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Magdeburg, 28th of January, 2016



iv



Pentru iubita mea soţie Ioana.
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Abstract

In this thesis, we examine important numerical aspects of a Riccati-based
feedback stabilization approach in order to stabilize incompressible flow prob-
lems.

Various transport and flow problems are important in many technical appli-
cations. To control or influence these generally nonlinear problems, one usually
uses an open-loop controller. Highly sophisticated solvers exist for this kind of
problem. However, an open-loop controller is unstable with regard to small per-
turbations. Using a feedback stabilization approach for the linearization around
the open-loop trajectory increases the robustness of these methods drastically.

The main issue in deriving such a Riccati-based feedback is the efficient solu-
tion of a large-scale generalized algebraic Riccati equation. The solution of this
quadratic matrix equation is derived by applying a specially tailored version
of Newton’s method. Due to the natural divergence-free condition of incom-
pressible flow problems, all systems occur as differential-algebraic systems. The
solution of this kind of equations is highly demanding. We try to avoid general-
purpose solution strategies for these differential-algebraic equations by using
and extending an existing implicit projection method.

A highly efficient algorithm to determine the Riccati-based feedback for vari-
ous flow scenarios has been established by modifying and combining various ex-
isting solution strategies. The combination of all these strategies is completely
new and only possible because of current improvements. The key ingredient
to enable the synergy of these methods are low-rank structures and specially
tailored algorithms that exploit these structures. A convergence proof for our
proposed method as well as thorough numerical experiments verify the usability
of our approach.

By modifying and extending an existing finite element flow solver, we have
been able to extract the arising finite dimensional matrices. These matrices are
used within our MATLAB®-based algorithms to compute the Riccati-based
feedback. The computed feedback is included into the flow solver such that a
closed-loop simulation is able to validate the usability of our proposed approach
to stabilize the Navier–Stokes equations over the Kármán vortex street.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit wichtigen numerischen Aspekten, um inkompressible
Strömungsprobleme mit der Hilfe eines Riccati-basierten Feedbacks zu stabilisieren.

In vielen technischen Anwendungen ist die Lösung von Transport- und Strömungs-
problemen von hoher Bedeutung. Um diese im Allgemeinen nichtlinearen Probleme zu
beeinflussen, benutzt man für gewöhnlich open-loop controller. Für diese Klasse von
Problemen existieren hoch entwickelte Lösungsmethoden. Ein open-loop controller ist
jedoch instabil bezüglich kleinster Störungen. Die Robustheit dieser Methoden kann
durch die Benutzung einer Feedback-Stabilisierung, basierend auf einer Linearisierung
um die open-loop Trajektorie, erheblich verbessert werden.

Das Hauptproblem bei der Erzeugung solch eines Riccati-basierten Feedbacks ist die
Lösung einer hochdimensionalen verallgemeinerten algebraischen Riccati-Gleichung. Die
Lösung dieser quadratischen Matrixgleichung ist von der Anwendung eines speziell an-
gepassten Newton-Verfahrens abgeleitet. Aufgrund der natürlichen Divergenzfreiheit der
inkompressiblen Strömungen treten alle Systeme als differentiell-algebraische Gleichun-
gen auf. Die Lösung solcher Systeme ist sehr anspruchsvoll. Daher versuchen wir in dieser
Arbeit allgemeingültige Lösungsstrategien für diese differentiell-algebraischen Gleichun-
gen zu vermeiden, indem wir eine existierende implizite Projektionsmethode anpassen.

Durch die Modifizierung verschiedener existierender Lösungsstrategien, die in dieser
Kombination vorher nicht zusammen benutzt werden konnten, wird ein hoch effizienter
Algorithmus zur Bestimmung des Riccati-basierten Feedbacks eingeführt und für ver-
schiedene strömungsmechanische Szenarien angewandt. Die Hauptbestandteile, die das
Zusammenwirken dieser Methoden ermöglichen, sind Niedrigrangstrukturen und speziell
zugeschnittene Algorithmen, die diese Strukturen ausnutzen. Ein Konvergenzbeweis für
unsere vorgeschlagene Methode sowie gründliche numerische Experimente bestätigen die
Anwendbarkeit unserer Methode.

Durch die gezielte Anpassung und Erweiterung eines existierenden Finite-Elemente-
Programms war es uns möglich, die entstehenden Matrizen zu extrahieren. Diese Ma-
trizen werden in den MATLAB-basierten Algorithmen zur Berechnung des Riccati-
basierten Feedbacks benutzt. Das dadurch berechnete Feedback wird in das Finite-
Elemente-Programm eingebunden. Eine closed-loop Simulation ermöglicht es uns, die
Verwendbarkeit unserer vorgeschlagenen Methode zur Stabilisierung der Navier–Stokes-
Gleichungen in der Kármánschen Wirbelstraße zu überprüfen.
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The physics of fluid mechanics is present in our daily life, be it by driving a car
or airing an apartment. Both actions involve the flow of air with low velocity that
can be described by an incompressible flow model. These models are one of the major
subjects in fluid mechanics. The behavior of incompressible flows, which can be described
mathematically by the Navier–Stokes equations, has been extensively researched for the
past decades. In the year 2000, the prestigious Clay Mathematical Institute in the U.S.A.
announced the question about the existence and smoothness of a solution of the Navier-
Stokes equations as one of the seven Millennium Price Problems [58]. This unsolved
problem investigates under which conditions solutions exist and if they are unique. The
main obstacle in describing unique solutions are the naturally existing instabilities that
yield chaotically appearing turbulences. These turbulences cannot be computed nor
completely predicted, therefore, the stabilization of flow problems is an essential task in
many engineering fields.

This thesis does not intend to solve the Millennium Price Problem [58], but it inves-
tigates various numerical aspects of flow stabilization by Riccati feedback approaches
to avoid turbulences. After introducing the topic in more detail in this chapter, some
mathematical basics as well as various physical models are established in the subsequent
chapters. The main question of feedback stabilization for flow problems is addressed
in Chapter 4, followed by two chapters about some important numerical aspects. The
entire thesis concludes with a stabilized flow simulation in Chapter 7.
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Chapter 1. Introduction

1.1. Motivation

Transport of any kind is one of the most fundamental dynamical processes in nature and
it influences all areas of the natural sciences. For example, the spread of temperature
in a room from a heat source into the entire room is based on the scalar transport of
this temperature driven by diffusion and convection. Another example is the movement
of water inside a river; each water particle has a certain velocity, which is described
by a vector. Hence, the dispersion of this vector field defines a vector-valued transport
problem, or in other words, a flow problem.

Combining and analyzing such simple connections plays an important role in many
engineering areas such as ship, airplane, and car development, where the movement of the
object is highly affected by the flow of the surrounding substance. Looking into rather
small or even microscopically scaled processes, the biological and chemical industry uses
various transport and flow models to set up as well as control certain reaction processes.
The knowledge of the involved transport problems is essential to predict the outcome of
such experiments.

However, not only the prediction of the resulting behavior is important nowadays.
In order to develop new production methods or more safe and efficient vehicles, one
needs to actively influence the system by certain inputs that yield the desired outputs.
Therefore, it is essential to examine the relationship between the input and the output
of a dynamical system as it is done in the research area of the control theory. A widely
used approach in this context is the open-loop controller that forces the system towards
a certain behavior, for example, the temperature in a room reaches a certain level as
fast as possible. Unfortunately, this approach is not stable regarding perturbations that
naturally occur in every real-world model and application. Influencing the dynamical
system is often done by a so-called distributed control, where each particle in the con-
sidered domain or certain control subdomains can be influenced. Again, this is rather
complicated to realize if one, for example, considers the flow of a river or the flow inside
a closed reactor. A more physically feasible approach that overcomes both drawbacks
is based on closed-loop feedback stabilization using boundary control as examined in
detail in this thesis.

Certainly, the idea of a feedback stabilization using boundary control is not new.
However, the application to incompressible flow problems has revealed various analyti-
cal problems that have to be overcome. One of the most inspiring articles in the author’s
career about these analytical problems is [106], which was published by J. P. Raymond
in 2006. In this article, Raymond introduces an analytical examination of the feedback
boundary stabilization of the two-dimensional Navier-Stokes equations. Together with
further articles by various authors, the functional analytic basics were prepared, but a
numerical treatment was still missing. In [13], Bänsch and Benner proclaimed a numer-
ical feasible approach based on the derivation by Raymond that yields the foundation
of the author’s work.

In this thesis, the ideas from [13] are continued and deepened. Thereby, a numerical
framework is derived that applies a Riccati-based boundary feedback stabilization ap-
proach to various flow problems. The arising numerically challenging tasks are addressed
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by algorithms that are able to handle large-scale setups efficiently.
The examples that are considered in this thesis are of relatively academic nature. Nev-

ertheless, they show the feasibility of the proposed approach in the context of boundary
feedback stabilization for various flow models. Thus, the examples provide a foundation
to derive methods for real-world applications.

1.2. Feedback Control: State of the Art

In general, various approaches for feedback control can be considered. One concept that
is widely used in industry is the PID controller. This feedback approach is a combination
of the most crucial feedback concepts, namely, the proportional, integral, and differential
feedback. The PID approach, as well as other combinations, are easy to implement and
their behavior can be predicted accurately. Nevertheless, non of these methods can claim
to work optimal in any way. The use of a proportional feedback for flow simulations has
been investigated by the author in [131, 132].

Within this thesis, the Riccati-based feedback approach is considered. Thereby, the
most numerically challenging task is the solution of the matrix-valued and quadratic
Riccati equation. In detail, one seeks for a solution of dimension n× n, where n is the
size of the used discretization. The way of solving this kind of equation is extensively
examined in, e.g., [43, 81, 85, 91]. Considering incompressible flow problems yields the
so-called divergence-free condition as an additional time-invariant constraint. It is this
constraint that makes it impossible to directly apply the standard Riccati approach.

The manner of incorporating this constraint into a feedback stabilization approach for
incompressible flow problems has been addressed by various authors such as Fursikov
[61], Barbu et al. [16–18], Badra [7, 8], Raymond [105–108], and most recently by
Rodrigues [110] and Nguyen et al. [98]. Although these articles provide the basis for
all numerical considerations, none of them contains numerical examples. This list of
publications is by no means comprehensive. The only articles to be considered in more
detail throughout this thesis are the articles [106, 108] by Raymond.

Based on these analytical approaches, a new numerical concept was developed by
Bänsch and Benner in [13] using a Riccati-based feedback with an implicit projection
method. Parallel to this concept, Amodei and Buchot introduced in [1] a stabilization
algorithm based on a Bernoulli equation, which is a special Riccati equation, and exam-
ined its usability for different numerical test examples. Within the introduction of [1],
it is mentioned that the ideas in [13] face important unsolved critical points, therefore,
the authors of [1] adopt the Bernoulli approach for their article.

The essential contribution of this thesis is the development of a numerically feasible
stabilization framework based on the analytical approaches in [106, 108]. It is this
framework that also provides an innovative technique to solve the critical points in [13].
Therefore, a highly efficient method is derived that treats various numerical aspects of
the flow stabilization by a Riccati feedback.

Notice that various authors directly address constraint dynamical systems by using
methods for differential-algebraic equations as explained in detail in, e.g., [68, 69, 83,
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Chapter 1. Introduction

127] and the references therein. This approach is not further considered within this
thesis.

1.3. Problems and Peculiarities

The main problems and peculiarities in applying a Riccati feedback approach to stabilize
flow problems are shortly summarized in this section.

In contrast to an open-loop control approach, the Riccati feedback stabilization ap-
proach cannot force a system towards a desired non-homogeneous state and can only
be applied to linear systems. Nevertheless, it can be used to stabilize nonlinear open-
loop trajectories regarding small perturbations. Therefore, one uses such a stationary
but possible unstable open-loop trajectory as linearization point. Hence, the nonlinear
systems can be rewritten as linear dynamical systems that need to be forced to zero.
For this system definition, the Riccati-based linear-quadratic regulator approach can be
applied, which means one needs to solve a continuous-time algebraic Riccati equation.

The central gap is to apply this approach to systems with time-invariant constraints
without the use of explicit techniques for differential-algebraic equations. Therefore,
existing numerical methods need to be adapted and new algorithms have to be developed.
Once such a framework is derived, it can be applied to various multi-field flow problems
if their discrete formulation fits into a certain scheme.

Various algorithmic improvements in related topics were achieved during the author’s
PhD career. This thesis incorporates these improvements and combines them with other
existing methods that previously could not be used together. It is this combination that
enhances the numerical treatment drastically and makes the proposed novel approach
highly competitive when compared to other available options.

1.4. Outline

A detailed outline of this thesis is as follows. Chapter 2 reviews various mathematical
basics and techniques from the existing literature that are used within the subsequent
chapters. In Chapter 3, four physical models for scalar and vector-valued transport
problems are introduced. These models serve as test scenarios in the numerical exper-
iments for the derived methods. Each example has been used in the already published
articles by the author. The principal contribution of this thesis is stated in Chapter 4,
where the feedback stabilization approach for the scenarios from the previous chapter
is derived. The statements in Chapter 4 combine the derivations from [14, 15, 35] in
a generalized notation. At the end of Chapter 4, the setup for the following numerical
tests is defined and various numerical results are presented. The core computational step
within all derived algorithms is examined in detail in Chapter 5. Therefore, different
linear solvers for specially structured and large-scale linear systems are compared. The
theoretical results are generalized formulations of the derivations in [35, 36]. Additional
numerical experiments regarding these different linear solvers are depicted at the end
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of each section in Chapter 5. In Chapter 6, the above mentioned algorithmic improve-
ments are reviewed and incorporated into the methods from Chapter 4. The arising
method expands the ideas from [26] to flow problems. It is this innovative algorithm
that improves the methods from Chapter 4 significantly. To verify this proposition, the
new method is compared with its predecessor from Chapter 4 at the end of Chapter 6.
The overall combining result from this thesis is a closed-loop forward simulation of one
of the test scenarios from Chapter 3 using the algorithm from Chapter 6 as depicted in
Chapter 7. All results and observations, as well as open questions, are summarized in
the conclusions in Chapter 8.
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The second chapter of this thesis introduces certain mathematical basics that are
essential to understand the derivations, methods, and results from Chapters 3–7. Each
section is, of course, only a quick introduction into the different topics. For more details,
the interested reader is referred to the respective citations within each section.

The chapter is organized as follows. After introducing a spatial discretization tech-
nique in Section 2.1, the computation of various matrix quantities is examined in Sec-
tion 2.2. The principal part of this chapter builds Section 2.3, where many useful aspects
regarding optimal control and matrix equations are introduced. Section 2.4 gives an in-
sight to the main iterative methods used within this thesis.
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Figure 2.1.: Subdomain Ωk with nodes of corresponding P1 and P2 elements including
potential bisection refinement edges.

2.1. Finite Element Discretization

A widely used method to approximate the solution of differential equations is the finite
element method (FEM), which “is today one of the major tools of Computer Aided En-
gineering”[6, p. 1]. To shortly introduce this method, an arbitrary differential equation
F (a(t, ~x)) = 0 is considered. The solution a(t, ~x) ∈ R is continuous with respect to the
time t ∈ [0,∞) and space ~x ∈ Ω ⊂ Rd. The main idea is to discretize the differential
equation in space using certain ansatz functions {ϕj(~x)}nj=1 ∈ R such that a(t, ~x) can be
approximated as

a(t, ~x) ≈
n∑
j=1

aj(t)ϕj(~x) (2.1)

associated with the unique spatially discretized solution a(t) := [a1(t), . . . , an(t)]T ∈ Rn

that is continuous in time.
Standard FEM ansatz functions have only a small local support, which is the sub-

domain Ωk ( Ω, where ϕj(~x) 6= 0. These small subdomains “tile (or tessellate) the
domain”[56, p. 20] Ω such that

nT⋃
k=1

Ωk = Ω and Ω` ∩ Ωm = ∅, ∀` 6= m.

The set {Ωk}nTk=1 is called triangulation of dimension nT . Depending on the choice of
ansatz functions, different finite elements can be built. In this thesis the piecewise linear
elements P1 and the piecewise quadratic elements P2 are considered, where the ansatz
functions are either linear or quadratic, respectively. Furthermore, the subdomains Ωk

are triangles for d = 2 and tetrahedra for d = 3. The corners of these elements are called
nodes.
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The linear elements P1 are uniquely defined by

b1x1 + b2x2 + b3 = 0, for d = 2,

b1x1 + b2x2 + b3x3 + b4 = 0, for d = 3,

using three (for d = 2) or four (for d = 3) coefficients bi ∈ R, one for each node of the
subdomain Ωk. To define the quadratic elements P2, the midpoints of each edge are
added as additional nodes, such that one ends up with six (for d = 2) or ten (for d = 3)
coefficients bi ∈ R to define the quadratic elements P2 via

b1x
2
1 + b2x1x2 + b3x

2
2 + b4x1 + b5x2 + b6 = 0, for d = 2,

b1x
2
1 + b2x1x2 + b3x1x3 + b4x

2
2 + b5x2x3

+b6x
2
3 + b7x1 + b8x2 + b9x3 + b10 = 0,

for d = 3.

An example for a subdomain Ωk and the corresponding nodes for P1 and P2 elements
are depicted in Figure 2.1. More details about these specific finite elements as well as
further finite elements can be found in, e.g., [56, Sec. 1.3].

Using the ansatz functions {ϕj(~x)}nj=1 together with the triangulation {Ωk}nTk=1, the
FEM can be applied to discretize the differential equation F (a(t, ~x)) = 0, which yields
the matrix equation

Fa(t) = 0, with F ∈ Rn×n, a(t) ∈ Rn.

The actual matrix assembling process for scalar functions a(t, ~x) ∈ R and vector-valued
functions ~a(t, ~x) ∈ Rd is not within the scope of this thesis. The interested reader is
referred to [56, Sec. 1.3]. A more detailed analysis of the FEM is given in [6].

To improve the quality of the approximation (2.1), the dimension of the triangulation
nT needs to be increased, which naturally leads to a larger system dimension n. Instead
of creating new triangulations with smaller subdomains Ωk, the existing triangulation
is usually modified by dividing the existing subdomains into smaller subdomains. This
process is called refinement of the triangulation. One possible refinement strategy, which
is used within this thesis, is the bisection refinement as introduced in [11]. This means
in detail that the longest edge of the element Ωk becomes the refinement edge, which is
split into half by inserting a new node at its midpoint. New edges are inserted between
this midpoint and the nodes that are not part of the refinement edge. For d = 2, this
is one edge and for d = 3, these are two edges, respectively. The resulting smaller
subdomains are schematically depicted in Figure 2.1 for two bisection refinement steps.
Notice that the new nodes are not drawn into the picture for reasons of clarity. Two
bisection refinement steps correspond to one uniform refinement step [11].

The P1 and P2 elements are used in Section 3.5 to discretize the different partial differ-
ential equations (PDEs) from Chapter 3. For PDEs that depend on different variables,
one can consider different discretization schemes for each variable. Hence, so-called mix
finite elements are used. One of these mixed finite elements, the P2–P1 Taylor–Hood
element [78], is used in Section 3.5. The nodes of the Taylor–Hood element are chosen

9
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identically to the example depicted in Figure 2.1. The Taylor–Hood element is an inf-
sup-stable finite element discretization and, therefore, suits for the problems considered
in this thesis. This inf-sub-stability is crucial for certain matrix properties as discussed
in more detail in Subsections 3.5f. In the 2-dimensional examples of this thesis, the
system dimension is roughly of order 2 · nT for P2 and of order 0.5 · nT for P1 elements.

To refine the triangulations from Section 3.5, the bisection refinement is used in Sub-
section 4.4.1 to setup the parameters for the numerical experiments.

2.2. Efficient Computation of Various Matrix Quantities

Throughout this thesis, the efficient computation of various matrix quantities is essential.
In this section, some definitions are provided and frequently used methods to compute
matrix quantities are explained. Through this a description of the case of real matrices
will be given.

The following definition introduces various eigenvalue and -vector corresponding quan-
tities.

Definition 2.1 For A, M ∈ Rn×n, the following definitions hold.

(a) If x ∈ Cn, we consider the eigenvalue problem (EVP)

Ax = λx, x 6= 0, (2.2)

where λ ∈ C is a scalar. If a scalar λ and a nonzero vector x happen to satisfy this
equation, then λ is called eigenvalue of A and x is called an [right] eigenvector
of A associated with λ. Notice that the two occur inextricably as a pair, and that an
eigenvector cannot be the zero vector. The pair (λ,x) ∈ C×Cn is called eigenpair
(cf. [79, Def. 1.1.2]).

(b) In some applications one is also interested in the eigenpair of the adjoint problem

yHA = λyH , y 6= 0,

where y ∈ Cn is called left eigenvector regarding the eigenvalue λ. An eigen-
triplet of A is defined as (λ,x,y) ∈ C× Cn × Cn.

(c) The generalized EVP is defined as

Ax = λMx, x 6= 0 (2.3)

and (A,M) is called a matrix pencil. For M non-singular, (2.3) is equivalent to
M−1Ax = λx that is of the form (2.2).

(d) For M singular, the matrix pencil (A,M) is called regular if the so-called char-
acteristic polynomial ζ defined by

ζ(λ) = det(λM − A)

is not the zero polynomial. A matrix pencil which is not regular is called singular
(cf. [83, Def. 2.5]).

10
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(e) The set of all λ ∈ C that are eigenvalues of (A,M) is called the spectrum of
(A,M) and is denoted by Λ(A,M). [79, Def. 1.1.4]

(f) For ε > 0 and the regular matrix pencil (A,M),

Λε(A,M) = Λε(M
−1A) := {λ ∈ C :

∣∣∣∣(λM − A)−1
∣∣∣∣ > ε−1}

[126, eqs. (2.1),(45.8)] defines the ε-pseudospectrum.

(g) The supremum

σ(A,M) := max{Re (λ) : λ ∈ Λ(A,M)}

is called the spectral abscissa of (A,M). [126, Chap. 14]

(h) For ε > 0, the ε-pseudospectral abscissa is defined by

σε(A,M) := max{Re (λ) : λ ∈ Λε(A,M)},

[126, Chap. 14].

(i) A matrix A is said to be normal if

AHA = AAH ,

[79, Def. 2.5.1]

(j) A regular matrix pencil (A,M) is a normal matrix pair if

AHM−1A = AM−1AH ,

[87, Sec. 1].

The efficient computation of eigenvalues and eigenvectors of large-scale matrices is itself
a numerically challenging task. In Subsections 2.2.1 and 2.2.2, various methods are
shown which avoid the handling of the large-scale matrices if possible.

In many applications, including the examples in this thesis, the ranks of some of
the important matrices are low, such that these matrices can be written as low-rank
decompositions.

Definition 2.2 (Rank, cf. [79, Def. 0.4.1]) If A ∈ Rm×n, rank (A) is the largest
number of columns of A that constitute a linearly independent set. This set of columns
is not, of course, unique, but the cardinality (number of elements) of this set is unique.
Hence, rank

(
AT
)

= rank (A). Therefore, rank (A) may equivalently be defined in terms
of linearly independent rows. This is often phrased as “row rank = column rank”.

11



Chapter 2. Mathematical Basics

Definition 2.3 (Real-valued low-rank product) Considering a rectangular matrix
W ∈ Rn×m with m � n and rank (W ) ≤ m, the symmetric low-rank product is defined
as

WW T ∈ Rn×n (2.4)

with rank
(
WW T

)
≤ m. The product of the form (2.4) is by construction symmetric

positive-semidefinite (spsd). It is often referred to as outer product or dyadic product.

The use of low-rank matrix products is essential to adapt and improve various nu-
merical methods that are used in this thesis. For that reason, the norm and trace
computations of real-valued low-rank products are examined in what follows.

Subtracting two low-rank products yields possibly indefinite matrices which cannot
be written in the form of a low-rank product (2.4) anymore. Nevertheless, one can write
such a difference in a factorized version which is essential for the following norm and
trace computations; compare the statements in [32, 86].

Definition 2.4 (Real-valued indefinite low-rank product) Considering rectangu-
lar matrices W ∈ Rn×m and K ∈ Rn×p with m + p � n, rank (W ) ≤ m, and
rank (K) ≤ p, the symmetric indefinite low-rank product is defined as

WW T −KKT =: UDUT ∈ Rn×n (2.5)

with U := [W |K] ∈ Rn×(m+p), D :=
[
Im 0
0 −Ip

]
, and rank

(
UDUT

)
≤ m+ p. The product

of the form (2.5) is symmetric by construction.

2.2.1. Norm of Low-Rank Products

This subsection starts with computing the spectral and Frobenius norms of an outer
product (2.4) and shows how this can be reduced to computations involving only the
small product W TW ∈ Rm×m. Notice that W TW is often also called inner product.
Within this thesis, however, the inner product for matrices is defined differently in the
next subsection.

Since WW T is real and symmetric, the norms can be defined as follows:

||WW T ||2 := max{|λ| : λ ∈ Λ(WW T )}, (2.6a)

||WW T ||F :=

√√√√ n∑
i=1

λ2
i with λi ∈ Λ(WW T ). (2.6b)

The following theorem can be seen as a more general result that presents the relation of
eigenvalues between commuting products.

Theorem 2.5 (cf. [74, Thm. 1.32]) Let A ∈ Cn×m and B ∈ Cm×n. The non-zero
eigenvalues of AB are the same as for BA and have the same Jordan structure. [...] If
m 6= n, then the larger (in dimension) of AB and BA has a zero eigenvalue of geometric
multiplicity at least |n−m|.

12
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This implies the norm equivalence ||WW T || = ||W TW || for the spectral and Frobenius
norm, i.e.,

||WW T ||2 = max{|λ| : λ ∈ Λ(W TW )} =: ||W TW ||2, (2.7a)

||WW T ||F =

√√√√ m∑
i=1

λ2
i =: ||W TW ||F with λi ∈ Λ(W TW ). (2.7b)

In various applications, the norm of a difference of outer products, as defined in (2.5),
is considered. The norm of this symmetric matrix difference can be defined as

||WW T −KKT ||2 := max{|λ| : λ ∈ Λ(WW T −KKT )},

||WW T −KKT ||F :=

√√√√ m∑
i=1

λ2
i with λi ∈ Λ(WW T −KKT ).

Using (2.5) and Theorem 2.5, yields that the non-zero eigenvalues of UTUD ∈ R(m+p)×(m+p)

(nonsymmetric, but spectrally equivalent to a symmetric matrix) are real and equal to
the non-zero eigenvalues of (2.5). Hence,

||WW T −KKT ||2 = max{|λ| : λ ∈ Λ(UTUD)} 6= ||UTUD||2, (2.8a)

||WW T −KKT ||F =

√√√√ m∑
i=1

λ2
i 6= ||UTUD||F with λi ∈ Λ(UTUD). (2.8b)

Within all algorithms, the specifications in (2.7) and (2.8) are used to efficiently com-
pute norms of low-rank matrices involving its smaller products.

2.2.2. Trace of Low-Rank Products

Similar to the norm computation of low-rank products using Theorem 2.5, the com-
putation of the trace can be significantly improved by exploiting low-rank structures.

Definition 2.6 The trace of a quadratic matrix A ∈ Rn×n is defined as

tr (A) :=
n∑
i=1

ai,i or tr (A) :=
n∑
i=1

λi, with λi ∈ Λ(A), ∀i = 1, . . . , n. (2.9a)

For matrices A,B ∈ Rn×m the inner product is defined as

〈A,B〉 :=
n∑
i=1

m∑
j=1

ai,jbi,j = tr
(
ATB

)
. (2.9b)

The following lemma states efficient computational methods for the trace of various
combinations of positive-semidefinite and indefinite low-rank products.

13
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Lemma 2.7 Consider the low-rank matrices W ∈ Rn×m, K ∈ Rn×p, Ŵ ∈ Rn×m̂,

K̂ ∈ Rn×p̂ with m+m̂+p+ p̂� n. Using these matrices and U :=
[
Ŵ | K̂

]
∈ Rn×(m̂+p̂),

D :=
[
Im̂ 0
0 −Ip̂

]
, the following equalities hold:

tr
(
(WW T )2

)
=

m∑
j=1

m∑
i=1

(W TW )2
i,j (2.10a)

tr
(
(UDUT )2

)
=

m̂∑
j=1

m̂∑
i=1

(Ŵ T Ŵ )2
i,j +

p̂∑
j=1

p̂∑
i=1

(K̂T K̂)2
i,j − 2

m̂∑
j=1

p̂∑
i=1

(K̂T Ŵ )2
i,j (2.10b)

tr
(
WW TKKT

)
=

m∑
j=1

p∑
i=1

(KTW )2
i,j, (2.10c)

tr
(
UDUTWW T

)
=

m∑
j=1

m̂∑
i=1

(Ŵ TW )2
i,j −

m∑
j=1

p̂∑
i=1

(K̂TW )2
i,j (2.10d)

In other words, computing the trace of combinations of low-rank products of size n × n
involves only the small products of the defining low-rank matrices, the component-by-
component squaring of them, and its summation.

Proof. For A, Ã ∈ Rn×n, the properties Λ(A2) = {λ2
i : λi ∈ Λ(A), ∀i = 1, . . . , n} (see,

e.g., [74, Theorem 1.13]) and Λ(A) = Λ(Ã)⇒ tr (A) = tr
(
Ã
)

(compare (2.9a)) yield

Λ(A) = Λ(Ã) ⇒ Λ(A2) = Λ(Ã2) ⇒ tr
(
A2
)

= tr
(
Ã2
)
. (2.11)

Furthermore, (2.9a) and the definitions of inner and outer products yield

tr
(
AT Ã

)
= tr

(
AÃT

)
= tr

(
ÃTA

)
= tr

(
ÃAT

)
=

n∑
j=1

n∑
i=1

aij ãij. (2.12)

The proof of (2.10a) is as follows:

tr
(
(WW T )2

)
= tr

(
(W TW )2

)
(compare [74, Theorem 1.32] and (2.11))

= tr
(
(W TW )(W TW )

)
(notice that W TW ∈ Rm×m)

=
m∑
j=1

m∑
i=1

(W TW )i,j(W
TW )i,j (see (2.12))

=
m∑
j=1

m∑
i=1

(W TW )2
i,j.
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To prove (2.10b) consider

tr
(
(UDUT )2

)
= tr

(
(UTUD)2

)
(compare [74, Theorem 1.32], (2.11))

= tr

([Ŵ T

K̂T

] [
Ŵ | − K̂

])2
 (cf. (2.5))

= tr

([Ŵ T Ŵ −Ŵ T K̂

K̂T Ŵ −K̂T K̂

])2
 (cf. (2.12))

=

m̂+p̂∑
j=1

m̂+p̂∑
i=1

[
Ŵ T Ŵ −Ŵ T K̂

K̂T Ŵ −K̂T K̂

]
i,j

[
Ŵ T Ŵ Ŵ T K̂

−K̂T Ŵ −K̂T K̂

]
i,j

=
m̂∑
j=1

m̂∑
i=1

(Ŵ T Ŵ )2
i,j +

p̂∑
j=1

p̂∑
i=1

(K̂T K̂)2
i,j − 2

m̂∑
j=1

p̂∑
i=1

(K̂T Ŵ )2
i,j.

Similar, (2.10c) can be proven as follows:

tr
(
WW TKKT

)
= tr

(
(WW TK)KT

)
((WW TKKT ) ∈ Rn×n)

= tr
(
KT (WW TK)

)
(see (2.12))

= tr
(
(KTW )(KTW )T

)
((KTW ) ∈ Rp×m)

=
m∑
j=1

p∑
i=1

(KTW )2
i,j.

Finally, the proof of (2.10d) is as follows:

tr
(
UDUTWW T

)
= tr

(
(UTW )(W TUD)

)
= tr

(([
Ŵ T

K̂T

]
W

)(
W T

[
Ŵ | − K̂

]))

= tr

([
Ŵ TW

K̂TW

] [
W T Ŵ | −W T K̂

])

=
m∑
j=1

m̂+p̂∑
i=1

[
Ŵ TW

K̂TW

]
i,j

[
Ŵ TW

−K̂TW

]
i,j

=
m∑
j=1

m̂∑
i=1

(Ŵ TW )2
i,j −

m∑
j=1

p̂∑
i=1

(K̂TW )2
i,j.

�
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Remark 2.8 Using (2.6a), (2.9a), (2.9b), and [74, Thm. 1.13], it is obvious that for a
symmetric A ∈ Rn×n it holds that

〈A,A〉 = tr
(
A2
)

=
n∑
i=1

λ2
i = ||A||2F . (2.13)

In this way, the equations (2.10a) and (2.10b) also describe the squared Frobenius norms
||WW T ||2F and ||UDUT ||2F or the inner products 〈WW T ,WW T 〉 and 〈UDUT , UDUT 〉,
respectively.

The results established in Lemma 2.7 and Remark 2.8 are used in all algorithms that
involve a trace or norm computation of various low-rank products. Ultimately, this is
one of the key ingredients for the methods explained in Section 6.3.

2.2.3. Eigenpairs of Regular Matrix Pencils

Throughout this thesis, the computation or approximation of eigenpairs of the arising
matrix pencils is needed. In this subsection, some results from Cliffe et al. [50] are
pointed out. Therefore, the matrix pencil([

A Ĝ

ĜT 0

]
︸ ︷︷ ︸

A

,

[
M 0
0 0

]
︸ ︷︷ ︸

M

)

is defined with the non-singular matrices A,M ∈ Rn×n, Ĝ ∈ Rn×m with rank
(
Ĝ
)

= m,

A,M ∈ RN×N , and N = n+m. These matrix pencils typically arise in the discretization
of incompressible flow problems and are defined in more detail in Section 3.5. If the
system dimension is too large for dense eigenvalue solvers, iterative methods that only
involve matrix-vector products are of interest. Because the efficient handling of large-
scale eigenvalue problems is not within the scope of this thesis, it is preferred to use
standard methods such as the MATLAB function eigs, which is an implicitly restarting
shift-and-invert Arnoldi method, see, e.g., [112]. Unfortunately, if one is interested in
finite eigenvalues with large magnitude, eigs is not suitable in the case of regular matrix
pencils with singular M , which means the pencil has infinite eigenvalues.

Consider generalized EVP of the form

Ax = λMx, (2.14)

for which the following theorems hold. The first theorem determines the amount of finite
and infinite eigenvalues.

Theorem 2.9 (cf. [50, Thm. 2.1.(a)]) The EVP (2.14) has precisely n−m finite
eigenvalues, that are those of the reduced EVP of dimension n−m

QT
2 (A− λM)Q2z = 0,
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where Q2 ∈ Rn×(n−m) is an orthonormal basis for Ĝ⊥, i.e., the orthogonal complement

of span
{
Ĝ
}

.

Furthermore, the second theorem introduces a shifting technique that differently modifies
finite and infinite eigenvalues.

Theorem 2.10 (cf. [50, Thm. 3.1]) Choose δ1, δ2, γ ∈ R. Denote the finite eigen-
values of (2.14) by λi, i = 1, . . . , n−m. Assume A,M are non-singular and

(i) δ2 6= 0, (ii) δ1δ
−1
2 6= λi − γ. (2.15)

Then the EVP [
A− γM δ1Ĝ

δ1Ĝ
T 0

]
w = µ

[
M δ2Ĝ

δ2Ĝ
T 0

]
w (2.16)

has eigenvalues µi, i = 1, . . . , n+m with

(a) µi = λi − γ, i = 1, . . . , n−m,
(b) µi = δ1δ

−1
2 , i = n−m+ 1, . . . , n+m.

Some correlations of the eigenvectors between the original EVP (2.14) and the trans-
formed EVP (2.16) are described in the next lemma.

Lemma 2.11 (cf. [50, Lem. 3.2]) (a) Let λ be a finite eigenvalue of EVP (2.14).
Assume A,M non-singular and (2.15). If

(
x̂
p̂

)
, x̂ ∈ Rn, p̂ ∈ Rm is an eigenvector of

EVP (2.14) associated with λ, then ( w1
w2 ), where w1 = x̂, w2 = (δ1 − (λ − γ)δ2)−1p̂ is

the corresponding eigenvector of EVP (2.16).

(b) Let
(

0
p̂

)
, p̂ ∈ Rm be an eigenvector corresponding to an infinite eigenvalue of

EVP (2.14). Then ( 0
w2

) with w2 = p̂ is an eigenvector of EVP (2.16) corresponding to
the eigenvalue δ1δ

−1
2 .

Using these results, the regular matrix pencil (2.14) can be shifted to a regular pencil
with no infinite eigenvalues without changing the finite eigenvalues by choosing γ = 0
in (2.16). Since the pencil (2.16) does not have infinite eigenvalues, standard eigenvalue
solvers can be applied to calculate eigenvalues and -vectors. Furthermore, Lemma 2.11
can be used to recover the eigenvectors of the original pencil (2.14). To compute eigen-
values with small magnitude, eigs can be applied directly to the regular pencil. This is
used, for example, to calculate all finite and unstable eigenvalues with eigs as explained
in Subsection 4.2.3. Knowing the exact number of unstable eigenvalues beforehand yields
a sufficient stopping criterion for the computation. This approach is not the most robust
method for unknown problem settings but it is sufficient in our case.
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Input: u(t) d

dt
x(t) = Ax(t) +Bu(t)

Output: y(t) = Cx(t)

Feedback: K
State: x(t)

Figure 2.2.: Diagram of a linear closed-loop control system with state feedback.

2.3. Optimal Control and Matrix Equations

In this section the concept of optimal control for linear dynamical systems is introduced.
After defining the basic framework for these optimal control problems and some neces-
sary terms in the following subsection, important matrix equations are established in
Subsection 2.3.2. These equations are essential to solve the linear-quadratic regulator
(LQR) approach as explained in Subsection 2.3.3.

2.3.1. Basic Framework

Optimal control refers to methods that influence dynamic systems towards a desired
behavior in an optimal way. Thereby, the optimality can describe a, for example, time-
or cost-optimal process; the optimality is measured by a given cost functional (or per-
formance index, cf. [91]) that evaluates the input, the output, and/or the state of the
dynamical system. In what follows, linear dynamical systems are considered. The in-
terested reader is referred to [91, Chap. 2] for some basic results of optimal control for
nonlinear dynamical systems.

Linear dynamical systems are classified into linear, time-varying (LTV) and linear,
time-invariant (LTI) systems depending on whether the matrices, which define the sys-
tem, are time-varying or time-invariant. All statements of this thesis are related to LTI
systems.

Using the internal description, see, e.g. [2, Sec. 4.2], a continuous-time and -invariant,
linear dynamical system Φ(A,B,C) is defined by

Φ :

d

dt
x(t) = Ax(t) +Bu(t),

y(t) = Cx(t)

(2.17a)

(2.17b)

with the state variable x(t) ∈ Rn, the input function u(t) ∈ Rnr , the output function
y(t) ∈ Rna , the time t ∈ [t0, tf ], the system matrix A ∈ Rn×n, the input operator
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B ∈ Rn×nr , and the output operator C ∈ Rna×n. Thereby, continuous-time means that
the state x(t) is continuous in time and time-invariant implies that the matrices A,B,C
are constant over time. Notice that we omit a second term Du(t) in (2.17b), which
usually describes the direct influence of u(t) on the output y(t), in our considerations
(cf. [2, eq. (4.12)]). Figure 2.2 depicts schematically the LTI system (2.17).

Various possible system properties of Φ are defined in what follows.

Definition 2.12 (System properties of Φ) For the linear dynamical system (2.17),
the following definitions hold.

(a) The order of the system is defined as the dimension of the associated state-space
(cf. [2, Def. 4.2.(a)]):

dim (Φ) = n.

(b) Φ is called stable if its poles have nonpositive real parts.

(c) The matrix A is Hurwitz or (asymptotically) stable if all its eigenvalues have
strictly negative real part (cf. [77, p. 80-7]).

Some further system properties can be checked using the following conclusions.

Conclusion 2.13 (Extended system properties of Φ) Consider the linear dynam-
ical system (2.17).

(a) The pair (A,B) is controllable if and only if

rank
([
B AB A2B . . . An−1B

])
= n, (2.18)

i.e., when the rows of this n × nrn matrix are linearly independent (cf. [85,
eq. (4.1.3)] and Def. 2.2).

(b) The pair (C,A) is observable if and only if (AT , CT ) is controllable (cf. [85,
Prop. 4.2.2]).

(c) A pair (A,B) is called stabilizable if there exists a (feedback) matrix K ∈ Rn×nr

such that A−BKT is asymptotically stable. A pair (C,A) is said to be detectable
if and only if (AT , CT ) is stabilizable (cf. [85, pp. 90,91]).

Remark 2.14 “The notion stabilizability takes two forms originating with the theory
of continuous (differential) systems and discrete (differential) systems. In these two
cases, an n × n matrix is said to be stable according as its eigenvalues are all in the
open left half-plane, or in the unit disc, respectively.” [85, p. 90]

Since only continuous-time systems are considered within this thesis, the word stable
is always used in the context of asymptotically stable as in part (c) of Def. 2.12.

A more feasible test for stabilizability and detectability is given by the Hautus-Popov
test.
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Theorem 2.15 (Hautus-Popov Test [77, Sec. 80.3])

• For a given LTI system, the following are equivalent:

(a) The LTI system (2.17) is stabilizable, i.e., ∃K ∈ Rn×nr such that A − BKT

is Hurwitz.

(b) (Hautus-Popov test) If x 6= 0, xHA = λxH , and Re (λ) ≥ 0,
then xHB 6= 0.

(c) rank ([A− λI |B]) = n, ∀λ ∈ C with Re (λ) ≥ 0.

• For a given LTI system, the following are equivalent:

(a) The LTI system (2.17) is detectable.

(b) The matrix pair (AT , CT ) defines a stabilizable system.

(c) (Hautus-Popov test) If x 6= 0, Ax = λx, and Re (λ) ≥ 0,
then Cx 6= 0.

(d) rank
([

λI−A
C

])
= n, ∀λ ∈ C with Re (λ) ≥ 0.

In thesis one is interested in an optimal control setup that uses an feedback control
approach. Thus, the major task is to determine a feedback K for an unstable system Φ
such that A−BKT is stable. The following lemma states an important assumption for
the existence of such a feedback.

Lemma 2.16 (cf. [85, Lem. 4.5.4]) If N � 0 and (A,N) is stabilizable, then there
is an X � 0 such that A−NX is stable.

Throughout common literature the notation of the matrix pairs within the properties
in Def. 2.12 and Concl. 2.13 varies. In the following proposition, the equivalence of both
notations is shown.

Proposition 2.17 For A,B,C as in (2.17), it holds that (A,B) is stabilizable if and
only if (A,BBT ) is stabilizable and (C,A) is detectable if and only if (CTC,A) is de-
tectable.

Proof. If (A,BBT ) is stabilizable, then there exists a X ∈ Rn×n such that the eigen-
values of A−BBTX are in C−. Hence, the eigenvalues of A−BKT with K = XB are
in the negative half-plane C− and (A,B) is stabilizable.

If (A,B) is stabilizable, then there exists a K ∈ Rn×nr such that the eigenvalues of
A−BKT are in C−. Let π be the orthogonal projection onto the null-space of B. Since
BKT = BπKT + B(I − π)KT = B(I − π)KT and I − π is the orthogonal projection
onto null (B)⊥ = range

(
BT
)
, it holds that range

(
(I − π)KT

)
⊂ range

(
BT
)
. Therefore,

there exists a X ∈ Rn×n such that (I − π)KT = BTX. In detail, if ei is the i-th unit
vector, then the i-th column (I − π)KT ei is a linear combination BTxi of the columns
of BT , i.e., (I − π)KT ei = BTxi. Hence, the vectors xi are the columns of X and the
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eigenvalues of A−BBTX = A−B(I − π)KT = A−BKT are in C− which means that
(A,BBT ) is stabilizable.

The proof for detectability follows by definition.
�

Before the specific optimal control problem dealt with in this thesis can be stated,
some remarks about matrix equations are given in the next subsection.

2.3.2. Linear and Quadratic Matrix Equations

The second subsection introduces linear and quadratic matrix equations, which are used
within this thesis.

In general, the subject of linear algebra studies various solution strategies for scalar
functions 0 = f(x) ∈ K or systems of equations 0 = F (x) ∈ Kq, where the solution is
either a scalar x ∈ K or a vector x ∈ Kn, respectively, with K ∈ {R,C}. Moreover, one
mainly distinguishes between linear and nonlinear equations.

Scalar linear equations are commonly denoted by ax = b and linear systems of equa-
tions by Ax = b with a, b, x ∈ K, b ∈ Kq, x ∈ Kn, and A ∈ Kq×n. In contrast, nonlinear
functions f(.) or F (.) may contain combinations of more complicated terms such as, for
example, power functions, exponential functions, logarithms, or trigonometric functions.
In principal, nonlinear equations are harder to solve than linear equations. Moreover,
analytical solutions are only available for selected nonlinear equations such that some
nonlinear equations can only be solved approximately.

If the unknown variable is no longer a scalar or a vector but a matrix X ∈ Kn×q,
one refers to matrix functions with n · q unknowns. For the remainder of this subsec-
tion, the notation is fixed to the set of real numbers K = R. As mentioned above,
only continuous-time systems are considered and, hence, only continuous-time matrix
equations are introduced. More details about their discrete counterparts can be found
in, e.g., [84].

Lyapunov Equations

The first class of matrix equations that are considered are linear in the unknown X.
Given the matrices F,O ∈ Rn×n, P,E ∈ Rq×q, and H ∈ Rn×q, the generalized Sylvester
equation is defined as

FXE +OXP = −H

with X ∈ Rn×q. An overview about this kind of equations as well as various solution
strategies and methods can be found in [120]. During this work, a more special type
of equation is considered. For n = q, P = F T , O = E = In, and H = HT , the
continuous-time algebraic Lyapunov equation (CALE) is specified as

FX +XF T = −H. (2.19)
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This linear matrix equation is symmetric if a symmetric solution X = XT ∈ Rn×n is
assumed. The solution X is unique if Λ(F ) ⊂ C−, i.e., F is stable, and can be defined
by [85, eq. (5.3.3)]

X =

∫ ∞
0

eFtHeF
T t dt.

The following theorem defines properties of the solution X depending on the right-hand
side H.

Theorem 2.18 (cf. [85, Thm. 5.3.1]) Assume that all eigenvalues of F lie in the
open left half-plane and let X be the unique solution of (2.19). Then: (a) If H � 0 then
X � 0 and, if H � 0, then X � 0. (b) Moreover, if H � WW T , where (F,W ) is a
controllable pair, then we have X � 0.

Relaxing the controllability property gives the following theorem.

Theorem 2.19 (cf. [85, Thm. 5.3.4]) Let (F,W ) be a stabilizable pair with F ∈
Rn×n, W ∈ Rn×m and suppose H � WW T . If the equation FX + XF T = −H has
a solution X � 0, then F has all its eigenvalues in the open left half-plane.

In many applications, the right hand side H of the Lyapunov equation (2.19) has a
low numerical rank and can be written as H = WW T , as introduced in Theorem 2.19,
with W ∈ Rn×r, rank (W ) ≤ r, and r � n. This low-rank right hand side leads to spe-
cially tailored solution strategies; one strategy, the alternating directions implicit (ADI)
method [31, 88, 89], is explained in Subsection 2.4.2. Further detailed information about
the numerical solution of large-scale CALEs can be found in, e.g., [103] for symmetric F ,
[3, 88, 89, 121] for non-symmetric F , and in [32, 65, 84] for the more general Sylvester
equation.

