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Abstract

Model order reduction (MOR) has emerged as an important tool in reducing the computa-

tional burden of large-scale systems, particularly in real-time or many-query contexts, e.g.,

optimization, control, and uncertainty quantification. In this thesis, we study projection-

based MOR methods for parameterized nonlinear evolution equations. The nonlinearity

and parametrization pose many difficulties in MOR, which call for efficient and sharp er-

ror bounds and effective parameter sampling strategies for constructing simulation-efficient

parametric reduced-order models (ROMs) at low cost.

We propose two output error bounds to estimate the output error of the ROM in the vector

space for parameterized evolution equations. One is a primal-only output error bound,

and the other is a primal-dual output error bound. The former is based on the analysis of

the residual of the original system, while the latter is derived by introducing and using a

novel dual system. In particular, the primal-dual output error bound successfully avoids

the accumulation of the residual over time, which is a common drawback in the existing

error estimations for time-stepping schemes. Both error bounds are independent of the

MOR methods and the spatial discretization approach employed, and they are applicable

to a broad class of nonlinear and linear evolution equations.

In addition to the error bound, we pursue efficient construction of ROMs. A technique

that we call adaptive snapshot selection is proposed to collect the snapshots adaptively

so that the ROM can be constructed more efficiently. This technique is applicable to

snapshot-based MOR methods, e.g., the reduced basis method and the proper orthogonal

decomposition method. For multi-stage systems, we propose to accelerate full-order model

simulation by using (intermediate) ROMs as predictors during the basis construction pro-

cess.

Numerical experiments are carried out to show the performance of the proposed output

error bounds and the acceleration techniques. Two academic examples are employed to

test the derived error bounds, and applications to real-life models in chemical engineering

are also explored. ROM-based optimization and/or uncertainty quantification of batch

and simulated moving bed chromatography are successfully implemented, and the results

show that the ROMs are very efficient in reducing the computational cost.
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Zusammenfassung

Modellordnungsreduktion (MOR) hat sich zu einem wichtigen Werkzeug bei der Reduktion

des numerischen Aufwands großskaliger Systeme entwickelt, insbesondere im Echtzeit-und

Parameter-Kontext, wie z.B. Optimierung, Steuerung und Quantifizierung von Unsicher-

heiten. In dieser Arbeit werden projektionsbasierte MOR Methoden für parametrisierte,

nichtlineare Evolutionsgleichungen untersucht. Die Nichtlinearität und Parametrisierung

stellt zahlreiche Anforderungen an die MOR, wie effiziente und genaue Fehlerschranken

und effektive Parameter-Sampling Strategien um simulatonseffiziente parametrische re-

duzierte Modelle mit geringem numerischen Aufwand zu konstruieren.

Hier werden zwei Fehlerschranken im Ausgang vorgestellt, die den Ausgangfehler des re-

duzierten Modells im Vektorraum der parametrisierten Evolutionsgleichungen schätzen.

Zum Einen eine primale Ausgangfehlerschranke und zum Anderen eine primal-duale Aus-

gangfehlerschranke. Erstere basiert auf dem Residuum des originalen Systems, während

Letztere mit Hilfe eines neuartigen dualen Systems hergeleitet wird. Insbesondere die

primal-duale Fehlerschranke verhindert erfolgreich die Akkumulation des Residuums über

die Zeit, was bei den existierenden Fehlerschätzern für zeitabhängige Probleme ein häufiges

Problem ist. Beide Fehlerschranken sind unabhängig von der MOR Methode und dem

räumlichen Diskretisierungsansatz und lassen sich auf eine große Klasse von nichtlinearen

und linearen Evolutionsgleichungen anwenden.

Zusätzlich zur Fehlerschranke wird die effiziente Konstruktion reduzierter Modelle unter-

sucht. Eine adaptive Snapshot-Auswahl wird vorgestellt um Snapshots adaptiv auszuwählen,

sodass das reduzierte Modell effizienter konstruiert werden kann. Diese Technik lässt sich

auf Snapshot-basierte MOR Methoden anwenden, wie z.B. die Reduzierte Basis Methode

und die Proper Orthogonal Decomposition Methode. Mit mehrstufigen Systemen wird die

großskalige Modellsimulation durch reduzierte (dazwischenliegende) Modelle beschleunigt,

indem die reduzierten Modelle während der Basiskonstruktion als Prädiktor dienen.

Numerische Experimente werden durchgeführt, um den Vorteil der Ausgangfehlerschranken

und der Beschleunigungstechniken zu zeigen. Zwei akademische Beispiele nutzen die

hergeleiteten Fehlerschranken und Anwendungen im in der chemischen Verfahrenstech-

nik werden ebenfalls untersucht. Optimierung und Quantifizierung von Unsicherheiten
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basierend auf reduzierten Modellen in der ‘Batch’ und ‘Moving Bed’ Chromatographie

ist implementiert und zeigt, dass die reduzierten Modelle den numerischen Aufwand sehr

effizient reduzieren.

iv



List of Acronyms

ASS adaptive snapshot selection

BPIM best point interpolation method

BT balanced truncation

CRB collateral reduced basis

CSS cyclic steady state

DEIM discrete empirical interpolation method

DOF degree of freedom

EI empirical interpolation

EIM empirical interpolation method

FOM full-order model

HSV Hankel singular value

LDEIM localized discrete empirical interpolation method

MEMS micro-electro-mechanical systems

MOR model order reduction

RB reduced basis

RBM reduced basis method

ROM reduced-order model

PDE partial differential equation

PMOR parametric model order reduction

(P)MOR (parametric) model order reduction

v



POD proper orthogonal decomposition

SMB simulated moving bed

SpF speedup factor

SVD singular value decomposition

UQ uncertainty quantification

w.r.t. with respect to

vi



List of Symbols

Symbols for Set, Space, Matrix, and Operators

N set of positive integers

R set of real numbers.

C set of complex numbers

Rm×n vector space of real matrices with m rows and n columns

Cm×n vector space of complex matrices with m rows and n columns

Im, I identity matrix of m×m or suitable size

ei ith column of the identity matrix I

A matrix with suitable size

AT transpose of matrix A

diag(a1, . . . , am) diagonal matrix with diagonal entries a1 . . . , am

σmax(A) maximal singular value of a matrix A

λmax(A) maximal eigenvalue of a matrix A

〈·, ·〉 inner product

µ parameter or parameter vector

Ω computational domain of spatial variables

P domain of parameters

Symbols for Numerical Discretization

∆t time step size

∆x spatial grid size

vii



K total number of time steps

tn time instance at t = tn, n = 0, 1, . . . ,K

N dimension or size of the full-order model

N dimension or size of the reduced-order model

M dimension of the interpolation basis

nI number of inputs

nO number of outputs

Symbols for Chromatography Models

L length of a chromatographic column

Ac cross-section area of a chromatographic column

cz concentration of component z in the liquid phase, z = a, b

qz concentration of component z in the solid phase, z = a, b

κz mass-transfer coefficient for component z

qEq
z adsorption equilibrium

Q volumetric flow rate

ts time of switching period

tin time of injection period

Ps[·] column-wise switching operator

ε column porosity

Pe Péclet number

Pr production rate

Pu product purity

Rec recovery yield

viii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Strategy and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Accomplishments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Efficient Optimization of Chromatography via Reduced-order Modeling 10

2.1 Model description of chromatography . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Batch chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 SMB chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . 13

ix



CONTENTS

2.2 Numerical discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Numerical discretization of the batch chromatographic model . . . . 17

2.2.2 Numerical discretization of the SMB model . . . . . . . . . . . . . . 18

2.3 Optimization of chromatography . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 High-fidelity model based optimization . . . . . . . . . . . . . . . . . 21

2.3.2 Surrogate model based optimization . . . . . . . . . . . . . . . . . . 22

3 Model Order Reduction 24

3.1 Review of (P)MOR methods . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Projection framework of MOR . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Frequency-domain MOR methods . . . . . . . . . . . . . . . . . . . 26

3.1.3 Time-domain MOR methods . . . . . . . . . . . . . . . . . . . . . . 30

3.1.4 A brief comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 PMOR for parameterized evolution equations via the RBM . . . . . . . . . 36

3.2.1 Parametric nonlinear systems . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Framework of PMOR . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.3 Simulation of the ROM . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Construction of reduced basis . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 POD-Greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Empirical interpolation method and related topics . . . . . . . . . . . . . . 44

3.5 Offline-online decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

x



CONTENTS

4 Output Error Bound and Estimation 51

4.1 Previous work and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 A primal-only output error bound . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 A primal-dual output error bound . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Performance of the output error bound/estimation . . . . . . . . . . . . . . 67

4.4.1 Linear convection-diffusion equation . . . . . . . . . . . . . . . . . . 68

4.4.2 Burgers’ equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Acceleration and Adaptivity for RB Construction 77

5.1 Motivation and previous work . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Adaptive snapshot selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Accelerating FOM simulation using ROMs as predictors . . . . . . . . . . . 82

6 Numerical Experiments 84

6.1 MOR for batch chromatography . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.1 ROM construction for batch chromatography . . . . . . . . . . . . . 87

6.1.2 Output error estimation for batch chromatography . . . . . . . . . . 90

6.1.3 ROM-based optimization of batch chromatography . . . . . . . . . . 96

6.2 MOR for linear SMB chromatography . . . . . . . . . . . . . . . . . . . . . 97

6.2.1 Model description and optimization . . . . . . . . . . . . . . . . . . 97

6.2.2 ROM construction for linear SMB chromatography . . . . . . . . . . 99

6.2.3 ROM-based optimization of linear SMB chromatography . . . . . . . 101

xi



CONTENTS

6.3 MOR for nonlinear SMB chromatography . . . . . . . . . . . . . . . . . . . 102

6.3.1 ROM construction for nonlinear SMB chromatography . . . . . . . . 103

6.3.2 ROM-based optimization of nonlinear SMB chromatography . . . . 107

6.3.3 UQ of nonlinear SMB chromatography . . . . . . . . . . . . . . . . . 108

7 Conclusions and Perspectives 113

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Bibliography 117

xii



List of Figures

2.1 Sketch of a batch chromatographic process for the separation of a mixture

of two components a and b. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Schematic illustration of an SMB chromatographic process with four zones

and eight columns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Decay of the existing primal-dual error bound (PD-EB), the proposed primal-

dual error estimation (PD-ES), and the corresponding true error during the

RB construction process for the linear convection-diffusion equation. . . . . 69

4.2 Behavior of the ratio ‖r̃
n+1‖
‖r̃n‖ in the time trajectory corresponding to different

RB dimensions for the linear convection-diffusion equation. . . . . . . . . . 70

4.3 Behavior of the average ratio ρ̃?N during the RB construction process for

the linear convection-diffusion equation. . . . . . . . . . . . . . . . . . . . . 71

4.4 Solution to the Burgers’ equation as a function of x and tn with different

viscosity coefficients ν. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Decay of the primal-dual error bound (PO-EB), the primal-dual error esti-

mation (PD-ES), and the corresponding true error during the RB construc-

tion process for the Burgers’ equation. . . . . . . . . . . . . . . . . . . . . . 75

4.6 Behavior of the average ratio ρ̃?N during the RB construction process for

the Burgers’ equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Behavior of the ratio ‖r̃
n+1‖
‖r̃n‖ in the time trajectory corresponding to different

RB dimensions for the Burgers’ equation. . . . . . . . . . . . . . . . . . . . 76

xiii



LIST OF FIGURES

6.1 Behavior of the primal-only error bounds and the true output error during

the RB construction process for batch chromatography. . . . . . . . . . . . 92

6.2 Decay of the primal-only error bound (PO-EB), the primal-dual error esti-

mation (PD-ES), and the corresponding true error during the RB construc-

tion process for the batch chromatographic model. . . . . . . . . . . . . . . 93

6.3 Behavior of the average ratio ρ̃?N during the RB construction process for

the batch chromatographic model. . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 Location of the parameters selected during the RB extension process for

batch chromatography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5 Concentrations at the outlet of the column using the FOM and the ROM

at the chosen parameter point. . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.6 Decay of the primal-dual error estimation (PD-ES) and the corresponding

true error during the RB construction process for the linear SMB model. . . 100

6.7 Behavior of the average ratio ρ̃?N during the RB construction process for

the linear SMB model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.8 Decay of the primal-dual output error estimation (PD-ES) and the corre-

sponding true error during the RB extension process for the nonlinear SMB

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.9 Effect of QI on the product purity Pua and Pub using the FOM and the

ROM, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.10 Effect of QII on the product purity Pua and Pub using the FOM and the

ROM, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.11 Effect of QIII on the product purity Pua and Pub using the FOM and the

ROM, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.12 Effect of QIV on the product purity Pua and Pub using the FOM and the

ROM, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xiv



List of Tables

6.1 Model parameters and operating conditions for the batch chromatographic

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Coefficients of the adsorption isotherm equation for the batch chromato-

graphic model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Comparison of runtime of the generation of CRBs (Ga, Gb) at the same

error tolerance with different thresholds for ASS. . . . . . . . . . . . . . . . 89

6.4 Comparison of the runtime for RB generation using the POD-Greedy algo-

rithm with and without ASS. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5 Comparison of runtime for RB generation using two error estimations. . . . 94

6.6 Comparison of runtime for the full and reduced simulations of the batch

chromatographic model over a validation set with 500 random sample points. 95

6.7 Comparison of the results for the optimization of batch chromatography

based on the FOM and the ROM. . . . . . . . . . . . . . . . . . . . . . . . 96

6.8 Model parameters and operating conditions for the linear SMB model. . . . 97

6.9 Comparison of runtime for the full and reduced simulations of the linear

SMB model over a validation set with 200 random sample points. . . . . . . 101

6.10 Comparison of the optimization results based on the FOM and the ROM. . 102

6.11 Model parameters and operating conditions for each chromatographic col-

umn in the nonlinear SMB unit. . . . . . . . . . . . . . . . . . . . . . . . . 103

xv



LIST OF TABLES

6.12 Coefficients of the adsorption isotherm equations for the nonlinear SMB

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.13 Comparison of runtime for the RB construction with or without ROM pre-

diction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.14 Comparison of runtime for the full and reduced simulations of the nonlinear

SMB model over a validation set with 200 random sample points. . . . . . . 106

6.15 Comparison of the optimization results based on the FOM and the ROM. . 108

6.16 UQ for uncertainty of the flow rate QI. . . . . . . . . . . . . . . . . . . . . 109

6.17 UQ for uncertainty of the flow rate QII. . . . . . . . . . . . . . . . . . . . . 109

6.18 UQ for uncertainty of the flow rate QIII. . . . . . . . . . . . . . . . . . . . . 109

6.19 UQ for uncertainty of the flow rate QIV. . . . . . . . . . . . . . . . . . . . . 110

xvi



Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Strategy and objectives . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Accomplishments . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Motivation

Numerical simulation has been playing an important role in computational science and

engineering. Results from numerical simulation of a physical model provide a better under-

standing of physical phenomena and guide engineers to design more reliable experiments,

which significantly shortens the design cycle and reduces the cost. As the complexity of

physical models considered increases, mathematical modeling and numerical simulation

of those models become more and more challenging. The current computer architecture

and algorithms cannot satisfy the increasing demand especially in many time-critical ap-

plications, although great improvements have been made in both aspects during the past

decades. These time-critical applications that are relevant to this thesis include the follow-

ing two scenarios: the real-time context and the many-query context. The former refers to

problems that require the simulation to be done very fast, e.g., real-time control, real-time

prediction, and other simulation-based decision-making processes, while the latter refers

to the case that the simulation needs to be repeatedly performed under certain differ-

1



1. Introduction

ent (input) conditions, e.g., optimal design, optimization, and uncertainty quantification

(UQ).

In many applications, the physical model is described by partial differential equations

(PDEs), which are often parameterized. The parameters may be introduced in many ways,

representing material properties, geometry configurations, initial conditions, boundary

conditions, source or force terms, etc. Typically, the quantity of interest is not the field

variable (the solution to the system) but rather a certain output that is a function of the

field variable. In fact, the output of interest is usually a physical quantity that is used to

measure or assess the behavior of the system corresponding to different parameters, e.g.,

lift/drag, maximal temperature, and purity of products.

In most cases, the analytical solution to the PDEs is not available, and numerical solution

is considered instead. Thus, the PDEs must be discretized with a suitable numerical

method, e.g., the finite element method, the finite volume method, and the finite difference

method [151]. Taking a time-dependent PDE as an example, two approaches are often

adopted: the semi-discretized approach and the fully discretized approach. The former

approach first discretizes the PDE in space to yield a semi-discrete system

F (u̇(t, µ), u(t, µ), t, µ, p(t)) = 0, (1.1)

where u(t, µ) ∈ RN is the field variable or the state, u̇(t, µ) = du(t,µ)
dt is the time derivative,

p(t) ∈ RnI is a time-dependent input. Then, a certain time-integration scheme is employed

to acquire the solution at the time of interest. The latter approach discretizes the PDE in

time and space simultaneously to yield a fully discrete system

F (un+1(µ), un(µ), µ, p(tn)) = 0, (1.2)

and the solution at the time of interest is obtained by solving (1.2) step by step. Here,

un(µ) ∈ RN is the numerical solution at the time t = tn. Once the field variable u(t, µ)

or un(µ) is computed, the output of interest, y(t, µ) = `(u(t, µ)) or yn(µ) = `(un(µ)), is

easily obtained.

In numerical simulations, to capture the dynamics of the system precisely, the correspond-

ing discretized system is of a large order (size)—the number of degrees of freedom (DOFs),

e.g., N is in O(106) for simulation of some three-dimensional problems. Such a large-scale

system needs to be simulated many times in the aforementioned many-query contexts. A
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single simulation of such a system may take minutes, hours, or even days, let alone many

repeated simulations, which can be prohibitively time-consuming. In real-time analysis,

the output response needs to be obtained in a limited amount of time, say, a few seconds

or even less. These time-critical applications call for system approximations by a surrogate

model that is not only of reduced scale and complexity but also able to capture the main

features of the original large-scale complex model.

Model order reduction (MOR), also known as model reduction or dimension reduction, is a

powerful technique for constructing a low-cost approximation of a large-scale system that

results from the discretization of PDEs. On the one hand, the low-cost approximation

should have the same structure as the original large-scale system but be with a much

smaller order; on the other hand, it must have acceptable accuracy for the input-output

representation of the original system. Conventionally, we call the low-cost approximation

the reduced-order model (ROM), and accordingly, the original large-scale system is called

the full-order model (FOM). For example, a linear case of (1.1) that is often employed in

MOR appears as a parametric dynamical system

E(µ)u̇(t, µ) = A(µ)u(t, µ) +B(µ)p(t), (1.3)

where E(µ), A(µ) ∈ RN×N , and B(µ) ∈ RN×nI are the coefficient matrices. The ROM is

formulated as

Ê(µ)u̇r(t, µ) = Â(µ)ur(t, µ) + B̂(µ)p(t), (1.4)

where ur(t, µ) ∈ RN is the vector of unknowns of the ROM, and Ê(µ), Â(µ) ∈ RN×N ,

B̂(µ) ∈ RN×nI are the reduced matrices, and N � N . Due to its small size and negligible

error, the derived ROM is used as a surrogate model of the large-scale system for different

purposes, e.g., design, optimization, control, and UQ. Applications of ROMs can be found

in various disciplines, such as micro-electro-mechanical systems (MEMS), fluid and solid

mechanics, structural mechanics, acoustics, circuit design, image processing, etc.

During the past decades, various MOR methods have been developed in different disci-

plines. Moreover, many of these are described in different terms due to some specific appli-

cations even though they share many common features and origins in principle. Roughly

speaking, those MOR methods include balanced truncation (BT) [19, 77, 125], Krylov

subspace methods (also known as moment-matching methods [65], or Padé approximation

methods [60]) [14, 24, 73], proper orthogonal decomposition (POD) [35, 108, 153, 171, 179,

180, 181], and reduced basis methods (RBMs) [81, 100, 133, 140, 146, 162].
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Based on whether the parameters can be reliably kept as symbolical quantities in the

resulting ROMs, these MOR methods can be simply classified into non-parametric MOR

methods and parametric MOR (PMOR) methods. Non-parametric MOR methods for

linear time-invariant systems have been intensively studied in the past years; see, e.g., [9,

19] and references therein. PMOR, however, has emerged recently as an important research

area, see a comprehensive survey in [26]. Recent development of various (parametric) MOR

((P)MOR) methods and their applications can be found in [9, 19, 22, 26, 27, 140, 149, 167]

and references therein.

As mentioned earlier, the development of (P)MOR methods is often driven by applica-

tions. Here, we are motivated by batch chromatography and simulated moving bed (SMB)

chromatography, which are two major separation processes in chemical engineering and

will be introduced in Chapter 2. These two processes are described by time-dependent

nonlinear convection-diffusion equations, and both require a long-time integration process.

In addition, the SMB process is a multi-stage system with periodic switching. Optimiza-

tion of chromatography is of great importance since it allows to exploit the full economic

potential of the process and reduce the separation cost, reflected by many studies on this

area in the literature [11, 12, 50, 51, 67, 74, 78, 104, 112, 113, 152, 168, 173, 174]. Note that

most of them are based on the FOM (i.e., the high-fidelity model), which are expensive

and call for efficient approximation strategies.

In this thesis, we pursue PMOR methods for parameterized nonlinear evolution equations,

exemplified by the aforementioned chromatographic processes. PMOR is designed for a

broad class of problems in which the governing equations depend on a set of parameters.

