τ
+ C2

) ∫
Ω

(
(u(n−1)

i + τ∂tu
(n−1)
i + O(τ2)) − u(n−1)

i

)
dx −

∫
Ω

∂tu
(n−1)
i dx

= τC2

∫
Ω

∂tu
(n−1)
i dx +

∫
Ω

O(τ + C2τ
2) dx

= O(τ).

This is the same estimation as in the upper part of [139, p. 430]. Therefore, the rest of
the proof follows the proof of [139, Lemma 3.2]. This results in the desired estimation

(1 + C2τ)
∫
Ω

e(n−1) dx = O(τ2).

�

The second auxiliary lemma is the following:

Lemma 5.4 (See [139, Lemma 3.3] for black-and-white Cahn–Hilliard inpainting.).
Let u(n−1) be the exact solution of (5.22)–(5.23) at time t = (n − 1)τ, and let T > 0. Then,
there exists a constant C > 0 such that ‖∇u(n−1)

‖ ≤ C for all (n − 1)τ < T.

5.3. TIME DISCRETIZATION 189

Proof. We write the continuous evolution Equation (5.22) in vector form as

∂tu = −∆

ε∆u −
1
ε
ψ′(u) +

1
εN

1
N∑

j=1

∂ψ

∂u j
(u)

 + ω(f − u). (5.40)

Let

w = [w1, . . . ,wN]T = −ε∆u +
1
ε

∂ψ

∂u
(u) −

1
εN

1
N∑

j=1

∂ψ

∂u j
(u).

We multiply (5.40) with w, integrate over Ω, and obtain

(∂tu,w) = (∆w,w) + (ω(f − u),w). (5.41)

Differentiating the Ginzburg–Landau energy functional (5.3) over t leads to

d
dt
E(u) =

∫
Ω

N∑
i=1

1
ε

∂ψ(u)
∂ui

∂ui

∂t
+ ε∇ui · ∇

∂ui

∂t
dx

=

∫
Ω

N∑
i=1

(
1
ε

∂ψ

∂ui
(u) − ε∆ui

)
∂ui

∂t
dx

=

∫
Ω

N∑
i=1

wi +
1
εN

N∑
j=1

∂ψ

∂u j
(u)

 ∂ui

∂t
dx

= (∂tu,w) +

∂tu,
1
εN

1
N∑

j=1

∂ψ

∂u j
(u)


(5.41)
= (∆w,w) + (ω(f − u),w) +

∂tu,
1
εN

1
N∑

j=1

∂ψ

∂u j
(u)


= −(∇w,∇w) + (ω(f − u),−ε∆u) +

(
ω(f − u),

1
ε
ψ′(u)

)
+

−ω(f − u) + ∂tu,
1
εN

1
N∑

j=1

∂ψ

∂u j
(u)

 , (5.42)

where we have used Lemma 2.21 with zero Neumann boundary conditions in order
to obtain the second and last equality. Since ψ(u) is bounded from below, we only
have to show that E(u) is uniformly bounded on [0,T], and we automatically have
that |∇u| is uniformly bounded on [0,T]. The last term on the right-hand side of
(5.42) is zero since

190 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

−ω(f − u) + ∂tu,
1
εN

1
N∑

j=1

∂ψ

∂u j
(u)

 hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

=
1
εN

N∑
i=1

∫
Ω

(
−ω(fi − ui) + ∂tui

) N∑
j=1

(
∂ψ

∂u j
(u)

)
dx

=
1
εN

∫
Ω

N∑
j=1

(
∂ψ

∂u j
(u)

) −ω N∑
i=1

fi + ω
N∑

i=1

ui + ∂t

 N∑
i=1

ui


 dx

(5.2)
= 0.

Hence, we end up with the same expression of d
dtE(u) in (5.42) as in the last equation

of [139, p. 433]. Therefore, the rest of the proof follows the proof of [139, Lemma 3.3],
and, by integrating d

dtE(u) in (5.42) over [0,T], we finally end up with

E(u(t)) ≤ E(u(0)) + C(T) + T · C(ω0, ε, δ,Ω,D, f)

−

∫ T

0

[∫
Ω

|∇w|2 dx +
ω0C1

ε
(1 − δC(f,Ω))

∫
Ω\D

u2 dx
]

dt,

for each 0 ≤ t ≤ T for a positive constant C1 and δ < 1
C(f,Ω) . Hence, for a fixed T > 0,

|∇u| is uniformly bounded in [0,T].
�

Finally, we will proof the convergence stated in Theorem 5.2.

Proof of convergence. We multiply (5.38) with −∆e(n)
i and integrate over Ω. Thereby,

we use ∫
∂Ω
∆e(n)

i ∇∆
−1η(n−1)

1 · n ds = 0

as used in the first equation of [139, p. 431]. Altogether, we obtain

1
τ

(
‖∇e(n)

i ‖
2
−

(
∇e(n−1)

i ,∇e(n)
i

))
+ ε‖∇∆e(n)

i ‖
2 + C1‖∆e(n)

i ‖
2 + C2‖∇e(n)

i ‖
2hhhhhhh

= −
1
ε

(
∇

(
∂ψ

∂ui
(U(n−1)) −

∂ψ

∂ui
(u(n−1))

)
,∇∆e(n)

i

)
+

1
εN

N∑
j=1

(
∇

(
∂ψ

∂u j
(U(n−1)) −

∂ψ

∂u j
(u(n−1))

)
,∇∆e(n)

i

)
− C1

(
∆(U(n−1)

i − u(n−1)
i),∆e(n)

i

)
− C2

(
∇(U(n−1)

i − u(n−1)
i),∇e(n)

i

)
+

(
∇ω(U(n−1)

i − u(n−1)
i),∇e(n)

i

)
+

(
∇∆−1η(n−1)

i ,∇∆e(n)
i

)
.

Using the definition of the discretization error as well as the estimation

1
τ

(
‖∇e(n)

i ‖
2
−

(
∇e(n−1)

i ,∇e(n)
i

))
≥

1
2τ

(
‖∇e(n)

i ‖
2
− ‖∇e(n−1)

i ‖
2
)
,

5.3. TIME DISCRETIZATION 191

as stated in the first inequality of [139, p. 431], we obtain

1
2τ

(
‖∇e(n)

i ‖
2
− ‖∇e(n−1)

i ‖
2
)
+ ε‖∇∆e(n)

i ‖
2 + C1‖∆e(n)

i ‖
2 + C2‖∇e(n)

i ‖
2

≤ −
1
ε

∂2ψ

∂u2
i

(U(n−1))∇U(n−1)
i −

∂2ψ

∂u2
i

(u(n−1))∇u(n−1)
i ,∇∆e(n)

i


+

1
εN

N∑
j=1

∂2ψ

∂u2
j

(U(n−1))∇U(n−1)
j −

∂2ψ

∂u2
j

(u(n−1))∇u(n−1)
j ,∇∆e(n)

i


+ C1

(
∆e(n−1)

i ,∆e(n)
i

)
+ C2

(
∇e(n−1)

i ,∇e(n)
i

)
−

(
∇ω e(n−1)

i ,∇e(n)
i

)
+

(
∇∆−1η(n−1)

i ,∇∆e(n)
i

)
.

Using Young’s inequality (Lemma 2.12)(
∆e(n−1)

i ,∆e(n)
i

)
≤
δ1

2
‖∆e(n)

i ‖
2 +

1
2δ1
‖∆e(n−1)

i ‖
2,(

∇e(n−1)
i ,∇e(n)

i

)
≤
δ2

2
‖∇e(n)

i ‖
2 +

1
2δ2
‖∇e(n−1)

i ‖
2,

(
∇ω e(n−1)

i ,∇e(n)
i

)
≤
δ3

2
‖∇e(n)

i ‖
2 +

ω2
0

2δ3
‖∇e(n−1)

i ‖
2,(

∇∆−1η(n−1)
i ,∇∆e(n)

i

)
≤
δ4

2
‖∇∆e(n)

i ‖
2 +

1
2δ4
‖η(n−1)

i ‖
2
−1,

where δ1, δ2, δ3, δ4 > 0, we get

1
2τ

(
‖∇e(n)

i ‖
2
− ‖∇e(n−1)

i ‖
2
)
+ ε‖∇∆e(n)

i ‖
2 + C1‖∆e(n)

i ‖
2 + C2‖∇e(n)

i ‖
2hhhhhh

≤ −
1
ε

∂2ψ

∂u2
i

(U(n−1))∇U(n−1)
i −

∂2ψ

∂u2
i

(u(n−1))∇u(n−1)
i ,∇∆e(n)

i


+

C1δ1

2
‖∆e(n)

i ‖
2 +

C1

2δ1
‖∆e(n−1)

i ‖
2

+
1
εN

N∑
j=1

∂2ψ

∂u2
j

(U(n−1))∇U(n−1)
j −

∂2ψ

∂u2
j

(u(n−1))∇u(n−1)
j ,∇∆e(n)

i


+

C2δ2

2
‖∇e(n)

i ‖
2 +

C2

2δ2
‖∇e(n−1)

i ‖
2

+
δ3

2
‖∇e(n)

i ‖
2 +

ω2
0

2δ3
‖∇e(n−1)

i ‖
2 +

δ4

2
‖∇∆e(n)

i ‖
2 +

1
2δ4
‖η(n−1)

i ‖
2
−1. (5.43)

We can estimate the first term on the right-hand side of (5.43) in the same way as in
the last inequality of [139, p. 431]:

−
1
ε

∂2ψ

∂u2
i

(U(n−1))∇U(n−1)
i −

∂2ψ

∂u2
i

(u(n−1))∇u(n−1)
i ,∇∆e(n)

i


≤

C
2δ5ε

‖∇e(n−1)
i ‖

2 +
C

2δ6ε
‖e(n−1)

i ‖
2 +

(
δ5

2ε
+
δ6

2ε

)
‖∇∆e(n)

i ‖
2.

(5.44)

For that, we have used (5.28), the local Lipschitz continuity of ∂2ψ

∂u2
i
, and Lemma 5.4.

We have set C to be a universal constant for all bounds. Using the estimation

‖e(n−1)
i ‖

2
≤ 2‖e(n−1)

i − O(τ)2
‖

2 + 2‖O(τ)2
‖

2, (5.45)

192 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

as stated in the first inequality of [139, p. 432], and Lemma 5.3, we can apply the
Poincaré inequality (Theorem 2.22)

‖e(n−1)
i − O(τ)2

‖
2
≤ cP ‖∇e(n−1)

i ‖
2

to (5.45):
‖e(n−1)

i ‖
2
≤ 2cP ‖∇e(n−1)

i ‖
2 + 2‖O(τ)2

‖
2. (5.46)

Substituting (5.46) into (5.44), we get

−
1
ε

∂2ψ

∂u2
i

(U(n−1))∇U(n−1)
i −

∂2ψ

∂u2
i

(u(n−1))∇u(n−1)
i ,∇∆e(n)

i


≤

C
2δ5ε

‖∇e(n−1)
i ‖

2 +
C
δ6ε
‖∇e(n−1)

i ‖
2 +

C
δ6ε
‖O(τ)2

‖
2 +

(
δ5

2ε
+
δ6

2ε

)
‖∇∆e(n)

i ‖
2.

In the same way, we can estimate the fourth term on the right-hand side of (5.43).
Altogether, we get in (5.43)(1

2τ
+ C2

(
1 −

δ2

2

)
−
δ3

2

)
‖∇e(n)

i ‖
2 + C1

(
1 −

δ1

2

)
‖∆e(n)

i ‖
2 +

(
ε −

δ4

2
−
δ5 + δ6

2ε

)
‖∇∆e(n)

i ‖
2

≤

 1
2τ
+
ω2

0

2δ3
+

C2

2δ2
+

C
2δ5ε

+
C
δ6ε

 ‖∇e(n−1)
i ‖

2 +
C1

2δ1
‖∆e(n−1)

i ‖
2 +

1
2δ4
‖η(n−1)

i ‖
2
−1

+
C
δ6ε
‖O(τ)2

‖
2 +

1
εN

N∑
j=1

[(
δ5 + δ6

2

)
‖∇∆e(n)

i ‖
2 +

(C
2δ5
+

C
δ6

)
‖∇e(n−1)

j ‖
2 +

C
δ6
‖O(τ)2

‖
2
]
.

Multiplying the inequality with 2τ, choosing δ1 = 1 and taking the sum over i =
1, . . . ,N yields

(1 + τ [C2 (2 − δ2) − δ3]) ‖∇e(n)
‖

2 + τC1‖∆e(n)
‖

2 + τ

(
2ε − δ4 −

2(δ5 + δ6)
ε

)
‖∇∆e(n)

‖
2

≤

1 + τ

ω2
0

δ3
+

C2

δ2
+

2C
δ5ε
+

4C
δ6ε

 ‖∇e(n−1)
‖

2

+ τC1‖∆e(n−1)
‖

2 +
τ
δ4
‖η(n−1)

‖
2
−1 + τ

4C
δ6ε
‖O(τ)2

‖
2.

This is (almost) the same estimation as the second inequality in [139, p. 432]. There-
fore, the rest of the proof follows the proof of [139, Proposition 3.4]. This results in
the desired estimation (5.30). �

As in the previous two chapters, the approach of the truncated polynomial is only
used for the theoretical part. In praxis, the polynomial potential ψpol behaves quite
well and does not result in blow ups of the solution. Violations of u ∈ [0, 1] in form of
u ∈ [−δ, 1 + δ] occur. However, δ is relatively small. We investigate this issue further
in Section 5.7.3.

For the next steps, i.e., the discretization in space in Section 5.5, we consider the weak
formulation of the smooth system in (5.26)–(5.27), which is split as in (5.12)–(5.14):

5.3. TIME DISCRETIZATION 193

Find U(n),W(n)
∈ H1(Ω)N with U(n) = [U(n)

1 , . . . ,U(n)
N]T and W(n) = [W(n)

1 , . . . ,W(n)
N]T

such that(1
τ
+ C2

)
(U(n)

i , v) + (∇W(n)
i ,∇v) − (ω(fi −U(n−1)

i), v)

−

(1
τ
+ C2

)
(U(n−1)

i , v) = 0 ∀v ∈ H1(Ω), (5.47)

(W(n)
i , v) − ε(∇U(n)

i ,∇v) − C1(U(n)
i , v) −

1
ε

(
ψ′(U(n−1)

i), v
)

+
1
εN

N∑
j=1

(
ψ′(U(n−1)

j), v
)
+ C1(U(n−1)

i , v) = 0 ∀v ∈ H1(Ω), (5.48)

for i = 1, . . . ,N. The system (5.47)–(5.48) is supplemented by the initial condition
u0 ∈ H1(Ω)N,u0 ∈ G

N a.e. in Ω.

Remark 5.4. Another possible weak formulation is:(1
τ
+ C2

)
(U(n)

i , v) + (∇W(n)
i ,∇v) + C1(∇U(n)

i ,∇v)

− (ω(fi −U(n−1)
i), v) − C1(∇U(n−1)

i ,∇v) −
(1
τ
+ C2

)
(U(n−1)

i , v) = 0 ∀v ∈ H1(Ω),

(W(n)
i , v) − ε(∇U(n)

i ,∇v) −
1
ε

(
ψ′(U(n−1)

i), v
)
+

1
εN

N∑
j=1

(
ψ′(U(n−1)

j), v
)
= 0 ∀v ∈ H1(Ω).

Such a formulation is considered in [31] for black-and-white Cahn–Hilliard inpainting.
However, working with (5.47)–(5.48) results in systems of linear equations which comply
with the ones from the previous chapters.

After having stated and analyzed our system of time-discrete Cahn–Hilliard equa-
tions in the smooth setting, we proceed to the nonsmooth case.

5.3.2 Nonsmooth systems

In the following, we concentrate on the nonsmooth setting and the fourth-order
formulation of (5.19)–(5.21):

∂tui = −∆
(
ε∆ui +

1
ε

(Tu)i −
1
c

min(0,ui)

−
1
N

N∑
j=1

[
−

1
c

min(0,u j) +
1
ε

(Tu) j

] + ω(fi − ui), (5.49)

∇ui · n = ∇(∆ui) · n = 0 on ∂Ω, (5.50)

for i = 1, . . . ,N. In the following, we apply the convexity splitting scheme to the
nonsmooth vector-valued Cahn–Hilliard inpainting model (5.49)–(5.50). As in the
smooth case, the nonsmooth vector-valued modified Cahn–Hilliard equation as a
whole is not given by a gradient flow. Especially, our proposed model arises as a
superposition of the H−1-gradient flow for E in (5.15) under the constraint (5.1) and
the L2-gradient flow for F in (5.7). In this case, convexity splitting is applied to each

194 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

of these energies. To be more precise, we split E as E = Ec − Ee, where

Ec(u) =
∫
Ω

ε
2

N∑
i=1

|∇ui|
2 +

C1

2

N∑
i=1

u2
i +

1
2c

N∑
i=1

min(0,ui)2 dx,

Ee(u) =
∫
Ω

−
1
ε
ψ0(u) +

C1

2

N∑
i=1

u2
i dx =

∫
Ω

1
2ε

u · Tu +
C1

2

N∑
i=1

u2
i dx.

We use the same splitting for F as in the previous section, i.e., F = Fc − Fe, where

Fc(u) =
∫
Ω

C2

2

N∑
i=1

u2
i dx,

Fe(u) =
∫
Ω

−
ω
2

N∑
i=1

(fi − ui)2 +
C2

2

N∑
i=1

u2
i dx.

The constants C1 and C2 are positive and need to be chosen large enough such that
the energies Ec, Ee, Fc, andFe are strictly convex. In the last section, we have already
proven the convexity condition for F , which is given as C2 > ω0. It is easy to see that
Ec is already strictly convex2 for C1 > 0. The crucial point is the energy functional
that contains the potential function ψ0(u).

Lemma 5.5. Ee is strictly convex if C1 > max
(
0,−λmin(T)ε−1

)
, where λmin(T) is the

smallest eigenvalue of T .

Proof. Let u = [u1, . . . , uN]T
∈ H1(Ω)N and v = [v1, . . . , vN]T

∈ H1(Ω)N. Based on [145,
p. 54], we have to show

Ee(u + v) − Ee(u) ≥ lim
δ→0

Ee(u + δv) − Ee(u)
δ

.

We have

Ee(u + v) − Ee(u) =
∫
Ω

1
2ε

(u + v) · T (u + v) −
1
2ε

u · Tu dx

+

∫
Ω

C1

2

N∑
i=1

(
(ui + vi)

2
− u2

i

)
dx

=

∫
Ω

1
2ε

(v · Tv + 2u · Tv) +
C1

2

N∑
i=1

(
v2

i + 2uivi

)
dx. (5.51)

Similarly, one can show

lim
δ→0

Ee(u + δv) − Ee(u)
δ

=

∫
Ω

1
ε

u · Tv +
C1

2

N∑
i=1

2uivi dx,

2As stated in the proof of Theorem 4.5, the functionals ui → ‖min (0,ui)‖2, i = 1, . . . ,N, are convex
and Fréchet-differentiable on H1(Ω).

5.4. SEMISMOOTH NEWTON METHOD 195

which leads to

Ee(u + v) − Ee(u) − lim
δ→0

Ee(u + δv) − Ee(u)
δ

=

∫
Ω

1
2ε

v · Tv +
C1

2

N∑
i=1

v2
i dx

≥

∫
Ω

(
λmin(T)

2ε
+

C1

2

) N∑
i=1

v2
i dx.

Therefore, Ee is strictly convex if C1 > max
(
0,−λmin(T)ε−1

)
. �

Remark 5.5. In the corresponding nonsmooth black-and-white Cahn–Hilliard inpainting
model, the convexity requirements are C1 > 0 and C2 > ω0. Note that we even do not
need the C1-term in Ec and Ee. Both functionals are already convex without the additional
C1-term, see [31, p. 7].

The resulting time-discrete scheme is given by

U(n)
−U(n−1)

τ
= −grad(5.1)

H−1

(
Ec(U(n)) − Ee(U(n−1))

)
− gradL2

(
Fc(U(n)) − Fe(U(n−1))

)
.

This translates to a numerical scheme of the form

U(n)
i −U(n−1)

i

τ
+ ε∆2U(n)

i −C1∆U(n)
i +C2U(n)

i −
1
c
∆min(0,U(n)

i)+
1

cN
∆

 N∑
j=1

min(0,U(n)
j)


= −

1
ε
∆(TU(n−1))i +

1
εN
∆

 N∑
j=1

(TU(n−1)) j

 (5.52)

+ ω(fi −U(n−1)
i) − C1∆U(n−1)

i + C2U(n−1)
i ,

∇Ui · n = ∇(∆Ui) · n = 0 on ∂Ω, (5.53)

for i = 1, . . . ,N.