Riccati Equations

The second class of matrix equations that are considered in this thesis are quadratic in
the unknown X. Extending the Lyapunov equation (2.19) by a symmetric, quadratic
term and setting A = F T yields the continuous-time algebraic Riccati equation (CARE)

R(X) = H + ATX +XA−XNX = 0 (2.20)

with N = NT ∈ Rn×n. A noticeably detailed analysis of CAREs can be found in [85].
Some statements from [85] that are relevant for the presentations of this thesis are given
in what follows. Notice that in [85], the notation switches within the chapters. In the
Riccati Chapters 7.1-7.8 and 8.1-8.4 the matrix A is −A in our notation. In the Chapters
7.9, 7.10, 8.5, 8.6, and 9 the matrix A is used in our notation. Furthermore, the Riccati
equations in [85] have switched signs such that R(X) is −R(X) in our notation. For
better readability, we adapted all results to our notation.
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Following the derivation in [85, Sec. 7.1/8.1], the Hamiltonian matrix Ξ is defined as

Ξ :=

[
A −N
−H −AT

]
∈ R2n×2n (2.21)

and the n-dimensional subspace

Ψ(X) = Im

([
In
X

])
⊂ R2n (2.22)

is called a graph of X ∈ Rn×n. The graph Ψ(X) is directly related to the solution of the
CARE (2.20) as described in the following proposition.

Proposition 2.20 (real version of [85, Prop. 7.1.1]) For a real n × n matrix X,
the graph of X is Ξ-invariant if and only if X is a solution of (2.20).

Proof. If Ψ(X) is Ξ-invariant, then[
A −N
−H −AT

] [
In
X

]
=

[
In
X

]
P̃ (2.23)

for a suitable matrix P̃ . The first row in this equality gives P̃ = A − NX, and the
second block row gives

−H − ATX = X(A−NX).

In other words, X solves (2.20). Conversely, if X solves (2.20), then (2.23) holds with

P̃ = A−NX.
�

In optimal control, one is interested in solutions X such that P̃ = A−NX is stable.
If one finds a Ξ-invariant subspace such that[

A −N
−H −AT

] [
U
V

]
=

[
U
V

]
P̃

with U non-singular and P̃ ∈ Rn×n stable, a solution X ∈ Rn×n of (2.20) can be obtained
as

X := V U−1.

The following theorems describe under which conditions such a solution exists. Notice
that all formulations are restricted to the real-valued case.

Theorem 2.21 (cf. [85, Thm. 7.9.3]) If N � 0, H = HT , (A,N) is stabilizable, and
there exists a symmetric solution of (2.20), then there is a maximal symmetric solution,
X(∗). Moreover, X(∗) coincides with the unique solution of (2.20) for which Λ(A−NX(∗))
lies in the closed left half-plane.
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Theorem 2.22 (cf. [85, Thm. 7.9.4]) Suppose that N � 0, H = HT , (A,N) is sta-
bilizable, and there is a symmetric solution of (2.20). Then for the maximal symmetric
solution X(∗) of (2.20), A − NX(∗) is stable if and only if the matrix (2.21) has no
eigenvalues on the imaginary axis.

Remark 2.23 (cf. [85, p.196]) Observe that from [85, Thm. 7.2.8], the matrix (2.21)
has no eigenvalues on the imaginary axis if, in addition, we have H � 0 and (H,A) is
detectable.

Theorem 2.24 (cf. [85, Thm. 8.5.1]) Assume that N � 0, H = HT , (A,N) is sta-
bilizable and that (2.20) has a real symmetric solution. Then there exists a maximal real
symmetric solution, which can be characterized as the unique stabilizing solution.

Theorem 2.25 (cf. [85, Thm. 9.1.2]) If N � 0, H � 0 and the pair (A,N) is sta-
bilizable, then there exist symmetric solutions of R(X) = 0. Moreover, the maximal
symmetric solution X(∗) (which exists by [85, Thm. 7.9.1]) also satisfies X(∗) � 0. If,
in addition, (H,A) is detectable, then A−NX(∗) is stable.

The interesting case in optimal control is whenever the number of in- and outputs
in (2.17) is limited. In detail, only a few outputs y = Cx ∈ Rna with na � n can be
observed and the control, which acts on the states x via Bu ∈ Rn, is given by u ∈ Rnr

with nr � n. Thus, the constant term and the middle part of the quadratic term in
(2.20) can be written as low-rank products N = BBT and H = CTC that are spsd
by definition. Using these low-rank products, Theorem 2.25 can be extended to the
following theorem.

Theorem 2.26 (extended version of [26, Thm. 3]) Assuming (A,B) is stabilizable
and (C,A) is detectable (cf. Theorem 2.25 with N = BBT � 0 and H = CTC � 0),
every spsd solution X(∗) = (X(∗))T � 0 of the CARE (2.20) is stabilizing.

Proof. Since the assumptions of Theorem 2.25 are fulfilled, the CARE (2.20) has a
spsd solution that stabilizes.

Let X = XT � 0 solve the CARE (2.20). We show that A − BBTX is stable by
contradiction.

Assume that µ is an eigenvalue of A−BBTX with Re (µ) > 0 and let x ∈ Cn\{0} be
a corresponding eigenvector. The CARE (2.20) can be written as

(A−BBTX)TX +X(A−BBTX) = −CTC −XBBTX. (2.24)

Multiply (2.24) with xH from left and x from the right. The left-hand side of (2.24)
yields

2 Re (µ)xHXx ≥ 0, since X = XT � 0,

and the right-hand side of (2.24) yields

−xHCTCx− xHXBBTXx ≤ 0, since CTC � 0 and XBBTX � 0.
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Hence, left- and right-hand sides of (2.24) multiplied by xH from left and x from the
right are equal to zero that is xHXx = 0 and xHCTCx + xHXBBTXx = 0 which
yields Cx = 0 and BTXx = 0. Since (A − BBTX)x = µx, x is an eigenvector of A
with eigenvalue µ and Re (µ) > 0. Thus, Cx = 0 contradicts the assumption that (C,A)
is detectable (compare Theorem 2.15). This means that µ ∈ C+ cannot be an eigenvalue
of A−BBTX.

Since Λ(A − BBTX) ⊂ Λ(Ξ) ⊂ C\iR (compare Theorem 2.22), all eigenvalues of
A−BBTX are in the open left half-plane C− and X is stabilizing.

�

The latter theorem is important in a way that an algorithm, which provides spsd
iterates X(k) by construction, converges, if at all, towards the unique stabilizing solution
X(∗). This fact plays an important role in the convergence proof of the novel methods
proposed in Section 6.

The numerical solution of CAREs is a widespread research area. For small dimensions,
various solution approaches for dense matrices are available. In the large-scale and sparse
case, specially tailored methods need to be considered that make use of certain low-rank
structures in the constant and quadratic term. An overview of the different methods to
solve the CARE (2.20) is given in [31, Sec. 3], [24, Chap. 4], and the references therein.
For more details about the CARE and further Riccati type equations the interested
reader is referred to, e.g., [43, 85].

The solution strategy used within this thesis is presented in Section 4.3.

Bernoulli Equation

Considering the constant term in (2.20) to be H = 0, a special case of the CARE (2.20)
is defined by the so-called algebraic Bernoulli equation (ABE)

ATX +XA−XNX = 0. (2.25)

This equation plays a certain role in various applications of control or stabilization
methods for linear systems.

Being a special case of a CARE, one can apply the same ideas as in Proposition 2.20.
Therefore, consider the Hamiltonian matrix ΞB defined as

ΞB :=

[
A −N
0 −AT

]
∈ R2n×2n. (2.26)

Similar to the CARE (2.20), one is interested in a stabilizing solutions X+ of (2.25) such
that A − NX+ is stable. Being a homogeneous version of (2.20), the trivial solution
X = 0 is always a solution. Nevertheless, for unstable A this is not a solution of
interest. The existence of a stabilizing solution is provided by the following proposition.

Proposition 2.27 (cf. [20, Prop. 1, with E = In])
If (A,N) is stabilizable and Λ(A) ∩ jR = ∅, then the ABE (2.25) has a unique stabilizing
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positive semidefinite solution X+. Moreover, rank (X+) = µ, where µ is the number of
eigenvalues of A in C+.

Considering the real-valued block upper triangular structure of (2.26), it is obvious
that

Λ(ΞB) = Λ(A) ∪ Λ(−A).

Hence, for the stabilizing solution X+ it holds that

Λ(A−NX+) = Λs(A) ∪ {λ = −a− b : a+ b ∈ Λus(A)} (2.27)

with Λs(A) and Λus(A) being the stable and unstable eigenvalues of A, respectively;
see, e.g., [1, eq. (19)]. In other words, the stabilizing solution X+ mirrors all unstable
eigenvalues of A at the imaginary axis R. Further information about the numerical
solution of large-scale ABEs for the low-rank case N = BBT can be found in, e.g., [1,
19–21]. How the stabilizing solution of the generalized version of the ABE (2.25) is used
within this thesis is shown in Subsection 4.2.3.

In the next subsection, the specific optimal control approach that is used in this thesis
is explained and the connection between the solution X of (2.20) and the aim of finding
the optimal control u(t) is described.

2.3.3. Linear-Quadratic Regulator (LQR) Approach

Considering an optimal control problem, where a quadratic cost functional is meant
to get minimized subject to a linear dynamical system, one speaks about a linear-
quadratic (LQ) problem; see, e.g., [91, Chap. 3]. Besides the distinction between LTV
and LTI systems, the time horizon to achieve the control goal is important to classify
the considered LQ control problem. Using an infinite time horizon, “[can] by no means
[...] be viewed as a trivial extension of the problem over a finite horizon” ([91, p. 39]).

In this thesis, LTI systems over an infinite time horizon are considered. This class
of optimal control problems is usually referred to as linear-quadratic regulator (LQR)
problems (cf. [91, Sec. 3.4]).

Definition 2.28 (LQR problem (cf. [91, Prob. 3.3])) For the time-invariant sys-
tem Φ (2.17), where x(0) = x0 is given, find a control u(t) that minimizes the cost
functional

J (u(t),x(t)) =

∫ ∞
0

x(t)TQx(t) + u(t)TRu(t) dt. (2.28a)

The final state is unconstrained and Q = QT � 0, R = RT � 0.

Notice that the initial time is set to t = 0. This can be done without loss of generality due
to the time-invariance of the matrices A,B,C,Q,R; see, e.g., [91, Sec. 3.4]. Furthermore,
it is important to mention that (2.28a) can only attain a finite value if

lim
t→∞

Qx(t) = 0 and lim
t→∞

u(t) = 0.
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This means that for t → ∞, the Q-weighted state and the control need to approach
zero, although this might not be the desired state xd(t) one wants to achieve. In this
case one redefines the state as the difference between the actual state xa(t) and the
desired state xd(t). If the difference x(t) := xa(t) − xd(t) goes to zero, the actual
state coincides with the desired state. This approach is often called control in the
neighborhood of an equilibrium point, see, e.g., [91, Rem. 3.11], where the desired state
xd(t) is the equilibrium point that is usually stationary but possibly unstable. Notice
that for nonlinear systems this point often serves as linearization point such that one
tries to eliminate small deviations from this equilibrium point.

The solution to the LQR problem in Definition 2.28 is described by the following
theorem.

Theorem 2.29 (cf. [22, Thm. 2.7]) If Q � 0, R � 0, (A,B) is stabilizable, and
(C,A) is detectable, then the LQR problem in Definition 2.28 has an unique solution
given by

u∗(t) = −R−1BTX︸ ︷︷ ︸
=:KT

x∗(t), (2.28b)

where X = XT � 0 is the unique stabilizing solution of the CARE

R(X) = Q+ ATX +XA−XBR−1BTX = 0. (2.28c)

Furthermore, the optimal value of the cost functional is

J∗(x0) =
1

2
xT0Xx0. (2.28d)

In the remainder of this thesis, the regularization matrix R is set, without loss of
generality, to R = Inr and Q := α2CTC with α ∈ R+ as output weighting. During the
theoretical derivations α = 1 is assumed to simplify the notation. Nevertheless, α plays
an important role during the numerical examples.

Since in this thesis the dynamical systems of interest arise from a FEM discretization,
one has to deal with generalized forms of the dynamical systems and, thus, of the arising
matrix equations as introduced in the next subsection.

2.3.4. Generalized Matrix Equations

All above introduced matrix equations exist in a generalized form. Considering the
dynamical system Φ̂(A,B,C;M) of the form

Φ̂ :
M

d

dt
x(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

(2.29a)

(2.29b)

one either speaks of a generalized state-space system if M is non-singular, or Φ̂ describes
a descriptor system defined by a system of differential-algebraic equations (DAE) [83] if
M is singular.
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In the case of M invertible, Definition 2.12 can be extended straightforwardly to the
system Φ̂(A,B,C;M) and its corresponding matrix triples (A,B;M) and (C,A;M).
Therefore, the following two transformations from [75, eq. (1.2)] are considered. The
first version performs the transformation by a left multiplication that yields

Φ̂(A,B,C;M) 7→ Φ(M−1A,M−1B,C), (2.30)

where the state variable x(t) remains unchanged. Another variant is a state change of
coordinates which is done by defining x̂(t) = Mx(t) such that the dynamical system in
x̂(t) is of the form

Φ̂(A,B,C;M)
x=M−1x̂7−→ Φ(AM−1, B, CM−1). (2.31)

The choice of transformation varies depending on the problem description. In the end,
one hardly ever explicitly carries out these transformations. On the one hand, both
transformations are invertible such that the solution will be the same after an inverse
transformation and the transformations are only used to theoretically derive certain
methods based on existing approaches. The much more important fact, on the other
hand, is that one might not be able or interested in building M−1A or AM−1 explicitly,
since the condition numbers might grow drastically and for a large-scale sparse matrix
M the products M−1A or AM−1 become dense.

Nevertheless, these transformations are very useful for clarity of the used notation as
shown for two examples below.

Considering a dynamical system Φ(F̂ , Ŵ , .) = Φ(M−1F,M−1W, .), a CALE of the

form (2.19) with a low-rank right-hand side H = ŴŴ T is defined via

F̂X +XF̂ T = −ŴŴ T ,

M−1FX +XF TM−T = −M−1WW TM−T .

Multiplying the latter equation from the left with M and with MT from the right yields
the generalized continuous-time algebraic Lyapunov equation (GCALE)

FXMT +MXF T = −WW T , (2.32)

which corresponds to the generalized dynamical system Φ̂(F,W, .;M) using the left mul-
tiplication transformation from (2.30). More details regarding the efficient solution of
GCALEs can be found in, e.g, [33, 84, 102].

The state change of coordinates transformation can be used to apply the LQR problem
(2.28) to the generalized dynamical system (2.29). Therefore, the dynamical system

Φ(Â, B, Ĉ) = Φ(AM−1, B, CM−1) for x̂ = Mx as in (2.31) is considered and a CARE
of the form (2.28c) is defined via

ĈT Ĉ + ÂTX +XÂ−XBBTX = 0,

M−TCTCM−1 +M−TATX +XAM−1 −XBBTX = 0.
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Multiplying withMT from the left andM from the right yields the generalized continuous-
time algebraic Riccati equation (GCARE)

R(X) = CTC + ATXM +MTXA−MTXBBTXM = 0, (2.33a)

corresponding to the LQR problem for the generalized dynamical system Φ̂(A,B,C;M)
and the optimal control

u∗(t) = −BTXx̂(t) = −BTXM︸ ︷︷ ︸
=:KT

x(t) (2.33b)

that minimizes the cost functional

J (u(t), x̂(t)) =

∫ ∞
0

x̂(t)T ĈT Ĉx̂(t) + u(t)Tu(t) dt

=

∫ ∞
0

x(t)TMTM−TCTCM−1Mx(t) + u(t)Tu(t) dt

=

∫ ∞
0

x(t)TCTCx(t) + u(t)Tu(t) dt = J (u(t),x(t)).

(2.33c)

In a straightforward way, the generalized algebraic Bernoulli equation (GABE) is defined
via

ATXM +MTXA−MTXNXM = 0; (2.34)

compare, e.g., [20].
In the case of a singular matrix M , the dynamical system (2.29) has a DAE structure.

The definitions of generalized Lyapunov, Riccati, and Bernoulli equation are still valid
but strategies to solve these equations usually change drastically. A direct treatment
to solve DAE and matrix equations with DAE structure is not within the scope of this
thesis. The interested reader is referred to, e.g., [83, 127] and the references in there.

The DAE systems that arise within this thesis are indirectly projected onto generalized
state-space systems like (2.29) with an invertible left-hand side matrix such that the
above presented ideas and methods can be applied after a certain modification. The
entire procedure is introduced in Chapter 4, where the used solution strategies for the
arising matrix equations are explained in detail. Afterwards, some results of a closed loop
simulation, where the calculated optimal control u∗(t) is used to stabilize the numerical
realization of a flow simulation from Chapter 3, are presented in Chapter 7.

2.4. Iterative Methods

As pointed out in Subsection 2.3.2, many equations do not have analytical solutions
or an explicit solution cannot be constructed using direct methods. In these cases,
approximate solutions are used to approximately solve the problem. Thereby, a series of
iterates {xk} is built up during an iterative process, where an initial solution guess x0 is
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modified following a certain iteration scheme until the iterate fulfills certain conditions.
Considering a general equation

F (x∗) = b,

one way to characterize the quality of the approximate solution is the error, which is
defined at step k as

errk := xk − x∗.
Since the actual solution x∗ is usually of interest and not available in advance, the
residual is another approach to determine the quality of the solution as

resk := F (xk)− b.
Obviously, the residual and the error are equal to zero if xk = x∗. However, only the
residual can be computed without knowing x∗.

To analyze errors or residuals independent of the used functions and variables, one
usually chooses an appropriate norm to map both quantities into the field of real numbers
that can be compared. In many cases, the scaled version of these norms are of interest
and can be defined via

errrel
k :=

||xk − x∗||
||x̃|| , resrel

k :=
||F (xk)− b||
||x̃|| ,

where x̃ is usually chosen from either the initial guess x0, the actual iterate xk, or the
right hand side b. For x̃ := b, resrel

k is called relative residual. Notice that the relative
residual is an upper bound for the relative error as shown in [80, Lem 1.1.1].

The three main iterative methods, used for different classes of equations F (x) = b
that arise within this thesis, are shortly reviewed in the following. For a more detailed
analysis of iterative methods the interested reader is referred to, e.g., [113] for (sparse)
linear systems and to [56, 80] for linear and nonlinear equations.

2.4.1. Newton’s Method (NM)

Assume a general nonlinear function F , whose Fréchet derivative exists. One of the
most commonly used methods to solve nonlinear equations of the form

F (x) = 0, (2.35)

which means finding the roots of F (x), is Newton’s method [80, 97]. The basic iteration
is given for an initial iterate x0 by

xk+1 = xk −F ′(xk)
−1F (xk) (2.36)

with F ′(xk) the Fréchet derivative of F at position xk. Instead of an explicit inversion
of the Fréchet derivative in (2.36), one can solve a system that is linear in the sought
update s in the form

F ′(xk)s = −F (xk), xk+1 = xk + s.

The convergence of this method is stated in the following theorem.
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Theorem 2.30 (cf. [80, Thm. 5.1.2]) Assume there exists a solution x∗ of (2.35),
F ′ is Lipschitz continuous, and F ′(x∗) is non-singular. Then there is a δ > 0 such that
if x0 ∈ B(δ) := {x : ||x−x∗|| < δ}, the Newton iteration (2.36) converges q-quadratically
to x∗, i.e., xk → x∗ and there is a K > 0, independent of k, such that

||xk+1 − x∗|| ≤ K||xk − x∗||2,

compare, [80, Def. 4.1.1].

It is well known that the choice of the initial iterate x0 remains a problem, especially for
non-convex (-concave) functions F , where the iterative process might diverge, stagnate
in, or alternate around a local minimum [80, Sec. 8.1]. For more details of error analysis
and convergence theory we refer to [80, Chap. 5].

2.4.2. Alternating Directions Implicit (ADI) Method

To solve a large-scale GCALE like (2.32), various methods exist in the literature as
explained in Subsection 2.3.4. The focus in this thesis lies on the alternating directions
implicit (ADI) method which is a powerful tool to solve large-scale GCALEs with low-
rank right-hand sides.

“The ADI method was introduced in the mid-1950s by Peaceman and Rachford [101]
specifically for solving equations arising from finite difference discretizations of elliptic
and parabolic PDEs.”[113, Sec. 4.3] Later on, this idea was applied to CALEs; see,
e.g., [128]. Throughout the last decades, many new achievements were discovered that
increased the efficiency of the low-rank ADI method drastically.

Most recent improvements were developed parallel to the authors work such that these
improvements were not available at the beginning of his work. Hence, in this subsec-
tion the so-called generalized low-rank Cholesky factor ADI (G-LRCF-ADI) method is
introduced. This method is the generalization of the LRCF-ADI method from [31] and
is mentioned the first time in [23].

The G-LRCF-ADI method is used in Chapter 4. The above mentioned recent ADI de-
velopments are reviewed and incorporated in Chapter 6. Throughout all considerations,
one assumes that the pencil (F,M) is stable such that there exists a unique solution
X = XT � 0 of (2.32), compare Theorems 2.18 and 2.19.

Using a proper set of ADI shifts, i.e., {q1, . . . , q`} = {q1, . . . , q`} with qi ∈ C−, the
original G-LRCF-ADI method computes a low-rank solution factor Z ∈ Cn×`r such that
ZZH ≈ X ∈ Rn×n is the approximated solution of the Lyapunov equation (2.32); see,
e.g., [23]. This solution is by construction spsd. Given proper ADI shifts as defined
above, the G-LRCF-ADI method successively computes

V1 = (F + q1M)−1W ∈ Cn×r,

V` = (V`−1 − (q` + q`−1)(F + q`M)−1(MV`−1)) ∈ Cn×r, ` ≥ 2.
(2.37a)

In the `-th iteration, the approximate low-rank solution factor is

Z` =
[√
−2 Re (q1)V1, . . . ,

√
−2 Re (q`)V`

]
∈ Cn×`r. (2.37b)
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Algorithm 1 Generalized low-rank Cholesky factor ADI iteration [23, 31]

Input: F,M,W , and proper shift parameters qi ∈ C− : ` = 1, . . . , `max

Output: Z ∈ Cn×`r, such that ZZH ≈ X
1: Z = [ ]
2: V1 = (F + q1M)−1W
3: Z =

√
−2 Re (q1)V1

4: for ` = 2, 3, . . . , `max do
5: V` = V`−1 − (q` + q`−1)(F + q`M)−1(MV`−1)
6: Z =

[
Z
√
−2 Re (q`)V`

]
7: end for

The entire process is depicted in Algorithm 1.
The crucial ingredient for fast convergence of the ADI iteration is the shift parameter

set. There are various approaches to compute ADI shifts. A more involved analysis
about different shift strategies is not within the scope of this thesis. The interested
reader is referred to [30, 84, 104, 128] for more details. In Chapter 4, some heuristic
shifts based on [104] are used that are precomputed and that only depend on the pencil
(F,M). Later on in Chapter 6, a variant of the novel shift approach in [30] is used to
compute ADI shifts adaptively during the iteration that depend on the pencil (F,M) as
well as the right-hand side W and the previous iterates V`−1.

2.4.3. Krylov Subspace Methods

A widely used class of iterative methods to solve a linear system of equations of the form

Ax = b, with A ∈ Rn×n, x, b ∈ Rn, (2.38)

are Krylov subspace methods. These methods are projection based methods [113, Chap. 5]
that use the m-dimensional Krylov subspace

Km(A,v) := span
{
v, Av, . . . , Am−1v

}
. (2.39)

Hence, for a starting vector x0 ∈ Rn there is an approximate solution xm ∈ x0 + Km

such that

b− Axm ⊥ Lm. (2.40)

This means the residual b − Axm is orthogonal to Lm, which defines another m-
dimensional subspace as explained in more details in [113, Chap. 6]. By successively
increasing the dimension m, the iterate xm converges towards the solution x in at most
n steps. In other words, in each step one includes a new search direction to improve the
iterate xm such that this iterate is the best approximation of the solution regarding the
subspace Lm. After n steps, the subspaces Km and Lm span the entire solution domain
of dimension n and xm is the best approximation that can be obtained.

32



Section 2.4. Iterative Methods

In general, the Krylov subspace methods converge within a lot less steps towards the
desired tolerance or one can apply certain acceleration techniques, such as precondi-
tioning [113, Chap. 9], to speed up convergence. The problem specific preconditioning
technique used in this thesis is presented in Section 5.2.

Depending on the definition of Lm, different Krylov subspace methods for different
classes of matrices can be defined. Within this thesis, the generalized minimal residual
(GMRES) method, [114], is considered. GMRES takes Lm = AKm and v = b−Ax0

||b−Ax0||2
to minimize the residual norm ||b − Axm||2 over all vectors in x0 + Km for nonsym-
metric, non-singular matrices A. For all numerical examples, the MATLAB function
gmres(A,b) is used. For further details see, e.g., [113, Sec. 6.5], [56, Sec. 4.1.1], and [90,
Sec. 2.5.5].

Another well known Krylov subspace method is the conjugate gradient (CG) method
[72] that uses Lm = Km and v = b − Ax0 and can be used for symmetric, positive-
definite (spd) matrices A. This method is mentioned in Subsection 5.2.2 but is not
further used within this thesis.

For more examples of Krylov subspace methods, the interested reader is referred to
the literature cited within this subsection.

As a historic fact it is interesting to mention that “in his 1931 paper [82], Krylov was
not thinking in terms of projection processes, and he was not interested in solving a
linear system”[90, p. 19].
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In this chapter, the main scenarios are introduced that serve as examples for multi-
field flow problems. Thereby, the complexity of the considered PDEs increases which
leads to more demanding numerical treatments. All models are related to transport
processes for either scalar or vector fields.
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For all examples, a fixed, connected, and bounded domain Ω ⊂ Rd with d ∈ {2, 3} as
well as an infinite time horizon form the defining space time cylinder Q∞ := Ω× [0,∞)
for the PDEs. The boundary Γ := ∂Ω ⊂ Rd−1 is partitioned as Γ = Γin ∪ Γout ∪ Γwall,
where certain boundary conditions (BC) are applied. Notice that all considerations are
formulated in Cartesian coordinates.

The chapter is organized as follows. First, PDEs that describe passive transports
for a scalar variable are introduced and a first test domain is described. Afterwards,
incompressible flows, describing the physical behavior of a vector field, are defined and
two describing PDEs, as well as the second test domain, are introduced in Section 3.2.
Following, in Section 3.3 a coupled flow problem is proposed together with the defining
PDEs and the third test domain. To fit the LQR scheme from Subsection 2.3.3, non-
linear PDEs are linearized as described in Section 3.4. Afterwards, the linear PDEs are
discretized in Section 3.5. The properties of the arising large-scale matrix pencils are
examined in detail in Section 3.6.

3.1. Scalar Transport Equations

Two fundamental processes of scalar transportation are diffusion and convection. Thereby,
the change in the distribution of a state, e.g., temperature or concentration, within the
domain is described. In many applications, a reactive process is considered addition-
ally. All these processes are introduced in the following and by combining them, one
ends up with the first scenario that plays a role in this thesis. Every state depends on
(t, ~x) ∈ Q∞. BC and initial conditions (IC) are omitted for the first general processes.

3.1.1. Diffusion Process

As stated in [117, p. 15], diffusion takes place in areas with different state levels and is
a direct consequence of the interaction between micro particles that are in contact. It is
a natural process that seeks for an equilibrium in the state distribution. The diffusion
process was examined in detail for temperature distributions by Fourier in 1822 and can
be generalized straight forward for certain other state distributions.

The main result of the Fourier law is that the change ~q(t, ~x) in the state level is
proportional to the gradient of the state a(t, ~x), i.e.,

~q(t, ~x) = −kD∇a(t, ~x).

Following the derivation in [117, Sec. 2.1], this proportionality needs to fulfill the energy
conservation law

d

dt
a(t, ~x) = − div (~q(t, ~x)) + f(t, ~x).

Hence, the diffusion process for a state a(t, ~x) ∈ R and a source term f(t, ~x) ∈ R is
described by

d

dt
a(t, ~x) = div (kD(~x)∇a(t, ~x)) + f(t, ~x), in Q∞, (3.1)
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where kD(~x) ∈ R is the proportionality constant. If kD(~x) is constant over Ω, (3.1)
simplifies to

d

dt
a(t, ~x) = kD∆a(t, ~x) + f(t, ~x), in Q∞. (3.2)

If the state a(t, ~x) is time-invariant, (3.1) and (3.2) can be simplified to the stationary
diffusion equation, also known as Poisson equation, which “is the simplest and the most
famous elliptic PDE”[56, Chap. 1].

3.1.2. Convection Process

Convection, in its simplest form, is the result of the movement of the medium in Ω with
a given time-invariant velocity ~w(~x) = [wx1(~x), . . . , wxd(~x)]T ∈ Rd. The change of the
state is, therefore, dependent on the velocity of the motion. To determine the change of
the state a(t, ~x) with respect to time, similar to (3.1), one needs to consider the complete
derivative with respect to time [117, p. 17]. This leads to the “particle-acceleration” [135,
Sec. 1-3.2] operator defined as

d

dt
=

∂

∂t
+ ~w(~x) · ∇ (3.3)

with the convection operator

(~w(~x) · ∇) =

(
d∑
i=1

wxi
∂

∂xi

)
; (3.4)

see, e.g., [56, p. 4]. To this end, the time-varying convection equation reads

∂

∂t
a(t, ~x) = −(~w(~x) · ∇)a(t, ~x) + f(t, ~x), in Q∞. (3.5)

As stated in [56, p. 114], for a time-invariant state and right hand side, (3.5) simplifies
to the hyperbolic PDE

(~w(~x) · ∇)a(~x) = f(~x), on Ω.

3.1.3. Reaction Process

A reaction process does not represent a spatial transport, but the change of the state
due to the state itself, described by the proportional change of the state in time by

d

dt
a(t, ~x) = kR a(t, ~x), in Q∞ (3.6)

with a proportionality factor kR ∈ R. It is a simplified model for growth processes,
which do not model the reason for the growth, as it is often needed in chemical and
biological models. Properly speaking, (3.6) is not a PDE but an ODE since only time
dependent changes are considered.

In the following, all three process are combined.
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3.1.4. Combined Transport Process (CTP)

A mixture of a diffusion, convection, and reaction process yields the combined transport
process (CTP) which is the first test scenario of this thesis and is defined by

∂

∂t
a(t, ~x)− kD∆a(t, ~x) + (~w(~x) · ∇)a(t, ~x)− kR a(t, ~x) = f(t, ~x), in Q∞. (3.7)

The CTP model describes the spread of a scalar field property within the domain Ω.
The BC are not further described at this point. Examples for such scalar fields are,
e.g., temperature or concentration. The specific parameters kD, kR, ~w(~x), and f(t, ~x)
are specified in the numerical examples. Notice that this parabolic PDE also serves as
test example in, e.g., [59, 94] with Ω as defined next.

3.1.5. Test Domain I: Unit Cube Domain (UCD)

The first test domain is the standard unit cube domain ΩUCD = (0, 1) × (0, 1) ⊂ R2 in
2D or ΩUCD = (0, 1)× (0, 1)× (0, 1) ⊂ R3 in 3D. This purely academic and rather simple
domain is incorporated in this thesis since it served as an easy implementable domain
to test and develop the methods in Chapter 6 as published in [26]. Notice that the same
domain is used in [59, 94].

To describe transport problems for vector fields, more involved PDEs need to be
considered. One possible approach are fluid flow problems as described in the next
section.

3.2. Incompressible Flows

The following scenarios are mainly concerned with describing the physical behavior of a
fluid under certain BC and IC.

Definition 3.1 (Fluid, cf. [119, p. 2]) A fluid is a material that deforms continually
upon the application of surface forces. A fluid does not have a preferred shape and
different elements of a homogeneous fluid may be rearranged freely without affecting the
macroscopic properties of the fluid, i.e., the fluids are mobile. A fluid offers a resistance
to attempts to produce relative motions of its different elements, i.e., a deformation, and
this resistant vanishes with the rate of deformation. Fluids, unlike solids, cannot support
a tension or negative pressure.

The property incompressible refers to a fluid whose density does not change in time
or space and is described by the constant parameter ρ ∈ R+.

Various slow moving gases, most liquids, and some melted solids can be classified as
incompressible fluids. Excluded are non-Newtonian fluids [57, p. 15], such as blood or
starch mixed with water, whose viscosity η ∈ R+ changes depending on shear forces. A
pictorial definition of viscosity is as follows.
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Definition 3.2 (Viscosity, cf. [57, p. 14]) The property of a fluid that measures its
resistance to change of shape is called the viscosity.

As mentioned above, liquids and gases are considered as fluids. “To distinguish between
a liquid and a gas, we also noted that although both will occupy the container in which
they are placed, a liquid presents a free surface if it does not completely fill the container.
A gas will always fill the volume of the container in which it is placed.”[64, p. 23]

Describing the physical behavior of fluids is a highly difficult and wide research area by
itself. In this thesis, the focus lies on only two simplified models that are introduced in
the next two subsections. The interested reader is referred to the following literature for
more detailed studies. In [119], an overview regarding theoretical fluid dynamics is given.
Besides the description of channel flow, water waves, and lunar tides, many essential
equations such as Euler, Stokes, Oseen, and Navier-Stokes equations are introduced. A
more detailed introduction to turbulent flow behavior can be found in [135]. The books
[57, 64] give a widespread introduction to fluid mechanics including many problem tasks
that are helpful for studying the subject of fluid mechanics. A more detailed numerical
view point of fluid dynamics is provided by the book [134].

In what follows, the space is always limited to the 2-dimensional case. This simplifi-
cation can be understood as a projection of an 3-dimensional flow along the third space
dimension if the flow does not change regarding this dimension. For example, consider-
ing an elliptically shaped long pillar of a bridge inside a river, the velocity of the fluid
does not change significantly along the height of this pillar if the distance to the ground
or surface is sufficiently large. Hence, one can consider a two dimensional flow around
an elliptical shaped obstacle as depicted on the title page.

The following two scenarios describe the velocity field ~v(t, ~x) ∈ R2 and the scalar
pressure χ(t, ~x) ∈ R+ of an incompressible fluid defined for ~x ∈ Ω ⊂ R2 and t ∈ [0,∞).

3.2.1. Navier–Stokes Equations (NSE)

The first set of equations to describe incompressible flows are the Navier-Stokes equations
(NSE) [57, eqs. (8.1),(8.3)] and build the second scenario in this thesis. Describing the
motion of the fluid as combination of pressure and viscous forces, the NSE cover the
conservation of mass, momentum, and energy within the system, compare [57]. Following
the notation in [15, Sec. 1], the NSE can be written in dimensionless form as

∂

∂t
~v(t, ~x)− 1

Re
∆~v(t, ~x) + (~v(t, ~x) · ∇)~v(t, ~x) +∇χ(t, ~x) = ~f(~x),

div~v(t, ~x) = 0,
in Q∞.

(3.8a)

(3.8b)

The dynamical part (3.8a) consists, from the left to the right, of the time derivative, the
scaled diffusion, the convection, the pressure gradient, and some time-invariant external
forces. The left side of (3.8b), “is physically the time rate of change of the volume of
a moving fluid element, per unit volume”[134, p. 23]. Hence, the mass conservation is
assured by setting div~v(t, ~x) = 0, which is the so-called divergence-free condition. The
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key for the dimensionless form is the scaling factor

Re :=
ρ · vref · dref

η
∈ R+, (3.8c)

called Reynolds number; see, e.g., [57, Sec. 10.2.4]. The Reynolds number describes
the ratio of inertial and viscous forces within the fluid or, in other words, “may be
interpreted as the magnitude of the ratio of the acceleration of a fluid in steady flow,
[...] to the viscous force per unit mass [...]”[57, p. 453]. Thereby, vref ∈ R+ is a reference
velocity and dref ∈ R+ a reference length.

On the boundary Γ, the velocity ~v(t, ~x) is described as

~v(t, ~x) = ~gin(~x), on Γin, (3.8d)

~v(t, ~x) = 0, on Γwall, (3.8e)

− 1

Re
∇~v(t, ~x)~n(~x) + χ(t, ~x)~n(~x) = 0, on Γout (3.8f)

with ~n(~x) the outward normal to Γout. The latter condition is the so-called do-nothing
condition [47, 73] that ensures that the fluid leaves the domain without hindrance such
that the length of the channel is not significantly influencing the correct physical behav-
ior, as shown in [73]. The no-slip condition (3.8e) on Γwall states that the fluid is in rest
at the walls due to adhesion or simple friction.

The initial condition of the fluid is given by

~v(0, ~x) = 0, in Ω (3.8g)

that describes that the fluid is in rest for t = 0. The parameters vref , dref , as well
as the inflow function ~gin are specified in the numerical examples later on. For better
readability, the parameters t, ~x are skipped hereafter.

The physical meaning of diffusion and convection is more complicated for vector fields
then for scalar fields. The diffusion process ∆~v can be seen as an impulsive shear-
ing motion within the fluid due to its own movement, as exemplary described in [57,
Sec. 6.5.9].

To define convection, one applies (3.4) to the vector field ~v in each component, such
that the nonlinear term in (3.8a) is defined as

(~v · ∇)~v :=

[
vx1

∂vx1
∂x1

+ vx2
∂vx1
∂x2

vx1
∂vx2
∂x1

+ vx2
∂vx2
∂x2

]
∈ R2.

These “convective accelerations are nonlinear in character and present such vexing an-
alytical problems as failure of the superposition principle; [e.g.,] non-unique solutions,
even in steady laminar flow; [...] Note that these nonlinear terms are accelerations, not
viscous stresses. It is ironic that the main obstacle in viscous-flow analysis is an inviscid
term; the viscous stresses themselves are linear if the viscosity is assumed constant”[135,
p. 18].
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The incompressible NSE (3.8) define the behavior of fluids with moderate Reynolds
numbers such that the impact of convection and diffusion is noticeable in a similar order
of magnitude. For fluids with high density, low viscosity, or under high velocity, one
cannot use these equations anymore and more complicated flow models need to be used
such that turbulences are considered as well.

In the limit, as Re→∞, the diffusion term vanishes and one ends up with the Euler
equations [57, Sec. 4.3] that do not play a further role in this thesis. In contrast, if the
Reynolds number is small, the diffusion term dominates the entire equation such that
the (particle) acceleration terms from (3.3) can be neglected [57, Sec. 6.5.7]. For this
configuration, one speaks about the (creeping) Stokes equations that is the second flow
model considered in this thesis and described in the next subsection.

3.2.2. Stokes Equations

During the early phase of our research regarding feedback stabilization of incompressible
flow problems, various technical and conceptional problems occurred. Most of these
problems were caused by the non-linearity and the instability of the NSE. Hence, we
considered the linear Stokes equations defined by

∂

∂t
~v(t, ~x)− 1

Re
∆~v(t, ~x) +∇χ(t, ~x) = ~f(~x),

div~v(t, ~x) = 0,
in Q∞;

(3.9a)

(3.9b)

compare [35]. Following the derivation of the Stokes equations in [57, Sec. 6.5.7], no time
derivative and no right-hand side occur due to the dominant diffusion term. In contrast,
it is pointed out in [48, Sec. 2] that different scaling approaches yield various resulting
equations with or without any time derivatives involved. Since a time dependent control
approach is considered in this thesis, the time dependent Stokes equations (3.9) are
considered and the scaling needs to be done concerning length and velocity as well, such
that ν := η

ρ
, as used in [35], is replaced by 1

Re
. In the end, the third scenario used in this

thesis, are the Stokes equations (3.9) that are equivalent to the NSE (3.8) without the
nonlinear convection term. Thus, the same BC and IC as (3.8d)–(3.8g) are used. Notice
that vref = dref = 1 in [35] such that ν = 1

Re
and (3.9) is equivalent to the formulations

in [35].

The next subsection describes the geometry of the second test domain for Ω.

3.2.3. Test Domain II: Kármán Vortex Street (KVS)

The second test domain is the so-called Kármán vortex street (often also referred to as
Kármán vortex shedding) that is abbreviated in the following with KVS. It describes the
flow around a cylindrical obstacle with no-slip conditions on the obstacles surface, where
alternating vortexes occur behind the obstacle that show a periodic behavior. This well
known phenomena can be observed in nature in many examples. Starting from bridge
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Figure 3.1.: Kármán vortex street (KVS).

pillars that generate turbulences in a river up to high mountain peeks, where satellite
pictures show periodic vertexes in the passing clouds1.

The more academic test domain that is used for all numerical examples regarding the
KVS domain is depicted in Figure 3.1. It is identical to the domain used in [15, 35] and
describes the flow from the left to the right through a rectangular channel ΩK ⊂ R2 of
width din = 1 in x2 direction and length 5 · din in x1 direction. The obstacle ΩO

K is of
elliptic shape with dimensions 1

5
din in x1 and 1

3
din in x2 direction centered at (1, 0.5).

The NSE (3.8) and the Stokes equations (3.9) are solved over ΩKVS := ΩK\ΩO
K.

3.3. Coupled Flow Model (CFM)

In this section, the above introduced models for incompressible flows are coupled with
a special case of the CTP equations (3.7) as introduced in the next subsection. The
main idea is to imitate a simplified version of a reactor. Thereby, a fluid, described
by an instationary incompressible flow model, e.g., NSE, acts as carrier medium which
transports a certain reactive substance. This substance reacts in a certain way in a
specific part of the reactor. The reaction process is not part of the dynamic model but
is represented by the BC of a special reactive subdomain. One way to describe this
transport process is the diffusion-convection equation (DCE) as introduced next.

3.3.1. Diffusion-Convection Equation (DCE)

Combining a diffusion with a convection process, the distribution of the concentration
c(t, ~x) ∈ R+ of a reactive substance is described by the DCE

∂

∂t
c(t, ~x)− 1

ReSc
∆c(t, ~x) + (~v(t, ~x) · ∇)c(t, ~x) = 0, in Q∞ (3.10a)

with the Schmidt number [9, p. 79]

Sc :=
ν

D
=

η

ρ ·D ∈ R+. (3.10b)

1https://en.wikipedia.org/wiki/K%C3%A1rm%C3%A1n_vortex_street#/media/File:

Vortex-street-1.jpg
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Section 3.3. Coupled Flow Model (CFM)

Following the descriptions in [14, 36, 132], the BC and IC are defined as

c(t, ~x) = hin(~x), on Γin, (3.10c)

∂c(t, ~x)

∂~n(~x)
= 0, on Γwall ∪ Γout, (3.10d)

c(t, ~x) = 0, on Γr, (3.10e)

c(0, ~x) = 0, in Ω. (3.10f)

Thereby, Γr describes the boundary of the reactive subdomain ΩR. For the simplified
reaction process on Γr one assumes that the concentration of the reactive substance
instantly annihilates at contact with Γr. This is realized by the homogeneous Dirichlet
BC (3.10e).

Additionally, the convection defining velocity field ~v(t, ~x) ∈ R2 results from the NSE
(3.8) such that both systems are coupled in one direction.

The equations (3.10) are a special case of the CTP model (3.7) with kD = 1
ReSc

, a
time-invariant convection ~w(~x) = ~v(t, ~x), kR = 0, and f = 0. Notice that (3.10) can also
be straightforwardly defined for the distribution of a temperature θ(t, ~x) ∈ R+, which is
not further considered in this thesis.

To use this model as description of the dynamics within a reactor, it is important
that neither concentration nor temperature is changing the volume of the carrier fluid
described by the velocity ~v(t, ~x) to not violate the divergence-free condition (3.8b). The
coupled model of (3.8) and (3.10) serves as our fourth scenario and is abbreviated by
CFM in the following.

3.3.2. Test Domain III: Reactor Model (RM)

The third test domain describes a simplified reactor model as depicted in Figure 3.2,
where the coupled flow problem CFM is considered. On both sides of the rectangular
reactor chamber of dimension 5 · din in x1 and 8 · din in x2 direction, one finds a rectan-
gular channel that serves as inflow and outflow area, respectively. Both channels are of
diameter 1 · din and length 3 · din and are attached in the middle of the left and right
chamber boundary. Inside of the reactor domain ΩR, there is a square obstacle ΩO

R of
size 1.5 · din × 1.5 · din with the center at (6.25, 3.5). The idea behind this configuration
is the flow of a carrier medium through the reactor that enters through the left inflow
channel, surrounds the obstacle, and leaves the domain via the outflow channel on the
right. Thereby, the flow is described by (3.8) and the domain can be seen as a more
complicated version of the KVS. Additionally, the spread of a concentration, described
by the DCE (3.10), is considered that interacts in a certain way on the surface of the
obstacle. Although this rather academic configuration is a highly simplified model of a
reactor, it is sufficient to explore various interactions and to examine optimal control
approaches. The reactor model is abbreviated by RM in the following and the CFM
model is solved over ΩRM := ΩR\ΩO

R.
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Figure 3.2.: Reactor model (RM).

3.4. Linearization

The NSE and the CFM scenarios are based on nonlinear PDEs. These models need to
be linearized to apply the LQR approach from Subsection 2.3.3 as described for the NSE
scenario in [15] and for the CFM scenario in [14]. Both linearizations are reviewed in
more detail in this subsection. Thereby, the main idea of the linearization is to linearize
around a stationary but possibly unstable trajectory with certain special properties.

Although it is not explained further in this section for the linear PDEs, it is important
to mention that in order to apply the LQR approach one always needs to linearize around
such a trajectory since the LQR approach forces

lim
t→∞

x(t) = 0,

which is in general not the desired behavior, as mentioned in Subsection 2.3.3. However,
for linear PDEs the notation does not change and one only needs to adapt the BC and
IC. The consequences and the correct usage of the LQR approach is pointed out in
Chapter 7.

NSE: Let us first consider the NSE scenario from Subsection 3.2.1. The stationary
NSE is defined by the solution (~w(~x), χs(~x)) and the external force ~f(~x) as

− 1

Re
∆~w + (~w · ∇)~w +∇χs = ~f,

∇ · ~w = 0,
on Ω

(3.11a)

(3.11b)
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with the same BC and IC as (3.8d)–(3.8g). After defining the differences

~z(t, ~x) := ~v(t, ~x)− ~w(~x), (3.12a)

p(t, ~x) := χ(t, ~x)− χs(~x), (3.12b)

the NSE (3.8) reads

∂(~w + ~z)

∂t
− 1

Re
∆(~w + ~z) + ((~w + ~z) · ∇)(~w + ~z) +∇(χs + p) = ~f,

∇ · (~w + ~z) = 0,

which can be written as

∂ ~w

∂t
− 1

Re
∆~w + (~w · ∇)~w +∇χs − ~f

+
∂~z

∂t
− 1

Re
∆~z + (~w · ∇)~z + (~z · ∇)~w + (~z · ∇)~z +∇p = 0,

(3.13a)

∇ · ~z = −∇ · ~w. (3.13b)

The first line in (3.13a), as well as the right-hand side in (3.13b), vanish due to (3.11).
Furthermore, the quadratic term (~z · ∇)~z is approximately zero, assuming small devia-
tions ~z, as it is pointed out in the LQR approach in Subsection 2.3.3. Summarizing, one
ends up with the linearized NSE

∂~z

∂t
− 1

Re
∆~z + (~w · ∇)~z + (~z · ∇)~w +∇p = 0,

∇ · ~z = 0,

in Q∞
(3.14a)

(3.14b)

and the BC and IC

~z(t, ~x) = 0, on Γin ∪ Γwall, (3.14c)

− 1

Re
∇~z(t, ~x)~n(~x) + p(t, ~x)~n(~x) = 0, on Γout, (3.14d)

~z(0, ~x) = 0, in Ω. (3.14e)

CFM: Secondly, the CFM scenario in Section 3.3 is considered. The DCE (3.10) itself
is linear in c(t, ~x) and in the convective field ~v(t, ~x). Since the NSE (3.8) is coupled with
the DCE (3.10), one needs to consider the linearized velocity (3.12a) such that the DCE
(3.10) reads

∂c

∂t
− 1

ReSc
∆c+ ((~w + ~z) · ∇)c =

∂c

∂t
− 1

ReSc
∆c+ (~w · ∇)c+ (~z · ∇)c = 0.