Using PMOR methods, the parameters in the FOM are kept as symbolic quantities in the

ROM so that the resulting parametric ROM is globally reliable, i.e., it is able to reproduce

the main dynamics of the FOM corresponding to any variation of the parameter in the

whole parameter domain. To construct ROMs for parametric systems, two correlated

questions come up immediately. One is how to measure or estimate the error between the

reduced approximation and the reference quantity computed from the FOM, namely, error

control or error bound/estimation. The other is how to collect information efficiently to

build the ROM, which is essentially related to effective parameter sampling.

Although significant progress has been made in both aspects (error control and parameter

sampling) during the past decades, many problems still exist. For example, in applications
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to multi-stage systems like the aforementioned SMB chromatography, existing PMOR

methods cannot work well without proper error estimation because the evolution process

is extremely complicated. Actually, the existing a posteriori error bounds or estimations

often fail, especially when periodic switching is involved and/or a very large number of time

steps are employed. In addition, constructing (globally) accurate ROMs for these problems

is very expensive, which limits the reduction efficiency concerning the total computational

cost. This thesis dedicates itself to derive efficient a posteriori error bounds and develop

effective sampling strategies for collecting snapshots.

1.2 Strategy and objectives

Generally, PMOR methods permit an upfront process to construct a ROM in the offline

stage and implement the simulation based on the ROM in the online stage, namely, the

offline-online decomposition. More precisely, all high-dimension dependent quantities are

precomputed and stored during the offline stage. This process could be expensive but

needs to be performed only once. During the online stage, the computation of the output

response only depends on the ROM for any given feasible parameter value. In other words,

it is independent of the (high) dimension of the FOM. Therefore, the output response can

be obtained rapidly. We aim to seek efficient strategies for constructing ROMs that can

be simulated fast online, and meanwhile the offline computation is at low cost.

Note that the offline-online decomposition can be easily implemented for problems that

are linear or have affine expressions, i.e., they have parameter-separable forms. How-

ever, for systems with nonlinearity (w.r.t. the field variable) and/or nonaffine parameter

dependence, the cost of evaluating the nonlinear and/or nonaffine parts cannot be re-

duced by projection. To tackle the problem, the empirical interpolation method [17] or

its variants (e.g., the discrete empirical interpolation method [45] or empirical operator

interpolation [49]) can be employed. With the additional techniques, the complexity of

those parts can be reduced by interpolation, and thus the offline-online computation can

be implemented efficiently.

For parametric systems, the reduced basis (RB), used to construct the ROM, is often built

iteratively via a greedy algorithm, which will be further addressed in detail in Section 3.3.

The greedy algorithm adaptively selects a parameter that causes the largest error (mea-
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sured by the true error or some error estimations) in the parameter domain or its surrogate

training set, to update the RB until the resulting ROM meets the accuracy requirement.

Since computing the true error involves the simulation of the FOM, which is often very

expensive, an a posteriori error estimation is considered instead. Actually, for linear or

time-independent problems, the error bound has been intensively investigated [72, 85, 147,

158, 159, 39, 177, 176]. However, the output error bound for nonlinear time-dependent

problems is less explored; see, e.g., [49, 132]. In this thesis, we pursue efficient a posteriori

output error estimations for parameterized nonlinear evolution equations. Based on the

analysis of the residual of the ROM, we derive an output error bound for nonlinear evolu-

tion equations in the vector space. The derived error bound is efficient and applicable to

any (spatial) discretization approach employed for the system. However, this error bound

is based only on the primal system (the original system) and may lose sharpness for some

problems. This implies that the size (order) of the ROM might be unnecessarily enlarged

when such a posteriori bound is employed in the greedy algorithm during the basis con-

struction process. Thus, we seek to derive a more accurate error bound by a novel dual

approach. The derived output error bound is proved to be much sharper. Both output

error bounds are addressed in detail in Chapter 4.

We now come to the strategies for accelerating the offline computations. Collecting snap-

shots is important for snapshot-based MOR methods to efficiently construct a ROM that

is qualified over a wide range of parameters. The snapshots used to compute the basis

are often selected from the solutions at different samples in parameters and/or in different

time instances (for time-dependent problems). Many efforts have been devoted in devising

effective methods for parameter sampling [53, 82, 83, 34, 141]. However, little attention

has been paid to the selection of the solutions from different time instances. Actually, the

total number of time steps might be large, e.g., in the simulation of batch chromatography.

In such a case, if the solutions at all time steps are taken as snapshots, the subsequent

computation (e.g., singular value decomposition) will be expensive since the number of

snapshots is too large; if we just trivially select parts of the solutions, e.g., at every two

or several time steps, the resulting RB approximation might be of low accuracy because

important information may have been lost due to such a naive snapshot selection. In this

thesis, we introduce a technique that we call adaptive snapshot selection (ASS) to collect

snapshots in an efficient way. That is, we adaptively collect snapshots by discarding the re-

dundant (“almost” linearly dependent) information according to the variation of the time
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trajectory. With ASS, we can obtain a more compact snapshot set containing only the

most representative information of the solution. Consequently, the runtime for computing

the ROM and the memory requirement can be significantly reduced.

Another strategy for accelerating the offline computation is devised for multi-stage sys-

tems. Note that an SMB process is a multi-stage system driven by a periodic switching

procedure. Due to the periodic switching, the system has a cyclic steady state rather than

a steady state. We carefully study the properties of the multi-stage system and propose

to accelerate FOM simulation using ROMs as predictors during the construction of the

RB. We call the technique ROM prediction since the ROM is used to predict a “good”

initial state so that the time of the FOM simulation is reduced at each iteration of the

RB extension process. The two accelerating techniques, ROM prediction and ASS, will

be presented in detail in Chapter 5.

1.3 Accomplishments

(P)MOR can be formulated in different ways, e.g., in a semi-discrete form, in a fully

discretized form, or in a weak form of PDEs in the functional space. We opt for the

fully discretized framework defined in (1.2). All the analyses and derivations are done

in a finite-dimensional vector space. The theories and the techniques presented in this

thesis are independent of the spatial discretization employed for the FOM. The main

accomplishments of this thesis are summarized as follows:

1. Output error bounds. Two output error bounds are derived for projection-based

MOR methods in the vector space for parameterized (nonlinear) evolution equa-

tions. One is a primal-only error bound, and the other is a primal-dual error bound.

The former is more efficient, while the latter is sharper. They are independent of

discretization approach employed and can be used to guide the parameter sampling

for the construction of the RB. The derived error bounds are tested by two aca-

demic examples and two real-life models from chemical engineering, which indicate

that they are applicable to a broad class of parameterized evolution equations.

2. Adaptive snapshot selection (ASS). The ASS technique is proposed to reduce the

offline time for constructing the basis for snapshot-based MOR methods, e.g., the
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POD method and the RBM.

3. ROM prediction. Accelerating FOM simulation by using ROMs as predictors during

the RB extension process. This can be applied to multi-stage systems so that the

final cyclic steady state of the SMB chromatography, can be obtained more quickly.

4. ROM-based optimization. The resulting ROMs are employed to efficiently imple-

ment optimization of chromatography in chemical engineering. The strength of the

PMOR method is demonstrated by the industry-relevant applications.

5. ROM-based UQ. It is the first time that the parametric ROMs are employed to

analyze the robustness of a nonlinear SMB process with flow rate uncertainty.

1.4 Outline

This thesis is organized as follows. Chapter 2 addresses the motivating examples in chem-

ical engineering, namely, batch chromatography and SMB chromatography. The FOMs of

both processes are constructed by the finite volume method. The optimization of batch

and SMB chromatography is presented, and the methods of surrogate-based optimization

are discussed.

The methodology of (P)MOR is presented in Chapter 3. Various (P)MOR methods are

reviewed, and differences and similarities are also discussed. In addition, we introduce the

RBM for parameterized nonlinear time-dependent problems. To deal with the nonlinearity

or non-affinity, the empirical interpolation method and related techniques are addressed.

For the RB construction, we address the greedy algorithm and the POD-Greedy algorithm.

The offline-online decomposition strategy is discussed.

Chapter 4 presents a posteriori output error bound/estimation for parameterized nonlinear

evolution equations. One is based on the analysis of the residual of the primal system,

and the other adopts a primal-dual approach, where a novel dual system is introduced to

aid the derivation of the output error estimation. Two academic examples are employed

to show the performance of the derived error bound/estimation.

In Chapter 5, we address the techniques for accelerating the offline computation: ASS and

ROM prediction. These two techniques can be easily implemented to reduce the offline
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computational cost.

Numerical experiments for batch and SMB chromatography are carried out in Chapter 6.

The performance of the proposed error bounds and the accelerating techniques is demon-

strated. The application of the generated parametric ROM in optimization and UQ are

explored.

Chapter 7 concludes this thesis. Some perspectives for future work are given in the end.
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Chapter 2

Efficient Optimization of

Chromatography via

Reduced-order Modeling

Contents
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2.3.1 High-fidelity model based optimization . . . . . . . . . . . . . . . 21

2.3.2 Surrogate model based optimization . . . . . . . . . . . . . . . . 22

In this chapter, we introduce two motivating examples: discontinuous batch chromatog-

raphy and continuous SMB chromatography, which are widely used for separation and

purification in chemical engineering. Optimal design, real-time control, and optimization

of batch and SMB chromatography are of great importance in chemical engineering. We

show the mathematical modeling of both processes and the corresponding optimization

problems. Parts of the contents in this chapter were originally presented in [187, 189].
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2.1 Model description of chromatography

2.1 Model description of chromatography

In this section, we introduce two major separation processes in chemical engineering: batch

chromatography and SMB chromatography. We show the basic physical process and the

mathematical modeling of the two chromatographic processes. These real-life models are

used to test the methods and techniques presented in this thesis and will be revisited in

Chapters 5 and 6.

2.1.1 Batch chromatography

Batch chromatography, as a crucial separation and purification tool, is widely employed

in food, fine chemical, and pharmaceutical industries. The principle of batch elution

chromatography for binary separation is shown schematically in Figure 2.1. During the

injection period tin, a mixture consisting of a and b is injected from the inlet of the column

which is packed with a suitable stationary phase. With the help of the mobile phase,

the feed mixture flows through the column. Since the solutes to be separated exhibit

different adsorption affinities to the stationary phase, they move at different velocities in

the column and thus separate from each other when exiting the column. At the column

outlet, component a is collected between cutting points t3 and t4, and component b is

collected between t1 and t2. Here the positions of t1 and t4 are determined by a minimum

concentration threshold that the detector can resolve, and the positions of t2 and t3 are

determined by the purity specifications (Pua and Pub) imposed on the products. After a

cycle period tcyc := t4 − t1, the injection is repeated.

The dynamic behavior of the chromatographic process is described by an axially dispersed

plug-flow model with limited mass-transfer rate characterized by a linear driving force

approximation. The governing equations in the dimensionless form are formulated as

follows: 
∂cz
∂t

+
1− ε
ε

∂qz
∂t

= −∂cz
∂x

+
1

Pe

∂2cz
∂x2

, 0 < x < 1,

∂qz
∂t

=
L

Q/(εAc)
κz
(
qEq
z − qz

)
, 0 ≤ x ≤ 1,

(2.1)

where cz, qz are the concentrations of the component z (z = a, b) in the liquid and solid

phase, respectively, Q the volumetric feed flow rate, Ac the cross-sectional area of the
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Figure 2.1: Sketch of a batch chromatographic process for the separation of a mixture of

two components a and b.

column with the length L, ε the column porosity, κz the mass-transfer coefficient, and Pe

the Péclet number. The adsorption equilibrium qEq
z can be described by different types of

isotherm equations. Here, it is described by the isotherm equations of bi-Langmuir type,

qEq
z = fz(ca, cb) :=

Hz1cz

1 +Ka1cf
aca +Kb1c

f
bcb

+
Hz2cz

1 +Ka2cf
aca +Kb2c

f
bcb
, (2.2)

where cf
z is the feed concentration of component z, and Hzj , Kzj are the Henry constants

and thermodynamic coefficients, respectively. The initial and boundary conditions are

given as follows: 
cz(0, x) = 0, qz(0, x) = 0, 0 ≤ x ≤ 1,

∂cz
∂x
|x=0 = Pe

(
cz(t, 0)− χ[0,tin](t)

)
,

∂cz
∂x
|x=1 = 0,

(2.3)

where tin is the injection period, and χ[0,tin] is the characteristic function,

χ[0,tin](t) =

{
1 if t ∈ [0, tin],

0 otherwise.

More details about the mathematical modeling for batch chromatography, e.g., the dimen-

sional form and physical descriptions can be found in [78].

Note that the feed flow rate Q and the injection period tin are often considered as the

operating variables, denoted as µ := (Q, tin), which play the role of parameters in the

PDEs (2.1)−(2.3). The system of PDEs is nonlinear, time-dependent and has nonaffine
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2.1 Model description of chromatography

parameter dependence. The nonlinearity of the system is reflected by (2.2). To capture

the system dynamics precisely, a large number of DOFs must be introduced for the dis-

cretization of the PDEs. Moreover, the interesting range of the Péclet number is large,

e.g., in the order of O(103), which implies the underlying problem is convection dominated.

Batch chromatography is a useful separation process, and it has several merits as follows:

1) it is very flexible to be implemented; 2) several (more than two) components from a

mixture can be separated during one separation process; 3) varying compositions of the

desorbent can be used to enhance separation efficiency. However, it is typically performed

discontinuously, which limits its applicability of large-scale separation processes. By con-

trast, SMB chromatography has gained increasing popularity because of its advantages

in terms of productivity and solvent consumption. An intensive discussion of batch and

SMB chromatography can be found in [172]. In the next subsection, we come to the SMB

chromatography.

2.1.2 SMB chromatography

SMB technology was developed by universal oil products in early 1960s [32] and has

been traditionally used in oil and energy industry for recovery and purification of p-

xylene and other aromatic components separated from naphtha feed. After it became

commercialized heavily in the oil industry, SMB technology made its mark on the food

industry by separating fructose from glucose in a molasses feed. Nowadays, it is widely

used in food, fine chemical, pharmaceutical industries. A review of SMB chromatography

can be found in [168].

An SMB unit typically consists of several identical chromatographic columns connected

in a series, as shown in Figure 2.2. Four ports divide the SMB unit into four zones, which

play different roles in a separation process. The mixture to be separated and the eluent

are fed through the two inlets, and the two purified components are withdrawn from the

two outlets, respectively. These processes are performed continuously, and the separation

regime is accomplished through a counter current movement of the liquid and solid phase

by shifting the inlet and outlet ports one column ahead in the direction of the fluid flow

in a certain switching period ts. For more details, we refer to [12, 152, 168].

The main dynamics of the fluid flow in all columns in an SMB unit are the same except for
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2. Efficient Optimization of Chromatography via Reduced-order Modeling

the node balance relations. We first address the mathematical modeling of the dynamics

in one chromatographic column, and then describe the node balance equations in between.

In this work, we assume that the dynamics of each chromatographic column is described

by an axially dispersed plug flow model with a limited mass-transfer rate characterized by

a linear driving force approximation. The mass balance in the column k (k = 1, . . . , Ncol)

can be given by

∂cz,k
∂t

+
1− ε
ε

∂qz,k
∂t

= −Qkts
εAcL

(
∂cz,k
∂x
− 1

Pe

∂2cz,k
∂x2

)
, 0 < x < 1, (2.4)

where cz,k, qz,k are the concentrations of the component z (z = a, b) in the liquid and solid

phase in the kth column, respectively, Qk the flow rate, Ac the cross-sectional area of the

column, L the column length, ε the column porosity, and Pe the Péclet number. Note

that t and x are in the dimensionless form, i.e., t = t/ts, x = x/L. The adsorption rate is

described by the linear driving force approximation as follows:

∂qz,k
∂t

= tsκz(q
Eq
z,k − qz,k), 0 ≤ x ≤ 1, (2.5)

where κz is the mass-transfer coefficient and qEq
z,k is the adsorption equilibrium defined by

the adsorption isotherm function

qEq
z,k = fz(ca,k, cb,k). (2.6)

Different separation processes are described by different adsorption isotherm equations.

Two types of isotherm equations will be studied. One is of the bi-Langmuir type defined

in (2.2), and the other is described by a linear function. They will be further detailed in

the numerical experiments in Chapter 6.

The Danckwerts type boundary conditions are imposed to equation (2.4), i.e.,
∂cz,k
∂x
|x=0 = Pe(cz,k(t, 0)− cin

z,k(t)),

∂cz,k
∂x
|x=1 = 0,

(2.7)

where cin
z,k(t) is the concentration of component z at the inlet of column k. The system

can be completed by some initial conditions,

cz,k(0, x) = c0
z,k, qz,k(0, x) = q0

z,k, k = 1, . . . , Ncol.
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By mass conservation law, the concentration at the inlet of a column is equal to the

concentration at the outlet of the previous column, i.e.,

cin
z,k+1(t) = cz,k(t, 1), (2.8)

except for the feed and desorbent nodes. The mass balances at the inlet and outlet ports

can be established as follows:

Desorbent node:

QI = QIV +QD,

QIc
in
z,1(t) = QIVcz,Ncol

(t, 1). (2.9)

Extract node:

QII = QI −QE.

cin
z,kI+1(t) = cz,kI(t, 1). (2.10)

Feed node:

QIII = QII +QF,

QIIIc
in
z,kI+kII+1(t) = QIIcz,kI+kII(t, 1) + cF

zQF. (2.11)

Raffinate node:

QIV = QIII −QR,

cin
z,kI+kII+kIII+1(t) = cz,kI+kII+kIII(t, 1). (2.12)

Here, kJ is the number of columns in the zone J , QJ is the flow rate in the corresponding

zone, J ∈ {I, II, III, IV}, cF
z is the feed concentration of the solute z, and QD, QE, QF,

QR are the desorbent, extract, feed, and raffinate flow rate, respectively. Note that the

flow rates within the columns in each zone are assumed to be uniformed. For example, for

an SMB unit with eight columns and 2-2-2-2 configurations, the flow rate Qk in the kth

column satisfies the following relations:

Q1 = Q2 = QI, Q3 = Q4 = QII, Q5 = Q6 = QIII, Q7 = Q8 = QIV.
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Figure 1: Schematic illustration of an SMB chromatographic process with four zones and eight

columns.
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m-factors are introduced by the triangle theory in [30], and they are closely related to the flow

rate within four zones of the SMB unit, i.e.,

mJ =
tsQJ − εVcol

(1− ε)Vcol
, J = I, . . . , IV.

Here, Vcol is the volume of a chromatographic column. According to the experimental experiences

and the triangle theory in [30], we chose the interesting parameter domain as P := [4.30, 4.60]×
[2.40, 2.55]×[3.05, 3.25]×[2.10, 2.25]×[0.1, 0.14]. We consider an optimization problem as follows:

min
µ∈P

f(µ) = −QF,

s.t. Pua,min − Pua(µ) ≤ 0,

Pub,min − Pub(µ) ≤ 0,

QI −Qmax ≤ 0,

where Pua(µ) :=

∫ 1
0 c

E
a,CSS(t,µ)dt

∫ 1
0 c

E
a,CSS(t,µ)dt+

∫ 1
0 c

E
b,CSS(t,µ)dt

, Pub(µ) :=

∫ 1
0 c

R
b,CSS(t,µ)dt

∫ 1
0 c

R
a,CSS(t,µ)dt+

∫ 1
0 c

R
b,CSS(t,µ)dt

are the

product purities at the extract and the raffinate outlets, cE
z,CSS(t, µ) and cR

z,CSS(t, µ) are the CSS

concentrations of cz at the extract and the raffinate outlets, respectively. The constants Pua,min,

Pub,min, and Qmax will be specified in the numerical experiments in Section 6. The output is

defined as,

y(t, µ) := (cE
a,CSS(t;µ), cR

a,CSS(t;µ), cE
b,CSS(t;µ), cR

b,CSS(t;µ)).

To compute the purity of the products, the system (8)-(9) must be simulated many times during

the optimization process. Since the FOM simulations are time-consuming, a surrogate ROM

is generated using the RBM, and all the related quantities will be approximately computed by

using the ROM.

6

Figure 2.2: Schematic illustration of an SMB chromatographic process with four zones

and eight columns.

The regime of the SMB system is a cyclic steady state (CSS), rather than a steady state,

due to the periodic switching procedure. That is, during the CSS period, the concentration

profiles are still varying over time, but they are identical between two consecutive switching

periods. For numerical simulation, when the time-stepping scheme is employed, the system

is simulated cycle by cycle, at the end of each period the state undergoes a shift and the

shifted state acts as the initial state for the next period. This process continues until the

CSS condition is reached. The switching procedure is expressed as

cz,T+1(0, x) = Ps[cz,T(1, x)], qz,T+1(0, x) = Ps[qz,T(1, x)], T = 1, 2, . . . , (2.13)

where Ps[·] is a column-wise switching operator, and T refers to the Tth period. The CSS

condition can be defined by, e.g.,

max
z={a,b}

max {‖cz(0, ·)− Ps[cz(1, ·)]‖, ‖qz(0, ·)− Ps[qz(1, ·)]‖} < εCSS, (2.14)

where εCSS is a user-specified CSS tolerance. The CSS condition in (2.14) shows that the

concentrations within the SMB unit at the end of a period are almost the same as those at
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2.2 Numerical discretization

the beginning of the next period (the period apart from one column shift). Alternatively,

check whether the output of interest, e.g., the purity of products in two consecutive periods,

are equal.

From the prospect of practical implementations, the automation of SMB chromatography

is far more complex compared to batch chromatography, e.g., the multi-switching proce-

dure is involved in the SMB process, which is difficult to handle. From the prospect of

numerical simulations, the two processes are described by a coupled system of convection-

diffusion equations, and a proper discretization should be employed, as addressed in the

following section.

2.2 Numerical discretization

As mentioned previously, both models are described by a coupled system of convection-

diffusion equations. Moreover, the interesting range of the Péclet number is usually large,

which means that the system is convection dominated, and the solution to the system may

have stiff profiles. We use the finite volume method for the discretization, by which the

conservation property of the underlying systems can be well preserved.