Remark 5.6. A rigorous analysis, as done in the previous chapter, is a topic of future research.

Now, we have arrived at a system of linear equations in the smooth case and a
system of nonlinear equations in the regularized nonsmooth case. In order to solve
the latter system, we have to pay attention to the minimum operator present in (5.52).
However, as in Chapter 4.5, we can solve the corresponding nonlinear system via
the SSN method. This will be the topic of the following chapter.

5.4 Semismooth Newton method

For the sake of clarity and consistency with the previous two chapters, in the fol-
lowing, we denote by u(n−1)

∈ H1(Ω)N the time-discrete solution at time step tn−1.
Further, u(n), w(n)

∈ H1(Ω)N form the time-discrete solution at time step tn = tn−1 + τ.
Moreover, from now on we write uold, u, and w instead of u(n−1), u(n), and w(n),
respectively. In what follows, we consider the weak formulation of (5.52)–(5.53)

196 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

and split it as in (5.19)–(5.21): Find uc,wc ∈ H1(Ω)N with uc = [uc,1, . . . , uc,N]T and
wc = [wc,1, . . . ,wc,N]T such that(1

τ
+ C2

)
(uc,i, v) + (∇wc,i,∇v)

− (ω(fi − uold
i), v) −

(1
τ
+ C2

)
(uold

i , v) = 0 ∀v ∈ H1(Ω), (5.54)

(wc,i, v) − ε(∇uc,i,∇v) − C1(uc,i, v) +
1
ε

((Tuold)i, v)

−
1
c

(min(0,uc,i), v) + C1(uold
i , v)

+
1
N

N∑
j=1

[1
c

(min(0,uc, j), v) −
1
ε

((Tuold) j, v)
]
= 0 ∀v ∈ H1(Ω), (5.55)

for i = 1, . . . ,N.

Remark 5.7. As pointed out in Remark 5.4, another possible weak formulation is:(1
τ
+ C2

)
(uc,i, v) + (∇wc,i,∇v) + C1(∇uc,i,∇v)

− (ω(fi − uold
i), v) − C1(∇uold

i ,∇v) −
(1
τ
+ C2

)
(uold

i , v) = 0 ∀v ∈ H1(Ω),

(wc,i, v) − ε(∇uc,i,∇v) +
1
ε

((Tuold)i, v) −
1
c

(min(0,uc,i), v)

+
1
N

N∑
j=1

[1
c

(min(0,uc, j), v) −
1
ε

((Tuold) j, v)
]
= 0 ∀v ∈ H1(Ω),

for i = 1, . . . ,N. Such a formulation is considered in [31] for black-and-white Cahn–Hilliard
inpainting.

For a specified sequence c→ 0, we solve the system (5.54)–(5.55), compactly written
as

Fc(uc,wc) =
(
F(1)

c (uc,wc),F
(2)
c (uc,wc))

)
= 0, (5.56)

for every c by an SSN algorithm. In (5.56), the components are defined by〈
F(1)

c (u,w),v
〉
= (∇w,∇v) +

(1
τ
+ C2

)
(u,v) − (ω(f − uold),v) −

(1
τ
+ C2

)
(uold,v),〈

F(2)
c (u,w),v

〉
= ε(∇u,∇v) + C1(u,v) +

1
c

(min(0,u),v) − (w,v) −
1
ε

(Tuold,v)

− C1(uold,v) −
1
N

N∑
j=1

[1
c

(min(0,u j)1,v) −
1
ε

((Tuold) j1,v)
]
,

for all u,w,v ∈ H1(Ω)N. Fc is not Fréchet-differentiable due to the presence of the
minimum operator. However, the minimum operator satisfies the weaker notion
of Newton differentiability, see Definition 2.11. As in Chapter 4.5, we can state a
Newton derivative for Fc:

5.5. FINITE ELEMENT APPROXIMATION 197

Lemma 5.6. The mapping Fc : H1(Ω)N
×H1(Ω)N

→

(
H1(Ω)N

)∗
×

(
H1(Ω)N

)∗
is Newton-

differentiable. Furthermore, the operator Gc(u,w) given by

〈Gc(u,w)(δu, δw), (φ,ψ)〉

=

 (∇δw,∇φ) +
(

1
τ + C2

)
(δu,φ)

ε(∇δu,∇ψ) + C1(δu,ψ) + 1
c (χM(u)δu,ψ) − (δw,ψ) − 1

cN
∑N

j=1 (χM(u j)δu j1,ψ)

 ,
serves as a Newton derivative for Fc. Here, χM(ui) is the characteristic function of the set

M(ui) B {x ∈ Ω : ui(x) < 0}.

The term χM(u)δu is given as

χM(u)δu =
[
χM(u1)δu1, . . . , χM(uN)δuN

]T
.

For the proof, we refer to [91, p. 788] and [92, pp. 885-886].

In the next section, we derive the fully discrete problems for both, the smooth system
in (5.47)-(5.48) and the regularized nonsmooth system in (5.54)–(5.55).

5.5 Finite element approximation

In this section, we apply FEM [144] to the regularized nonsmooth Cahn–Hilliard
system in (5.54)–(5.55). We also want to apply it to the smooth version (5.47)-(5.48).
Since both procedures are similar, we only present the methodology based on the
nonsmooth setting. Regarding the smooth case, we will state the fully discrete linear
system at the end of this section. Moreover, the following presentation complies
with the FEM Section 4.6 for the vector-valued Cahn–Hilliard equation.

In the following, we assume for simplicity thatΩ is a polyhedral domain. Let {Rh}h>0
be a triangulation ofΩ into disjoint open rectangular elements with maximal element
size h, Jh be the set of nodes of Rh, and p j ∈ Jh be the coordinates of these nodes. We
approximate the infinite-dimensional space H1(Ω) by the finite-dimensional space

Sh B {φ ∈ C0(Ω) : φ |R ∈ Q1(R) ∀R ∈ Rh} ⊂ H1(Ω),

of continuous, piecewise multilinear functions. We denote the standard nodal ba-
sis functions of Sh by ϕ j for all j ∈ Jh. They have the property ϕ j(pi) = δi j, i, j =
1, . . . ,m. The discretized version of the penalized problem (5.54)–(5.55) is the fol-
lowing. Given uold

h = [uold
h,1 , . . . , u

old
h,N]T

∈ SN
h , find (uc,h,wc,h) ∈ SN

h × SN
h , where

uc,h = [uc,h,1, . . . , uc,h,N]T, wc,h = [wc,h,1, . . . ,wc,h,N]T such that〈
F(1,i)

c,h (uc,h,wc,h), vh

〉
= 0 ∀vh ∈ Sh, i = 1, . . . ,N, (5.57)〈

F(2,i)
c,h (uc,h,wc,h), vh

〉
= 0 ∀vh ∈ Shi = 1, . . . ,N, (5.58)

198 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

where the components are〈
F(1,i)

c,h (uc,h,wc,h), vh

〉
= (∇wc,h,i,∇vh) +

(1
τ
+ C2

)
(uc,h,i, vh)h

− (ω(fh,i − uold
h,i), vh)h −

(1
τ
+ C2

)
(uold

h,i , vh)h,〈
F(2,i)

c,h (uc,h,wc,h), vh

〉
= ε(∇uc,h,i,∇vh) + C1(uc,h,i, vh) +

1
c

(min(0,uh,i), vh)h

− (wc,h,i, vh)h −
1
ε

((Tuold
c,h)i, vh)h − C1(uold

h,i , vh)

−
1
N

N∑
j=1

[1
c

(min(0,uc,h, j), vh)h −
1
ε

((Tuold
h) j, vh)h

]
.

Within our finite element framework, for a given (uh,wh) ∈ SN
h × SN

h , every step of
the SSN method for solving (5.57)–(5.58) requires to compute (δuh, δwh) ∈ SN

h × SN
h

satisfying

(∇δwh,i,∇vh) +
(1
τ
+ C2

)
(δuh,i, vh)h = −F(1,i)

c,h (uh,wh),

ε(∇δuh,i,∇vh) + C1(δuh,i, vh) +
1
c

(χh
M(uh,i)

δuh,i, vh)h − (δwh,i, vh)h

−
1

cN

N∑
j=1

(χh
M(uh, j)

δuh, j, vh)h = −F(2,i)
c,h (uh,wh),

for all vh ∈ Sh and i = 1, . . . ,N. Here, uh = [uh,1, . . . , uh,N]T, wh = [wh,1, . . . ,wh,N]T,
and δuh = [δuh,1, . . . , δuh,N]T, δwh = [δwh,1, . . . , δwh,N]T. Further, we define χh

M(uh,i)
B∑m

j=1 χ
h
M(uh,i)

(p j)ϕ j with χh
M(uh,i)

(p j) = 0 if uh,i(p j) ≥ 0 and χh
M(uh,i)

(p j) = 1 otherwise.
If we now write a function vh ∈ Sh by vh =

∑
j∈Jh

vh, j ϕ j and denote the vector of
coefficients by v, the fully discrete linear systems (smooth and nonsmooth) read in
matrix form as[

−A I ⊗M
I ⊗M τ

1+τC2
I ⊗K

] [
u(k+1)

w(k+1)

]
=

 −C1(I ⊗M)uold + 1
ε (I ⊗M)ψ′

(
uold

)
−

1
εN (I ⊗M)

(∑N
j=1 ψ

′

(
uold

j

))
1

(I ⊗M)uold + τω0
1+τC2

(I ⊗H)(f − uold)

 . (5.59)

Here, u(k+1) =
[(
u

(k+1)
1

)T
, . . . ,

(
u

(k+1)
N

)T
]T
, w(k+1) =

[(
w

(k+1)
1

)T
, . . . ,

(
w

(k+1)
N

)T
]T
∈ RNm

and uold =
[(
uold

1

)T
, . . . ,

(
uold

N

)T
]T
∈ RNm is the solution vector from the previous

time step. Remember that k denotes the iteration step of the SSN method. Moreover,

u(k) =
[(
u

(k)
1

)T
, . . . ,

(
u

(k)
N

)T
]T
, 1 = [1, . . . , 1]T

∈ RNm. Note that we do not have to

apply a Newton iteration for solving the smooth system since there is no nonlinearity.
Hence, in this case, the superindex k + 1 in (5.59) vanishes. The potential ψ in first
right-hand side is ψ = ψpol in the smooth case and ψ = ψ0 in the nonsmooth case. As
in the previous two chapters,M ∈ Rm×m is the lumped mass matrix, andK ∈ Rm×m

is the stiffness matrix. Remember that M is a diagonal, symmetric positive definite

5.5. FINITE ELEMENT APPROXIMATION 199

matrix, andK is symmetric positive semidefinite. Moreover, I ∈ RN×N is the identity
matrix. The matrix representation coming from the fidelity term is the diagonal
matrix

H =HD = diag
(

[M]ii if pi ∈ Ω \D,
0 otherwise

)
i=1,...,m

∈ Rm×m,

where D is the inpainting domain. The blockA is given in the smooth system as

A = ε(I ⊗K) + C1(I ⊗M).

In the nonsmooth system, it is

A =


A(1,1) A(2) · · · A(N−1) A(N)
A(1) A(2,2) · · · A(N−1) A(N)
...

...
. . .

...
...

A(1) A(2) · · · A(N−1,N−1) A(N)
A(1) A(2) · · · A(N−1) A(N,N)


,

where for i = 1, . . . ,N

A(i,i) = A(i,i)(u
(k)
i) = εK + C1M +

1
c

(
1 −

1
N

)
G(i),

A(i) = A(i)(u
(k)
i) = −

1
cN
G(i), (5.60)

G(i) = G(i)(u
(k)
i) = diag

 [M] j j if u(k)
h,i, j < 0,

0 otherwise


j=1,...,m

∈ Rm×m.

Here, u(k)
h,i, j denotes the jth element of the vector u(k)

h,i .

Finally, we also state the fully discrete linear systems for the black-and-white Cahn–
Hilliard inpainting models. The linear system in the smooth case reads[

−εK − C1M M
M τ

1+τC2
K

] [
u
w

]
=

 −C1Muold + 1
εMψ′pol,s

(
uold

)
Muold + τω0

1+τC2
H(f − uold)

 (5.61)

per time step, where the scalar potential is given as

ψpol,s(u) = u2(u − 1)2.

The linear system in the nonsmooth case reads[
−εK − C1M − c−1G M

M τ
1+τC2

K

] [
u(k+1)

w(k+1)

]
=

 −C1Muold + 1
εMψ′0,s

(
uold

)
− c−1G+1

Muold + τω0
1+τC2

H(f − uold)

 (5.62)

per SSN step, where the scalar potential is given as

ψ0,s(u) =
1
2

u(1 − u),

200 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

and

G = G(u(k)) = diag
(

[M]ii if u(k)
h,i < 0 or u(k)

h,i > 1,
0 otherwise

)
i=1,...,m

∈ Rm×m,

G+ = G+(u(k)) = diag
(

[M]ii if u(k)
h,i > 1,

0, otherwise

)
i=1,...,m

∈ Rm×m.

Now, we have arrived at the core of our numerical algorithms — the numerical
solution of systems of linear equations. Due to the use of FEM all the matrix blocks
M ,K,H ,G,G(i), i = 1, . . . ,N, are large and sparse. In particular, the higher the
number N of phases is the larger is every block of the system matrix in (5.59). In
the next section, we design effective practical preconditioners for the two scalar
linear systems (5.61) and (5.62) as well as for the two vector-valued linear systems
represented in (5.59).

5.6 Preconditioning

This section is devoted to the development of practical preconditioners for the ef-
ficient solution of the four linear systems in (5.59), (5.61), and (5.62). We begin
with the simplest problem and go step by step to the next harder one. We will
see in the following two sections that the construction of efficient preconditioners
in the smooth case, for both, the scalar and vector-valued system, complies with
the study in Chapter 3.7.1. There, we investigated preconditioning techniques for
scalar smooth semi-implicit Cahn–Hilliard systems. Those coefficient matrices have
a similar structure to the ones we deal with in this chapter in the smooth case. As in
Chapter 3.7.1, we develop two preconditioners: The first one uses the symmetry in
the coefficient matrices. This allows us to make use of symmetric Krylov subspace
solvers, which are cheaper than the nonsymmetric ones. The second preconditioner
originates from [35, 37, 36, 3, 38]. However, our theoretical proofs differ halfway
through. Note that this technique ignores the symmetry inherent in our coefficient
matrices. However, our theoretical results below show there efficiency. The con-
struction of efficient preconditioners in the scalar nonsmooth case complies with the
study in Chapter 3.7.3. There, we have investigated preconditioning techniques for
scalar nonsmooth semi-implicit Cahn–Hilliard systems. The construction of efficient
preconditioners in the vector-valued nonsmooth case complies with the study in
Chapter 4.7.2.

In the following, we start with the smooth systems.

5.6.1 Smooth systems

The smooth modified Cahn–Hilliard system (5.61) can be written as[
A M
M −

τ
1+τC2

K

] [
u
−w

]
B

[
εK + C1M M

M −
τ

1+τC2
K

] [
u
−w

]
=

 C1Muold
−

1
εMψ′pol,s

(
uold

)
Muold + τω0

1+τC2
H(f − uold)

 (5.63)

5.6. PRECONDITIONING 201

and is hence of saddle point form. In the following, we denote the coefficient matrix
by A. It can be easily seen that A is symmetric. Moreover, the (1, 1) block A is
symmetric positive definite. According to Theorem 2.35, A is nonsingular. Due to
Remark 2.3, the Schur complement

S = −
(

τ
1 + τC2

K +MA−1M
)

is symmetric negative definite, andA is indefinite with m positive and m negative
eigenvalues.

Next, we design a preconditioner. Since A is symmetric indefinite, our Krylov
method of choice is MINRES. Hence, we need to construct a symmetric positive
definite preconditioner, and we propose the block diagonal preconditioner

P =

[
A 0

0 −Ŝ

]
. (5.64)

As Schur complement approximation, we design Ŝ as

Ŝ = −S1A
−1S1

= −

(
M +

√
τε

1 + τC2
K

)
A−1

(
M +

√
τε

1 + τC2
K

)
(5.65)

= −
τε

1 + τC2
KA−1K −MA−1M −

√
τε

1 + τC2
MA−1K −

√
τε

1 + τC2
KA−1M .

(5.66)

The second term in (5.66) matches the second term in the exact Schur complement.
The first term in (5.66) approximates the first term in the exact Schur complement.

Due to the balanced distribution of τε
1+τC2

in form of
√

τε
1+τC2

in the factor S1, the

influence of both remainder terms in (5.66) is reduced.

Lemma 5.7. Ŝ is symmetric negative definite.

The proof is the same as the one for Lemma 3.11. To illustrate the performance of
Ŝ−1S, we show eigenvalue plots in Section 5.7.1. Let us conclude the preconditioner
P with a statement about its practical realization. The action of the inverse of S1 is
performed with an AMG sinceS1 forms the discretization of an elliptic operator. The
same holds for the (1, 1) blockA. Hence, the practical block diagonal preconditioner
is given by

P0 =

[
A0 0
0 −S0

]
,

where A0 = AMG(A) and S0 = AMG(S1)A−1AMG(S1). In Section 5.7.2, we illus-
trate the robust performance of the preconditioner P0 applied with MINRES.

In the following, we discuss a second way to develop a preconditioner for the
smooth modified Cahn–Hilliard system (5.61). We proceed in the same way as

202 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

in Chapter 3.7.1. For the development of a preconditioner, we rewrite (5.63) again
and consider[

M −A
τ

1+τC2
K M

] [
w
u

]
B

[
M −εK − C1M
τ

1+τC2
K M

] [
w
u

]
=

 −C1Muold + 1
εMψ′pol,s

(
uold

)
Muold + τω0

1+τC2
H(f − uold)

 . (5.67)

In the following, we denote this coefficient matrix byA. Since we obtainedA from
(5.63) by interchanging m columns and multiplying m rows by −1, its determinant
does not change. Hence, A remains nonsingular. Note that A is not symmetric
anymore is at was in the previous case. Hence, nonsymmetric Krylov subspace
solvers have to be used. Due to Proposition 3.10, the diagonal entries of C1M lie in
the interval C1hd[c̃,C]. Due to the convexity condition C1 > Sε−1 in Lemma 5.1, C1 is
comparable to ε−1. Hence, the estimated order for the diagonal entries in C1M lie in
the interval εd−1[c̃,C], since h is of order ε. Hence, as in Chapter 3.7.1, we suggest to
neglect the block C1M inA. Therefore, we approximateA as

A0 =

[
M −εK
τ

1+τC2
K M

]
.

In what follows, we discuss the quality of the approximation A0. We denote the
Schur complement ofA0 by S̃ =M + τε

1+τC2
KM−1K. Note that both, the (1, 1) and

(2, 2) block ofA0, are nonsingular. In particular, they are symmetric positive definite.
Consider the generalized eigenvalue problem

A

[
q1
q2

]
= λA0

[
q1
q2

]
. (5.68)

Theorem 5.8. It holds
σ(A−1

0 A) ⊂ Bς(1).

The circle radius is bounded by ς ≤ C1
√
τ/(2

√
ε(1 + τC2)). In particular, m eigenvalues are

equal to one. We get ς ≤ 0.5 when C2 ≥ C2
1/ε − τ

−1.

Proof. The proof is almost the same as the one for Theorem 3.12. The matrix R
becomes

R =
C1τ

1 + τC2

(
I +

τε
1 + τC2

(M−1K)2
)−1
M−1K

and hence R̃ becomes

R̃ =
C1τ

1 + τC2

(
I +

τε
1 + τC2

K̃2
)−1
K̃.

We finally end up with

‖R̃‖ ≤
C1τ

1 + τC2

∥∥∥∥∥(I + τεK̃2
)−1
K̃

∥∥∥∥∥ = C1τ
1 + τC2

ρ

((
I +

τε
1 + τC2

K̃2
)−1
K̃

)
≤

C1
√
τ

2
√
ε(1 + τC2)

,

where the equality holds due to the symmetry of
(
I + τεK̃2

)−1
K̃. Therefore, for

C2 ≥ C2
1/ε − τ

−1, it holds σ(R̃) = σ(R) ⊂ B0.5(0) and hence σ(A−1
0 A) ⊂ B0.5(1). �

5.6. PRECONDITIONING 203

Remark 5.8. Note that large values of C2 are needed anyway due to accuracy reasons. The
convexity condition in Lemma 5.1 requires C2 > ω0, whereω0 is the fidelity parameter. Large
values of ω0 yield reconstructed images that are close to the given image in the undamaged
parts.