In analogy to the NSE case, one defines the linearized concentration as

c(~z) := c− c(~w), (3.15)
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such that the DCE (3.10) can be written as

∂(c(~w) + c(~z))

∂t
− 1

ReSc
∆(c(~w) + c(~z)) + (~w · ∇)(c(~w) + c(~z)) + (~z · ∇)(c(~w) + c(~z)) = 0.

(3.16)

Thereby, c(~w) is the stationary concentration field depending on the stationary velocity
~w that fulfills the stationary DCE

− 1

ReSc
∆c(~w) + (~w · ∇)c(~w) = 0 (3.17)

with the same BC and IC (3.10c)–(3.10f). Similar to the NSE case, one can assume
(~z · ∇)c(~z) to vanish and the remaining terms of (3.16) form the linearized DCE

∂c(~z)

∂t
− 1

ReSc
∆c(~z) + (~w · ∇)c(~z) + (~z · ∇)c(~w) = 0 (3.18a)

with the BC and IC

c(~z)(t, ~x) = 0, on Γin ∪ Γr, (3.18b)

∂c(~z)(t, ~x)

∂~n(~x)
= 0, on Γwall ∪ Γout, (3.18c)

c(~z)(0, ~x) = 0, in Ω. (3.18d)

3.5. Discretization

All considered and introduced scenarios are PDEs with certain BC and IC. As introduced
in Section 2.3, the main contribution of this thesis is the solution of an optimal control
problem for dynamical systems of the form Φ̂ as in (2.29), where the dynamical part is
a matrix-valued ODE depending on the time t.

To transform the PDEs into Φ̂, the so-called method of lines [118] is considered to
semi-discretize the PDEs as pointed out in, e.g., [14, 15, 35, 36]. Thereby, the domain Ω
is fully discretized and the time t is kept continuous. As introduced in Subsection 2.1,
finite elements are considered with different problem depending ansatz functions. The
discretized state variables are denoted by boldface variables.

The right choice of the finite element space, as well as their correct use, is not part
of this thesis. An extensive introduction of PDE discretizations via FEMs can be found
in [6]. More details about the use of FEMs for, especially, scalar and vector-valued
transport problems can be found in [56]. In this section, the notation for the discretized
systems is fixed and special structures of the arising matrices are pointed out. All
scenarios are written in the form (2.29), where the input matrix B ∈ Rn×nr , the control
u(t) ∈ Rnr , the output y ∈ Rna , and the output matrix C ∈ Rna×n depend on the control
problem configuration. Some more details about the input operator B that describes the
external influence to modify the system are given in Subsection 4.1.3. The specific output
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operators C, which specify the states that contribute to the cost functional (2.28a), are
defined during the numerical examples in Section 4.4 for the Stokes/NSE and CFM
scenarios and in Section 6.4 for the CTP scenario. In all examples, na + nr � n which
means that only a few control inputs interact with the system and, additionally, only a
few outputs can be observed.

CTP: As described in [26], the CTP model (3.7) is discretized using piecewise constant
ansatz functions P1. Thus, a(t) ∈ Rn is the discretized version of the field variable
a(t, ~x) ∈ R, which yields the discretized system

Ma
d

dt
a(t) = Aaa(t) +Baua(t), (3.19a)

ya(t) = Caa(t) (3.19b)

with

Aa = −kDSa −Ka(~w) + kRMa ∈ Rn×n. (3.19c)

Thereby, Ma is the mass matrix regarding the scalar variable a(t, ~x) and Sa applied to
a(t) ∈ Rn represents the discrete version of the scalar Laplacian −∆a, which is usually
called stiffness matrix. Ka(~w)a(t) describes the discretized version of the convection
process (~w ·∇)a that depends on the stationary velocity ~w. All matrices are defined over
Rn×n. The associated domain UCD is discretized by a uniform triangulation containing
squares of dimension h× h in 2D and cubes of dimension h× h× h in 3D. Each square
in 2D is divided into two triangles and each cube in 3D is divided into six tetrahedra.
Considering homogeneous Dirichlet BC, the spatial dimension is n = (h−1 − 1)d.

Stokes and NSE: To discretize the Stokes and NSE, the P2–P1Taylor–Hood element
[78], as introduced in Section 2.1, is used. Thereby, the velocity space is of dimension nz

and the pressure space is of dimension np such that z(t) ∈ Rnz denotes the discretized
velocity and p(t) ∈ Rnp the discretized pressure. Both the Stokes system (3.9) and the
linearized NSE (3.14) can be written as

Mz
d

dt
z(t) = Azz(t) +Gp(t) +Bzuz(t), (3.20a)

0 = GTz(t), (3.20b)

yz(t) = Czz(t), (3.20c)

(cf. [15, 35]). The only different occurs in the system matrix Az ∈ Rnz×nz that can be
split as follows:

Stokes:Az := − 1

Re
Sz, NSE:Az = −

(
1

Re
Sz +Kz(~w) +Rz(~w)

)
. (3.20d)

In more detail, Mz represents the mass matrix on the velocity space and Sz the velocity
stiffness matrix such that−Szz is the discrete counterpart of the vector-valued Laplacian
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Γin Γfeed,1 Γfeed,2 Γwall Γout Pobs,i

Figure 3.3.: Coarsest triangulation of KVS with BC and observation points
(Level 1 in Table 4.3a).

∆~z. Furthermore, Kz(~w)z is the discrete convection (~w · ∇)~z and Rz(~w)z the discrete
reaction process (~z ·∇)~w, both are dependent on the stationary velocity field ~w. All these
matrices are defined over Rnz×nz . Additionally, −Gp describes the gradient ∇p and, in
its transposed version applied to the velocity, also defines the divergence operator ∇ · ~z
as GTz with G ∈ Rnz×np .

For inf-sup stable finite elements used in an inflow-outflow configuration, such as P2–
P1 elements, it holds that nz > np. Furthermore, the discretized gradient G has full
rank, i.e., rank (G) = np [56, Sec. 5.3]. It is important to point out that the velocity
finite element space is reduced by the number of Dirichlet boundary nodes, since the
linearized problem has homogeneous Dirichlet BC, such that the corresponding nodes
can be eliminated and nz denotes the remaining dimension. The coarsest grid for the
KVS, where the Stokes and NSE are solved, is depicted in Figure 3.3. More details on
the used dimensions are depicted in Section 4.4.

CFM: The concentration c(~z) in the CFM model is discretized by P1 finite elements
that form a finite element space of dimension nc for the concentration. The linearized
DCE (3.18) in its discretized version reads

Mc
d

dt
c(t) = Acc(t)−Rz(c(~w))z(t) +Bcuc(t), (3.21a)

yc(t) = Ccc(t), (3.21b)

where the system matrix Ac can be partitioned as

Ac = − 1

ReSc
Sc −Kc(~w). (3.21c)

This yields the concentration mass matrix Mc, the concentration stiffness matrix Sc,
and the convection matrix Kc(~w) depending on the stationary velocity ~w, similar to
the matrix definitions in the CTP scenario, but defined over Rnc×nc . The coupling
term (~z · ∇)c(~w) leads to a reaction type term Rz(c(~w))z that depends on the stationary
concentration c(~w) and is applied to the velocity field ~z(t) with Rz(c(~w)) ∈ Rnc×nz .
Similar to the Stokes and NSE, all nodes related to the homogeneous Dirichlet BC can
be removed such that nc is the purified dimension. The initial triangulation of the RM
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Γin ΓoutΓr

Γwall

Figure 3.4.: Coarsest triangulation of RM with BC (Level 1 in Table 4.3b).

domain is depicted in Figure 3.4. The used finite element dimensions depend on the
refinement levels and are explained in Section 4.4.

For the CFM model, the systems (3.20) and (3.21) are considered together. Both
systems are coupled via Rz(c(~w))z(t) in (3.21a). In the coupled CFM formulation, the
control input is only considered on the velocity space via Bzuz(t) in (3.20a) such that
Bc = 0 in (3.21a). Furthermore, the observation only takes place on the concentration
space via (3.21b) such that Cz = 0 in (3.20c).

Pressure Space: Notice that for certain preconditioning methods, which are explained
in Section 5.2, some matrices from the NSE model are assembled on the pressure space
as well using the P1 finite elements, which leads to Mp, Sp, and Kp(~w) all being defined
over Rnp×np . These pressure space matrices are assembled over the same finite element
space as used for the DCE but no nodes are removed due to homogeneous Dirichlet BC.
This leads to slightly different properties, as explained in the next section.

All discretizations for Stokes, NSE, CFM, and the pressure space are performed in
the finite element flow solver NAVIER [12].

3.6. System Properties

The above proposed matrix systems arise from discretizing the different scenarios. All
these systems share special properties and fit into certain structures. In this section,
these properties are reviewed. Afterwards, two different structures are introduced and
their usage is explained.
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Chapter 3. Scenarios for Multi-Field Flow Problems

Using the above explained finite element spaces, the mass matrices of all systems are
by definition spd. As shown in [44], the stiffness matrices, however, are spsd, which
means the matrix has at least one zero eigenvalue. This can have negative effects on
certain computations and should be circumvented. Fortunately, by removing the nodes
related to the homogeneous Dirichlet BC as for the velocity and concentration spaces,
the stiffness matrices become spd as well. Furthermore, the pressure space stiffness
matrix Sp artificially becomes spd by pinning a boundary node as suggested in [44].
The convection and reaction matrices are in general not symmetric, especially Rz(c(~w))
which is rectangular.

All matrices connected to the velocity space are partitioned due to the two spatial
dimensions. Thereby, the mass, stiffness, and convection matrices are block diagonal
matrices, e.g., for the mass matrix, of the form

M =

[
Mvx1 ,vx1

0
0 Mvx2 ,vx2

]
,

which decouples the velocity components of the different space directions. Only the
reaction matrix Rz(~w) couples all components and is of the form

Rz(~w) =

[
Rvx1 ,vx1

(wx1) Rvx1 ,vx2
(wx2)

Rvx2 ,vx1
(wx1) Rvx2 ,vx2

(wx2)

]
.

The rectangular coupling matrices G, Rz(c(~w)) are of the forms

G =

[
Gp,vx1

Gp,vx2

]
, Rz(c(~w)) =

[
Rvx1 ,c

(~z)(c(~w)) Rvx2 ,c
(~z)(c(~w))

]
.

Some of these properties are used in more detail in the remainder of this thesis.

Using the above introduced matrix systems, the first structure defines a generalized
dynamical system Φ̂(A,B,C;M) as introduced in Subsection 2.3.4. Despite the block
structure of the involved matrices, the overall dimension of the system is denoted by
N . For models involving the Stokes equations or the NSE, the system matrix A is an
indefinite saddle point system (SPS) with no zero eigenvalues; see, e.g., [15, 35, 42].
Additionally, the left-hand side matrix M , which is often called system mass matrix,
is singular. Depending on the number of inputs nr and number of outputs na such
systems are called single-input-single-output (SISO) or multiple-input-multiple-output
(MIMO) descriptor system. A well known fact in control theory is that systems with
larger number of in- or outputs are getting more complicated to solve; see, e.g., [38–40].

In Table 3.1a, the detailed block structure of Φ̂(A,B,C;M) for all considered scenarios
is depicted.

If the system mass matrix M is singular, specially tailored methods for DAE need to
be considered. As mentioned above, this thesis does not explicitly investigate general-
purpose DAE methods, but uses certain techniques that circumvent the DAE character
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of the system. All arising matrix systems can be written as

Φ̂DAE :

[
M 0
0 0

]
d

dt

[
x̂(t)
p(t)

]
=

[
A Ĝ

ĜT 0

][
x̂(t)
p(t)

]
+

[
B
0

]
u(t),

y(t) = C x̂(t)

(3.22a)

(3.22b)

with M = MT � 0 ∈ Rn×n, x̂(t) ∈ Rn, p(t) ∈ Rm, Ĝ ∈ Rn×m, and rank
(
Ĝ
)

= m.

Thereby, the first block row in (3.22a) describes the differential part and the second

block row in (3.22a) the algebraic part of the dynamical system Φ̂DAE. Notice that the

input u(t) and output y(t) are identical to the generalized dynamical system Φ̂. Systems
with this special block structure are DAE of differential index two; see, e.g., [50, 133].
As denoted in Subsection 2.2.3, the matrix pencil([

A Ĝ

ĜT 0

]
;

[
M 0
0 0

])
(3.23)

has n − m finite eigenvalues λi ∈ C and 2m infinite eigenvalues λ∞ = ∞, compare
[15, 35]. Hence, the dynamical part of the system is of dimension n −m and does not
coincide with the differential part. The detailed block definitions of the structure (3.22)
for the different scenarios is depicted in the lower part of Table 3.1b. Thereby, the CTP
scenario is not mentioned explicitly since its mass matrix is not singular and the entire
system only contains the dynamical part. This means the CTP system is not of DAE
character. Nevertheless, the CTP scenario can be seen as a special case of (3.22) with
m = 0 and all following results can be applied in a simplified version.

Based on the block structure (3.22), the feedback stabilization approach for index-2
DAE systems is described in detail in the next chapter.
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Table 3.1.: Overview of specially structured system formulations.

(a) Detailed block structure of MIMO descriptor system (2.29).

Φ̂ :
M

d

dt
x(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

M ∈ RN×N A ∈ RN×N B ∈ RN×nr C ∈ Rna×N x ∈ RN u ∈ Rnr y ∈ Rna N

CTP Ma Aa Ba Ca a(t) ua(t) ya(t) n

NSE

[
Mz 0
0 0

] [
Az G
GT 0

] [
Bz

0

] [
Cz 0

] [
z(t)
p(t)

]
uz(t) yz(t) nz + np

CFM

Mz 0 0
0 Mc 0
0 0 0

  Az 0 G
−Rz(c(~w)) Ac 0

GT 0 0

 Bz

0
0

 [
0 Cc 0

] z(t)
c(t)
p(t)

 uz(t) yc(t) nz + nc + np

(b) Detailed block structure for DAE system (3.22).

Φ̂DAE :

[
M 0
0 0

]
d

dt

[
x̂(t)
p(t)

]
=

[
A Ĝ

ĜT 0

] [
x̂(t)
p(t)

]
+

[
B
0

]
u(t)

y(t) = C x̂(t)

M ∈ Rn×n A ∈ Rn×n Ĝ ∈ Rn×m B ∈ Rn×nr C ∈ Rna×n x̂ ∈ Rn n m

NSE Mz Az G Bz Cz z(t) nz np

CFM

[
Mz 0
0 Mc

] [
Az 0

−Rz(c(~w)) Ac

] [
G
0

] [
Bz

0

] [
0 Cc

] [
z(t)
c(t)

]
nz + nc np

5
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Chapter 4. Feedback Stabilization for Index-2 DAE Systems

The fourth chapter is one of the main chapters of this thesis. The goal is to apply the
LQR approach from Subsection 2.3.3 to the scenarios introduced in Chapter 3. Thereby,
the first major contribution is a framework that can handle the arising matrix systems
with index-2 DAE character in an efficient and numerically practicable way that exploits
the given structure of the system.

Throughout all considerations, a small number of inputs nr and outputs na is con-
sidered such that for all examples na + nr � n. This means that the LQR approach
minimizes a cost functional that considers only a few observations y(t) ∈ Rna and,
furthermore, can influence the system only via a few inputs u(t) ∈ Rnr . In practical
applications, the amount of observation and interaction points is often limited such that
these assumptions are fulfilled. It is, for example, not possible to observe the velocity
and the pressure in each point of a general domain. Due to this assumption, low-rank
coefficients arise in the linear and quadratic matrix equations and, therefore, specially
tailored low-rank methods can be applied to numerically solve these equations.

For systems with either many inputs or many outputs, special “terminal reductions”
techniques, as described in [40], need to be considered. In the case of many inputs
and many outputs, no efficient numerical tools are available to handle the arising dense
large-scale systems.

To avoid expensive general-purpose DAE methods, an indirect projection method is
applied that was introduced in [71]. This method exploits the existing structure of
the system and is adapted to the scenarios of Chapter 3. The defining PDEs are first
linearized and then discretized such that one ends up with the descriptor system (3.22).

The chapter is organized as follows. In the first section, the LQR approach from
Subsection 2.3.3 is modified to fit the descriptor system (3.22). As it turns out, the
main computational work is the solution of a GCARE of the form (2.33a). One specific
solution strategy, namely the Kleinman–Newton method (KNM), is adapted to this
problem definition in Section 4.2. Notice that in some literature this method is referred
to as Newton–Kleinman method. To be consistent with previous publications of the
author, the term KNM is used in this thesis. Subsequent to the KNM, large-scale
GCALEs of the form (2.32) arise, which are dealt with in Subsection 4.2.2. The resulting
nested iteration method is examined in Section 4.3. To this end, numerical examples
show the applicability of this method in Section 4.4.

In summary, this chapter combines various results regarding feedback stabilization of
multi-field flow problems from [14, 15, 35] to a generalized framework. A distinction
between the different scenarios is only pointed out if significant differences occur.

4.1. Riccati Approach for Index-2 DAE Systems

To apply a Riccati-based feedback stabilization approach to index-2 DAE systems, we fol-
low the analytical results in various publications by Raymond, e.g., [105–109]. Raymond
describes a method for feedback boundary stabilization for Navier-Stokes equations of
the form (3.8) in 2D in [106] that is extended to the 3D case in [107]. The main idea
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is to linearize the NSE around a stationary but possibly unstable solution as described
in Section 3.4. Raymond shows that the linear feedback derived for the linearized NSE
can stabilize the original NSE with an exponentially fast decay if the deviation is small
enough and the solution of the nonlinear NSE is in the neighborhood of an equilibrium
(compare Subsection 2.3.3). To this end, Raymond applies the so-called Leray projector
(or Helmholtz projector) to ensure that the convergence-free condition (3.8b) is automat-
ically fulfilled and a standard LQR approach can be applied to the projected evolution
equation [106, Sec. 4].

Our main goal is to mimic this approach in a simplified version for a finite dimensional
representation which is numerically applicable. The central question that arises is how
to construct a projection onto the correct subspace such that the solenoidal condition
(3.8b) is automatically fulfilled. In [13], Bänsch/Benner suggest the use of the discrete
projector from [71], which is suggested there to apply balanced truncation techniques
to Stokes-type descriptor systems. In [15, 35], the equivalence of the Leray projector
on operator level and the projector from [71] on matrix level is shown. Although this
approach was conceived for linearized NSE, it can be extended straightforwardly to the
CFM model as described in [14]. Following these observations, a discrete version of the
Leray projector, which can also handle general coupled flow problems of the form (3.22),
is derived in detail in the following subsection, which is a more detailed description of
[15, Sec. 2.3]. All statements are restricted to the 2-dimensional case.

4.1.1. Leray Projection as Discretized Projector

The analytic approach by Raymond is based on the projection of the velocity field ~v(t, ~x)
from the 2-dimensional space (L2(Ω))2 onto the space of divergence-free functions, such
that the solenoidal condition (3.8b) is fulfilled by construction, with vanishing normal
components on the boundary Γ.

Leray Projector: To define a projector as described above, consider the Helmholtz–
Leray decomposition [60, Sec. II.3]

(L2(Ω))2 = H(div, 0)⊕⊥ H(div, 0)⊥

with

H(div, 0) : = {~v ∈ (L2(Ω))2 : div~v = 0, ~v · ~n|Γ = 0},
H(div, 0)⊥ : = {∇p : p ∈ (H1(Ω))2}.

Using this decomposition, the velocity field ~v ∈ (L2(Ω))2 can be split into the divergence-
free part ~vdiv,0 ∈ H(div, 0) and the curl-free part ∇p ∈ H(div, 0)⊥ that fulfill

~vdiv,0 +∇p = ~v,

div~vdiv,0 = 0,
on Ω,

~vdiv,0 · ~n = 0, on Γ.

(4.1)
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When defining an operator P : (L2(Ω))2 → H(div, 0) that uses the system (4.1)
to map ~v ∈ (L2(Ω))2 onto ~vdiv,0 ∈ H(div, 0), one ends up with “the Leray projector
(for the corresponding boundary conditions)” [60, p. 38]. Notice that “contrary to the
usual Helmholtz decomposition [as described in, e.g., [54, 62]], the Helmholtz–Leray
decomposition of ~v is unique (up to an additive constant for p)” [60, p. 37]. It can be
shown that P is orthogonal (self-adjoint) [106, Sec. 2.2.] and by its construction it holds
that null (P) = H(div, 0)⊥ and range (P) = H(div, 0).

Discrete Projection: To determine a discrete equivalent to the Leray projector, the
system (4.1) needs to be discretized. Using the matrices from Section 3.5, (4.1) can be
written as

Mzvdiv,0 +Gp = Mzv, (4.2a)

GTvdiv,0 = 0 (4.2b)

with v ∈ Rnz the discretized velocity and vdiv,0 ∈ Rnz the discretized divergence-free
velocity. Notice that Mz = MT

z � 0. This system fulfills the boundary condition
~v · ~nΓ = 0 on Γ by construction, compare Section 3.5. By multiplying (4.2a) with
GTM−1

z from the left and using (4.2b), p can be written explicitly as

p = (GTM−1
z G)−1GTv

such that (4.2a) can be transformed into

Mzvdiv,0 +G(GTM−1
z G)−1GTv = Mzv,

vdiv,0 = M−1
z (Mzv −G(GTM−1

z G)−1GTv)

= (Inz −M−1
z G(GTM−1

z G)−1GT )v

= ΠTv

with

Π := Inz −G(GTM−1
z G)−1GTM−1

z ∈ Rnz×nz . (4.3)

Thus, ΠT seems to be a candidate for the discrete version of the Leray projector P. The
projection matrix Π, as defined in (4.3), has been derived in [71] in the context of bal-
anced truncation model order reduction for Stokes-type systems and various properties
of Π have been stated there. Since, in fact, ΠT seems to be the discrete Leray projec-

tion, its properties are examined. It is easy to verify that
(
ΠT
)2

= ΠT . Furthermore,
it can be shown that

null
(
ΠT
)

= range
(
M−1

z G
)

and range
(
ΠT
)

= null
(
GT
)
, (4.4)

which represent the discretized versions of the curl-free components H(div, 0)⊥ and of
the divergence-free components H(div, 0), respectively. In [71], it is stated that Π is an
oblique projector since Π 6= ΠT . This contradicts the property of the Leray projector
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P being orthogonal. However, the discrete equivalent of the (L2(Ω))2 inner product is
the Mz-inner product, defined for v1,v2 ∈ Rnbz as

< v1,v2 >Mz := (Mzv1,v2) = vT1 Mzv2 ∈ R. (4.5)

Using this definition, it can be shown that

< ΠTv1,v2 >Mz = vT1 (Inz −G(GTM−1
z G)−1GTM−1

z )Mzv2

= vT1 Mz(Inz −M−1
z G(GTM−1

z G)−1GT )v2

=< v1, Π
Tv2 >Mz .

This verifies that ΠT is orthogonal with respect to the M -inner product and that

MzΠ
T = ΠMz, (4.6)

as stated in [71, p. 1041].
Taking into account all these properties of ΠT and the fact that the projector onto

a specific subspace is unique, it follows that ΠT is the discrete version of the Leray
projector P and it holds that

P(~v) = ~vdiv,0 ⇔ ΠTv = vdiv,0. (4.7)

The discrete projector ΠT is a large-scale dense matrix in Rnz×nz that cannot be
formed explicitly and one tries to avoid its usage whenever possible. Nevertheless, there
are certain situation, where the projection v 7→ ΠTv = vdiv,0 or a projection of the form

f 7→ Πf = f̃ needs to be performed. Both can be performed efficiently as described in
the next lemma.

Lemma 4.1 For v,f ∈ Rnz and (4.3), the following equivalences hold.

v 7→ ΠTv = vdiv,0 ⇔
[
Mz G
GT 0

] [
vdiv,0

∗

]
=

[
Mzv

0

]
. (4.8)

f 7→ Πf = f̃ ⇔

[
Mz G
GT 0

] [
ṽ
∗

]
=

[
f
0

]
,

f̃ = Mzṽ.

(4.9)

This means, the multiplications with the dense projectors Π and ΠT from the left can be
performed implicitly by solving a (nz +np)-dimensional sparse system and by performing
one multiplication with Mz. Notice that the lower part of the solution is denoted by ∗ as
a placeholder for a term not being used.

Proof. The equivalence in (4.8) follows by construction from the definition of ΠT in
(4.3). Hence, a given velocity v is projected onto the (discretely) divergence-free velocity
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vdiv,0. To show the equivalence in (4.9), which does not have a special physical meaning,
consider

f̃ = Πf = ΠMzM
−1
z f = MzΠ

TM−1
z f ,

⇔ M−1
z f̃ =: ṽ = ΠT (M−1

z f),

where (4.8) can be applied. Hence, f̃ = Mzṽ can be computed.
�

As shown in [71, Sec. 3], null (Π) is an np-dimensional subspace and Π can be decom-
posed into

Π = ΘlΘ
T
r with ΘT

l Θr = Inz , Θl,Θr ∈ Rnz×(nz−np).

Such a decomposition exists for any projector; see, e.g., [113, Sec. 1.12.2].
The statements from this subsection are adapted to be used for generalized index-2

DAE in the following.

Generalized Projection: For generalized systems of the form (3.22), one can straight-
forwardly define the generalized projector

Π̂ : = IN − Ĝ(ĜTM−1Ĝ)−1ĜTM−1. (4.10)

Thereby, only the structural information of (3.22) is considered and the derivation from
above is adopted. For the different scenarios one ends up with the following versions:

• The CTP scenario (3.19) does not have any algebraic constraints such that m = 0

and Ĝ is an empty matrix that yields

Π̂CTP : = In and Π̂T
CTPa = a. (4.11a)

• The discretized flow model (3.20) is the above described system for which this
projection framework has been described in [15, 35] such that

Π̂NSE : = Π and Π̂T
NSEz = zdiv,0. (4.11b)

• Following the specifications in [14], the projector for the CFM scenario can be
written as

Π̂CFM : =

[
Inz 0
0 Inc

]
−
[
G
0

]([
GT 0

] [M−1
z 0
0 M−1

c

] [
G
0

])−1 [
GT 0

] [M−1
z 0
0 M−1

c

]
=

[
Inz −G(GTM−1

z G)−1GTM−1
z 0

0 Inc

]
=

[
Π 0
0 Inc

]
,

(4.11c)
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such that

Π̂T
CFM x̂ =

[
Π 0
0 Inc

]T [
z
c

]
=

[
ΠTz
c

]
=

[
zdiv,0

c

]
, (4.11d)

which shows that only the velocity part is projected, equivalent to the Stokes and
NSE cases, but with the concentration remaining unchanged.

The next subsection describes the generalized framework to apply the LQR approach
from Subsection 2.3.3 to systems of the form (3.22) using the projector (4.10).

4.1.2. Projected LQR Problem

The main idea in [71] is to project a dynamical system with algebraic constraints onto
a generalized dynamical system with an invertible left-hand side, where the solution
automatically fulfills the algebraic constraints. Hence, the DAE character of (3.22) is
circumvented and various methods for generalized state-space systems can be applied.
Following the transformation steps in [71, Sec. 3], adopted to the generalized system

Φ̂DAE, and using the generalized projector (4.10), the system (3.22) reduces to

Π̂MΠ̂T d

dt
x̂(t) = Π̂AΠ̂T x̂(t) + Π̂Bu(t), (4.12a)

y(t) = CΠ̂T x̂(t) (4.12b)

with Π̂T x̂(t) = x̂(t). Thereby, Π̂T ensures that the solution x̂(t) fulfills the algebraic

constraints ĜT x̂(t) = 0 and “simultaneously resides in the correct solution manifold, the
so-called hidden manifold [133]” [35, p. 3], defined by

0 = ĜTM−1Ax̂(t) + ĜTM−1Ĝp(t) + ĜTM−1Bu(t)

= GTM−1
z Azz(t) +GTM−1

z Gp(t) +GTM−1
z Bzuz(t).

(4.13)

Notice that the hidden manifold is correctly restricted to the velocity and pressure
spaces. “If required, p(t) can be computed from (4.13).”[71, p. 1042] Although the

system (4.12) has no explicit algebraic constraints anymore, the left-hand side Π̂MΠ̂T

has an np-dimensional null-space and cannot be inverted. This can be circumvented by
(formally) considering the decomposition

Π̂ = Θ̂lΘ̂
T
r such that Θ̂T

l Θ̂r = Iñ (4.14)

with Θ̂l, Θ̂r ∈ Rn×ñ and the reduced dimension ñ := n−m. Such a decomposition exists,
since (3.22) has ñ finite eigenvalues [50, 113]. Using this decomposition, the descriptor

system (4.12) can be expressed in terms of x̃(t) = Θ̂T
l x̂(t) ∈ Rñ as

M d

dt
x̃(t) = Ax̃(t) + Bu(t), (4.15a)

y(t) = Cx̃(t) (4.15b)
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with

M := Θ̂T
rMΘ̂r, A := Θ̂T

r AΘ̂r, B := Θ̂T
r B, C := CΘ̂r. (4.15c)

The system (4.15) is a generalized dynamical system of the form Φ̂(A,B, C;M) with
M =MT ∈ Rñ×ñ as introduced in Subsection 2.3.4. Furthermore, the ñ eigenvalues
of the pencil (A,M) are by construction identical to the finite n − m eigenvalues of
the pencil (3.23) as stated in [71]. Following the statements in Subsection 2.3.4, the
projected LQR problem can be defined as follows:
Minimize the cost functional

J (x̃(t),u(t)) =

∫ ∞
0

x̃(t)TCTCx̃(t) + u(t)Tu(t) dt (4.16a)

subject to (4.15). As described in Subsection 2.3.4, the solution to this LQR problem is
specified by the control law

u∗(t) = −BTXM︸ ︷︷ ︸
=:KT

x̃(t) ∈ Rnr , (4.16b)

where X = X T � 0 ∈ Rñ×ñ is the unique stabilizing solution of the GCARE

R(X ) = CTC +ATXM+MXA−MXBBTXM. (4.16c)

The main obstacle in solving the LQR problem (4.16) is to determine the solution of the
projected GCARE (4.16c) as explained in the next subsection.

An overview of the structure of the involved projected matrices in (4.15) for the
different scenarios is given in Table 4.1a.

Remark 4.2 It is important to point out again that the projector Π̂ is a dense matrix of
dimension n× n, with n the dimension of the finite element space, such that its explicit
assembling or the computation of its decomposition might not be feasible in the large-
scale case. This means neither the projector, nor its decomposition, nor the projected
matrices can be built or stored explicitly for usual (FEM) discretizations. Hence, this
strategy is only a theoretical approach and the projection is never performed explicitly as
described in detail in [71]. Nevertheless, the following statements are correctly defined
for the projected matrices. Later on, in Subsection 4.2.2, it is shown how the projection
is done implicitly by using the original sparse matrices that arise from the discretization
in Section 3.5 and by solving certain SPSs.

Before the solution strategy for the GCARE (4.16c) is presented in Section 4.2, the
incorporation of the control input is addressed in the next subsection.

4.1.3. Projected Boundary Control Input

In the CTP scenario, the right-hand side f(t, ~x) in (3.7) is defined over Ω as external
force that influences our PDE. This means, f(t, ~x) describes a distributed control input,
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ui(t)~qi(~x)

Figure 4.1.: The parabolic in-/outflow profile ~qi(~x) ∈ R2 at the control boundary part
Γfeed,i with the intensity controlled by ui(t) ∈ R.

where the controller interacts with all particles in the domain Ω or a special control
subdomain Ωfeed ⊂ Ω. This can be easily assembled within the corresponding finite
element space as Baua(t), where all spatial information is included in Ba and the time-
varying information defines the control input ua(t); compare, e.g., [26, Sec. 6]. This
directly fits the scheme of the generalized dynamical system (2.29).

The main scenarios in this thesis that include an instationary flow process are consid-
ered to be stabilized using a boundary control input. In contrast to distributed control,
as used for the CTP scenario, the boundary control approach is technically more practi-
cable for any sorts of fluid flow. A common choice for the boundary control are Dirichlet
BC. As described in Section 3.5, the control acts only on the velocity space such that for
the Stokes/NSE and CFM scenario, one needs to consider non-homogeneous Dirichlet
BC for the velocity as control input on some special boundary parts Γfeed,i with

nr⋃
i=1

Γfeed,i = Γfeed ⊂ Γwall. (4.17)

Unfortunately, this conflicts with the homogeneous Dirichlet BC that are required to
apply the projection ideas from Subsection 4.1.1. A way to circumvent this drawback is
described in [15, Sec. 2.4] and is revisited in more detail in this subsection.

The main idea is to construct an operator that distributes the boundary control into
the interior of Ω as described in [108] that, additionally, fulfills the solenoidal condition
(3.8b). This construction is necessary, since Raymond works on the space H(div, 0),
where all functions have vanishing normal components on the boundary, to define the
feedback stabilization as in [106]. In our considerations, only control components in
normal direction are used and tangential components are assumed to be zero. Raymond
shows in [106] that such a control operator can be used to stabilize two-dimensional flow
problems described by the NSE (3.8).

The incorporation of such a normal boundary control for a system of the form (4.15),
where x̃(t) has zero normal components in a discrete sense, can be done in a simplified
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but numerically feasible way as follows.
Following the statements in [15, Sec. 2.4], one considers nr different inputs ui(t)

that operate on different parts of the control boundary Γfeed, i.e., the non-homogeneous
Dirichlet inputs can be written as

~gfeed(t, ~x) =
nr∑
i=1

ui(t)~qi(~x), on Γfeed,

where ~qi has support on Γfeed,i as defined in (4.17). To match the bordering no-slip BC
on Γwall, a parabolic in-/outflow ~qi is considered, whose intensity is controlled by ui(t);
see Figure 4.1.

The non-zero part ΘT
r Bz of the control operator B in (4.15) is the projected version

of the velocity input operator Bz that has nr columns, each of which is computed in the
following way.

For i = 1, . . . , nr do:

1. Solve the discretized version of the linearized Navier–Stokes equations (3.14) with
homogeneous Dirichlet boundary condition except for ~gfeed on Γfeed,i, where the
Dirichlet condition 1 · ~qi(~x) is imposed. Denote the resulting velocity field by
vi ∈ Rñz .

2. Apply the discrete version of the projection (4.1) onto vi that results in ṽi(t).

3. Multiply ṽi by the discrete linearized Navier–Stokes operator from step 1 to get v̂i.

4. Repeating step 2 for v̂i and removing all boundary knots, one ends up with the i-th
column bi ∈ Rnz of Bz.

To follow these steps, it is important to mention that one needs the original matrices
from the finite element discretization containing all boundary knots defined over Rñz×ñz

with ñz > nz. The specific Dirichlet conditions are incorporated by setting the rows,
corresponding to the Dirichlet knots, in each matrix to zero, except the diagonal entry
that is set to one. Afterwards, the Dirichlet conditions are explicitly set in the right-hand
side vector, which implies the correct Dirichlet conditions in the solution vector. The
entire procedure needs to be completed only once during the matrix assembling phase.

The input operator Bz mimics the definition of the input operator for the indefinite
dimensional space in [108] but leaves aside the following difficulties. First, the BC
in (4.1) define only the normal components of ~vdiv,0 as zero, whereas our approach uses
homogeneous Dirichlet BC. Secondly, the Leray projector projects onto H(div, 0), which
is a subspace of (L2(Ω))2. However, these functions might not be smooth enough to apply
the linearized NSE operator.

Although this strategy is not the exact numerical realization of the approach from
Raymond, it shows good results in the numerical experiments and is, therefore, used in
the remainder of this thesis. To the author’s knowledge, there is no better numerical
realization of this input operator available at this time using standard finite elements. A
different approach using specially tailored finite elements has been investigated in [34].
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Table 4.1.: Matrix structures involved in Kleinman–Newton-ADI for index-2 DAE systems.

(a) Overview of projected matrices in (4.15).

Φ̂ :
M d

dt
x̃(t) = Ax̃(t) + Bu(t)

y(t) = Cx̃(t)

M∈ Rñ×ñ A ∈ Rñ×ñ B ∈ Rñ×nr C ∈ Rna×ñ Θ̂{l,r} ∈ Rn×ñ x̃ ∈ Rñ ñ

CTP Ma Aa Ba Ca In a(t) n

NSE ΘT
rMzΘr ΘT

r AzΘr ΘT
r Bz CzΘr Θ{l,r} ΘT

l z(t) nz − np

CFM

[
ΘT
rMzΘr 0

0 Mc

] [
ΘT
r AzΘr 0

−Rz(c(~w))Θr Ac

] [
ΘT
r Bz

0

] [
0 Cc

] [
Θ{l,r} 0

0 Inc

] [
ΘT
l z(t)
c(t)

]
nz − np + nc

(b) Block structures in Algorithm 3 using original sparse matrices.[
AT −K(k)BT + q`M Ĝ

Ĝ 0

]
W (k) Ṽ` K

(k+1)
` u(t)

CTP ATa −K(k)BT
a + q`Ma

[
CT

a K(k)
]

Ṽ` K
(k+1)
`−1 +MaṼ`Ṽ

H
` Ba −KTa(t)

NSE

[
ATz −K(k)BT

z + q`Mz G
GT 0

] [
CT

z K(k)
]

Ṽ` K
(k+1)
`−1 +MzṼ`Ṽ

H
` Bz −KTz(t)

CFM

ATz −K(k)
z BT

z + q`Mz −Rz(c(~w))T G

−K(k)
c BT

z ATz + q`Mc 0
GT 0 0

 [
0 K

(k)
z

CT
c K

(k)
c

] [
Ṽz,`
Ṽc,`

] [
K

(k+1)
z,`−1 +MzṼz,`Ṽ

H
z,`Bz

K
(k+1)
c,`−1 +McṼc,`Ṽ

H
z,`Bz

]
−
(
KT

z z(t) +KT
c c(t)

)
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4.2. Solving the Generalized Algebraic Riccati Equation

The GCARE (4.16c) is a quadratic equation in X ∈ Rñ×ñ as introduced in Subsec-
tion 2.3.2 for standard state-space systems and in Subsection 2.3.4 for generalized state-
space systems. The Riccati operator R : Rñ×ñ → Rñ×ñ is twice Fréchet differentiable
and its derivatives can be defined as

R′(X )N : = (A− BBTX )TNM+MN (A− BBTX ), (4.18a)

R′′(X )(N1,N2) : = −MN1BBTN2M−MN2BBTN1M; (4.18b)

see, e.g., [5, 85]. Due to the quadratic character of R(X ), the Fréchet derivative of order

two is independent of X and one can reformulate the Riccati operator applied to X̃
exactly by using the Taylor series

R(X̃ ) = R(X ) +R′(X )(X̃ − X ) +
1

2
R′′(X )(X̃ − X , X̃ − X ). (4.19)

One way to solve (4.16c) iteratively is to apply Newton’s method from Subsection 2.4.1
specially tailored to the structure of (4.16c) as depicted in the following.

4.2.1. Kleinman–Newton Method (KNM)

Applying Newton’s method to the GCARE (4.16c) yields in the k+1-st step

R′(X (k))S(k) = −R(X (k)), (4.20a)

where (4.20a) is a GCALE in S(k) as defined in (2.19). Hence, the increment S(k) ∈ Rñ×ñ

updates the solution via

X (k+1) = X (k) + S(k). (4.20b)

This standard formulation is preferred if direct solution methods are used to solve
(4.20a); see, e.g., [25, p. 101]. In [81], Kleinman introduced a reformulation of (4.20)
that directly iterates on the solution, i.e.,

R′(X (k))X (k+1) = R′(X (k))X (k) −R(X (k)).

Using (4.18a), this can be written as(
A− BBTX (k)M

)T X (k+1)M+MX (k+1)
(
A− BBTX (k)M

)
=
(
A− BBTX (k)M

)T X (k)M+MX (k)
(
A− BBTX (k)M

)
− (CTC +ATX (k)M+MX (k)A−MX (k)BBTX (k)M)

=− CTC −MX (k)BBTX (k)M.
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Algorithm 2 Kleinman–Newton method [81]

Input: A, M, B, C, tolNewton, and initial stabilizing feedback K(0)

Output: unique stabilizing solution X (∗) of CARE (4.16c)
1: Set k = 0.
2: while ||R(X (k))|| > tolNewton do

3: Set A(k) = A− B
(
K(k)

)T
, W(k) =

[
CT K(k)

]
.

4: Compute X (k+1) that solves:(
A(k)

)T X (k+1)M+MX (k+1)A(k) = −W(k)
(
W(k)

)T
.

5: k = k + 1
6: K(k) =MX (k)B
7: end while
8: X (∗) = X (k)

Using the feedback matrix K(k) := MX (k)B ∈ Rñ×nr as defined in (2.33), which is
often also called feedback gain or simply gain matrix, this equation can be written more
compactly as (

A(k)
)T X (k+1)M+MX (k+1)A(k) = −W(k)

(
W(k)

)T
. (4.21)

Thereby, the closed-loop matrix A(k) := A − B
(
K(k)

)T
and the right-hand side factor

W(k) :=
[
CT K(k)

]
∈ Rñ×(na+nr) define a GCALE of the form (2.32) with a low-rank

right-hand side, since na + nr � ñ in all considered examples. If Λ(A,M) ⊂ C−, i.e.,
the matrix pencil is stable, then K(0) = 0, as discussed in detail in Subsection 4.2.3.
Hence, the size of W(k) can be different. To simplify notation, this variation in size is
not reflected further. The GCALE (4.21) has to be solved in every Newton step.

It can be shown that if (A,B;M) is stabilizable and (C,A;M) is detectable, then
the iteration over (4.21) converges q-quadratically towards the unique spsd stabilizing
solution of (4.16c) considering an initial iterate X (0) or an initial feedback K(0) that is
stabilizing. Furthermore, the sequence of iterates satisfies

X (1) � X (2) � · · · � X (∗) � 0; (4.22)

see, e.g., [81] using K(0), [85, Thm. 9.2.1] using X (0), or [31, Thm. 1] as a summary of
both cases. The entire process is known as the Kleinman–Newton method (KNM) and
is depicted in Algorithm 2. Thereby, most computational work is done by solving (4.21).
An efficient way to solve this GCALE, exploiting the low-rank structure of the right-
hand side, is the low-rank ADI iteration as introduced in Subsection 2.4.2. The next
subsection introduces the necessary adaptions of the low-rank ADI method to handle
the projected GCALE (4.21).

4.2.2. ADI Method Applied to Projected GCALEs

Similar to the Kleinman–Newton iteration, one can straightforwardly write the G-LRCF-
ADI iteration as depicted in Algorithm 1 for the GCALE (4.21) using the projected and
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dense matrices. The main computational work in Algorithm 1 is done in Lines 2 and 5

by solving with
((
A(k)

)T
+ q`M

)
for either W(k) =

[
CT K(k)

]
for ` = 1 or MV`−1 for

` > 1 as right-hand side.
Before discussing the strategy of how to solve these projected linear systems without

using the projection explicitly, some important observations from [71, Sec. 4] need to
be recalled in a generalized form. Therefore, consider a fixed k in (4.21) to skip the
Newton’s method index for now.

The projected GCALE (4.21) is of the form [71, eq. 4.1b] that uses the decomposition

(4.14). Its solution X can be transformed into X = Θ̂rX Θ̂T
r which is the solution of a Π̂

projected GCALE like [71, eq. 4.3b] corresponding to (4.12). As stated in [71, eq. 4.2],

X is invariant regarding multiplication with Π̂T from the left and Π̂ from the right, such
that X = Π̂TXΠ̂. Assuming the low-rank decompositions X = ZZH and X = ZZH it
holds that

Π̂TZ = Z ⇒ X = ZZH = Π̂TZZHΠ̂, (4.23a)

Θ̂rZ = Z ⇒ X = ZZH = Θ̂rZZHΘ̂T
r . (4.23b)

This means that the low-rank factor Z is Π̂T -invariant, hence, span {Z} ⊂ range
(
Π̂T
)

.

Using (4.15c) and these implications, the projected feedback matrix K can be written
as

K =MXB = Θ̂T
rMΘ̂rX Θ̂T

r B = Θ̂T
rMXB := Θ̂T

r K (4.24)

with the feedback K that corresponds to the original DAE (3.22).
This enables one to write the projected linear systems that need to be solved within

Algorithm 1 in the form ((
A(k)

)T
+ q`M

)
V` = Y`−1 (4.25)

with the projected right-hand side

Y`−1 : =

W
(k) =

[
CT K(k)

]
= Θ̂T

r

[
CT K(k)

]
=: Θ̂T

rW
(k) = Θ̂T

r Y0, ` = 1,

MV`−1 = Θ̂T
rMΘ̂rV`−1 = Θ̂T

rMV`−1 = Θ̂T
r Y`−1, ` ≥ 2

= Θ̂T
r Y`−1.

(4.26)

Notice that Θ̂rZ = Z consists of scaled blocks

Ṽi =
√
−2 Re (qi)Vi, ∀i = 1, . . . , `, (4.27)

as defined in (2.37b). Applying (4.23) for each block Vi, it holds that

Θ̂rVi = Vi = Π̂TVi, ∀ i = 1, . . . , `, (4.28)
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which means that Vi is Π̂T -invariant and span {Vi} ⊂ range
(
Π̂T
)
, ∀ i = 1, . . . , `.

Hence, the system (4.25) can be written as(
Θ̂T
r A

T Θ̂r − Θ̂T
r K

(k)BT Θ̂r + q` Θ̂
T
rMΘ̂r

)
V` = Θ̂T

r Y`−1,

Θ̂T
r

(
AT −K(k)BT + q`M

)
Θ̂rV` = Θ̂T

r Y`−1.

Multiplying this from the left by Θ̂l and using (4.28) yields

Π̂
(
AT −K(k)BT + q`M

)
Π̂TV` = Π̂Y`−1. (4.29)

Since V` = Π̂TV`, one can use [71, Lem. 5.2] to compute the solution of (4.29) by solving
the SPS [

AT −K(k)BT + q`M Ĝ

ĜT 0

] [
V`
∗

]
=

[
Y`−1

0

]
. (4.30)

Notice that the system (4.30) might be complex due to the possible complex shift q`.
To this end, the G-LRCF-ADI method can be applied to solve projected Lyapunov

equations of the form (4.21) without any explicit projection as stated in, e.g., [15, 35,
71] for systems of the form (3.20) and in [14, 36] for systems that couple (3.20) and
(3.21). Thereby, only operations involving the original sparse matrices are needed and
the solution also fulfills the solenoidal condition (3.8b) on the discrete level by construc-
tion. Furthermore, the feedback matrix can be defined via (4.24) using only the original
sparse matrices.