2.2.1 Numerical discretization of the batch chromatographic model

We use the finite volume method to discretize the batch chromatographic model (2.1)−(2.3),

where the Lax–Friedrichs flux [111] is used to solve the convection flux, and the central

difference scheme is applied to evaluate the diffusion flux. For the temporal discretiza-

tion, we use the Crank–Nicolson scheme, which yields a second-order accurate evolution

scheme. Let ∆t and ∆x be the properly chosen temporal step and spatial grid size, respec-

tively. The fully discretized finite volume formulation for the system (2.1) can be written

as follows: Acn+1
z = Bcnz + dnz −

1− ε
ε

∆thnz ,

qn+1
z = qnz + ∆thnz , z = a, b,

(2.15)

where cnz := cnz (µ) = (cz
n
1 , . . . , cz

n
N )T , qnz := qnz (µ) = (qz

n
1 , . . . , qz

n
N )T ∈ RN stand for

the solutions of the field variables cz and qz at time instance tn := n∆t (n = 0, . . . ,K),
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2. Efficient Optimization of Chromatography via Reduced-order Modeling

A,B ∈ RN×N are tridiagonal constant matrices, dnz and hnz are parameter- and time-

dependent,

dnz := dn0e1 ∈ RN , hnz := (hz
n
1 , . . . , hz

n
N )T ∈ RN ,

with dn0 = ∆xPe
(
λ
2 + ν

)
χ[0,tin](t

n), λ = ∆t
∆x , ν = ∆t

Pe∆x2
, e1 = (1, 0, . . . , 0)T ∈ RN ,

and hz
n
j = hz(ca

n
j , cb

n
j , qz

n
j ) = L

Q/(εAc)
κz

(
fz(ca

n
j , cb

n
j )− qznj

)
, j = 1, . . . ,N . Here, the

function fz is defined in (2.2). The parameter µ characterizes the operating conditions,

e.g., µ := (Q, tin).

2.2.2 Numerical discretization of the SMB model

As mentioned earlier, the main dynamics of the fluid flow in all columns in an SMB unit

are the same except for the node balance relations. We first address the discretization of

one chromatographic column and then assemble the systems to obtain the discrete system

for the whole SMB unit.

As done for batch chromatography earlier, we use the same strategy to discrete the SMB

model. That is, we use the finite volume method to discretize the model in the kth column

of the SMB unit (2.4)–(2.7), where the Lax–Friedrichs flux [111] is applied to solve the

convection flux, and the central difference scheme is applied to evaluate the diffusion flux

and the Crank–Nicolson scheme for the temporal discretization.

Let ∆t = 1/K, and tn = n∆t, n ∈ K := {0, 1, . . . ,K} be the K + 1 time instants over

the time interval [0, 1], ∆x = 1/Ñ be the spatial grid size, and cnz,k(µ), qnz,k(µ) ∈ RÑ

be the numerical approximations of the concentrations (cz,k and qz,k, respectively) in

the kth column at time instance t = tn. Note that the time interval [0, 1] is actually a

dimensionless switching period. The fully discretized finite volume formulation for the kth

chromatographic column can be written as

Ak(µ)cn+1
z,k (µ) = Bk(µ)cnz,k(µ) + rnz,k(c

in
z,k(t

n), µ)− 1− ε
ε

∆thnz,k(µ), (2.16)

qn+1
z,k (µ) = qnz,k(µ) + ∆thnz,k(µ) (2.17)

where Ak(µ), Bk(µ) ∈ RÑ×Ñ are tridiagonal matrices,

hnz,k(µ) := fz(c
n
a,k(µ), cnb,k(µ))− qnz,k(µ) ∈ RÑ ,
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is a nonlinear vector-valued function, and

rnz,k(c
in
z,k(t

n), µ) = rz,k(c
in
z,k(t

n), µ)[1, 0, · · · , 0]T ∈ RÑ ,

with

rz,k(c
in
z,k(t

n), µ) :=

(
1 +

Pe

2Ñ

)
ÑQk(µ)ts
εL2Ac

cin
z,k(t

n)∆t ∈ R. (2.18)

The parameter µ characterizes the operating conditions of the underlying SMB process

(e.g., µ = [QI, . . . , QIV, ts]).

It is noteworthy that rnz,k(c
in
z,k(t

n), µ) in (2.16) depends on the information from the con-

nected column, because the inflow of the kth column cin
z,k(t

n) is determined by the outflow

of the (k − 1)th column, k = 2, . . . , Ncol, and cin
z,1(tn) is determined by cz,Ncol

(tn, 1), the

concentration at the outlet of the Ncolth column, as detailed in (2.8)–(2.12) in the previous

subsection. Thus, the system (2.16)–(2.17) are coupled with the systems corresponding

to the other columns. Assembling all the systems, we have the FOM for the SMB unit as

follows:

A(µ)cn+1
z (µ) = B(µ)cnz (µ) + rnz (µ)− 1− ε

ε
∆thnz (µ), (2.19)

qn+1
z (µ) = qnz (µ) + ∆thnz (µ), (2.20)

where

cnz (µ) =


cnz,1(µ)

...

cnz,Ncol
(µ)

 , qnz (µ) =


qnz,1(µ)

...

qnz,Ncol
(µ)

 , hnz (µ) =


hnz,1(µ)

...

hnz,Ncol
(µ)

 ∈ RN ,

A(µ) = diag(A1(µ), . . . , ANcol
(µ)) ∈ RN×N , B(µ) = B̃(µ) + Br(µ) with a block diagonal

matrix B̃(µ) = diag(B1(µ), . . . , BNcol
(µ)) ∈ RN×N and a (fairly) sparse matrix Br(µ)

resulting from separating an auxiliary vector

rnz (cin
z (tn), µ) :=


rnz,1(cin

z,1(tn), µ)
...

rnz,Ncol
(cin
z,Ncol

(tn), µ)

 = Br(µ)cnz (µ) + rnz (µ)

into two parts depending on the definition of rz,k(c
in
z,k(t

n), µ) in (2.18), Br(µ) ∈ RN×N ,

rnz (µ) ∈ RN , and N = Ñ ·Ncol. The first part, Br(µ)cnz (µ), linearly depends on cnz (µ) and

is determined by (2.8)–(2.12). The second part, rnz (µ), only depends on the parameter µ,
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2. Efficient Optimization of Chromatography via Reduced-order Modeling

which leads to an efficient implementation using the ROM, to be introduced in Chapter 6.

Nevertheless, this does not introduce any extra cost for the FOM simulation.

As mentioned earlier, the regime of the SMB is a CSS, which is characterized by an identical

transient concentration profiles during two consecutive switching periods. Mathematically,

given an initial state, the system (2.19)–(2.20) is solved step by step within a switching

period; at the end of a period the state (cKz (µ), qKz (µ)) undergoes a shift, and the shifted

vectors (Psc
K
z (µ), Psq

K
z (µ)) are used as the new initial state to continue the evolution

process until the CSS conditions are satisfied. Here Ps is a permutation matrix. To

determine the condition of the CSS, the following two criteria can be used:

1. check whether the concentrations at the beginning of two consecutive periods are

identical, i.e.,

max
z∈{a,b}

max{‖c0
z(µ)− Psc

K
z (µ)‖, ‖q0

z(µ)− Psq
K
z (µ)‖} < εCSS,

where εCSS is a user-specified tolerance;

2. check whether the outputs of interest, e.g., the purity of products (to be defined in

Chapter 6), in two consecutive periods are equal.

2.3 Optimization of chromatography

The optimal operation of chromatography is of practical importance since it allows to

exploit the full economic potential of the process and reduce the separation cost. During

the past years, many efforts have been made in this area. For optimization of batch chro-

matography, the early work can be found in an extensive review [78] and references therein.

An iterative optimization approach is addressed in [67], and a hierarchical approach on

optimal control for a hybrid batch chromatographic process was developed in [74]. Opti-

mization of SMB chromatography can be found, e.g., in [11, 12, 51, 112, 174, 50, 113, 104,

152, 168, 173]. However, almost all these studies are based on full-order model. Such a

model with a large number of DOFs is able to capture the dynamics of the process, and

the accuracy of the optimal solution obtained from that can be guaranteed. On the other

hand, solving the FOM-based optimization is usually expensive. Thus, we explore the

framework of surrogate-based optimization accelerated by reduced-order modeling. We
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2.3 Optimization of chromatography

will first review three commonly used surrogate model based optimization methods and

then focus on ROM based optimization.

The optimization problem of chromatography can be formulated as follows:

min
µ∈P
{J (u(t, x;µ);µ)} ,

s.t. Ψ (u(t, x;µ);µ) ≤ 0,

Φ (u(t, x;µ);µ) = 0,

(2.21)

where J is the objective function, Ψ defines the inequality constraints. The field variable

u(t, x;µ) is the solution to the underlying parameterized PDEs Φ(u(t, x;µ);µ) = 0, and the

optimal variable µ is composed of the operating conditions. In this particular applications,

J refers to the productivity or the throughput, Ψ refers to certain process constraints, Φ(·)
refers to the systems (2.1)–(2.3) for batch chromatography, and the systems (2.4)–(2.1.2)

for SMB chromatography, respectively. Details will be given in Chapter 6.

2.3.1 High-fidelity model based optimization

In practical computation, the PDEs are usually discretized such that the optimization

problem in (2.21) is replaced by an optimization problem in finite dimensions:

min
µ∈P

{
J̃ (uN (t;µ);µ)

}
,

s.t. Ψ̃
(
uN (t;µ);µ

)
≤ 0,

Φ̃
(
uN (t;µ);µ

)
= 0,

(2.22)

where uN := uN (t;µ) ∈ RN is the solution to the discretized system of equations

Φ̃
(
uN (t;µ);µ

)
= 0, and J̃ , Ψ̃, and Φ̃ are the operators in the finite dimensional vec-

tor space corresponding to J ,Ψ, and Φ, respectively. The discretized equations are often

of large scale and complex. At each iteration of the optimization process, such a large-

scale complex system of equations must be solved at least once to compute the objective

and/or constraints. Actually, many studies on optimization of chromatography as men-

tioned earlier are based on the finely discretized FOM. Such a model with a large number

of DOFs is able to capture the dynamics of the process, and the accuracy of the optimal

solution obtained from that can be guaranteed. However, the expensive FOM must be

repeatedly solved in the optimization process, which makes the runtime for obtaining the
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2. Efficient Optimization of Chromatography via Reduced-order Modeling

optimal solution rather too long. To accelerate the underlying optimization, a surrogate

ROM has been employed to replace the original large-scale discretized system for a rapid

evaluation of the vector uN .

2.3.2 Surrogate model based optimization

The optimization with constraints including partial differential equations (PDE constrained

optimization, for short), has emerged as a challenging research area in the last decades.

It has arisen from various contexts, such as optimal design, control, and parameter esti-

mation. Over the past years, besides the increasing progress of the computing hardware,

many attempts have been made to develop efficient algorithms and strategies for solving

such optimization problems; see, e.g., [29, 30, 93] and references therein. To accelerate

an optimization process, the use of surrogate models has been gained increasing popular-

ity during the past decades [1, 2, 18, 28, 186]. Roughly speaking, three kinds of models

are often used as surrogate models: data fits, lower-fidelity models, and reduced-order

models [55, 56].

Data fit type surrogate models, e.g., Kriging models and models using radial basis func-

tions, are constructed via interpolation or regression of a set of input-output statistic quan-

tities from the original model [139, 169]. The physics of the original system are entirely

ignored in the construction of the surrogate such that the data fit surrogate models are

considered as nonphysical-based approximations. As a result, it may cause unacceptable

approximation errors when the physics of the system are strongly input-dependent [40].

Lower-fidelity models are derived from high-fidelity models by using such as coarser dis-

cretization grids (in space and/or time), relaxed solver tolerance, or by neglecting physics

from the original models. They are physic-based surrogates because the main physics are

still kept, unlike the data fit models. Moreover, it is very easy to generate the surrogate

based on the high-fidelity model. However, the speedup by using the lower-fidelity surro-

gate is usually moderate, though it is cheaper than the original one [112]. With no doubt,

aggressively neglecting physics or coarsening the grid often results in poor quality of the

approximation.

Reduced-order models are constructed based on the high-fidelity models via various MOR

methods, and ROM-based optimization has been extensively studied by mathematicians
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2.3 Optimization of chromatography

and engineers [5, 8, 48, 58, 186]. Although the construction of ROMs can be fairly intensive,

the speedup is usually significant, and the main characteristics of the original system can

still be retained by the ROMs. Some comparisons between the aforementioned surrogate

models for a statistical inverse problem can be found in [64], and a general discussion on

these surrogate models can be found in [26].

Concerning the complex dynamics and nonlinearity involved in the chromatographic pro-

cess, we pursue reduced-order modeling for batch and SMB chromatography in this thesis.

Till now, applications of (P)MOR to chromatography are very limited in the literature. A

POD method is employed for reduced-order modeling of a nonlinear SMB model in [112],

and a Krylov subspace MOR method is applied to a linear SMB model in [114]. Neverthe-

less, these two methods are non-parametric MOR methods. It means that the resulting

ROMs are accurate only locally, i.e., it is reliable only in the neighborhood of the param-

eter at which the ROM is constructed. Usually, the ROM needs to be updated during the

optimization process.

In the following chapters, we will show the idea of (P)MOR methods and how the methods

are applied to chromatographic models. Our goal is to use PMOR to construct a single

ROM that meets the accuracy requirements over a wide range of the parameter domain.

Given any feasible parameter, the output response can be rapidly obtained based on the

ROM. As a result, when the FOM is replaced by the ROM during the optimization process,

the optimal solution can be obtained within significantly reduced runtime.
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Chapter 3

Model Order Reduction
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In this chapter, we address the methodology of MOR. We begin with a brief review of

(P)MOR in general and then focus on the RBM for parameterized nonlinear evolution

problems. For parametric systems, the construction of a ROM and the simulation based

on the ROM are often realized by the strategy of offline-online decomposition, as mentioned

in Section 1.2. For efficient offline-online computations, techniques for dealing with the

nonlinearity and/or nonaffinity are discussed. In particular, the empirical interpolation
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3.1 Review of (P)MOR methods

method is reviewed in detail. Different basis construction methods are discussed. Finally,

the offline-online decomposition technique is summarized. Parts of the contents in this

chapter were originally presented in [188, 189].

3.1 Review of (P)MOR methods

(P)MOR has been proved to be a useful tool in handling large-scale computations. As

mentioned in Chapter 1, various (P)MOR methods have been developed over the past

years. In this section, we give a compact review of these commonly used (P)MOR meth-

ods. For conciseness, we show the basic idea and the main features of these methods.

We introduce the method adopted in this thesis to deal with the motivating examples

introduced in Chapter 2. Moreover, we also point out some typical issues on which we

aim to focus in the following chapters.

Roughly speaking, (P)MOR can be classified into frequency-domain methods and time-

domain methods. The former include BT methods and Krylov subspace methods. The

latter mainly refer to the time-domain snapshot-based MOR methods, e.g., POD methods

and RBMs.

3.1.1 Projection framework of MOR

To illustrate the basic idea of MOR, we consider a special case of (1.3), a non-parametric

linear time-invariant (LTI) system,

Eu̇(t) = Au(t) +Bp(t), (3.1)

y(t) = Cu(t), (3.2)

where E,A ∈ RN×N , B ∈ RN×nI , C ∈ RnO×N are constant matrices, u(t) ∈ RN is

the state vector, p(t) ∈ RnI is the input, and y(t) ∈ RnO is the output. Often, N , the

order of the LTI system, is very large, and nI, nO � N . The fundamental observation

is that the solution to the LTI system often resides in a (relatively) low dimensional

subspace of RN . MOR aims at constructing a ROM that can reproduce the main input-

output characteristics of the original system in (3.1)–(3.2). For all projection-based MOR
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methods,1 a right projection (reduced basis) matrix V ∈ RN×N , whose columns span a

basis of the subspace where u can be well represented, is computed. A left projection

matrix W ∈ RN×N is constructed based on proper approximation principles. The ROM

is obtained by using the approximation u(t) ≈ û(t) := V ur(t) and employing Petrov–

Galerkin projection with W ,

Êu̇r(t) = Âur(t) + B̂p(t), (3.3)

ŷ(t) = Ĉur(t), (3.4)

where Ê = W TEV ∈ RN×N , Â = W TAV ∈ RN×N , B̂ = W TB ∈ RN×nI , Ĉ = CV ∈
RnO×N are the reduced matrices, ur(t) ∈ RN is the reduced state vector, and N � N . In

contrast to the FOM in (3.1)–(3.2), the ROM in (3.3)–(3.4) is much cheaper to solve so

that the state vector u(t) and the output y(t) can be rapidly recovered by û(t) and ŷ(t),

respectively. Various MOR methods have been developed during the past years, and they

differ in the construction of the projection matrices V and W .

3.1.2 Frequency-domain MOR methods

At first, we introduce the transfer function of the system (3.1)–(3.2), which plays crucial

roles in the frequency-domain methods. Let U(s), P (s), and Y (s) be the Laplace trans-

forms of u(t), p(t), and y(t), respectively. Assuming u(0) = 0, the LTI system (3.1)–(3.2)

(in the time domain) is transferred to an algebraic system of equations (in the frequency

domain) as below:

sE U(s) = AU(s) +BP (s), (3.5)

Y (s) = CU(s). (3.6)

The transfer function H(s) is defined as

H(s) = Y (s)/P (s) = C(sE −A)−1B. (3.7)

It is worth noting that the transfer function characterizes the relationship between the

output (Y (s)) and the input (P (s)) in the frequency domain. Accordingly, the transfer

1For problems that are not explicitly described by a system of equations and the only access to the

dynamics is via input/output measurements, non-projection MOR methods have been developed; see,

e.g., [99, 110]. It is beyond the scope of this thesis.
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function for the ROM is

Ĥ(s) = Ĉ(sÊ − Â)−1B̂. (3.8)

Moreover, the error between the transfer function of the FOM and that of the ROM,

‖H(·)− Ĥ(·)‖, (3.9)

is typically used to measure the accuracy of the ROM by frequency-domain MOR methods.

Balanced truncation methods

In the systems and control theory community, balanced truncation (BT) [125] is one of

the most popular techniques for approximating linear dynamical systems. BT seeks for

a state representation of the original system such that the representative states are both

well controllable and well observable, meanwhile, those states that are least controllable

and least observable are truncated. To this end, the starting point of the BT method is

to quantify the controllability and observability of the states u(t) ∈ RN . Usually, two

associated generalized Lyapunov equations

APET + EPAT +BBT = 0, (3.10)

ATQE + ETQA+ CTC = 0, (3.11)

need to be solved to determine the so-called controllability Gramian P and observability

Gramian Q, based on which the reduced-order system can be derived. For example, given

the Cholesky factorizations P = ZPZ
T
P and Q = ZQZ

T
Q, let

ZTPZQ = [Z1 Z2]

[
Σ1 0

0 Σ2

][
Y T

1

Y T
2

]
=: ZΣY T , (3.12)

be an SVD of ZTPZQ with Σ1 = diag(σ1, . . . , σN ), σN � σN+1, N < N . Then, the matrices

V and W can be formulated as follows:

V = ZPZ1Σ−1/2, W = ZQY1Σ−1/2 ∈ RN×N . (3.13)

Note that the diagonals of Σ, σ1, σ2, . . . , σN , are the Hankel singular values (HSVs), which

play important roles in BT, because they provide a measure of controllability and observ-

ability for each state in the system [125]. The states corresponding to the smallest HSVs

are least controllable and observable. Thus, these states could be ignored. In fact, con-

structing a ROM by retaining the states corresponding to the largest HSVs yields not only
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a balanced truncation but also a global error bound between the transfer function of the

ROM and that of the FOM [9, 68], i.e.,

‖H − Ĥ‖H∞ ≤ 2(σN+1 + · · ·+ σN ), (3.14)

where N is the order of the ROM, and σN+1, . . . , σN are the neglected HSVs. The H-∞
norm ‖ · ‖H∞ is defined by

‖H‖H∞ = sup
ω∈R

σmax(H(ω)),

where  =
√
−1 and σmax(H(ω)) is the largest singular value of the matrix H(ω).

The computable global error bound in (3.14) allows an adaptive selection of the order

of the ROM according to a user-specified error tolerance, which is an advantage of the BT

method. Another advantage is that asymptotic stability is preserved by the reduced-order

system.

As mentioned previously, the BT method relies on solving the associated (generalized)

Lyapunov equations in (3.10)–(3.11) to construct the ROM, which is usually a computa-

tional bottleneck of this method. In fact, the computational cost of solving a (generalized)

Lyapunov equation increases exponentially with respect to the order of the original system.

At present, using efficient algorithms on advanced computers, really large-scale (general-

ized) Lyapunov equations can be solved within a reasonable amount of time [19]. The BT

method has been extended to solve descriptor systems (i.e., E in (3.1) is singular); see,

e.g., [89, 123, 155]. BT used in the framework of PMOR can be found in [20, 26].

Krylov subspace methods

To show the basic idea of Krylov subspace methods, we first recall two basic concepts

in linear algebra, namely, Krylov subspace and block Krylov subspace. Given a matrix

L ∈ CN×N and a vector r ∈ CN , the Krylov subspace Kj(L, r) is defined as

Kj(L, r) = span {r, Lr, L2, . . . , Lj−1r}. (3.15)

Here, the integer j is called the order of the Krylov subspace. The block Krylov subspace

Kj(L,R) is defined as

Kj(L,R) = span {R,LR,L2R, . . . , Lj−1R}. (3.16)
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where R = [r1, . . . , rk] ∈ CN×k has more than one columns. Note that the dimension of

the Krylov subspace Kj(L,R) can be smaller than the number of the column vectors, i.e.,

k · j.