After we have proven thatA0 is a reasonable approximation ofA, we can go over to
the construction of a suitable preconditionerP forA0 and hence forA. We propose
the block triangular preconditioner

P =

[
M 0
τ

1+τC2
K −Ŝ

]
.

As Schur complement approximation, we design Ŝ as

Ŝ = S1M
−1S1

=

(
M +

√
ετ

1 + τC2
K

)
M−1

(
M +

√
ετ

1 + τC2
K

)
(5.69)

=M +
ετ

1 + τC2
KM−1K + 2

√
ετ

1 + τC2
K. (5.70)

The first two terms in (5.70) match the exact Schur complement S̃ =M+ τε
1+τC2

KM−1K

ofA0. The influence of the last term in (5.70) is reduced due to the factor
√

ετ
1+τC2

. In

fact, this approximation turns out to be an optimal Schur complement preconditioner
forA0 (see also [130]):

Lemma 5.9. It holds
σ
(
Ŝ−1S̃

)
⊂ [0.5, 1] .

The proof is the same as the one for Lemma 3.13. Let us conclude the preconditioner
P with a statement about its practical realization. The action of the inverse of S1
is performed with an AMG since S1 forms the discretization of an elliptic operator.
The (1, 1) block M is a diagonal matrix with positive entries. Hence, its inverse can
be performed by elementwise multiplications. Hence, the practical block triangular
preconditioner is given by

P0 =

[
M 0
τ

1+τC2
K −S0

]
,

where S0 = AMG(S1)M−1AMG(S1).

Since the above theoretical analysis proves the optimality of the preconditioner P
for large values of C2, we will not study the numerical robustness.

Next, we consider the smooth vector-valued modified Cahn–Hilliard system repre-
sented in (5.59). Every block in the coefficient matrix is of diagonal form. In fact,
the structure is exactly the same as in the smooth scalar version discussed above.
Therefore, all results presented in this section hold true for the smooth vector-valued
modified Cahn–Hilliard system as well.

204 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

Here, we finish the discussion about preconditioning of smooth modified Cahn–
Hilliard systems. Next, we come to the harder case of nonsmooth systems. We will
see that a simplification of the coefficient matrix in form ofA0 is only satisfying for
moderate sizes of the penalty parameter c. We start with the scalar version (5.62).

5.6.2 Scalar nonsmooth systems

Consider the matrix system in (5.62) with the coefficient matrix

A =

[
−εK − C1M − c−1G M

M τ
1+τC2

K

]
=:

[
−A M
M τ

1+τC2
K

]
. (5.71)

It can be easily seen that A is symmetric. The (1, 1) block A is symmetric positive
definite. Let us have a closer look at the matrix c−1G and assume that G . 0.
Then, penalized entries, i.e., the nonzero entries, are in general scattered throughout
its diagonal. The intensity of the penalization can be controlled by the penalty
parameter c. The smaller c is the stronger is the penalization and the more accurate
is the numerical approximation of the nonsmoothness. In particular, the penalized
entries of c−1G lie in the interval c−1hd[c̃,C]. The nonpenalized entries of c−1G are
equal to zero. The Schur complement ofA is S = τ

1+τC2
K +MA−1M . For moderate

sizes of c, i.e., c ≥ εd−1, we suggest a symmetric Schur complement preconditioner of
the form(
M +

√
τε

1 + τC2
K

)
A−1

(
M +

√
τε

1 + τC2
K

)
=

τε
1 + τC2

KA−1K +MA−1M +

√
τε

1 + τC2
MA−1K +

√
τε

1 + τC2
KA−1M

as used in (5.65). The approximation of the first term in the exact Schur complement
is satisfying if c ≥ εd−1 since

τε
1 + τC2

KA−1 =
τ

1 + τC2
K(K + C1ε

−1M + c−1ε−1G)−1

and the estimated order for the diagonal entries in C1ε−1M + c−1ε−1G lie in the
interval εd−1[c̃ε−1, C(c−1 + ε−1)], where we have used that h is of order ε and C1 is
of order ε−1. Similarly, neglecting the block C1M + c−1G in A would give a good
approximation only for large penalization parameters c, which is summarized as
follows:

Theorem 5.10. Let

A =

[
M −εK − C1M − c−1G
τ

1+τC2
K M

]
and A0 =

[
M −εK
τ

1+τC2
K M

]
.

It holds
σ(A−1

0 A) ⊂ Bς(1).

The circle radius is bounded by ς ≤
√
τ(c−1+C1)

2
√
ε(1+τC2)

. In particular, m eigenvalues are equal to one.

We get ς ≤ 0.5 when one of the following conditions holds:

(a) C2 ≥
(C1+c−1)2

ε −
1
τ , or

5.6. PRECONDITIONING 205

(b) C2 >
C2

1
ε −

1
τ and c ≥

√
τ√

ε(1+τC2)−C1
√
τ
.

Proof. The proof is almost the same as the one for Theorem 3.12. The matrix R
becomes

R =
τ

1 + τC2

(
I +

τε
1 + τC2

(M−1K)2
)−1
M−1KM−1

(
c−1G + C1M

)
and hence R̃ becomes

R̃ =
τ

1 + τC2

(
I +

τε
1 + τC2

K̃2
)−1
K̃

(
c−1G̃ + C1I

)
,

where G̃ =M−
1
2GM−

1
2 . We finally end up with

‖R̃‖ ≤
τ

1 + τC2

∥∥∥∥∥∥(I + τε
1 + τC2

K̃2
)−1
K̃

∥∥∥∥∥∥ ‖c−1G̃ + C1I‖

=
τ

1 + τC2
ρ

((
I +

τε
1 + τC2

K̃2
)−1
K̃

)
ρ(c−1G̃ + C1I)

≤

√
τ

2
√
ε(1 + τC2)

ρ(c−1G̃ + C1I),

where the equality holds due to the symmetry of
(
I + τε

1+τC2
K̃2

)−1
K̃ and c−1G̃+C1I .

Moreover, due to the diagonal structure ofG, we have

G̃ =M−
1
2GM−

1
2 = diag

(
1 if u(k)

h,i < 0 or u(k)
h,i > 1,

0 otherwise.

)
i=1,...,m

Therefore,

c−1G̃ + C1I = diag
(

c−1 + C1 if u(k)
h,i < 0 or u(k)

h,i > 1,
C1 otherwise,

)
i=1,...,m

which results in
ρ(c−1G̃ + C1I) = c−1 + C1.

We obtain

‖R̃‖ ≤

√
τ(c−1 + C1)

2
√
ε(1 + τC2)

.

Therefore, for
√
τ(c−1+C1)

2
√
ε(1+τC2)

≤
1
2 , it holds σ(R̃) = σ(R) ⊂ B0.5(0) and hence σ(A−1

0 A) ⊂

B0.5(1). If we solve this inequality for C2, we obtain the condition C2 ≥
(C1+c−1)2

ε −
1
τ . For

small penalty parameters, this bound becomes too large. Another condition arises if

we solve the inequality for c. Then, we obtain the inequality c
(√

ε(1+τC2)
√
τ
− C1

)
≥ 1.

In order to ensure that the left-hand side is positive, we need C2 >
C2

1
ε −

1
τ . Finally,

we obtain c ≥
√
τ√

ε(1+τC2)−C1
√
τ
. As in the condition before, c is needed to be large. �

206 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

In the following, we propose preconditioners for the case of small penalty parameters
c. We build on the last two chapters and keep the whole block A within our Schur
complement approximation

We concentrate on the coefficient matrix in (5.71). The first block triangular precon-
ditioner we propose is

P =

[
−A 0

M −Ŝ

]
. (5.72)

As Schur complement approximation, we design Ŝ as

Ŝ = S1A
−1S2

=

(
M +

√
τ

1 + τC2
K

)
A−1

(
M +

√
τ

1 + τC2
A

)
(5.73)

=
τ

1 + τC2
K +MA−1M +

√
τ

1 + τC2
M +

√
τ

1 + τC2
KA−1M . (5.74)

The first two terms in (5.74) match the exact Schur complement S = τ
1+τC2

K +

MA−1M . Due to the balanced distribution of τ
1+τC2

in form of
√

τ
1+τC2

in both

factors S1 and S2, the influence of both remainder terms in (5.74) is reduced. Let
us conclude the preconditioner P with a statement about its practical realization.
The action of the inverse of S1 and S2 is performed with an AMG each since both
form the discretization of an elliptic operator. The same holds for the (1, 1) block A.
Hence, the practical block triangular preconditioner is given by

P0 =

[
−A0 0
M −S0

]
,

whereA0 = AMG(A) and S0 = AMG(S1)A−1AMG(S2).

In the following, we discuss a second way to develop a preconditioner for the scalar
nonsmooth modified Cahn–Hilliard system (5.62). By interchanging the column
blocks in (5.62) we obtain[

M −A
τ

1+τC2
K M

] [
w(k+1)

u(k+1)

]
B

[
M −εK − C1M − c−1G
τ

1+τC2
K M

] [
w(k+1)

u(k+1)

]
=

 −C1Muold + 1
εMψ′0,s

(
uold

)
− c−1G+1

Muold + τω0
1+τC2

H(f − uold)

 . (5.75)

In the following, we denote the coefficient matrix by A. The Schur complement is
now S =M + τ

1+τC2
KM−1A. It can be easily seen thatA is not symmetric anymore.

However, the preconditioner above has already been built based on a nonsymmetric
Schur complement approximation, which results in the use of nonsymmetric Krylov
subspace solvers. The advantage of the form (5.75) is that the (1, 1) block is now
diagonal and symmetric positive definite and hence cheap to invert. The block
triangular preconditioner we propose is

P =

[
M 0
τ

1+τC2
K −Ŝ

]
. (5.76)

5.6. PRECONDITIONING 207

As Schur complement approximation, we design Ŝ as

Ŝ = S1M
−1S2

=

(
√
εM +

√
τ

1 + τC2
K

)
M−1

(
1
√
ε
M +

√
τ

1 + τC2
A

)
(5.77)

=M +
τ

1 + τC2
KM−1A +

√
ετ

1 + τC2
A +

√
τ

ε(1 + τC2)
K. (5.78)

The first two terms in (5.78) match the exact Schur complement. Due to the balanced

distribution of τ
1+τC2

in form of
√

τ
1+τC2

as well as the scaling with
√
ε and its inverse

in both factors, Ŝ1 and Ŝ2, the influence of both remainder terms in (5.78) is reduced.
To illustrate the performance of Ŝ−1S, we show eigenvalue plots in Section 5.7.1.
The practical block triangular preconditioner is given by

P0 =

[
M 0
τ

1+τC2
K −S0

]
,

where S0 = AMG(S1)M−1AMG(S2). In Section 5.7.2, we illustrate the robust per-
formance of the preconditioner P0 applied with BiCG.

In the numerical experiments, we always use the second preconditioner based on
the system matrix (5.75), preconditioner (5.76), and Schur complement approxima-
tion (5.77). Moreover, we suggest this preconditioner to solve the vector-valued
nonsmooth system in (5.59), which is discussed next.

5.6.3 Vector-valued nonsmooth systems

In the following, we develop a preconditioner for the nonsmooth vector-valued
modified Cahn–Hilliard system represented in (5.59). In contrast to the vector-
valued smooth case in (5.59), where each block in the coefficient matrix is block
diagonal, we deal with a nondiagonal block matrix in the (1, 1) block. Moreover, the
(1, 1) block is nonsymmetric here. Hence, as in Chapter 4.7, we rewrite (5.59) and
consider[

I ⊗M −A
τ

1+τC2
I ⊗K I ⊗M

] [
w(k+1)

u(k+1)

]
=

 −C1(I ⊗M)uold + 1
ε (I ⊗M)ψ′0

(
uold

)
−

1
εN (I ⊗M)

(∑N
j=1 ψ

′

0

(
uold

j

))
1

(I ⊗M)uold + τω0
1+τC2

(I ⊗H)(f − uold)

 . (5.79)

In the following, we denote the coefficient matrix in (5.79) by A. We propose the
block triangular preconditioner

P =

[
I ⊗M 0
τ

1+τC2
I ⊗K −Ŝ

]
, (5.80)

where Ŝ is an approximation of the Schur complementS = I ⊗M + τ
1+τC2

(I ⊗K)(I ⊗
M)−1A. Inverting the block I ⊗M is cheap asM is a diagonal matrix with positive
entries. The remaining task is to design a Schur complement approximation Ŝ that

208 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

is easy to invert and resembles S. The practical block triangular preconditioner is
given by

P0 =

[
I ⊗M 0
τ

1+τC2
I ⊗K −S0

]
,

where we have to discuss an implementable Schur complement approximation S0
of Ŝ. As in Chapter 4.7.2, the difficult point is the nondiagonal block matrix A.
It contains the gradient energy parts, which only arise in the diagonal blocks, as
well as the coupling of all penalization terms. As in the last section and previous
chapters, neglecting the penalty blocks G(i), i = 1, . . . ,N, together with the blocks
C1M in A, would give a worse approximation for small penalization parameters,
which is summarized below in Theorem 5.11. The penalization is even more crucial
than in the last section. As can be seen from (5.60), penalized entries are in general
scattered throughout the diagonals of every block of A. In particular, the penalized
entries of the nondiagonal blocks A(i), i = 1, . . . ,N, of A lie in the interval − hd

cN [C, c̃].
The nonpenalized entries are equal to zero. This also applies to the diagonal blocks
A(i,i), i = 1, . . . ,N, of A, whereby the matrix εK + C1M comes in addition. Again,
this indicates a severe dependency between ε and c and hence h. All in all, large
penalized entries should not be neglected.

Theorem 5.11. Let

A0 =

[
I ⊗M −εI ⊗K
τ

1+τC2
I ⊗K I ⊗M

]
.

It holds
σ(A−1

0 A) ⊂ Bς(1).

The circle radius is bounded by ς <
√
τ

2
√
ε(1+τC2)

(
2
c + C1

)
. In particular, Nm eigenvalues are

equal to one. We get ς ≤ 0.5 when one of the following conditions holds:

(a) C2 ≥
(C1+

2
c)2

ε −
1
τ , or

(b) C2 >
C2

1
ε −

1
τ and c ≥ 2

√
τ√

ε(1+τC2)−C1
√
τ
.

Proof. The proof is almost the same as the one for Theorem 4.10. The matrix R
becomes

R =
τ

1 + τC2

(
I +

τε
1 + τC2

[
(I ⊗M)−1(I ⊗K)

]2
)−1

(I ⊗M)−1(I ⊗K)(I ⊗M)−1 [A − ε(I ⊗K)]

and hence R̃ becomes

R̃ =
τ

1 + τC2

(
I +

τε
1 + τC2

K̃2
)−1
K̃Ã,

where Ã = (I ⊗M−
1
2) [A − ε(I ⊗K)] (I ⊗M−

1
2). If we replace in the proof of

Theorem 4.10 the matrixQL by the identity matrix I ∈ RN×N, we obtain in (4.94)(
I +

τε
1 + τC2

K̃2
)−1
K̃ = (I ⊗QK)

[
I +

τε
1 + τC2

(I ⊗Λ2
K)

]−1
(I ⊗ΛK)(I ⊗QT

K),

5.6. PRECONDITIONING 209

where
[
I + τε

1+τC2
(I ⊗Λ2

K)
]−1

(I⊗ΛK) is a diagonal matrix. Hence,
(
I + τε

1+τC2
K̃2

)−1
K̃

is symmetric. It follows(
I +

τε
1 + τC2

K̃2
)−1
K̃(ei ⊗ qK, j) =

λK, j

1 + τε
1+τC2

λ2
K, j

(ei ⊗ qK, j) (5.81)

for i = 1, . . . ,N, j = 1, . . . ,m. Using the inequality

0 ≤ (1 − ab)2 = 1 + a2b2
− 2ab

with a, b ∈ R, we can bound the eigenvalues of (5.81) as

λK, j

1 + τε
1+τC2

λ2
K, j

≤

√
1 + τC2

2
√
τε

.

for j = 1, . . . ,m. Here, we have used a2 = τε
1+τC2

and b2 = λ2
K, j. This yields

ρ

((
I +

τε
1 + τC2

K̃2
)−1
K̃

)
≤

√
1 + τC2

2
√
τε

. (5.82)

We finally end up with

‖R̃‖ ≤
τ

1 + τC2

∥∥∥∥∥∥(I + τε
1 + τC2

K̃2
)−1
K̃

∥∥∥∥∥∥ ∥∥∥Ã∥∥∥
=

τ
1 + τC2

ρ

((
I +

τε
1 + τC2

K̃2
)−1
K̃

) ∥∥∥Ã∥∥∥
≤

√
τ

2
√
ε(1 + τC2)

∥∥∥Ã∥∥∥ ,
where the equality holds due to the symmetry of

(
I + τε

1+τC2
K̃2

)−1
K̃. Due to the

diagonal structure of each block inA − ε(I ⊗K), we have

Ã = (I ⊗M−
1
2) [A − ε(I ⊗K)] (I ⊗M−

1
2)

=
1
N


c−1(N − 1)G̃(1) +NC1 −c−1G̃(2) · · · −c−1G̃(N)

−c−1G̃(1) c−1(N − 1)G̃(2) +NC1 · · · −c−1G̃(N)
...

...
. . .

...
−c−1G̃(1) −c−1G̃(2) · · · −c−1G̃(N)
−c−1G̃(1) −c−1G̃(2) · · · c−1(N − 1)G̃(N) +NC1


,

where

G̃(i) = G̃(i)(u
(k)
i) = diag

 1 if u(k)
h,i, j < 0,

0 otherwise.


i=1,...,m

Since each block in Ã is diagonal, the number of nonzero entries per row or column
is N. Moreover,

‖Ã‖1 ≤ 2
N − 1

cN
+ C1 and ‖Ã‖∞ ≤ 2

N − 1
cN

+ C1.

210 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

Thus, (2.12) yields

‖Ã‖ ≤

√
‖Ã‖1‖Ã‖∞ ≤ 2

N − 1
cN

+ C1.

Hence, we obtain

‖R̃‖ ≤

√
τ

2
√
ε(1 + τC2)

(
2

N − 1
cN

+ C1

)
<

√
τ

2
√
ε(1 + τC2)

(2
c
+ C1

)
.

Therefore, for
√
τ

2
√
ε(1+τC2)

(
2
c + C1

)
≤

1
2 , it holds σ(R̃) = σ(R) ⊂ B0.5(0) and hence

σ(A−1
0 A) ⊂ B0.5(1). If we solve this inequality for C2, we obtain the condition

C2 ≥
(C1+

2
c)2

ε −
1
τ . For small penalty parameters, this bound becomes too large. Another

condition arises if we solve the inequality for c. Then, we obtain the inequality

c
(√

ε(1+τC2)
√
τ
− C1

)
≥ 2. In order to ensure that the left-hand side is positive, we need

C2 >
C2

1
ε −

1
τ . Finally, we obtain c > 2

√
τ√

ε(1+τC2)−C1
√
τ
. As in the condition before, c is

needed to be large. �

In the following, we propose a preconditioner for the case of small penalty parameters
c. Similar to the last section, we keep the whole blockAwithin our Schur complement
approximation and suggest

Ŝ = S1(I ⊗M)−1S2

=

(
N
√
ε

N − 1
(I ⊗M) +

√
τ

1 + τC2
(I ⊗K)

)
(I ⊗M)−1(

N − 1
N
√
ε

(I ⊗M) +
√

τ
1 + τC2

A

)
(5.83)

= I ⊗M +
τ

1 + τC2
(I ⊗K)(I ⊗M)−1A

+

√
τ

ε(1 + τC2)
N − 1

N
(I ⊗K) +

√
τε

1 + τC2

N
N − 1

A. (5.84)

The first two terms in (5.84) match the exact Schur complement. Due to the balanced

distribution of τ
1+τC2

in form of
√

τ
1+τC2

as well as the scaling with N
√
ε

N−1 and its inverse

in both factors, Ŝ1 and Ŝ2, the influence of both remainder terms in (5.84) is reduced.
Let us discuss the action of the inverses of S1 and S2. This is done in the same way
as in Chapter 4. The block

S1 = I ⊗

(
N
√
ε

N − 1
M +

√
τ

1 + τC2
K

)
in (5.83) is block diagonal and contains the same discrete elliptic operator, N

√
ε

(N−1)M +√
τ

1+τC2
K, on each diagonal block. Therefore, we approximate the inverse of each

diagonal block with one and the same AMG preconditioner. The resulting practical
approximation of S1 is

I ⊗AMG
(

N
√
ε

N − 1
M +

√
τ

1 + τC2
K

)
.