The crucial step for an efficient algorithm is the solution of the complex-valued SPS
(4.30) that needs to be solved in every ADI step for a varying shift q`. As it is pointed
out in [15, 35, Sec. 3.1], the upper left block of the SPS (4.30) is, in general, dense due
to the low-rank product K(k)BT such that the main part of (4.30) is also dense. Using
[115, Def. 4.2], one can write (4.30) as a sparse plus low-rank (splr) system([

AT + q`M Ĝ

ĜT 0

]
︸ ︷︷ ︸

=:F`

−
[
K(k)

0

]
︸ ︷︷ ︸
=:K(k)

[
BT 0

]︸ ︷︷ ︸
=BT

)[
V`
∗

]
︸︷︷︸
=:V`

=

[
Y`−1

0

]
︸ ︷︷ ︸
=:Y`−1

that can be illustrated in a more compact form as(
F` −K(k)BT

)
V` = Y`−1. (4.31)

To evaluate (4.31) one can use the Sherman–Morrison–Woodbury formula, see, e.g., [63],
such that(

F` −K(k)BT
)−1

=
(
IN + F−1

` K(k)
(
Inr −BTF−1

` K(k)
)−1

BT
)
F−1
` .

This means one only needs to solve with the sparse matrix F` ∈ CN×N and the small
dense matrix

(
Inr −BTF−1

` K(k)
)
∈ Cnr×nr . The blue marked additional solves with F`

67



Chapter 4. Feedback Stabilization for Index-2 DAE Systems

for the right-hand side K(k) can be achieved by adding the nr columns of K(k) to the
right hand side Y`−1 such that one needs to solve the SPS[

AT + q`M Ĝ

ĜT 0

][
V̂`
∗

]
=

[
Ŷ

(k)
`−1

0

]
(4.32a)

with the N × (na + 2nr) dimensional low-rank matrices

V̂` =

[
V̂`
∗

]
:=

[
V̂ Y
` V̂ K

`

∗ ∗

]
and Ŷ

(k)
`−1 =

[
Ŷ

(k)
`−1

0

]
:=

[
Y`−1 K(k)

0 0

]
.

The original solution V` of (4.30) can be reconstructed via

V` = (In + V̂ K
` (Inr −BT V̂ K

` )−1BT )V̂ Y
` . (4.32b)

To this end, in every ADI step the sparse SPS (4.32a) needs to be solved. This problem is
examined in detail in Chapter 5. Beforehand, in Section 4.4, the backslash operator from
MATLAB is used, which is a highly efficient sparse direct solver examined in Section 5.1.

Before the G-LRCF-ADI method for projected equations can be combined with the
Kleinman–Newton iteration, a remaining problem needs to be addressed.

4.2.3. Initial Feedback

The open problem is the requirement of a stable pencil (A(k),M), ∀k ≥ 0 as stated in
Subsection 2.4.2. Using the linearized NSE as in the NSE or CFM scenario, Λ(A,M),
which is equivalent to the finite subset of the spectrum of (3.23), can have unstable
eigenvalues λus ∈ C+; see, e.g., [15, Sec. 3.3]. In this case, before using the G-LRCF-
ADI, one needs to determine an initial feedback K(0) ∈ Rn×nr such that

Λ

([
A−B

(
K(0)

)T
Ĝ

ĜT 0

]
,

[
M 0
0 0

])
⊂ C−. (4.33)

One way to construct such an initial feedback is based on the ideas in [70] and is depicted
in the following by mainly using the statements and notations of [15, Sec. 2.7] adapted
to the generalized index-2 DAE systems of the form (3.22).

Most of the n − m finite eigenvalues of (3.23) are stable and only nus eigenvalues

are unstable with nus � n. These unstable finite eigenvalues λ
(i)
us ∈ C+ need to be

computed together with their corresponding left and right eigenvectors ω(i),ψ(i) ∈ CN

for i = 1, . . . , nus, i.e., the generalized EVPs[
A Ĝ

ĜT 0

]
ψ(i) = λ(i)

us

[
M 0
0 0

]
ψ(i) and

[
AT Ĝ

ĜT 0

]
ω(i) = λ(i)

us

[
M 0
0 0

]
ω(i)

need to be solved, as explained in more detail in Subsection 2.2.3, to define the eigen-
triplet (λ

(i)
us ,ψ(i),ω(i)).
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Notice that these unstable eigentriplets are either real or occur as a complex con-
jugated pair. In the following, the matrix pencil (3.22a) is projected onto the space
spanned by the eigenvectors of the unstable eigenvalues. As shown next, there exists a
real-valued projection basis, although the unstable eigenvalues and their corresponding
eigenvectors might be complex. Considering the i-th eigentriplet (λ

(i)
us ,ψ(i),ω(i)) and the

i+1-st eigentriplet (λ
(i)
us ,ψ(i),ω(i)), it holds for α1, α2 ∈ C that

span
{
ψ(i),ψ(i)

}
= α1ψ

(i) + α2ψ(i)

= α1

(
Re
(
ψ(i)

)
+  Im

(
ψ(i)

))
+ α2

(
Re
(
ψ(i)

)
−  Im

(
ψ(i)

))
= (α1 + α2) Re

(
ψ(i)

)
+ (α1 − α2) Im

(
ψ(i)

)
= span

{
Re
(
ψ(i)

)
, Im

(
ψ(i)

)}
.

Thus, by replacing each complex conjugat pair of left or right eigenvectors, e.g., (ψ(i), ψ(i+1) :=

ψ(i)), by the real-valued pair (ψ(i) := Re
(
ψ(i)

)
, ψ(i+1) := Im

(
ψ(i)

)
), one can build a

real-valued projection basis defined by the left and right eigenvectors via

HL :=
[
ω(1), . . . ,ω(nus)

]
∈ RN×nus and HR :=

[
ψ(1), . . . ,ψ(nus)

]
∈ RN×nus .

These projectors are used to build the matrices

M̃ := HT
L

[
M 0
0 0

]
HR, Ã := HT

L

[
A Ĝ

ĜT 0

]
HR, B̃ := HT

L

[
B
0

]
,

which define the nus-dimensional GABE

ÃTX(0)M̃ + M̃TX(0)Ã− M̃TX(0)B̃B̃TX(0)M̃ = 0, (4.34)

whose unique stabilizing solution can be used to define the initial feedback K(0) ∈ Rn×nr

as first n rows of [
K(0)

0

]
:=

[
M 0
0 0

]
HLX

(0)HT
L

[
B
0

]
.

The GABE (4.34) is solved using the generalized Newton iteration for the sign-function
described in [20]. The resulting closed-loop pencil (4.33) is stable and its spectrum can
be defined via (2.27).

Notice that some algorithms compute the eigenvectors in such a way that M̃ = Inus ,
which means HL and HR are bi-orthogonal with respect to the M -inner product. In this
case, one has to solve an ordinary Bernoulli equation like (2.25). The initial feedback
K(0) ensures that the convergence requirements of the Kleinman–Newton method in
Subsection 4.2.1 are fulfilled and the GCALE (4.21) has a unique stabilizing solution for
k = 0 such that all further A(k) are stable as well.

Notice that in [1], the authors use the unique stabilizing solution of the GABE to
stabilize linearized NSE via boundary control. However, such a Bernoulli feedback is
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computed by penalizing the divergence-free condition without the use of any cost func-
tional. Hence, one cannot improve the quality of the solution and the divergence-free
condition is disturb. Furthermore, the GABE method is not able to improve the stabil-
ity of already stable eigenvalues [1, Sec. 6.6.3]. This is necessary in the practical closed
loop simulation as it is shown in the closed loop simulation in Chapter 7.

4.3. Kleinman–Newton-ADI (KN-ADI) for Index-2 DAE
Systems

After computing the initial feedback K(0) for unstable pencils (3.23) and assembling
the correct input operator Bz, one can combine the KNM from Subsection 4.2.1 with
the G-LRCF-ADI method from Subsection 4.2.2 to form the Kleinman–Newton-ADI
(KN-ADI) method for index-2 DAE systems as described in detail in this section. First,
a feedback accumulation strategy is shown in the following subsection. Afterwards,
different stopping criteria are discussed in Subsection 4.3.2 and a convergence proof is
given in Subsection 4.3.3. At the end of this section the complete algorithm is depicted
that is used for the numerical examples in Section 4.4.

4.3.1. Feedback Accumulation

In many applications, such as those considered in this thesis, one is not interested in
explicitly forming the solution factor Z or even the solution X. One rather seeks a tool to
compute the feedback matrix K ∈ Rn×nr . This matrix is of low rank and is much cheaper
to store than the original solution factor Z ∈ Cn×`(na+nr). Additionally, the right-hand
side in Newton’s method in Algorithm 2 requires only K such that the solution X is only
used to update the feedback K at the end of each Newton step. Using the G-LRCF-ADI
method to solve the Newton step (4.21) yields a low-rank representation of the solution
X = ZZH as defined in (2.37b) and (4.23). Hence, the feedback K(k+1) in the k-th
Newton step can be accumulated in the `-th ADI step using (4.27) via

K
(k+1)
` = MZ`Z

H
` B = M

[
Ṽ1 . . . Ṽ`

]
Ṽ

H
1
...

Ṽ H
`

B
 = M

∑̀
i=1

Ṽi

(
Ṽ H
i B

)
= K

(k+1)
`−1 +MṼ`

(
Ṽ H
` B

)
, ∀` ≥ 1

(4.35)

with K
(k+1)
0 = 0.

Depending on the considered scenario, this iterative assembling can be written in more
detail as depicted in Table 4.1b; compare, e.g., [14, 15, 31, 35].

4.3.2. Stopping Criteria

Although the Newton step (4.21) can be solved efficiently and the memory requirements
can be reduced drastically by using the feedback accumulation from above, one draw-
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back in using the Kleinman–Newton-ADI iteration for projected Riccati equations is the
choice of suitable stopping criteria for the inner (ADI) and outer (Kleinman–Newton)
iteration. As pointed out in Subsection 2.4, a common way to terminate iterative meth-
ods is the residual. To compute the residuals of (4.21) and (4.16c), the application of

the projector Π̂ is necessary. This can be achieved by using the computations in (4.8)
and (4.9) as shown next.

Projected Residual The Euclidean norm of large-scale, quadratic matrices can be
computed using the so-called power iteration; see, e.g., [63, Sec. 7.3.1]. This method only
involves matrix-vector products and, eventually, converges towards the eigenvalue with
the largest magnitude. For symmetric matrices its absolute value is the Euclidean norm.
Certain subspace acceleration techniques such as the Lanczos method [63, Alg. 9.2.1] (for
symmetric matrices) or the Arnoldi method [63, Sec. 9.4] (for general matrices) are useful
if the eigenvalues are not sufficiently separated, which slows down the convergence rate
of the power iteration, see, e.g., [63, Sec. 7.3.1].

The Lyapunov and Riccati residual are both symmetric for symmetric solutions X,
meaning that the Lanczos method is the method of choice. Using the above reformula-
tions, the Lyapunov equation (4.21) and the Riccati equation (4.16c), depending on the
low-rank solution ZZH , can be written as

L
(
ZZH

)
= Π̂

(
(AT −KBT )ZZHM +MZZH(A−BKT ) +WW T

)
Π̂T , (4.36a)

R
(
ZZH

)
= Π̂

(
CTC + ATZZHM +MZZTA−MZZHBBTZZHM

)
Π̂T . (4.36b)

Both are of the general form

G
(
ZZH

)
= Π̂G̃

(
ZZH

)
Π̂T , (4.37)

where G̃
(
ZZH

)
∈ Rn×n is a projector free, symmetric matrix depending on ZZH . As

mentioned above, the power, Lanczos, and Arnoldi iteration basically only involve mul-
tiplications with vectors from the right, which means for a given vector s0 ∈ Rn one has
to perform

s1 = Π̂Ts0, s2 = G̃
(
ZZH

)
s1, s3 = Π̂s2 (4.38)

in each iteration step to apply any of the above mentioned methods. Besides the stan-
dard iteration step s2 = G̃

(
ZZH

)
s1, one needs to perform the projections (4.8) and

(4.9) in each iteration step. Notice that the Arnoldi and Lanczos iterations converge
usually within five to ten iteration steps to the required accuracy. Although this com-
putation only involves the original sparse matrices, its use in every ADI step increases
the computation costs drastically, especially in the large-scale case. An efficient way to
overcome this drawback is pointed out next.

Relative Change In [31, Sec. 4.2], it is shown that the relative change in the solution

factor Z is a suitable stopping criterion since “the norms ||Ṽ`||F tend to decay quite
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evenly”[31, p. 765]. The square of the norm of this relative change can be defined via

||Ṽ`||2F
||Z`||2F

=
||Ṽ`||2F

||Z`−1||2F + ||Ṽ`||2F

whose accumulation is inexpensive since Ṽ` is of low rank in general.
As mentioned above, in the applications of this thesis one is only interested in comput-

ing the feedback K ∈ Rn×nr . “Therefore, it seems to be reasonable to stop the iteration
as soon as the changes in the matrices K(k) become small or more precisely

||K(k) −K(k−1)||F
||K(k)||F

≤ ε. (4.39)

Here, ε is a tiny, positive constant (e.g., ε = ñ · εmach). This criterion is very inexpen-
sive, because K ∈ Rn×nr and nr � n.”[31, Sec. 5.4] This approach uses the feedback
accumulation from Subsection 4.3.1 to circumvent the above mentioned drawback.

The nested KN-ADI iteration for index-2 DAE systems is depicted in Algorithm 3.
Thereby, the feedback K is accumulated directly, as described in (4.35). Furthermore,
the relative change defined in (4.39) is used as stopping criterion for the inner and outer
iteration. Notice that the output matrix C is weighted by a factor α ∈ R+ as described
at the end of Subsection 2.3.3 that plays an important role in the numerical examples in
Section 4.4. The specific block structure for the different scenarios is depicted in detail
in Table 4.1b. More details about the convergence of Algorithm 3 are depicted next.

4.3.3. Convergence of KN-ADI for Index-2 DAE Systems

In this subsection, some special properties of the index-2 DAE system (3.22) and a
convergence proof for the KNM applied to (4.16c) are given. Due to the DAE structure
of (3.22), some parts of Defenition 2.12 need to be extended.

Definition 4.3 (System properties of index-2 DAE Φ̂DAE) For the index-2 DAE
(3.22), the following definitions hold.

(a) A matrix pencil (A,M ) in (3.22) is called stable if it is regular and all the finite
eigenvalues of (A,M ) lie in the open left half-plane (cf. [123, Def. 3.8]).

(b) We call a triple (A,B;M ) stabilizable if there is a matrix K(0) ∈ Rn×nr that
yields (4.33). A triple (C,A;M ) is called detectable if and only if (AT ,CT ;M )
is stabilizable. Notice that we are only interested in stabilizing trajectories. There-
fore, this definition of stabilizable is equivalent to the definition of “behaviorally
stabilizable” as defined in [127, Def. 2.2.3 a].

The GARE (4.16c) is defined over the projected space Rñ×ñ. The following lemma

connects the projected system Φ̂(A,B, C;M) with the original system Φ̂(A,B,C;M )
regarding stabilizability and detectability.
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Algorithm 3 Kleinman–Newton-ADI (KN-ADI) method for index-2 DAE systems

Input: M,A, Ĝ, B, C, initial feedback K(0), ADI shift parameters
qi ∈ C− : i = 1, . . . , nADI, tolADI, tolNewton, and α ∈ R+

Output: feedback matrix K
1: for k = 0, 1, . . . , kmax do
2: Set W (k) =

[
αCT K(k)

]
.

3: Get V1 by solving [
AT −K(k)BT + q1M Ĝ

ĜT 0

][
V1

∗

]
=

[
W (k)

0

]
.

4: K
(k+1)
1 = −2 Re (q1)MV1V

H
1 B

5: for ` = 2, 3, . . . , `max do
6: Get V` by solving[

AT −K(k)BT + q`M Ĝ

ĜT 0

][
V`
∗

]
=

[
MV`−1

0

]
.

7: Ṽ` =
√
−2 Re (q`) (V`−1 − (q` + q`−1)V`)

8: K
(k+1)
` = K

(k+1)
`−1 +MṼ`Ṽ

H
` B

9: if

(
||K(k+1)

` −K(k+1)
`−1 ||F

||K(k+1)
` ||F

< tolADI

)
then

10: break
11: end if
12: end for
13: K(k+1) = K

(k+1)
`

14: if
(
||K(k+1)−K(k)||F
||K(k+1)||F < tolNewton

)
then

15: break
16: end if
17: end for
18: K = K(k)

Lemma 4.4 The matrix triple (A,B;M) is stabilizable ((C,A;M) is detectable) if and
only if (A,B;M ) is stabilizable ((C,A;M) is detectable).

Proof. If (A,B;M ) is stabilizable, there exists a K(0) such that([
A−B

(
K(0)

)T
Ĝ

ĜT 0

]
,

[
M 0
0 0

])
=:
(
A−B

(
K(0)

)T
,M

)
is stable. As stated in Subsection 4.1.2, the finite eigenvalues of (A,M) are equivalent to

the eigenvalues of (A,M) and, therefore, the finite eigenvalues of
(
A−B

(
K(0)

)T
,M

)
are equivalent to the eigenvalues of(

Θ̂T
r

(
A−B

(
K(0)

)T)
Θ̂r, Θ̂

T
rMΘ̂r

)
.
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Using the definitions (4.15c) and (4.24) yields

Θ̂T
r

(
A−B

(
K(0)

)T)
Θ̂r = A− B

(
K(0)

)T
that shows that (A,B;M) is stabilizable. The case for detectability follows by defini-
tion.

�

Using these results, the convergence proof for the KNM applied to (4.16c) is stated in
the following theorem. This theorem is the main result of this chapter.

Theorem 4.5 Assume (A,B;M ) is stabilizable and (C,A;M) is detectable. Then,

there exists a maximal symmetric solution X(∗) = Θ̂rX (∗)Θ̂T
r with R(X (∗)) = 0 for which([

A−BBTX(∗)M Ĝ

ĜT 0

]
,

[
M 0
0 0

])
(4.40)

is stable. Furthermore, for the sequence
{
X(k)

}∞
k=0

defined by X(k) := Θ̂rX (k)Θ̂T
r , (4.21),

and a symmetric matrix X(0) for which
(
A−B

(
K(0)

)T
,M

)
is stable, it holds that,

for k ≥ 1,

X(1) � X(2) � · · · � X(k) � 0. (4.41a)

Moreover,

lim
k→∞

X(k) = X(∗) (4.41b)

and, furthermore, there is a constant 0 < κ̃ <∞ such that, for k ≥ 1,

||X(k+1) −X(∗)||F ≤ κ̃||X(k) −X(∗)||2F . (4.42)

Proof. From (A,B;M) being stabilizable and (C,A;M) being detectable it follows
by Lemma 4.4 that (A,B;M) is stabilizable and (C,A;M) is detectable. Hence, the
GARE (4.16c) has a maximal symmetric solution X (∗) � 0 that, on the one hand,

stabilizes (A− BBTX (∗)M;M) and, on the other hand, defines X(∗) = Θ̂rX (∗)Θ̂T
r that

stabilizes (4.40) due to Theorem 2.25.

Defining the initial feedback K(0) := Θ̂T
r K

(0) := Θ̂T
rMX(0)B as in (4.24), all require-

ments of [31, Thm. 1] are fulfilled such that “
{
X (k)

}∞
k=0

is a non-increasing sequence,
satisfying

X (k) � X (k+1) � 0 (4.43)

for all k ≥ 1. Moreover, X (∗) = limk→∞X (∗) exists and is the unique stabilizing solution
of the GARE (4.16c)”[31, Thm. 1(b)]. Multiplying (4.43) from the left by Θ̂r, from the

right by Θ̂T
r , and defining X(k) := Θ̂rX (k)Θ̂T

r for all k ≥ 0 yields

Θ̂rX (k)Θ̂T
r � Θ̂rX (k+1)Θ̂T

r � 0,

X(k) � X(k+1) � 0,
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that in the limit k →∞ implies X(∗) := limk→∞X(k) is symmetric and stabilizes (4.40).
To this end, [31, Thm. 1(c)] yields

||X (k+1) −X (∗)||F ≤ κ||X (k) −X (∗)||2F , k ≥ 1, 0 < κ <∞.

Multiplying this with ||Θ̂r||F <∞ from the left and ||Θ̂T
r ||F <∞ from the right yields

||Θ̂r||F ||X (k+1) −X (∗)||F ||Θ̂T
r ||F ≤ κ||Θ̂r||2F ||X (k) −X (∗)||2F . (4.44)

Since the Frobenius norm is a sub-multiplicative norm, the left-hand side of (4.44) can
be written as

||X(k+1) −X(∗)||F = ||Θ̂r(X (k+1) −X (∗))Θ̂T
r ||F ≤ ||Θ̂r||F ||X (k+1) −X (∗)||F ||Θ̂T

r ||F .

Inserting Iñ = Θ̂T
l Θ̂r on the left and Iñ = Θ̂T

r Θ̂l on the right of the most right term in
(4.44) yields

κ||Θ̂r||2F ||Θ̂T
l Θ̂r(X (k) −X (∗))Θ̂T

r Θ̂l||2F = κ||Θ̂r||2F ||Θ̂T
l (X(k) −X(∗))Θ̂l||2F

≤ κ||Θ̂r||2F ||Θ̂l||4F︸ ︷︷ ︸
=:κ̃<∞

||X(k) −X(∗)||2F

such that one finally ends up with (4.42).
�

Remark 4.6 In [41], Benner and Stykel introduce a similar approach to solve DAE-
based GAREs. The main difference between the approach in [41] and the approach ex-
amined in this thesis, is the definition of the projector. We use the projector ΠT that
projects the solution onto the hidden manifold (4.13). As mentioned above, ΠT is orthog-
onal with respect to the Mz-inner product. In [41], the so-called spectral projectors are
used, which project onto the right and left deflating subspaces. Thereby, the right deflat-
ing subspace belongs to the finite eigenvalues of the pencil and the left deflating subspace
belongs to the infinite eigenvalues. Notice that the spectral projectors are orthogonal in
Euclidean inner product. Since the dynamics of the system are determined solely by the
finite spectrum, both projection methods project onto the same subspace using different
topologies.

In more detail, the projection idea in [41] can be applied to general DAE defined by a
regular pencil as described in [41, Sec. 2]. But “the projectors [...] are required in explicit
form [and the] computation of these projectors is, in general, very expensive”[41, p. 590].
In contrast, the projector ΠT is specially designed for the index-2 DAE system arising
for fluid flow problems. Thus, the specific structure of the matrices is used to define
ΠT and makes it possible to apply the projector efficiently as introduced in Lemma 4.1.
Furthermore, the explicit application of the projector ΠT is never used in Algorithm 3
unless one is interested in computing the projected residual explicitly. Notice that “this
structure can be exploited to construct the projectors [...] explicitly and cheaply” as well
by the method defined in [41]. A comparison of both methods regarding their overall
computation costs should be part of future research.
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As mentioned above, in many applications one is only interested in the feedback that
stabilizes the arising matrix pencil.

Conclusion 4.7 Under the assumptions of Theorem 4.5, there exists a feedback matrix
K(∗) =MX (∗)M = Θ̂T

r K
(∗) such that([

A−B
(
K(∗))T Ĝ

ĜT 0

]
,

[
M 0
0 0

])

is stable and u∗(t) := −K(∗)x̂(t) is minimizing the cost functional (4.16a).

The following section verifies the above results through various numerical examples
using the scenarios Stokes/NSE and CFM from Chapter 3. The scenario CTP is not fur-
ther considered in this numerical tests since the LQR approach for non DAE structured
systems is dealt with in various publications in the last decades.

4.4. Numerical Experiments for Feedback Stabilization

The first numerical section of this thesis shows experiments which validate the theoret-
ical results from Chapter 4. All computations are executed within MATLAB version
8.0.0.783 (R2012b) on a 64-bit compute server with an Intel® Xeon® X5650 @2.67GHz
processor. This processor has 2 CPUs, in total 12 Cores (6 Cores per CPU), and 48 GB
main memory available. More details regarding the used compute server are listed in
Appendix A.

The numerical tests from [14, 15, 35] are repeated and extended, since the algorithm
has been modified slightly throughout its development time. Hence, all experiments are
carried out with the same index-2 DAE structure exploiting algorithm as depicted in
Algorithm 3. Most results are identical to the results in [14, 15, 35]. Various other
aspects are presented in addition to show unpublished viewpoints that motivate the
investigations in Chapter 6.

The core scenario for these numerical tests is the NSE scenario from Subsection 3.2.1.
On the one hand, the Stokes system from Subsection 3.2.2 can be seen as a simplified
version of the NSE. On the other hand, the CFM system in Section 3.3 introduces
an additional block structure that straightforwardly fits into the NSE scheme. Hence,
after presenting the NSE results, some selected experiments show the influence of these
structure variations.

4.4.1. Parameter Setup for Numerical Examples - Part I

At the beginning of this subsection, the output matrices C for the KVS and the RM
are specified. In the KVS setting in Section 3.2, one is interested in avoiding alternating
vortexes behind the obstacle ΩO

K as described in Subsection 3.2.3. Therefore, the vertical
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velocity component vx2 is measured on na = 7 observation points Pobs,i as depicted in
Figure 3.3. Hence, we define Cz = {ci,j}na,nz

i,j=1 ∈ Rna×nz via

ci,j =

{
1, if j is the index of the x2 component of Pobs,i,

0, otherwise.

The output of the CFM scenario on the RM in Section 3.3 has been described in [14].
In detail, one defines

q :=

∫
Γr

∂~nc
(~w) ds (4.45)

as the total flux of the stationary concentration c(~w) through the obstacle boundary Γr.
Hence, one can define the cost functional

J (c,uc(t)) :=
1

2

∫ ∞
0

α

∣∣∣∣∣
∫

Γr

∂~nc ds − q
∣∣∣∣∣
2

+ |uc(t)|2 dt, (4.46)

which measures the difference of the actual flux of c through Γr and q, as well as the
control costs uc, in the square of the Euclidean norm. Including (4.45) in (4.46), one
obtains ∫

Γr

∂~nc ds − q =

∫
Γr

∂~n(c− c~w) ds =

∫
Γr

∂~nc
(~z) ds.

Discretizing the latter equation within NAVIER, one ends up with the output equation

Ccc(t) = yc(t)

as in (3.21b). Notice that we split the obstacle boundary into na = 4 parts such that

Γr =
na⋃
i=1

Γr,i.

In detail, each Γr,i is defined over one edge of the obstacle ΩO
R. Thus, each edge Γr,i is

represented in the i-th row of Cc ∈ Rna×nc .
Before stating the results of the numerical experiments, various parameters for the

experiments need to be set. At first, the Reynolds and the Schmidt number within the
PDEs (3.8a), (3.9a), and (3.10a) need to be defined. Both numbers reciprocally scale
the diffusion part, such that a higher value decreases the influence of the diffusion part.
As a consequence, the convective term becomes more influential and one speaks about
a convection dominated flow problem. For the NSE and Stokes scenario, a Reynolds
number of Re ∈ {100, 200, 300, 400, 500} is chosen. Using an even higher Reynolds
number would yield numerical instabilities for the initial triangulations within the flow
solver NAVIER. Therefore, the Reynolds number is restricted to that range. For the
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Table 4.2.: CFM scenario: Parameter sets.

Set Re Sc

I 1 1
II 1 10
III 10 1
IV 1 100
V 10 10

Table 4.3.: Refinement levels for finite element discretizations of KVS (Figure 3.3) and
RM (Figure 3.4).

(a) Dimensions of discretized velocity and
pressure space for KVS.

Level nz np

1 4 796 672
2 12 292 1 650
3 28 914 3 784
4 64 634 8 318
5 140 110 17 878
6 296 888 37 601

(b) Dimensions of discretized velocity, con-
centration, and pressure space for RM.

Level nz nc np

1 10 279 1 187 1 276
2 22 750 2 610 2 707
3 48 352 5 466 5 643
4 101 271 11 423 11 618

CFM scenario, five different combinations of Re and Sc are considered and are depicted
in Table 4.2. Due to the geometry of the RM, especially the inward corners, no parameter
sets with Re = 100 or ReSc > 100 can be considered for the used starting triangulations
without additional stabilization or refinement techniques.

The second parameter that drastically influences the numerical experiments is the level
of refinement. As introduced in Section 2.1, the KVS and the RM are discretized by
triangles. Each triangle has three P1 and six P2 nodes. Using the bisection refinement
[11], various levels of refinement can be generated, which yields different dimensions
for the discretized solutions, as depicted in Table 4.3. In detail, Table 4.3a shows the
dimensions for the velocity and pressure space for the KVS. For the RM, four different
levels are considered as depicted in Table 4.3b. The triangulations for Level 1 are
depicted in Figure 3.3 for the KVS and in Figure 3.4 for the RM. The numbers for
the velocity and concentration space represent the inner nodes that are not related to
Dirichlet BC, as explained in Section 3.5.

All computations are performed using heuristic ADI shifts as described in detail in
[104]. This heuristic approach computes a small number of Ritz values as approximations
of the eigenvalues of the pencil with small and large magnitude. Therefore, a truncated
Arnoldi process [113] is carried out. In detail, the Arnoldi process using M−1A yields
Ritz values with a large magnitude and the Arnoldi process using A−1M yields Ritz
values with a small magnitude. Due to the 2np infinite eigenvalues of the pencil (A,M ),
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Figure 4.2.: NSE scenario: Eigenvalues of the matrix pencil (3.23) that are close to
jR for different Reynolds numbers
(original: ( ), initial feedback: ( ), refinement: Level 1).

the Arnoldi process for M−1A is not defined properly. Therefore, the pencil is shifted
via the results in Theorem 2.9 with δ1 = 1, δ2 = −0.02, and γ = 0. This shifting process
maps all infinite eigenvalues onto −50, while all finite eigenvalues remain unchanged.
Using an all-ones vector as starting vector, 20 large and 20 small magnitude Ritz values,
15 proper heuristic ADI shifts {qi}15

i=1 = {qi}15
i=1 ⊂ C− are computed. The choice of ADI

shift parameters is a difficult topic by itself and is not within the scope of this thesis.
More details regarding these heuristic ADI shifts can be found in [84, 104, 115].

Furthermore, the stopping criteria for the inner ADI loop and the outer Newton loop
are set. As discussed in Subsection 4.3.2, the relative change (4.35) of the desired
feedback matrix K is used. For the outer Newton iteration, the desired tolerance is set
to tolNewton := 10−8. Unless otherwise stated, the tolerance for the relative change of K
in the inner ADI iteration is set to tolADI := 10−7. In addition, all linear systems are
solved by the sparse direct solver in MATLAB, represented by the backslash operator.

The final parameter, which is used to modify the underlying LQR setup, is the output
weighting α ∈ R as defined in Theorem (2.29). In general, this output weighting is set
to α = 1.0, as used in the theoretical derivations. Later on, α ∈ {10−2, 10−1, 101, 102}
is used to present the influence of the parameters. The modification of this parameter
is covered by the theory. One can redefine C :=

√
αC in Theorem 4.5, which does not

violate the assumption of (C,A;M ) being detectable.

Before stating convergence results of the KN-ADI method for the NSE scenario, the
influence of the Reynolds number is depicted in Figure 4.2. Thereby, the eigenvalues of
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Table 4.4.: NSE scenario: Number of Newton steps (#Newt) and ADI steps (#ADI)

during KN-ADI process (tolNewton = 10−8, tolADI = 10−7).

(a) Influence of output weighting α during the KN-ADI process (refinement: Level 1).

HHH
HHHα

Re 100 200 300 400 500
#Newt #ADI #Newt #ADI #Newt #ADI #Newt #ADI #Newt #ADI

10−2 3 288 4 732 5 374 5 435 4 427
10−1 3 288 5 747 5 404 5 654 6 948

100 5 550 8 1268 8 922 9 1444 9 2079

101 8 879 12 1882 13 1773 14 2484 14 3328
102 14 1633 18 2566 19 2940 20 3824 20 4923

(b) Influence of refinement levels during the KN-ADI process (α = 1).

HHH
HHH

Re 100 200 300 400 500
#Newt #ADI #Newt #ADI #Newt #ADI #Newt #ADI #Newt #ADI

Level 1 5 550 8 1268 8 922 9 1444 9 2079
Level 2 4 345 8 1039 9 1197 9 1281 10 1680
Level 3 4 345 9 1218 10 1980 11 2498 10 3040
Level 4 4 267 9 1098 10 1809 11 2423 11 3283
Level 5 5 419 10 1069 11 1939 12 2515 11 3093
Level 6 6 638 10 872 12 1690 13 2459 14 3237

the matrix pencil (3.23) are denoted by ( ); compare [15, Sec. 3.3]. It turns out that
increasing the Reynolds number, i.e., the flow becomes more convection dominated,
brings the eigenvalues closer towards the imaginary axis R. At a certain point between
Re = 200 and Re = 300, a pair of eigenvalues crosses this axis and the pencil becomes
unstable. As discussed in Subsection 4.2.3, in the event of an unstable pencil (A,M ), an
initial feedback K(0) has to be computed. The influence of this initial feedback modifies
only the unstable eigenvalues as depicted by ( ) in Figures 4.2c–4.2e. The computation of
this initial feedback dependents only on the refinement level and the Reynolds number.
Hence, it can be performed in the offline phase. Nevertheless, the computation of an
initial feedback is denoted by an additional Newton step in the following results.

4.4.2. Feedback Stabilization for the NSE Scenario

The first convergence results are depicted in Table 4.4. In detail, Table 4.4a shows the
influence of the output weighting α for different Reynolds numbers. The computations
are performed on the initial refinement Level 1. The number of Newton steps (#Newt)

increases for increasing Reynolds number as well as for an increasing α. Both behaviors
are natural consequences. As mentioned above, the Reynolds number influences the
stability of the system drastically. Furthermore, an increasing α penalizes the output
within the LQR setup further, such that the feedback needs to be of a higher quality
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to force the output faster towards zero. The total number of ADI steps (#ADI) follows
this behavior. However, except for Level 6, a decreasing number of ADI steps can
be observed between Re = 200 and Re = 300. This indicates that the used initial
feedback for Re > 200 is a good starting point such that the costs of each Newton
step decrease. In summary, one can say that the KN-ADI method can be used for all
parameter configurations.

The results depicted in Table 4.4b investigate the influence of the different mesh
refinement levels from Table 4.3a. Besides one exception, the number of Newton steps
slightly increases with an increasing refinement level. By increasing the refinement level,
more information needs to be processed in order to compute the feedback. Similar
to an increasing output weight, this yields a growing number of Newton steps. The
number of ADI steps does not show clear tendencies of growing or shrinking. However,
the number of ADI steps appears to grow at first and to shrink towards Level 6. We
believe that the physical behavior of the NSE scenario is not resolved sufficiently in the
lower refinement levels such that the computation of its feedback is more complicated in
each step. However, upon reaching Level 3 or Level 4, the physical behavior is resolved
sufficiently and the costs for each Newton step stay on the same level. A significant
difference occurs for Re = 500 in-between Level 5 and Level 6. The number of Newton
steps increases drastically, hence, the number of ADI steps grows as well. This behavior
is investigated next. Notice that the combination of a higher refinement level and a
higher output weighting produces qualitatively similar results.

The result in Theorem 4.5 states a quadratic convergence of the Riccati solution. As
explained in Subsection 4.3.2, the relative change on the feedback K is used as the
stopping criterion, which shows a similar quadratic convergence behavior. In Figure 4.3,
the evolution of the relative change for the results from Table 4.4 is depicted. The results
are restricted to the most demanding case with a Reynolds number of 500. In detail,
Table 4.4a illustrates the influence of the output weighting α. For an increasing value
of α, the relative change stagnates around 1.0 before the typical quadratic convergence
can be observed.

A similar behavior can be observed in Figure 4.3b for an increasing refinement level
as in Table 4.4b. For the levels 1–5, the stagnation phase slightly prolongs with each
level. As mentioned above for Level 6, the number of Newton steps increases drastically.
However, it is not an even longer stagnation phase that yields this behavior, but a non
quadratic convergence behavior. As carried out in [15, Sec. 4.2], in that case the ADI
tolerance is not sufficient to ensure quadratic convergence of Newton’s method. As shown
in Figure 4.3c, increasing the ADI tolerance yields the expected quadratic convergence
behavior. However, after a certain point, increasing the ADI tolerance does not influence
the Newton convergence anymore. Hence, the enormously increasing computation costs
might not be necessary as depicted in Figure 4.3d.

This behavior indicates that a fully automatic process to determine the tolerance of
the inner ADI loop would be required to avoid unnecessary additional costs. The overall
computation costs mainly consists of costs for the shift computation and the linear solve
in each ADI step. The costs for the computation of the relative change, as well as the
feedback accumulation, in each ADI step are negligible compared to the linear solve.
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Table 4.5.: NSE scenario: Detailed computation timings in seconds
(tolNewton = 10−8, tolADI = 10−7, α = 100).

timelin solve timeshift timerel ch timetotal

Re = 100

L
ev

el
1 2.24 · 102 2.14 · 101 1.19 · 100 2.47 · 102

2 4.22 · 102 5.44 · 101 2.34 · 100 4.78 · 102

3 1.19 · 103 1.58 · 102 5.95 · 100 1.35 · 103

4 2.44 · 103 4.80 · 102 1.11 · 101 2.93 · 103

5 9.47 · 103 1.32 · 103 5.25 · 101 1.08 · 104

6 3.60 · 104 4.03 · 103 2.39 · 102 4.02 · 104

Re = 200

L
ev

el

1 5.39 · 102 4.37 · 101 2.93 · 100 5.85 · 102

2 1.34 · 103 1.14 · 102 6.96 · 100 1.46 · 103

3 4.45 · 103 3.68 · 102 2.12 · 101 4.84 · 103

4 1.03 · 104 9.55 · 102 4.46 · 101 1.13 · 104

5 2.57 · 104 3.25 · 103 1.36 · 102 2.91 · 104

6 5.01 · 104 6.83 · 103 2.83 · 102 5.72 · 104

Re = 300

L
ev

el

1 4.13 · 102 3.20 · 101 1.99 · 100 4.47 · 102

2 1.60 · 103 1.17 · 102 8.99 · 100 1.72 · 103

3 7.65 · 103 4.80 · 102 4.34 · 101 8.17 · 103

4 1.75 · 104 9.77 · 102 8.19 · 101 1.85 · 104

5 4.62 · 104 2.77 · 103 2.51 · 102 4.92 · 104

6 1.06 · 105 9.08 · 103 5.73 · 102 1.15 · 105

Re = 400

L
ev

el

1 6.62 · 102 3.63 · 101 3.09 · 100 7.01 · 102

2 1.73 · 103 1.50 · 102 1.09 · 101 1.89 · 103

3 9.40 · 103 4.20 · 102 4.80 · 101 9.87 · 103

4 2.35 · 104 1.09 · 103 1.10 · 102 2.47 · 104

5 6.18 · 104 3.17 · 103 3.18 · 102 6.53 · 104

6 1.54 · 105 1.00 · 104 9.13 · 102 1.65 · 105

Re = 500

L
ev

el

1 9.10 · 102 3.52 · 101 4.44 · 100 9.50 · 102

2 2.25 · 103 1.32 · 102 1.30 · 101 2.40 · 103

3 1.17 · 104 4.65 · 102 6.01 · 101 1.22 · 104

4 3.17 · 104 1.11 · 103 1.35 · 102 3.29 · 104

5 7.41 · 104 2.79 · 103 4.13 · 102 7.73 · 104

6 1.91 · 105 9.10 · 103 1.18 · 103 2.02 · 105
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Table 4.6.: Number of Newton steps (#Newt) and ADI steps (#ADI) during KN-ADI
process for Stokes and CFM scenario (tolNewton = 10−8, tolADI = 10−7).

(a) Stokes scenario: Influence of output weighting α during the KN-ADI process
(refinement: Level 1).

HHH
HHHα

Re 100 200 300 400 500
#Newt #ADI #Newt #ADI #Newt #ADI #Newt #ADI #Newt #ADI

10−2 3 61 3 65 3 72 3 75 3 69
10−1 3 61 3 65 3 72 3 75 3 69

100 3 61 4 86 4 96 4 100 5 111

101 5 103 6 128 6 160 7 185 8 174
102 8 160 9 185 10 224 11 296 11 307

(b) CFM scenario: Influence of refinement levels on the KN-ADI process (α = 1).

HHH
HHH

Set I II III IV V
#Newt #ADI #Newt #ADI #Newt #ADI #Newt #ADI #Newt #ADI

Level 1 6 202 6 203 6 240 3 131 3 143
Level 2 7 236 8 375 8 287 7 376 7 460
Level 3 8 351 8 308 8 345 8 627 8 429
Level 4 9 362 10 376 10 486 8 529 8 410

A detailed overview of the different costs for α = 100 is depicted in Table 4.5. The
total time (timetotal) is split into the time for the linear solves (timelin solve), the time
for the shift computation (timeshift), and the time to evaluate the norm of the relative
change (timerel ch). Thereby, the time for the linear solves dominates the entire process.
Although the time to calculate the shifts is roughly one magnitude smaller, it is still a
reasonable share of the entire costs. The computation of the relative changes is around
two magnitudes smaller and, therefore, does not really contribute to the total time.

4.4.3. Feedback Stabilization for Stokes and CFM Scenarios

In this section, some results for the Stokes and CFM scenarios are depicted in Table 4.6.
In detail, Table 4.6a shows the influence of the output weighting α to the Stokes scenario.
The results are qualitatively similar to the results in Table 4.4a. However, the feedback
computation of the Stokes scenario, which is the NSE scenario without the non-linearity
(~v · ∇)~v, is much simpler. Less Newton steps are needed for the same parameters and
each Newton step needs much less ADI steps.

Similar observations can be made for the CFM scenario as depicted in Table 4.6b.
Although the CFM scenario has a more complicated block structure, its solution needs
only slightly more Newton steps. Hence, the problem gets more demanding with increas-
ing Reynolds and Schmidt numbers as well as a higher refinement level. In summary,
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Figure 4.4.: NSE scenario: Evolution of relative change and projected residual depen-
dent on the refinement level (Re = 500, tolNewton = 10−8, tolADI = 10−7,
α = 100).

the CFM scenario behaves in a similar way to the NSE scenario, where the increasing
Reynolds number has a higher influence than an increasing Schmidt number. In [14],
more numerical tests with a varying output weighting are performed. Notice that the
non-quadratic convergence behavior mentioned above can be observed in the CFM sce-
nario for Set V and α = 10. However, increasing the ADI tolerance resolves this problem
as well.

4.4.4. Residual Convergence of KN-ADI for NSE Scenario

The results in the previous sections are obtained by monitoring the relative change of
the feedback K to determine the stopping criteria for the nested iteration. Thereby, the
results in Figure 4.3b indicate that the expected convergence behavior cannot always
be achieved. On the one hand, the relative change might stagnate for a couple of New-
ton steps. On the other hand, the final convergence is not quadratic. To investigate
the reason for this unexpected behavior, some of the previous experiments are repeated
including the explicit computation of the projected residual as introduced in Subsec-
tion 4.3.2. Hence, Figure 4.4 shows the evolution of the projected residual on top of the
results from Figure 4.3b. As it turns out, the stagnation of the relative change results
from an upwards jump of the residual after the first Newton step, i.e., Newton step 2
in the results, since the initial feedback is illustrated as a first Newton step. Further-
more, the non-quadratic convergence of the relative change results from a stagnation of
the projected residual. Both behaviors are not reflected properly in the relative change
of the feedback matrix. Notice that the stagnation of the residual is roughly around
the same point if one ignores the upwards jump in the first Newton step. Hence, the
non-quadratic behavior of the relative change for the Level 6 refinement results from a
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Table 4.7.: NSE scenario: Detailed computation timings including the explicit residual
computation in seconds (Re = 500, tolNewton = 10−8, tolADI = 10−7, α = 100).

timelin solve timeshift timerel ch timeres timetotal

Re = 500

L
ev

el

1 9.70 · 102 4.85 · 101 6.90 · 100 3.88 · 103 4.91 · 103

2 2.29 · 103 1.79 · 102 1.44 · 101 9.19 · 103 1.17 · 104

3 1.16 · 104 3.81 · 102 5.77 · 101 4.64 · 104 5.85 · 104

4 3.27 · 104 1.37 · 103 1.53 · 102 1.63 · 105 1.98 · 105

5 7.45 · 104 2.75 · 103 4.21 · 102 3.59 · 105 4.37 · 105

6 1.93 · 105 8.97 · 103 1.14 · 103 9.24 · 105 1.13 · 106

combination of this upwards jump and the early stagnation of the residual.
However, computing the projected residual explicitly is enormously expensive as shown

in Table 4.7. The time to evaluate the projected residuals (timeres) exceeds the times
to solve the linear systems by nearly one magnitude such that it dominates the total
computation time.

The residual stagnation for the coarsest refinement level is illustrated in further detail
in Figure 4.5. Thereby, the ADI tolerance tolADI varies between 10−5 and 10−11. The
first example in Figure 4.5a considers an output weighting of α = 100. As it turns out,
the method seems to be converged after nine Newton steps independent of the ADI
tolerance. However, the residual stagnates around a magnitude of O(10 · tolADI).

Similar results are depicted in Figure 4.5b for the output weighting of α = 102. Al-
though the upwards jump of the first Newton step is drastic, the residual achieves similar
results. Merely the lowest ADI tolerance of tolADI = 10−5 shows the non-quadratic con-
vergence behavior in the evolution of the relative change.

To complete these results, the detailed computation times for both experiments are
depicted in Table 4.8. As in Table 4.7, the computation of the projected residual domi-
nates the entire process.

4.5. Conclusion – Part I

All experiments in Section 4.4 show that the KN-ADI method in Algorithm 3 is able to
compute the solution of the projected GCARE (4.16c) without the use of any explicit
projection. Nevertheless, it turns out that convergence statements based on the relative
change of the feedback K might not be suitable for all problem configurations. Certain
important problems during the process, such as the upwards jump in the first Newton
step or a residual stagnation depending on the ADI tolerance, cannot be observed. All
achieved feedback matrices turned out to be stabilizing. We believe that the good initial
Bernoulli feedback yields this behavior. If such an initial feedback is not available or
the problem structure is more demanding, better methods to ensure convergence to the
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(b) Output weighting α = 102.