We now expand the transfer function defined in (3.7) at an expansion point s0 as follows:

H(s) = C[(s− s0 + s0)E −A]−1B

= C[(s0E −A) + (s− s0)E]−1B

= C[I + (s− s0)(s0E −A)−1E]−1(s0E −A)−1B

=
∞∑
i=0

C[−(s0E −A)−1E]i(s0E −A)−1B︸ ︷︷ ︸
=:mi(s0)

(s− s0)i.

(3.17)

Here, mi(s0) is called the ith moment of the transfer function about s0, i = 0, 1, . . . . In

particular, for s = ∞, the moments are also called Markov parameters, which can be

computed by C(E−1A)j−1E−1B [19].

The projection matrices V and W are computed from the vectors associated with the

moments, e.g.,

range(V ) = colspan{B̃(s0), ÃB(s0)B̃(s0), . . . , (ÃB(s0))j−1B̃(s0)} =: Kj(ÃB(s0), B̃(s0)),

range(W ) = colspan{C̃(s0), ÃC(s0)C̃(s0), . . . , (ÃC(s0))j−1C̃(s0)} =: Kj(ÃC(s0), C̃(s0)),

where

ÃB(s0) = (A− s0E)−1E, B̃(s0) = (A− s0E)−1B,

ÃC(s0) = (A− s0E)−TET , C̃(s0) = (A− s0E)−TCT ,

and j � N [73]. That is, V and W are taken as the basis vectors of the Krylov sub-

spaces Kj(ÃB(s0), B̃(s0)) and Kj(ÃC(s0), C̃(s0)), respectively. Note that this process

can be efficiently implemented by the Arnoldi algorithm or the Lanczos procedure [65].

Krylov subspace methods construct ROMs in such a way that first moments of the trans-

fer function H(s) are matched by those of the transfer function Ĥ(s) of the ROM, i.e.,

mi(s0) = m̂i(s0), i = 0, . . . , 2j − 1 [73].

The ROM constructed via moment-matching methods with a single expansion point is

reliable only locally. In fact, using a single expansion point, the accuracy of the resulting

ROM depends on the order of the Krylov subspace adopted in the construction of the
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projection matrices. To improve the accuracy of the approximation over a wide range

of parameter values, multi-point moment-matching methods, also called rational Krylov

methods, have been developed [19].

Note that the Krylov subspace methods can usually be efficiently implemented for large-

scale sparse systems in MEMS simulations and integrated circuit design applications.

However, stability cannot be preserved by the ROM in general. In [135], it has been proved

that stability can be preserved when the system matrices satisfy certain conditions, see

also [63]. A drawback of the Krylov subspace methods is that the a priori global error

bound is not generally available, though much progress has been made in recent years; see,

e.g., [14, 138, 137]. More recently, some a posteriori error bounds are proposed for (non-

)parametric linear systems [24, 62]. For more details about Krylov subspace methods, e.g.,

the theoretical analysis and applications, please refer to [9, 14, 19, 63, 65, 73].

3.1.3 Time-domain MOR methods

The time-domain methods discussed here mainly refer to snapshot-based MOR methods,

namely, POD methods and RBMs. These methods construct the projection matrices

through extracting information from the snapshots in the time domain. The snapshots

are taken from the solutions of the FOM at different parameter samples and/or different

time instances (for time-dependent problems). Thus, these methods can start with a semi-

discretized system (1.1) or a fully discretized system (1.2). Moreover, in the time-domain

MOR methods, the accuracy of the resulting ROM is usually measured by, e.g., the error

of the field variable ‖u− û‖ or that for the output ‖y − ŷ‖.

Proper orthogonal decomposition

The proper orthogonal decomposition (POD) is a well-established tool for data analysis

and data compression and is often used to construct an orthogonal basis (called POD basis)

for MOR of linear and nonlinear dynamical systems. POD was introduced for the analysis

of turbulence by Lumley in [117] and is also known as the principle component analysis

in statistical analysis [96, 102], the Karhunen-Loève expansion in stochastic process mod-

eling [107, 115], and empirical orthogonal eigenfunctions in atmospheric modeling [134].

The POD basis vectors are computed from the snapshots, which can be obtained form
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the simulation of the FOM. Let {u1, . . . , uns} ⊂ RN be a set of snapshots, which are the

solutions to the underlying system at different parameter samples and/or different time

instances. POD is closely related to SVD of rectangular matrices in a finite-dimensional

space. To compute a POD basis, define the snapshot matrix U ∈ RN×ns whose jth column

is the snapshot uj , i.e., U = [u1, . . . , uns ]. The POD basis vectors can be obtained via an

SVD of the snapshot matrix U . Assume that an SVD of U is written as

U = QΣY T , (3.18)

where the columns of Q ∈ RN×N and Y ∈ Rns×ns are the left and right singular vec-

tors of U , respectively, Σ ∈ RN×ns is a rectangular diagonal matrix with non-negative

real numbers on the diagonal. Let nmin = min(N , ns), and the diagonal entries σi

(i = 1, 2, . . . , nmin) of Σ are called the singular values of the matrix U . Note that Q

and Y are orthogonal matrices, i.e., QTQ = IN and Y TY = Ins . Here, Im refers to the

identity matrix in Rm×m, m = N , ns. The matrix V of the POD basis with dimension k

is defined as the k left singular vectors corresponding to the leading k singular values.

The number of the POD basis vectors, k, is typically chosen as the smallest integer such

that ∑nmin
j=k+1 σ

2
j∑nmin

j=1 σ2
j

≤ εPOD, (3.19)

where εPOD is a user-specified tolerance, usually taken as 0.1% or smaller. In applications

to fluid dynamics, the dominant POD basis vectors correspond to the most energetic

flow modes in the system. The POD basis with dimension determined by (3.19) is often

interpreted as that it captures 100(1 − εPOD)% “energy” of the original system. It has

been widely used for linear and nonlinear problems in various applications.

Note that the POD basis has the following interesting properties:

• The POD basis is not unique, due to the non-uniqueness of the SVD of a matrix.

• The POD basis V with dimension k is “optimal” in the sense that it minimizes the

least square error of the reconstructed approximation of the snapshots. That is, for any k

dimensional basis Z ∈ RN×k, we have

min
Z∈RN×k

‖U − ZZTU‖2F = ‖U − V V TU‖2F =

ns∑
j=1

‖uj − V V Tuj‖22 =

nmin∑
j=k+1

σ2
j . (3.20)
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Here ‖ · ‖F is the Frobenius norm of a matrix. It is noteworthy that the optimal ap-

proximation (V V Tuj) for the snapshot uj in (3.20) does not guarantee that the reduced

approximation û := V ur is optimal, where ur is obtained from the ROM based on the

POD basis V [38]. Therefore, the error expression in (3.20) does not applied to the

resulting ROM and yields no direct information regarding the accuracy of the reduced

approximation û.

As pointed out in [44], when the spatial dimension N of the discretization is much larger

than the number of snapshots ns, i.e., N � ns, it may not be efficient to apply SVD

directly on U . Instead, the eigenvalue decomposition of smaller matrix UTU ∈ Rns×ns

can be employed to efficiently compute the POD basis. In addition, several methods for

computing a POD basis are summarized in [40]. On the other hand, if the number of

snapshots is much larger than the spatial dimension N , i.e., ns � N , then it is costly to

compute the POD basis based on the snapshot matrix U . This may happen when a very

large number of time steps are needed to capture the dynamics. In such a case, there are a

lot of redundant and linearly dependent information in the trajectory. The ASS technique

can be employed as a preprocessing to filter out many redundant vectors from the original

snapshot candidates, which will be further addressed in Chapter 5.

It should be pointed out that using the standard POD (i.e., projecting the original large-

scale system onto the subspace spanned by the POD basis) alone for nonlinear problems

may not yield vast reduction, because the complexity and the computational cost of the

nonlinear terms cannot be reduced by projection. Further reduction techniques, like the

(discrete) empirical interpolation method [17, 43] (to be further addressed in Section 3.4)

can be combined to produce more efficient ROMs. In addition, POD is more often used

for problems with no parameter dependence, though it has extended to parametric sys-

tems [46, 79, 142, 143]. For parametric systems, the RBM has gained increasing popularity,

which is addressed as follows.

Reduced basis method (RBM)

The RBM is a useful PMOR method for parameterized PDEs, and it is implemented in

the time domain. Here, we give a compact review of the development of the RBM and

highlight its main features. We show the framework of RBMs for parameterized nonlinear

evolution equations in detail in Section 3.2.
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The RBM was introduced in the late of 1970s for nonlinear structural analysis [3, 133], and

then it was further extended to various applications such as the incompressible Navier-

Stokes equations in fluid dynamics [100, 144]. In particular, the last decade has wit-

nessed tremendous development of the RBM for problems described by parameterized

PDEs. The RBM has been developed for linear elliptic coercive and non-coercive equa-

tions [90, 91, 97, 140, 147, 158, 178], linear parabolic equations [72, 69, 85], quadratically

nonlinear elliptic or parabolic equations [70, 106, 132, 176, 177, 187, 188], and nonlin-

ear hyperbolic equations [47, 84]. Like the POD method discussed earlier, the RBM is

also a snapshot-based MOR method, i.e., the RB is built upon the snapshots. In fact,

most of the applications mentioned earlier are based on the Lagrange approach, i.e., only

the snapshots are used to construct the basis. Nevertheless, one may also consider the

Taylor [133, 146] or the Hermite [100] approach. In the Taylor approach, the basis is

computed based on the snapshot (solution) and its N derivatives w.r.t. the parameter at

a certain parameter value, while in the Hermite approach, the basis is computed based on

the snapshots and their first derivatives w.r.t. the parameter at several parameter values.

Along with the remarkable development during the past years, the following three aspects

are emphasized in the RBM:

(i) efficient a posteriori error estimation for the output or the field variable, which is

used to guide the parameter sampling during the basis extension process and to

quantify the ROM for any given parameter online;

(ii) parameter sampling technique, which is crucial for effectively collecting system in-

formation over a wide range of parameters to construct an “optimal” RB in an

affordable amount of time, especially for problems with high dimension of the pa-

rameter space;

(iii) offline-online decomposition, which decouples the construction of a ROM and the

simulation based on the ROM. This permits a large upfront process of precomputa-

tion in the offline stage to build a simulation-efficient ROM, which is used to obtain

a rapid response for any given input parameter in the online stage.

Note that in the RBM, the RB is usually constructed iteratively via a greedy algo-

rithm [178]. When a sharp error bound or the true error is used in the greedy algorithm,

the dimension of the RB can be kept as small as possible for a given error tolerance for the
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ROM. As mentioned in Chapter 1, the output error bound for nonlinear time-dependent

problems is less explored; see, e.g., [49, 132]. This motivates us to derive some efficient

error bounds for these problems, which will be further addressed in Chapter 4.

It should also be pointed out that the offline computation can be fairly expensive because

many repeated runs have to be done based on the (large-scale) FOM. To reduce the offline

cost, we will introduce two accelerating techniques in Chapter 5. Although the RBM is

often formulated in functional space or in weak formulation of a PDE, e.g., in the finite

element space [140], it can also be derived algebraically [149, 148]. We will show the RBM

in the vector space for parameterized nonlinear evolution equations in the next section.

The RBM is widely used in heat transfer, fluid dynamics, solid mechanics, electromagnet-

ics, chemical engineering, even finance, etc. Nowadays, the RBM has become an important

tool to solve parameterized PDEs. The RBM is built upon the traditional numerical dis-

cretization methods, e.g., the finite element method, the finite volume method, or the

finite difference method. Usually, it is measured against those methods in the following

sense: (a) the RB is actually built by the snapshots, which are the simulation data from

the FOM obtained from one of those discretization methods; and (b) the RB solution

does not directly approximate the exact (analytical) solution of the PDE, but a faithful

numerical solution. This also applies to the POD method. For more details about the

RBM and a posteriori error estimation, we refer to [81, 140, 150, 148].

3.1.4 A brief comparison

BT and Krylov subspace methods are initially devised for LTI systems arising from systems

and control theory or circuit simulation. Both methods are usually implemented in the

frequency domain, while POD and RBMs are implemented in the time domain. It should

be noted that POD can also be implemented in the frequency domain [105, 160, 181]. A

time-domain Krylov subspace based MOR method is presented in [54]. BT and Krylov

subspace methods have been extended to linear time-varying systems and/or weakly non-

linear problems. In short, two main strategies were proposed to deal with the nonlinearity

in the original system, i.e., approximation of the nonlinear function by polynomials of

low degree [15, 145, 156, 157], and transformation of the original system into a quadratic

bilinear system [23, 75, 76]. In addition, BT and Krylov subspace methods have also been
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extended to parametric systems [26]. For a systematic discussion on the two frequency-

domain methods, we refer to recent reviews in [19, 63].

POD and the RBM are widely applied to linear and nonlinear problems in a broad variety

of applications. There are slight differences between POD and the RBM, though both

are snapshot-based methods and implemented in the time domain. It is more often that

POD is used for problems with no parameter dependence, although POD has been used

in the parameter domain [35, 118] and has also been extended to problems that depend

on both time and parameters [46, 79]. Moreover, the error measured in the two methods

are different. POD aims at minimizing the SVD approximation error, as shown in (3.20),

while the RBM aims at minimizing the reduced approximation error through a greedy

algorithm [81], as will be further addressed in Section 3.3.

As mentioned earlier, both POD and RBMs are snapshot-based methods. This means

that simulation based on the FOM needs to be performed, possibly at many parameter

samples, to construct the ROM, which may result in intensive offline computations. By

contrast, the frequency-domain MOR methods discussed earlier do not need to solve the

FOM in the time domain to construct the ROM. As a consequence, the frequency-domain

MOR methods are independent of the input p(t), which commonly exists in the models

from circuit or MEMS design. Nevertheless, the time-domain MOR methods are highly

dependent on the input, and thus representative training inputs must be carefully selected

to generate the snapshots. However, many systems from applications have only constant

inputs, e.g., some from chemical engineering, which can easily exempt from selecting the

training inputs.

To sum up, the study of MOR for linear, non-parametric problems has reached a consid-

erable level of maturity, reflected by many survey papers and books [9, 10, 22, 19, 26, 27,

140, 149, 167]. However, MOR for parametric dynamical systems from many applications

has attracted increasing attention. In these applications, the parametric system needs to

be simulated many times, and the computation should be done preferably in a limited

amount of time. Therefore, a ROM that is reliable over a wide range of parameter values

is desired. This drives the development of PMOR methods.

Concerning the motivating examples introduced in Chapter 2, which are described by

parameterized time-dependent nonlinear PDEs, we choose the RBM as a tool to handle

the large-scale computations. In the next section, We will show the RBM in the vector
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space for a fully discrete system resulting from parameterized nonlinear evolution equations

and highlight some issues to be addressed in the following chapters.

3.2 PMOR for parameterized evolution equations via the RBM

In this section, we consider a class of evolution equations exemplified by the models intro-

duced in Chapter 2. We show the construction of the ROM, the idea of PMOR based on

projection and the issue of simulating the ROM.

3.2.1 Parametric nonlinear systems

We now consider a class of problems described by a parameterized evolution equations as

follows:

∂tu(t, x;µ) + L(µ)[u(t, x;µ)] = 0, t ∈ (0, T ], x ∈ Ω ⊂ Rd, µ ∈ P ⊂ Rp, (3.21)

where L(µ)[·] is a spatial differential operator. This is a general expression of an evolution

equation, e.g., the time-dependent convection-diffusion equation in (2.4). For discretiza-

tion, let 0 = t0 < t1 < · · · < tK = T be K + 1 time instants over the time interval [0, T ],

andWN ⊂ L2(Ω) be an N -dimensional discrete space in which an approximate numerical

solution to (3.21) is sought. Given µ ∈ P with suitable initial and boundary conditions,

the numerical solution un(µ) at time t = tn can be obtained by using suitable numerical

methods, e.g., the finite volume method. Assume that un(µ) ∈ WN satisfies the fully

discrete form

A(n)
µ un+1(µ) = B(n)

µ un(µ) + g(un(µ);µ), (3.22)

where A
(n)
µ , B

(n)
µ ∈ RN×N are the coefficient matrices at the time instance tn, and g(·;µ) is

a nonlinear operator with respect to (w.r.t.) un(µ) and/or nonaffine w.r.t. the parameter

µ. The superscript (n) and the subscript µ in A
(n)
µ and B

(n)
µ indicate the dependence on

time and the parameter, respectively. The dimension N is usually large, implying that

the numerical solution un(µ) is a faithful approximation and is often called the “true”

solution. The resulting large-scale system in (3.22) is considered as a FOM. Often, the

output

yn(µ) = l(un(µ)), (3.23)
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is the quantity of interest.

Solving such a FOM repeatedly under parameter variations is time-consuming or even

prohibitively costly in many-query contexts such as optimization, design, real-time control,

and UQ.

3.2.2 Framework of PMOR

In many applications, it is observed that the solution to the parametric systems, u(µ),

resides in a lower dimensional subspace VN ⊂ WN , i.e., u(µ) can be well approximated by

a properly chosen basis of the subspace. Similarly to the framework of (non-parametric)

MOR presented Section 3.1.1, the idea of PMOR methods is that the underlying system

of equations are projected onto a subspace spanned by a small number of properly cho-

sen basis vectors via Petrov–Galerkin projection. Let V,W ∈ RN×N be the projection

matrices, and ûn(µ) := V unr (µ) be the approximation of un(µ). The ROM

Â(n)
µ un+1

r (µ) = B̂(n)
µ unr (µ) +W T g(V unr (µ);µ) (3.24)

that preserves the parameter µ as a symbol, should be sufficiently accurate for the vari-

ations of µ in the whole parameter domain. Here Â
(n)
µ = W TA

(n)
µ V ∈ RN×N , B̂

(n)
µ =

W TB
(n)
µ V ∈ RN×N are the reduced matrices, and unr (µ) ∈ RN is the vector of unknowns

of the ROM.

Note that the ROM in (3.24) is derived using linear algebraic tools in a finite-dimensional

vector space. It is also possible to formulate the ROM in a functional space using varia-

tional principle [69, 140, 147]. Since practical computations will be done in the discrete

space, we will stick to the description of MOR in the vector space throughout this the-

sis. All the theories derived in this thesis are independent of the spatial discretization

employed for the FOM.

Notably, the number of DOFs of the ROM in (3.24) is usually much smaller than that of

the FOM in (3.22), i.e., N � N . The goal of PMOR is that the ROM is much cheaper

to solve compared to the FOM for any parameter µ. This is not necessarily achieved by

(3.24); it is required that the evaluation of Â
(n)
µ , B̂

(n)
µ and W T g(V unr (µ);µ) is done without

resorting to the full dimension N . For this, additional techniques may be necessary, as

described in the following.
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3.2.3 Simulation of the ROM

As mentioned earlier, the goal of PMOR is to provide a fast simulation stage, where for

any given parameter µ the output response can be obtained rapidly based on the ROM.

Particularly, in the RBM, an offline-online decomposition strategy is often employed to

achieve this goal. In short, assume that the matrices A
(n)
µ and B

(n)
µ in (3.22) can be written

in a separable way, the so-called affine form, i.e.,

A(n)
µ =

na∑
j=1

ξnµ,jAj , B(n)
µ =

nb∑
k=1

ζnµ,kBk, (3.25)

where Aj , Bk are constant matrices, and ξnµ,j , ζ
n
µ,k are the corresponding parameter- and

time-dependent scalar coefficients. Note that the numbers na and nb are desired to be

small. Then

Â(n)
µ = W TA(n)

µ V =

na∑
j=1

ξnµ,jÂj , B̂(n)
µ = W TB(n)

µ V =

nb∑
k=1

ζnµ,kB̂k, (3.26)

where Âj = W TAjV ∈ RN×N and B̂k = W TBkV ∈ RN×N , j = 1, . . . , na, k = 1, . . . , nb.

Note that once the projection matrices V and W are obtained, Âj and B̂k can be pre-

computed, and in turn the evaluations of Â
(n)
µ and B̂

(n)
µ at µ are independent of the full

dimension N . However, the computation of the last term of (3.24), W T g(V unr (µ);µ),

cannot be done analogously because of the nonlinearity or non-affinity of g. To achieve an

efficient offline-online computation, a certain technique of interpolatory approximation can

be applied, e.g., the empirical interpolation method (EIM) [17], the discrete empirical in-

terpolation method (DEIM) [43], and the empirical operator interpolation method [87, 49].

In what follows, we briefly address the idea of EIM and discuss it in detail in Section 3.4.

To conduct an interpolatory approximation for the nonlinear part g(ûn(µ), µ) in (3.24),

a parameter-independent basis G ∈ RN×M (M � N ) is usually precomputed based on

snapshots of the nonlinear function evaluations at a set of properly selected parameter

samples. Then an affine approximation is defined by the interpolation operator IM :

RN → RN , i.e.,

g(ûn(µ);µ) ≈ IM [g(ûn(µ);µ)] := Gβn(µ),

where βn(µ) := β(unr (µ);µ) ∈ RM is the corresponding vector of coefficients. The co-

efficient vector βn(µ) can be determined, e.g., by the interpolation condition that ĝn(µ)
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interpolates g(ûn(µ);µ) at a set of properly selected components. As a result, a low

dimensional ROM is obtained as

Â(n)
µ un+1

r (µ) = B̂(n)
µ unr (µ) + Ĝβn(µ), (3.27)

where Ĝ = W TG is precomputed. Given any feasible parameter value, the output response

can be obtained rapidly because the computation is independent of the dimension N of

the original FOM.