5.7. NUMERICAL RESULTS 211

The proposed strategy concerning the solution of a system of the form S2y = g is the
use of a block Jacobi method with a fixed number of steps:

y(l+1) = y(l) + ωP−1
A r

(l),

where
r(l) = g − S2y

(l)

is the lth residual, and ω is the relaxation parameter. We use the preconditioner

PA =


AMG

(
N−1
N
√
ε
M +

√
τ

1+τC2
A(1,1)

)
. . .

AMG
(

N−1
N
√
ε
M +

√
τ

1+τC2
A(N,N)

)
 ,

which is an AMG approximation of the block diagonal matrix of S2. Note that the
diagonal blocks of S2 are symmetric positive definite. In contrast to the smooth
vector-valued case, we have to initialize N AMG preconditioners instead of one.
Moreover, they have to be recomputed in every Newton step since the position of
penalized entries is changing with every Newton step. In detail, the penalized entries
in the blocksA(i) orA(i,i) depend on the phase u(k)

i . Since all phases are separated in
the domain (at least after a few time steps), one cannot expect the penalty parameter
to act in the same regions for all phases. That is why an approximation of the matrix
A, where all diagonal blocks are equal, seems not to be of good quality, and our
experiences confirm this observation. Nevertheless, Section 5.7.2 shows a promising
performance of our developed preconditioner applied with BiCGstab.

Here, we finish the theoretical discussion about the preconditioners. In the next
section, we illustrate their efficiency via various numerical experiments. Moreover,
we outline an algorithm for the numerical solution of the modified Cahn–Hilliard
problems.

5.7 Numerical results

In this section, we show numerical results for the presented modified Cahn–Hilliard
problems. First, we explain our implementation framework. This is already de-
scribed at the beginning of Chapter 3.8 for the most part. Hence, we only add the
differences here.

For all inpainting simulations, we use Bertozzi et al’s [19] ε-two-step approach. This
procedure successfully connects edges across large inpainting domains. In the first
step, we run the Cahn–Hilliard inpainting approach close to steady state with a
rather large value of the interfacial parameter ε. In the second step, the approximate
solution from the first step serves as initial state for a second run of Cahn–Hilliard
inpainting. But this time, we set ε to a small value. In the following, we denote by εs
and C1,s the interfacial and convexity parameter for the second step. In summary, the
first step smoothes the image information. Hence, level lines can merge over large
damaged regions. The second step sharpens the image contours. If not mentioned
otherwise, the stopping criterion in both rounds is

‖S(u(n),w(n))‖ ≤ γrel‖S(u(0),w(0))‖2 + γabs, (5.85)

212 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

where S(u,w) =
[
S1(u,w)T,S2(u,w)T

]T
with

S1(u,w) = −ASu + (I ⊗M)w −
1
ε

(I ⊗M)ψ′ (u) −
1
εN

(I ⊗M)

 N∑
j=1

ψ′
(
u j

)1,
S2(u,w) = (I ⊗K)w − ω0(I ⊗H)(f − u),

with AS = A − C1(I ⊗M). The potential ψ in S1 is ψ = ψpol in the smooth case and
ψ = ψ0 in the nonsmooth case. Regarding the latter, we consider in the following
T = I − 11T, which is a typical example as mentioned in Chapter 5.1. Basically,
S1(u,w) = 0, S2(u,w) = 0 is the discrete steady state formulation of Cahn–Hilliard
inpainting. In the scalar case, the terms in (5.85) become

S1(u,w) = −ASu +Mw −
1
ε
Mψ′ (u) ,

S2(u,w) =Kw − ω0H(f − u),

with AS = εK, ψ = ψpol,s in the smooth case and AS = εK + c−1G, ψ = ψ0,s in the
nonsmooth case. Based on our experiences, we set γrel = 10−2, γabs = 10−1 in the
smooth (scalar and vector-valued) case and γrel = 5 · 10−2, γabs =

√

5 · 10−2 in the
nonsmooth (scalar and vector-valued) case.

Similar to Algorithm 3.1, Algorithm 5.1 summarizes the steps for the numerical
solution of the modified Cahn–Hilliard problem with a nonsmooth potential. The
formulation with a smooth potential is a simplification of this algorithm. In all
experiments, we set the convexity parameters to C1 = 3ε−1, C1,s = 3ε−1

s , C2 = 3ω0
and the time step size to τ = 1 if not mentioned otherwise. Remember, ω0 defined
in (5.8) is the fidelity parameter that keeps the inpainted image close enough to the
given picture. The initialization of the N phase variables is done in the following
preprocessing stage: Given an image f , we segment N clusters using the standard
k-means clustering method. The obtained cluster centroid locations serve as the
gray values gi, i = 1, . . . ,N. Each phase variable represents one cluster and hence
describes the evolution of the corresponding gray value. That means every phase
variable is set to be one in its corresponding cluster region and zero everywhere
else. Moreover, we set every phase variable in the damaged regions to the value
N−1. This assignment fulfills the conditions of the Gibbs simplex (5.2). In the scalar
case, we initialize the phase variable in the damaged regions with the value zero. At
the moment, we perform the preprocessing stage in MATLAB R© with the command
kmeans. We load images in C++ using the CImg3 Library version 1.5.3. The final
reconstructed image fr is obtained by

fr =
N∑

i=1

giu
(T)
i , (5.86)

where u(T) = [u(T)
1 , . . . , u(T)

N]T represents the final phase variable. In the scalar case,
the final reconstructed image is given by the final phase variable u(T).

Now, we are ready for numerical results.
3http://cimg.eu/

http://cimg.eu/

5.7. NUMERICAL RESULTS 213

Algorithm 5.1: The numerical solution of the nonsmooth (vector-valued) mod-
ified Cahn–Hilliard problem via an SSN method combined with a Moreau–
Yosida regularization technique on a uniform mesh.

Choose h, ε, εs, τ,N, ω0,C1,C1,s,C2, c1, c2, . . . , cpmax ,nc, εrel, εabs
Build the spatial mesh
InitializeM ,K, and the AMG solver for S1
Locate the inpainting domain D
Set u(0) = f on Ω \D and u(0)

i = 1/N for i = 1, . . . ,N on D
Set w(0)

n = 1, run=1
while run=1 || (run=2 && not close to steady state) do

if run=1 && close to steady state then
ε = εs
C1 = C1,s
Update the AMG solver for S1
run=2

end
Update the right-hand side of the linear system
for p = 1, 2, . . . , pmax do

if n > nc then
p = pmax

end
c = cp
if p = 1 or n > nc then

Set u(n,p,0) = u(n−1),w(n,p,0) = w(n−1)

else
Set u(n,p,0) = u(n,p−1),w(n,p,0) = w(n,p−1)

end
for k = 0, 1, 2, . . . until convergence do

Update the blockA
Update the AMG solver for S2

Solve the linear system and obtain u(n,p,k+1),w(n,p,k+1)

if ‖Fc,h(u(n,p,k+1),w(n,p,k+1))‖ ≤ εrel‖Fc,h(u(n,p,0),w(n,p,0))‖2 + εabs then
Set u(n,p) = u(n,p,k+1),w(n,p) = w(n,p,k+1)

break
end

end
end
Set u(n) = u(n,pmax),w(n) = w(n,pmax)

n = n + 1
end

214 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

5.7.1 Eigenvalue plots

In Section 5.6, we have developed different Schur complement approximations and
referred to this section for some corresponding eigenvalue plots. In particular, we
show eigenvalue plots for the scalar smooth and nonsmooth Cahn–Hilliard inpaint-
ing model discussed in Section 5.6.1 and 5.6.2. The following eigenvalue plots are
simply generated with MATLAB R©. The mass and stiffness matrix M and K are
generated in C++ using the FEM library deal.II [8] as described in Chapter 3.8. For
the following simple demonstrations, we consider uniform refinements of the unit
square [0, 1]2 with three different mesh sizes hi = 2−i−3 for i = 1, 2, 3. Let us denote
the diagonal matrixG in (5.62) for each mesh byG(i) for i = 1, 2, 3. It is implemented
in MATLAB as a random vector with MATLAB’s command randperm. First, we ini-
tialize three vectors gi = [p1, . . . , pmi]

T
∈ Rmi as one vectors, where mi = (h−1

i + 1)2 for
i = 1, 2, 3. Then, we set randomly 25 percent of each vector gi to zero via randperm.
The diagonal values of G(i) are then set to be [G(i)] j j = [M] j jp j for j = 1, . . .mi. The
action of all inverses are performed with MATLAB’s backslash command. This is
a direct solver based on the LU-factorization, which works well for our small sized
two-dimensional problems. In total, three inverses occur in the implementation:
One in the Schur complement S, one in the Schur complement approximation Ŝ, as
well as one in Ŝ−1S. Finally, we have used MATLAB’s eigs command to obtain the
eigenvalues of the generated matrix Ŝ−1S.

We start with the smooth system (5.63) with the Schur complement approximation
(5.65). Each subplot in Figure 5.1(a)–5.1(e) demonstrates the robustness with respect
to a different model parameter. In Figure 5.1(a), we vary the mesh size h while fixing
ε = 2−4, τ = 1, C1 = 3ε−1, ω0 = 105, C2 = 3ω0. In Figure 5.1(b), we vary the interfa-
cial parameter ε while fixing h = 2−6, τ = 1, C1 = 50, ω0 = 105, C2 = 3ω0. In Figure
5.1(c), we vary the time step size τ while fixing h = 2−6, ε = 2−6, C1 = 3ε−1, ω0 =
105, C2 = 3ω0. In Figure 5.1(d), we vary the convexity parameter C1 while fixing
h = 2−6, ε = 2−6, τ = 1, ω0 = 105, C2 = 3ω0. In Figure 5.1(e), we vary the convexity
parameter C2 while fixing h = 2−6, ε = 2−6, τ = 1,C1 = 3ε−1, ω0 = 105. Finally, in
Figure 5.1(f) we vary simultaneously all five parameters h, ε,C1, ω0,C2 while fixing
τ = 1. Each of the six subplots illustrates nicely the eigenvalue clustering. Moreover,
all eigenvalues are real and positive as expected from Lemma 2.30.

Next, we go over to the nonsmooth system (5.75) with the Schur complement approx-
imation (5.77). Each row in Figure 5.2–5.3 demonstrates the robustness with respect
to a different model parameter. In all tests, we observe the appearance of complex
eigenvalues. In Figure 5.2(a)–5.2(b), we vary the mesh size h while fixing ε = 2−4, τ =
1, C1 = 3ε−1, ω0 = 105, C2 = 3ω0, c = 10−7. In Figure 5.2(c)–5.2(d), we vary the inter-
facial parameter εwhile fixing h = 2−6, τ = 1, C1 = 300, ω0 = 105, C2 = 3ω0, c = 10−7.
In Figure 5.2(e)–5.2(f), we vary the time step size τwhile fixing h = 2−6, ε = 2−6, C1 =
3ε−1, ω0 = 105, C2 = 3ω0, c = 10−7. In Figure 5.3(a)–5.3(b), we vary the convexity
parameter C1 while fixing h = 2−6, ε = 2−6, τ = 1, ω0 = 105, C2 = 3ω0, c = 10−7. In
Figure 5.3(c)–5.3(d), we vary the convexity parameter C2 while fixing h = 2−6, ε =
2−6, τ = 1, C1 = 3ε−1, ω0 = 105, c = 10−7. In Figure 5.3(e)–5.3(f), we vary the penalty
parameter c while fixing h = 2−6, ε = 2−6, τ = 1, C1 = 3ε−1, ω0 = 105, C2 = 3ω0. Fi-
nally, in Figure 5.4, we vary simultaneously all five parameters h, ε,C1, ω0,C2 while
fixing τ = 1, c = 10−7. Each subplot illustrates nicely the eigenvalue clustering.

5.7. NUMERICAL RESULTS 215

0 1,000 2,000 3,000 4,000
10−0.3

10−0.2

10−0.1

100

h = 2−4

h = 2−5

h = 2−6

(a) ε = 2−4, τ = 1, C1 = 3ε−1, ω0 = 105, C2 = 3ω0.

0 1,000 2,000 3,000 4,000
10−0.3

10−0.2

10−0.1

100

ε = 0.01
ε = 0.03
ε = 0.06

(b) h = 2−6, τ = 1, C1 = 50, ω0 = 105, C2 = 3ω0.

0 1,000 2,000 3,000 4,000
100

100.02

100.04

100.06

100.08

τ = 1
τ = 10
τ = 50

(c) h = 2−6, ε = 2−6, C1 = 3ε−1, ω0 = 105, C2 = 3ω0.

0 1,000 2,000 3,000 4,000
100

100.2

100.4

100.6

C1 = 3ε−1

C1 = 6ε−1

C1 = 12ε−1

(d) h = 2−6, ε = 2−6, τ = 1, ω0 = 105, C2 = 3ω0.

0 1,000 2,000 3,000 4,000
10−0.1

10−0.05

100

100.05

100.1

C2 = 3ω0
C2 = 6ω0
C2 = 12ω0

(e) h = 2−6, ε = 2−6, τ = 1, C1 = 3ε−1, ω0 = 105.

0 1,000 2,000 3,000 4,000
10−0.2

10−0.1

100

100.1

set 1
set 2
set 3

(f) Set j: h j = 2− j−3, ε j = h j, τ = 1, C(j)
1 = 3ε−1

j ,

ω(1)
0 = 104, ω(2)

0 = 5 · 104, ω(3)
0 = 105, C(j)

2 = 3ω(j)
0 for

j = 1, 2, 3.

Figure 5.1: Spectrum of Ŝ−1S for the scalar smooth system (5.63) with the Schur
complement approximation (5.65).

216 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

Re[σ(Ŝ−1S)]

Im
[σ

(Ŝ
−

1 S
)]

h = 2−4

h = 2−5

h = 2−6

(a) ε = 2−4, τ = 1,C1 = 3ε−1, ω0 = 105, C2 = 3ω0.

0 1,000 2,000 3,000 4,000
10−1

10−0.5

100

Index

R
e[
σ

(Ŝ
−

1 S
)]

h = 2−4

h = 2−5

h = 2−6

(b) ε = 2−4, τ = 1,C1 = 3ε−1, ω0 = 105, C2 = 3ω0.

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

Re[σ(Ŝ−1S)]

Im
[σ

(Ŝ
−

1 S
)]

ε = 0.01
ε = 0.03
ε = 0.06

(c) h = 2−6, τ = 1,C1 = 300, ω0 = 105, C2 = 3ω0.

0 1,000 2,000 3,000 4,000
10−2

10−1

100

Index

R
e[
σ

(Ŝ
−

1 S
)]

ε = 0.01
ε = 0.03
ε = 0.06

(d) h = 2−6, τ = 1,C1 = 300, ω0 = 105, C2 = 3ω0.

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

Re[σ(Ŝ−1S)]

Im
[σ

(Ŝ
−

1 S
)]

τ = 1
τ = 10
τ = 50

(e) h = 2−6, ε = 2−6, C1 = 3ε−1 ω0 = 105, C2 = 3ω0.

0 1,000 2,000 3,000 4,000
10−2

10−1

100

Index

R
e[
σ

(Ŝ
−

1 S
)]

τ = 1
τ = 10
τ = 50

(f) h j = 2− j−3, ε j = h j, τ = 1, C1 = 3ε−1, ω(1)
0 =

104, ω(2)
0 = 5 · 104, ω(3)

0 = 105, C(j)
2 = 3ω(j)

0 for
j = 1, 2, 3.

Figure 5.2: Spectrum of Ŝ−1S for the scalar nonsmooth system (5.75) with the Schur
complement approximation (5.77).

5.7. NUMERICAL RESULTS 217

0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0.4

Re[σ(Ŝ−1S)]

Im
[σ

(Ŝ
−

1 S
)]

C1 = 1
C1 = 10
C1 = 100

(a) h = 2−6, ε = 2−6, τ = 1, ω0 = 105, C2 = 3ω0.

0 1,000 2,000 3,000 4,000
10−2

10−1

100

Index

R
e[
σ

(Ŝ
−

1 S
)]

C1 = 1
C1 = 10
C1 = 100

(b) h = 2−6, ε = 2−6, τ = 1, ω0 = 105, C2 = 3ω0.

0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0.4

Re[σ(Ŝ−1S)]

Im
[σ

(Ŝ
−

1 S
)]

C2 = 3ω0
C2 = 6ω0
C2 = 12ω0

(c) h = 2−6, ε = 2−6, τ = 1, C1 = 3ε−1, ω0 = 105.

0 1,000 2,000 3,000 4,000
10−2

10−1

100

Index

R
e[
σ

(Ŝ
−

1 S
)]

C2 = 3ω0
C2 = 6ω0
C2 = 12ω0

(d) h = 2−6, ε = 2−6, τ = 1, C1 = 3ε−1, ω0 = 105.

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

Re[σ(Ŝ−1S)]

Im
[σ

(Ŝ
−

1 S
)]

c = 10−7

c = 10−5

c = 10−3

(e) h = 2−6, ε = 2−6, τ = 1, C1 = 3ε−1, ω0 = 105,
C2 = 3ω0.

0 1,000 2,000 3,000 4,000
10−2

10−1

100

Index

R
e[
σ

(Ŝ
−

1 S
)]

c = 10−7

c = 10−5

c = 10−3

(f) h = 2−6, ε = 2−6, τ = 1, C1 = 3ε−1, ω0 = 105,
C2 = 3ω0.

Figure 5.3: Spectrum of Ŝ−1S for the scalar nonsmooth system (5.75) with the Schur
complement approximation (5.77).

218 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

Re[σ(Ŝ−1S)]

Im
[σ

(Ŝ
−

1 S
)]

set 1
set 2
set 3

0 1,000 2,000 3,000 4,000
10−2

10−1

100

Index

R
e[
σ

(Ŝ
−

1 S
)]

set 1
set 2
set 3

Figure 5.4: Spectrum of Ŝ−1S for the scalar nonsmooth system (5.75) with the Schur
complement approximation (5.77). Set j: h j = 2− j−3, ε j = h j, τ = 1, C(j)

1 = 3ε−1
j ,

ω(1)
0 = 104, ω(2)

0 = 5 · 104, ω(3)
0 = 105, C(j)

2 = 3ω(j)
0 , c = 10−7 for j = 1, 2, 3

5.7.2 Robustness

In this section, we demonstrate the robustness of our proposed preconditioners re-
garding all model parameters. The initial state in the scalar models is an image
consisting of a vertical white stripe, where the inpainting domain is given by a hor-
izontal stripe, see Figure 5.5(a). The initial state in the vector-valued models is an
image consisting of several vertical gray value stripes, where the inpainting domain
is given by a horizontal stripe. In the case N = 5, we use six vertical stripes as given
in Figure 5.5(b). When we test the robustness with respect to N, we increase the
number of vertical stripes for larger values of N.

(a) Scalar model. (b) Vector-valued model with N = 5.

Figure 5.5: Initial images for the robustness tests of our preconditioners developed
for Cahn–Hilliard inpainting.

We start with the scalar smooth system in (5.63) with the preconditioner (5.64) and the
Schur complement approximation (5.65). Each subplot in Figure 5.6(a)–5.7(a) demon-
strates the robustness with respect to a different model parameter. In Figure 5.6(a), we
vary the mesh size h while fixing ε = 9 ·2−7/(4

√
2 ·atanh(0.9)), τ = 1, C1 = 3ε−1, ω0 =

106, C2 = 3ω0, and T = 50. In Figure 5.6(b), we vary the interfacial parameter εwhile
fixing h = 2−7, τ = 1, C1 = 375, ω0 = 106, C2 = 3ω0, and T = 50. In Figure 5.6(c),

5.7. NUMERICAL RESULTS 219

we vary the time step size τ while fixing h = 2−7, ε = 9 · 2−7/(4
√

2 · atanh(0.9)), C1 =
3ε−1, ω0 = 106, C2 = 3ω0, and T = 2000. In Figure 5.6(d), we vary the convex-
ity parameter C1 while fixing h = 2−7, ε = 9 · 2−7/(4

√
2 · atanh(0.9)), τ = 1, ω0 =

106, C2 = 3ω0, and T = 50. We observe a benign increase if iteration numbers when
C1 is increased. However, the larger C1 is the slower is the evolution. Hence, in
praxis, one chooses C1 as small as possible such that the convexity condition in
Lemma 5.1 is satisfied. In Figure 5.7(a), we vary the convexity parameter C2 while
fixing h = 2−7, ε = 9 · 2−7/(4

√
2 · atanh(0.9)), τ = 1, C1 = 3ε−1, ω0 = 106, and T = 50.