Figure 4.5.: NSE scenario: Evolution of relative change and projected residual depen-
dent on the ADI tolerance
(Re = 500, tolNewton = 10−8, refinement: Level 1).
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Table 4.8.: NSE scenario: Detailed computation timings for various ADI tolerances
including the explicit residual computation in seconds
(Re = 500, tolNewton = 10−8, refinement: Level 1).

tolADI #Newt #ADI timelin solve timeshift timerel ch timeres timetotal

α = 100

10−5 8 1453 6.64 · 102 3.65 · 101 3.23 · 100 1.98 · 103 2.69 · 103

10−6 8 1785 7.89 · 102 3.59 · 101 3.88 · 100 2.48 · 103 3.30 · 103

10−7 8 2079 9.70 · 102 4.85 · 101 6.90 · 100 3.88 · 103 4.91 · 103

10−8 8 2405 1.07 · 103 3.56 · 101 5.21 · 100 3.55 · 103 4.66 · 103

10−9 8 2769 1.26 · 103 4.69 · 101 9.23 · 100 5.38 · 103 6.70 · 103

10−10 8 3067 1.37 · 103 3.63 · 101 6.66 · 100 5.41 · 103 6.83 · 103

10−11 8 3321 1.47 · 103 3.63 · 101 7.11 · 100 5.43 · 103 6.94 · 103

α = 102

10−5 20 2914 1.32 · 103 9.40 · 101 6.30 · 100 3.85 · 103 5.28 · 103

10−6 19 3864 1.73 · 103 8.78 · 101 8.35 · 100 5.17 · 103 7.00 · 103

10−7 19 4923 2.25 · 103 1.15 · 102 1.63 · 101 8.65 · 103 1.10 · 104

10−8 19 6250 2.79 · 103 8.73 · 101 1.35 · 101 8.97 · 103 1.19 · 104

10−9 19 7447 3.33 · 103 8.78 · 101 1.62 · 101 1.11 · 104 1.45 · 104

10−10 19 8974 4.05 · 103 8.68 · 101 1.96 · 101 1.37 · 104 1.78 · 104

10−11 19 10150 4.55 · 103 8.77 · 101 2.21 · 101 1.61 · 104 2.08 · 104

desired solution need to be developed. Monitoring the projected residual explicitly is one,
but unfortunately highly expensive, method to ensure convergence. From our experience,
we would recommend an ADI tolerance of tolADI = 10−2 · tolNewton to overcome all
difficulties. However, this might exceed the available computation time drastically.

A more efficient method that overcomes various problems is presented in Chapter 6.
Beforehand, the solution process of the innermost saddle point system (4.32a) is exam-
ined in greater detail in the next chapter.
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After deriving the first major results from this thesis in Chapter 4, the most time
consuming computational step is examined in more detail in this chapter. It is pointed
out at the end of Subsection 4.2.2 that the crucial computation step within Algorithm 3
is the solution of a large-scale SPS of the form (4.32a), which is repeated here for better
readability: [

AT + q`M Ĝ

ĜT 0

]
︸ ︷︷ ︸

F`

[
V̂`
∗

]
︸︷︷︸
V̂`

=

[
Ŷ

(k)
`−1

0

]
︸ ︷︷ ︸
Ŷ

(k)
`−1

. (cf. eq. (4.32a))

The choice of a solver for linear systems depends highly on the structure and the prop-
erties of the system matrix F`. Two different solution strategies to solve (4.32a) are
presented within this thesis. Therefore, the crucial properties of (4.32a) are reviewed
shortly.

89



Chapter 5. Comparison of Linear Solvers

The system (4.32a) has the typical saddle point structure, compare, e.g., [42], and

the right-hand side Ŷ
(k)
`−1 consists of na + 2nr columns. The system matrix F` ∈ CN×N

depends on the varying ADI shift q` and is indefinite for all q` ∈ C−. Since A is
nonsymmetric in general, F` is assumed to be nonsymmetric as well.

Remark 5.1 F` = A+ q`M is singular if and only if q` = −λus, where λus ∈ C+ is an
unstable eigenvalue of (A,M), as discussed in Subsection 4.2.3. Although it is unlikely
that this ADI shift would be chosen in general, it would be sorted out by the used routine
since the unstable eigenvalues λus, if they exist, are known from computing the initial
feedback as explained in Subsection 4.2.3.

The chapter is structured as follows. In the first section, a direct solver is investigated
such as used for all numerical examples in Section 4.4. In Section 5.2, iterative solvers
are considered and various preconditioning approaches are investigated. The usability
of these approaches is demonstrated by repeating some of the numerical experiments
from Section 4.4 using these preconditioned iterative solution methods. The results in
Section 5.2 are partly published in [35] for the Stokes and in [36] for the CFM scenario.

5.1. Sparse Direct Solver

A direct solver computes the solution of a linear system explicitly, which should yield the
highest achievable tolerance. Considering a general linear system of the form F̃x = b,
the simplest explicit definition of the sought solution is x = F̃−1b. However, the explicit
computation of the inverse of F̃ is highly expensive and usually numerically unstable.
Even more important is the fact that for large and sparse matrices F̃ , the inverse F̃−1

is in general dense and cannot be stored. Thus, the computation of F̃−1 is numerically
not feasible.

Generally, direct solvers do not form F̃−1 and can still explicitly solve the system
F̃x = b as explained for one specific direct solver next.

5.1.1. LU Decomposition

One of the most reliable and stable techniques to directly solve a linear systems is the LU
decomposition (also known as LU or triangular factorization). The main idea is based

on the premise that “if a linear system F̃ x = b has a non-singular triangular coefficient
matrix F̃ ∈ Cn×n, computation of the unique solution x is remarkable easy.”[79, Sec. 3.5]
Thus, the LU decomposition computes a lower triangular factor L ∈ Cn×n and an upper
triangular factor U ∈ Cn×n such that F̃ = LU , as described in detail in, e.g., [79,

Sec. 3.5] or [63, Sec. 3.2]. “The solution to the original F̃x = b problem is then found
by a two step triangular solve process

Ly = b, Ux = y ⇒ F̃x = LUx = Ly = b. (5.1)

[In this way] the LU factorization is a ‘high level’ algebraic description of Gaussian
elimination.”[63, p. 94]
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Section 5.1. Sparse Direct Solver

In some cases such a factorization does not exist or its computation is numerically
unstable. Hence, one considers additional permutation matrices as described in the
following theorem.

Theorem 5.2 (cf. [79, Thm. 3.5.7]) Let F̃ ∈ Cn×n. There exist permutation matri-
ces P,Q ∈ Cn×n, a lower triangular matrix L ∈ Cn×n, and an upper triangular matrix
U ∈ Cn×n such that

F̃ = PLUQ. (⇒ Ly = P Tb, Uz = y, x = QTz)

If F̃ is non-singular, one may take Q = In and F̃ may be written as

F̃ = PLU. (⇒ Ly = P Tb, Ux = y)

The permutation matrices are used to pivot the rows (P ) or columns (Q) in order to
avoid numerical cancellation effects, which increases the stability of the method signifi-
cantly. For non-singular matrices, the most stable variant is F̃ = PLU . Unfortunately,
even for sparse matrices F̃ , one ends up with dense LU factors due to the so-called fill-in.
The fill-in of a sparse matrix describes the entries of a matrix that are changed within the
application of an algorithm from an original zero to a non-zero value. A highly efficient
method to minimize fill-in is a special permutation technique as described in [51] and
implemented in the UMFPACK package (version 4.3 an higher) that “is incorporated as

a built-in operator in MATLAB (version 6.5 an higher) as x=F\b when F̃ is sparse and
nonsymmetric.”[51, Abstract] The interested reader is referred to [51, 52, 55] and the
references therein for further details. This sparse LU factorization uses a limited pivot-
ing technique. Hence, its accuracy is limited compared to the complete pivoting in the
dense case. In the following subsection, the error is investigated that occurs due to the
sparse LU decomposition. As test examples, certain matrices F̃ = F` from Section 4.4
are used.

5.1.2. Numerical Experiments for Sparse Direct Solver

To test the sparse direct solver from MATLAB, a couple of ADI shifts q` are selected
which have been used during the computations of the different scenarios in Section 4.4.
In detail, we choose the shifts with largest and smallest magnitude as well as the two
shifts with the largest imaginary part. Additionally, we included one shift within each
magnitude of the shift spectrum. If not already selected as a shift, the shift closest to
the imaginary axis R is added as well. Although complex shifts occur as a pair, we
selected only the shift with the negative imaginary part. The selected shifts for the
NSE scenario for various Reynolds numbers are depicted in Figure 5.1. Each subfigure
shows the used ADI shifts as ( ) and the selected shifts as ( ) for the different Reynolds
levels. Additional, the above mentioned “bad shifts” q` = −λus, which are detected
during computation of the initial feedback in Subsection 4.2.3, are marked with ( ).
As mentioned above, these shifts yield singular matrices. Within our numerical tests,
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Figure 5.1.: NSE scenario: ADI shifts for various Reynolds numbers
(used shifts: ( ), “bad shifts”: ( ), selected shifts: ( )).

such a “bad shift” has never been computed during the shift selection process. For
Re = 400, 500 the “bad shifts” seem to be close to the used shifts, but their distance is
sufficient such that the used shifts do not yield badly conditioned matrices.

For each of these selected shifts, the shifted system matrix F`, as in (4.32a), is set up
and the artificial right-hand side b` = F` ·1n is built. Using b`, the exact error is defined
as

err` := 1n − x` with x` = F`\b`.

Additionally, the 1-norm condition number of each F` (condest(F`) in MATLAB) and

the relative error
||err`||1
||1n||1

, using the 1-norm, are computed and the results are depicted

in the Figures 5.2– 5.4. Thereby, the x-axis denotes −|q`|. Notice that in this case the
error is scaled by the length of the vector, since ||1n||1 = n. We choose the 1-norm for all
considerations, since this norm is used for the computation of the condition number via
condest(F`). Using, e.g., the maximum norm results is qualitatively similar results.
In detail, Figure 5.2 shows the results for the NSE scenario. The upper row depicts
the result for varying Reynolds numbers for the coarsest refinement level. Increasing
the magnitude of the shift q` increases the condition number drastically, as shown in
Figure 5.2a. Thereby, the Reynolds number does not really affect the behavior. The
relative error in Figure 5.2b increases in the same way as the condition number. This
behavior can be observed for all refinement levels in Figure 5.2c. Moreover, the condition
number for shifts −103 < −|q`| < −10−1 increases with each refinement level. For
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shifts with larger magnitude, the growing condition number seems to be similar for
all refinement levels. However, the higher refinement levels choose shifts with larger
magnitude such that the condition number grows further. The relative error behaves
accordingly as depicted in Figure 5.2d.

Similar results are depicted for the Stokes scenario in Figure 5.3 (refinement: Level 1)
and for the CFM scenario in Figure 5.4 (refinement: Level 4). In the Stokes case, it
turns out that the condition number has its minimum for |q`| ≈ 1 and slightly grows for
shifts with smaller magnitude. For the CFM scenario, one can notice a significant gap
in the condition number and, therefore, in the relative error for the sets with Re = 1
(Set I,II,IV) and sets with Re = 10 (Set III,V). This gap vanishes for shifts |q`| > 103.

All results show that the condition number has a huge influence on the accuracy. Al-
though an ADI shift with a large magnitude increases the influence of the mass matrices
and moves all eigenvalues towards the left, F` is always indefinite due to its structure.
Increasing the magnitude of the shift, therefore, moves the eigenvalues in C+ towards the
imaginary axis R and decreases the magnitude of the smallest eigenvalue. Furthermore,
the eigenvalues in C− are shifted towards the left which increases the magnitude of the
largest eigenvalue. Hence, the condition number grows drastically.

The solution produced by the sparse direct solver is often considered exact for the
given finite arithmetic. Nevertheless, it is shown in the examples above that the relative
error can be quite large.

A big drawback with using sparse direct solvers is the still existing fill-in. Thus, the
sparse direct solver cannot be applied anymore for increasing dimensions after a certain
point since the memory requirements exceed the available memory. Specifying such a
point is highly difficult and depends on the matrix structure and the available hardware
architecture. Some more detailed studies, as well as special fill-in reducing ordering
techniques, can be found in, e.g., [52, Chap. 6f]. “The practical limit for feasibility is
often that direct sparse methods are competitive for two-dimensional PDE problems but
iterative methods are required in three dimensions.”[56, p. 68]

Using an iterative method that only needs to perform matrix-vector products is ex-
amined in detail in the next section.

5.2. Iterative Solvers

In this section, the iterative solution of the SPS (4.32a) is investigated. The goal is
to use the Krylov subspace method GMRES [114] that is introduced shortly in Subsec-
tion 2.4.3. The main advantage of such an iterative method is that it only requires
matrix-vector multiplications with the sparse matrix F`. These matrix-vector products
can be performed in a highly efficient manner.

Although most iterative methods “are well founded theoretically, they are all likely
to suffer from slow convergence for problems that arise from typical applications such
as fluid dynamics”[113, p. 261]. As it is pointed out in [35, 36] and the references
therein, the performance of the iterative methods deteriorates with decreasing mesh-
size. Furthermore, iterative methods are in general not very robust with regard to
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Figure 5.2.: NSE scenario: Influence of ADI shifts on the 1-norm condition number
of F` and the relative error in the 1-norm using the sparse direct solver in
MATLAB.
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Figure 5.3.: Stokes scenario: Influence of ADI shifts on the 1-norm condition number
of F` and the relative error in the 1-norm using the sparse direct solver in
MATLAB (refinement: Level 1).
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Figure 5.4.: CFM scenario: Influence of ADI shifts on the 1-norm condition number
of F` and the relative error in the 1-norm using the sparse direct solver in
MATLAB (refinement: Level 4).
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parameter changes, as shown in, e.g., [113, Cha. 9].
To circumvent these problems, one usually considers a preconditioned SPS that can

be defined for a suitable left preconditioner P` ∈ CN×N as

P−1
` F`V̂` = P−1

` Ŷ
(k)
`−1. (5.2)

“Intuitively, if P` can be chosen so that P−1
` is an inexpensive approximate inverse

of F`, then this might make a good preconditioner; however, it is not necessary for a
good preconditioner to be such that P−1

` is an approximate inverse of F`. A sufficient
condition for a good preconditioner is that the preconditioned matrix P−1

` F` has a low-
degree minimum polynomial. This condition is more usually expressed in terms of P−1

` F`
having only a few distinct eigenvalues: in this form we must insist that P−1

` F` is not
degenerate (derogatory) or at least that its Jordan canonical form has Jordan blocks
of only small dimension.”[95, p. 1969] A more detailed convergence analysis of GMRES
is not within the scope of this thesis but the interested reader is referred to, e.g., [90,
Sec. 5.7.2ff] and [125] for such an analysis that also involves the right-hand side. More
general details about preconditioned iterative methods can be found in [113, Chap. 9ff.]
and [90] for general linear systems and in [56] for various transport problems.

The next subsection defines suitable block preconditioners P`, which are based on the
generalized block structure (4.32a). Thereby, the approaches in [56, 95] are adapted
straightforwardly. Some of these results are already published in [35] for the Stokes
scenario and in [36] for the CFM scenario.

Notice that in this thesis only left preconditioners are considered. All derivations
can be applied in a modified way as right or central preconditioner, as mentioned in,
e.g., [95, Rem. 2]. Furthermore, the derivations in the following are restricted to the
real-valued case, where q` ∈ R− and, thus, F` ∈ RN×N as used in [56, 95]. Later on in
Subsection 5.2.3, an extension to the complex case is depicted.

5.2.1. Block Preconditioners

Efficient preconditioners for the SPS (4.32a) need to consider the block structure of the
SPS in detail. Following the derivations in [95, Rem. 4] and [56, Sec. 8.1], one can define
the block preconditioner P` and its inverse via

P` =

[
PF,` 0

ĜT −PSC,`

]
∈ RN×N ⇒ P−1

` =

[
P−1
F,` 0

P−1
SC,`Ĝ

TP−1
F,` −P−1

SC,`

]
∈ RN×N . (5.3)

Thereby, PF,` is an approximation of F` := AT +q`M ∈ Rn×n and PSC,` an approximation

of the Schur complement (SC) TSC,` := ĜTF−1
` Ĝ ∈ Rm×m; see, e.g., [56, eq. 8.6].

Applying P−1
` from (5.3) to F` yields

P−1
` F` =

[
P−1
F,` 0

P−1
SC,`Ĝ

TP−1
F,` −P−1

SC,`

][
F` Ĝ

ĜT 0

]

=

[
P−1
F,`F` P−1

F,` Ĝ

P−1
SC,`Ĝ

TP−1
F,`F` − P−1

SC,`Ĝ P−1
SC,`Ĝ

TP−1
F,` Ĝ

]
.

(5.4a)
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For an ideal preconditioner, i.e., PF,` = F` and PSC,` = TSC,`, one ends up with[
In F−1

` Ĝ

T −1
SC,`Ĝ

T − T −1
SC,`Ĝ T −1

SC,`Ĝ
TF−1

` Ĝ

]
=

[
In ∗
0 Im

]
, (5.4b)

which is a preconditioned system with the sole eigenvalue 1, compare [95, Rem. 4],
for which an iterative Krylov subspace method would converge within at most three
iterations [95, Rem. 3].

Remark 5.3 For the Stokes scenario, the SPS (4.32a) is symmetric and one could use a
Krylov subspace method for symmetric systems together with a symmetric block diagonal
preconditioner as explained in [56, Chap. 6] or [35, Sec. 3.2]. However, it is shown in
[35, Sec. 4] that the block preconditioner (5.3) outperforms the symmetric version such
that no further consideration is given to the symmetric version in this thesis.

To apply the preconditioner (5.3) within the iterative method, the inverse P−1
` is never

formed explicitly, but the solution of the linear system[
PF,` 0

ĜT −PSC,`

] [
x1

x2

]
=

[
b1

b2

]
(5.5a)

is considered. This system can be solved step-wise via

Step I: x1 = P−1
F,`b1, (5.5b)

Step II: x2 = P−1
SC,`(Ĝ

Tx1 − b2). (5.5c)

The detailed block structures for the NSE and CFM scenarios are depicted in Ta-
ble 5.1a for equation (5.3) and in Table 5.1b for the ideal preconditioned system (5.4)
and for the preconditioning step (5.5). Thereby, all rectangular off-diagonal entries only
yield a matrix-vector multiplication.

As mentioned in Remark 5.1, the shifted matrices Ã + q`M̃ from Table 5.1a become
singular if and only if the pencil (Ã, M̃) has unstable eigenvalues λ̃us ∈ C+ and q` = −λ̃us.
These unstable eigenvalues cannot be derived easily from the eigenvalues of the initially
considered pencil (A,M ), such that these situations cannot be recognized or prevented

automatically. Since M̃ � 0, standard eigenvalue solvers can be used to efficiently
compute the unstable eigenvalues λ̃us during the offline process of computing the initial
feedback if necessary. Later on in the shift computation algorithms, they can be sorted
out as explained in Remark 5.1.

The crucial ingredient for an efficient preconditioner is a good approximation of the
preconditioning blocks used in (5.5b)–(5.5c) and in Table 5.1. This means the steps
(5.5b)–(5.5c) can be evaluated fast, without losing the “clustering of eigenvalues” prop-
erty as explained in [56, Sec. 2.2]. Different approximations are explained in detail in
the next subsection.
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Table 5.1.: Overview of block structures of preconditioner.

(a) Block structure of preconditioner and its inverse.

P` =

[
PF,` 0

ĜT −PSC,`

]
⇒ P−1

` =

[
P−1
F,` 0

P−1
SC,`Ĝ

TP−1
F,` −P−1

SC,`

]
,

Pz,` approximates Fz,` := ATz + q`Mz

Pc,` approximates Fc,` := ATc + q`Mc

PF,` TSC,` P−1
F,` P−1

SC,`Ĝ
TP−1

F,`

NSE Pz,` GTF−1
z,`G P−1

z,` P−1
SC,`G

TP−1
z

CFM

[
Pz,` −Rz(c(~w))T

0 Pc,`

]
GTF−1

z,`G

[
P−1
z,` P−1

z,`Rz(c(~w))TP−1
c,`

0 P−1
c,`

] [
P−1

SC,`G
TP−1

z,` P−1
SC,`G

TP−1
z,`Rz(c(~w))TP−1

c,`

]
(b) Block structure of applied preconditioner.

P−1
` F` =

[
P−1
F,` 0

P−1
SC,`Ĝ

TP−1
F,` −P−1

SC,`

][
F` Ĝ

ĜT 0

]
≈
[
In ∗
0 Im

]

ideal preconditioner preconditioning step

P−1
` F−1

` x b Solve: x = P−1
` b

NSE

[
Inz F−1

z,`G

0 Inp

] [
xz

xp

] [
bz
bp

]
Step I: xz = P−1

z,` bz
Step II: xp = P−1

SC,`(G
Txz − b)

CFM

Inz 0 F−1
z,`G

0 Inc 0
0 0 Inp

 xz

xc

xp

 bzbc
bp

 Step I.a: xc = P−1
c,` bc

Step I.b: xz = P−1
z,` (Rz(c(~w))Txc + bz)

Step II: xp = P−1
SC,`(G

Txz − bp)

9
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Table 5.2.: Substeps to apply the SC approximations in step II.

x =
(
P SPDC

SC,`

)−1
b x =

(
P LSC

SC,`

)−1
b

Offline phase Assemble: Mp, Sp, Kp(~w) ∈ Rm×m Form:
GLSC := diag (Mz)−1G ∈ Rn×m

SLSC := GTGLSC ∈ Rm×m

Online phase

Substep II.a: x1 = S−1
p b Substep II.a: x1 = S−1

LSC b
Substep II.b: x2 = Fp,` x1 Substep II.b: x2 = GT

LSCFz,`GLSC x1

Substep II.c: x = M−1
p x2 Substep II.c: x = S−1

LSC x2

Table 5.3.: Configuration setups for block approximation methods.

P−1
z /P−1

c S−1
p /S−1

LSC M−1
p

AAC AGMG AGMG CSI

AAD AGMG AGMG direct

ADD AGMG direct direct

DDD direct direct direct

9
9



Chapter 5. Comparison of Linear Solvers

5.2.2. Approximation Methods

The two main preconditioning blocks during the preconditioning step (5.5) are an ap-
proximation of the SC TSC,` ∈ Rm×m and an approximation of the shifted system matrix
F` ∈ Rn×n. Although TSC,` is of slightly smaller dimension m × m, it involves the in-
verse F−1

` and is in general a dense matrix that should not be formed explicitly. In the
following, two approximation techniques are explained.

Schur Complement (SC) Approximation The SC TSC,` = ĜTF−1
` Ĝ can be simplified

in all scenarios to TSC,` = GTF−1
z,`G as depicted in Table 5.1a. Combining the statements

from [56, Sec. 8.2] and [122, Sec. 3.2], two SC approximations are derived in the following.
For both approximations, one considers that Fz,` contains discrete components of the
shifted Oseen operator

O~z,` := − 1

Re
∆ + ~w · ∇+ q`I .

Compared to the linearized NSE (3.14a), the reaction term (~z · ∇)~w is omitted, which
is common practice for the derivation of preconditioners; see, e.g., [56, Sec. 8.3.2]. Fur-
thermore, one supposes that the analogous operator defined on the pressure space exists
as

Op,` := (− 1

Re
∆ + ~w · ∇+ q`I )p.

As stated in [56, Sec. 8.2], the second derivatives contradict the usual requirements
on the pressure function p(t, ~x) to be differentiable only once and one simply purports
that these differential forms make sense. The key ingredient is to assume “that the
commutator of the [shifted Oseen] operators with the gradient operator

C` := (O~z,`)∇−∇(Op,`) ≈ 0 (5.6)

is small in some sense”[56, p. 347]. The discrete version of (5.6) can be written as

(M−1
z Fz,`)M

−1
z G ≈M−1

z G(M−1
p Fp,`) (5.7)

using the matrices from Subsection 3.5. Thereby, Fp,` := −( 1
Re
Sp + Kp(~w))T + q`Mp is

the shifted system matrix defined on the pressure space.
The first SC approximation is based on [56, Sec. 8.2.1] and is called shifted pressure

diffusion-convection (SPDC) approximation in the following. It can be derived if one
multiplies (5.7) from the left with GTF−1

z,`Mz and from the right with F−1
p,`Mp such that

GTM−1
z GF−1

p,`Mp ≈ GTF−1
z,`G = TSC,`.

Similar to TSC,`, the matrix GTM−1
z G ∈ Rm×m is in general a dense matrix that should

not be formed explicitly. As shown in [56, Sec. 5.5.1], GTM−1
z G is spectrally equivalent
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Section 5.2. Iterative Solvers

to the stiffness matrix Sp if one uses an inf-sup stable discretization and considers an
inflow-outflow problem. Hence,

P SPDC
SC,` := SpF

−1
p,`Mp ⇒

(
P SPDC

SC,`

)−1
:= M−1

p Fp,`S
−1
p ; (5.8)

compare [36, Sec. 3.3]. In the end, applying
(
P SPDC

SC,`

)−1
in (5.5c) can be done within

three substeps as depicted in the left row of Table 5.2. First, one needs to solve a pure
Neumann problem on the pressure space that is formally denoted by S−1

p ; compare [44].
The second substep is a matrix-vector multiplication with Fp,` and substep three is the
solution with the spd matrix Mp. These substeps are evaluated as shown in the next
paragraphs. For more details regarding this kind of SC approximation, the interested
reader is referred to [49] for generalized Stokes problems, to [46, 92] for steady and
unsteady Stokes problems, and to [93] for general PDEs.

The second approximation approach is based on [56, Sec. 8.2.2] and is only applicable
for inf-sup stable discretizations. The idea is to “define an approximation to the matrix
operator Fp,` that makes the discrete commutator (5.7) small”[56, p. 353]. This technique
is called least-squares commutator (LSC) approximation in the following and can be
defined as

P LSC
SC,` := (GTM̂−1

z G)(GTM̂−1
z Fz,`M̂

−1
z G)−1(GTM̂−1

z G)

⇒
(
P LSC

SC,`

)−1
:= (GTM̂−1

z G)−1(GTM̂−1
z Fz,`M̂

−1
z G)(GTM̂−1

z G)−1
(5.9)

with M̂z = diag (Mz); see [56, Sec. 8.2.2] for more details. Notice that M̂−1
z G ∈ Rn×m

and GTM̂−1
z G ∈ Rm×m are both sparse by construction and can be precomputed in

the offline phase since they do not depend on any parameters. Applying
(
P LSC

SC,`

)−1
in

(5.5c) can also be done in three substeps as illustrated in the right column of Table 5.2.

Thereby, the first and third substeps are identical, namely the solution with GTM̂−1
z G.

As mentioned above, this is similar to solving with the stiffness matrix on the pressure
space, which means solving a pure Neumann problem. The second substep consists of
three matrix-vector multiplications using the precomputed matrix M̂−1

z G and the shifted
system matrix Fz,`.

More details about both SC approximations, as well as a performance comparison
and an error analysis, can be found in [56, Sec. 8.2f]. Throughout the numerical tests
all matrix-vector products are carried out directly, whereas all linear system solves are
further approximated, which is sufficient for the application as preconditioner.

Algebraic Multigrid (AMG) Approximation In various steps and substeps of the
above derived preconditioner the approximate solution of a sparse linear system

F̃x = b

is needed, compare Table 5.1b and Table 5.2, with F̃ ∈ {Pz,`, Pc,`,Mp, Sp, SLSC}. All
these matrices, except Mp, are related to a stiffness matrix, which means they arise
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from discretizing second order elliptic PDEs. A highly efficient tool to approximate such
systems is the algebraic multigrid (AMG) method [113, Sec. 13.6].

Standard multigrid techniques are based on a hierarchy of grids, such that the solution
on the coarse grid is used as an initial guess for the fine grid. The system moves between
these different grid levels through restrictions (this process is often called coarsening)
and prolongations. Applying this idea recursively, the linear solves can be performed
efficiently on a coarse grid of small dimension, where a direct solver can be applied. Af-
terwards, the solution is prolonged to the original space. Before coarsening the problem
and after prolonging the solution, so-called smoothing steps are applied that quickly
damp special error frequencies. Further details can be found in, e.g., [113, Sec. 13.4].

The main idea of an AMG method is to apply the multigrid idea in a purely algebraic
way that only uses the information given in the matrix itself without the use of a
discretization hierarchy. Thereby, strong and weak couplings within the connectivity
graph are exploited to derive coarser versions of the original matrix. For more details,
the interested reader is referred to, e.g., [67, 111].

In the numerical test in Subsection 5.2.4, the AGMG package developed by the group
of Y. Notay [96, 99, 100] is used. The AGMG package needs to be interpreted as a
nonlinear function. Hence, a flexible iterative method, e.g., FGMRES [113, Sec. 9.4.1],
should be used. As stated in [36], no drawbacks can be observed while using a standard
GMRES implementation, such that this fact is not further considered in the remainder.

Chebyshev Semi-Iteration As mentioned above, Mp is not related to a stiffness matrix
and, therefore, can be approximated differently. Since Mp is a spd mass matrix, the
conjugate gradient method [72] converges rapidly using a simple preconditioner like
diag (Mp) as shown in [129]. An even faster approximation is given by the so-called
Chebyshev semi-iteration (CSI) as described in detail in [130]. The CSI method exploits
the fact that the eigenvalue bounds for (consistent) finite element mass matrices are
known; compare [129]. During the numerical test our own implementation of [122,
Alg. 2] is used.

To demonstrate the efficiency of the various approximation methods, four different
configuration sets are considered as depicted in Table 5.3.

5.2.3. Complex Preconditioners

All considerations in subsection 5.2.2 are restricted to the real-valued case. The main
reason for this restriction is the fact that all reviewed methods were originally developed
for real-valued problems. Shifted SPS like (4.32a) arise in various applications, but the
shift q` is usually related to a time step such that q` ∈ R+. The ADI shifts q` are related

to the spectrum of the pencil (A − B
(
K(k)

)T
,M ), which becomes complex if A is

not symmetric or K(k) not empty. Hence, complex-valued shifts might arise even for
symmetric problems at latest in the second Newton step.

In this subsection it is shown that the above introduced block preconditioner as well as
the various approximation techniques can be applied straight forwardly to the complex
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case. Considering a complex linear system Ax = b with A ∈ Cn×n, x, b ∈ Cn, each
component can be split into its real and imaginary parts such that Ax = b can be
written as

(Ar + Ai)(xr + xi) = (br + bi)

⇔
[
Ar −Ai
Ai Ar

] [
xr
xi

]
=

[
br
bi

]
(5.10)

with Ar, Ai ∈ Rn×n and xr,xi, br, bi ∈ Rn.

Using a complex shift q` = qr,` + qi,` ∈ C− in (4.32a) and applying (5.10), yields

[
AT + (qr,` + qi,`)M Ĝ

ĜT 0

][
V̂r,` + V̂i,`
∗

]
=

[
Ŷ

(k)
r,`−1 + Ŷ

(k)
i,`−1

0

]

⇔


AT + qr,`M −qi,`M Ĝ 0

qi,`M AT + qr,`M 0 Ĝ

ĜT 0 0 0

0 ĜT 0 0



V̂r,`
V̂i,`
∗
∗

 =


Ŷ

(k)
r,`−1

Ŷ
(k)
i,`−1

0
0


⇔

[
F̃` G̃

G̃T 0

][
Ṽ`
∗

]
=

[
Ỹ

(k)
`−1

0

]
,

(5.11)

which is a linear system of the form (4.32a) with a system matrix in R2N×2N . Applying
an ideal preconditioner like (5.3), which is adapted to the larger dimension, leads to a
preconditioned system with a single eigenvalue of 1, as derived in (5.4).

It is shown next that the preconditioning steps (5.5) adapted to the real-valued system
(5.11) are equivalent to the preconditioning steps applied to the original system with a

complex shift q`. Considering the ideal preconditioner PF̃ ,` = F̃` ∈ R2n×2n, (5.5b) yields

[
xr,1
xi,1

]
= F̃−1

`

[
br,1
bi,1

]
⇔

[
AT + qr,`M −qi,`M

qi,`M AT + qr,`M

] [
xr,1
xi,1

]
=

[
br,1
bi,1

]
⇔

(AT + qr,`M)xr,1 − qi,`Mxi,1 = br,1

qi,`Mxr,1 + (AT + qr,`M)xi,1 = bi,1
(5.10)⇔ (AT + (qr,` + qi,`)M)(xr,1 + xi,1) = (br,1 + bi,1)

⇔ (AT + q`M)x1 = b1

⇔ x1 = F−1
` b1.

(5.12)

Analogously, for PS̃C,` = TS̃C,` = G̃T F̃−1
` G̃ ∈ R2m×2m, the ideal preconditioning step

103



Chapter 5. Comparison of Linear Solvers

(5.5c) can be written as[
xr,2
xi,2

]
= T −1

S̃C,`

(
G̃T

[
xr,1
xi,1

]
−
[
br,2
bi,2

])
⇔ G̃T F̃−1

`

[
Ĝxr,2
Ĝxi,2

]
︸ ︷︷ ︸

=

cr
ci



=

([
ĜTxr,1
ĜTxi,1

]
−
[
br,2
bi,2

])

⇔
[
ĜT 0

0 ĜT

][
cr
ci

]
=

([
ĜTxr,1
ĜTxi,1

]
−
[
br,2
bi,2

])
⇔ ĜTc = ĜTx1 − b2

(5.12)⇔ ĜTF−1
` Ĝx2 = ĜTx1 − b2

⇔ x2 = T −1
SC,`

(
ĜTx1 − b2

)
.

In summary, the preconditioning steps for the (2N×2N)-dimensional real-valued sys-
tem (5.11) are equivalent to steps (5.5) for the (N ×N)-dimensional system (5.4) using
a complex shift. “Adapting GMRES to the complex case is fairly straightforward”[113,
p. 184, Sec. 6.5.9], as implemented in the standard MATLAB implementation. Further-
more, AGMG is able to handle complex systems. However, it is required to provide a
complex right-hand side for the AGMG method if the system matrix is complex. This
cannot be guaranteed throughout the GMRES iteration. Furthermore, using the com-
plex version turned out to be more cost intensive than solving the real-valued equivalent
system. Therefore, all substeps involving AGMG are extended as described in (5.10).
The basic GMRES iteration, however, operates on the original system independent of
the property of the shift.

5.2.4. Numerical Experiments for the Iterative Solvers

To demonstrate the usability of the introduced preconditioning techniques, the same
linear systems F`x` = b` as in Subsection 5.1.2 are considered. For the various scenarios,
each linear system is solved with the standard GMRES implementation within MATLAB
using the block preconditioner (5.3). Depending on the used SC approximation, the
results are labeled with SPDC or LSC; compare Table 5.2. Unless otherwise stated,
the AAC setup from Table 5.3 is used in the following computations. Further GMRES
starting parameters are the maximal iteration number of nmax,GMRES = 500, the GMRES
tolerance tolGMRES = 10−12, and a GMRES starting vector of all zeros. The results state

the used shift q`, the number of iterations #it, the relative error
||err`||1
||1n||1

, and the relative

residual
||F`x` − b`||2
||b`||2

. Notice that GMRES stops if the preconditioned residual fulfills

||P−1
` (F`x` − b`)||2 ≤ tolGMRES.
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NSE: Tables 5.4–5.5 depict the results for the NSE scenario for the coarsest refinement
level. The number of iterations, as well as the relative error and residual, stay relatively
constant for an increasing Reynolds number and |q`| > 10. For |q`| < 10 and Re ≤ 200,
the SPDC version uses less steps than the LSC method. In general, it seems that the
relative error and residual are better if one uses the LSC method. In Tables 5.6–5.7
the results for Re = 500 are depicted considering an increasing refinement level. In
such a case the number of iterations increases with the refinement level if one uses the
LSC approximation. Although the SPDC method uses more iterations than the LSC
method for lower refinement levels, the number of iterations increases only slightly with
an increasing refinement level. In fact, the LSC method does not converge within 500
iteration steps for the finest refinement level for small magnitude shifts. However, the
relative error deteriorates for high refinement levels in the case of the SPDC method.
For a more straightforward understanding of the methods convergence behavior, the
numbers of iteration and the relative errors are also depicted in Figures 5.5–5.6.

Stokes: The results for the Stokes scenario are displayed in the Tables 5.8–5.9. Thereby,
the LSC method clearly outperforms the SPDC method. The number of iterations are
drastically smaller, especially for small magnitude shifts. Compared to the NSE sce-
nario, the LSC methods need less iteration steps to converge. In general, the number of
iterations required for the LSC method is independent of the Reynolds number.

CFM: For the CFM scenario, Tables 5.10–5.13 display the results for the refinements
Level 1 and Level 4 for each parameter set in Table 4.2. It becomes apparent that the
number of iterations stays constant for the various parameter sets for both approximation
methods. As in the other scenarios, shifts with larger magnitude result in fewer iteration
steps. Furthermore, the number of iterations depending on the used shift varies more
for the LSC than for the SPDC approximation. Similar to the NSE results, the SPDC
is independent of the used refinement level, whereas the number of iteration steps grows
for an increasing refinement level for the LSC approximation.

All considered block preconditioners show good results for the different parameter
variations. The SPDC approximation is, in general, slightly more expensive, but shows
better robustness regarding the changing parameters. Especially the mesh refinement
introduces a drastic growth of the iteration numbers for the LSC approximation in some
cases. The fluctuating behavior regarding the changing ADI shift of the LSC method
might be an indication that this approximation is not yet robust enough regarding the
ADI shift. This behavior might be able to be incorporated in the shift selection process
in the future. Furthermore, an adaptive switch between both methods depending on the
used shift can be implemented easily. Finding the best switching point depends highly
on the problem and is, therefore, not a simple task. The slightly deteriorated relative
residual of the iterative methods might yield problems within the overall Kleinman–
Newton process from Chapter 4. In [124], this influence on the convergence of the ADI
iteration is investigated. Nevertheless, a method to determine the required tolerance
adaptively during the solution process is not yet available.
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Table 5.4.: NSE scenario: Results of GMRES iteration for varying Reynolds numbers
– Part I (refinement: Level 1, approximation methods: ACC).

LSC SPDC

q` #it
||err`||1
||1n||1

||F`x`−b`||2
||b`||2 #it

||err`||1
||1n||1

||F`x`−b`||2
||b`||2

Re = 100

−1.0 · 100 101 9.5 · 10−13 6.6 · 10−12 74 1.2 · 10−11 1.8 · 10−10

−2.5 · 100 −  1.3 · 100 82 9.8 · 10−13 4.3 · 10−12 57 5.2 · 10−12 3.1 · 10−11

−9.8 · 10−1 −  3.8 · 100 97 1.1 · 10−12 4.1 · 10−12 65 7.0 · 10−12 3.9 · 10−11

−2.2 · 100 −  5.1 · 100 82 6.3 · 10−13 2.1 · 10−12 52 5.1 · 10−12 1.9 · 10−11

−2.2 · 100 −  5.1 · 100 82 6.3 · 10−13 2.1 · 10−12 52 5.1 · 10−12 1.9 · 10−11

−3.0 · 101 19 2.7 · 10−13 1.9 · 10−12 21 4.8 · 10−12 8.0 · 10−12

−2.2 · 102 9 2.5 · 10−13 6.3 · 10−13 15 2.3 · 10−12 4.1 · 10−12

−6.0 · 103 8 1.0 · 10−13 8.8 · 10−14 14 1.0 · 10−12 2.7 · 10−12

Re = 200

−7.8 · 10−1 124 1.9 · 10−12 7.4 · 10−12 118 7.6 · 10−11 7.1 · 10−10

−1.8 · 100 −  1.3 · 100 103 2.4 · 10−12 7.9 · 10−12 91 1.6 · 10−11 9.8 · 10−11

−7.2 · 10−1 −  3.3 · 100 125 2.4 · 10−12 6.6 · 10−12 109 2.0 · 10−11 1.0 · 10−10

−1.4 · 100 −  4.3 · 100 108 2.2 · 10−12 4.2 · 10−12 90 1.6 · 10−11 5.8 · 10−11

−1.4 · 100 −  4.3 · 100 108 2.2 · 10−12 4.2 · 10−12 90 1.6 · 10−11 5.7 · 10−11

−4.5 · 101 14 1.4 · 10−13 4.0 · 10−13 20 5.8 · 10−12 3.5 · 10−12

−3.5 · 102 8 1.4 · 10−13 5.4 · 10−13 14 8.8 · 10−12 1.2 · 10−11

−3.0 · 103 8 2.8 · 10−13 8.9 · 10−14 14 1.0 · 10−12 1.3 · 10−12

Re = 300

−5.6 · 10−1 155 3.5 · 10−12 1.0 · 10−11 166 6.8 · 10−11 3.9 · 10−10

−8.8 · 10−1 141 4.4 · 10−12 1.1 · 10−11 149 1.2 · 10−10 7.7 · 10−10

−1.5 · 100 −  1.6 · 100 123 4.0 · 10−12 1.2 · 10−11 126 1.9 · 10−11 7.1 · 10−11

−3.2 · 101 14 1.7 · 10−13 8.3 · 10−13 26 6.7 · 10−12 4.0 · 10−12

−2.5 · 102 −  7.2 · 101 8 1.1 · 10−13 7.1 · 10−13 15 1.6 · 10−12 3.1 · 10−12

−2.5 · 102 −  7.2 · 101 8 1.0 · 10−13 7.1 · 10−13 15 1.6 · 10−12 1.9 · 10−12

−2.5 · 102 −  7.5 · 101 8 8.3 · 10−14 7.1 · 10−13 15 1.7 · 10−12 3.5 · 10−12

−2.0 · 103 8 7.9 · 10−14 1.3 · 10−13 14 1.7 · 10−12 1.4 · 10−12
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Table 5.5.: NSE scenario: Results of GMRES iteration for varying Reynolds numbers
– Part II (refinement: Level 1, approximation methods: ACC).

LSC SPDC

q` #it
||err`||1
||1n||1

||F`x`−b`||2
||b`||2 #it

||err`||1
||1n||1

||F`x`−b`||2
||b`||2

Re = 400

−3.6 · 10−1 185 7.2 · 10−12 1.8 · 10−11 214 1.8 · 10−10 1.0 · 10−9

−1.3 · 100 −  1.3 · 100 142 4.3 · 10−12 7.7 · 10−12 160 3.4 · 10−11 1.4 · 10−10

−3.0 · 10−1 −  3.2 · 100 198 2.3 · 10−11 1.1 · 10−11 198 7.0 · 10−11 2.1 · 10−10

−4.7 · 101 11 1.8 · 10−13 5.2 · 10−13 23 9.8 · 10−12 3.2 · 10−12

−2.0 · 102 −  1.9 · 102 8 1.3 · 10−13 6.7 · 10−13 15 1.7 · 10−12 2.2 · 10−12

−2.0 · 102 −  1.9 · 102 8 9.7 · 10−14 6.6 · 10−13 15 1.7 · 10−12 3.0 · 10−12

−4.6 · 102 −  2.2 · 102 8 5.6 · 10−14 3.6 · 10−13 14 6.0 · 10−12 6.1 · 10−12

−1.5 · 103 8 4.8 · 10−14 1.4 · 10−13 14 1.8 · 10−12 2.9 · 10−12

Re = 500

−4.0 · 10−1 −  2.7 · 10−13 206 1.0 · 10−11 1.5 · 10−11 247 2.9 · 10−10 1.2 · 10−9

−7.9 · 10−1 −  5.0 · 10−1 181 6.8 · 10−12 1.1 · 10−11 218 1.9 · 10−10 7.1 · 10−10

−1.1 · 100 −  1.7 · 100 165 5.3 · 10−12 8.3 · 10−12 196 4.2 · 10−11 1.3 · 10−10

−4.9 · 101 −  6.4 · 100 10 1.8 · 10−13 3.9 · 10−13 26 1.5 · 10−11 3.7 · 10−12

−1.6 · 102 −  2.1 · 102 8 9.7 · 10−14 7.2 · 10−13 18 1.1 · 10−11 4.4 · 10−12

−3.5 · 102 −  2.7 · 102 8 8.6 · 10−14 4.0 · 10−13 16 7.0 · 10−12 3.9 · 10−12

−3.5 · 102 −  2.7 · 102 8 6.7 · 10−14 4.0 · 10−13 16 7.0 · 10−12 3.1 · 10−12

−1.2 · 103 8 1.4 · 10−13 1.9 · 10−13 15 3.1 · 10−12 3.6 · 10−12
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Table 5.6.: NSE scenario: Results of GMRES iteration for different refinement levels –
Part I (Re = 500, approximation methods: ACC).

LSC SPDC

q` #it
||err`||1
||1n||1

||F`x`−b`||2
||b`||2 #it

||err`||1
||1n||1

||F`x`−b`||2
||b`||2

Level 1

−4.0 · 10−1 −  2.7 · 10−13 206 1.0 · 10−11 1.5 · 10−11 247 2.9 · 10−10 1.2 · 10−9

−7.9 · 10−1 −  5.0 · 10−1 181 6.8 · 10−12 1.1 · 10−11 218 1.9 · 10−10 7.1 · 10−10

−1.1 · 100 −  1.7 · 100 165 5.3 · 10−12 8.3 · 10−12 196 4.2 · 10−11 1.3 · 10−10

−4.9 · 101 −  6.4 · 100 10 1.8 · 10−13 3.9 · 10−13 26 1.5 · 10−11 3.7 · 10−12

−1.6 · 102 −  2.1 · 102 8 9.7 · 10−14 7.2 · 10−13 18 1.1 · 10−11 4.4 · 10−12

−3.5 · 102 −  2.7 · 102 8 8.6 · 10−14 4.0 · 10−13 16 7.0 · 10−12 3.9 · 10−12

−3.5 · 102 −  2.7 · 102 8 6.7 · 10−14 4.0 · 10−13 16 7.0 · 10−12 3.1 · 10−12

−1.2 · 103 8 1.4 · 10−13 1.9 · 10−13 15 3.1 · 10−12 3.6 · 10−12

Level 2

−3.7 · 10−1 214 3.9 · 10−12 1.8 · 10−11 235 1.0 · 10−10 1.5 · 10−9

−1.3 · 100 −  1.3 · 100 171 2.8 · 10−12 1.3 · 10−11 183 7.5 · 10−11 1.4 · 10−9

−1.1 · 101 44 7.7 · 10−13 4.7 · 10−12 58 2.2 · 10−11 7.8 · 10−11

−5.0 · 101 −  3.8 · 100 15 3.0 · 10−13 1.0 · 10−12 31 9.1 · 10−12 1.4 · 10−11

−2.4 · 102 −  2.8 · 101 9 8.0 · 10−14 2.9 · 10−13 22 7.6 · 10−12 1.1 · 10−11

−4.9 · 102 9 6.7 · 10−14 4.4 · 10−13 20 1.4 · 10−11 1.1 · 10−11

−6.5 · 103 9 6.8 · 10−13 4.2 · 10−13 17 2.0 · 10−11 4.1 · 10−12

Level 3

−3.6 · 10−1 257 6.7 · 10−12 7.2 · 10−11 243 2.1 · 10−10 2.3 · 10−8

−1.2 · 100 −  1.2 · 100 224 2.5 · 10−12 2.9 · 10−11 190 3.9 · 10−11 1.5 · 10−9

−4.4 · 101 −  1.8 · 101 26 2.9 · 10−13 1.3 · 10−12 35 8.9 · 10−12 3.6 · 10−11

−4.4 · 101 −  1.8 · 101 27 1.6 · 10−13 1.7 · 10−12 34 2.1 · 10−11 4.5 · 10−11

−4.9 · 101 −  7.5 · 100 27 1.0 · 10−13 1.8 · 10−12 33 1.1 · 10−11 2.9 · 10−11

−1.2 · 102 13 4.3 · 10−13 2.5 · 10−12 26 7.9 · 10−12 2.1 · 10−11

−1.5 · 103 11 4.1 · 10−13 1.1 · 10−12 21 6.7 · 10−12 3.7 · 10−11

−1.4 · 104 9 1.2 · 10−12 3.8 · 10−13 20 4.0 · 10−12 4.2 · 10−12
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Table 5.7.: NSE scenario: Results of GMRES iteration for different refinement levels –
Part II (Re = 500, approximation methods: ACC).