It is worth noting that the affine assumption in the coefficient matrices A
(n)
µ and B

(n)
µ

in (3.22) can be relaxed for more general problems. That is, if the coefficient matrices

have nonaffine parameter dependence, one can use certain approximation strategy to avoid

costly N -dependent evaluations in forming the reduced matrices. Please refer to [26, 128]

for more details.

Now the question is how to compute the projection matrices V andW and the interpolation

basis G, which is one of the key issues of PMOR. Recall that we formulate the ROM in

(3.24) using Petrov–Galerkin projection, which is also called two-side projection, since V

and W are different. In practice, Galerkin projection is often employed to construct the

ROM, i.e., W = V , especially for elliptic problems. The reason is that the coefficient

matrix, say, A, for simplicity, is symmetric positive definite for elliptic equations, and

Galerkin projection can ensure the stability of the ROM. On the other hand, for parabolic

or hyperbolic equations, Galerkin projection method is also practically employed for the

sake of simplicity, as will be implemented in this thesis, although the stability cannot be

guaranteed in general. Actually, the stability issue of the ROM is, in general, still an open

problem, though many studies have been made and some strategies have been suggested to

prevent producing unstable ROMs for certain problems [4, 16, 59, 91, 136, 154, 163, 183].

It is worth noting that for some time-independent problems in the form of A(µ)u = b(µ),

a Petrov–Galerkin projection method, which is also called the least-square projection, i.e.,

W = AV , has been employed [37, 91, 148, 165] to ensure the stability of the ROM.

In the RBM, the projection matrix V is also called the RB matrix, since the column vectors

of V form a basis of the reduced subspace. Thus, we sometimes use RB matrix to refer

to the projection matrix V in the following. Next, we first address the construction of the

RB (matrix), and then discuss the generation of the interpolation basis for the nonlinear

and/or nonaffine terms.
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3.3 Construction of reduced basis

Construction of RB is one of the key issues for projection-based MOR, and various methods

have been proposed in the past years. In this section, we mainly discuss the construction

methods commonly used in the RBM.

For parametric systems, the RB is usually built iteratively through a greedy algorithm. In

the following subsections, we first discuss the greedy algorithm, which can be used in gen-

eral for basis construction, especially for PMOR methods. Then, we show a combination

of the greedy algorithm and a POD procedure, namely, the POD-Greedy algorithm [85],

which has been proved to be a very successful method for basis construction for parameter-

and time-dependent problems.

3.3.1 Greedy algorithm

A greedy algorithm is a general procedure for solving complex and multi-step problems

by making a locally optimal choice at each step in the hope that this choice will lead to

a global optimal solution. It is widely used in various applications. In [178], the greedy

algorithm was adopted to construct the RB in the RBM. Since then, this algorithm be-

comes very popular for recursively constructing RB in PMOR, especially in the RBM. Re-

cently, it is also employed by other MOR methods, e.g., the multi-point moment-matching

method [62], where the greedy algorithm is applied to choose the proper expansion points.

We now show the construction of the RB matrix V using a greedy algorithm. Generally,

a training set Ptrain with a finite number of parameter samples is chosen a priori as a

surrogate of the admissible parameter space. Assume that ψN (·) is an error indicator for an

approximation by the current RB with dimension N . At each extension step, a parameter

µ?, which causes the largest error measured by the error indicator ψN (·), is chosen from

Ptrain to enrich the RB. This process continues until the accuracy requirement is satisfied,

i.e., the error indicator goes below the user-specified error tolerance. In practice, we may

also specify an integer Nmax as the maximal number of basis vectors to stop the iteration

in the case that the available error estimation is too rough. The greedy algorithm for RB

construction is given in Algorithm 1.
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Algorithm 1 Greedy algorithm

Input: Ptrain, µ0, εROM(< 1), Nmax.

Output: RB V = [v1, . . . , vN ].

1: Initialization: N = 0, µ? = µ0, ψN (µ?) = 1, V = [ ].

2: while ψN (µ?) > εROM & N < Nmax do

3: Collect information from the chosen parameter µ? to enrich the RB V .

4: Update N .

5: Find µ? := arg max
µ∈Ptrain

ψN (µ).

6: end while

Note that the RB computed from the greedy algorithm is hierarchical in the sense that

span{v1, . . . , vN−1} ⊂ span{v1, . . . , vN} for N = 2, . . . , Nmax, where Nmax is the maximal

dimension of the RB. This allows us to adjust the accuracy or the runtime of the ROM

online by varying the dimension of the RB. In addition, the quality of the RB (or the

ROM) depends crucially on two issues: the error indicator and the training set.

The error indicator ψN (·) can be the true error or a certain error bound/estimation for the

reduced approximation against the reference quantity computed from the FOM. Because

the true error requires the “true” solution by solving the original large-scale system, an

error bound/estimation is preferable, which will be explored in Chapter 4.

The training set is a surrogate for the whole parameter domain. On the one hand, it should

be sufficiently large so that more parameter information can be collected. On the other

hand, its size has to be limited so that the computational cost is affordable. During the

past years, many efforts have been devoted to seeking an “optimal” training set by certain

adaptive techniques [34, 53, 82, 83, 141]. This will be further discussed in Chapter 5.

When Algorithm 1 is used for parameter-dependent steady problems, Step 3 performs a

FOM simulation at µ? to acquire the solution u(µ?) and enriches RB V as V = [V, u(µ?)];

when it is used for unsteady problems, Step 3 becomes more complicated, since for the

chosen parameter µ?, the solutions at many different time instances can be used to enrich

the RB and a trivial procedure might result in loss of valuable information. In [85], POD

and the greedy algorithm are combined as the POD-Greedy algorithm, which is often

employed for the construction of RB for parameter- and time-dependent problems and

will be addressed in detail in the next subsection.
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3.3.2 POD-Greedy algorithm

The idea of the POD-Greedy algorithm [85] is to use the greedy procedure for the pa-

rameter sampling and POD of the snapshot matrix to compute the new basis vectors.

Algorithm 2 shows the basic steps of the POD-Greedy algorithm.

Algorithm 2 POD-Greedy algorithm

Input: Ptrain, µ0, εROM(< 1), Nmax.

Output: RB V = [v1, . . . , vN ].

1: Initialization: N = 0, µ? = µ0, ψN (µ?) = 1, VN = {0}, V = [ ].

2: while ψN (µ?) > εROM & N < Nmax do

3: Simulate the FOM at µ?, and collect snapshots {un(µ?)}Kn=0.

4: Perform POD process:

Compute Ū := [u0, . . . , ūK ], ūn := un(µ?)−ΠVN [un(µ?)], n ∈ K, where ΠVN [·] is

the projection operator onto the current space VN := span{v1, . . . , vN}.
Compute the first POD mode vN+1, the left singular vector of the matrix Ū .

5: Enrich the RB V := [V, vN+1].

6: Update N = N + 1.

7: Find µ? := arg max
µ∈Ptrain

ψN (µ).

8: end while

Remark 3.3.1. The first POD mode refers to the first left singular vector which corre-

sponds to the largest singular value of the matrix under consideration. More generally, one

can enrich the current basis with more than one POD mode in each iteration [49, 132].

One may also directly apply POD to the snapshots (un(µ?) instead of ūn ) as in [132],

then one additional orthogonalization process should be performed after each enrichment

since the increased vectors can be linearly dependent on the current space.

Remark 3.3.2. For many problems, like the batch chromatographic model and the SMB

model considered in this thesis, the total number of time steps in FOM simulation is

very large. This implies that the number of snapshots K in Step 3 of Algorithm 2 is

large if no appropriate pretreatment for the snapshots is applied. The large number of

snapshots will result in expensive computations in Step 4. To tackle this problem, we

propose a technique of adaptive snapshot selection to adaptively discard the redundant

(linearly dependent) information from the trajectory, so the selected snapshots consist of

only the most “representative” vectors from the trajectory and the runtime for the RB
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construction can be largely reduced. This will be detailed in Chapter 5.

Note that when the POD-Greedy algorithm is applied to time-dependent problems, one

parameter might be repeatedly selected to enrich the current basis. This implies that some

“useful” information corresponding to the parameter has not yet been fully used.

The study of a priori convergence of the greedy algorithm for the RB construction for

steady problems can be found in [31, 33]. The extension to time-dependent problems,

i.e., the convergence rate of the POD-Greedy algorithm is analyzed in [80]. It is shown

that the approximation error of the RB generated by the (POD-)Greedy algorithm gives

exponential or algebraic convergence under certain conditions.

As mentioned previously, both the POD method and the RBM are snapshot-based MOR

methods. That is, the projection basis is built upon the snapshots. Thus, the quality of

the snapshots is crucial for the accuracy of the final ROM. If the representative system

information is not contained in the snapshots (solutions to the FOM at different time

instances and/or different parameter samples in the training set), it is difficult or even

impossible to construct an accurate ROM. An interesting study for the snapshot collection

for POD is found in [98]. The authors show that the two different groups of snapshots,

{u(·, tj) | j = 0, . . . ,K} and {u(·, tj), u(·, tj+1) − u(·, tj), u(·, tK) | j = 0, . . . ,K − 1}, may

result in different POD bases. Similar discussion on the snapshots collection can also be

found in the earlier work in [109]. These studies remind us that attention should be paid

to the collection of snapshots when a snapshot-based MOR method is implemented.

For parametric systems, a single ROM that is reliable over the whole parameter domain is

preferable. However, a single ROM might not be sufficient for a system that exhibits big

differences as the parameters cross different sub-domains. For such a case, several adaptive

techniques using local basis methods have been suggested [6, 7, 82, 103, 142]. In this thesis,

we use a global basis for the underlying problems, i.e., only one ROM will be generated for

each FOM. However, local basis methods might be considered in the future for nonlinear

SMB chromatography with higher Péclet number to deal with its high complexity. More

discussion on using local basis vs. global basis can be found in [26].
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3.4 Empirical interpolation method and related topics

As mentioned earlier, if there are nonlinear and/or nonaffine operators in the FOM, the

computational cost and complexity cannot be largely reduced by using projection, because

the nonlinear and/or nonaffine part, e.g., W T g(V unr (µ);µ) in (3.24), requires computation

in the original high dimensional space. In such a case, a further efficient approximation

of the nonlinear and/or nonaffine part is crucial for MOR. Otherwise, the reduction in

computational time by MOR might be very limited. See some analysis in [43] for example.

During the last decade, many efforts have been made in dealing with the nonlinearity

and/or nonaffinity. For systems that are nonlinear or with nonaffine parameter depen-

dence, the interpolation technique, e.g., the empirical interpolation method (EIM) [17] or

its variants, can be employed. The idea of these interpolation techniques is to construct

an interpolant to approximate the nonlinear and/or nonaffine function.

Assume that we are given a nonaffinely parameter-dependent function g(x;µ), (x;µ) ∈
Ω× P ⊂ Rd × Rp, with sufficient regularity, i.e., g(·;µ) ∈ L∞(Ω) for all µ ∈ P. Let

Mg := {g(x, µ) | x ∈ Ω, µ ∈ P}, (3.28)

be the manifold induced by the nonaffinely parameter-dependent function. The use of

interpolatory approximation is based on the following observations [130]:

(i) limited parameter dependence: the manifoldMg is typically of low dimension, mean-

ing that any element g ∈ Mg can be well represented by a few properly chosen

(parameter-independent) basis functions; and

(ii) limited spatial dependence: although g(x, µ) is defined in the spatial domain Ω for

all µ ∈ P, the spatial variation of g can be captured mainly by a set of small number

of well “selected” points instead of arbitrary points in the entire spatial domain.

The first observation enables us to construct a parameter-independent basis with a prefer-

ably low dimension. The second one enables us to determine the interpolation coefficients

at low cost, since for every parameter in the parameter domain the function values at only

a few “selected” points are needed.
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3.4 Empirical interpolation method and related topics

We now show the interpolation method in a general framework. Let {gi(x)}Mi=1 be a set of

parameter-independent basis functions, which is usually computed based on the snapshots

of the function evaluations at some carefully chosen parameter samples in the parameter

domain, say, {g(·, µj) | µj ∈ Pg ⊂ P}. The interpolant is defined as

gM (x, µ) :=
M∑
i=1

gi(x)βi(µ), (3.29)

where βi(µ) ∈ R, i = 1 . . . ,M , are the corresponding parameter-dependent coefficients.

To determine the coefficients, we need to choose a finite subset Ωg := {xEI
1 , . . . , x

EI
ng} (⊂ Ω)

on which gM (x, µ) interpolates the exact values of g(x, µ).

Various algorithms have been proposed to conduct the interpolation. They differ in the way

of computing the basis function and/or the interpolation points. For the basis construction,

one may use a POD basis (e.g., in the DEIM [43] or the “best point” interpolation method

(BPIM) [130]) or a iteratively constructed basis (e.g., in the EIM [17]). Note that a POD

basis is not only linearly independent but also orthogonal. For the determination of the

interpolation points, one may choose ng = M , which is adopted by, e.g., the EIM, the

DEIM, and the BPIM; or one may also choose ng > M , which is adopted by, e.g., the

Gauss-Newton with approximated tensor method [41].

We now address the implementation of the EIM in a finite-dimensional discrete space.

The idea of EIM is to construct an affine expression gM (x;µ) in (3.29) to approximate

g(x;µ), i.e., g(x, µ) ≈ gM (x, µ). The EIM determines the coefficients βi(µ) by enforcing

the interpolation condition that the approximation gM (x;µ) interpolates the exact value

of g(x;µ) at the empirical interpolation (EI) points Ωg := {xEI
1 , . . . , x

EI
M}, i.e.,

M∑
i=1

gi(x
EI
j )σi(µ) = g(xEI

j ;µ), j = 1, . . . ,M. (3.30)

In practical computations, the parameter-independent basis, called collateral reduced basis

(CRB), and the EI points are usually computed in a finite-dimensional discrete space,

say, RN . Let PCRB
train := {µj | µj ∈ P, j = 1, . . . , ntrain} be a training set with a finite

number (ntrain) of parameter samples, which is chosen as a surrogate of the parameter

domain P. Let G := {g1(µj), . . . , gntrain(µj)} be the set of snapshots, where g(µj) :=

[g(x1, µj), . . . , g(xN , µj)]
T ∈ RN is the vector of function evaluations of g(x, µ) at the

parameter µj ∈ PCRB
train (j = 1, . . . , ntrain) on the spatial grids {x1, x2, . . . , xN }. Note that
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in the discrete space, the basis G is actually a set of constant vectors, g1, . . . , gM ∈ RN ,

and the EI points {xEI
1 , . . . , x

EI
M}(⊂ {x1 . . . , xN }) are corresponding to a few indices in the

spatial grids, denoted by {℘1, . . . , ℘M} =: I. To use matrix-vector notations, we introduce

a vector β(µ) = [β1(µ), . . . , βM (µ)]T ∈ RM , and a matrix

S = [e℘1 , . . . , e℘M ], (3.31)

where e℘i = [0, . . . , 0, 1, 0, . . . , 0]T ∈ RN is the ℘ith column of the identity matrix in RN×N .

For any µ ∈ P, let g(µ) = [g(x1, µ), . . . , g(xN , µ)]T ∈ RN , and then the interpolation

condition in (3.30) becomes

STGβ(µ) = ST g(µ). (3.32)

Thus, β(µ) = (STW )−1ST g(µ), and the interpolant defined by the EI basis W reads

ĝ(µ) = Gβ(µ) = G(STG)−1ST g(µ), µ ∈ P. (3.33)

Note that STG is invertible because it is actually a lower triangular matrix with unit

diagonal elements [17, 71]. Given an error tolerance εCRB, the procedure of constructing

the CRB and the EI points is summarized in Algorithm 3.

Note that the framework of Algorithm 3 is in the vector space, and it is slightly different

from the frameworks for constructing the CRB and the EI points in the literature, where

they are mostly presented in the continuous functional/operator form, e.g., in [71, 70].

Remark 3.4.1. For time-dependent problems, we do not treat time as a separate pa-

rameter, but put the time trajectory for all training samples together as the snapshots

to construct the CRB. That is, in Algorithm 3, the input snapshot set is redefined as

G := {g(uk(µj), µj) | µj ∈ PCRB
train , j = 1, . . . , ntrain; k = 0, 1, . . . ,K}. Note that when the

total number (K) of time steps for one FOM simulation is large, the number of snapshots

will be (K + 1) · ntrain if no further snapshot selection strategy is employed, and this num-

ber can be huge. This may render the computation of CRB very expensive. Again, the

adaptive snapshot selection [25, 187] can be employed to reduce the computational cost,

analogously to the implementation for the RB construction; see Remark 3.3.2.

This interpolation approximation serves to reduce the complexity in evaluation of the

nonlinear and/or nonaffine parts of the model, which cannot be directly reduced by pro-

jection. It is crucial for an efficient offline-online computation for the RBM and other
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Algorithm 3 Generation of CRB and EI points

Input: G := {g(µ1), . . . , g(µntrain)}, εCRB < 1.

Output: CRB G = [g1, . . . , gM ] and EI points (indices) I := {℘1, . . . , ℘M}.
1: Initialization: G = [ ], S = [ ], I = ∅.
2: m = 1, ξm = arg max

g(µj)∈G
‖g(µj)‖, ℘m = arg max

i∈{1,...,N}
|ξm,i|, gm = ξm/ξm,℘m , G =

[G, gm], S = [S, e℘m ], I = I ∪ {℘m}.
3: while ‖ξm‖ > εCRB do

4: m = m+ 1.

5: For all g(µj) ∈ G, compute the interpolant ĝ(µj) = G(STG)−1ST g(µj) (see (3.33)).

6: Define g(µm) := arg max
g(µj)∈G

‖g(µj)− ĝ(µj)‖ and the error ξm := g(µm)− ĝ(µm).

7: if ‖ξm‖ ≤ εCRB then

8: Stop and set M = m− 1.

9: else

10: Determine the next EI point and basis vector:

℘m = arg max
i∈{1,...,N}

|ξm,i|, gm = ξm/ξm,℘m . (3.34)

11: Update G = [G, gm], S = [S, e℘m ], I = I ∪ {℘m}.
12: end if

13: end while

MOR methods, to be discussed in Section 3.5. More details of the EIM, e.g., the error

analysis and the applications to general nonlinear and/or nonaffine problems, can be found

in [69, 70, 71, 52, 120]. Next, we review the related techniques for dealing with the non-

linearity and/or nonaffinity in MOR and highlight some remaining challenges for future

work.

The BPIM is proposed in [130, 131]. The main difference between the EIM and the BPIM

is the way of determining the interpolation points. The EIM defines the interpolation

points by a greedy algorithm, as shown in Algorithm 3, while the BPIM defines them

by solving an optimization problem. It is not surprising that the BPIM is usually more

expensive than the EIM. Nevertheless, the performance of the EIM and the BPIM are

pretty similar in many cases [66, 130].
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The DEIM [43, 45] has gained increasing popularity for nonlinear MOR since it is easy to

be implemented in many situations. The bases in the DEIM and the EIM are different, al-

though they are both extracted from the snapshots of the nonlinear (or nonaffine) function

evaluations at different time instances and/or different parameter samples. The basis in

the DEIM is an orthogonal basis computed by POD, while the basis in the EIM is a basis

iteratively determined by Algorithm 3 and it is not necessarily orthogonal. In addition,

the ways of determining the interpolation points for the two methods are different. The

interpolation points in the DEIM are determined based on the POD basis vectors and

they are generated after the generation of the interpolation basis, while those in the EIM

are determined based on the snapshots themselves and they are generated along with the

interpolation basis. Note that the set of the snapshots might contain a very large number

of vectors for some problems that depend on both parameter and time. This may make

the computation of the POD basis very expensive or even prohibitive. It deserves further

investigations in the future. Recently, a discrete matrix version of DEIM for nonaffine

parameterized systems is proposed in [128].

For some applications, the nonlinear function might exhibit a wide range of behaviors

as the parameter passes through different regimes of the parameter domain. In such a

case, the dimension of the DEIM basis has to be taken very high to capture the main

features over the whole parameter domain, which restricts the significance of the DEIM.

More recently, a localized discrete empirical interpolation method (LDEIM) is proposed

in [142]. The LDEIM constructs several local DEIM bases according to certain cluster or

partition strategies in the offline stage and chooses one of them for the online simulation.

Due to the small size of the local ROM, the reduction is expected to be more significant

than that achieved by using a ROM based on a global DEIM basis. It is also worth noting

that an adaptive method for online update of the DEIM basis via low-rank updates is

presented in [143].

Recently, the EIM is extended to the empirical operator interpolation method (EOIM) for

interpolation of operators [87, 49]. The EOIM is applicable to operators that depend on

the field variable u(t, x;µ), e.g., g(u(t, x;µ), x;µ). The evaluation of g(xj ;µ) in (3.30) is

thus replaced by g(u(t, xj ;µ), xj ;µ). In this thesis, we use empirical operator interpolation,

where the nonaffine operator is in the form of g(u(t, x;µ);µ).

More recently, the EIM [17] has been extended to the generalized empirical interpolation
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method [119] in the sense that the evaluation at the interpolation points is replaced by

a more practical evaluation at interpolating continuous linear functionals on a class of

Banach spaces. Apart from the EIM type methods presented earlier, the missing point

estimation [13] and the Gauss-Newton with approximated tensor method [41] are both

based on the Gappy POD interpolation method [57] and are also used to deal with the

nonlinear and nonaffine terms in many applications [13, 36, 42, 180].

Note that all the methods mentioned earlier share almost the same idea, namely, in-

terpolating the nonlinear and/or nonaffine functions/vectors at a set of properly chosen

points/entries with a few precomputed basis (functions). It is sometimes called “hyper

reduction” in the literature [164]. A comprehensive review of the EIM and related ap-

proximation strategies mentioned earlier is found in [21].