In fact, we observe a decrease of iteration numbers when C2 is increased. Finally, in
Figure 5.7(b), we vary simultaneously all five parameters h, ε,C1,C2, ω while fixing
τ = 1 and T = 50. Table 5.1 illustrates the maximum and average number of MINRES
iterations, the average CPU time (in seconds) for MINRES, and the CPU time (in sec-
onds) for the whole simulation for each of the six subplots, respectively.

Simulation MINRES

Figure Plot Max Avg CPU (s) CPU (s)

5.6(a) () 22 21 8 399
() 22 21 30 1595
() 22 21 147 7587
() 22 21 583 29881

5.6(b) () 22 21 8 402
() 22 21 8 402
() 22 21 7 392
() 23 22 8 401

5.6(c) () 22 21 7 14899
() 22 21 7 1544
() 22 21 8 319
() 22 21 7 159

5.6(d) () 22 21 8 408
() 27 26 9 489
() 35 34 12 626
() 47 46 15 802

5.7(a) () 22 21 8 398
() 21 20 7 378
() 19 17 6 327
() 18 15 6 295

5.7(b) () 22 21 7 389
() 23 22 32 1658
() 29 28 196 10060

Table 5.1: Results for the solution of the scalar smooth system (5.63) with the pre-
conditioner (5.64) and the Schur complement approximation (5.65): The maximum
and average number of MINRES iterations, the average CPU time (in seconds) for
MINRES, and the CPU time (in seconds) for the whole simulation.

We proceed with the scalar nonsmooth system in (5.75) with the preconditioner (5.76)
and the Schur complement approximation (5.77). Each subplot in Figure 5.8(a)–5.9(b)
demonstrates the robustness with respect to a different model parameter. In Figure
5.8(a), we vary the mesh size h while fixing ε = 9 · 2−7/π, τ = 1, C1 = 3ε−1, ω0 =
106, C2 = 3ω0, cpmax = 10−7, and T = 20. In Figure 5.8(b), we vary the interfacial
parameter ε while fixing h = 2−7, τ = 1, C1 = 150, ω0 = 106, C2 = 3ω0, cpmax = 10−7,
and T = 20. In Figure 5.8(c), we vary the time step size τ while fixing h = 2−7, ε =

220 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

0 25 50
21

22
h = 2−7

h = 2−8

h = 2−9

h = 2−10

(a) ε = 9 · 2−7/(4
√

2 · atanh(0.9)), τ = 1,
C1 = 3ε−1, ω0 = 106, C2 = 3ω0.

0 25 50
20

21

22

23

(b) h = 2−7, τ = 1, C1 = 375, ω0 = 106,
C2 = 3ω0, and ε = 0.008 (), ε = 0.01
(), ε = 0.02 (), ε = 0.04 ().

0 1,000 2,000
21

22
τ = 1
τ = 10
τ = 50
τ = 100

(c) h = 2−7, ε = 9 · 2−7/(4
√

2 · atanh(0.9)),
C1 = 3ε−1, ω0 = 106, C2 = 3ω0.

0 25 50
20

30

40

50

(d) h = 2−7, ε = 9 · 2−7/(4
√

2 · atanh(0.9)),
τ = 1, ω0 = 106, C2 = 3ω0, and C1 = 3ε−1

(), C1 = 6ε−1 (), C1 = 12ε−1 (),
C1 = 24ε−1 ().

Figure 5.6: Results for the solution of the scalar smooth system (5.63) with the
preconditioner (5.64) and the Schur complement approximation (5.65). The x-axis

shows the time t and the y-axis the number of MINRES iterations.

5.7. NUMERICAL RESULTS 221

0 25 50

16

18

20

22

C2 = 3ω0
C2 = 6ω0
C2 = 12ω0
C2 = 24ω0

(a) h = 2−7, ε = 9 · 2−7/(4
√

2 · atanh(0.9)),
τ = 1, C1 = 3ε−1, ω0 = 106.

0 25 50

22

24

26

28

set 1
set 2
set 3

(b) Set j: h j = 2−6− j, ε = 9 h j/(4
√

2 · atanh(0.9)),
τ = 1, C(j)

1 = 3ε−1
j , ω(1)

0 = 106, ω(2)
0 = 5 · 106,

ω(3)
0 = 107, C(j)

2 = 3ω(j)
0 for j = 1, 2, 3.

Figure 5.7: Results for the solution of the scalar smooth system (5.63) with the
preconditioner (5.64) and the Schur complement approximation (5.65). The x-axis

shows the time t and the y-axis the number of MINRES iterations.

9 · 2−7/π, C1 = 3ε−1, ω0 = 106, C2 = 3ω0, cpmax = 10−7, and T = 1000. In Figure 5.8(d),
we vary the convexity parameter C1 while fixing h = 2−7, ε = 9 · 2−7/π, τ = 1, ω0 =
106, C2 = 3ω0, cpmax = 10−7, and T = 20. In fact, we observe a decrease of iteration
numbers when C1 is increased. In Figure 5.9(a), we vary the convexity parameter
C2 while fixing h = 2−7, ε = 9 · 2−7/π, τ = 1, C1 = 3ε−1, ω0 = 106, cpmax = 10−7,
and T = 20. In Figure 5.9(b), we vary the penalty parameter cpmax while fixing
h = 2−7, ε = 9 · 2−7/π, τ = 1, C1 = 3ε−1, ω0 = 106, C2 = 3ω0, and T = 20. Finally, in
Figure 5.9(c), we vary simultaneously all five parameters h, ε,C1,C2, ω while fixing
τ = 1, cpmax = 10−7, and T = 20. Table 5.2 illustrates the maximum and average num-
ber of BiCG iterations, the average CPU time (in seconds) for BiCG, and the CPU
time (in seconds) for the whole simulation for each of the seven subplots, respectively.

Next, we consider the vector-valued smooth system represented in (5.59) for which
we apply the same preconditioning technique as in the scalar smooth case. Each
subplot in Figure 5.10(a)–5.11(b) demonstrates the robustness with respect to a dif-
ferent model parameter. In Figure 5.10(a), we vary the mesh size h while fixing
ε = 9 ·2−7/(4

√
2 ·atanh(0.9)), τ = 1, C1 = 3ε−1, ω0 = 106, C2 = 3ω0, N = 5, and T = 50.

In Figure 5.10(b), we vary the interfacial parameter εwhile fixing h = 2−7, τ = 1, C1 =
375, ω0 = 106, C2 = 3ω0, N = 5, and T = 50. In Figure 5.10(c), we vary the time step
size τ while fixing h = 2−7, ε = 9 · 2−7/(4

√
2 · atanh(0.9)), C1 = 3ε−1, ω0 = 106, C2 =

3ω0, N = 5, and T = 2000. In Figure 5.10(d), we vary the convexity parameter C1

while fixing h = 2−7, ε = 9 · 2−7/(4
√

2 · atanh(0.9)), τ = 1, ω0 = 106, C2 = 3ω0, N = 5,
and T = 50. As in the scalar smooth case, we observe a benign increase if iteration
numbers when C1 is increased. However, the larger C1 is the slower is the evolution.
Hence, in praxis, one chooses C1 as small as possible such that the convexity condi-
tion in Lemma 5.1 is satisfied. In Figure 5.11(a), we vary the convexity parameter C2

while fixing h = 2−7, ε = 9 · 2−7/(4
√

2 · atanh(0.9)), τ = 1, C1 = 3ε−1, ω0 = 106, N = 5,

222 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

0 10 20

30

35

40

45

(a) ε = 9 · 2−7/π, τ = 1, C1 = 3ε−1, ω0 = 106,
C2 = 3ω0, cpmax = 10−7, and h = 2−7 (),

h = 2−8 (), h = 2−9 (), h = 2−10 ().

0 10 20
20

30

40

50

(b) h = 2−7, τ = 1, C1 = 150, ω0 = 106,
C2 = 3ω0, cpmax = 10−7, and ε = 0.02 (),
ε = 0.04 (), ε = 0.06 (), ε = 0.08

().

0 500 1,000
0

10

20

30

40

50

τ = 1
τ = 10
τ = 25
τ = 50

(c) h = 2−7, ε = 9 · 2−7/π, C1 = 3ε−1, ω0 = 106,
C2 = 3ω0, cpmax = 10−7.

0 10 20
20

30

40

50

(d) h = 2−7, ε = 9 · 2−7/π, τ = 1, ω0 = 106,
C2 = 3ω0, cpmax = 10−7, and C1 = 1 (),
C1 = 10 (), C1 = 100 (), C1 = 1000

().

Figure 5.8: Results for the solution of the scalar nonsmooth system (5.75) with the
preconditioner (5.76) and the Schur complement approximation (5.77). The x-axis

shows the time t and the y-axis the average number of BiCG iterations per SSN step.

5.7. NUMERICAL RESULTS 223

0 10 20
25

30

35

40

45

50

(a) h = 2−7, ε = 9 · 2−7/π, τ = 1, C1 = 3ε−1,
ω0 = 106, cpmax = 10−7, and C2 = 3ω0 (),

C2 = 6ω0 (), C2 = 12ω0 (), C2 = 24ω0

().

0 10 20
20

30

40

50

(b) h = 2−7, ε = 9 · 2−7/π, τ = 1, C1 = 3ε−1,
ω0 = 106, C2 = 3ω0, and cpmax = 10−3 (),

cpmax = 10−5 (), cpmax = 10−7 (),
cpmax = 10−9 ().

0 10 20

30

40

50

60

70

set 1
set 2
set 3

(c) Set j: h j = 2−6− j, ε = 9 h j/π, τ = 1, C(j)
1 = 3ε−1

j , ω(1)
0 = 106,

ω(2)
0 = 5 · 106, ω(3)

0 = 107, C(j)
2 = 3ω(j)

0 , cpmax = 10−7 for
j = 1, 2, 3.

Figure 5.9: Results for the solution of the scalar nonsmooth system (5.75) with the
preconditioner (5.76) and the Schur complement approximation (5.77). The x-axis

shows the time t and the y-axis the average number of BiCG iterations per SSN step.

224 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

Simulation SSN BiCG

Figure Plot Max Avg Max Avg CPU (s) CPU (s)

5.8(a) () 5 2 48 30 14 2184
() 5 2 48 29 24 7618
() 5 3 51 30 101 42185
() 5 3 49 30 331 177432

5.8(b) () 5 2 50 30 8 1652
() 5 2 38 25 9 1704
() 5 2 37 24 8 1640
() 4 2 36 23 7 1284

5.8(c) () 5 1 48 7 6 11086
() 5 2 48 31 21 5355
() 5 2 48 31 15 3375
() 5 2 48 30 14 2176

5.8(d) () 6 2 52 32 13 2435
() 6 2 50 32 14 2325
() 5 2 50 30 13 2273
() 3 2 34 21 9 1603

5.9(a) () 5 2 48 30 14 2186
() 6 2 50 30 13 2311
() 9 2 50 30 12 2352
() 10 2 50 31 14 2255

5.9(b) () 5 2 31 24 7 691
() 5 2 44 27 8 1154
() 5 2 48 30 14 2185
() 5 2 47 30 11 2271

5.9(c) () 5 2 48 30 14 2201
() 8 2 66 35 42 10668
() 4 2 80 42 191 45737

Table 5.2: Results for the solution of the scalar nonsmooth system (5.75) with the
preconditioner (5.76) and the Schur complement approximation (5.77): The maxi-
mum and average number of SSN iterations, the maximum and average number of
BiCG iterations, the average CPU time (in seconds) for BiCG, and the CPU time (in
seconds) for the whole simulation.

and T = 50. In fact, we observe a decrease of iteration numbers when C2 is in-
creased. In Figure 5.11(b), we vary the number of phases N while fixing h = 2−7, ε =

9 ·2−7/(4
√

2 ·atanh(0.9)), τ = 1, C1 = 3ε−1, ω0 = 106, C2 = 3ω0, and T = 50. Finally, in
Figure 5.11(c), we vary simultaneously all five parameters h, ε,C1,C2, ω while fixing
τ = 1, N = 5, and T = 50. Table 5.3 illustrates the maximum and average number
of MINRES iterations, the average CPU time (in seconds) for MINRES, and the CPU
time (in seconds) for the whole simulation for each of the eight subplots, respectively.

Finally, we consider the vector-valued nonsmooth system in (5.79) with the pre-
conditioner (5.80) and the Schur complement approximation (5.83). Each sub-
plot in Figure 5.12(a)–5.13(c) demonstrates the robustness with respect to a dif-
ferent model parameter. In Figure 5.12(a), we vary the mesh size h while fix-
ing ε = 9 · 2−7/π, τ = 1, C1 = 3ε−1, ω0 = 106, C2 = 3ω0, N = 5, cpmax = 10−7,
and T = 20. In fact, we observe a decrease of iteration numbers when the mesh
size is refined. In Figure 5.12(b), we vary the interfacial parameter ε while fixing
h = 2−7, τ = 1, C1 = 150, ω0 = 106, C2 = 3ω0, N = 5, cpmax = 10−7, and T = 20. In

5.7. NUMERICAL RESULTS 225

0 25 50
22

22.5

23

23.5

24
h = 2−7

h = 2−8

h = 2−9

h = 2−10

(a) ε = 9 · 2−7/(4
√

2 · atanh(0.9)), τ = 1,
C1 = 3ε−1, ω0 = 106, C2 = 3ω0, N = 5.

0 25 50
22

22.5

23

23.5

24
ε = 0.008
ε = 0.010
ε = 0.020
ε = 0.040

(b) h = 2−7, τ = 1, C1 = 375, ω0 = 106, C2 = 3ω0,
N = 5.

0 1,000 2,000
22

22.5

23

23.5

24
τ = 1
τ = 10
τ = 50
τ = 100

(c) h = 2−7, ε = 9 · 2−7/(4
√

2 · atanh(0.9)),
C1 = 3ε−1, ω0 = 106, C2 = 3ω0, N = 5.

0 25 50
20

30

40

50
C1 = 3ε−1

C1 = 6ε−1

C1 = 12ε−1

C1 = 24ε−1

(d) h = 2−7, ε = 9 · 2−7/(4
√

2 · atanh(0.9)),
τ = 1, ω0 = 106, C2 = 3ω0, N = 5.

Figure 5.10: Results for the solution of the vector-valued smooth system
represented in (5.59). The x-axis shows the time t and the y-axis the number of

MINRES iterations.

226 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

0 25 50
16

18

20

22

24

C2 = 3ω0
C2 = 6ω0
C2 = 12ω0
C2 = 24ω0

(a) h = 2−7, ε = 9 · 2−7/(4
√

2 · atanh(0.9)),
τ = 1, C1 = 3ε−1, ω0 = 106, N = 5.

0 25 50
22

22.5

23

23.5

24
N = 3
N = 5
N = 10
N = 20

(b) h = 2−7, ε = 9 · 2−7/(4
√

2 · atanh(0.9)), τ = 1,
C1 = 3ε−1, ω0 = 106, C2 = 3ω0.

0 25 50
22

24

26

28

30

set 1
set 2
set 3

(c) Set j: h j = 2−6− j, ε = 9 h j/(4
√

2 · atanh(0.9)),
τ = 1, C(j)

1 = 3ε−1
j , ω(1)

0 = 106, ω(2)
0 = 5 · 106,

ω(3)
0 = 107, C(j)

2 = 3ω(j)
0 , N = 5 for j = 1, 2, 3.

Figure 5.11: Results for the solution of the vector-valued smooth system
represented in (5.59). The x-axis shows the time t and the y-axis the number of

MINRES iterations.

5.7. NUMERICAL RESULTS 227

Simulation MINRES

Figure Plot Max Avg CPU (s) CPU (s)

5.10(a) () 24 22 38 1981
() 24 23 164 8410
() 24 23 768 39297
() 24 22 2860 146158

5.10(b) () 24 23 41 2135
() 24 22 38 1988
() 23 22 39 2030
() 23 22 39 2043

5.10(c) () 24 22 39 79732
() 24 22 38 7785
() 24 22 39 1627
() 24 23 41 871

5.10(d) () 24 22 40 2063
() 28 28 50 2566
() 37 36 62 3171
() 50 49 83 4247

5.11(a) () 24 22 40 2073
() 22 20 35 1836
() 20 19 34 1792
() 18 16 30 1554

5.11(b) () 24 22 24 1237
() 24 22 38 1981
() 24 23 82 4235
() 24 23 163 8394

5.11(c) () 24 22 40 2057
() 25 24 169 8705
() 31 30 1050 53649

Table 5.3: Results for the solution of the vector-valued smooth system represented
in (5.59): The maximum and average number of MINRES iterations, the average
CPU time (in seconds) for MINRES, and the CPU time (in seconds) for the whole
simulation.

Figure 5.12(c), we vary the time step size τ while fixing h = 2−7, ε = 9 · 2−7/π, C1 =
3ε−1, ω0 = 106, C2 = 3ω0, N = 5, cpmax = 10−7, and T = 400. In Figure 5.12(d), we
vary the convexity parameter C1 while fixing h = 2−7, ε = 9 · 2−7/π, τ = 1, ω0 =
106, C2 = 3ω0, N = 5, cpmax = 10−7, and T = 20. We observe a decrease of iteration
numbers when C1 is increased. In Figure 5.13(a), we vary the convexity parameter
C2 while fixing h = 2−7, ε = 9 · 2−7/π, τ = 1, C1 = 3ε−1, ω0 = 106, N = 5, cpmax =
10−7, and T = 20. In Figure 5.13(b), we vary the number of phases N while fix-
ing h = 2−7, ε = 9 · 2−7/π, τ = 1, C1 = 3ε−1, ω0 = 106, C2 = 3ω0, cpmax = 10−7,
and T = 20. In Figure 5.13(c), we vary the penalty parameter cpmax while fixing
h = 2−7, ε = 9 · 2−7/π, τ = 1, C1 = 3ε−1, ω0 = 106, C2 = 3ω0, N = 5, and T = 20.
Finally, in Figure 5.13(d), we vary simultaneously all five parameters h, ε,C1,C2, ω
while fixing τ = 1, N = 5, cpmax = 10−7, and T = 20. Table 5.4 illustrates the maximum
and average number of BiCGstab iterations, the average CPU time (in seconds) for
BiCGstab, and the CPU time (in seconds) for the whole simulation for each of the six
subplots, respectively.

228 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

0 10 20

10

20

30

40

(a) ε = 9 · 2−7/π, τ = 1, C1 = 3ε−1, ω0 = 106,
C2 = 3ω0, N = 5, cpmax = 10−7, and h = 2−7

(), h = 2−8 (), h = 2−9 (), h = 2−10

().

0 10 20
20

30

40

50

60
ε = 0.02
ε = 0.04
ε = 0.06
ε = 0.08

(b) h = 2−7, τ = 1, C1 = 150, ω0 = 106,
C2 = 3ω0, N = 5, cpmax = 10−7.

0 200 400
0

20

40

60

80

100

(c) h = 2−7, ε = 9 · 2−7/π, C1 = 3ε−1, ω0 = 106,
C2 = 3ω0, N = 5, cpmax = 10−7, and τ = 1 (),
τ = 5 (), τ = 10 (), τ = 20 ().

0 10 20

20

30

40

(d) h = 2−7, ε = 9 · 2−7/π, τ = 1, ω0 = 106,
C2 = 3ω0, N = 5, cpmax = 10−7, and C1 = 1
(), C1 = 10 (), C1 = 100 (),

C1 = 1000 ().

Figure 5.12: Results for the solution of the vector-valued nonsmooth system (5.79)
with the preconditioner (5.80) and the Schur complement approximation (5.83). The

x-axis shows the time t and the y-axis the average number of BiCGstab iterations
per SSN step.

5.7. NUMERICAL RESULTS 229

0 10 20

20

30

40

50

60

(a) h = 2−7, ε = 9 · 2−7/π, τ = 1, C1 = 3ε−1,
ω0 = 106, N = 5, cpmax = 10−7, and C2 = 3ω0

(), C2 = 6ω0 (), C2 = 12ω0 (),
C2 = 24ω0 ().

0 10 20

20

30

40

50

(b) h = 2−7, ε = 9 · 2−7/π, τ = 1, C1 = 3ε−1,
ω0 = 106, C2 = 3ω0, cpmax = 10−7, and N = 3
(), N = 5 (), N = 10 (), N = 20

().

0 10 20
0

20

40

60

(c) h = 2−7, ε = 9 · 2−7/π, τ = 1, C1 = 3ε−1,
ω0 = 106, C2 = 3ω0, N = 5, and cpmax = 10−3

(), cpmax = 10−5 (), cpmax = 10−7 (),
cpmax = 10−9 ().