LSC SPDC

q` #it
||err`||1
||1n||1

||F`x`−b`||2
||b`||2 #it

||err`||1
||1n||1

||F`x`−b`||2
||b`||2

Level 4

−3.3 · 10−1 379 8.9 · 10−12 2.4 · 10−10 275 5.5 · 10−10 5.5 · 10−8

−1.2 · 100 −  1.2 · 100 345 1.9 · 10−12 5.0 · 10−11 223 5.2 · 10−11 4.3 · 10−9

−4.2 · 101 −  2.1 · 101 52 1.6 · 10−13 2.3 · 10−12 40 1.4 · 10−11 5.6 · 10−11

−4.2 · 101 −  2.1 · 101 52 6.3 · 10−13 1.8 · 10−12 40 1.4 · 10−11 5.4 · 10−11

−4.2 · 101 −  2.1 · 101 52 1.5 · 10−13 2.0 · 10−12 40 1.4 · 10−11 5.3 · 10−11

−5.6 · 102 15 6.5 · 10−13 2.1 · 10−12 28 2.4 · 10−12 1.5 · 10−10

−1.7 · 103 8 8.0 · 10−13 3.6 · 10−12 22 1.9 · 10−10 2.5 · 10−10

−3.6 · 104 8 5.6 · 10−12 1.8 · 10−12 20 4.0 · 10−10 3.4 · 10−10

Level 5

−3.3 · 10−1 429 1.2 · 10−11 5.3 · 10−10 278 3.1 · 10−11 5.5 · 10−9

−1.2 · 100 −  1.2 · 100 418 1.9 · 10−12 6.9 · 10−11 229 2.1 · 10−11 2.1 · 10−9

−4.2 · 101 −  2.0 · 101 87 3.5 · 10−13 3.6 · 10−12 51 1.5 · 10−11 2.0 · 10−10

−4.2 · 101 −  2.0 · 101 85 5.4 · 10−13 9.5 · 10−12 51 1.5 · 10−11 2.0 · 10−10

−4.2 · 101 −  2.0 · 101 90 4.2 · 10−13 3.6 · 10−12 51 1.5 · 10−11 1.8 · 10−10

−1.1 · 103 13 2.2 · 10−12 3.6 · 10−12 32 5.4 · 10−12 4.5 · 10−10

−7.2 · 104 8 1.8 · 10−11 2.5 · 10−12 26 2.2 · 10−10 1.2 · 10−9

Level 6

−2.5 · 10−1 500 8.1 · 10−9 7.2 · 10−7 302 1.8 · 10−9 3.9 · 10−7

−9.9 · 10−1 −  1.7 · 100 500 1.4 · 10−9 1.1 · 10−7 257 1.8 · 10−11 2.7 · 10−9

−3.8 · 101 −  2.3 · 101 173 1.4 · 10−12 9.8 · 10−12 53 2.4 · 10−11 1.1 · 10−9

−3.8 · 101 −  2.3 · 101 173 3.1 · 10−12 1.8 · 10−11 53 2.4 · 10−11 1.1 · 10−9

−3.8 · 101 −  2.3 · 101 173 5.7 · 10−13 2.5 · 10−11 53 2.4 · 10−11 1.3 · 10−9

−3.0 · 103 11 4.0 · 10−12 3.7 · 10−12 31 1.9 · 10−10 3.6 · 10−10

−2.3 · 104 8 4.4 · 10−12 1.4 · 10−11 30 1.2 · 10−10 4.2 · 10−9

−1.8 · 105 8 3.2 · 10−11 1.0 · 10−11 29 1.9 · 10−10 2.0 · 10−9
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(d) Relative error using SPDC.

Figure 5.5.: NSE scenario: Influence of ADI shifts on the number of iterations #it

and the relative error in the 1-norm using GMRES for different Reynolds
numbers and different SC approximation methods
(refinement: Level 1, approximation methods: ACC).

110



Section 5.2. Iterative Solvers

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

−105 −103 −101 −10−1
0

100

200

300

400

500

−|q`|

#
it

(a) Number of GMRES steps using LSC.

−105 −103 −101 −10−1
10−14

10−12

10−10

10−8

−|q`|
||e

r
r
`
|| 1

||1
n
|| 1

(b) Relative error using LSC.

−105 −103 −101 −10−1
0

100

200

300

400

500

−|q`|

#
it

(c) Number of GMRES steps using SPDC.

−105 −103 −101 −10−1
10−14

10−12

10−10

10−8

−|q`|

||e
r
r
`
|| 1

||1
n
|| 1

(d) Relative error using SPDC.

Figure 5.6.: NSE scenario: Influence of ADI shifts on the number of iterations #it

and the relative error in the 1-norm using GMRES for refinement levels and
different SC approximation methods
(Re = 500, approximation methods: ACC).
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Table 5.8.: Stokes scenario: Results of GMRES iteration for varying Reynolds numbers
– Part I (refinement: Level 1, approximation methods: ACC).

LSC SPDC

q` #it
||err`||1
||1n||1

||F`x`−b`||2
||b`||2 #it

||err`||1
||1n||1

||F`x`−b`||2
||b`||2

Re = 100

−3.4 · 10−1 52 2.8 · 10−13 6.3 · 10−12 170 3.1 · 10−11 9.5 · 10−10

−4.8 · 10−1 50 2.6 · 10−13 5.2 · 10−12 162 2.4 · 10−11 5.3 · 10−10

−1.3 · 100 42 2.8 · 10−13 4.5 · 10−12 133 1.0 · 10−11 1.8 · 10−10

−2.7 · 101 17 1.4 · 10−13 4.9 · 10−13 32 7.8 · 10−12 1.1 · 10−11

−5.0 · 101 −  8.2 · 10−1 14 1.5 · 10−13 1.3 · 10−12 23 5.1 · 10−12 6.2 · 10−12

−5.0 · 101 −  8.4 · 10−1 14 1.5 · 10−13 1.3 · 10−12 23 5.1 · 10−12 6.2 · 10−12

−2.2 · 102 9 2.0 · 10−13 3.5 · 10−13 15 4.4 · 10−12 4.7 · 10−12

−6.0 · 103 8 7.1 · 10−14 1.1 · 10−13 14 1.6 · 10−12 1.4 · 10−12

Re = 200

−1.7 · 10−1 53 2.7 · 10−13 6.1 · 10−12 244 6.7 · 10−10 1.9 · 10−8

−2.8 · 10−1 −  7.4 · 10−3 50 2.4 · 10−13 4.2 · 10−12 235 6.0 · 10−11 1.2 · 10−9

−6.3 · 10−1 43 2.9 · 10−13 5.2 · 10−12 212 1.6 · 10−11 1.2 · 10−10

−1.2 · 100 37 2.5 · 10−13 4.4 · 10−12 185 7.7 · 10−11 2.1 · 10−9

−4.6 · 101 12 2.1 · 10−13 1.2 · 10−12 28 6.7 · 10−12 6.1 · 10−12

−2.3 · 102 8 1.1 · 10−13 5.5 · 10−13 15 4.0 · 10−12 4.2 · 10−12

−3.0 · 103 8 8.9 · 10−14 8.2 · 10−14 14 1.1 · 10−12 1.7 · 10−12

Re = 300

−1.1 · 10−1 53 4.0 · 10−13 9.0 · 10−12 297 4.8 · 10−9 1.2 · 10−7

−2.2 · 10−1 49 3.3 · 10−13 6.3 · 10−12 288 1.3 · 10−9 3.2 · 10−8

−1.4 · 100 32 2.5 · 10−13 5.2 · 10−12 205 1.8 · 10−11 1.9 · 10−10

−4.2 · 101 11 2.1 · 10−13 5.3 · 10−13 32 9.2 · 10−12 9.0 · 10−12

−1.4 · 102 8 1.5 · 10−13 8.4 · 10−13 16 9.0 · 10−12 5.1 · 10−12

−2.0 · 103 8 1.1 · 10−13 1.3 · 10−13 14 1.7 · 10−12 2.0 · 10−12
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Table 5.9.: Stokes scenario: Results of GMRES iteration for varying Reynolds numbers
– Part II (refinement: Level 1, approximation methods: ACC).

LSC SPDC

q` #it
||err`||1
||1n||1

||F`x`−b`||2
||b`||2 #it

||err`||1
||1n||1

||F`x`−b`||2
||b`||2

Re = 400

−8.4 · 10−2 53 5.4 · 10−13 1.2 · 10−11 330 7.9 · 10−9 1.6 · 10−7

−4.1 · 10−1 42 2.0 · 10−13 3.0 · 10−12 297 8.1 · 10−11 1.4 · 10−9

−1.6 · 100 28 2.5 · 10−13 4.6 · 10−12 219 2.7 · 10−11 4.1 · 10−10

−2.5 · 101 12 2.2 · 10−13 9.3 · 10−13 50 1.1 · 10−11 2.0 · 10−11

−1.0 · 102 8 2.0 · 10−13 1.2 · 10−12 20 5.4 · 10−12 4.6 · 10−12

−1.5 · 103 8 1.2 · 10−13 1.6 · 10−13 14 1.9 · 10−12 3.2 · 10−12

Re = 500

−6.7 · 10−2 53 6.5 · 10−13 1.5 · 10−11 362 1.3 · 10−8 2.1 · 10−7

−1.9 · 10−1 46 4.8 · 10−13 9.9 · 10−12 347 5.1 · 10−10 8.5 · 10−9

−1.3 · 100 29 1.9 · 10−13 2.7 · 10−12 256 1.2 · 10−10 2.1 · 10−9

−1.7 · 101 13 1.8 · 10−13 6.2 · 10−13 75 1.0 · 10−11 2.5 · 10−11

−5.0 · 101 −  2.1 · 100 9 2.2 · 10−13 8.5 · 10−13 39 1.4 · 10−11 1.2 · 10−11

−1.4 · 102 8 1.8 · 10−13 9.0 · 10−13 24 8.6 · 10−12 4.5 · 10−12

−1.2 · 103 8 1.4 · 10−13 1.6 · 10−13 15 4.5 · 10−12 3.5 · 10−12
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Table 5.10.: CFM scenario: Results of GMRES iteration for different refinement levels
– Part I (refinement: Level 1, approximation methods: ACC).

LSC SPDC

q` #it
||err`||1
||1n||1

||F`x`−b`||2
||b`||2 #it

||err`||1
||1n||1

||F`x`−b`||2
||b`||2

Set I

−1.9 · 10−1 68 4.6 · 10−12 3.1 · 10−11 47 1.4 · 10−11 9.3 · 10−13

−6.5 · 10−1 67 4.3 · 10−12 3.0 · 10−11 40 5.8 · 10−12 1.1 · 10−12

−1.5 · 100 66 4.1 · 10−12 3.0 · 10−11 36 2.1 · 10−12 1.3 · 10−12

−4.1 · 100 −  4.2 · 10−1 63 2.9 · 10−12 2.2 · 10−11 30 4.4 · 10−12 2.2 · 10−12

−4.7 · 100 −  5.0 · 10−1 63 2.2 · 10−12 1.8 · 10−11 30 2.6 · 10−12 2.8 · 10−12

−1.4 · 101 57 1.3 · 10−12 1.5 · 10−11 26 1.0 · 10−11 8.2 · 10−12

−2.2 · 102 28 4.1 · 10−13 5.4 · 10−13 23 8.7 · 10−12 1.2 · 10−11

−1.6 · 103 12 4.1 · 10−13 1.2 · 10−13 22 2.1 · 10−10 2.7 · 10−11

−4.3 · 104 9 2.0 · 10−11 1.1 · 10−13 23 1.7 · 10−10 7.3 · 10−11

Set II

−4.3 · 10−2 68 4.6 · 10−12 3.8 · 10−11 50 3.4 · 10−11 7.9 · 10−13

−2.1 · 10−1 −  1.4 · 10−2 68 4.0 · 10−12 3.4 · 10−11 46 1.7 · 10−11 1.8 · 10−12

−1.1 · 100 −  1.1 · 100 67 3.8 · 10−12 2.8 · 10−11 38 4.1 · 10−12 1.6 · 10−12

−1.1 · 100 −  1.1 · 100 67 3.8 · 10−12 3.3 · 10−11 38 4.1 · 10−12 1.1 · 10−12

−1.1 · 100 −  1.1 · 100 67 3.8 · 10−12 2.9 · 10−11 38 4.1 · 10−12 1.1 · 10−12

−1.7 · 101 55 1.8 · 10−12 1.9 · 10−11 26 1.2 · 10−12 9.8 · 10−12

−5.8 · 102 18 3.0 · 10−13 2.3 · 10−13 22 2.3 · 10−10 8.6 · 10−12

−1.5 · 103 13 1.8 · 10−13 2.6 · 10−13 23 9.1 · 10−11 3.7 · 10−11

−4.3 · 104 9 1.0 · 10−11 3.6 · 10−13 23 1.6 · 10−10 7.7 · 10−11
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Table 5.11.: CFM scenario: Results of GMRES iteration for different refinement levels
– Part II (refinement: Level 4, approximation methods: ACC).

LSC SPDC

q` #it
||err`||1
||1n||1

||F`x`−b`||2
||b`||2 #it

||err`||1
||1n||1

||F`x`−b`||2
||b`||2

Set I

−1.9 · 10−1 134 4.2 · 10−11 4.4 · 10−9 51 4.4 · 10−12 3.8 · 10−12

−4.4 · 10−1 134 6.2 · 10−11 3.8 · 10−9 46 2.1 · 10−12 2.9 · 10−11

−1.4 · 100 135 1.3 · 10−11 1.0 · 10−9 38 5.8 · 10−12 3.9 · 10−12

−1.2 · 101 −  2.8 · 10−14 120 1.5 · 10−11 3.2 · 10−9 27 8.2 · 10−12 1.6 · 10−10

−1.7 · 102 77 2.2 · 10−12 4.9 · 10−10 23 2.4 · 10−10 4.8 · 10−10

−1.4 · 102 −  2.9 · 102 75 3.2 · 10−12 1.3 · 10−10 24 1.9 · 10−10 8.6 · 10−10

−2.0 · 102 −  3.0 · 102 69 4.1 · 10−12 1.1 · 10−10 25 1.4 · 10−10 9.3 · 10−12

−8.9 · 103 14 5.4 · 10−12 1.5 · 10−12 24 4.1 · 10−9 9.2 · 10−10

−3.8 · 104 8 6.7 · 10−12 3.8 · 10−12 26 7.2 · 10−10 8.5 · 10−10

−9.1 · 105 7 1.4 · 10−11 3.6 · 10−12 28 1.9 · 10−9 1.5 · 10−9

Set II

−4.3 · 10−2 135 1.6 · 10−11 4.5 · 10−9 53 1.0 · 10−11 3.6 · 10−11

−2.1 · 10−1 −  1.4 · 10−2 134 5.6 · 10−11 5.4 · 10−9 50 7.8 · 10−12 1.5 · 10−11

−8.6 · 10−1 −  5.2 · 10−1 133 6.9 · 10−11 4.1 · 10−9 41 7.3 · 10−12 7.4 · 10−12

−1.2 · 100 −  1.1 · 100 133 3.0 · 10−11 5.8 · 10−9 43 1.2 · 10−12 4.7 · 10−11

−1.2 · 100 −  1.1 · 100 133 3.6 · 10−11 2.9 · 10−9 40 1.8 · 10−12 4.3 · 10−11

−2.5 · 101 −  1.4 · 10−12 117 4.9 · 10−12 2.9 · 10−10 26 1.3 · 10−11 3.8 · 10−10

−4.7 · 102 53 4.1 · 10−12 5.5 · 10−11 23 3.8 · 10−10 5.1 · 10−10

−1.1 · 103 40 1.7 · 10−12 2.6 · 10−11 23 5.4 · 10−10 4.2 · 10−10

−3.8 · 104 8 1.4 · 10−11 2.3 · 10−12 26 7.7 · 10−10 9.4 · 10−10

−9.1 · 105 7 3.4 · 10−10 1.2 · 10−12 33 2.1 · 10−10 5.7 · 10−10
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Table 5.12.: CFM scenario: Results of GMRES iteration for different refinement levels
– Part I (refinement: Level 1, approximation methods: ACC).

LSC SPDC

q` #it
||err`||1
||1n||1

||F`x`−b`||2
||b`||2 #it

||err`||1
||1n||1

||F`x`−b`||2
||b`||2

Set III

−3.9 · 10−2 76 4.3 · 10−12 3.1 · 10−11 54 3.6 · 10−11 3.5 · 10−11

−2.1 · 10−1 −  2.1 · 10−2 74 3.1 · 10−12 2.2 · 10−11 45 3.1 · 10−11 3.8 · 10−11

−1.1 · 100 −  1.0 · 100 68 1.9 · 10−12 1.3 · 10−11 37 1.3 · 10−11 1.2 · 10−11

−2.6 · 101 32 3.4 · 10−13 8.7 · 10−13 26 4.1 · 10−11 9.4 · 10−12

−2.6 · 101 −  2.6 · 101 29 3.6 · 10−13 3.9 · 10−13 26 1.2 · 10−10 3.5 · 10−12

−2.6 · 101 −  2.6 · 101 29 2.9 · 10−13 4.8 · 10−13 26 1.2 · 10−10 1.6 · 10−11

−1.4 · 102 14 1.8 · 10−13 2.5 · 10−13 23 5.5 · 10−10 3.8 · 10−12

−4.3 · 103 9 4.1 · 10−13 1.4 · 10−13 23 1.0 · 10−10 6.0 · 10−11

Set IV

−1.9 · 10−2 68 4.5 · 10−12 3.4 · 10−11 51 5.8 · 10−11 8.0 · 10−13

−1.4 · 10−1 68 4.2 · 10−12 3.2 · 10−11 48 1.7 · 10−11 1.0 · 10−12

−2.1 · 10−1 −  2.4 · 10−1 68 4.2 · 10−12 3.8 · 10−11 45 9.1 · 10−12 1.6 · 10−12

−3.1 · 10−1 −  4.0 · 10−1 68 4.2 · 10−12 3.2 · 10−11 44 2.5 · 10−12 9.5 · 10−13

−9.5 · 100 59 1.7 · 10−12 1.8 · 10−11 27 9.3 · 10−12 9.9 · 10−13

−1.8 · 101 55 1.4 · 10−12 1.4 · 10−11 25 2.2 · 10−11 7.6 · 10−12

−5.8 · 102 18 3.4 · 10−13 4.8 · 10−13 22 2.3 · 10−10 3.9 · 10−12

−2.1 · 103 11 6.2 · 10−13 2.3 · 10−13 22 6.6 · 10−10 4.1 · 10−11

−4.3 · 104 9 3.2 · 10−11 2.4 · 10−13 23 2.2 · 10−10 9.5 · 10−12

Set V

−1.2 · 10−2 77 4.3 · 10−12 3.2 · 10−11 56 1.2 · 10−10 1.3 · 10−10

−2.0 · 10−1 −  2.0 · 10−1 75 3.4 · 10−12 2.3 · 10−11 46 5.4 · 10−11 4.9 · 10−11

−2.7 · 10−1 −  3.5 · 10−1 74 3.7 · 10−12 2.5 · 10−11 44 3.9 · 10−11 2.9 · 10−11

−2.0 · 100 62 1.9 · 10−12 1.2 · 10−11 34 2.4 · 10−11 1.4 · 10−11

−5.0 · 101 −  1.0 · 101 23 2.1 · 10−13 5.9 · 10−13 25 6.1 · 10−11 7.0 · 10−12

−1.4 · 102 14 2.5 · 10−13 5.2 · 10−13 23 5.3 · 10−10 1.9 · 10−11

−4.3 · 103 9 3.9 · 10−13 1.5 · 10−13 23 1.0 · 10−10 5.4 · 10−12
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Table 5.13.: CFM scenario: Results of GMRES iteration for different refinement levels
– Part II (refinement: Level 4, approximation methods: ACC).

LSC SPDC

q` #it
||err`||1
||1n||1

||F`x`−b`||2
||b`||2 #it

||err`||1
||1n||1

||F`x`−b`||2
||b`||2

Set III

−3.9 · 10−2 147 2.2 · 10−11 2.0 · 10−9 55 2.9 · 10−10 3.1 · 10−10

−2.1 · 10−1 −  2.1 · 10−2 148 2.9 · 10−11 1.1 · 10−9 46 3.2 · 10−10 2.9 · 10−10

−9.1 · 10−1 −  9.1 · 10−1 140 8.0 · 10−12 6.1 · 10−10 38 2.4 · 10−11 1.1 · 10−10

−1.1 · 101 −  2.3 · 10−12 97 3.6 · 10−12 5.1 · 10−10 28 9.9 · 10−11 6.4 · 10−10

−2.3 · 101 −  2.6 · 101 76 4.0 · 10−12 1.1 · 10−10 27 1.6 · 10−10 7.3 · 10−10

−2.9 · 101 −  2.6 · 101 71 4.4 · 10−12 1.2 · 10−10 27 7.7 · 10−11 6.2 · 10−10

−1.1 · 103 13 1.1 · 10−12 3.6 · 10−12 26 7.7 · 10−10 5.4 · 10−10

−9.1 · 104 8 3.6 · 10−11 9.2 · 10−13 28 1.1 · 10−8 1.7 · 10−9

Set IV

−1.9 · 10−2 −  7.2 · 10−6 135 4.5 · 10−11 3.6 · 10−9 55 9.5 · 10−12 3.3 · 10−11

−1.3 · 10−1 135 1.9 · 10−11 4.7 · 10−9 52 3.3 · 10−12 4.1 · 10−11

−1.0 · 101 −  3.0 · 10−13 121 1.5 · 10−11 3.7 · 10−9 29 1.5 · 10−12 4.6 · 10−11

−3.3 · 101 −  1.1 · 102 106 1.1 · 10−11 2.5 · 10−10 25 1.3 · 10−10 6.5 · 10−10

−9.3 · 101 −  9.2 · 101 90 1.1 · 10−11 3.5 · 10−10 24 7.7 · 10−11 8.6 · 10−10

−1.1 · 102 −  1.1 · 102 87 3.7 · 10−12 1.4 · 10−10 25 8.3 · 10−11 3.2 · 10−11

−9.2 · 103 14 5.8 · 10−12 2.5 · 10−12 24 5.0 · 10−9 9.0 · 10−10

−3.8 · 104 8 1.5 · 10−11 4.1 · 10−12 26 7.5 · 10−10 6.0 · 10−10

−9.1 · 105 7 2.6 · 10−10 2.5 · 10−12 28 2.2 · 10−9 2.3 · 10−9

Set V

−1.2 · 10−2 147 3.9 · 10−11 2.3 · 10−9 58 6.5 · 10−11 9.1 · 10−11

−1.9 · 10−1 −  7.2 · 10−2 144 1.9 · 10−11 1.8 · 10−9 47 2.4 · 10−10 2.4 · 10−10

−6.5 · 100 109 8.4 · 10−12 4.2 · 10−10 35 2.5 · 10−12 2.3 · 10−10

−4.6 · 101 −  5.1 · 100 61 3.4 · 10−12 9.0 · 10−11 26 2.0 · 10−10 2.0 · 10−10

−4.6 · 101 −  1.0 · 101 61 9.0 · 10−13 3.1 · 10−11 26 1.8 · 10−10 6.2 · 10−10

−4.6 · 101 −  1.4 · 101 61 3.1 · 10−12 7.5 · 10−11 26 1.6 · 10−10 3.8 · 10−10

−1.0 · 103 −  1.7 · 10−11 15 1.4 · 10−12 6.2 · 10−13 26 2.3 · 10−10 4.6 · 10−10

−9.1 · 104 7 4.2 · 10−11 1.8 · 10−12 33 1.4 · 10−10 5.2 · 10−10
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The last part of this chapter investigates the efficiency of the approximation methods
introduced in Subsection 5.2.2. Thereby, all systems of the NSE scenario with Re = 500
for the coarsest refinement level are considered. Using the different configuration setups
in Table 5.3 for the LSC and the SPDC method, the GMRES convergence is identical.
This indicates that the approximations are sufficient for the preconditioning process
compared to solving the substeps numerically “exact” with a sparse direct solver. How-
ever, even for the coarsest mesh, the approximations (blue) outperform the direct solver
(black) as depicted in Table 5.14.

The results in Table 5.14 are divided horizontally into two parts regarding the LSC
and SPDC method. For each substep in Table 5.2, the times are accumulated during
the entire GMRES process. Furthermore, the time to initialize the AGMG and the CSI
method is measured. Notice that the substeps involving SLSC, Sp,Mp are independent of
all parameters and need to be initialized only once during the entire process or could be
initialized during offline phase of the procedure. The initialization times are displayed
separately, indicated by a superscript “init”. The table is vertically divided into three
parts. The upper part shows the sum over all times for the eight different shifts q`. The
middle and the lower part compare the influence of a complex shift and the subsequently
extended linear systems as explained in Subsection 5.2.3. We chose shifts that needed
the same amount of GMRES steps to be comparable.

Considering all shifts, the AAC method is three times faster than the DDD method.
In all cases, the times to initialize the different approximations is at least one magnitude
smaller than its actual execution. Furthermore, the LSC method is cheaper than the
SPDC method. Regarding the complex shifts, the ACC method outperforms the DDD
method to an even greater extent. If one considers finer mesh refinements, these speedups
should increase further. Moreover, all approximation methods are based on a matrix-
vector products such that an increasing dimension can be treated without the use of
special hardware requirements.

5.3. Conclusion – Part II

The experiments in Subsection 5.1.2 and Subsection 5.2.4 show that both linear solvers
are able to solve the SPS used in Chapter 4. Thereby, the ADI shift is the most influential
component in the solution process.

On the one hand, the growing condition number for large magnitude ADI shifts effects
the accuracy of the sparse direct solver drastically, as shown in Section 5.1. Nevertheless,
all results are sufficient to compute the feedback during the KN-ADI method.

On the other hand, the block preconditioner introduced in Section 5.2 handles these ill-
conditioned systems very well. However, ADI shifts with rather small magnitude result
in longer and more expensive GMRES iterations. The robustness of the preconditioner
should be investigated in more detail to come up with an overall robust method.

As mentioned above, an adaptive tolerance is not chosen and not yet investigated in
detail. Nevertheless, the next chapter introduces such an adaptive accuracy one level
higher in the nested KN-ADI method.
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Table 5.14.: NSE scenario: Timings of the different configuration setups in Table 5.3 to solve the systems F`x` = b` from
Table 5.5 with Re = 500 (refinement: Level 1, blue highlights approximated solves).

LSC SPDC

AGMGinit
SLSC

AGMGF−1
`

AGMGS−1
LSC

total AGMGinit
Sp

CSIinit
Mp

AGMGF−1
`

AGMGS−1
p

CSIM−1
p

total

su
m
∀q

`

AAC 1.8 · 10−2 4.3 · 100 8.9 · 10−1 2.6 · 101 1.1 · 10−2 9.3 · 10−4 5.1 · 100 7.0 · 10−1 3.9 · 10−1 3.3 · 101

AAD 1.8 · 10−2 4.7 · 100 9.5 · 10−1 2.6 · 101 1.1 · 10−2 – 5.4 · 100 7.7 · 10−1 2.6 · 100 4.0 · 101

ADD – 4.4 · 100 7.1 · 100 3.5 · 101 – – 5.5 · 100 9.1 · 10−1 2.5 · 100 3.4 · 101

DDD – 4.6 · 101 7.0 · 100 7.5 · 101 – – 6.1 · 101 9.2 · 10−1 2.6 · 100 9.4 · 101

q `
=
−

1
2
0
5

AAC 1.8 · 10−2 1.3 · 10−1 3.0 · 10−2 1.5 · 10−1 1.1 · 10−2 9.3 · 10−4 1.4 · 10−1 3.0 · 10−2 9.0 · 10−3 2.0 · 10−1

AAD 1.8 · 10−2 1.3 · 10−1 3.0 · 10−2 1.5 · 10−1 1.1 · 10−2 – 1.5 · 10−1 3.1 · 10−2 5.2 · 10−2 2.5 · 10−1

ADD – 1.2 · 10−1 9.1 · 10−2 2.1 · 10−1 – – 1.4 · 10−1 2.0 · 10−2 5.2 · 10−2 2.2 · 10−1

DDD – 4.6 · 10−1 9.6 · 10−2 6.5 · 10−1 – – 9.4 · 10−1 2.0 · 10−2 5.2 · 10−2 1.1 · 100

q `
=
−

3
5
4
−

2
7
6 AAC 1.8 · 10−2 2.0 · 10−1 1.3 · 10−2 1.6 · 10−1 1.1 · 10−2 9.3 · 10−4 2.4 · 10−1 1.5 · 10−2 9.1 · 10−3 2.8 · 10−1

AAD 1.8 · 10−2 2.0 · 10−1 1.4 · 10−2 1.7 · 10−1 1.1 · 10−2 – 2.7 · 10−1 1.7 · 10−2 6.2 · 10−2 3.5 · 10−1

ADD – 2.0 · 10−1 1.0 · 10−1 2.5 · 10−1 – – 2.4 · 10−1 2.2 · 10−2 6.0 · 10−2 3.2 · 10−1

DDD – 7.1 · 10−1 1.0 · 10−1 9.3 · 10−1 – – 1.5 · 100 2.2 · 10−2 6.0 · 10−2 1.7 · 100

1
1
9
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The sixth chapter introduces the second major contribution of this thesis, i.e., the
inexact low-rank Kleinman–Newton-ADI method for index-2 DAE systems, which is a
generalization of the presented method in [26] to the index-2 DAE case. In the first
section, the derived method from Chapter 4 is reviewed and certain drawbacks are
stated. In Section 6.2, the line search approach from [25] and the inexact Kleinman-
Newton formulation from [59] are merged into a method, which is the major contribution
established in this chapter. By adapting novel realizations of the involved methods, it
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is possible to incorporate and combine these well-known techniques, which could not
be used together within this context before, to overcome the drawbacks indicated in
Section 6.1. Section 6.3 introduces low-rank residual formulations, which are the key
ingredients for an efficient implementation of this innovative method. In Section 6.4,
numerical examples verify the usability of this novel approach.

6.1. Review of Kleinman–Newton-ADI Method

Although the applicability of the KN-ADI method for index-2 DAE systems has been
verified in the articles [14, 15, 34–36], some drawbacks and numerical difficulties persists.

At first, consider the convergence behavior of the KN-ADI method. Although the
KN-ADI for index-2 DAE systems converges globally for certain starting conditions, as
shown in Theorem 4.5, the Riccati residual might grow drastically after the first Newton
step. This behavior is not related to the special structure of the Riccati equation,
but is well-known in the context of Newton’s method, as described in [80, Chap. 8].
The numerical results in Section 4.4 show that this problem is not only an assumed
possible consequence, but can be observed in, e.g., Figure 4.5b. In [25], Benner/Byers
investigate the incorporation of a line search method into Newton’s method to overcome
this difficulty. Unfortunately, the method proposed in [25] is only applicable to small-
scale problems since the computation involves the explicit handling of the dense Riccati
residual (4.16c). Nevertheless, the line search approach from [25] is one of the major
ingredients for the derivations of Chapter 6.

The second open problem is the determination of an appropriate accuracy for solving
the linear Newton-step, i.e., the GCALE (4.21), iteratively. As stated in [80, Chap. 6]
and [53], an inexact Newton method can be used to determine this accuracy. In [59],
the approach is applied to large-scale Riccati equations. Unfortunately, the convergence
proof in [59] is not applicable in the low-rank case, as shown in [26]. However, by combin-
ing the line search idea with the inexact Newton method, an innovative method can be
derived. The fundamental key, which makes a combination of these different approaches
possible and leads to a convergence proof, are low-rank residual formulations, as shown
in [26]. The extension of the ideas in [26] to the index-2 DAE systems is straightforward
and, additionally, avoids the explicit projection in each step of the computation of the
projected residual from Subsection 4.3.2.

6.2. Inexact Kleinman–Newton Method with Line
Search

To generalize the method in [26], the approach from [80, Sec. 8.2] is applied to the
projected GCARE (4.16c) in the next subsection. Afterwards, two different line search
approaches are investigated in Subsection 6.2.2 and the convergence behavior is analyzed
in Subsection 6.2.3. The content is based on the statements in [26, Sec. 3] in a slightly
adapted and extended version. All derivations in this section are formulated for the pro-
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jected matrices in (4.15) that are never assembled explicitly, as explained in Remark 4.2.
A way to efficiently perform all computations without the explicit use of the projected
matrices is based on the statements in Subsection 4.2.2. To apply these statements for
the inexact KNM with line search, some further modifications are necessary, as shown
in Section 6.3.

6.2.1. Derivation of the Method

The basic inexact Newton result in [80, Thm. 6.1.2] states that one accepts the next
Newton increment if the norm of the residual of the linear Newton step (4.20a) is smaller
than the previous residual (4.16c) scaled by the so-called forcing parameter τ ∈ (0, 1).
For the projected GCARE (4.16c), the increment S ∈ Rñ×ñ in the k+1-st inexact Newton
step is computed by solving (4.20a) iteratively until it holds that

||R′(X (k))S(k) +R(X (k))||F ≤ τk||R(X (k))||F . (6.1)

To incorporate the line search idea from [80, Chap. 8], the increment in (4.20b) is scaled
by ξk > 0 such that the new iterate is defined by

X (k+1) = X (k) + ξkS(k). (6.2)

Thereby, the step size ξk is chosen in order to fulfill the sufficient decrease condition

||R
(
X (k) + ξkS(k)

)
||F ≤ (1− ξkβ)||R(X (k))||F (6.3)

with a certain safety parameter β > 0 and a step size ξk that is not unnecessarily
small. In other words, the new iterate X (k+1) has to ensure that the residual decreases
monotonously. As shown in Subsection 6.2.3, the property that ξk is not unnecessarily
small is important to ensure the convergence of the method and to prevent stagnation.

Instead of computing the new iterate X (k+1) via (6.2), one sets ξk = 1 and defines the
preliminary solution

X̃ (k+1) := X (k) + S(k). (6.4)

Following the statements in [26, Sec. 3.1], the residual of the Newton step (4.20) defines
the preliminary projected Lyapunov residual

L(X̃ (k+1)) := R′(X (k))S(k) +R(X (k)), (6.5)

such that (6.1) simplifies to the inexact Newton step condition

||L(X̃ (k+1))||F ≤ τk||R(X (k))||F . (6.6)

Using the definitions (4.18a), (4.21), (6.4), and (6.5), one can define the inexact Kleinman–
Newton step(

A(k)
)T X̃ (k+1)M+MX̃ (k+1)A(k) = −W(k)

(
W(k)

)T
+ L(X̃ (k+1)) (6.7)
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with a low-rank inhomogeneity W(k)
(
W(k)

)T
that directly iterates on X̃ (k+1) until the

residual L(X̃ (k+1)) fulfills (6.6). Using (4.19) and (6.5), the residual of the projected
CARE at (6.2) can be defined via

R(X (k) + ξkS(k)) = R(X (k)) + ξkR′(X (k))S(k) +
ξ2
k

2
R′′(X (k))(S(k),S(k))

= (1− ξk)R(X (k)) + ξkL(X̃ (k+1))− ξ2
kMS(k)BBTS(k)M.

(6.8)

If the forcing parameters in (6.1) are limited by τk ≤ τ̄ < 1 and β ∈ (0, 1 − τ̄), then
(6.6) and (6.8) yield

||R
(
X (k) + ξkS(k)

)
||F

≤ (1− ξk)||R(X (k))||F + ξk||L(X̃ (k+1))||F + ξ2
k

∣∣∣∣MS(k)BBTS(k)M
∣∣∣∣

≤ (1− ξk + ξkτ̄)||R(X (k))||F + ξ2
k

∣∣∣∣MS(k)BBTS(k)M
∣∣∣∣

||R(X (k))||F
||R(X (k))||F

=

(
1− ξk

(
1− τ̄ − ξk

∣∣∣∣MS(k)BBTS(k)M
∣∣∣∣

||R(X (k))||F

))
||R(X (k))||F

≤ (1− ξkβ)||R(X (k))||F ,

where the step size ξk is limited by

0 < ξk ≤ (1− τ̄ − β)
||R(X (k))||F

||MS(k)BBTS(k)M||F
. (6.9)

Thus, every ξk for which (6.9) holds, satisfies the sufficient decrease condition (6.3) by
construction.

As derived in Subsection 6.2.2, the norm of the residual (6.8) needs to be evaluated
for various ξ̄k ∈ (0, 1) in the computation process of the sought step size ξk. The square
of the residual norm can be defined via the quartic polynomial

f
(k)
R (ξ̄k) = ||R

(
X (k) + ξ̄kS(k)

)
||2F

= (1− ξ̄k)2υ
(k)
1 + ξ̄2

kυ
(k)
2 + ξ̄4

kυ
(k)
3 + 2ξ̄k(1− ξ̄k)υ(k)

4 − 2ξ̄2
k(1− ξ̄k)υ(k)

5 − 2ξ̄3
kυ

(k)
6

(6.10a)

with the scalar coefficients

υ
(k)
1 = ||R(X (k))||2F , υ

(k)
4 = 〈R(X (k)),L(X̃ (k+1))〉,

υ
(k)
2 = ||L(X̃ (k+1))||2F , υ

(k)
5 = 〈R(X (k)),MS(k)BBTS(k)M〉,

υ
(k)
3 = ||MS(k)BBTS(k)M||2F , υ

(k)
6 = 〈L(X̃ (k+1)),MS(k)BBTS(k)M〉.

(6.10b)

Hence, after computing the coefficients (6.10b), one only needs to evaluate the scalar
polynomial (6.10a) to compute the residual depending on ξ̄k.
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To confirm that the Newton increment S(k) describes a descent direction regarding the
Riccati residual, one considers the first derivative of the polynomial (6.10a) with respect
to a general ξ. Using the equivalences in (2.13), this derivative can be written as

d

dξ
f

(k)
R (ξ) =

d

dξ
||R
(
X (k) + ξS(k)

)
||2F

=
d

dξ
tr
(
R
(
X (k) + ξS(k)

)2
)

= −2 tr
(
R
(
X (k) + ξS(k)

) (
R(X (k))− L(X̃ (k+1)) + 2ξMS(k)BBTS(k)M

))
= −2 tr

((
(1− ξ)R(X (k)) + ξL(X̃ (k+1))− ξ2MS(k)BBTS(k)M

)
×
(
R(X (k))− L(X̃ (k+1)) + 2ξMS(k)BBTS(k)M

))
.

For ξ = 0 this yields

d

dξ
f

(k)
R (0) = −2 tr

(
R(X (k))

(
R(X (k))− L(X̃ (k+1))

))
= −2

(
tr
(
R(X (k))2

)
− tr

(
R(X (k))L(X̃ (k+1))

))
= −2||R(X (k))||2F + 2〈R(X (k)),L(X̃ (k+1))〉
≤ −2||R(X (k))||2F + 2||R(X (k))||F ||L(X̃ (k+1))||F
< −2||R(X (k))||2F + 2||R(X (k))||F ||R(X (k))||F = 0,

using the Cauchy-Schwarz inequality 〈R(X (k)),L(X̃ (k+1))〉 ≤ ||R(X (k))||F ||L(X̃ (k+1))||F
and (6.6). This shows that S(k) is a descent direction for ||R(X (k) + ξS(k))||F in
||R(X (k))||F if (6.6) is fulfilled with 0 < τk < 1.

After choosing the step size ξk, the new iterate is defined as

X (k+1) = (1− ξk)X (k) + ξkX̃ (k+1). (6.11)

Remark 6.1 (cf. [26, Rem. 4]) If the current iterate X (k) is spsd, if the solution

X̃ (k+1) of (6.7) is spsd, and if ξk ∈ (0, 1], then X (k+1) defined by (6.11) is also spsd.

The entire algorithm of the inexact KNM with line search is depicted in Algorithm 4.
The next subsection introduces two different approaches to determine the step size ξk.

6.2.2. Line Search Approaches

The line search idea is a well-known concept to improve globally convergent methods
[80, Chap. 8]. In this subsection, two different approaches are reviewed that can be used
to determine a step size ξk such that the sufficient decrease condition (6.3) is fulfilled. At
first, the Armijo rule is examined based on the results in [80, Sec. 8.2] and [26, Sec. 3.2.1].
Secondly, the exact line search idea in [25] is modified for the inexact KNM.
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Algorithm 4 Inexact Kleinman–Newton method with line search

Input: A,M, B, C, tolNewton, initial stabilizing iterate X (0), τ̄ ∈ (0, 1), and β ∈ (0, 1−τ̄)
Output: unique stabilizing solution X (∗) of GCARE (4.16c)

1: Set k = 0.
2: while ||R(X (k))|| > tolNewton do
3: K(k) =MX (k)B
4: Set A(k) = A− B

(
K(k)

)T
, W(k) =

[
CT K(k)

]
.

5: Select τk ∈ (0, τ̄ ].

6: Compute a preliminary solution X̃ (k+1) that solves:(
A(k)

)T X̃ (k+1)M+MX̃ (k+1)A(k) = −W(k)
(
W(k)

)T
+ L(X̃ (k+1))

until ||L(X̃ (k+1))||F ≤ τk||R(X (k))||F .

7: Set S(k) = X̃ (k+1) −X (k).
8: Compute ξk ∈ (0, 1) such that ||R

(
X (k) + ξkS(k)

)
||F ≤ (1− ξkβ)||R(X (k))||F .

9: Set X (k+1) = (1− ξk)X (k) + ξkX̃ (k+1).
10: k = k + 1
11: end while
12: X (∗) = X (k)

Armijo Rule In [4], Armijo introduced a step size selection approach used for a steepest
descent method. Given a real number ξ̄k > 0, the Armijo sequence computes ξjk = 2−j ξ̄k
and accepts ξk = ξjk as a new step size for j being the smallest integer such that ξjk fulfills
the sufficient decrease condition (6.3). Following the derivations in [80, Sec. 8.2], this
approach can be formulated more generally by choosing the new ξk such that

Υ0ξ
old
k ≤ ξnew

k ≤ Υ1ξ
old
k ,

where 0 < Υ0 ≤ Υ1 < 1. Thus, the parameter Υ0 safeguards against ξk being too close
to zero, which leads to a stagnation of the method.

By choosing Υ = Υ0 = Υ1 ∈ (0, 1), the step size can be computed via ξk = Υj, where
j is the smallest integer such that (6.3) is fulfilled, as described in [26, Sec. 3.2.1]. Hence,
the Armijo rule generates a step size that satisfies

ξk > Υ(1− τ̄ − β)
||R(X (k))||F

||MS(k)BBTS(k)M||F
. (6.12)

Setting Υ = 1
2

results in the method stated in [4].

The right hand side in (6.12) can be bounded by exploiting the structure of (4.16c),
as shown in the next theorem, which is a generalization of [26, Thm. 5].

Theorem 6.2 Let rk denote the rank of the descent direction S(k) and assume that
(A(k),M) is stable. If all forcing parameters τk are bounded by τk ≤ τ̄ < 1, then the step
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sizes obtained by the Armijo rule are bounded from below by

ξk >
Υ(1− τ̄ − β)

rk(1 + τ̄)2

λ2
M,min

κF(M)2 ||BBT ||F ||R(X (k))||F
(∫∞

0
||eA(k)M−1t||22 dt

)2 (6.13)

with λM,min = min{|λ| : λ ∈ Λ(M)}.

Proof. The first step is to bound the solution S(k) of (6.5), which can be rewritten as(
A(k)M−1

)T S(k) + S(k)A(k)M−1 =M−1(L(X̃ (k+1))−R(X (k)))M−1. (6.14)

Since the pencil (A(k),M) is stable, the matrix A(k)M−1 that defines (6.14) is stable,
such that S(k) can be defined via

S(k) =

∫ ∞
0

e(A(k)M−1)T t(M−1(L(X̃ (k+1))−R(X (k)))M−1)eA
(k)M−1t dt.

The spectral norm of S(k) can be bounded by

||S(k)||2 ≤ ||M−1||22||L(X̃ (k+1))−R(X (k))||2
∫ ∞

0

||eA(k)M−1t||22 dt. (6.15)

For any matrix S with rank (S) = r it holds that ||S||2 ≤ ||S||F ≤
√
r||S||2, as it is

shown in [63, eq. 2.3.7]. Hence, the Frobenius norm of S(k) can be bounded by

||S(k)||F ≤
√
rk||L(X̃ (k+1))−R(X (k))||2||M−1||22

∫ ∞
0

||eA(k)M−1t||22 dt

≤ √rk||L(X̃ (k+1))−R(X (k))||F ||M−1||22
∫ ∞

0

||eA(k)M−1t||22 dt.

Furthermore, the inexact Newton step condition (6.1) yields

||L(X̃ (k+1))−R(X (k))||F ≤ ||L(X̃ (k+1))||F + ||R(X (k))||F ≤ (1 + τ̄)||R(X (k))||F ,

such that

||S(k)||F ≤
√
rk(1 + τ̄)||R(X (k))||F ||M−1||22

∫ ∞
0

||eA(k)M−1t||22 dt.

The denominator in (6.12) can be bounded via

||MS(k)BBTS(k)M||F ≤ ||M||2F ||BBT ||F ||S(k)||2F

≤ rk(1 + τ̄)2||M||2F ||BBT ||F ||R(X (k))||2F ||M−1||42
(∫ ∞

0

||eA(k)M−1t||22 dt

)2

≤ rk(1 + τ̄)2κF(M)2 ||BBT ||F ||R(X (k))||2F
1

λ2
M,min

(∫ ∞
0

||eA(k)M−1t||22 dt

)2

(6.16)
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with κF(M) := ||M||F ||M−1||F and

λM,min := min{|λ| : λ ∈ Λ(M)} =
1

max{|λ| : λ ∈ Λ(M−1)} =
1

||M−1||2
.

Inserting (6.16) into (6.12) concludes the proof.
�

In addition, the integral in the denominator of (6.13) can be bounded by the following
remark; compare [26, Rem. 6].

Remark 6.3 If the matrix pencil (A(k),M) is a normal matrix pair with spectral ab-
scissa σ(A(k),M) = max{Re (Λ) : λ ∈ Λ(A(k),M)}, as introduced in Definitions 2.1 (g)
and 2.1 (j), then

||eA(k)M−1t||2 ≤ etσ(A(k),M).

If σ(A(k),M) < 0, then ∫ ∞
0

||eA(k)M−1t||22 dt ≤ 1

2|σ(A(k),M)| .

If the matrix pencil (A(k),M) is not normal, one can use the ε-pseudospectral abscissa
σε(A(k),M) = max{Re (λ) : λ ∈ Λε(A(k),M)}, as established in Definition 2.1 (h). In
[126, Thm. 15.2], it is stated that if the boundary arc length Lε,k of σε(A(k),M) with
ε > 0 is bounded, then

||eA(k)M−1t||2 ≤
Lε,ke

tσε(A(k),M)

2πε
, ∀t ≥ 0.

Hence, if σε(A(k),M) < 0, then∫ ∞
0

||eA(k)M−1t||22 dt ≤
L2
ε,k

8π2ε2|σε(A(k),M)| .

Corollary 6.4 In the setting of Theorem 6.2, using Remark 6.3, the step sizes ξk are
bounded away from zero.

These results ensure that the step size ξk is bounded away from zero such that Newton’s
method does not stagnate. Nevertheless, the Armijo rule does not necessarily compute
the step size with the maximal possible descent in the residual. An approach that finds
the best residual reduction is presented next.