The CRB is usually built before constructing the RB for an efficient offline-online compu-

tation. Here, one should be aware that the dimensions of the CRB and the RB should be

well balanced in order to achieve a good reduction. In general, for fixed CRB, the accuracy

of the ROM improves as the dimension of the RB increases; likewise, for fixed RB, the

accuracy of the ROM improves as the dimension of the CRB is increases. However, in

either case, the accuracy of the ROM cannot be further improved after the dimension of

the basis reaches a certain stage because after certain iterations the approximation error

caused by the fixed basis dominates the total error. In fact, this phenomenon has been

reported in several studies [49, 71]. A simple solution is using a sufficiently high dimen-

sional CRB to ensure the accuracy of the interpolation. Certainly, this is not the optimal

way since the offline time could be unnecessarily large. In [49], a scheme of synchronized

generation of both bases is proposed. The idea is as follows: a very low dimensional CRB

is first built, and then the RB and the CRB are simultaneously enriched by the greedy

algorithm if the error (measured by error bounds or true error) of the resulting ROM is

decreased; otherwise, only the CRB is enriched. This process continues until the desired

ROM is obtained. In this way, the dimensions for both bases could be well balanced. In

general, efficiently treating nonlinearity and nonaffinity in MOR remains challenges, and

it is still an active research area.
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3.5 Offline-online decomposition

Typically, when PMOR methods are employed in the time-critical applications for which

the model needs to be repeatedly simulated under parameter variations, the reduction is

often realized by the strategy of offline-online decomposition. That is, all quantities that

depend on the high dimension are precomputed and stored, e.g., on a supercomputer or

in a parallel way. This process is the so-called offline stage, and it can be very expensive

because the FOM computation is involved. However, it needs to be performed only once as

preprocessing. For example, the parameter-independent components for the affine expres-

sion of the coefficient matrices in the ROM, i.e., Âj and B̂k (j = 1, . . . , na, k = 1, . . . , nb) in

(3.26) and the parameter-independent reduced matrix Ĝ in (3.27) should be precomputed.

In the online stage, for any given feasible value of parameters, the parameter-dependent

reduced matrices, Â
(n)
µ , and B̂

(n)
µ in (3.27), can be rapidly assembled by using the precom-

puted data in the offline stage, and the output response can be cheaply obtained based

on this small-size ROM. This process has no reference to the FOM, and the computation

is only in the scale of the (low) dimension N � N . Since the ROM is usually used many

times under parameter variations in many-query contexts, the cost in the offline stage will

be paid off.

To perform the offline-online decomposition, the affine assumption in the coefficient ma-

trices A
(n)
µ and B

(n)
µ in (3.22) is often required for MOR of the underlying problem. In

addition, the affine form is also important for an efficient computation during the offline

phase when an error bound/estimation is employed for the greedy algorithm, which is to

be further addressed in the next chapter.
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Chapter 4

Output Error Bound and Estimation
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In this chapter, we address the error control of the ROMs. To generate ROMs in a

goal-oriented fashion, two output error bounds are proposed for parameterized nonlinear

evolution equations. One is the primal-only output error bound, and the other is a primal-

dual error bound. The performance of both error bounds is preliminarily demonstrated

by two academic examples. Further applications to real-life models will be given in Chap-

ter 6. This is one of the main contributions of this thesis. References [187, 188] originally

presented this work.

4.1 Previous work and objectives

(P)MOR is aimed at constructing a simulation-efficient ROM to reproduce the dominant

dynamics or the input-output response of the original large-scale system, at a compromise

with accuracy to an acceptable extent. The question is how to efficiently measure the
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error of the ROM. Obviously, computing the true error of the reduced approximation is

not feasible because it requires the true solution from the FOM simulation, which is usually

expensive. Instead, an efficient error estimation is desired to quantify the error caused by

the ROM. In this chapter, we study a posteriori error bound/estimation for the ROMs.

As mentioned in Section 3.3.2, an a posteriori error estimation has gained much attention

in RBMs over the past years. In fact, to generate a ROM, efficient a posteriori error

estimation is crucial because it enables the generation to be reliable and automatic. More

precisely, a posteriori error estimation plays important roles in both the offline and the

online stages. As discussed in Section 3.3.1, in the offline stage, the use of an efficient

error estimation (instead of the true error) permits sufficiently large training samples for

the greedy algorithm to construct a reliable ROM within an affordable amount of time.

In addition, a sharp error estimation enables us to build a sufficiently accurate ROM with

its size as (comparably) small as possible. In the online stage, a rigorous error estimation

can quantify the ROM for any given parameter. Rigorous, sharp, and cheaply computable

are the desired properties of an efficient error estimation.

In the past years, many efforts have been devoted to the study of a posteriori error

estimation for either the field variable (the solution to the underlying system) or the

output of interest. Particularly, the RBM has a strong emphasis on the derivation of a

posteriori error estimation. Research on an a posteriori error estimation for the RBM

started with [133, 146] and has been followed by many others for different problems. Let

us mention only a few previous work on a posteriori error estimation, for linear and affinely

parameter-dependent problems [69, 72, 85, 147, 158, 159], for nonaffine and/or nonlinear

problems [39, 49, 70, 129, 132, 176, 177], and related survey papers or monographs [140,

161, 162]. More recently, the space-time reduced basis method is introduced for linear

or quadratically nonlinear parabolic problems [175, 183, 184, 185]. Notably, these error

estimations are all derived in the functional space in the framework of the finite element

discretization except for [49, 85]. In the finite element discretization framework, the weak

form of the PDE is used to derive the error bound, while the error bound in [85] is

derived in the framework of the finite volume discretization for error estimation of the

field variables. Note that the finite element coercivity constant is usually time-consuming

to compute, the so-called successive constraint method [97] is employed in practice. Other

recent work of error bounds or estimations for POD-based ROMs can be found, e.g.,

in [45, 92, 94, 98, 153, 170, 182], which are usually derived either in continuous space or
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based on finite difference discretization. It is worth noting that an a priori error estimation

is derived for the use of the proper orthogonal decomposition technique in the context of

option pricing models in [166]. For general linear dynamic systems, an a posteriori error

estimation is proposed in [86].

In this chapter, we present two kinds of error estimations for projection-based PMOR

methods applied to parameterized (nonlinear) evolution equations. One is a primal-only

error bound and the other is a primal-dual error estimation. The first one is derived

based on the analysis of the residual, and it shares similar ideas in [49] but it is derived

in the vector space. This error bound is cheap to compute. Nevertheless, it may lose

sharpness for convection dominated problems, especially when a large number of time

steps are needed. The second one adopts a primal-dual approach, and it is also derived

in the vector space. The derived error estimator is fairly sharp and takes a little bit more

time to compute compared to the first one. Since the two error bounds are both derived

algebraically in the vector space, they are independent of spatial discretization approach

employed, and furthermore, they are applicable to any projection-based PMOR methods.

In what follows, the inner product is defined as 〈z1, z2〉 := zT1 z2, ∀z1, z2 ∈ RN . The induced

norm ‖ · ‖ is the standard 2-norm in the Euclidean space. However, if the discrete system

of equations is obtained by using the finite element method, the solution to the discrete

system is actually the coefficient vector corresponding to the basis vectors of the solution

space. In such a case, the inner product should be defined properly with the mass matrix

of the solution space, and the norm will be the corresponding induced norm.

4.2 A primal-only output error bound

As mentioned previously, it is crucial to derive a sharp, rigorous and inexpensive a posteri-

ori error bound, which enables reliable and low-cost construction of the RB. One common

technique for the derivation of the error estimator is based on the residual. In [49, 87], the

authors provided an error estimation for the field variable in functional space for evolution

equations, where an upper bound of the operator is employed for the error estimation due

to the abstract expression in the functional space. Since all the simulations are done in the

finite-dimensional vector space in practice, in this section, we derive an error estimation

for the field variable directly in the vector space. Using the concrete expression in the

53



4. Output Error Bound and Estimation

vector space, we can directly compute the norm of the operator for each parameter rather

than use an upper bound. In this sense, the final error bound derived in the vector space

will be sharper than that in the functional space. Moreover, we derive an output-oriented

error bound based on the error estimation for the field variable. For many applications,

the output response y(uN ) is of interest. Hence, during the process of the greedy algo-

rithm, e.g., Algorithm 2 or Algorithm 5, the error indicator ψN (µ?) should be the error

estimation for the output response, such that the resulting ROM is expected to be more

accurate and reliable.

For the parameterized evolution equation in (3.21), we derive an output error bound in

the vector space for the ROM in (3.24). Recall that the evolution scheme in the vector

space reads

A(n)
µ un+1(µ) = B(n)

µ un(µ) + g (un(µ);µ) , (4.1)

where g (un(µ);µ) ∈ RN is the nonlinear term, and A
(n)
µ and B

(n)
µ are nonsingular for a

stable scheme in practice, n = 0, . . . ,K − 1.

Let ûn(µ) = V unr (µ) be the RB approximation of un(µ), and IM : RN 7→ RN be an

interpolation operator, i.e., ĝ(ûn(µ);µ) := IM [g(ûn(µ);µ)] = Gβn(µ) is defined as the

interpolant of the nonlinear term, where V ∈ RN×N , G ∈ RN×M are the precomputed

parameter-independent bases, unr (µ) ∈ RN , βn(µ) ∈ RM are parameter-dependent coeffi-

cients. In the following, for the sake of simplicity, we omit the explicit expression of the

dependence on µ in un(µ), ûn(µ), unr (µ) and βn(µ), and use un, ûn, unr and βn instead. The

following a posteriori error bound is based on the residual

rn+1(µ) := B(n)
µ ûn + IM [g(ûn;µ)]−A(n)

µ ûn+1. (4.2)

With simple computations, we obtain the norm of the residual∥∥rn+1(µ)
∥∥2

=
〈
rn+1(µ), rn+1(µ)

〉
= (unr )T W T (B(n)

µ )TB(n)
µ V unr + (βn)T STSβn

+
(
un+1
r

)T
W T (A(n)

µ )TA(n)
µ V un+1

r + 2 (βn)T STB(n)
µ V unr

− 2(unr )TW T (B(n)
µ )TA(n)

µ V un+1
r − 2 (βn)T STA(n)

µ V un+1
r .

(4.3)

Based on the analysis of this residual, we have the error bound for the field variable as

follows.
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4.2 A primal-only output error bound

Proposition 4.2.1. Assume that for all µ ∈ P the operator g(·;µ) : WN → RN is

Lipschitz continuous w.r.t. the first argument, i.e., there exists a positive constant Lg,

such that

‖g(x;µ)− g(y;µ)‖ ≤ Lg‖x− y‖, x, y ∈ WN , µ ∈ P,

and the interpolation of g is “exact” with a certain dimension of G = [g1, . . . , gM+M ′ ],

i.e.,

IM+M ′ [g(ûn;µ)] :=

M+M ′∑
m=1

gmβ
n
m(µ) = g(ûn;µ).

Assume again, that for all µ ∈ P, the initial projection error is vanishing e0(µ) = 0, then

the approximation error en(µ) := un − ûn satisfies

‖e1(µ)‖ ≤ R(0)
µ , ‖en(µ)‖ ≤ R(n−1)

µ +

n−2∑
k=0

 n−1∏
j=k+1

G(j)
µ

 R(k)
µ , n = 2, . . . ,K, (4.4)

where

R(k)
µ =

∥∥∥(A(k)
µ )−1

∥∥∥(εkEI(µ) + ‖rk+1(µ)‖
)
, k = 0, . . . , n− 1,

G(j)
µ =

∥∥∥(A(j)
µ )−1

∥∥∥(‖B(j)
µ ‖+ Lg

)
, j = k + 1, . . . , n− 1,

and εnEI(µ) is the error due to the EI, i.e.,

εnEI(µ) := g(ûn;µ)− IM [g(ûn;µ)] =

M+M ′∑
m=M+1

‖gm‖ · |βnm(µ)| . (4.5)

A sharper error bound can be given as

‖e1(µ)‖ ≤ η1
N,M (µ) := R

(0)
F,µ,

‖en(µ)‖ ≤ ηnN,M (µ) := R
(n−1)
F,µ +

n−2∑
k=0

 n−1∏
j=k+1

G
(j)
F,µ

 R
(k)
F,µ, n = 2, . . . ,K,

(4.6)

where

R
(k)
F,µ =

∥∥∥(A(k)
µ )−1

∥∥∥ εkEI(µ) +
∥∥∥(A(k)

µ )−1rk+1(µ)
∥∥∥ , k = 0, . . . , n− 1,

G
(j)
F,µ =

∥∥∥(A(j)
µ )−1B(j)

µ

∥∥∥+ Lg

∥∥∥(A(j)
µ )−1

∥∥∥ , j = k + 1, . . . , n− 1.
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Proof. By forming the difference between (4.1) and (4.2), we have the error equation

A(n)
µ en+1(µ) = B(n)

µ en(µ) + g(un;µ)− IM [g(ûn;µ)] + rn+1(µ)

= B(n)
µ en(µ) + (g(un;µ)− g(ûn;µ)) + (g(ûn;µ)− IM [g(ûn;µ)]) + rn+1(µ).

(4.7)

Left-multiplying on both sides of (4.7) with (A
(n)
µ )−1, we obtain

en+1(µ) =(A(n)
µ )−1B(n)

µ en(µ) + (A(n)
µ )−1 (g(un;µ)− g(ûn;µ))

+ (A(n)
µ )−1 (g(ûn;µ)− IM [g(ûn;µ)]) + (A(n)

µ )−1rn+1(µ).
(4.8)

Applying the Lipschitz condition of g, we have ‖g(un;µ)− g(ûn;µ)‖ ≤ Lg ‖en(µ)‖. Then

by the triangle inequality and the property of the matrix norm, we have∥∥en+1(µ)
∥∥ ≤ ∥∥∥(A(n)

µ )−1
∥∥∥ (‖B(n)

µ ‖+Lg
)
‖en(µ)‖+

∥∥∥(A(n)
µ )−1

∥∥∥ (εnEI(µ) +
∥∥rn+1(µ)

∥∥) , (4.9)

where εnEI(µ) is the error due to the EI, as defined in (4.5). Resolving the recursion (4.9)

with initial error
∥∥e0(µ)

∥∥ = 0 yields the error bound in (4.4).

To obtain the error bound in (4.6), we re-observe the equation in (4.8) and see that the

error bound in (4.9) is unnecessarily enlarged. A sharper bound for
∥∥en+1

∥∥ is given as∥∥en+1(µ)
∥∥ ≤(∥∥∥(A(n)

µ )−1B(n)
µ

∥∥∥+ Lg

∥∥∥(A(n)
µ )−1

∥∥∥) ‖en(µ)‖

+
∥∥∥(A(n)

µ )−1
∥∥∥ εnEI(µ) +

∥∥∥(A(n)
µ )−1rn+1(µ)

∥∥∥ , (4.10)

since the following two inequalities are true, i.e.,
∥∥∥(A

(n)
µ )−1B

(n)
µ

∥∥∥ ≤ ∥∥∥(A
(n)
µ )−1

∥∥∥∥∥∥B(n)
µ

∥∥∥ and∥∥∥(A
(n)
µ )−1rn+1(µ)

∥∥∥ ≤ ∥∥∥(A
(n)
µ )−1

∥∥∥∥∥rn+1(µ)
∥∥. Resolving the recursion (4.10) with initial

error
∥∥e0(µ)

∥∥ = 0 yields the proposed error bound in (4.6).

Remark 4.2.2. In many cases, the matrices A
(n)
µ and B

(n)
µ in (4.1) are independent of

tn and µ; see, e.g., the batch chromatographic model considered in this thesis. In such a

case, the error bound becomes much simpler, see (6.11) and (6.13) in Chapter 6.

Remark 4.2.3. In [49], the derivation of the error bound is based on the general op-

erator form in the functional space. The error bound in (4.4) corresponds to the oper-

ator form (5.5) in [49]. However, the error bound may grow exponentially when G
(j)
µ =∥∥∥(A

(j)
µ )−1

∥∥∥(∥∥∥B(j)
µ

∥∥∥+ Lg

)
> 1 in (4.4). In the vector space, this problem can be easily

avoided by using (4.10) instead of (4.9) if G
(n)
F,µ =

∥∥∥(A
(n)
µ )−1B

(n)
µ

∥∥∥ + Lg

∥∥∥(A
(n)
µ )−1

∥∥∥ ≤ 1,

whereby the sharper error bound in (4.6) is obtained.
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Remark 4.2.4. For the computation of the error bound in (4.4), we need to compute the

norm of the residual rn+1(µ) by using (4.3). Note that all terms underlined in (4.3) can

be efficiently computed once V , W , and G are obtained, once the affine expression of the

coefficient matrices A
(n)
µ and B

(n)
µ is available. This is also true for the computation of∥∥∥(A

(n)
µ )−1rn+1(µ)

∥∥∥ for the error bound in (4.6). Consequently, the evaluation of the error

bound is cheap due to its independence of N . In addition, as is shown in [49], small M ′

gives good results in practice; we use M ′ = 1 in the latter simulations.

In many applications, the quantity of interest is not the field variable itself, but some

outputs. In such a case, it is desired to estimate the output error in order to construct

a goal-oriented ROM. Based on the error estimation for the field variable above, we have

the output error estimation in the following.

Proposition 4.2.5. Under the assumptions of Proposition 4.2.1, assume the output of

interest, y (un(µ)), can be expressed in the following form:

y(un(µ)) = Pun, (4.11)

where P ∈ RNO×N is a constant matrix, then the output error enO(µ) := Pun − Pûn

satisfies∥∥en+1
O (µ)

∥∥ ≤ η̃n+1
N,M (µ)

:= G
(n)
O,µη

n
N,M +

∥∥∥P (A(n)
µ )−1

∥∥∥ εnEI(µ) + ‖P‖
∥∥∥(A(n)

µ )−1rn+1(µ)
∥∥∥ , (4.12)

where G
(n)
O,µ =

∥∥∥P (A
(n)
µ )−1B

(n)
µ

∥∥∥+ Lg

∥∥∥P (A
(n)
µ )−1

∥∥∥, n = 0, . . . ,K − 1.

Proof. Left-multiplying on both sides of the error equation (4.8) with P , we obtain

Pen+1(µ) = P
(
(A(n)

µ )−1B(n)
µ en(µ) + (A(n)

µ )−1 (g(un;µ)− g (ûn;µ))

+ (A(n)
µ )−1(g(ûn;µ)− IM [g(ûn;µ)]) + (A(n)

µ )−1rn+1(µ)
)
.

Applying the Lipschitz condition of g and using the triangle inequality, as well as the

property of the matrix norm, we have∥∥en+1
O (µ)

∥∥ =
∥∥Pen+1(µ)

∥∥
≤ G

(n)
O,µ ‖e

n(µ)‖+
∥∥∥P (A(n)

µ )−1
∥∥∥ εnEI(µ) + ‖P‖

∥∥∥(A(n)
µ )−1rn+1(µ)

∥∥∥ . (4.13)

Replacing ‖en(µ)‖ in (4.13) with its bound in (4.6), we obtain the proposed output error

bound in (4.12).
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Remark 4.2.6. Once the error estimation for the field variable is obtained, e.g., (4.6), a

trivial error bound for the output (4.11) can be given as∥∥en+1
O (µ)

∥∥ =
∥∥Pen+1(µ)

∥∥
≤ ‖P‖

∥∥en+1(µ)
∥∥

≤ ‖P‖
(
G

(n)
F,µ ‖e

n(µ)‖+
∥∥∥(A(n)

µ )−1
∥∥∥ εnEI(µ) +

∥∥∥(A(n)
µ )−1rn+1(µ)

∥∥∥) .
(4.14)

The last inequality is true due to the inequality (4.10). It is obvious that the bound for∥∥en+1
O (µ)

∥∥ in (4.13) is sharper than that in (4.14). As a result, the final output error

bound in (4.12) is sharper than the trivial output error bound derived in (4.14).

Note that the error bound for the field variable ηnN,M (µ) is involved in the output error

bound η̃n+1
N,M (µ). Moreover, the former is a summation of the residual and the error εnEI(µ)

over all the previous time steps. This implies that both error bounds are accumulated over

time. As a result, they may lose sharpness when a large number of time steps are needed,

e.g. in the simulation of batch chromatography [187]. The same phenomenon also exists

in the error estimation in [49]. Similar observations are reported in [132]. To circumvent

the problem, we propose a sharper output error bound for the ROM in the next section.

4.3 A primal-dual output error bound

For (nonlinear) evolution equations, time-stepping schemes are often used to solve them [126],

and error estimations for projection-based MOR methods have been studied in recent

years; see, e.g., [72, 69, 85]. Most of the existing error estimators in the literature may

tend to lose sharpness when a large number of time steps are needed, because the error

estimators are actually a summation of the error over the previous time steps. To cir-

cumvent this problem, we introduce a suitable dual system at each time instance in the

evolution process associated with the primal system, i.e., the original system. The output

error for the primal system can thus be estimated sharply and efficiently with the help of

the dual system.

Actually, an a posteriori output error bound for the RBM using the primal-dual approach

can be found in [72], where the derived output error bound is derived for linear evolution

equations. From the numerical comparison in Section 4.4, it is shown that the proposed

error estimation outperforms the error bound in [72] for a linear evolution system.
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The aforementioned error bounds introduced in [175, 183, 184, 185] are based on space-

time variational formulation. Notably, the space-time error bounds are derived for the

space-time model rather than the standard model addressed in many other MOR papers.