0 10 20
20

30

40

50
set 1
set 2
set 3

(d) Set j: h j = 2−6− j, ε = 9 h j/π, τ = 1,
C(j)

1 = 3ε−1
j , ω(1)

0 = 106, ω(2)
0 = 5 · 106, ω(3)

0 = 107,

C(j)
2 = 3ω(j)

0 , N = 5, cpmax = 10−7 for j = 1, 2, 3.

Figure 5.13: Results for the solution of the vector-valued nonsmooth system (5.79)
with the preconditioner (5.80) and the Schur complement approximation (5.83). The

x-axis shows the time t and the y-axis the average number of BiCGstab iterations
per SSN step.

230 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

Simulation SSN BiCGstab

Figure Plot Max Avg Max Avg CPU (s) CPU (s)

5.12(a) () 7 3 70 23 301 55094
() 6 4 63 18 579 134665
() 7 4 61 16 2314 563110
() 8 5 62 13 7049 1893020

5.12(b) () 6 3 71 25 316 53871
() 6 4 70 22 234 46653
() 6 4 87 23 190 39818
() 6 3 96 24 199 41703

5.12(c) () 7 1 126 9 136 15043
() 7 3 125 29 457 144854
() 7 3 108 29 428 108555
() 7 3 63 22 290 53231

5.12(d) () 7 4 74 24 321 64323
() 7 4 72 24 318 62686
() 7 4 69 23 313 59100
() 6 3 51 15 200 30803

5.13(a) () 7 3 70 23 295 54165
() 10 4 92 24 317 57526
() 8 4 113 26 362 69448
() 9 4 125 26 368 72256

5.13(b) () 5 3 52 18 105 15355
() 7 3 70 23 301 55094
() 8 4 84 26 770 167565
() 9 4 118 27 1717 432896

5.13(c) () 4 2 22 10 78 6074
() 7 3 42 12 102 17276
() 7 3 73 23 306 55827
() 7 3 82 32 382 67360

5.13(d) () 7 3 70 23 306 55967
() 8 4 94 24 1108 232901
() 10 4 149 29 4640 1207240

Table 5.4: Results for the solution of the vector-valued nonsmooth system (5.79)
with the preconditioner (5.80) and the Schur complement approximation (5.83): The
maximum and average number of SSN iterations, the maximum and average number
of BiCGstab iterations, the average CPU time (in seconds) for BiCGstab, and the CPU
time (in seconds) for the whole simulation.

5.7.3 Image inpainting

In the following, we consider image inpainting results using the smooth and non-
smooth modified Cahn–Hilliard model. We consider two examples for black-and-
white inpainting using the scalar modified Cahn–Hilliard approach and two ex-
amples for gray value inpainting using the vector-valued modified Cahn–Hilliard
approach. Figure 5.14 shows all four initial images. In Figures 5.14(a)–5.14(b), the
inpainting domain is marked in gray. The circle image is of size 128 × 128 and the
zebra image has the size 256×256. The zebra image is based on an extract of a plains
zebra photo4. We have set all pixel values to either black or white and then added
the damaged gray areas. In Figures 5.14(c)–5.14(d), the inpainting domain is marked
in red. The stripes image is of size 64 × 64 and consists of N = 5 gray values. We

4 c©2012 Thomas Rolle from the Zoo Magdeburg, Germany.

5.7. NUMERICAL RESULTS 231

use a 128× 128 version of the peppers image5. Using MATLAB R© with the command
kmeans, we have segmented the peppers image into N = 15 gray values.

(a) Circle. (b) Zebra.

(c) Stripes. (d) Peppers.

Figure 5.14: Initial images for image inpainting.

The parameters for the circle inpainting are h = 2−7, ε = 0.8, εs = h, ω0 = 105, cpmax =
10−7. Figures 5.15(a)–5.15(b) show the results using the scalar smooth modified
Cahn–Hilliard equation. Figure 5.15(a) shows the solution after the first step of
the ε-two-step approach. The solution of the second step is illustrated in Fig-
ure 5.15(b). Similarly, Figures 5.15(c)–5.15(d) show the results using the scalar
nonsmooth modified Cahn–Hilliard model. The parameters for the zebra inpaint-
ing are h = 2−8, ε = 10.8, εs = 9 h/π, ω0 = 107, cpmax = 10−7. As in the previous
example, Figures 5.15(e)–5.15(h) show the results using the scalar smooth and nons-
mooth modified Cahn–Hilliard model. The parameters for the stripes inpainting are
h = 2−7, ε = 0.8, εs = 9 h/π, ω0 = 105, cpmax = 10−7. As before, Figures 5.16(a)–5.16(d)
show the results using the vector-valued smooth and nonsmooth modified Cahn–
Hilliard model. In the nonsmooth model, we use the c-sequence of penalty param-
eters also during the first six time steps after the ε-switch. The parameters for the
peppers inpainting are h = 2−7, ε = 1, εs = 9 h/π, ω0 = 107, cpmax = 10−7. As be-
fore, Figures 5.16(e)–5.16(h) show the results using the vector-valued smooth and
nonsmooth modified Cahn–Hilliard model. In the nonsmooth model, we use the
c-sequence of penalty parameters also during the first six time steps after the ε-
switch. Table 5.5 shows the maximum and average number of SSN iterations in the
nonsmooth cases, the maximum and average number of MINRES/BiCG/BiCGstab

5http://mingyuanzhou.github.io/Results/BPFAImage/

http://mingyuanzhou.github.io/Results/BPFAImage/

232 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

iterations, the average CPU time (in seconds) for MINRES/BiCG/BiCGstab, and the
CPU time (in seconds) for the whole simulation for each of the eight inpainting sim-
ulations, respectively. Table 5.6 displays the peak signal-to-noise ratio (PSNR) value
as well as the minimum (min) and maximum (max) phase variable value for each of
the eight inpainting simulations, respectively. The PSNR

PSNR = 20 log10

 maxi, j(fr(i, j))√
1

mxmy

∑my

i=1

∑mx
j=1

(
fo(i, j) − fr(i, j)

)2


measures the quality of reconstruction. Here, fo denotes the original image without
damaged regions. The higher the PSNR is the better is the approximation of fo.
Since we do not have the pure black-and-white zebra extract, we do not measure
the PSNR for this example. Comparing the smooth with the nonsmooth Cahn–
Hilliard inpainting results, the nonsmooth ones have the sharper colors in the sense
that the minimum and maximum phase variable values are closer to zero and one.
Moreover, we observe larger PSNR values using the nonsmooth potential. Regarding
the CPU time, the smooth Cahn–Hilliard inpainting model has an advantage over
the nonsmooth one.

Simulation SSN MINRES/BiCG/BiCGstab

Figure Model Max Avg Max Avg CPU (s) CPU (s)

Circle Smooth −− −− 36 31 11 4760
Nonsmooth 4 3 37 22 4 4983

Zebra Smooth −− −− 36 25 35 10457
Nonsmooth 6 2 74 47 55 119932

Stripes Smooth −− −− 33 24 42 25303
Nonsmooth 6 3 99 23 312 243884

Peppers Smooth −− −− 35 25 137 27840
Nonsmooth 9 3 106 23 1086 668764

Table 5.5: Results for the solution of image inpainting examples: The maximum
and average number of SSN iterations, the maximum and average number of
MINRES/BiCG/BiCGstab iterations, the average CPU time (in seconds) for MIN-
RES/BiCG/BiCGstab, and the CPU time (in seconds) for the whole simulation.

Simulation Final image

Figure Model PSNR Min Max

Circle Smooth 21.54 −2.17646 · 10−3 1.00562
Nonsmooth 21.75 −6.39753 · 10−6 1.00001

Zebra Smooth −− −5.56674 · 10−2 1.05002
Nonsmooth −− −9.7906 · 10−6 1.00001

Stripes Smooth 20.25 −2.92176 · 10−2 1.04332
Nonsmooth 22.72 −4.72893 · 10−6 1.00002

Peppers Smooth 22.73 −1.3401 · 10−1 1.08097
Nonsmooth 22.89 −2.17629 · 10−5 1.00027

Table 5.6: Results for the solution of image inpainting examples: The PSNR value as
well as the minimum (min) and maximum (max) phase variable value.

5.7. NUMERICAL RESULTS 233

(a) Smooth, ε = 0.8, t = 324. (b) Smooth, ε = 2−7, t = 437.

(c) Nonsmooth, ε = 0.8, t = 92. (d) Nonsmooth, ε = 2−7, t = 123.

(e) Smooth, ε = 10.8, t = 36. (f) Smooth, ε = 9 · 2−7/π, t = 287.

(g) Nonsmooth, ε = 10.8, t = 24. (h) Nonsmooth, ε = 9 · 2−7/π, t = 484.

Figure 5.15: Inpainted black-and-white images using the smooth and nonsmooth
scalar modified Cahn–Hilliard model.

234 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

(a) Smooth, ε = 0.8, t = 147. (b) Smooth, ε = 9 · 2−7/π, t = 589.

(c) Nonsmooth, ε = 0.8, t = 86. (d) Nonsmooth, ε = 9 · 2−7/π, t = 195.

(e) Smooth, ε = 1, t = 33. (f) Smooth, ε = 9 · 2−7/π, t = 201.

(g) Nonsmooth, ε = 1, t = 25. (h) Nonsmooth, ε = 9 · 2−7/π, t = 152.

Figure 5.16: Inpainted gray value images using the smooth and nonsmooth
vector-valued modified Cahn–Hilliard model.

5.7. NUMERICAL RESULTS 235

0 218 437
30

32

34

36

(a) Circle, smooth.

0 61 123
15

20

25

30

(b) Circe, nonsmooth.

0 143 287
24

26

28

30

32

34

36

(c) Zebra, smooth.

0 242 484
20

30

40

50

60

(d) Zebra, nonsmooth.

Figure 5.17: Results for the solution of four image inpainting examples: The x-axis
shows the time t. For the smooth Cahn–Hilliard inpainting models, the y-axis
displays the number of MINRES iterations. For the nonsmooth Cahn–Hilliard

inpainting models, the y-axis displays the average number of BiCG iterations per
SSN step.

236 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

0 294 589
22

24

26

28

30

32

34

(a) Stripes, smooth.

0 98 196

20

40

60

(b) Stripes, nonsmooth.

0 100 201

25

30

35

(c) Peppers, smooth.

0 76 152
0

20

40

60

(d) Peppers, nonsmooth.

Figure 5.18: Results for the solution of four image inpainting examples: The x-axis
shows the time t. For the smooth Cahn–Hilliard inpainting models, the y-axis
displays the number of MINRES iterations. For the nonsmooth Cahn–Hilliard

inpainting models, the y-axis displays the average number of BiCGstab iterations
per SSN step.

5.7. NUMERICAL RESULTS 237

5.7.4 Three-dimensional example

Next, we consider the three-dimensional domain Ω = [−1, 1]3, which contains a
damaged spiral helix, see Figure 5.19(a). Additionally, we set every fourth pixel
as damaged. Figure 5.19(b) shows the reconstruction using the scalar nonsmooth
modified Cahn–Hilliard model with h = 2−5, ε = 10, εs = 9 h/π, ω = 106, cpmax =
10−5. In Figure 5.20, we illustrate the performance of our preconditioner. The x-axis
shows the time t and the y-axis the average number of BiCG iterations per SSN step.
The maximum and average number of SSN iterations are 6 and 2. The maximum
and average number of BiCG iterations for the simulation are 72 and 24. The average
CPU time for BiCG is 151s and the CPU time for the whole simulation is 16738s. The
reconstruction has a PSNR value of 23.19.

(a) t = 0. (b) t = 152.

Figure 5.19: Three-dimensional inpainting.

0 76 152

20

30

40

50

Figure 5.20: Results for the three-dimensional inpainting: The x-axis shows the time
t and the y-axis the average number of BiCG iterations per SSN step.

238 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

5.7.5 Comparison with existing inpainting methods

In this section, we show the performance of various inpainting methods. The test ex-
ample consists of six stripes spanning different widths and is of size 64×64, see Figure
5.14(c). It is composed of N = 5 gray values. The inpainting domain is given by the
horizontal red stripe. Besides the proposed smooth and nonsmooth vector-valued
Cahn–Hilliard inpainting model (vector CH smooth/nonsmooth), we examine the per-
formance of our smooth vector-valued Cahn–Hilliard inpainting model solved via
Fourier spectral methods (vector CH Fourier). Moreover, we have implemented the
bitwise binary Cahn–Hilliard inpainting approach (bitwise CH) [139, pp. 435–436],
which splits a gray value image bitwise into channels and applies the binary Cahn–
Hilliard inpainting method to each channel. Furthermore, we test the three inpaint-
ing codes6 provided by Schönlieb: These are inpainting using the heat equation
(heat), total variation (TV) inpainting (TV), and TV-H−1 inpainting (TV-H−1). Addi-
tionally, we consider the MATLAB R© function inpaintn7 (inpaintn) [71, 148], which
replaces the missing data by extra/interpolating the undamaged elements. Finally,
we test Zhou et al’s [153] nonparametric Bayesian method8, which they term the beta
process factor analysis (BPFA).

All computations are executed on a 64-bit server with CPU type Intel R© Xeon R© X5650
@2.67 GHz, with 2 CPUs, 12 Cores (6 Cores per CPU), and 48 GB main memory avail-
able. As in the previous chapters, our finite element implementation for vector CH is
done in C++ using the open source finite element library deal.II version 7.1.0 [8]. All
remaining inpainting methods are executed in MATLAB R© R2012b. Note that we use
the MATLAB R© Image Processing ToolboxTM for combining the phases to the final
image and for visualizations. We provide the MATLAB R© code for vector CH Fourier
to reproduce the numerical example as supplementary material.9

In all Cahn–Hilliard inpainting approaches, we set h = 2−6, ω0 = 105, cpmax = 10−7

and apply the ε-two-step procedure with a switch from ε = 1 to εs = h. In both steps,
the stopping criterion is

‖u(n)
− u(n−1)

‖

‖u(n−1)‖
≤ γ (5.87)

with γ = 5 · 10−4. In the nonsmooth model, we use the c-sequence of penalty pa-
rameters also during the first six time steps after the ε-switch. We run the heat
equation based approach with h = 1, τ = 0.1, ω0 = 10 and both TV models with
h = 1, τ = 1, ε = 2−6, ω0 = 10. We apply to these three methods the stopping
criterion (5.87) with γ = 5 · 10−4. We stop the MATLAB R© function inpaintn after
105 iterations. We run BPFA with the default values. In contrast to our proposed
vector-valued models, the methods we compare with represent scalar systems. By
experience from those models, we set the pixel values in the damaged regions to zero
instead of N−1. Note that the gray values range from 0 to 255 for bitwise CH. For the

6http://www.mathworks.com/matlabcentral/fileexchange/34356-higher-order-total-

variation-inpainting
7http://www.mathworks.com/matlabcentral/fileexchange/27994-inpaint-over-missing-

data-in-1-d--2-d--3-d--n-d-arrays
8http://mingyuanzhou.github.io/Results/BPFAImage/
9http://www.mpi-magdeburg.mpg.de/2968228/Supplementary_BoschStoll.zip

http://www.mathworks.com/matlabcentral/fileexchange/34356-higher-order-total-variation-inpainting
http://www.mathworks.com/matlabcentral/fileexchange/34356-higher-order-total-variation-inpainting
http://www.mathworks.com/matlabcentral/fileexchange/27994-inpaint-over-missing-data-in-1-d--2-d--3-d--n-d-arrays
http://www.mathworks.com/matlabcentral/fileexchange/27994-inpaint-over-missing-data-in-1-d--2-d--3-d--n-d-arrays
http://mingyuanzhou.github.io/Results/BPFAImage/
http://www.mpi-magdeburg.mpg.de/2968228/Supplementary_BoschStoll.zip

5.7. NUMERICAL RESULTS 239

remaining methods, the range is from 0 to 1.

(a) Inpaintn. (b) BPFA. (c) Heat.

(d) TV. (e) TV-H−1 inpainting. (f) Vector CH Fourier.

(g) Vector CH smooth. (h) Vector CH nonsmooth. (i) Bitwise CH.

Figure 5.21: Inpainted gray value image using different inpainting models.

Inpainting method Iter CPU (s) CPU (s) PSNR Min Max

Inpaintn 100000 234.17 0.0023 22.39 −1.05 · 10−3 1.0000
BPFA 1072 143.48 0.1338 12.16 −1.14 · 10−1 1.0010
Heat 4042 0.86 0.0002 18.89 4.92 · 10−10 1.0000
TV 17354 20.77 0.0012 16.50 5.54 · 10−5 0.9999

TV-H−1 43099 52.84 0.0012 26.94 −1.78 · 10−3 1.0168
Vector CH Fourier 258 5.45 0.0211 21.06 −2.34 · 10−2 1.0242
Vector CH smooth 258 3271.75 12.7305 21.35 −2.16 · 10−2 1.0223

Vector CH nonsmooth 204 58030.40 284.4627 24.92 −1.27 · 10−5 1.0000
Bitwise CH 265 8.38 0.0316 20.64 −5.98 · 10+0 261.18

Table 5.7: Performance of different inpainting models: The total number of iterations
(iter), CPU time (in seconds) for the whole simulation, average CPU time (in seconds)
per time step (CPU), PSNR value, as well as the minimum (min) and maximum (max)
pixel value of the final image.

Figure 5.21 illustrates the inpainted images using the different approaches mentioned
above. The second-order TV inpainting approach is not able to connect the stripes.

240 CHAPTER 5. MODIFIED CAHN–HILLIARD EQUATIONS

Moreover, BPFA fails using the standard parameter set. TV-H−1 inpainting results
in a partly complete connection. The two rightmost stripes have successfully joined.
We observe a similar behavior with the smooth Cahn–Hilliard inpainting approach.
In both cases, the stopping criterion (5.87) might not be the optimal choice. In general,
the discussion about the stopping criterion should be a task for future work. In [32],
we compare different stopping criteria for our proposed model. Both, the smooth
and nonsmooth Cahn–Hilliard inpainting model, provide a connection of the stripes
over the inpainting domain. Table 5.7 lists the total number of iterations (iter), CPU
time (in seconds) for the whole simulation, average CPU time (in seconds) per time
step (CPU), PSNR value, as well as the minimum (min) and maximum (max) pixel
value of the final image. Comparing the smooth with the nonsmooth Cahn–Hilliard
inpainting result, the nonsmooth one has the sharper colors and the higher PSNR
value at the cost of a higher CPU time. Comparing the image quality between vector
CH and the remaining approaches, we see that vector CH defeats most of the methods.
However, comparing the computational times between vector CH and the remaining
approaches, we are at a disadvantage.

5.8 Conclusions and future research perspectives

In this chapter, we have investigated the numerical solution of a two-component and
multi-component modified Cahn–Hilliard model. In particular, we have developed
an inpainting model based on the multi-component Cahn–Hilliard equation. This
approach generalizes Bertozzi et al’s [19] binary Cahn–Hilliard inpainting model to
gray value images. We have considered smooth and nonsmooth potentials with a
focus on the latter. An important difference to the previous two chapters is that
the modified Cahn–Hillard equation as a whole is not given by a gradient flow.
Especially, the model arises as a superposition of two gradient flows. We have ap-
plied the convexity splitting technique, which yields under the right conditions an
unconditional gradient stable time-discrete scheme. Regarding the smooth setting,
we have extended the proof of consistency, unconditional stability, and convergence
of the time-discrete scheme from the two-component to the multi-component case.
Concerning the nonsmooth framework, following the previous two chapters, we
have applied an SSN method combined with a Moreau–Yosida regularization tech-
nique. For the discretization in space, we have used classical FEM for both systems,
the smooth and regularized nonsmooth one. At the heart of our method lies the
solution of large and sparse systems of linear equations of saddle point form. We
have introduced and studied block diagonal and block-triangular preconditioners
using an efficient and cheap Schur complement approximation. For this approxi-
mation, we have used multilevel techniques, algebraic multigrid in our case. For
the smooth systems, we have derived the conditions for optimal preconditioners.
For the nonsmooth systems, extensive numerical experiments have shown that our
developed preconditioners are reliable. The use of our preconditioners allows us to
perform three-dimensional experiments in an efficient way. The numerical results
have shown that the use of a nonsmooth Cahn–Hilliard model leads to visually im-
proved restored images, when compared to existing inpainting tools.