Exact Line Search To determine the optimal step size ξk > 0 that yields the minimal
possible residual norm, one needs to find the minimum of the scalar quartic polynomial
(6.10) with respect to ξ > 0. Benner and Byers analyzed this line search approach
for the KNM applied to a GCARE like (4.16c) in [25] and called it exact line search
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method (ELSM). Thereby, each step in the KNM is considered to be solved exactly, as

it is considered in Section 4.2 of this thesis, such that L(X̃ (k+1)) = 0. In [25], it is
shown that a local minimum ξk ∈ (0, 2] exists, which preserves stability of the closed
loop pencil (A(k+1);M), assuming (6.11) and a stable pencil (A(k),M). Unfortunately,
these results cannot be confirmed, in general, if the Kleinman–Newton step is solved
inexactly. Moreover, for ξk ∈ (1, 2] the spsd property of the new iterate in (6.11) cannot
be ensured anymore, as stated in Remark 6.1.

Nevertheless, the derivations in (6.8) and (6.10) extend the approach in [25] to the
case of inexact solves. To ensure a spsd iterate X(k+1), the ELSM chooses ξk as

ξk = min
ξk∈(0,1]

f
(k)
R (ξk) (6.17)

with f
(k)
R (ξk) as defined in (6.10). Since S(k) is a descent direction if (6.6) is fulfilled

for 0 < τk < 1, a local minimum ξk ∈ (0, 1] that ensures (6.3) exists. In Table 6.3 in
Subsection 6.4.1, some numerical tests show the performance of this line search approach
compared to the Armijo method. In general, the Armijo rule is preferable, since the step
size computed by the Armijo rule is bounded away from zero, as described in Theorem
6.2. To the author’s knowledge, no such result exists for the ELSM at this time.

6.2.3. Convergence Results

The convergence of the inexact KNM with line search is examined in this subsection. The
results are based on the statements in [26, Sec. 3.3] which are adapted to the notation
in this thesis and partly extended to the projected GCARE (4.16c).

In [59], Feitzinger et al. establish a convergence result for the inexact KNM for a
standard CARE that extends the classical convergence proof in [81]. Thereby, no line
search method is considered. The key ingredients of their convergence proof are certain
positive semi-definiteness assumptions for the Lyapunov residual L(X̃ (k+1)) in (6.5). All
statements are derived under the following assumption.

Assumption 6.5 The dynamical system Φ̂(A,B, C;M) in (4.15) is given such that
(A,B;M) is stabilizable and (C,A;M) is detectable.

The well-posedness of the inexact KNM is given by the following theorem withM = Iñ
in our notation.

Theorem 6.6 (cf. [59, Thm. 4.3]) Let X (k) be symmetric and positive semi-definite
such that A− BBTX (k) is stable and

L(X̃ (k+1)) � CTC (6.18)

holds. Then

(i) the iterate X (k+1) = X̃(k+1) of the inexact KNM is well defined, symmetric and
positive semi-definite,
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(ii) and the matrix A− BBTX (k+1) is stable.

As shown in 4.2.2, a special version of the low-rank ADI method from Subsection 2.4.2
is used to approximately solve the Lyapunov equation (6.7). Hence, the preliminary

iterates X̃ (k+1) are of low rank. As shown in Section 6.3, the Lyapunov residual in the
k+1-st Newton and `-th ADI step can be written as low-rank product

L(X̃ (k+1)
` ) = W̃(k+1)

`

(
W̃(k+1)

`

)T
= F (k)

` W(k)
(
W(k)

)T (F (k)
`

)T
, (6.19)

where W(k) =
[
CT K(k)

]
, W̃(k+1)

` ∈ Rñ×(na+nr). Furthermore, if the closed-loop matrix

pencil (A(k),M) is stable and the ADI shifts {qi}`i=1 are in the open left half-plane C−,

then F (k)
` = F(A(k), q1, . . . , q`;M; ) is an analytic matrix function.

Lemma 6.7 (cf. [26, Lem. 8]) If M, N ∈ Rñ×ñ are spsd matrices with M � N ,
i.e., M−N � 0, then null (M) ⊂ null (N ) and range (N ) ⊂ range (M).

Proof. Assume there exists x ∈ null (M) with x /∈ null (N ), then xTMx− xTNx =
−xTNx < 0, which contradicts M� N . Hence, range (M)⊥ = null (M) ⊂ null (N ) =
range (N )⊥ and, consequently, range (N ) ⊂ range (M).

�

As it is stated subsequently to [26, Lem. 8], “[t]he definition of W(k) and application

of the previous lemma give that CTC � L(X̃ (k+1)) = F (k)
` W(k)

(
W(k)

)T (F (k)
`

)T
implies

range
(
F (k)
` CT

)
⊂ range

(
F (k)
` W(k)

)
⊂ range

(
CT
)
⊂ range

(
W(k)

)
. However, the invari-

ance property range
(
F (k)
` W(k)

)
⊂ range

(
CT
)
, or even range

(
F (k)
` CT

)
⊂ range

(
CT
)
, is

typically not satisfied. Recall that CT ∈ Rñ×na while F (k)
` W(k) ∈ Rn×(na+nr) for k > 1.

Therefore, in general CTC 6� L(X̃ (k+1)).”
In the following theorem, Feitzinger et al. prove the quadratic convergence of the

inexact KNM using another semi-definiteness condition on L(X̃ (k+1)).

Theorem 6.8 (cf. [59, Thm. 4.4]) Let Assumption 6.5 be satisfied and let X (0), spsd,
be such that A(0) is stable. Assume that (6.18) and

0 � L(X̃ (k+1)) � (X (k+1) −X (k))BBT (X (k+1) −X (k)) (6.20)

hold for all k ∈ N. Then the iterates of inexact KNM (6.7) and (6.11) with step size
ξk = 1 satisfy

(i) limk→∞X (k) = X (∗) and 0 � X (∗) � · · · � X (k+1) � X (k) � · · · � X (1),

(ii) (A− BBTX (∗)) is stable and X (∗) is the maximal solution of R(X ) = 0,

(iii) ||X (k+1) −X (∗)||F ≤ κ||X (k) −X (∗)||2F , k ∈ N.
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In the proof of [59, Thm. 4.4], the condition (6.20) is used to prove the monotonicity
0 � · · · � X (k+1) � X (k) � · · · � X (1). As pointed out in [26, Sec. 3.3], it is interesting
that the inexact KNM converges q-quadratically autonomous from the forcing parameter
τk in (6.6). Using the results in Lemma 6.7, the relation of the main assumption (6.20)

yields range
(
F (k)
` W(k)

)
⊂ range

(
(X (k+1) −X (k))B

)
, which is not satisfied, in general.

“Therefore, the convergence analysis in [59] is not applicable if the low-rank ADI method,
or any other low-rank solver, is used to approximately solve the Lyapunov equation.”[26,
p. 8]

The convergence proof for the inexact KNM in this thesis follows the statements in [26,
Thm. 10], which is based on a general proof for the inexact Newton method, see, e.g., [80,
Sec. 8.2]. In detail, the convergence ||R(X (k))||F → 0 is proven and the structure of the
GCARE (4.16c) is used to show the convergence of the iterates X (k). In [25, Lem. 6],
it is proven that if (A,B;M) is controllable and {R(X (k))} is bounded, then {X (k)}
is bounded as well. Controllability of a system implies stabilizability, see, e.g., [91,
Thm. A.1], and is, therefore, stronger than Assumption 6.5. Gou and Laub established
a proof in [66] that shows {X(k)} is bounded under the assumption of a stabilizable
system, bounded residuals {R(X (k))}, and stable closed-loop pencils (A(k),M).

As it is stated in [26] prior to [26, Lem. 10], “[t]he papers [81] on exact Kleinman–
Newton, [25] on Kleinman–Newton with line search, and [59] on inexact Kleinman–
Newton contain proofs that the [pencils (A(k),M)] corresponding to the iterates X (k)

are stable, provided that [(A(0),M)] is stable. This implies the unique solution of the
Lyapunov equation (4.21) and, therefore, the well-posedness of the respective method.
Since the definiteness assumption in [59, Thm. 4.3] typically does not hold in the low-
rank case, there is no result yet on the well-posedness of the inexact Kleinman–Newton
method and we have to assume existence of X̃ (k+1) such that (6.7) and (6.6) are satisfied.”

Theorem 6.9 (cf. [26, Thm. 10]) Let Assumption 6.5 be satisfied and assume that

for all k, there exists a symmetric positive semi-definite X̃ (k+1) such that (6.7) and (6.6)
hold.

(i) If the step sizes are bounded away from zero, i.e., ξk ≥ ξmin > 0 for all k, then
||R(X (k))||F → 0.

(ii) If, in addition to 6.9 (i), the pencils (A(k),M) are stable for k ≥ k0, and X (k) � 0
for all k ≥ k0, then X (k) → X (∗), where X (∗) � 0 is the unique stabilizing solution
of the GCARE (4.16c).

Proof. (i) The first part follows from a standard line search argument. Using a

telescoping series, the sufficient decrease condition (6.3) implies that for any integer k̃,

||R(X (0))||F ≥ ||R(X (0))||F − ||R(X (k̃+1))||F

=
k̃∑
k=0

(
||R(X (k))||F − ||R(X (k+1))||F

)
≥

k̃∑
k=0

ξkβ||R(X (k))||F ≥ 0.
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Taking the limit k̃ →∞ and using ξk ≥ ξmin > 0 implies ||R(X (k))||F → 0.
(ii) If the pencils (A(k),M) are stable for k ≥ k0 and {R(X (k))} is bounded, [66,

Lem. 2.3] guarantees that {X (k)} is bounded. Hence, {X (k)} has a converging subse-
quence. For any converging subsequence it holds that

lim
j→∞
X (kj) � 0 and lim

j→∞
||R(X (kj))||F = ||R( lim

j→∞
X (kj))||F = 0.

The spsd solution of the GCARE (4.16c) is unique and stabilizing by Theorem 2.26.
Hence, every converging subsequence of {X (k)} has the same limit X (∗). Therefore, the
entire sequence converges.

�

Remark 6.10 (cf. [26, Rem. 10])

1. If the step size ξk ∈ (0, 1], then X (k) � 0 for all k, see Remark 6.1.

2. Lower bounds for the step size computed by the Armijo rule are established in
Theorem 6.2. In particular if{

||R(X (k))||F
∫ ∞

0

||eA(k)M−1t||22 dt

}
k∈N

(6.21)

is bounded, the step size computed by the Armijo rule is bounded away from zero.
Since for all k it holds that ||R(X (k))||F < ||R(X (0))||F , the sequence (6.21) is

bounded if
∫∞

0
||eA(k)M−1t||22 dt is bounded, which is a condition on the uniform

stability of the pencils (A(k),M), k ∈ N.

As established in, e.g, [80, Sec. 8.2], the convergence rate of the inexact KNM is
determined by the forcing parameter τk in (6.6). In detail, for τk → 0 the convergence
rate is superlinear and for τk = O(||R(X (k))||F ) the convergence is quadratic, both
provided that the assumptions in Theorem 6.9 hold.

The inexact Newton scheme and the line search methods explicitly use the Lyapunov
and Riccati residuals, as well as their norms. As it is shown above, the generalization
of the methods in [26] to deal with a mass matrix M 6= Iñ is straightforward. To
integrate this entire procedure into the scheme of KN-ADI for index-2 DAE systems
from Chapter 4, the projected Lyapunov and Riccati residuals need to be considered.
As pointed out in Subsection 4.3.2, the computation of these projected, dense, and
large-scale matrices needs to be avoided. Hence, the performance of the entire method
depends on an efficient computation of the residual norm, as well as an efficient method
to store these dense matrices. The latter problem led Benner and Byers to restrict
themselves in [25] to small dense test examples. The next section introduces techniques
that circumvent this drawback and enable the inexact KNM with line search to be used
for large-scale index-2 DAE systems. Most of these techniques are extensions of the
methods published in [26, Sec. 4f] for a standard non-projected CARE to the index-2
DAE case.
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6.3. Low-Rank Residual KN-ADI Method

In this section, various algorithmic improvements from the last years are combined that
have not been available at the beginning of the author’s PhD. The key ingredient are the
improvements on the low-rank ADI iteration, which have been worked out in [27–29].
In the next subsection, these improvements are reviewed and adapted to the KN-ADI
for index-2 DAE systems from Sections 4.2 & 4.3.

6.3.1. Improved Low-Rank ADI Method

The first significant improvement is published in [28, Sec. 4.4.1] and introduces a low-rank
residual formulation for the ADI. To adapt this method to the index-2 DAE structure,
one considers the GCALE (4.21) for a fixed Newton step k+1. Multiplying (4.21) from
the left and the right by M−1 yields the CALE

FX + XF T = −ŴŴ T (6.22)

with F :=M−1
(
A(k)

)T
, Ŵ =M−1W(k), and X = X (k+1), which is solved by the ADI

method from Subsection 2.4.2 with the mass matrix M = Iñ. Hence, the recursion
(2.37a) can be written as

V̂` = (Iñ − (q` + q`−1)(F + q`Iñ)−1(V̂`−1)) = (F − q`−1 Iñ)(F + q`Iñ)−1V̂`−1

=

(∏̀
j=2

(F − qj−1 Iñ)(F + qjIñ)−1

)
(F + q1Iñ)−1Ŵ ∈ Cñ×(na+nr),

such that the low-rank solution factor Ẑ` ∈ Cñ×`(nr+na) can be defined via (2.37b).

Hence, X = Ẑ`ẐH` solves (6.22). Notice that the Newton index k+1 is omitted at the

solution factor Ẑ`. As introduced in [28, Sec. 4.2], the involved shifted system matrices

(F − q1Iñ) and (F − q2Iñ)−1 commute for all q1, q2 ∈ C\Λ(F ), such that V̂` can be
regrouped as

V̂` = (F + q`Iñ)−1

(
`−1∏
j=1

(F − qj−1 Iñ)(F + qjIñ)−1

)
Ŵ︸ ︷︷ ︸

=:Ŵ`−1

= (F + q`Iñ)−1Ŵ`−1, (6.23a)

where Ŵ0 = Ŵ and

Ŵ` = (F − q` Iñ)V̂` = (F − q` Iñ)(F + q`Iñ)−1Ŵ`−1

=
(
Iñ − 2 Re (q`) (F + q`Iñ)−1

)
Ŵ`−1

= Ŵ`−1 − 2 Re (q`) V̂` ∈ Cñ×(na+nr).

(6.23b)
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Hence, the definition of Ŵ` yields

Ŵ` =

(
`−1∏
j=1

(F − qj−1 Iñ)(F + qjIñ)−1

)
︸ ︷︷ ︸

=:F̂`

Ŵ = F̂`Ŵ (6.23c)

with the matrix function F̂` = F̂(F, q1, . . . , q`). In [28, Sec. 4.4.1], Benner et al. show
that the iteration defined by (6.23) is mathematically equivalent to the original ADI
method in [31, 88], as introduced in Subsection 2.4.2. Furthermore, the residual of
(6.22) after the `-th ADI step can be written as low-rank factorization

L̂(Ẑ`ẐH` ) = F Ẑ`ẐH` + Ẑ`ẐH` F T + ŴŴ T = F̂`ŴŴ T F̂H` = Ŵ`Ŵ
H
` ∈ Rñ×ñ. (6.24)

As mentioned in Subsection 2.3.4, the transformation that leads to (6.22) is never per-
formed explicitly. Hence, the equations (6.23) are reformulated using the original ma-
trices. In detail, (6.23a) yields

V̂` =
(
M−1

(
A(k)

)T
+ q`Iñ

)−1

Ŵ`−1 =
((
A(k)

)T
+ q`M

)−1

MŴ`−1︸ ︷︷ ︸
=:Ŵ`−1

(6.25a)

with Ŵ0 =MM−1W(k) =W(k), (6.23b) yields

Ŵ` = Ŵ`−1 − 2 Re (q`) V̂` =M−1(MŴ`−1 − 2 Re (q`)MV̂`)
⇔ Ŵ` = Ŵ`−1 − 2 Re (q`)MV̂`, (6.25b)

and (6.23c) leads to

Ŵ` =

(
`−1∏
j=1

(
M−1

(
A(k)

)T − qj−1 Iñ

)(
M−1

(
A(k)

)T
+ qjIñ

)−1
)
M−1W(k)

=M−1

(
`−1∏
j=1

((
A(k)

)T − qj−1M
)((
A(k)

)T
+ qjM

)−1
)
MM−1W(k)

⇔ Ŵ` =

(
`−1∏
j=1

((
A(k)

)T − qj−1M
)((
A(k)

)T
+ qjM

)−1
)

︸ ︷︷ ︸
=:F̃(k)

`

W(k). (6.25c)

Multiplying (6.24) form the left and the right by M yields

ML̂(Ẑ`ẐH` )M =MM−1
(
A(k)

)T Ẑ`ẐH` M+MẐ`ẐH` A(k)M−1M+MŴŴ TM
=
(
A(k)

)T Ẑ`ẐH` M+MẐ`ẐH` A(k) +W(k)
(
W(k)

)T
= Ŵ`ŴH

` = F̃ (k)
` W(k)

(
W(k)

)T (F̃ (k)
`

)H
= L(X (k+1)

` ) ∈ Rñ×ñ

(6.25d)
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with F̃ (k)
` = F̃(A(k), q1, . . . , q`; M) ∈ Cñ×ñ. The ADI method defined by (6.25) shows

that the Lyapunov residual can be written as low-rank decomposition, where the actual
residual factor defines the right-hand side in the next ADI step. A remaining issue refers
to the complex components V̂`, Ŵ` ∈ Cñ×(na+nr), Ẑ` ∈ Cñ×`(na+nr), and F̃ (k)

` ∈ Cñ×ñ,
which yield considerable higher storage usage. This happens whenever complex ADI
shifts are used. For nonsymmetric pencils (A(k),M), complex ADI shifts usually improve
the ADI convergence significantly. This naturally leads to complex factors, although the
solution X (k+1)

` = Ẑ`ẐH` ∈ Rñ×ñ is supposed to be real.
In [27, 29], Benner et al. introduced the second significant improvement that deals

with this issue. It is well established that to ensure a real-valued solution X (k+1)
` , the

ADI shifts are obliged to occur either as real numbers q` ∈ R− or as complex conjugate
pairs q` ∈ C−, q`+1 = q` ∈ C−. Exploiting this fact leads to an ADI scheme with real-

valued factors W` ∈ Rñ×(na+nr) and Z` ∈ Rñ×`(na+nr), such that X (k+1)
` = Z`ZT` is the

approximate solution of (4.21) in the `-th ADI step. Furthermore, the Lyapunov residual

is defined by the real-valued matrix function F (k)
` = F(A(k), q1, . . . , q`;M) ∈ Rñ×ñ as

L(X (k+1)
` ) = F (k)

` W(k)
(
W(k)

)T (F (k)
`

)T
=W(k+1)

`

(
W(k+1)

`

)T
. (6.26)

As stated in [26, Sec. 4], the analytic matrix function F (k)
` ≡ F̃ (k)

` if and only if the

ADI shifts are closed under complex conjugation, i.e., {qi}`i=1 = {qi}`i=1. Using (6.26),

eigenvalue-based norms of the Lyapunov residual L(X (k+1)
` ) can be computed highly

efficiently by (2.7), i.e.,∣∣∣∣∣∣L(X (k+1)
` )

∣∣∣∣∣∣
F/2

=

∣∣∣∣∣∣∣∣(W(k+1)
`

)T
W(k+1)

`

∣∣∣∣∣∣∣∣
F/2

. (6.27)

Summarizing, the improved low-rank ADI method with low-rank and real-valued residual
and solution factors to solve the GCALE (4.21) adapts [27, Alg. 1]. The entire procedure
is depicted in Algorithm 5. For more details regarding this real-valued ADI iteration,
the interested reader is referred to [27, 29, 84].

To use this novel approach for index-2 DAE systems, one needs to consider certain
modifications to combine it with the methods introduced in Subsection 4.2.2 that avoid
explicit projections.

6.3.2. Low-Rank Residual ADI for Index-2 DAE systems

The improved ADI method in Algorithm 5 is derived for the projected matrices in
(4.15). As stated in detail in Remark 4.2, this explicit projection needs to be avoided.
By adapting the definition of the right-hand side in the k+1-st Newton step in (4.26) to

Y`−1 =W`−1 = Θ̂T
rW`−1, ` ≥ 1, W0 = W (k), (6.28)

the entire procedure in Algorithm 5 can be adapted to the ideas in Subsection 4.2.2
straightforwardly without the use of any explicitly performed projection. However, to

135



Chapter 6. Inexact Low-Rank Kleinman–Newton-ADI Method

Algorithm 5 Generalized real-valued low-rank residual ADI method

Input: A(k),W(k), tolADI, shifts {qi}`i=1 = {qi}`i=1 ∈ C−.
Output: Z` such that ZZT ≈ X (k+1) solves equation (4.21).

1: Set ` = 1, Z = [ ], W0 =W(k).
2: while ||WT

`−1W`−1||F > tolADI||WT
0W0||F do

3: V` =
((
A(k)

)T
+ q`M

)−1

W`−1

4: if Im (q`) = 0 then
5: W` =W`−1 − 2q`MV`
6: Ṽ` =

√−2q` V`
7: else
8: γ` = 2

√
−Re (q`), δ` = Re (q`) / Im (q`)

9: W`+1 =W`−1 + γ2
`M (Re (V`) + δ` Im (V`))

10: Ṽ`+1 =
[
γ` (Re (V`) + δ` Im (V`)) γ`

√
(δ2
` + 1) Im (V`)

]
11: ` = `+ 1
12: end if
13: Z =

[
Z Ṽ`

]
14: ` = `+ 1
15: end while

compute the projected Lyapunov residual in (4.36a), (6.26) needs to be multiplied by

Θ̂l from the left and Θ̂T
l from the right, such that the computation of

Θ̂lL(X (k+1)
` )Θ̂T

l = Θ̂lW`WT
` Θ̂

T
l = Θ̂lΘ̂

T
rW`W

T
` Θ̂rΘ̂

T
l

⇒ L(X
(k+1)
` ) = Π̂W`W

T
` Π̂

T =: W `W
T

`

(6.29)

would involve the explicitly projected low-rank residual factor W ` := Π̂W`. Multiplying
line 5 in Algorithm 5 with Θ̂l from the left yields

Θ̂lΘ̂
T
rW` = Θ̂lΘ̂

T
rW`−1 − 2q`Θ̂lΘ̂

T
rMΘ̂rV`

⇔ Π̂W` = Π̂W`−1 − 2q`Π̂MV` = Π̂W`−1 − 2q`MΠ̂TV`.

Using (4.28), i.e., Π̂TV` = V`, the projected low-rank residual factor can be accumulated
via

W ` = W `−1 − 2q`MV` (6.30)

without using any explicit projections. Hence, only the initial right hand side W (k) needs
to be projected to define

W 0 := Π̂W (k). (6.31)

This one projection at the beginning of the ADI method is computed by (4.9) using
(4.11) with the original sparse matrices. Notice that this projection is less expensive
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than a single ADI step and does not considerably increase the overall computation
costs. Moreover, the right-hand side W`−1 in (6.28) can be directly replaced by W `−1,

since the right-hand side enters the projected equation (4.29) as Π̂Y`−1. Due to the
construction of W `, the right-hand side remains unchanged as

Π̂Y`−1 = Π̂W `−1 = Π̂Π̂W`−1 = Π̂W`−1.

To incorporate this improved ADI method into Algorithm 4, some remaining issues,
such as the storage of the Newton step S(k) and the projected Riccati residual, needs
to be addressed. This is done in the next subsection, expanding the statements in [26,
Sec. 5.2].

6.3.3. Low-Rank Riccati Residual for Index-2 DAE systems

The Newton step S(k) is only used in the computation of the step size ξk, since the inex-
act Kleinman–Newton step (6.7) directly iterates over the preliminary solution X̃ (k+1).
Furthermore, S(k) always occurs in products MS(k)B ∈ Rñ×nr . Using (6.2), (6.4), and
the definition of the feedback matrix in (4.16b), this product can be written as

MS(k)B =

{
MX̃ (k+1)B −MX (k)B =: K̃(k+1) −K(k) =: ∆K̃(k+1), ξk 6= 1,

MX (k+1)B −MX (k)B =: K(k+1) −K(k) =: ∆K(k+1), ξk = 1,
(6.32)

which characterizes the feedback change corresponding to the preliminary or definite new
iterate X̃ (k+1) or X (k+1). Hence, the dense Newton step S(k) is never formed explicitly.

To define a low-rank Riccati residual for the new iterate X (k+1), one needs to distin-
guish between the case ξk = 1 and ξk ∈ (0, 1). For ξk = 1, the feedback change ∆K(k+1)

and the Lyapunov residual (6.26) employed in (6.8) yield

R(X (k+1)) =W(k+1)
(
W(k+1)

)T −∆K(k+1)
(
∆K(k+1)

)T
=: U (k+1)D

(
U (k+1)

)T
, (6.33a)

which is an indefinite low-rank product as stated in Definition 2.4, whose spectral or
Frobenius norm can be computed efficiently using (2.8). The factors are defined inde-
pendently of ξk by

U (k+1) =
[
W(k+1) ∆K(k+1)

]
, D =

[
I 0
0 −I

]
, (6.33b)

where I is of appropriate size.

To compute the Riccati residual dependent on ξk ∈ (0, 1), one needs to consider the

preliminary feedback change ∆K̃(k+1) in (6.8), as well as the Lyapunov residual for the

preliminary solution defined via (6.26) as L(X̃ (k+1)) = W̃(k+1)
(
W̃(k+1)

)T
. Furthermore,
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the previous residual R(X (k)) is said to be of the form (6.33), such that

R(X (k+1)) = R(X (k) + ξkS(k))

= (1− ξk)U (k)D
(
U (k)

)T
+ ξkW̃(k+1)

(
W̃(k+1)

)T
− ξ2

k∆K̃(k+1)
(

∆K̃(k+1)
)T

= (1− ξk)
(
W(k)

(
W(k)

)T −∆K(k)
(
∆K(k)

)T)
+ ξkW̃(k+1)

(
W̃(k+1)

)T
− ξ2

k∆K̃(k+1)
(

∆K̃(k+1)
)T

=

[[√
(1− ξk)W(k)

√
ξk W̃(k+1)

] [√
(1− ξk) ∆K(k) ξk∆K̃(k+1)

]]
×
[
I 0
0 −I

]
×
[[√

(1− ξk)W(k)
√
ξk W̃(k+1)

] [√
(1− ξk) ∆K(k) ξk∆K̃(k+1)

]]T
,

(6.34)

which simplifies to (6.33) for ξk = 1. By defining the new block matrices as

W(k+1) :=
[√

(1− ξk)W(k)
√
ξk W̃(k+1)

]
∈ Rñ×(s+1)(na+nr),

∆K(k+1) :=
[√

(1− ξk) ∆K(k) ξk∆K̃(k+1)
]
∈ Rñ×(s+1)nr ,

(6.35)

the residual (6.34) is again of the form (6.33). Thereby, the size of the residual blocks
depends on s ≥ 0, which is the largest number, such that all step sizes between ξk−1

and ξk−s are smaller than one, but ξk−s−1 = 1. In other words, the number of iterations
on a stretch immediately before the current step, where line search is performed, i.e.,
ξk ∈ (0, 1).

Similar to the projected Lyapunov residual in (6.29), the Riccati residual (6.33) needs

to be multiplied by Θ̂l from the left and Θ̂T
l from the right to result in the projected

Riccati residual (4.36b), i.e,

Θ̂lR(X (k+1))Θ̂T
l = Θ̂lW(k+1)

(
W(k+1)

)T
Θ̂T
l − Θ̂l∆K(k+1)

(
∆K(k+1)

)T
Θ̂T
l

⇒ R(X(k+1)) = Π̂W (k+1)
(
W (k+1)

)T
Π̂T − Π̂∆K(k+1)

(
∆K(k+1)

)T
Π̂T

= W
(k+1)

(
W

(k+1)
)T
−∆K(k+1)

(
∆K(k+1)

)T
=: U (k+1)D

(
U (k+1)

)T
(6.36)

with U (k+1) =
[
W

(k+1)
∆K(k+1)

]
and ∆K(k) being invariant regarding multiplication

with Π̂ from the left. This invariance follows from (4.23) and

Π̂∆K(k+1) = Π̂M(X(k+1) −X(k))B = MΠ̂T (X(k+1) −X(k))B = ∆K(k+1). (6.37)
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Hence, the Riccati residual can be computed without any additional explicit projection

since ∆K(k+1) is Π̂ invariant. Furthermore, L(X(k+1)) = W
(k+1)

(
W

(k+1)
)T

is the pro-

jected Lyapunov residual for the solution X(k+1). The extension of this formulation for
the case of ξk ∈ (0, 1) is straightforward, using the projected Lyapunov residual for the
preliminary solution defined by

L(X̃(k+1)) = W̃ (k+1)
(
W̃ (k+1)

)T
. (6.38)

Before stating the final algorithm, some additional details regarding its implementa-
tion are discussed in the next subsection.

6.3.4. Implementation Details

The last two subsections discussed the incorporation of the improved low-rank ADI
method (Subsection 6.3.1) into the inexact KNM with line search for index-2 DAE
systems (Section 6.2). The following aspects are crucial for an efficient implementation.

Low-Rank Residual Accumulation: The computation of the Riccati residual depends
on the actual Lyapunov residual and the feedback change. To monitor the Riccati
residual during the ADI iteration, both quantities need to be accumulated efficiently.
This can be done for the Lyapunov residual factor via (6.30). To accumulate the feedback
change, the feedback accumulation in (4.35) is adapted to

∆K̃
(k+1)
` = K̃

(k+1)
` −K(k) = K̃

(k+1)
`−1 +MṼ`(Ṽ

T
` B)−K(k)

= ∆K̃
(k+1)
`−1 +MṼ`(Ṽ

T
` B),

∀` ≥ 1 (6.39)

with ∆K̃
(k+1)
0 = −K(k); compare [26, Sec. 5.2]. Using (6.38) and (6.39), the actual

projected Riccati residual in the k+1-st Newton and `-th ADI step for the preliminary

solution is defined by Ũ
(k+1)
` :=

[
W̃

(k+1)
` ∆K̃

(k+1)
`

]
via

R(X̃
(k+1)
` ) = W̃

(k+1)
`

(
W̃

(k+1)
`

)T
−∆K̃

(k+1)
`

(
∆K̃

(k+1)
`

)T
=: Ũ

(k+1)
` D

(
Ũ

(k+1)
`

)T
.

(6.40)

Low-Rank Line Search: To evaluate the quartic polynomial (6.10) efficiently, the com-
putation of the coefficients (6.10b) has to exploit the introduced low-rank factorizations.
Furthermore, the coefficients are formulated for the projected low-rank factors (6.36)–
(6.38). Hence, the squared norm of the projected Riccati residual for the new iterate

X(k+1), which depends on X(k), ξ, and the preliminary solution X̃(k+1) as shown in
(6.11), is defined via

f̃
(k)
R (ξ) = ||R(X(k+1))||2F

= (1− ξ)2υ̃
(k)
1 + ξ2υ̃

(k)
2 + ξ4υ̃

(k)
3 + 2ξ(1− ξ)υ̃(k)

4 − 2ξ2(1− ξ)υ̃(k)
5 − 2ξ3υ̃

(k)
6

(6.41a)
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with the scalar coefficients

υ̃
(k)
1 = ||R(X(k))||2F = tr

((
U (k)D

(
U (k)

)T)2
)
,

υ̃
(k)
2 = ||L(X̃(k+1))||2F = tr

((
W̃ (k+1)

(
W̃ (k+1)

)T)2
)
,

υ̃
(k)
3 = ||MS(k)BBTS(k)M ||2F = tr

((
∆K̃(k+1)

(
∆K̃(k+1)

)T)2
)
,

υ̃
(k)
4 = 〈R(X(k)),L(X̃(k+1))〉 = tr

(
U (k)D

(
U (k)

)T
W̃ (k+1)

(
W̃ (k+1)

)T)
,

υ̃
(k)
5 = 〈R(X(k)),MS(k)BBTS(k)M〉 = tr

(
U (k)D

(
U (k)

)T
∆K̃(k+1)

(
∆K̃(k+1)

)T)
,

υ̃
(k)
6 = 〈L(X̃(k+1)),MS(k)BBTS(k)M〉 = tr

(
W̃ (k+1)

(
W̃ (k+1)

)T
∆K̃(k+1)

(
∆K̃(k+1)

)T)
.

(6.41b)

Using these low-rank representations, the scalar coefficients (6.41b) can be evaluated
highly efficiently as described in Lemma 2.7. Hence, the computation of a step size ξk
can be performed efficiently using the Armijo rule or the ELSM from Subsection 6.2.2.

Low-Rank Newton Update After computing the step size ξk ∈ (0, 1], various compo-
nents need to be updated before continuing the outer Newton iteration. Notice that ξk
is chosen such that (6.3) is fulfilled. At first, the final projected low-rank residual factors
are defined for k ≥ 0 via

W
(k+1)

:=


[√

1− ξk W (k) √
ξk W̃

(k+1)
`

]
, ξk ∈ (0, 1),

W̃
(k+1)
` , ξk = 1,

with W
(0)

:=

Π̂C
T , Λ(A,M) ⊂ C−,

Π̂
[
CT K(0)

]
, Λ(A,M) 6⊂ C−,

∆K(k+1) :=


[√

1− ξk∆K(k) ξk∆K̃
(k+1)
`

]
, ξk ∈ (0, 1),

∆K̃
(k+1)
` , ξk = 1.

(6.42)

Secondly, the final feedback at the end of the k+1-st Newton step is defined via

K(k+1) = (1− ξk)K(k) + ξk∆K̃
(k+1)
` . (6.43)

Assuming the previous Riccati iterate is defined via X(k) = Z(k)
(
Z(k)

)T
and the prelim-

inary solution is defined via X̃(k+1) = Z̃(k+1)
(
Z̃(k+1))

)T
, the new Riccati iterate can be
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Algorithm 6 Inexact low-rank Kleinman–Newton-ADI for index-2 DAE systems

Input: M,A, Ĝ, B, C, initial feedback K(0), tolNewton, τ̄ ∈ (0, 1), and α, β ∈ R+

Output: feedback matrix K

1: Set W
(0)

= Π̂
[
αCT K(0)

]
, ∆K(0) = 0, U (0) =

[
W

(0)
∆K(0)

]
.

2: Set k = 0.
3: while

(
||U (k)D

(
U (k)

)T ||F > tolNewton||U (0)D
(
U (0)

)T ||F) do

4: Compute ADI shifts {qi}nADI
i=1 = {qi}nADI

i=1 ⊂ C− and choose τk ∈ (0, τ̄ ].

5: Set W̃0 = Π̂
[
αCT K(k)

]
, ∆K̃0 = −K(k).

6: Set ` = 1.
7: while

(
||W̃ T

`−1W̃`−1||F > τk||U (k)D
(
U (k)

)
||F
)

do

8: Get V` by solving[
AT −K(k)BT + q`M Ĝ

ĜT 0

][
V`
∗

]
=

[
W̃`−1

0

]
.

9: if Im (q`) = 0 then

10: W̃` = W̃`−1 − 2q`MV`
11: Ṽ` =

√−2q`V`
12: ∆K̃`+1 = ∆K̃`−1 +MṼ`(Ṽ

T
` B)

13: else
14: γ` = 2

√
−Re (q`), δ` = Re (q`) / Im (q`)

15: W̃`+1 = W̃`−1 + γ2
`M (Re (V`) + δ` Im (V`))

16: Ṽ`+1 =
[
γ` (Re (V`) + δ` Im (V`)) γ`

√
(δ2
` + 1) Im (V`)

]
17: ` = `+ 1
18: ∆K̃`+1 = ∆K̃`−2 +MṼ`(Ṽ

T
` B)

19: end if
20: Ũ`+1 =

[
W̃`+1 ∆K̃`+1

]
21: ` = `+ 1
22: end while
23: if ||Ũ`DŨT

` ||F > (1− β)||U (k)D
(
U (k)

)T ||F then
24: Compute ξk ∈ (0, 1) using Armijo rule or ELSM.
25: else
26: ξk = 1.
27: end if
28: W

(k+1)
=
[√

1− ξk W (k) √
ξk W̃`

]
29: ∆K(k+1) =

[√
1− ξk∆K(k) ξk∆K̃`

]
30: U (k+1) =

[
W

(k+1)
∆K(k+1)

]
31: K(k+1) = (1− ξk)K(k) + ξk∆K̃`

32: k = k + 1
33: end while
34: K = K(k)
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written as

X(k+1) = (1− ξk)X(k) + ξkX̃
(k+1)

= (1− ξk)Z(k)
(
Z(k)

)T
+ ξkZ̃

(k+1)
(
Z̃(k+1))

)T
=
[√

1− ξk Z(k)
√
ξk Z̃

(k+1)
] [√

1− ξk Z(k)
√
ξk Z̃

(k+1)
]T
,

(6.44)

whose size depend on the number of ADI steps in the k-th and k+1-st Newton itera-
tion. Notice that only the inexpensively accumulated feedback (6.43) is necessary in the
right-hand side to proceed the Newton iteration. Furthermore, using line search in the
convergence phase of the Newton iteration is unlikely, such that (6.44) is, in general,

never used and the new iterate can be formed by X(k+1) = Z̃(k+1)
(
Z̃(k+1))

)T
.

The entire process of the inexact low-rank KN-ADI method is depicted in Algorithm 6.
Thereby, only the feedback matrix K is computed.

6.4. Numerical Experiments for the Improved KN-ADI
Method

In this section, the theoretical results from the current chapter are verified by various
numerical tests. At first, the CTP scenario, which is introduced in Subsection 3.1.4, is
considered to demonstrate the usability of the inexact low-rank KN-ADI including line
search for a generalized state-space system without algebraic constraints. The example
is used to show further results from [26, Sec. 6]. Afterwards, the experiments from Sec-
tion 4.4 are repeated to show the obtained speed-ups of the improved KN-ADI method
in Subsection 6.4.2.

6.4.1. Comparison of Different Low-Rank KN-ADI methods

To demonstrate the efficiency of the improved KN-ADI method, four different versions
of the methods are considered. All methods are based on Algorithm 6 using a certain
parameter setup. This means, all variants use the low-rank residual formulations, as well
as the real-valued version of the ADI method. Furthermore, the novel shift approach
from [30] is used to compute ADI shifts adaptively during the ADI process. In detail,
the solution factor V` is used as projection basis of the closed-loop pencil (A−BKT ;M).
Afterwards, the eigenvalues of the projected pencil are used to determine a single ADI
shift using the lp mnmx routine from [104]. In the first ADI step, the right hand side W̃0

is used as projection basis. In all examples, we set tolNewton = 10−8 and β = 10−4.
All different variants of the improved KN-ADI method are summarized in Table 6.1.

The first method is abbreviated with “KN” and refers to the “exact” KN-ADI method
that is the low-rank residual version of the method used in Section 4.4. Thereby, no line
search is performed and we set tolADI = tolNewton · 10−1. The abbreviation “KNLS” uses
the same setup as “KN”, but line search is enabled. This version is comparable to [25]
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Table 6.1.: Variants of improved KN-ADI method.

method tolADI τk line search details

1: KN 10−9 – no “exact”

2: KNLS 10−9 – yes “exact”

3: iKNsLS adaptive
1

k3 + 1
yes inexact superlinear

4: iKNqLS adaptive min{0.1, 0.9||R(X(k))||F} yes inexact quadratic

but improved by the various low-rank techniques. The third and fourth method use all
introduced improvements and are abbreviated with “iKNsLS” and “iKNqLS”. Thereby,
the small letters “s,q” stand for superlinear (s) or quadratic (q) convergence behavior.

The CTP setup is identical to the numerical example in [26, Sec. 6]. In detail, we
use the combined transport problem (3.7) defined over the two or three dimensional
UCD ΩUCD, introduced in Subsection 3.1.5. The parameters are defined as kD = 1,
~w = [0,−20]T (in 2D), ~w = [0,−20, 0]T (in 3D), kR = 100, and

f(~x) =

{
100, ~x ∈ Ωc.

0, else.
(6.45)

Furthermore, the control domain is defined as Ωd = [0.1, 0.3] × [0.4, 0.6] (in 2D) and
Ωd = [0.1, 0.3] × [0.4, 0.6] × [0.1, 0.3] (in 3D). Notice that this setup is also used in [59,
94]. The output operator is set to C = BT . The mesh size is set to h2D = 1/75 in 2D
and h3D = 1/30 in 3D. Hence, the finite element spaces are of dimension n2D = 5 476
and n3D = 24 389. The considered system is stable for all configurations such that no
initial feedback is necessary.

In Figure 6.1, the evolution of the norm of the relative Riccati residuals is depicted.
Thereby, the left row shows the results of the 2D and the right row of the 3D discretiza-
tion. Except from the 3D, α = 100 example, all examples show a significant upward
jump in the Riccati residual after the first Newton step for the “KN” method. If neces-
sary, the line search in the “KNLS” method ensures a monotonic decay of the residual.
Thereby, a single mark denotes the residual before the line search is applied. If no line
search is necessary, the convergence behavior is identical to the “KN” method. For an
increasing output weight, the residual jump increases drastically. Hence, the amount of
Newton steps that can be saved due to the line search application increases as well. The
inexact method “iKNsLS” and “iKNqLS” behave in a similar fashion to the “KNLS”.
The upward jump in the residual is avoided in all cases. The 3D, α = 100 example
shows a slower convergence than the “exact” methods. This is a natural affect of solving
the Newton step inexactly. However, this inexact solve also results in a smaller upward
jump after the first Newton step, since the Riccati residual can grow during the first
Newton step with each ADI step. Applying the line search method in these cases results
in an even faster Newton convergence as seen in all 2D examples.
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(a) CTP 2D, α = 100
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(d) CTP 3D, α = 102
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(e) CTP 2D, α = 104
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(f) CTP 3D, α = 104

Figure 6.1.: CTP scenario: Newton convergence for different output weights α in 2D
and 3D for the different methods in Table 6.1
(tolNewton = 10−8, Armijo rule).
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Table 6.2.: CTP scenario: Detailed iteration numbers and computation timings in
seconds for the different methods in Table 6.1
(tolNewton = 10−8, Armijo rule).

#Newt #ADI #LS timeKN-ADI timeshift timeLS timetotal

α
=

10
0

CTP 2D

m
et

h
o
d 1 6 156 0 5.7 · 100 2.3 · 10−1 – 5.9 · 100

2 5 135 1 4.8 · 100 1.9 · 10−1 5.3 · 10−3 5.0 · 100

3 5 54 2 1.9 · 100 7.7 · 10−2 5.4 · 10−3 2.0 · 100

4 5 51 2 1.8 · 100 7.2 · 10−2 1.1 · 10−4 1.9 · 100

CTP 3D

m
et

h
o
d 1 3 68 0 1.7 · 102 8.5 · 10−1 – 1.7 · 102

2 3 68 0 1.8 · 102 8.5 · 10−1 – 1.8 · 102

3 4 44 0 1.3 · 102 6.3 · 10−1 – 1.3 · 102

4 4 45 0 1.3 · 102 6.2 · 10−1 – 1.3 · 102

α
=

10
2

CTP 2D

m
et

h
o
d 1 13 359 0 1.3 · 101 5.3 · 10−1 – 1.4 · 101

2 7 180 2 6.3 · 100 2.5 · 10−1 6.4 · 10−3 6.6 · 100

3 5 28 1 9.8 · 10−1 3.9 · 10−2 2.4 · 10−3 1.0 · 100

4 5 40 1 1.4 · 100 5.7 · 10−2 2.4 · 10−3 1.5 · 100

CTP 3D

m
et

h
o
d 1 9 201 0 4.2 · 102 3.0 · 100 – 4.3 · 102

2 5 106 2 2.1 · 102 1.4 · 100 7.4 · 10−3 2.1 · 102

3 5 33 2 6.9 · 101 4.6 · 10−1 4.3 · 10−3 6.9 · 101

4 5 33 2 6.5 · 101 4.8 · 10−1 2.9 · 10−3 6.6 · 101

α
=

10
4

CTP 2D

m
et

h
o
d 1 19 524 0 2.4 · 101 1.0 · 100 – 2.5 · 101

2 6 144 2 6.2 · 100 2.7 · 10−1 6.3 · 10−3 6.5 · 100

3 5 15 1 6.5 · 10−1 2.9 · 10−2 5.5 · 10−3 6.8 · 10−1

4 5 15 1 6.5 · 10−1 2.9 · 10−2 5.8 · 10−3 6.9 · 10−1

CTP 3D

m
et

h
o
d 1 16 371 0 9.5 · 102 4.7 · 100 – 9.5 · 102

2 5 101 1 2.4 · 102 1.2 · 100 2.0 · 10−2 2.4 · 102

3 5 25 1 6.0 · 101 3.1 · 10−1 1.3 · 10−2 6.1 · 101

4 5 25 1 6.3 · 101 3.0 · 10−1 1.2 · 10−2 6.3 · 101
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Table 6.3.: CTP scenario: Comparison of Armijo rule and ELSM (tolNewton = 10−8).

Armijo ELSM

#Newt #ADI #LS timeLS #Newt #ADI #LS timeLS

α
=

10
2

CTP 2D

m
et

h
o
d 3 5 28 1 2.4 · 10−3 5 27 1 3.4 · 10−3

4 5 40 1 2.4 · 10−3 5 32 1 3.3 · 10−3

CTP 3D

m
et

h
o
d 3 5 33 2 4.3 · 10−3 6 51 1 5.6 · 10−3

4 5 33 2 2.9 · 10−3 6 48 1 3.7 · 10−3

The difference between the superlinear and the quadratic method is not crucial for
the Newton convergence of this example. So far, the “KNLS” seems to perform ap-
proximately as good as the inexact versions. However, examining the detailed iteration
numbers and computation timings in Table 6.2 show that the actual runtimes (timetotal)
differ quite drastically. The major amount of time is spent by solving the SPS and com-
puting the residuals; denoted by timeKN-ADI. This time is roughly proportional to the
amount of ADI steps (#ADI). The time to compute the ADI shifts (timeshift) and the
time to evaluate the line search method (timeLS) are of no consequence. Notice that the
line search method is applied at most twice in each example. Hence, the number of ADI
steps is the most important property in this table. As it turns out, the inexact solution
of the Newton step improves the performance of the algorithm drastically; compare,
e.g., [59]. The combination of the line search approach with the inexact solution of each
Newton step enhances the performance tremendously without introducing significant
additional costs. Similar results have been published in [26, Sec. 6]. Further examples
in [26] show that the convergence behavior is strongly influenced by the choice of the
output matrix C.

All results in Figure 6.1 and Table 6.2 use the Armijo rule from Subsection 6.2.2.
For this method, a lower bound for the step size τk is established in Theorem 6.2. To
compare this method with the ELSM from Subsection 6.2.2, all tests have been carried
out again using the ELSM. As it turns out, both methods behave very similarly. One
example, where significant differences occur, is depicted in Table 6.3. For α = 102 the
ELSM performs slightly better in the 2D case. However, in the 3D case, the Armijo
rule performs better. In general, the Armijo rule can be evaluated faster. Due to this
advantage and the non existing lower bound for the step size computed with the ELSM,
all further computations use the Armijo rule.