The space-time model is obtained from the parabolic equations by first discretizing in

space and then integrating in time. As a result, the state vector (unknown vector) of the

space-time model is different from the state vector for the standard model derived by only

discretization in space, and time-stepping in time. Roughly speaking, the solution vector

of the space-time model can be considered as a long vector ust ∈ RN·K including the spatial

discretized vector at all the time steps, where N is the number of spatial grids and K is

the number of time steps. The corresponding error bound measures the error of this long

vector computed by the corresponding ROM. Our error bound is defined for the solution

vector u ∈ RN of the spatially discretized model at each time step tk, k = 1, . . . ,K. The

errors measured by the error bounds are different. Finally, the error bounds in those

papers are valid only for linear and at most quadratically nonlinear systems. The error

bounds are limited to Petrov–Galerkin discretization (in space), and an inf-sup constant

(or its lower bound) for the corresponding variational (weak) form must be available. Our

proposed error bound is valid for general linear and nonlinear systems (given Lipschitz

continuity of the nonlinear term) and is applicable to any discretization approach.

The idea for the proposed error estimation originates from the recent study in [61, 62],

where some error bounds are derived for linear time-invariant systems. The main difference

of the proposed error estimation from that in [61, 62] is that the new error estimation is

derived directly in the time domain and is exactly designed for the output in the time

domain. It is particularly useful for snapshot-based MOR methods, e.g., the RBM [85,

140, 187] and the proper orthogonal decomposition (POD) method [35, 43, 180, 181]. It

is valid for nonlinear parametric systems, whereas the error bound in [61, 62] is an error

estimation for the transfer function of the ROM, so that it is used for linear parametric

systems. In other words, it is an error estimation for the output in the frequency domain,

which is well suited for the frequency-domain MOR methods, e.g., the Krylov subspace

method [14, 24, 65].

In the following, we introduce the proposed error estimation for the output error in the

time domain. Assume that the FOM from the spatial and temporal discretization of the

PDEs can be written as

A(n)
µ un+1(µ) = b(un(µ);µ), (4.15)

59



4. Output Error Bound and Estimation

where A
(n)
µ is assumed to be nonsingular for all µ ∈ P, un(µ) ∈ WN is the numerical

solution at time t = tn, b(·;µ) : WN → RN can be nonlinear (or linear) w.r.t. the first

argument and/or nonaffine w.r.t. the parameter µ ∈ P, e.g., the right-hand side of the

equation in (3.22). The output of interest is expressed as in (4.11). Here, we temporally

assumeNO = 1 for simplicity. The extension to the multiple output case is straightforward;

see Remark 4.3.8.

To derive an efficient output error estimation, at each time step, we denote the original

system as the primal systemA(n)
µ un+1(µ) = b(un(µ);µ),

yn+1(µ) = Pun+1(µ)
(4.16)

and introduce a corresponding dual system as follows:

(A(n)
µ )Tun+1

du (µ) = −P T . (4.17)

Assume that (Vpr,Wpr) and (Vdu,Wdu) are the projection matrix pairs for MOR of the

primal and dual systems, respectively. Using Petrov–Galerkin projection, we have the

ROMs for the primal and the dual systems, respectively,W T
prA

(n)
µ ûn+1(µ) = W T

prb(û
n(µ);µ),

ŷn+1(µ) = Pûn+1(µ),
(4.18)

W T
du(A(n)

µ )T ûn+1
du (µ) = −W T

duP
T , (4.19)

where ûn(µ) = Vpra
n
pr(µ), ûndu(µ) = Vdua

n
du(µ) are the approximations to un(µ) and undu(µ),

respectively. The vectors anpr(µ) and andu(µ) are the unknowns of the reduced primal and

the reduced dual systems in (4.18) and (4.19), respectively. The residuals for both systems

read

rn+1
pr := rn+1

pr (µ) = b(ûn(µ);µ)−A(n)
µ ûn+1(µ), (4.20)

rn+1
du := rn+1

du (µ) = −P T − (A(n)
µ )T ûn+1

du (µ), (4.21)

respectively. Define an auxiliary vector

r̃n+1
pr := b(un(µ);µ)−A(n)

µ ûn+1(µ) = A(n)
µ un+1(µ)−A(n)

µ ûn+1(µ). (4.22)

Note that the only difference of r̃n+1
pr from rn+1

pr is that b(ûn(µ);µ) in (4.20) is replaced by

b(un(µ);µ) in (4.22), so that we have a direct relation between r̃n+1
pr and un+1(µ)−ûn+1(µ),
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the error of the approximate solution. This relation will aid the derivation of the error

bound in Theorem 4.3.1. For simplicity, we define

Φn+1
µ := ‖(A(n)

µ )−T ‖‖rn+1
du ‖+ ‖ûn+1

du (µ)‖. (4.23)

Theorem 4.3.1. For the systems (4.16) and (4.18), assume that A
(n)
µ is invertible for

any µ ∈ P. Then the output error en+1
O (µ) = yn+1(µ)− ŷn+1(µ) at the time instance tn+1

satisfies

‖en+1
O (µ)‖ ≤ Φn+1

µ ‖r̃n+1
pr ‖, n = 0, . . . ,K − 1. (4.24)

Proof. Left-multiplying both sides of (4.17) by
(
un+1(µ)− ûn+1(µ)

)T
, we have(

un+1(µ)− ûn+1(µ)
)T

(A(n)
µ )Tun+1

du (µ) = −
(
un+1(µ)− ûn+1(µ)

)T
P T .

Transposing this equation, we obtain(
un+1

du (µ)
)T
A(n)
µ

(
un+1(µ)− ûn+1(µ)

)
= −P

(
un+1(µ)− ûn+1(µ)

)
. (4.25)

By the definition of r̃n+1
pr , we have

r̃n+1
pr = A(n)

µ

(
un+1(µ)− ûn+1(µ)

)
. (4.26)

Left-multiplying both sides of (4.26) by
(
un+1

du (µ)
)T

yields(
un+1

du (µ)
)T
r̃n+1

pr =
(
un+1

du (µ)
)T
A(n)
µ

(
un+1(µ)− ûn+1(µ)

)
. (4.27)

Combining (4.25) and (4.27), we obtain

− P
(
un+1(µ)− ûn+1(µ)

)
=
(
un+1

du (µ)
)T
r̃n+1

pr .

Introducing a vector ỹn+1(µ) = Pûn+1(µ)−
(
ûn+1

du (µ)
)T
r̃n+1

pr , we have

|yn+1(µ)− ỹn+1(µ)| = |Pun+1(µ)− Pûn+1(µ) +
(
ûn+1

du (µ)
)T
r̃n+1

pr |

= | −
(
un+1

du (µ)
)T
r̃n+1

pr +
(
ûn+1

du (µ)
)T
r̃n+1

pr |

= | −
(
un+1

du (µ)− ûn+1
du (µ)

)T
r̃n+1

pr |

≤ ‖un+1
du (µ)− ûn+1

du (µ)‖‖r̃n+1
pr ‖.

(4.28)

By the definition of the residual in (4.21) and the dual system in (4.17), we have

rn+1
du = −P T − (A(n)

µ )T ûn+1
du (µ)

= (A(n)
µ )Tun+1

du (µ)− (A(n)
µ )T ûn+1

du (µ)

= (A(n)
µ )T

(
un+1

du (µ)− ûn+1
du (µ)

)
.
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Since A
(n)
µ is invertible, we have

un+1
du (µ)− ûn+1

du (µ) = (A(n)
µ )−T rn+1

du . (4.29)

Combining (4.28) and (4.29), we obtain

|yn+1(µ)− ỹn+1(µ)| ≤ ‖(A(n)
µ )−T rn+1

du ‖‖r̃
n+1
pr ‖ ≤ ‖(A(n)

µ )−T ‖‖rn+1
du ‖‖r̃

n+1
pr ‖.

Thus

|yn+1(µ)− ŷn+1(µ)| = |yn+1(µ)− ỹn+1(µ)−
(
ûn+1

du (µ)
)T
r̃n+1

pr |

≤ |yn+1(µ)− ỹn+1(µ)|+ |
(
ûn+1

du (µ)
)T
r̃n+1

pr |

≤ ‖(A(n)
µ )−T ‖‖rn+1

du ‖‖r̃
n+1
pr ‖+ ‖

(
ûn+1

du (µ)
)T ‖‖r̃n+1

pr ‖

= Φn+1
µ ‖r̃n+1

pr ‖.

(4.30)

Note that the error bound in (4.24) is not feasible to compute in practice, because the

detailed solution un+1(µ) is involved in the evaluation of ‖r̃n+1
pr ‖. For this, defining

ρn+1(µ) :=
‖r̃n+1

pr ‖
‖rn+1

pr ‖
, (4.31)

we have the following two corollaries, showing the existence of ρn+1(µ) by an upper bound

and a lower bound, under certain assumptions. Consequently, the output error bound in

Theorem 4.3.1 becomes

‖en+1
O (µ)‖ ≤ ∆n+1

N (µ) := Φn+1
µ ρn+1(µ)‖rn+1

pr ‖. (4.32)

Corollary 4.3.2. Under the assumptions in Theorem 4.3.1, for the vectors {r̃npr}Kn=1,

assume that there exists a positive constant α such that

α ≤
‖r̃n+1

pr ‖
‖r̃npr‖

, n = 1, . . . ,K − 1, µ ∈ P. (4.33)

Assume that for all µ ∈ P the operator b(·;µ) in (4.16) is Lipschitz continuous w.r.t. the

first argument, i.e., there exists a positive constant Lb such that

‖b(u1;µ)− b(u2;µ)‖ ≤ Lb‖u1 − u2‖, u1, u2 ∈ WN , µ ∈ P. (4.34)
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4.3 A primal-dual output error bound

Assume further

Lb < α/‖(A(n)
µ )−1‖, n = 0, . . . ,K − 1, µ ∈ P. (4.35)

Then

ρn+1(µ) ≤ ρn+1(µ) ≤ ρ̄n+1(µ), (4.36)

where ρn+1(µ) = α

α+Lb‖(A
(n−1)
µ )−1‖

, ρ̄n+1(µ) = α

α−Lb‖(A
(n−1)
µ )−1‖

, n = 1, . . . ,K − 1, and

µ ∈ P.

Proof. By the definition of the vectors rn+1
pr and r̃n+1

pr (in (4.20) and (4.22), respectively)

and using the Lipschitz condition in (4.34), we have

‖rn+1
pr − r̃n+1

pr ‖ = ‖b(ûn(µ);µ)− b(un(µ);µ)‖

≤ Lb‖ûn(µ)− un(µ)‖ = Lb‖(A(n−1)
µ )−1r̃npr‖

≤ Lb‖(A(n−1)
µ )−1‖‖r̃npr‖.

(4.37)

By the inequality in (4.33), we have

‖r̃npr‖ ≤ ‖r̃n+1
pr ‖/α. (4.38)

Substituting (4.38) into (4.37) and using the triangle inequality, we have

‖r̃n+1
pr ‖ − ‖rn+1

pr ‖ ≤ ‖rn+1
pr − r̃n+1

pr ‖ ≤ Lb‖(A(n−1)
µ )−1‖‖r̃n+1

pr ‖/α. (4.39)

With simple calculations, we have

‖r̃n+1
pr ‖
‖rn+1

pr ‖
≤ α

α− Lb‖(A
(n−1)
µ )−1‖

, (4.40)

i.e., the second inequality in (4.36) is thus proved. Analogously, replacing the left-hand

side in (4.39) with ‖rn+1
pr ‖ − ‖r̃n+1

pr ‖, yields the first inequality in (4.36).

The assumption for Lb in (4.35) in Corollary 4.3.2 is reasonable only when ‖(A(n)
µ )−1‖ is

relatively small or moderate at most. When ‖(A(n)
µ )−1‖ is large, we have the following

corollary, where another upper and lower bounds for ρn(µ) is provided.

Corollary 4.3.3. Under the assumptions in Theorem 4.3.1, for the vectors {r̃npr}Kn=1,

assume that there exist two positive constants α, ᾱ such that

α ≤
‖r̃npr‖
‖r̃n+1

pr ‖
≤ ᾱ, n = 1, . . . ,K − 1, µ ∈ P. (4.41)
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4. Output Error Bound and Estimation

Assume that for all µ ∈ P the operator b(·;µ) in (4.16) is bi-Lipschitz continuous w.r.t.

the first argument, i.e., there exist two positive constants Lb, L̄b such that

Lb‖u1 − u2‖ ≤ ‖b(u1;µ)− b(u2;µ)‖ ≤ L̄b‖u1 − u2‖, u1, u2 ∈ WN , µ ∈ P. (4.42)

Assume further

Lb > α−1/‖(A(n)
µ )−1‖, n = 0, . . . ,K − 1, µ ∈ P. (4.43)

Then

ρn+1(µ) ≤ ρn+1(µ) ≤ ρ̄n+1(µ), (4.44)

where ρn+1(µ) = 1

ᾱL̄b‖(A
(n−1)
µ )−1‖+1

, ρ̄n+1(µ) = 1

αLb‖(A
(n−1)
µ )−1‖−1

, n = 1, . . . ,K − 1, and

µ ∈ P.

Proof. By the definition of the vectors rn+1
pr and r̃n+1

pr (in (4.20) and (4.22), respectively)

and using the Lipschitz condition in (4.42), we have

‖rn+1
pr − r̃n+1

pr ‖ = ‖b(ûn(µ);µ)− b(un(µ);µ)‖

≥ Lb‖ûn(µ)− un(µ)‖ = Lb‖(A(n−1)
µ )−1r̃npr‖

≥ Lb‖(A(n−1)
µ )−1‖‖r̃npr‖.

(4.45)

By the first inequality in (4.41), we have

‖r̃npr‖ ≥ α‖r̃n+1
pr ‖. (4.46)

Substituting (4.46) into (4.45) and using the triangle inequality, we have

‖r̃n+1
pr ‖+ ‖rn+1

pr ‖ ≥ ‖rn+1
pr − r̃n+1

pr ‖ ≥ αLb‖(A(n−1)
µ )−1‖‖r̃n+1

pr ‖,

so

(αLb‖(A(n−1)
µ )−1‖ − 1)‖r̃n+1

pr ‖ ≤ ‖rn+1
pr ‖,

which implies that the second inequality in (4.44) holds. For the first inequality in (4.44),

analogous to (4.39), we have

‖rn+1
pr ‖ − ‖r̃n+1

pr ‖ ≤ ‖rn+1
pr − r̃n+1

pr ‖ ≤ ᾱL̄b‖(A(n−1)
µ )−1‖‖r̃n+1

pr ‖,

due to the new assumptions in (4.41) and (4.42). The first inequality in (4.44) is thus

proved.
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4.3 A primal-dual output error bound

Although the bi-Lipschitz continuity is required in Corollary 4.3.3, no restriction is imposed

on the upper Lipschitz constant L̄b. Moreover, the restriction on Lb in (4.42) is actually

not strong if ‖(A(n)
µ )−1‖ is large. For example, for systems that are nearly noncoercive,

i.e., when A
(n)
µ is close to singular, ‖(A(n)

µ )−1‖ can be of O(103), or even larger.

Note that (4.36) and (4.44) hold for n = 1, . . . ,K − 1. When n = 0, ‖r̃1
pr‖/‖r1

pr‖ = 1 for

zero initial conditions, i.e., u(0;µ) ≡ 0. For problems with nonzero initial conditions, i.e.,

u(0;µ) 6= 0, one can use the variable transformation ũ(µ) = u(µ) − u(0;µ) to derive a

transformed system with zero initial conditions; then the same conclusion can be similarly

obtained for the transfered system.

Remark 4.3.4. From Corollaries 4.3.2 and 4.3.3, we know that the quantity ρn+1(µ) in

(4.32) is bounded. One may use an upper bound ρ̄n+1(µ) in (4.36) or (4.44) to derive an

output error bound, namely,

‖en+1
O (µ)‖ ≤ Φn+1

µ ρ̄n+1(µ)‖rn+1
pr ‖. (4.47)

However, computing ρ̄n+1(µ) involves computing the Lipschitz constant Lb (or Lb) and α

(or α), which are nevertheless not practically computable.

Alternatively, for an efficient computation, one can directly estimate ρn+1(µ) by observ-

ing the maximal ratio among all the time steps max
k∈{1,...,K}

{ρk(µ?)}, or the average ratio

1
K

∑K
k=1 ρ

k(µ?) when the average of the output errors is estimated. Here, µ? is the param-

eter selected by the greedy algorithm, to be addressed in the following section. To compute

the quantity r̃kpr(µ?) for ρk(µ?), the detailed solutions uk(µ?), k = 1, . . . ,K, at µ? are

required, which cause no additional cost for snapshot-based MOR methods because the de-

tailed solutions at this parameter µ? are already available after the RB extension. Although

the parameter µ?, which causes the largest error (measured by the error estimation) in the

parameter domain, may not be the one that causes the largest ratio ρn+1(µ), it makes sense

to use the data at µ? to estimate ρn+1(µ). It should be pointed out that such an estimation

on ρn+1(µ) can result in a sharp estimate but may sacrifice the rigorousness. Thus, we

may say that the error “bound” obtained by estimating ρn+1(µ) is only an output error

estimation.

Remark 4.3.5. When the operator b(·;µ) is nonlinear w.r.t. the first argument and/or

nonaffine w.r.t. the parameter µ, the empirical interpolation [17] can be employed. The

ROM can be formulated following (3.27). In such a case, the term ‖rn+1
pr ‖ in (4.32) can
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4. Output Error Bound and Estimation

be further bounded using the EI error bound, i.e.,

‖rn+1
pr ‖ = ‖B(n)

µ ûn(µ) + g(ûn(µ);µ)−A(n)
µ ûn+1(µ)‖

= ‖B(n)
µ ûn(µ) + IM [g(ûn(µ);µ)]−A(n)

µ ûn+1(µ)

+ g(ûn(µ);µ)− IM [g(ûn(µ);µ)]‖

≤ ‖rn+1(µ)‖+ ‖g(ûn(µ);µ)− IM [g(ûn(µ);µ)]‖

≤ ‖rn+1(µ)‖+ εnEI(µ),

where rn+1(µ) is defined in (4.2), and εnEI(µ) is the error due to the EI, as defined in (4.5).

To compute the error bound in (4.32), one needs to efficiently compute the norm of the

matrix inverse (A
(n)
µ )−T . The following remark addresses how to evaluate ‖(A(n)

µ )−T ‖.

Remark 4.3.6. If the vector norm is taken as the standard 2-norm, e.g., when the discrete

system is obtained by the finite volume or finite difference discretization, the matrix norm

‖(A(n)
µ )−T ‖ is the spectral norm of (A

(n)
µ )−T . Therefore,

‖(A(n)
µ )−T ‖2 = ‖(A(n)

µ )−1‖2 = σmax

(
(A(n)

µ )−1
)

=
1

σmin(A
(n)
µ )

, (4.48)

the reciprocal of the smallest singular value of A
(n)
µ . For some special cases in which the

matrix A
(n)
µ is a constant matrix, the smallest singular value of A is computed once and

can be used repeatedly.

For the general vector norm ‖ ·‖H, induced by the inner product 〈v1, v2〉 := vT1 Hv2, v1, v2 ∈
WN , where H is a symmetric positive definite matrix, e.g., the mass matrix in the finite

element discretization, the induced matrix norm can be defined as

‖Z‖H := max
‖x‖=1

‖Zx‖H = max
‖x‖=1

√
xTZTHZx = ‖ZTHZ‖2, Z ∈ RN×N .

This implies that

‖ZTHZ‖2 =

√
λmax

(
(ZTHZ)T ZTHZ

)
= λmax(ZTHZ)

= λmax

(
ZTLTLZ

)
= σ2

max(LZ).
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4.4 Performance of the output error bound/estimation

Here L is a lower triangular matrix of the Cholesky factorization of H, i.e. LTL = H;

λmax(·) refers to the largest eigenvalue of a matrix. Thus, ‖(A(n)
µ )−T ‖H can be obtained by

‖(A(n)
µ )−T ‖H = σ2

max

(
L(A(n)

µ )−T
)

=
1

σ2
min((A

(n)
µ )TL−1)

.

Remark 4.3.7. The assumptions on the Lipschitz constants (i.e., Lb and Lb) in Corollary

4.3.2 and 4.3.3 require that α and α cannot be too small. This can be achieved if the time

step of the detailed simulation is well chosen. In fact, a well-chosen time step results in

an even distribution of the error of the solution to the FOM over the time interval, and

this property can be inherited by the solution to the ROM [95]. In addition, the values of

α, α, and ᾱ for the test examples are O(1), as will be shown in numerical results in the

next section.

Remark 4.3.8. For the case of multiple outputs, i.e., NO > 1, an error bound for each

component of the output vector can be obtained from Theorem 4.3.1. The final error bound

for the whole vector of outputs can be taken as the maximum of all the error bounds.

Note that the error bound is independent of the projection matrix pairs (Vpr,Wpr) and

(Vdu,Wdu). It is applicable to any projection-based MOR method. In addition, if one

takes Wpr = Vpr, then the ROM can be obtained by using Galerkin projection, as is

usually implemented by the RBM.

4.4 Performance of the output error bound/estimation

To show the performance of the error estimators presented earlier, we consider two aca-

demic examples. One is a linear convection-diffusion equation in [69], which is used to

compare the performance of the new error estimation and the error bound using the ex-

isting primal-dual approach [69, 72]. The other is the viscous Burgers’ equation, which

is used to demonstrate that our method is applicable to a large class of nonlinear evolu-

tion equations. More numerical results for applications of the error estimation to real-life

models in chemical engineering will be given in Chapter 6.

The RBM presented in Chapter 3 is employed to construct the ROMs for all the examples.

More specifically, Algorithm 2 is used to generate the RB matrix V , and the ROMs are
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4. Output Error Bound and Estimation

constructed by the Galerkin projection. For comparison, we use the proposed output

error estimation and other existing output error bounds to define the error indicators,

and to construct the ROMs, respectively. The error indicator is defined as ψN (µ) :=
1
K

∑K
n=1 Ψn

N (µ), where Ψn
N (µ) is the corresponding output error bound/estimation for the

parameter µ at the time instance tn. For example, when the primal-dual output error

estimation is employed, Ψn
N (µ) = ∆n

N (µ), where ∆n
N (µ) is defined in (4.32). The error

indicator ψN (µ) is used to measure the average output error (i.e., 1
K

∑K
n=1 ‖y(un(µ)) −

y(ûn(µ))‖) over the whole evolution process.