As pointed out in this chapter, there are several aspects for further research. First
of all, a rigorous analysis for the nonsmooth case is missing. Second, the study of

5.8. CONCLUSIONS AND FUTURE RESEARCH PERSPECTIVES 241

preconditioners for the linear systems arising from other time discretization schemes
might be of interest. A third extension might be the development of an adaptive spa-
tial mesh refinement approach, which reduces the number of degrees of freedoms.
Fourth, in [32], we have further generalized our smooth gray value Cahn–Hilliard
inpainting model to a fractional-in-space version, which is efficiently solved with
Fourier spectral methods on simple domains. The numerical results show the su-
periority of the fractional Cahn–Hilliard inpainting approach over its nonfractional
version in terms of image quality. An interesting topic of future research would be
the numerical solution of fractional Cahn–Hilliard models with FEMs. This research
area becomes even more challenging when we combine it with nonsmooth poten-
tials. Finally, since image inpainting is a special form of art, one could play around
with the potential functions. As an example, one could consider potential functions
with different altitude of the wells or potential functions which include different
weights. For the latter idea, I would like to thank Helge Dietert from the University
of Cambridge for his interest and a fruitful discussion with him. Besides varying the
potential function, one could vary the interfacial parameter as well. For example,
one could consider the interfacial parameter as a function in space.

Chapter 6

Conclusions and Outlook

In this thesis, we have advanced numerical solution techniques for various types
of Cahn–Hilliard problems equipped with smooth and nonsmooth potentials while
the attention is on the latter. The considered problems are first the two-component,
and in particular the multi-component, Cahn–Hilliard model for phase separation
and coarsening processes. Second, we have successfully applied our preconditioner
to a coupled two-component Cahn–Hilliard/Navier–Stokes system equipped with a
nonsmooth potential. Third, we have enhanced the study of the modified Cahn–
Hilliard model as a tool for image inpainting. This thesis makes contributions to
both, the theoretical and numerical analysis of those problems. The core theme is
the development of efficient preconditioners for the iterative solution of the large
and sparse linear systems that arise from classical finite element methods. We have
designed, implemented, and analyzed preconditioners that are tailored to the dif-
ferent Cahn–Hilliard problems. In particular, our preconditioners are proven to be
robust with respect to parameter changes when smooth potentials are used. Even
for the nonsmooth systems, extensive numerical experiments have shown that our
preconditioners are promising: We have observed a nearly parameter independent
behavior of our developed preconditioners and in some cases only a benign increase
of iteration numbers. Note that the construction of efficient preconditioners in the
smooth case is already well established by Boyanova et al. [35, 37, 36, 3, 38]. However,
we have extended this theory in several ways: First of all, our theoretical proofs differ
halfway through. Second, we have generalized the theory to the vector-valued case
with symmetric positive semidefinite mobility matrices as well as to the linear sys-
tems that arise from the Cahn–Hilliard inpainting model. Third, we have used this
technique to analyze the systems of linear equations in the nonsmooth setting. The
numerical solution of Cahn–Hilliard problems that include a nonsmooth potential
form the challenging part of this thesis. Whereas the use of smooth potentials leads
to a system of parabolic partial differential equations, the nonsmooth ones result in
a system of variational inequalities. To deal with such systems, we have proposed
an SSN method combined with a Moreau–Yosida regularization technique, which is
investigated in [91] for the two-component Cahn–Hilliard model discretized in time
with a semi-implicit scheme. We have extended the analysis to the two-component

244 CHAPTER 6. CONCLUSIONS AND OUTLOOK

Cahn–Hilliard model discretized in time with an implicit scheme in [30]. For the sake
of completeness, parts of the work in [30] appear in Chapter 3. Our new contribu-
tions in this direction are the following: We have extended parts of the analysis to the
vector-valued Cahn–Hilliard model. In particular, we have interpreted the implicit
time-discrete problem as the first-order optimality system of an optimization problem
for which we have derived existence and uniqueness conditions. We have analyzed
the corresponding optimization problem of the Moreau–Yosida regularized version
and have derived existence and uniqueness conditions of its solution. Moreover, we
have proven a convergence result that connects the solutions of the regularized op-
timization problems to the original optimization problems. Finally, we have shown
the applicability of the SSN method combined with a Moreau–Yosida regularization
technique to solve the scalar and vector-valued modified Cahn–Hilliard equation.
The core of this approach is again the solution of large and sparse systems of linear
equations of saddle point form. In contrast to the linear systems that arise from the
use of smooth potentials, an additional and essential parameter, the regularization
parameter, enters the formulation. This complicates the properties of the coefficient
matrix and makes the solution of the linear systems a challenge. To the best of our
knowledge, practical and robust preconditioners for the iterative solution of these
problems are previously unknown. In this thesis, we have developed efficient pre-
conditioners for the solution of all of the above mentioned Cahn–Hilliard problems.
Although there are several points that have to be discussed further, we can conclude
that our techniques are promising and reliable.

We have already pointed out problem specific discussions for future research in the
corresponding chapters. Here, we bring up some general extensions for further re-
search. In the previous chapters, we have mentioned existing approaches for the
solution of nonsmooth Cahn–Hilliard problems. In particular, Gräser, Kornhuber,
and Sack [85] proposed globally convergent nonsmooth Schur–Newton methods
for the solution of discrete multi-component Cahn–Hilliard systems equipped with
logarithmic as well as obstacle potentials. An important point for the future is a
comparison with our approach. Recently, Kumar [111, 112] explored precondition-
ers for solving the second substep of the nonsmooth Newton method proposed by
Gräser and Kornhuber [84]. In particular, Kumar considered our Schur complement
preconditioner from Chapter 3.7 and adapted it to the linear systems he deals with.
Experiments showed that the number of preconditioned GMRES iterations remains
independent of the mesh size, however it depends on the interfacial parameter ε. But
for a fixed ε, the number of preconditioned GMRES iterations decreases significantly
when the mesh is refined. This makes the preconditioner effective and useful on
finer meshes.

An interesting future direction would be the application of our solvers to real-world
problems. This includes the incorporation of realistic model parameters. Examples
are the simulation of mineral growth [110] or tumor growth [103]. Usually, the
resulting discretized problems are of enormous dimensions and hence too large
to be tackled by standard approaches. As a result, high performance computing
becomes inevitable. This research area forms another important extension.

Theses

1. This thesis deals with the numerical solution of various types of Cahn–Hilliard
problems equipped with smooth and nonsmooth potentials with an emphasis
on the latter. The core theme is the development of efficient and practical
preconditioners for the iterative solution of the large and sparse linear systems
that arise from classical finite element methods.

2. We have designed, implemented, and analyzed preconditioners that are tai-
lored to the different Cahn–Hilliard problems.

3. We have extended Boyanova et al’s theory for smooth preconditioners in four
ways: First, we have formulated an altered proof that is based on the symmetric
Schur decomposition. Second, we have derived the theory for the vector-
valued case with symmetric positive semidefinite mobility matrices. Next, we
have extended the proof to the linear systems that arise from the Cahn–Hilliard
inpainting model. Finally, using this technique, we have analyzed the systems
of linear equations in the nonsmooth systems.

4. In the smooth settings, we have derived theoretical conditions for the optimality
of our preconditioners.

5. In the nonsmooth settings, we have proven that the use of the preconditioners
from the smooth settings give worse approximations for small regularization
parameters.

6. The numerical experiments confirm the robustness of our preconditioners ap-
plied to the smooth systems with respect to all crucial parameters.

7. Extensive numerical tests show that our preconditioners applied to the non-
smooth systems are either nearly parameter independent or show a benign
increase of iteration numbers.

8. We have applied a mesh adaptation strategy to the numerical solution of the
nonsmooth multi-component Cahn–Hilliard equation. This reduces the num-
ber of degrees of freedom and allows us to perform three-dimensional experi-
ments in an efficient way.

246 CHAPTER 6. CONCLUSIONS AND OUTLOOK

9. First numerical experiments show the effectiveness of our developed precondi-
tioner applied to a two-component nonsmooth coupled Cahn–Hilliard/Navier–
Stokes system. In particular, we observe a promising behavior when the
Reynolds number is increased as well as when the mesh, interfacial, time
step, and mobility parameter are refined all four together.

10. Eigenvalue plots for our Schur complement approximations demonstrate the
desired eigenvalue clustering.

11. Our extension of Hintermüller et al’s theory about the Moreau–Yosida regular-
ization technique combined with the semismooth Newton method is twofold:
We have extended parts of the analysis to the vector-valued Cahn–Hilliard
model. In particular, we have interpreted the implicit time-discrete problem
as the first-order optimality system of an optimization problem for which we
have derived existence and uniqueness conditions. We have analyzed the cor-
responding optimization problem of the Moreau–Yosida regularized version
and derived existence and uniqueness conditions of its solution. Moreover,
we have proven a convergence result that connects the solution of the regular-
ized optimization problem to the original optimization problem. Second, we
have shown the applicability of the SSN method combined with a Moreau–
Yosida regularization technique to solve the scalar and vector-valued modified
Cahn–Hilliard equation.

12. We have developed a gray value inpainting model based on the vector-valued
Cahn–Hilliard equation.

13. We have extended the smooth Cahn–Hilliard inpainting approach to the non-
smooth case.

14. The numerical results show that the use of the nonsmooth Cahn–Hilliard in-
painting model visually improves the reconstructed images when compared
to existing inpainting tools.

Bibliography

[1] H. Abels, H. Garcke, and G. Grün, Thermodynamically consistent, frame indifferent
diffuse interface models for incompressible two-phase flows with different densities,
Math. Models Methods Appl. Sci., 22 (2012), p. 1150013.

[2] O. Axelsson, A survey of preconditioned iterative methods for linear systems of
algebraic equations, BIT, 25 (1985), pp. 165–187.

[3] O. Axelsson, P. Boyanova, M. Kronbichler, M. Neytcheva, and X. Wu, Numer-
ical and computational efficiency of solvers for two-phase problems, Comput. Math.
Appl., 65 (2013), pp. 301–314.

[4] O. Axelsson and M. Neytcheva, Operator splittings for solving nonlinear, coupled
multiphysics problems with an application to the numerical solution of an interface
problem, Tech. Report 2011-009, Department of Information Technology, Upp-
sala University, 2011.

[5] W. Baatz, M. Fornasier, P. A. Markowich, and C.-B. Schönlieb, Inpainting of
ancient austrian frescoes, in Bridges Leeuwarden: Mathematics, Music, Art, Ar-
chitecture, Culture, R. Sarhangi and C. H. Séquin, eds., London, 2008, Tarquin
Publications, pp. 163–170.

[6] V. E. Badalassi, H. D. Ceniceros, and S. Banerjee, Computation of multiphase
systems with phase field models, J. Comput. Phys., 190 (2003), pp. 371–397.

[7] ’L. Baňas and R. Nürnberg, A multigrid method for the Cahn–Hilliard equation with
obstacle potential, Appl. Math. Comput., 213 (2009), pp. 290–303.

[8] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II – A general purpose object ori-
ented finite element library, ACM Trans. Math. Software, 33 (2007), pp. 24/1–24/27.

[9] R. E. Bank, B. D. Welfert, and H. Yserentant, A class of iterative methods for solving
saddle point problems, Numer. Math., 56 (1990), pp. 645–666.

[10] E. Bänsch, P. Morin, and R. H. Nochetto, Preconditioning a class of fourth order
problems by operator splitting, Numer. Math., 118 (2011), pp. 197–228.

[11] J. W. Barrett and J. F. Blowey, An error bound for the finite element approximation
of a model for phase separation of a multi-component alloy, IMA J. Numer. Anal., 16
(1996), pp. 257–287.

248 BIBLIOGRAPHY

[12] , Finite element approximation of a model for phase separation of a multi-
component alloy with non-smooth free energy, Numer. Math., 77 (1997), pp. 1–34.

[13] J. W. Barrett, J. F. Blowey, and H. Garcke, Finite element approximation of the
Cahn–Hilliard equation with degenerate mobility, SIAM J. Numer. Anal., 37 (1999),
pp. 286–318.

[14] J. W. Barrett, R. Nürnberg, and V. Styles, Finite element approximation of a phase
field model for void electromigration, SIAM J. Numer. Anal., 42 (2004), pp. 738–772.

[15] M. Benzi, Preconditioning techniques for large linear systems: A survey, J. Comput.
Phys., 182 (2002), pp. 418–477.

[16] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems,
Acta Numer., 14 (2005), pp. 1–137.

[17] M. Bertalmı́o, G. Sapiro, V. Caselles, and C. Ballester, Image inpainting, in Pro-
ceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 2000, New York, 2000, ACM Press/Addison–Wesley,
pp. 417–424.

[18] A. Bertozzi, S. Esedoḡlu, and A. Gillette, Analysis of a two-scale Cahn–Hilliard
model for binary image inpainting, Multiscale Model. Simul., 6 (2007), pp. 913–936.

[19] A. L. Bertozzi, S. Esedoḡlu, and A. Gillette, Inpainting of binary images using the
Cahn–Hilliard equation, IEEE Trans. Image Process., 16 (2007), pp. 285–291.

[20] L. Blank, M. Butz, and H. Garcke, Solving the Cahn–Hilliard variational inequality
with a semi-smooth Newton method, ESAIM Control Optim. Calc. Var., 17 (2011),
pp. 931–954.

[21] L. Blank, M. H. Farshbaf-Shaker, H. Garcke, C. Rupprecht, and V. Styles, Multi-
material phase field approach to structural topology optimization, in Trends in PDE
Constrained Optimization, G. Leugering, P. Benner, S. Engell, A. Griewank,
H. Harbrecht, M. Hinze, R. Rannacher, and S. Ulbrich, eds., vol. 165 of Internat.
Ser. Numer. Math., Springer International Publishing, Cham, 2014, pp. 231–246.

[22] L. Blank, H. Garcke, L. Sarbu, and V. Styles, Nonlocal Allen–Cahn systems:
Analysis and a primal-dual active set method, IMA J. Numer. Anal., 33 (2013),
pp. 1126–1155.

[23] , Primal-dual active set methods for Allen–Cahn variational inequalities with
nonlocal constraints, Numer. Methods Partial Differential Equations, 29 (2013),
pp. 999–1030.

[24] L. Blank and C. Rupprecht, An extension of the projected gradient method to a
Banach space setting with application in structural topology optimization, Tech.
Report 4/2015, Department of Mathematics, University of Regensburg, 2015.

[25] L. Blank, L. Sarbu, and M. Stoll, Preconditioning for Allen–Cahn variational in-
equalities with non-local constraints, J. Comput. Phys., 231 (2012), pp. 5406–5420.

[26] J. F. Blowey, M. I. M. Copetti, and C. M. Elliott, Numerical analysis of a model
for phase separation of a multicomponent alloy, IMA J. Numer. Anal., 16 (1996),
pp. 111–139.

BIBLIOGRAPHY 249

[27] J. F. Blowey and C. M. Elliott, The Cahn–Hilliard gradient theory for phase separation
with non-smooth free energy. Part I: Mathematical analysis, European J. Appl.
Math., 2 (1991), pp. 233–280.

[28] , The Cahn–Hilliard gradient theory for phase separation with non-smooth free
energy. Part II: Numerical analysis, European J. Appl. Math., 3 (1992), pp. 147–179.

[29] , Curvature dependent phase boundary motion and parabolic double obstacle
problems, in Degenerate Diffusions, W.-M. Ni, L. A. Peletier, and J. L. Vazquez,
eds., vol. 47 of IMA Vol. Math. Appl., Springer, New York, 1993, pp. 19–60.

[30] J. Bosch, Schnelle Löser für Cahn–Hilliard Variationsungleichungen, Master’s the-
sis, Faculty of Mathematics, Otto-von-Guericke-Universität Magdeburg, 2012.
In German.

[31] J. Bosch, D. Kay, M. Stoll, and A. J. Wathen, Fast solvers for Cahn–Hilliard
inpainting, SIAM J. Imaging Sci., 7 (2014), pp. 67–97.

[32] J. Bosch and M. Stoll, A fractional inpainting model based on the vector-valued
Cahn–Hilliard equation, SIAM J. Imaging Sci., 8 (2015), pp. 2352–2382.

[33] , Preconditioning for vector-valued Cahn–Hilliard equations, SIAM J. Sci. Com-
put., 37 (2015), pp. S216–S243.

[34] J. Bosch, M. Stoll, and P. Benner, Fast solution of Cahn–Hilliard variational in-
equalities using implicit time discretization and finite elements, J. Comput. Phys.,
262 (2014), pp. 38–57.

[35] P. Boyanova, M. Do-Quang, and M. Neytcheva, Solution methods for the Cahn–
Hilliard equation discretized by conforming and non-conforming finite elements, Tech.
Report 2011-004, Department of Information Technology, Uppsala University,
2011.

[36] , Block-preconditioners for conforming and non-conforming FEM discretizations
of the Cahn–Hilliard equation, in Large-Scale Scientific Computing, I. Lirkov,
S. Margenov, and J. Waśniewski, eds., vol. 7116 of Lecture Notes in Comput.
Sci., Springer, Berlin Heidelberg, 2012, pp. 549–557.

[37] , Efficient preconditioners for large scale binary Cahn–Hilliard models, Comput.
Methods Appl. Math., 12 (2012), pp. 1–22.

[38] P. Boyanova and N. Neytcheva, Efficient numerical solution of discrete multi-
component Cahn–Hilliard systems, Comput. Math. Appl., 67 (2014), pp. 106–121.

[39] J. H. Bramble and J. E. Pasciak, A preconditioning technique for indefinite systems
resulting from mixed approximations of elliptic problems, Math. Comput., 50 (1988),
pp. 1–17.

[40] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp.,
31 (1977), pp. 333–390.

[41] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations,
Universitext, Springer, New York, 2011.

250 BIBLIOGRAPHY

[42] M. Butz, Computational methods for Cahn–Hilliard variational inequalities, PhD
thesis, University of Regensburg, 2012.

[43] J. W. Cahn, Free energy of a nonuniform system. II. Thermodynamic basis, J. Chem.
Phys., 30 (1959), pp. 1121–1124.

[44] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free
energy, J. Chem. Phys., 28 (1958), pp. 258–267.

[45] T. F. Chan and J. Shen, Image Processing and Analysis, Other Titles in Applied
Mathematics, SIAM, Philadelphia, PA, 2005.

[46] J. Chen, L. C. McInnes, and H. Zhang, Analysis and practical use of flexible
BiCGStab, J. Sci. Comput., (2016), pp. 1–23.

[47] M. Chen, On the solution of circulant linear systems, SIAM J. Numer. Anal., 24
(1987), pp. 668–683.

[48] L. Cherfils, H. Fakih, and A. Miranville, A Cahn–Hilliard system with a fidelity
term for color image inpainting, J. Math. Imaging Vision, 54 (2015), pp. 117–131.

[49] , On the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation with logarithmic
nonlinear terms, SIAM J. Imaging Sci., 8 (2015), pp. 1123–1140.

[50] M. I. M. Copetti and C. M. Elliott, Numerical analysis of the Cahn–Hilliard equation
with a logarithmic free energy, Numer. Math., 63 (1992), pp. 39–65.

[51] T. A. Davis, Direct Methods for Sparse Linear Systems, vol. 2 of Fundam. Algo-
rithms, SIAM, Philadelphia, PA, 2006.

[52] , UMFPACK User Guide, Tech. Report TR-04-003 (revised), Department of
Computer Science and Engineering, Texas A&M University, 2016.

[53] S. R. de Groot and P. Mazur, Non-equilibrium thermodynamics, Dover Publica-
tions, Inc., New York, 1984. Corrected reprint of the 1962 original.

[54] I. C. Dolcetta, S. F. Vita, and R. March, Area-preserving curve-shortening flows:
From phase separation to image processing, Interfaces Free Bound., 4 (2002),
pp. 325–343.

[55] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices,
Monogr. Numer. Anal., The Clarendon Press, Oxford Univ. Press, New York,
2nd ed., 1989.

[56] C. Eck, H. Garcke, and P. Knabner, Mathematische Modellierung, Springer, Berlin
Heidelberg, 2nd ed., 2011. In German.

[57] C. M. Elliott, The Cahn–Hilliard model for the kinetics of phase separation, in Math-
ematical Models for Phase Change Problems, J. F. Rodrigues, ed., vol. 88 of
Internat. Ser. Numer. Math., Birkhäuser Verlag, Basel, 1989, pp. 35–73.

[58] C. M. Elliott and H. Garcke, On the Cahn–Hilliard equation with degenerate mobil-
ity, SIAM J. Math. Anal., 27 (1996), pp. 404–423.

BIBLIOGRAPHY 251

[59] , Diffusional phase transitions in multicomponent systems with a concentration
dependent mobility matrix, Phys. D, 109 (1997), pp. 242–256.

[60] C. M. Elliott and S. Luckhaus, A generalised diffusion equation for phase separa-
tion of a multi-component mixture with interfacial free energy, Tech. Report 887,
University of Minnesota, 1991.