6.4.2. Improved KN-ADI for Incompressible Flows

In this subsection, the improved KN-ADI method is applied to the Stokes, NSE, and
CFM scenarios. These results have not yet been published elsewhere. As in Section 4.4,
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we mainly use the NSE scenario.
The first part of this subsection shows the influence of the various improvements to

the overall performance of the algorithm. Afterwards, all numerical experiments from
Section 4.4 are repeated with the most efficient parameter setup. Subsection 4.4.4 shows
that the convergence of the relative change in the feedback K does not necessarily yield
a convergence of the actual Riccati residual. Thus, one needs to consider a configuration
whose relative residual dropped below the Newton tolerance tolNewton = 10−8. This is an
important fact that the interested reader needs to keep in mind for further comparisons.
In Figure 4.5a, it is shown that for Re = 500, α = 100, refinement: Level 1, and an
ADI tolerance of tolADI = 10−10, the relative Riccati residual drops below tolNewton after
k = 8 Newton steps. This configuration, including the computation of the explicitly
projected residual, is the basis for the following comparison and is denoted by “Setup i”.
This and four additional setups are summarized in Table 6.4a. For each setup, the
detailed iteration numbers (#Newt, #ADI, #LS) and the various timings are depicted
in Table 6.4b. Furthermore, the convergence behavior of the relative Riccati residuals
are depicted in Figure 6.2.

The first improvement, denoted by “Setup ii” uses the improved KN-ADI method
in the “KN” setup from Table 6.1 with tolADI = 10−8 and an explicit computation
of the projected Riccati residual. This explicit residual computation is not necessary,
but demonstrates the accuracy of the low-rank residual. In the third setup, all these
unnecessary projections are avoided.

Setup iv incorporates a modified version of the adaptive shifts in [30]. The single
shifts, as used for the CTP scenario, do not yield a converging low-rank ADI method.
Hence, at most 15 ADI shifts are adaptively computed in each call. Using the right
hand side W̃0 during the first call, the projected pencil has na + nr eigenvalues that
are entered into the lp mnmx routine from [104] to determine r = min{15, na + nr}
shifts. For further shift determinations, all blocks V` are stored during the ADI iteration
until all previously determined shifts are used. The entire block Ztmp = [V1, . . . , Vr] is
entered into the adaptive shift computation method and a thin QR-decomposition (using
qr(Ztmp,0) in MATLAB) is performed to determine a new projection basis. Afterwards,
15 ADI shifts are determined via lp mnmx. A similar approach is described in [37]. The
final setup, Setup v, uses the “iKNqLS” method from Table 6.1 using the Armijo rule
and adaptively determined ADI shifts.

The incorporation of the real-valued ADI formulation in Setup ii reduces the number
of linear solves (#lin solve) and, therefore, the time to solve these systems (timelin solve)
drastically. Furthermore, the costs to compute the projected residuals are reduced by at
least two magnitudes. Avoiding the computation of the projected residuals completely
decreases the costs further, since the costs to evaluate the low-rank residuals are another
magnitude smaller. An even more drastic performance improvement can be obtained by
the adaptively determined ADI shifts. These shifts reduce the number of ADI steps and
linear solves by a factor of five. Additionally, the computation of these adaptive ADI
shifts is at least one magnitude less expensive.

147



C
h
ap

ter
6.

In
ex

act
L

ow
-R

an
k

K
lein

m
an

–N
ew

ton
-A

D
I

M
eth

o
d

Table 6.4.: Comparison of various KN-ADI methods.

(a) Detailed setups for the different KN-ADI methods.

i KN-ADI, explicit Lyap. and Ric. residual computation, heuristic shifts (Alg. 3, tolADI = 10−10)

ii real-valued, low-rank residual KN-ADI, expl. Ric. residual computation, heuristic shifts (cf. Alg. 5, tolADI = 10−8)

iii real-valued, low-rank residual KN-ADI, heuristic shifts (cf. Alg. 5, tolADI = 10−8)

iv real-valued, low-rank residual KN-ADI, adaptive shifts (cf. Alg. 5, tolADI = 10−8)

v inexact low-rank KN-ADI, adaptive shifts (Alg. 6, ηk = min{0.1, 0.9||R(X(k))||F}, Armijo method)

(b) NSE scenario: Iteration numbers and timings in seconds for the different methods in Table 6.4a
(Re = 500, refinement: Level 1, tolNewton = 10−8, α = 100).

#Newt #ADI #lin solve #LS timelin solve timeshift timerel ch timeproj-res timelr-res timeLS timetotal

i 8 3067 3067 – 1.4 · 103 3.6 · 101 6.7 · 100 5.4 · 103 – – 6.8 · 103

ii 8 3031 1721 – 7.0 · 102 3.6 · 101 8.5 · 10−3 1.0 · 101 1.8 · 100 – 7.5 · 102

iii 8 3031 1721 – 7.0 · 102 3.7 · 101 7.6 · 10−3 – 1.8 · 100 – 7.4 · 102

iv 8 600 346 – 1.4 · 102 2.8 · 100 3.2 · 10−3 – 6.0 · 10−1 – 1.5 · 102

v 7 305 176 1 7.3 · 101 1.9 · 100 5.1 · 10−3 – 2.4 · 10−1 1.5 · 10−2 7.5 · 101

1
4
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Figure 6.2.: NSE scenario: Newton convergence for the different KN-ADI methods in
Table 6.4a (Re = 500, refinement: Level 1, tolNewton = 10−8, α = 100).

Using Setup v improves the method further. The number of ADI steps is reduced by a
factor of two, which also yields less time for the shift computation and the evaluation of
the low-rank residual. Thereby, the costs for the single line search call can be neglected.
Comparing the total computation times between Setup i and Setup v, a speedup of
90 can be achieved. One could argue now that the ninth Newton step for Setup i is
not necessary. Removing the costs for this step, one ends up with 2696 linear solves
and a speedup of approximately 80. Although each improvement reduces the overall
computation costs, it is shown in Figure 6.2 that the Riccati residuals are identical,
except from the last step, for the setups i–iv. This shows that the low-rank residual can
be used to determine the actual residual accurately. As for the CTP example in the
previous subsection, the “iKNqLS” method improves the convergence behavior of the
Riccati residual. These improvements become more important if the output weighting
α increases. By repeating all numerical experiments from Section 4.4, the performance
improvements of the relevant scenarios for this thesis are established in the following.

In Table 6.5, the influence of the output weighting α (Table 6.5a), as well as the
influence of the refinement levels (Table 6.5b), are depicted. Similar to the results in
Table 4.4, the amount of Newton steps increases with an increasing α. Nevertheless,
significant savings can be achieved by the “iKNqLS” method. Furthermore, line search
is only necessary for higher Reynolds numbers and higher output weights. Considering
the increasing refinement level, the saving regarding the Newton steps are not that
significant. Especially for Re ≥ 300 and a refinement level larger than two, the number
of Newton steps is nearly as high as for the KN-ADI in Table 4.4b. Additionally, an
unusual amount of line search runs can be observed. We believe that this effect is a result
of the instability of the considered pencil. Solving the first Newton step inexactly might
yield an intermediate solution that is nearly not stabilizing. Therefore, the following
ADI iteration tends to diverge.
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Table 6.5.: NSE scenario: Number of Newton steps (#Newt), ADI steps (#ADI), and line search runs (#LS) during the
“iKNqLS” process (tolNewton = 10−8, ηk = min{0.1, 0.9||R(X(k))||F}, Armijo method).

(a) Influence of output weighting α during the “iKNqLS” process (refinement: Level 1).

HHH
HHHα

Re 100 200 300 400 500
#Newt #ADI #LS #Newt #ADI #LS #Newt #ADI #LS #Newt #ADI #LS #Newt #ADI #LS

10−2 3 38 – 4 74 – 4 73 – 4 87 – 5 79 –
10−1 4 53 – 5 109 – 5 84 – 4 74 – 5 109 –

100 5 80 – 6 118 – 7 119 – 6 115 1 7 176 1

101 7 98 – 7 134 – 8 153 1 10 212 2 9 201 2
102 7 109 – 9 199 1 12 296 3 12 331 3 12 340 4

(b) Influence of refinement levels during the “iKNqLS” process (α = 1).

HH
HHHH

Re 100 200 300 400 500
#Newt #ADI #LS #Newt #ADI #LS #Newt #ADI #LS #Newt #ADI #LS #Newt #ADI #LS

Level 1 5 80 – 6 118 – 7 119 – 6 115 1 7 176 1
Level 2 4 73 – 6 118 1 7 144 1 7 148 1 7 168 1
Level 3 5 99 – 5 124 – 10 221 3 8 200 2 7 183 –
Level 4 4 72 – 6 176 1 11 198 6 10 199 5 10 243 3
Level 5 5 126 – 6 160 1 11 244 4 11 273 4 10 267 3
Level 6 6 189 – 6 184 1 11 280 4 11 279 4 13 344 6

1
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Table 6.6.: NSE scenario: Comparison of “exact” and inexact start
(tolNewton = 10−8, ηk = min{0.1, 0.9||R(X(k))||F}, Armijo method).

start inexact start “exact” with tolADI = 10−2

#Newt #ADI #LS timeLS timetotal #Newt #ADI #LS timeLS timetotal

Re = 300

L
ev

el

3 10 221 3 1.0 · 10−1 7.2 · 102 8 186 1 2.5 · 10−2 5.9 · 102

4 11 198 6 8.2 · 10−2 1.6 · 103 8 177 0 – 1.4 · 103

5 11 244 4 9.5 · 10−2 4.8 · 103 8 215 0 – 4.1 · 103

6 11 280 4 1.0 · 10−4 1.2 · 104 9 259 0 – 1.2 · 104

Re = 400

L
ev

el

3 8 200 2 3.8 · 10−2 6.1 · 102 6 158 1 5.4 · 10−2 5.2 · 102

4 10 199 5 9.1 · 10−2 1.5 · 103 7 197 1 6.7 · 10−2 1.6 · 103

5 11 273 4 5.6 · 10−1 5.4 · 103 8 244 1 1.4 · 10−1 4.6 · 103

6 11 279 4 1.2 · 100 1.3 · 104 8 272 1 3.0 · 10−1 1.3 · 104

Re = 500

L
ev

el

3 7 183 0 – 6.2 · 102 7 179 1 4.1 · 10−2 6.0 · 102

4 10 243 3 1.3 · 10−1 2.0 · 103 8 192 1 4.0 · 10−2 1.6 · 103

5 10 267 3 5.7 · 10−1 5.5 · 103 9 261 1 8.7 · 10−2 5.5 · 103

6 13 344 6 1.6 · 100 1.6 · 104 7 248 1 6.6 · 10−1 1.2 · 104

1
5
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Chapter 6. Inexact Low-Rank Kleinman–Newton-ADI Method

Our algorithm detects this behavior by monitoring the Riccati and Lyapunov residual
continuously. Notice that this behavior is not covered by the convergence proof in
Theorem 6.9, where a stabilizing solution for k ≥ k0 is required. Nevertheless, our
algorithm handles this situation by deleting the last ADI step and performing line search.
This yields convergence in all considered examples, although the relative Riccati residual
seems to stagnate for a couple of steps. Hence, an increasing amount of line search runs
is required.

Another approach to circumvent this problem is starting the process in the “KN”
setup with a fixed ADI tolerance for the first Newton step. Based on the experiences
of the “KN” setup, we set tolADI = 10−2 for the first two Newton steps. If the relative
Riccati residual decreases and drops below 5·10−1, the method switches to the “iKNqLS”
scheme. A comparison of both starting procedures is depicted in Table 6.6 for Re ≥ 300
and the refinements Level 3–6. As it turns out, the latter setup prevents the stagnation
of the relative Riccati residual and reduces the amount of Newton steps. However, the
“exact” solved first Newton steps increase the number of ADI steps and, therefore, the
savings due to less Newton steps do not really pay off. In total, the amount of ADI steps
reduces only slightly in most of the examples.

In the end, the “iKNqLS” setup is able to solve all setups. A summary of the detailed
timings for the “iKNqLS” setup is depicted in Table 6.7. Comparing these results with
the results in Table 4.5, significant speedups are achieved. The interested reader is
reminded that the results in Table 4.5 only ensured convergence of the norm of the
relative change of the feedback matrix. Hence, the speedups compared to the results in
Section 4.4 are even more significant if one would consider the KN-ADI method with an
explicit calculation of the projected residuals.

The results from the use of the “iKNqLS” setup for the Stokes and CFM scenario
are depicted in Table 6.8. Both scenarios benefit from the improved method. Due
to the already relatively small amount of ADI steps using the KN-ADI method, the
improvements are not as significant as for the NSE scenario. Nevertheless, the “iKNqLS”
setup reduces the amount of ADI steps and, therefore, the overall computation costs.

6.5. Conclusion – Part III

Linking to the conclusions in Section 4.5, the inexact low-rank KN-ADI method is a
powerful tool to solve GARE for index-2 DAE systems. Besides the various algorithmic
improvements, which make the method highly efficient, a convergence proof could be
established that combines the inexact Newton idea with a line search approach. On the
one hand, the inexact solution of the Newton steps decreases the amount of ADI steps
significantly. On the other hand, the line search approach prevents the upward jump of
the Riccati residual such that the previously observed stagnation phase in the relative
change of the feedback can be avoided. Both tools are only applicable for large-scale
systems due to the various low-rank formulations. These low-rank formulations are the
key ingredient to establish the method in Algorithm 6 as a competitive tool to solve
large-scale GARE.
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Table 6.7.: NSE scenario: Detailed computation timings in seconds for “iKNqLS”
process (tolNewton = 10−8, tolADI = 10−7, α = 100,
ηk = min{0.1, 0.9||R(X(k))||F}, Armijo method).

timelin solve timeshift timelr res timeLS timetotal

Re = 100
L

ev
el

1 2.7 · 101 4.5 · 10−1 1.5 · 10−1 – 2.8 · 101

2 7.4 · 101 9.8 · 10−1 2.3 · 10−1 – 7.5 · 101

3 2.9 · 102 2.8 · 100 5.6 · 10−1 – 2.9 · 102

4 5.0 · 102 4.3 · 100 8.2 · 10−1 – 5.0 · 102

5 2.2 · 103 1.8 · 101 3.2 · 100 – 2.2 · 103

6 8.6 · 103 7.4 · 101 9.0 · 100 – 8.7 · 103

Re = 200

L
ev

el

1 4.5 · 101 8.5 · 10−1 1.9 · 10−1 – 4.6 · 101

2 1.3 · 102 1.6 · 100 3.1 · 10−1 1.8 · 10−2 1.3 · 102

3 3.9 · 102 3.7 · 100 6.8 · 10−1 – 3.9 · 102

4 1.3 · 103 1.2 · 101 2.1 · 100 1.2 · 10−1 1.3 · 103

5 3.0 · 103 2.8 · 101 4.0 · 100 2.9 · 10−1 3.0 · 103

6 8.7 · 103 8.4 · 101 1.1 · 101 9.6 · 10−1 8.8 · 103

Re = 300

L
ev

el

1 4.5 · 101 8.9 · 10−1 1.8 · 10−1 – 4.6 · 101

2 1.7 · 102 2.0 · 100 4.1 · 10−1 3.1 · 10−2 1.8 · 102

3 5.8 · 102 5.3 · 100 9.4 · 10−1 2.5 · 10−2 5.9 · 102

4 1.4 · 103 1.1 · 101 1.8 · 100 – 1.4 · 103

5 4.0 · 103 3.6 · 101 5.1 · 100 – 4.1 · 103

6 1.2 · 104 1.2 · 102 1.5 · 101 1.0 · 10−4 1.2 · 104

Re = 400

L
ev

el

1 4.8 · 101 1.0 · 100 1.8 · 10−1 1.8 · 10−2 4.9 · 101

2 1.8 · 102 2.3 · 100 3.8 · 10−1 1.9 · 10−2 1.8 · 102

3 5.1 · 102 5.4 · 100 8.7 · 10−1 5.4 · 10−2 5.2 · 102

4 1.6 · 103 1.6 · 101 2.2 · 100 6.7 · 10−2 1.6 · 103

5 4.6 · 103 3.9 · 101 6.1 · 100 1.4 · 10−1 4.6 · 103

6 1.3 · 104 1.3 · 102 1.5 · 101 1.2 · 100 1.3 · 104

Re = 500

L
ev

el

1 7.3 · 101 1.9 · 100 2.4 · 10−1 1.5 · 10−2 7.5 · 101

2 2.0 · 102 2.8 · 100 4.1 · 10−1 2.2 · 10−2 2.1 · 102

3 6.0 · 102 6.6 · 100 9.5 · 10−1 4.1 · 10−2 6.0 · 102

4 1.6 · 103 1.5 · 101 2.3 · 100 4.0 · 10−2 1.6 · 103

5 5.4 · 103 5.0 · 101 6.1 · 100 8.7 · 10−2 5.5 · 103

6 1.6 · 104 1.7 · 102 1.9 · 101 1.6 · 100 1.6 · 104
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Table 6.8.: Number of Newton steps (#Newt), ADI steps (#ADI), and line search runs (#LS) during the “iKNqLS” process
for Stokes and CFM scenario (tolNewton = 10−8, ηk = min{0.1, 0.9||R(X(k))||F}, Armijo method).

(a) Stokes scenario: Influence of output weighting α during the “iKNqLS” process (refinement: Level 1).

H
HHH

HHα
Re 100 200 300 400 500

#Newt #ADI #LS #Newt #ADI #LS #Newt #ADI #LS #Newt #ADI #LS #Newt #ADI #LS

10−2 4 37 – 4 40 – 4 38 – 4 38 – 4 42 –
10−1 4 38 – 4 40 – 4 38 – 4 39 – 4 39 –

100 4 38 – 4 40 – 4 38 – 4 40 – 4 41 –

101 4 36 – 4 37 – 4 40 – 5 55 – 5 48 –
102 5 61 – 6 60 – 6 61 1 6 55 1 6 64 1

(b) CFM scenario: Influence of refinement levels on the “iKNqLS” process (α = 1).

HH
HHHH

Set I II III IV V
#Newt #ADI #LS #Newt #ADI #LS #Newt #ADI #LS #Newt #ADI #LS #Newt #ADI #LS

Level 1 5 116 – 5 134 – 6 153 – 4 74 – 3 60 –
Level 2 6 172 – 5 144 – 6 177 – 6 168 1 6 177 –
Level 3 4 95 – 6 190 – 6 170 – 6 175 1 5 152 –
Level 4 7 237 1 6 161 1 8 269 1 7 215 – 8 250 –

1
5
4



7
Closed-Loop Simulation
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7.2. Dirichlet Boundary Control Input . . . . . . . . . . . . . . . 156

7.3. Numerical Experiments for Closed-Loop Simulation . . . . 157

Chapter 7 examines the usability of the feedback matrix K in a closed-loop forward
simulation to stabilize the NSE scenario from Subsection 3.2.1. The results extend the
statements in [15, Sec. 4.5]. Notice that we have chosen the NSE scenario since the
CFM scenario would have required additional implementation steps within NAVIER to
perform a closed-loop simulation. These implementations are part of future research.

In the context of this thesis, the process of stabilizing the NSE scenario refers to
preventing or extinguishing vortexes behind the obstacle ΩO

K in Figure 3.1 that occur for
Re > 200.

7.1. Discretized Model

As it is explained in Section 3.4, the nonlinear NSE (3.8) are linearized around a station-
ary but possibly unstable solution (~w(~x), χs(~x)). The stationary flow field ~w(~x) is chosen
to be a laminar flow without any vortexes behind the obstacle. Such a flow field can be
obtained by solving the stationary NSE (3.13). In cases where the stationary solution
~w(~x) does not exist or does not fulfill the desired properties, an open-loop controller
might be applied to the original system (3.8) to obtain the desired laminar flow ~w(~x),
compare, e.g., [76].

Raymond showed in [106] that the optimal control u(t), which is computed to asymp-
totically stabilize the linearized system (3.13), also stabilizes the original nonlinear sys-
tem (3.8), assuming that ~v(t, ~x) ≈ ~w(~x). In other words, for small perturbations between
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~w(~x) and ~v(t, ~x), the optimal control uz(t) forces the velocity field ~v(t, ~x) towards ~w(~x).
Since ~w(~x) is assumed to be laminar, the resulting velocity field ~v(t, ~x) is laminar as
well.

The closed-loop forward simulation is executed within the finite element flow solver
NAVIER [12]. As mentioned in Section 3.5, the FEM package NAVIER is used to assemble
the matrices for the discrete representations of the Stokes/NSE and CFM scenarios.
Thus, the spatially discretized nonlinear NSE system is defined by

Mz
d

dt
v(t) = Av(v(t))v(t) +Gχ(t), (7.1a)

0 = GTv(t), (7.1b)

y(t) = Cv(t). (7.1c)

The mass matrix Mz and the discretized gradient G are defined as in (3.20). The
discretized velocity v(t) ∈ Rnz is restricted to the interior of Ω to match the dimension
of z(t). The system matrix Av(v(t)) ∈ Rnz×nz represents the nonlinear Navier–Stokes
operator in (3.8a), which is determined by the current velocity field v(t).

The system (7.1) does not represent the discretized boundary Γ, such that discretized
versions of the boundary conditions (3.8d)–(3.8f) are considered straightforward. Addi-
tionally, the initial condition

v(0) = w

is considered to fulfill the requirement of ~v(t, ~x) ≈ ~w(~x) for t = 0. The interested reader
is referred to [12] for more details about the actual solution strategy for the nonlinear
system (7.1).

7.2. Dirichlet Boundary Control Input

As it is introduced in Subsection 4.1.3, the feedback stabilization is supposed to influence
the system (7.1) via a boundary input. To apply the feedback within the forward
simulation, the optimal control uz(t) ∈ Rnr needs to be reflected appropriately in the
Dirichlet BC. The optimal control is defined via

uz(t) = −Kz(t) = −(Kv(t)−Kw) (7.2)

with K being the feedback matrix, which is computed via Algorithm 6 to stabilize the
linearized and discretized NSE (3.20). Using the matrix market format [45], the feedback
K which is computed via MATLAB can be imported into NAVIER. Afterwards, the
feedback K is applied to the stationary velocity field w(~x) and the recent velocity field
v(t).

The physical interpretation of uz(t) describes the magnitude of the parabolic in-
/outflow conditions over each of the nr control boundaries Γfeed,i, scaled by the corre-
sponding entry ui(t), as depicted in Figure 4.1. This behavior needs to be interpreted as
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Figure 7.1.: Decomposition of control input over Γfeed,i to assemble B̂ (|~n(j)
~q,i | = 1).

Dirichlet BC. Therefore, the parabolic inflow profile over Γfeed,i with a maximum height

of |~n(j)
~q,i | = 1 is decomposed into the x1 and x2 velocity components corresponding to

each boundary node ~N
(j)
Γfeed,i

, as depicted for one node in Figure 4.1. For the particular
node number j, the velocity perpendicular to the boundary also describes the maximum
height of 1. The decomposition is defined by

~n
(j)
~q,i = ~b

(j)
x1,Γfeed,i

+~b
(j)
x2,Γfeed,i

=

[
b

(j)
x1,Γfeed,i

0

]
+

[
0

b
(j)
x2,Γfeed,i

]
.

All components of the decomposition depend only on the used discretization and can be
assembled into a special boundary input operator B̂ in the offline grid generating phase.
During the online phase, the optimal control is computed via (7.2) in each time step and
the Dirichlet BC on Γfeed is assigned by

v(t) = gfeed,i(t) := B̂ui(t) on Γfeed,i, ∀i = 1, . . . , nr.

These BC complete the necessary information to solve the closed-loop forward simulation
of (7.1).

As explained in Subsection 4.4.1, the output operator Cz measures the vertical ve-
locity components at the observation nodes Pobs, as marked in Figure 3.3. Only these
components are reflected throughout the feedback computation. Hence, these compo-
nents should remain as small as possible to minimize the cost functional (4.16a), which
also yields a laminar flow field.

7.3. Numerical Experiments for Closed-Loop Simulation

The quality of the closed-loop simulation is affected by the output weight α. However,
choosing α appropriately is an optimization process by itself and not within the scope
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of this thesis. For Re = 500 and refinement Level 6, we determined α = 2.0 throughout
various numerical test as a suitable choice.

The major issue of the closed-loop simulation is that the control uz is not restricted
explicitly. Hence, the computed uz(t) might exceed the limits of the underlying FE
discretization. Therefore, we restrict each component of the input uz(t) by 3.0.

The result of the closed-loop forward simulation is illustrated by a snapshot for t = 16
in Figure 7.2. In detail, the vertical velocity component, which is measured by the
output matrix C, is depicted for three different configurations. Thereby, positive velocity
components are depicted by red and negative components are depicted by blue. The
entire domain is divided into a 5×5 grid. All observation points are located in the third
and fourth column of the third row. Hence, the vertical velocity in these two rectangles
should remain zero which is depicted by the color green.

The middle picture in Figure 7.2 shows the forward simulation without the influence
of any feedback. The occurring vortexes are distinctly visible by alternating red and
blue areas that fade with a growing distance to the obstacle.

The lower picture shows the influence of the initial feedback which has been computed
by solving the corresponding GABE as discussed in Subsection 4.2.3. The vortexes are
smoothed slightly, but the flow remains unstable. This shows that the Bernoulli feedback
is not sufficient in this setup, although the pencil arising from the linearized NSE is stable
using the initial feedback.

The upper picture shows the influence of the Riccati feedback. All vertical components
are significantly smoothed. Due to the restriction of uz(t) and an empirical determined
output weight, one might be able to improve these results further. A video of the closed-
loop simulation is available in the supplementary material submitted with this thesis and
on the website of the research project: http://www2.mpi-magdeburg.mpg.de/mpcsc/

projekte/optconfeestabmultiflow/nse_re_500_level_6_lambda_2.php.
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8.1. Conclusion

In this thesis, we have investigated various numerical aspects of the feedback stabiliza-
tion of scalar and vector-valued transport problems; one scalar and three vector-valued
test scenarios have been defined in Chapter 3. The first scenario is the scalar one and
describes a combined transport process defined on a unit cube in two or three dimen-
sions. The focus of this thesis lies on incompressible multi-field flow problems that can
be interpreted as vector-valued transport problems. Hence, scenario two and three are
defined by the nonlinear Navier–Stokes and the linear Stokes equations. Both scenarios
use the two-dimensional Kármán vortex street as the test domain and are constrained by
the so-called divergence-free condition. It is this condition that assures the mass conser-
vation of the entire system. The last scenario combines the nonlinear Navier–Stokes flow
with a scalar diffusion-convection process that is defined on a two-dimensional reactor
model.

All scenarios have been linearized and discretized using the inf-sup stable Taylor–
Hood finite elements. Including certain input and output operators, one ends up with
a generalized state-space system whose structure is identical for all scenarios. However,
all vector-valued transport problems yield index-2 differential-algebraic equations (DAE)
due to the divergence-free condition. The major task of this thesis is to handle these
systems, avoiding expensive general-purpose DAE solvers.

In Chapter 4, a feedback stabilization approach for these index-2 DAE systems has
been derived. This approach mimics the ideas in [106] in a numerical way. The central
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problem of Chapter 4 is the solution of an implicitly projected large-scale generalized
algebraic Riccati equation. In order to solve it, a nested iteration has been derived
which incorporated the projection method from [71] into the combination of a specially
tailored Kleinman–Newton method and an alternating directions implicit (ADI) method.
Moreover, a convergence proof for this version of Newton’s method has been derived.
Thereby, the similar approach in [41] differs from our approach in the definition of
the used projector. While both projectors project on the same subspace using different
topologies, the projection never needs to be performed explicitly in our approach. Notice
that the entire process is also directly applicable to the scalar transport problem.

The algorithmic key ingredients for our approach are the efficient feedback accumula-
tion as well as an efficiently evaluable stopping criterion. The usability of the proposed
method has been shown throughout intensive numerical experiments in Section 4.4. Al-
though our proposed method was able to solve all considered test scenarios, certain
drawbacks occurred. It turned out that the relative change is not sufficient as stop-
ping criterion for certain configurations. Using the explicitly projected residual would
overcome this drawback, but the computation of this residual is highly expensive. Fur-
thermore, the choice of the accuracy of the inner ADI method, which depends on the
problem, is not known beforehand. Hence, each Newton step might be solved more
accurately than necessary, which wastes a lot of computation time, or is not solved ac-
curately enough such that the entire algorithm does not converge. Another problem is
the upward jump of the Riccati residual after the first Newton step. This behavior is
well-known throughout literature and results in significantly higher computation times.
Nevertheless, by choosing an appropriate combination of the stopping criteria for each
nested level, convergence of the Kleinman–Newton-ADI method can be guaranteed.

The main computational step within our algorithm is the solution of a large-scale
indefinite saddle point system. Hence, Chapter 5 investigates two different methods:
the sparse direct solver from MATLAB as well as the Krylov subspace method GMRES.
To use the latter method efficiently, a specially tailored block preconditioner has been
derived in Section 5.2. The main issue is the efficient approximation of the dense and
large-scale Schur complement. Based on [56], two approximation methods have been
introduced. Therefore, two block approximation methods have been adapted. In detail,
an algebraic multigrid method as well as a Chebyshev semi-iteration have been used to
derive an efficient preconditioner. The issue of complex-valued systems for these kinds
of approximation techniques is, in general, not considered but has been addressed in this
thesis. Further intensive numerical tests have shown the usability of all our methods. It
has been discovered that each method has advantages and disadvantages regarding the
different scenarios and parameters. However, all approximation methods improve the
efficiency of the introduced preconditioner drastically.

In Chapter 6, we have revisited the Kleinman–Newton-ADI method from Chapter 4
and have investigated techniques to overcome the examined drawbacks. On the one
hand, considering the line search approach in [25], the upward jumps of the Riccati
residual can be prevented. However, this method involves the computation of dense
matrices such that it is not applicable for large-scale systems. On the other hand, the
inexact Kleinman–Newton method in [59] determines the ADI accuracy adaptively such
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that the wasted computational time can be reduced. However, we could show that the
proposed convergence proof in [59] is not applicable in a low-rank case. Nevertheless,
we have been able to incorporate the line search method in [25] as well as the inex-
act Kleinman–Newton method in [59]. The resulting method is the inexact low-rank
Kleinman–Newton-ADI method for index-2 DAE systems which is depicted in Algo-
rithm 6. To combine all of these approaches, the low-rank residual ADI formulations in
[27, 28] have been extended to a low-rank Riccati residual formulation. Additionally, we
have stated a convergence proof for this novel method. Further improvements have been
achieved by adapting the real-valued ADI in [29] and the adaptively chosen ADI shifts
from [30] to the index-2 DAE case. The usability of the inexact Kleinman–Newton-ADI
method for index-2 DAE systems has been validated throughout intensive numerical
experiments. As a result, significant speedups up to a factor of 90 could be achieved.

In Chapter 7, a closed-loop simulation of the Navier–Stokes equations on the Kármán
vortex street validates the usability of our proposed Riccati feedback. This means that
our flow stabilization technique is applicable in this case using standard inf-sup stable
finite elements.

The majority of the achievements in this thesis are connected to the iterative solution
of large scale index-2 DAE-based Riccati equations. From our point of view, there are
only very few parts within this algorithm that can be improved further. Using the various
low-rank structures and techniques, one ends up with a highly efficient algorithm.

8.2. Outlook

Whilst working on this thesis a few open problems appeared.
The first open problem is that a more accurate realization of the theory in [106] to

build the boundary input operator is desirable. Therefore, a more detailed study of the
functional analytic connections is necessary. Strongly connected to this is the problem
of a proper approximation theory for the computed feedback matrix K. Using a finite
element approximation to solve indefinite dimensional partial differential equations, one
is always interested in the quality of the resulting approximation. This concept needs to
be extended to the feedback operator to solve the infinite dimensional control problem,
similar to the results for parabolic systems in [10, 115].

The iterative solution of the large-scale saddle point systems within the nested itera-
tion yields two open problems. On the one hand, it has been shown in Section 5.2 that
the introduced preconditioners are suitable to use GMRES as iterative solver. However,
the number of GMRES steps varies drastically for certain configurations. Hence, a more
robust preconditioner, especially regarding the used ADI shift, would increase the effi-
ciency. Further possible improvements are block Krylov and Krylov subspace recycling
techniques.

On the other hand, as investigated in detail in Chapter 6, the adaptive selection of
stopping tolerances within the nested iteration is crucial to ensure convergence without
wasting computational time. Extending the concept of inexact solves for the innermost
linear solver, depending on the needs of each single ADI step, is crucial to use iterative
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methods efficiently. Some basic work for this problem has been done in [116, 124].
Extending these ideas to the index-2 DAE case using preconditioned Krylov subspace
methods and incorporating this in the nested inexact Kleinman–Newton-ADI method
is a highly non-trivial problem. However, first numerical tests show that the results in
[116, 124] also hold for the index-2 DAE case.

The last open problem is the extension of the closed-loop simulations to other sce-
narios. Therefore, one needs to extend the modifications within the used finite element
flow solver NAVIER, as well as some conceptual considerations regarding the design of
the control problem.
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server are stated.
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Theses

1. This thesis investigates a Riccati-based feedback stabilization approach for scalar
and vector-valued transport problems that are discretized by a standard finite
element method.

2. All considered scenarios yield generalized state-space systems after linearization
and discretization. The vector-valued scenarios yield additional algebraic con-
straints.

3. A linear-quadratic regulator approach is introduced, whose optimal solution is
obtained by a Riccati-based feedback.

4. A specially tailored Kleinman–Newton-ADI method can be used to solve the aris-
ing large-scale and implicitly projected Riccati equations as it is established in a
convergence proof.

5. Inside the innermost step of the nested iteration, large-scale indefinite saddle point
systems have to be solved efficiently.

6. Sparse direct solvers, as well as the Krylov subspace method GMRES, are investi-
gated in detail to perform the demanding linear solves.

7. A block preconditioner improves the convergence of GMRES significantly. Thereby,
various approximation techniques, such as a Schur complement approximation, an
algebraic multigrid method, and a Chebyshev semi-iteration, are investigated to
increase the efficiency of the preconditioner.

8. The combination of an inexact Newton scheme, a line search approach, a real-
valued ADI formulation, as well as the extension of the low-rank residual ADI
method, yields a highly efficient method to solve large-scale Riccati equations that
are based on index-2 DAE systems.

9. Two different line search techniques are investigated and a convergence proof for
the inexact low-rank Kleinman–Newton-ADI method for index-2 DAE systems has
been established.

10. All introduced techniques have been validated through intensive numerical tests.
The results indicate large performance gains and significant runtime savings.

11. The overall usability of the proposed approach is demonstrated by a closed-loop
feedback simulation of the Navier–Stokes equations on the Kármán vortex street.
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Publications

Many parts of this thesis are extensions of already published publications of the author.
In this section, the content of this thesis is associated with these publications. Further-
more, a few statements of this thesis, which have been derived by other authors and
that have not yet been published, are assigned.

The definition of the CFM scenario, as well as the extension of the projector Π̂T for
the CFM case is based on

[14] E. Bänsch, P. Benner, J. Saak, and H. K. Weichelt. “Optimal Control-Based
Feedback Stabilization of Multi-Field Flow Problems”. In: Trends in PDE Con-
strained Optimization. Ed. by G. Leugering, P. Benner, S. Engell, A. Griewank,
H. Harbrecht, M. Hinze, R. Rannacher, and S. Ulbrich. Vol. 165. Internat. Ser.
Numer. Math. Basel: Birkhäuser, 2014, pp. 173–188 (cit. on pp. 4, 43, 44, 46, 54,
55, 58, 67, 70, 76, 77, 85, 122).

The definition of the NSE scenario as well as most derivations from Chapter 4 have
been published in a condensed version in

[15] E. Bänsch, P. Benner, J. Saak, and H. K. Weichelt. “Riccati-based boundary
feedback stabilization of incompressible Navier-Stokes flows”. In: SIAM J. Sci.
Comput. 37.2 (2015), A832–A858 (cit. on pp. 4, 39, 42, 44, 46, 47, 50, 51, 54, 55,
58, 61, 62, 67, 68, 70, 76, 80, 81, 122, 155).

The introduction of the Stokes scenario as well as various segments of the block pre-
conditioner, defined in Section 5.2, have been investigated in

[35] P. Benner, J. Saak, M. Stoll, and H. K. Weichelt. “Efficient solution of large-scale
saddle point systems arising in Riccati-based boundary feedback stabilization of
incompressible Stokes flow”. In: SIAM J. Sci. Comput. 35.5 (2013), S150–S170
(cit. on pp. 4, 41, 42, 46, 47, 50, 51, 54, 55, 58, 59, 67, 70, 76, 90, 93, 96, 97, 122).

The block preconditioner used for the CFM scenario in Section 5.2 has been introduced
in

[36] P. Benner, J. Saak, M. Stoll, and H. K. Weichelt. “Efficient Solvers for Large-Scale
Saddle Point Systems Arising in Feedback Stabilization of Multi-Field Flow Prob-
lems”. In: System Modeling and Optimization. Ed. by C. Pötzsche, C. Heuberger,
B. Kaltenbacher, and F. Rendl. Vol. 443. IFIP Adv. Inf. Commun. Technol. New
York: Springer, 2014, pp. 11–20 (cit. on pp. 4, 43, 46, 67, 90, 93, 96, 101, 102,
122).

The statements in Chapter 6 are extensions to the index-2 DAE case of the results in

[26] P. Benner, M. Heinkenschloss, J. Saak, and H. K. Weichelt. “An inexact low-
rank Newton-ADI method for large-scale algebraic Riccati equations”. In: Appl.
Numer. Math. 108 (Oct. 2016), pp. 125–142. issn: 0168-927 (cit. on pp. 5, 24, 38,
47, 61, 121–123, 125, 126, 128–132, 135, 137, 139, 142, 143, 146, IV).
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Notice that the proof of Proposition 2.17 had been derived by M. Heinkenschloss through-
out working on [26], but had not been published there. Furthermore, the proof of The-
orem 2.26 is based on ideas of P. Benner.
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Appendix: Computer Specifications

Computer Specifications

The specific computer specifications of the used compute server nodes are listed below.

RELEASE INFO
Desc r ip t i on : CentOS r e l e a s e 5 .5 ( F ina l )
Re lease : 5 . 5
Codename : F ina l

SYSTEM INFO
operat ing system : GNU/Linux
ke rne l name : Linux
ke rne l r e l e a s e : 2 .6 .18−194. e l 5
ke rne l v e r s i on : #1 SMP Fri Apr 2 14 : 58 : 14 EDT 2010
p lat t f rom type : x86 64 (64 Bit )

PROCESSOR INFO
CPU type : I n t e l (R) Xeon(R) CPU X5650 @ 2.67GHz
number o f p h y s i c a l CPUs : 2
number o f c o r e s ( v i r t u a l ) : 12
Proces so r 1

number o f p h y s i c a l c o r e s : 6
cache s i z e : 12288 KB

Proces sor 2
number o f p h y s i c a l c o r e s : 6
cache s i z e : 12288 KB

t o t a l number o f p h y s i c a l c o r e s : 12

MEMORY INFO
RAM i n s t a l l e d : 49 .449 .320 kB
SWAP i n s t a l l e d : 0 kB

d e f a u l t MATLAB ver s i on
8 . 0 . 0 . 7 8 3 ( R2012b )

Current ly loaded modules :
comp/ gcc / 4 . 5 . 1
l i b / i l 32p64 / s u i t e s p a r s e /3 .7
l i b / i l 32p64 / b la s / openblas −0.2.4
l i b / i l 32p64 / lapack / 3 . 4 . 1
apps/matlab /2012b

VI
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[48] J. Bührle. “Properties of Time-Dependent Stokes Flow and the Regularization of
Velocity Fluctuations in Praticle Suspensions”. PhD thesis. Philipps-Universität
Marburg, 2007 (cit. on p. 41).

[49] J. Cahouet and J.-P. Chabard. “Some fast 3D finite element solvers for the gen-
eralized Stokes problem”. In: International Journal for Numerical Methods in
Fluids 8.8 (1988), pp. 869–895 (cit. on p. 101).

[50] K. A. Cliffe, T. J. Garratt, and A. Spence. “Eigenvalues of block matrices arising
from problems in fluid mechanics”. In: SIAM J. Matrix Anal. Appl. 15.4 (1994),
pp. 1310–1318 (cit. on pp. 16, 17, 51, 59).

[51] T. A. Davis. “Algorithm 832: UMFPACK V4.3, an unsymmetric-pattern multi-
frontal method”. In: ACM Trans. Math. Softw. 30.2 (June 2004), pp. 196–199.
issn: 0098-3500 (cit. on p. 91).

[52] T. A. Davis. Direct Methods for Sparse Linear Systems. Fundamentals of Algo-
rithms 2. Philadelphia, PA, USA: SIAM, 2006. isbn: 978-0-898716-13-9 (cit. on
pp. 91, 93).

[53] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. “Inexact Newton methods”. In:
SIAM J. Numer. Anal 19.2 (1982), pp. 400–408 (cit. on p. 122).

[54] E. Deriaz and V. Perrier. “Orthogonal Helmholtz decomposition in arbitrary
dimension using divergence-free and curl-free wavelets”. In: Appl. Comput. Har-
mon. Anal. 26.2 (2009), pp. 249–269 (cit. on p. 56).

[55] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford, UK: Clarendon Press, 1989 (cit. on p. 91).

[56] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite Elements and Fast Itera-
tive Solvers: With Applications in Incompressible Fluid Dynamics. Oxford, UK:
Oxford University Press, 2005 (cit. on pp. 8, 9, 30, 33, 37, 46, 48, 93, 96, 97, 100,
101, 162).

[57] J. A. Fay. Introduction to Fluid Mechanics. Cambridge, Mass.: MIT Press, 1994,
pp. XVIII+605 (cit. on pp. 38–41).

XI



Bibliography

[58] C. L. Fefferman. Existence and smoothness of the Navier-Stokes equation. The
Millennium Prize Problems. Available at http://www.claymath.org/millennium-
problems/navier%E2%80%93stokes-equation. Peterborough, USA: Clay Math-
ematical Institute, 2000 (cit. on p. 1).

[59] F. Feitzinger, T. Hylla, and E. W. Sachs. “Inexact Kleinman–Newton method for
Riccati equations”. In: SIAM J. Matrix Anal. Appl. 31.2 (Mar. 2009), pp. 272–
288 (cit. on pp. 38, 121, 122, 129–131, 143, 146, 162, 163).

[60] C. Foias, O. Manley, R. Rosa, and R. Temam. Navier-Stokes Equations and Tur-
bulence. Cambridge: Cambridge Univ. Press, 2001, pp. XIV+347 (cit. on pp. 55,
56).

[61] A. V. Fursikov. “Stabilization for the 3D Navier-Stokes system by feedback bound-
ary control”. In: Discrete Contin. Dyn. Syst. 10.1/2 (2004), pp. 289–314 (cit. on
p. 3).

[62] V. Girault and P. A. Raviart. Finite Element Methods for Navier–Stokes Equa-
tions. Theory and Algorithms. Berlin, Germany: Springer-Verlag, 1986 (cit. on
p. 56).

[63] G. H. Golub and C. F. van Loan. Matrix Computations. 3rd. Baltimore: Johns
Hopkins University Press, 1996 (cit. on pp. 67, 71, 90, 127).

[64] I. Granet. Fluid Mechanics. 4. ed. Englewood Cliffs, NJ: Prentice Hall, 1996,
pp. XI+460 (cit. on p. 39).

[65] L. Grasedyck. “Existence of a low rank or H -matrix approximant to the solution
of a Sylvester equation”. In: Numer. Linear Algebra Appl. 11.4 (2004), pp. 371–
389. issn: 1099-1506 (cit. on p. 22).

[66] C.-H. Guo and A. J. Laub. “On a Newton-like method for solving algebraic
Riccati equations”. In: SIAM J. Matrix Anal. Appl. 21.2 (1999), pp. 694–698
(cit. on pp. 131, 132).

[67] W. Hackbusch. Multi-Grid Methods and Applications. Vol. 4. Springer Series in
Computational Mathematics. Springer Verlag, 1985 (cit. on p. 102).

[68] J. Heiland. “Decoupling and Optimization of Differential-Algebraic Equations
with Application in Flow Control”. Dissertation. TU Berlin, 2014 (cit. on p. 3).

[69] J. Heiland and V. Mehrmann. “Distributed control of linearized Navier–Stokes
equations via discretized input/output maps”. In: ZAMM - Journal of Applied
Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mecha-
nik 92.4 (2012), pp. 257–274 (cit. on p. 3).

[70] S. Hein. “MPC-LQG-Based Optimal Control of Parabolic PDEs”. Available from
http://archiv.tu-chemnitz.de/pub/2010/0013. Dissertation. Technische
Universität Chemnitz, Feb. 2009 (cit. on p. 68).

XII

http://www.claymath.org/millennium-problems/navier%E2%80%93stokes-equation
http://www.claymath.org/millennium-problems/navier%E2%80%93stokes-equation
http://archiv.tu-chemnitz.de/pub/2010/0013


Bibliography

[71] M. Heinkenschloss, D. C. Sorensen, and K. Sun. “Balanced truncation model re-
duction for a class of descriptor systems with application to the Oseen equations”.
In: SIAM J. Sci. Comput. 30.2 (2008), pp. 1038–1063 (cit. on pp. 54–60, 66, 67,
162).

[72] M. R. Hestenes and E. Stiefel. “Methods of conjugate gradients for solving linear
systems”. In: J. Res. Nat. Bur. Standards 49.6 (1952), pp. 409–436 (cit. on pp. 33,
102).

[73] J. G. Heywood, R. Rannacher, and S. Turek. “Artificial boundaries and flux and
pressure conditions for the incompressible Navier–Stokes equations”. In: Internat.
J. Numer. Methods Fluids 22.5 (1996), pp. 325–352. issn: 1097-0363 (cit. on
p. 40).

[74] N. J. Higham. Functions of Matrices: Theory and Computation. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2008, pp. xx+425.
isbn: 978-0-898716-46-7 (cit. on pp. 12, 14–16).

[75] D. Hinrichsen and J. O’Halloran. “Limits of generalized state space systems under
proportional and derivative feedback”. In: Math. Control Signals Systems 10.2
(1997), pp. 97–124. issn: 0932-4194 (cit. on p. 28).

[76] M. Hinze and K. Kunisch. “Second order methods for boundary control of the
instationary Navier–Stokes system”. In: Z. Angew. Math. Mech. 84.3 (2004),
pp. 171–187 (cit. on p. 155).

[77] L. Hogben, ed. Handbook of Linear Algebra. 2nd edition. Boca Raton, London,
New York: Chapman & Hall/CRC, 2014 (cit. on pp. 19, 20).

[78] P. Hood and C. Taylor. “Navier–Stokes equations using mixed interpolation”. In:
Finite Element Methods in Flow Problems. Ed. by J. T. Oden, R. H. Gallagher,
C. Taylor, and O. C. Zienkiewicz. University of Alabama in Huntsville Press,
1974, pp. 121–132 (cit. on pp. 9, 47).

[79] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge: Cambridge Univer-
sity Press, 1985 (cit. on pp. 10, 11, 90, 91).

[80] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. Philadelphia:
SIAM, 1995 (cit. on pp. 30, 31, 122, 123, 125, 126, 131, 132).

[81] D. L. Kleinman. “On an iterative technique for Riccati equation computations”.
In: IEEE Trans. Automat. Control AC-13 (1968), pp. 114–115 (cit. on pp. xxv,
3, 64, 65, 129, 131).

[82] A. N. Krylov. “On the numerical solution of the equation by which the frequency
of small oscillations is determined in technical problems”. In: Izv. Akad. Nauk
SSSR. Ser. Fiz.-Mat. 4 (1931), pp. 491–539 (cit. on p. 33).

[83] P. Kunkel and V. Mehrmann. Differential-Algebraic Equations: Analysis and Nu-
merical Solution. Textbooks in Mathematics. EMS Publishing House, 2006 (cit.
on pp. 3, 10, 27, 29).

XIII



Bibliography
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