[61] C. M. Elliott and A. M. Stuart, The global dynamics of discrete semilinear parabolic
equations, SIAM J. Numer. Anal., 30 (1993), pp. 1622–1663.

[62] C. M. Elliott and S. Zheng, On the Cahn–Hilliard equation, Arch. Ration. Mech.
Anal., 96 (1986), pp. 339–357.

[63] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative
Solvers: With Applications in Incompressible Fluid Dynamics, Numer. Math. Sci.
Comput., Oxford Univ. Press, Oxford, 2005.

[64] O. G. Ernst and M. J. Gander, Why it is difficult to solve Helmholtz problems with
classical iterative methods, in Numerical Analysis of Multiscale Problems, I. G.
Graham, T. Y. Hou, O. Lakkis, and R. Scheichl, eds., vol. 83 of Lect. Notes
Comput. Sci. Eng., Springer, Berlin Heidelberg, 2012, pp. 325–363.

[65] L. C. Evans, Partial differential equations, vol. 19 of Grad. Stud. Math., Amer.
Math. Soc., Providence, RI, 2nd ed., 2010.

[66] D. J. Eyre, Systems of Cahn–Hilliard equations, SIAM J. Appl. Math., 53 (1993),
pp. 1686–1712.

[67] , An unconditionally stable one-step scheme for gradient systems, tech. report,
Department of Mathematics, University of Utah, 1998.

[68] R. D. Falgout, An introduction to algebraic multigrid computing, Comput. Sci.
Eng., 8 (2006), pp. 24–33.

[69] R. Fletcher, Conjugate gradient methods for indefinite systems, in Numerical Anal-
ysis: Proceedings of the Dundee Conference on Numerical Analysis, 1975,
G. A. Watson, ed., vol. 506 of Lect. Notes Math., Springer, Berlin Heidelberg,
1976, pp. 73–89.

[70] R. W. Freund, G. H. Golub, and N. M. Nachtigal, Iterative solution of linear
systems, Acta Numer., 1 (1992), pp. 57–100.

[71] D. Garcia, Robust smoothing of gridded data in one and higher dimensions with
missing values, Computat. Statist. Data Anal., 54 (2010), pp. 1167–1178.

[72] H. Garcke, Mechanical effects in the Cahn–Hilliard model: A review on mathematical
results, in Mathematical Methods and Models in Phase Transitions, A. Mi-
ranville, ed., Nova Sci. Publ., New York, 2005, pp. 43–77.

[73] H. Garcke, M. Hinze, and C. Kahle, A stable and linear time discretization for a ther-
modynamically consistent model for two-phase incompressible flow, Appl. Numer.
Math., 99 (2016), pp. 151–171.

[74] H. Garcke, B. Nestler, and B. Stoth, On anisotropic order parameter models for
multi-phase systems and their sharp interface limits, Phys. D, 115 (1998), pp. 87–108.

252 BIBLIOGRAPHY

[75] , A multiphase field concept: Numerical simulations of moving phasee boundaries
and multiple junctions, SIAM J. Appl. Math., 60 (1999), pp. 295–315.

[76] M. W. Gee, C. M. Siefert, J. J. Hu, R. S. Tuminaro, and M. G. Sala, ML 5.0 smoothed
aggregation user’s guide, Tech. Report SAND2006-2649, Sandia National Labo-
ratories, 2006.

[77] A. George and J. W.-H. Liu, Computer Solution of Large Sparse Positive Definite
Systems, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

[78] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Acad. Press,
Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1981.

[79] R. Glowinski, Numerical methods for nonlinear variational problems, Sci. Comput.,
Springer, Berlin, 2008. Reprint of the 1984 original.

[80] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Stud.
Math. Sci., Johns Hopkins Univ. Press, Baltimore, MD, 4th ed., 2013.

[81] G. H. Golub and R. S. Varga, Chebyshev semi-iterative methods, successive overre-
laxation iterative methods, and second order Richardson iterative methods. I, Numer.
Math., 3 (1961), pp. 147–156.

[82] , Chebyshev semi-iterative methods, successive overrelaxation iterative meth-
ods, and second order Richardson iterative methods. II, Numer. Math., 3 (1961),
pp. 157–168.

[83] C. Gräser and R. Kornhuber, On preconditioned Uzawa-type iterations for a saddle
point problem with inequality constraints, in Domain Decomposition Methods in
Science and Engineering XVI, O. B. Widlund and D. E. Keyes, eds., vol. 55 of
Lect. Notes Comput. Sci. Eng., Springer, Berlin Heidelberg, 2007, pp. 91–102.

[84] , Nonsmooth Newton methods for set-valued saddle point problems, SIAM J.
Numer. Anal., 47 (2009), pp. 1251–1273.

[85] C. Gräser, R. Kornhuber, and U. Sack, Nonsmooth Schur–Newton methods for mul-
ticomponent Cahn–Hilliard systems, IMA J. Numer. Anal., 35 (2015), pp. 652–679.

[86] A. Greenbaum, Iterative Methods for Solving Linear Systems, vol. 17 of Frontiers
Appl. Math., SIAM, Philadelphia, PA, 1997.

[87] J. Gu, L. Zhang, G. Yu, Y. Xing, and Z. Chen, X-ray CT metal artifacts reduction
through curvature based sinogram inpainting, J. X-Ray Sci. Technol., 14 (2006),
pp. 73–82.

[88] W. Hackbusch, Multi-Grid Methods and Applications, vol. 4 of Springer Ser.
Comput. Math., Springer, Berlin Heidelberg, 1985.

[89] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda,
R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger,
H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S.
Stanley, An overview of Trilinos, Tech. Report SAND2003-2927, Sandia National
Laboratories, 2003.

BIBLIOGRAPHY 253

[90] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear
systems, J. Research Nat. Bur. Standards, 49 (1952), pp. 409–436.

[91] M. Hintermüller, M. Hinze, and M. H. Tber, An adaptive finite-element Moreau–
Yosida-based solver for a non-smooth Cahn–Hilliard problem, Optim. Methods
Softw., 26 (2011), pp. 777–811.

[92] M. Hintermüller, K. Ito, and K. Kunisch, The primal-dual active set strategy as a
semismooth Newton method, SIAM J. Optim., 13 (2002), pp. 865–888.

[93] M. Hintermüller and M. Ulbrich, A mesh-independence result for semismooth
Newton methods, Math. Program., 101 (2004), pp. 151–184.

[94] F. Hirsch and G. Lacombe, Elements of Functional Analysis, vol. 192 of Grad.
Texts in Math., Springer, New York, 1999. Translated from the 1997 French
original by S. Levy.

[95] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cam-
bridge, 2nd ed., 2013.

[96] S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, and L. To-
biska, Quantitative benchmark computations of two-dimensional bubble dynamics,
Internat. J. Numer. Methods Fluids, 60 (2009), pp. 1259–1288.

[97] I. C. F. Ipsen, A note on preconditioning nonsymmetric matrices, SIAM J. Sci.
Comput., 23 (2001), pp. 1050–1051.

[98] K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and
Applications, vol. 15 of Adv. Des. Control, SIAM, Philadelphia, PA, 2008.

[99] D. Kay, D. Loghin, and A. J. Wathen, A preconditioner for the steady-state Navier–
Stokes equations, SIAM J. Sci. Comput., 24 (2002), pp. 237–256.

[100] D. Kay and A. Tomasi, Color image segmentation by the vector-valued Allen–Cahn
phase-field model: A multigrid solution, IEEE Trans. Image Process., 18 (2009),
pp. 2330–2339.

[101] D. Kay and R. Welford, A multigrid finite element solver for the Cahn–Hilliard
equation, J. Comput. Phys., 212 (2006), pp. 288–304.

[102] K. S. Kazimierski, Aspects of Regularization in Banach Spaces, Logos, Berlin, 2010.

[103] E. Khain and L. M. Sander, Generalized Cahn–Hilliard equation for biological ap-
plications, Phys. Rev. E, 77 (2008), p. 051129.

[104] T. Kies, Bildrekonstruktion durch Anwendung einer Verallgemeinerung der pro-
jizierten Gradientenmethode auf ein Phasenfeldmodell, Master’s thesis, Department
of Mathematics, University of Regensburg, 2014. In German.

[105] J. Kim, K. Kang, and J. Lowengrub, Conservative multigrid methods for Cahn–
Hilliard fluids, J. Comput. Phys., 193 (2004), pp. 511–543.

[106] J. S. Kirkaldy and D. J. Young, Diffusion in the condensed state, Institute of Metals,
1987.

254 BIBLIOGRAPHY

[107] R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities. I,
Numer. Math., 69 (1994), pp. 167–184.

[108] , Monotone multigrid methods for elliptic variational inequalities. II, Numer.
Math., 72 (1996), pp. 481–499.

[109] E. Kreyszig, Introductory Functional Analysis with Applications, Wiley, 1978.

[110] E. Kuhl and D. W. Schmid, Computational modeling of mineral unmixing and
growth, Comput. Mech., 39 (2007), pp. 439–451.

[111] P. Kumar, Fast solvers for nonsmooth optimization problems in phase separation,
in Proceedings of the 2015 Federated Conference on Computer Science and
Information Systems, M. Ganzha, L. Maciaszek, and M. Paprzycki, eds., vol. 5
of ACSIS, IEEE, 2015, pp. 589–594.

[112] , An optimal block diagonal preconditioner for heterogeneous saddle point prob-
lems in phase separation, CoRR, abs/1601.03230 (2016).

[113] Yu. A. Kuznetsov, Efficient iterative solvers for elliptic finite element problems
on nonmatching grids, Russian J. Numer. Anal. Math. Modelling, 10 (1995),
pp. 187–211.

[114] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics,
vol. 49 of Appl. Math. Sci., Springer, New York, 1985. Translated from the
Russian by A. J. Lohwater.

[115] C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Re-
search Nat. Bur. Standards, 49 (1952), pp. 33–53.

[116] L. P. Lebedev, I. I. Vorovich, and G. M. L. Gladwell, Functional Analysis: Applica-
tions in Mechanics and Inverse Problems, vol. 100 of Solid Mech. Appl., Springer,
Dordrecht, 2nd ed., 2002.

[117] A. A. Lee, A. Münch, and E. Süli, Degenerate mobilities in phase field models are
insufficient to capture surface diffusion, Appl. Phys. Lett., 107 (2015), p. 081603.

[118] H. G. Lee, J.-W. Choi, and J. Kim, A practically unconditionally gradient sta-
ble scheme for the N-component Cahn–Hilliard system, Phys. A, 391 (2012),
pp. 1009–1019.

[119] H. G. Lee and J. Kim, A second-order accurate non-linear difference scheme for the
N-component Cahn–Hilliard system, Phys. A, 387 (2008), pp. 4787–4799.

[120] P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear oper-
ators, SIAM J. Numer. Anal., 16 (1979), pp. 964–979.

[121] S. H. Lui, Numerical Analysis of Partial Differential Equations, Pure Appl. Math.
(Hoboken), Wiley, Hoboken, NJ, 2011.

[122] R. B. Morgan, A restarted GMRES method augmented with eigenvectors, SIAM J.
Matrix Anal. Appl., 16 (1995), pp. 1154–1171.

[123] J. E. Morral and J. W. Cahn, Spinodal decomposition in ternary systems, Acta
Metallurgica, 19 (1971), pp. 1037–1045.

BIBLIOGRAPHY 255

[124] M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for
indefinite linear systems, SIAM J. Sci. Comput., 21 (2000), pp. 1969–1972.

[125] B. Nicolaenko and B. Scheurer, Low-dimensional behavior of the pattern formation
Cahn–Hilliard equation, in Trends in The Theory and Practice of Non-Linear
Analysis. Proceedings of the VIth International Conference on Trends in the
Theory and Practice of Non-Linear Analysis, V. Lakshmikantham, ed., vol. 110
of North-Holland Math. Stud., North-Holland, Amsterdam, 1985, pp. 323–336.

[126] A. Novick-Cohen, The Cahn–Hilliard equation: Mathematical and modeling per-
spectives, Adv. Math. Sci. Appl., 8 (1998), pp. 965–985.

[127] A. Novick-Cohen and L. A. Segel, Nonlinear aspects of the Cahn–Hilliard equation,
Phys. D, 10 (1984), pp. 277–298.

[128] Y. Oono and S. Puri, Study of phase-separation dynamics by use of cell dynamical
systems. I. Modeling, Phys. Rev. A, 38 (1988), pp. 434–453.

[129] C. C. Paige and M. A. Saunders, Solutions of sparse indefinite systems of linear
equations, SIAM J. Numer. Anal, 12 (1975), pp. 617–629.

[130] J. W. Pearson and A. J. Wathen, A new approximation of the Schur complement in
preconditioners for PDE-constrained optimization, Numer. Linear Algebra Appl.,
19 (2012), pp. 816–829.

[131] R. L. Pego, Front migration in the nonlinear Cahn–Hilliard equation, Proc. R. Soc.
A, 422 (1989), pp. 261–278.

[132] T. Rees and M. Stoll, Block-triangular preconditioners for PDE-constrained opti-
mization, Numer. Linear Algebra Appl., 17 (2010), pp. 977–996.

[133] T. J. Rivlin, An Introduction to the Approximation of Functions, Blaisdell book in
numerical analysis and computer science, Dover Publications, Inc., New York,
1981. Corrected reprint of the 1969 original.

[134] J. W. Ruge and K. Stüben, Algebraic multigrid, in Multigrid methods, vol. 3 of
Frontiers Appl. Math., SIAM, Philadelphia, PA, 1987, pp. 73–130.

[135] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci.
Comput., 14 (1993), pp. 461–469.

[136] , Iterative methods for sparse linear systems, SIAM, Philadelphia, PA, 2nd ed.,
2003.

[137] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM J. Sci. and Stat. Comput., 7 (1986),
pp. 856–869.

[138] L. Sarbu, Primal-dual active set methods for Allen–Cahn variational inequalities,
PhD thesis, University of Sussex, 2010.

[139] C.-B. Schönlieb and A. Bertozzi, Unconditionally stable schemes for higher order
inpainting, Commun. Math. Sci., 9 (2011), pp. 413–457.

256 BIBLIOGRAPHY

[140] J. Shen and X. Yang, Numerical approximations of Allen–Cahn and Cahn–Hilliard
equations, Discrete Contin. Dyn. Syst., 28 (2010), pp. 1669–1691.

[141] P. Šolı́n, Partial differential equations and the finite element method, Pure Appl.
Math., Wiley, Hoboken, NJ, 2006.

[142] W.-H. Steeb, Matrix Calculus and Kronecker Product with Applications and C++
Programs, World Sci. Publ., River Edge, NJ, 1997. With the collaboration of T. K.
Shi.

[143] M. Stoll, One-shot solution of a time-dependent time-periodic PDE-constrained opti-
mization problem, IMA J. Numer. Anal., 34 (2014), pp. 1554–1577.

[144] G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1973.

[145] J. L. Troutman, Variational Calculus and Optimal Control, Undergrad. Texts Math.,
Springer, New York, 2nd ed., 1996. With the assistance of W. Hrusa, Optimiza-
tion with Elementary Convexity.

[146] M. Ulbrich, Semismooth Newton methods for operator equations in function spaces,
SIAM J. Optim., 13 (2002), pp. 805–841.

[147] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems, SIAM J. Sci. and Stat. Comput., 13
(1992), pp. 631–644.

[148] G. Wang, D. Garcia, Y. Liu, R. de Jeu, and A. J. Dolman, A three-dimensional
gap filling method for large geophysical datasets: Application to global satellite soil
moisture observations, Environ. Model. Softw., 30 (2012), pp. 139–142.

[149] A. J. Wathen, Preconditioning, Acta Numer., 24 (2015), pp. 329–376.

[150] A. J. Wathen and T. Rees, Chebyshev semi-iteration in preconditioning for problems
including the mass matrix, Electron. Trans. Numer. Anal., 34 (2009), pp. 125–135.

[151] P. Wesseling, An Introduction to Multigrid Methods, Pure Appl. Math. (New
York), Wiley, Ltd., Chichester, 1992.

[152] X.-F. Wu and Y. A. Dzenis, Phase-field modeling of the formation of lamellar nanos-
tructures in diblock copolymer thin films under inplanar electric fields, Phys. Rev. E,
77 (2008), p. 031807.

[153] M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro,
and L. Carin, Nonparametric Bayesian dictionary learning for analysis of noisy and
incomplete images, IEEE Trans. Image Process., 21 (2012), pp. 130–144.

[154] J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming
problem in Banach spaces, Appl. Math. Optim., 5 (1979), pp. 49–62.

Schriftliche Ehrenerklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Drit-
ter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe;
verwendete fremde und eigene Quellen sind als solche kenntlich gemacht.

Ich habe insbesondere nicht wissentlich:

• Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

• statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter
Weise zu interpretieren,

• fremde Ergebnisse oder Veröffentlichungen plagiiert oder verzerrt wiederge-
geben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und Schaden-
ersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die Strafver-
folgungsbehörden begründen kann.

Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher
Form als Dissertation eingereicht und ist als Ganzes auch noch nicht veröffentlicht.

(Ort, Datum)

(Unterschrift)

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Notation
	1 Introduction
	1.1 Phase separation in binary alloys
	1.2 Extensions of the Cahn–Hilliard equation
	1.3 Outline of the thesis

	2 Mathematical Foundations
	2.1 Functional analysis
	2.1.1 Normed spaces and Banach spaces
	2.1.2 Convergence in normed spaces
	2.1.3 Inner product spaces and Hilbert spaces
	2.1.4 Lp and Sobolev spaces
	2.1.5 Gradient flows
	2.1.6 Unconditional stability, consistence and convergence

	2.2 Basic matrix theory
	2.2.1 Matrix properties
	2.2.2 Spectrum of matrices
	2.2.3 Vector and matrix norms
	2.2.4 Block and saddle point matrices

	2.3 Iterative solution of linear systems
	2.3.1 Krylov subspace solvers
	2.3.2 Preconditioning
	2.3.3 Saddle point preconditioners

	3 Scalar Cahn–Hilliard Equations
	3.1 Introduction
	3.2 Derivation
	3.2.1 Smooth systems
	3.2.2 Nonsmooth systems

	3.3 Time discretization
	3.3.1 Smooth systems
	3.3.2 Nonsmooth systems

	3.4 Moreau–Yosida regularization
	3.5 Semismooth Newton method
	3.6 Finite element approximation
	3.7 Preconditioning
	3.7.1 Smooth semi-implicit systems
	3.7.2 Smooth implicit systems
	3.7.3 Nonsmooth semi-implicit systems
	3.7.4 Nonsmooth implicit systems

	3.8 Numerical results
	3.8.1 Eigenvalue plots
	3.8.2 Robustness
	3.8.3 Mesh adaptation
	3.8.4 Implicit versus semi-implicit time discretization
	3.8.5 Long-time evolution
	3.8.6 Three-dimensional dumbbell
	3.8.7 Two-phase flows

	3.9 Existing solvers
	3.10 Conclusions

	4 Vector-Valued Cahn–Hilliard Equations
	4.1 Introduction
	4.2 Derivation
	4.2.1 Smooth systems
	4.2.2 Nonsmooth systems

	4.3 Time discretization
	4.3.1 Smooth systems
	4.3.2 Nonsmooth systems

	4.4 Moreau–Yosida regularization
	4.5 Semismooth Newton method
	4.6 Finite element approximation
	4.7 Preconditioning
	4.7.1 Smooth systems
	4.7.2 Nonsmooth systems

	4.8 Numerical Results
	4.8.1 Robustness
	4.8.2 Mesh adaptation
	4.8.3 Long-time evolution
	4.8.4 Three-dimensional example

	4.9 Existing solvers
	4.10 Conclusions and future research perspectives

	5 Modified Cahn–Hilliard Equations
	5.1 Introduction
	5.2 Derivation
	5.2.1 Smooth systems
	5.2.2 Nonsmooth systems

	5.3 Time discretization
	5.3.1 Smooth systems
	5.3.2 Nonsmooth systems

	5.4 Semismooth Newton method
	5.5 Finite element approximation
	5.6 Preconditioning
	5.6.1 Smooth systems
	5.6.2 Scalar nonsmooth systems
	5.6.3 Vector-valued nonsmooth systems

	5.7 Numerical results
	5.7.1 Eigenvalue plots
	5.7.2 Robustness
	5.7.3 Image inpainting
	5.7.4 Three-dimensional example
	5.7.5 Comparison with existing inpainting methods

	5.8 Conclusions and future research perspectives

	6 Conclusions and Outlook
	Theses
	Bibliography
	Schriftliche Ehrenerklärung