In what follows, PO-EB refers to the primal-only error bound in (4.12), PD-ES refers to

the primal-dual output error estimation in (4.32), and PD-EB refers to the primal-dual

error bound in [72]. To compute the new output error estimation, the quantity ρn+1(µ)

in (4.32) needs to be estimated, as discussed in Remark 4.3.4. In this work, we use the

average ratio ρ̃?N := 1
K

∑K
k=1 ρ

k(µ?) to estimate ρn+1(µ), since we measure the average of

the output errors over time. After each iteration of the greedy algorithm, we compute the

average ratio ρ̃?N at the selected parameter µ? and use it as an estimate of ρn+1(µ) for the

next iteration. All the computations were carried out using C++ code on a PC with an

Intel Core 2 Quad CPU Q9550 2.83 GHz 4.00 GB RAM.

4.4.1 Linear convection-diffusion equation

In this section, we consider a linear convection-diffusion equation which models the move-

ment of fluids and other transport phenomena. This model is used as a test case for the

primal-dual error bound in [69]. Here, we use it to compare the performance of the pro-

posed primal-dual error estimation (PD-ES) in (4.32) and the existing primal-dual error

bound (PD-EB) in [72].

Model description and reduced-order modeling

The governing equation for this model is given as

ut = q1uxx + q2ux − q2, x ∈ Ω := (0, 1), t ∈ (0, T ].

The initial and boundary conditions are specified as follows:

u(0, x) = −2x2 + 2x; u(t, 0) = u(t, 1) = 0, t > 0.
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4.4 Performance of the output error bound/estimation

The output of interest is the average value of u over a small interval Ω0 as a function of

time, i.e., y(u(t)) := 1
|Ω0|

∫
Ω0
u(t, x) dx, Ω0 := [0.495, 0.505].

In this model, we choose the diffusivity q1 and the velocity q2 as the parameters, i.e.,

µ := (q1, q2). The interesting parameter domain is chosen as P := [0.1, 1] × [0.5, 5].

To construct the FOM, we use the finite volume method for the spatial discretization

and the backward Euler scheme for the temporal discretization. We choose N = 800

as the number of degrees of freedom for the FOM and an equal time step ∆t = T/K,

T = 1,K = 100. The FOM is of the general form in (3.22), except that no nonlinear term

is involved. Algorithm 2 is employed to construct the ROMs with the two aforementioned

error estimators: PD-EB and PD-ES.

Results

The training set Ptrain consists of 200 sample points randomly distributed in the parameter

domain P. Figure 4.1 shows the decay of both error estimations and the corresponding

true error for the output during the RB construction process. ROM-1 and ROM-2 are the

ROMs constructed by using PD-EB and PD-ES, respectively. It is seen that the proposed

PD-ES outperforms the existing PD-EB.
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Figure 4.1: Decay of the existing primal-dual error bound (PD-EB), the proposed primal-

dual error estimation (PD-ES), and the corresponding true error during the RB construc-

tion process for the linear convection-diffusion equation.
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As mentioned above, the estimation of ρn(µ) (by ρ̃?N ) is based on the fact that it is bounded,

as shown in Corollaries 4.3.2 and 4.3.3. We have carefully checked the assumptions made

in the two corollaries, and the results are detailed as follows. First, we found that all

values of ‖(A(n)
µ )−1‖ are in the interval [0.9, 1.0]. Second, we plot the ratio ‖r̃n+1

pr ‖/‖r̃npr‖
at the chosen parameter µ? as a function of the time index tn for three different RB

dimensions in Figure 4.2. It can be seen that all the values of the ratio are in the range

of [0.4, 3]. In fact, the ratio at other RB dimensions is pretty similar, i.e., it is always

in the range in O(1). This means that the constant α in (4.33) exists, and it is also in

O(1). As a result, α/‖(A(n)
µ )−1‖ ≈ O(1), and the condition on the Lipschitz constant in

(4.35) becomes Lb . 1, which is reasonable for a linear continuous operator, as here for

this example Lb = 1. Thus, all the assumptions in Corollary 4.3.2 are satisfied, so the

quantity ρn(µ) is bounded, and in turn, using ρ̃?N as an estimate of ρn(µ) is practical and

meaningful. Figure 4.3 shows the average ratio ρ̃?N as a function of the RB size N . We

see that it converges to 1 as the RB is extended.
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Figure 4.2: Behavior of the ratio ‖r̃
n+1‖
‖r̃n‖ in the time trajectory corresponding to different

RB dimensions for the linear convection-diffusion equation.

4.4.2 Burgers’ equation

The Burgers’ equation describes the fundamental nonlinear phenomena in fluid dynamics

and is often considered as the starting point to test a new algorithm for nonlinear problems.
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Figure 4.3: Behavior of the average ratio ρ̃?N during the RB construction process for the

linear convection-diffusion equation.

We now use the unsteady viscous Burgers’ equation to show that the proposed error

estimation is applicable for MOR of general nonlinear evolution equations. We further

compare the proposed primal-dual error estimation (PD-ES) with the proposed primal-

only error bound (PO-EB).

Reduced-order modeling of Burgers’ equation

In this work, we consider the unsteady viscous Burgers’ equation as follows:

ut +

(
u2

2

)
x

= νuxx + s(u, x), x ∈ (0, 1), t ∈ (0, T ], (4.49)

where ν ∈ P is the viscosity coefficient, and s(u, x) is the source term. The output of

interest is the value of u at x = 1 as a function of t, i.e., y(t; ν) := u(t, 1; ν).

In this model, the viscosity coefficient ν is considered as the parameter, i.e., µ := ν. Note

that the computation becomes more challenging when ν is smaller, e.g., ν ≈ O(10−3),

because the instability grows exponentially with the evolution time [132]. For MOR, it

becomes more challenging when a smaller value of ν is involved. To numerically verify

this, we choose two parameter domains: P̃ = [0.05, 1] and P = [0.001, 1]. We will see that

the ROM has a better convergence rate and other good properties when P̃ with a larger

71



4. Output Error Bound and Estimation

value of ν is employed. We take T = 2 and s(u, x) ≡ 1 in the following computations.

For discretization, we use the finite volume method to construct the FOM, in the general

form of (3.22).

An a posteriori error estimation for the RBM applied to this equation is proposed in [132],

where the successive constraint method was used to estimate the lower bound of the

stability constant. The error estimation is actually a summation over time of the dual

norm of the residual. As pointed out in [132], this error estimation is no longer useful,

when the viscosity ν is small and the final time T is large. In addition, this error estimation

is applicable to problems that are at most quadratically nonlinear. By contrast, the newly

proposed error estimation is applicable to MOR of general nonlinear evolution equations.

Results

The following results are obtained by using the following initial and boundary conditions:

u(0, x) = 0, x ∈ [0, 1]; u(t, 0) = 0, ux(t, x)|x=1 = 0.

We use a uniform spatial grid with N = 500 cells for the FOM, and ∆t = T/K,K = 1000

for both the FOM and ROM simulations.

Figure 4.4 shows the solutions to the FOM as a function of x and tn. Each line represents

the solution u(x, tn) at the time instance t = tn, n = 10j, j = 0, . . . ,K/10. The evolution

process tends to be steady at final time. For the ROM construction, we choose a training

set with 70 sample points log-uniformly distributed in the parameter domain P, to build

the RB and the basis for the EI, respectively.

The behavior of PO-EB, PD-ES, and the corresponding true error are illustrated in Fig-

ure 4.5. It is seen that in both cases PD-ES works much better than PO-EB. Moreover,

PD-ES is fairly sharp in comparison with the true error. By comparing the two figures

in Figure 4.5, we can see that the convergence rate becomes relatively slow and many

more basis vectors are needed to achieve certain accuracy, when smaller viscosity coeffi-

cient ν is involved. Since this is just an academic numerical example, there is not much

computational time reduction from the ROM. For runtime comparison, we will report the

computational time for the more challenging problems in Chapter 6.
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As discussed in Remark 4.3.4, the constant ρn(µ) can be estimated based on the obser-

vation of the average ratio over all the time steps at the selected parameter µ? at each

iteration step of the greedy algorithm. Note that the ratio is changing with the dimension

of the RB and with the parameter µ? selected at each iteration step. The behavior of the

ratio during the RB extension process is illustrated in Figure 4.6. From Figure 4.6(a),

we see that the ratio decreases (“almost monotonically”) as the RB is extended, which

demonstrates that the difference between ‖r̃n+1
pr ‖ and ‖rn+1

pr ‖ becomes small as the accu-

racy of the ROM is increased. However, when smaller viscosity coefficient ν is involved,

the ratio oscillates during the basis extension process, as shown in Figure 4.6(b). This is

probably because the instability grows too fast when ν is small. In most cases, the value

of the ratio is of the magnitude O(1), when the accuracy of the ROM achieves a certain

degree, which will be further justified in the following examples (see Figures 6.3 and 6.7).

As addressed in Remark 4.3.7, with well-chosen time steps, the approximation errors

(ûn(µ)− un(µ)) can be evenly distributed in the time trajectory so that the norm of the

vectors r̃n+1
pr = A

(n)
µ un+1(µ) − A(n)

µ ûn+1(µ) is of the same magnitude over time, i.e., the

assumptions in (4.35) and (4.43) (in Corollaries 4.3.2 and 4.3.3, respectively) are fulfilled.

To numerically verify this, we plot the ratio
‖r̃n+1

pr ‖
‖r̃npr‖

as a function of time instant tn for

different RB dimensions in Figure 4.7. It is seen that the ratio is in the range of [0.85, 1.5],

which implies that the constants α, α and ᾱ are all of the magnitude of O(1). In addition,

based on our discretization scheme, the norm of the matrix inverse ‖(A(n)
µ )−1‖ are all in

range of [0.95, 1] for all µ ∈ Ptrain. Thus, α/‖(A(n)
µ )−1‖ ≈ O(1), which means that the

assumption on the Lipschitz constant Lb in (4.34) in Corollary 4.3.2 is reasonable.
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Figure 4.4: Solution to the Burgers’ equation as a function of x and tn with different

viscosity coefficients ν. Each line represents the solution u(x, tn) at the time instance

t = tn, n = 10j, j = 0, . . . ,K/10.
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Figure 4.5: Decay of the primal-dual error bound (PO-EB), the primal-dual error estima-

tion (PD-ES), and the corresponding true error during the RB construction process for

the Burgers’ equation. (a) ν ∈ P̃ = [0.05, 1]; (b) ν ∈ P = [0.001, 1].

1 3 5 7 9 11 13
2

4

6

8

10

12

14

Size of RB: N

R
a
ti
o

(a) ν ∈ P̃

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

Size of RB: N

R
a
ti
o

(b) ν ∈ P

Figure 4.6: Behavior of the average ratio ρ̃?N during the RB construction process for the

Burgers’ equation. (a) ν ∈ P̃ = [0.05, 1]; (b) ν ∈ P = [0.001, 1].

75



4. Output Error Bound and Estimation

0 200 400 600 800 1000
0

0.5

1

1.5

Time index: t
n

R
a
ti
o

 

 

N=2

N=6

N=12

(a) ν ∈ P̃

0 200 400 600 800 1000
0.5

1

1.5

2

2.5

Time index: t
n

R
a
ti
o

 

 

N=2

N=15

N=27

(b) ν ∈ P

Figure 4.7: Behavior of the ratio ‖r̃
n+1‖
‖r̃n‖ in the time trajectory corresponding to different

RB dimensions for the Burgers’ equation. (a) ν ∈ P̃ = [0.05, 1]; (b) ν ∈ P = [0.001, 1].

76



Chapter 5

Acceleration and Adaptivity

for RB Construction

Contents

5.1 Motivation and previous work . . . . . . . . . . . . . . . . . . . . 78
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5.3 Accelerating FOM simulation using ROMs as predictors . . . . 82

(P)MOR aims at constructing a ROM that is used as a surrogate of the FOM to reproduce

its main characteristics cheaply. Often, the construction of the ROM and the simulation of

the ROM can be implemented in the strategy of offline-online decomposition, as discussed

in Chapter 3. However, the offline computation can be fairly expensive, i.e., constructing

such a ROM is often costly, especially for snapshot-based MOR methods because simu-

lations based on the FOM need to be performed many times to collect the snapshots for

constructing the RB.

In this chapter, we propose two strategies to reduce the offline cost. The first is a tech-

nique called ASS, which is used to collect the snapshots effectively so that the selected

snapshots contain only the most representative information with a relatively small number

of vectors. As a result, the basis can be efficiently constructed. The other is to accelerate

FOM simulation using ROMs as predictors during the RB construction process, which is

typically useful for multi-state systems. As discussed previously, the RB is often itera-

tively constructed for parametric systems. At each iteration, a FOM simulation has to be

performed at a chosen parameter to enrich the current RB. Thus, reducing the runtime of
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5. Acceleration and Adaptivity for RB Construction

FOM simulation will lead to reduced computational time for the RB construction.

5.1 Motivation and previous work

ROMs are employed in many applications due to its computational advantages, such as

small size (order) and the ability of reproducing the main dynamics of the original large-

scale model. However, constructing such a ROM is often costly, especially for snapshot-

based MOR methods. As shown in Algorithm 2, many simulations of the FOM need

to be performed to collect the snapshots. Moreover, the quality of the snapshots has

great influence on the quality of the ROM, as discussed in Section 3.3.2. If the collected

snapshots do not contain sufficient system information, the resulting ROM will most likely

to be of low accuracy. Therefore, effective collection of snapshots is crucial for snapshot-

based MOR methods, and it determines the efficiency of the subsequent computation and

the accuracy of the resulting ROM.

As mentioned earlier, the snapshots are usually collected from the solutions to the FOM

(for RB generation) or function evaluations (for CRB generation) at different parameter

samples in the training set and/or different time instances. For the generation of the RB

or CRB, a training set Ptrain or Pcrb
train of parameters is usually determined a priori. On the

one hand, the size of the training set is desired to be large so that sufficient information

of the parametric system can be collected. On the other hand, the RB or CRB should be

generated efficiently.

To reduce the cost for RB generation, many efforts have been made in the last decade.

These include, e.g., the hp certified RBM [53], adaptive grid partition in parameter

space [82, 83], and the greedy-based adaptive sampling approach for MOR by using model-

constrained optimization [34]. More recently, an adaptive greedy procedure is proposed

for constructing the optimal training set in [141]. In these papers, the authors intend to

choose the sample points adaptively and get an “optimal” training set. The “optimal”

training set means that the original manifoldM := {u(µ) | µ ∈ P} can be well represented

by the submanifold M̂ := {u(µ) | µ ∈ Ptrain} induced by the sample set Ptrain with its

size as small as possible.

In particular, for time-dependent problems, if the dynamics are of interest, the solution at
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5.2 Adaptive snapshot selection

the time instances should be collected as snapshots. In such a case, even with the “optimal”

training set, the number of snapshots can be huge if the total number of time steps for

a single parameter is large. Such problems arise from, e.g., chemical engineering, fluid

dynamics, and aerodynamics. A large number of snapshots lead to expensive subsequent

computations. For example, for the generation of the RB, the POD mode in Step 4 of

Algorithm 2 is hard to compute from the SVD of Ū , due to the large size of the matrix Ū .

For the generation of the CRB, e.g., in Step 5 of Algorithm 3, the cost for solving theM×M
systems increases drastically as the dimension M increases, because the number of the

systems, i.e., the number of vectors in the set G = {g(un(µ);µ) | µ ∈ Pcrb
train, n = 0, . . . ,K},

is large. On the other hand, if we just trivially select parts of the solutions, e.g., at every

two or several time steps, the resulting ROM might be of low accuracy because important

information may have been lost due to such a naive snapshot selection. To circumvent

this problem, we introduce an adaptive technique in the next section.

5.2 Adaptive snapshot selection

To further reduce the cost and complexity of the offline computation, we propose a tech-

nique of adaptive snapshot selection that we call ASS for the generation of the RB and/or

the CRB. The basic idea of ASS was introduced in our recent work [25], and it is extended

into a more general framework in [187].

For an “optimal” or a selected training set, we propose to select the snapshots adap-

tively according to the variation of the trajectory S = {vn}Kn=0, e.g., {un(µ)}Kn=0 or

{g(un(µ);µ)}Kn=0. The idea is to discard the redundant (“close to” linearly dependent)

information from the trajectory. As is known that the snapshots are used to construct a

(linearly independent) basis for MOR, therefore, the linearly dependent information in the

snapshots should be discarded as early as possible. More precisely, assume that SA is a

subspace spanned by the selected snapshots, and v is a tested vector in the trajectory. It is

unnecessary to include the vector v as a new snapshot if it is linearly dependent on SA. To

this end, define an indicator φ(SA, v), which is used to measure the linear dependence of

SA and v. Then v is taken as a new snapshot only when v cannot be linearly represented

by the vectors in SA, by checking whether φ(SA, v) satisfies certain conditions. Given a

tolerance εASS, assume that φ(SA, v) ≤ εASS indicates they are “almost” linearly depen-
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dent, i.e., v can be “almost” linearly represented by the vectors of SA, the ASS process is

realized with the following Algorithm 4.

Algorithm 4 Adaptive snapshot selection (ASS)

Input: {vn}Kn=0, εASS.

Output: Selected snapshot matrix SA = [vn1 , . . . , vn` ].

1: Initialization: j = 1, nj = 0, SA = [vnj ].

2: for n = 1, . . . ,K do

3: if φ
(
SA, v

)
> εASS then

4: j = j + 1.

5: nj = n .

6: SA = [SA, vnj ].

7: end if

8: end for

In practice, the indicator can be defined as the angle between the vector v and the subspace

spanned by the selected snapshots SA, i.e., φ(SA, v) := ∠(SA, v). When φ(SA, v) is large,

the correlation between SA and v is weak. Additionally, one can use a relaxed but cheaper

condition to measure the linear dependence, i.e., φ(SA, v) := ∠(vnj , v), where vnj is the

last selected snapshot. This recovers the original ASS in [25].

Here we emphasize that vnj is the last selected snapshot rather than the last snapshot in

the trajectory. Quite often, the “last selected” snapshot is not the last snapshot in the

trajectory. For example, assume that at the 10th iteration step, two snapshots have been

selected already, then at the 11th iteration step, we check the angle between the current

tested vector v and the second selected snapshot, rather than the angle between v and

the 10th snapshot (the last snapshot in the trajectory). In this way, the deleted vector

v is always the one that is “almost” linearly dependent to the selected snapshot. Once it

cannot be well represented by the last selected snapshot, it will always be selected by the

ASS algorithm, though it might be almost linearly dependent to the 10th snapshot, i.e.

the last snapshot in the trajectory.

Remark 5.2.1. To make sure that any vector which cannot be fully represented by the

selected snapshots is selected, and in turn, all the selected snapshots represent the infor-

mation of the whole trajectory as complete as possible, we take a very small value of the

tolerance parameter εASS in the algorithm. However, the optimal value of the tolerance
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5.2 Adaptive snapshot selection

may be problem dependent and is thus more or less heuristic.

The ASS technique can be easily combined with the aforementioned algorithms for RB

and CRB generation. For example, Algorithm 5 shows the combination of ASS with the

POD-Greedy algorithm (Algorithm 2). In comparison with the original Algorithm 2, only

one step is additional, while the number of the selected snapshots is largely reduced. When

the ASS technique is employed for the construction of the CRB, much fewer vectors in

G = {g(un(µ);µ) | µ ∈ Pcrb
train, n = 0, . . . ,K} are collected as snapshots, so the subsequent

computation is comparatively cheap. In Algorithm 5, the ASS technique serves as a

pretreatment of the snapshots in the sense that it produces a much thinner matrix of

selected snapshots, so that the matrix is suitable for SVD with the limited computer

memory. It can be considered as preprocessing for SVD.

Algorithm 5 RB generation using ASS-POD-Greedy

Input: Ptrain, µ0, εROM(< 1), Nmax.

Output: RB V = [v1, . . . , vN ].

1: Initialization: N = 0, V = [ ], µ? = µ0, η(µ?) = 1.

2: while ψN (µ?) > εROM & N < Nmax do

3: Simulate the FOM at µ?, and adaptively select snapshots using Algorithm 4 to get

SA := {un1(µ?), . . . , u
n`(µ?)} .

4: Perform POD process:

Compute ŪA := [un1 , . . . , ūn` ], ūj := uj(µ?) − ΠWN
[uj(µ?)], j = 1, . . . , `, where

ΠWN
[·] is the projection operator onto the current space WN := span{v1, . . . , vN}.

Compute the first POD mode vN+1, the left singular vector of the matrix ŪA.

5: Enrich the RB V := [V, vN+1].

6: N = N + 1.

7: Find µ? := arg max
µ∈Ptrain

ψN (µ).

8: end while
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5.3 Accelerating FOM simulation using ROMs as predictors

As shown in Algorithm 2 in Chapter 3, the RB is generated iteratively through a greedy

algorithm for parametric systems. At each iteration, a FOM simulation needs to be per-

formed at the chosen parameter to collect the snapshots for the enrichment of the current

RB. It usually takes several iterations to obtain a ROM with the required accuracy. A

single FOM simulation is often costly, let alone repeated simulations under parameter

variations, e.g., during RB generation for the SMB chromatographic model under consid-

eration. We next propose to accelerate the FOM simulation during the basis construction

to reduce the offline cost.

For multi-stage systems, like SMB chromatography introduced in Chapter 2, it usually

takes many cycles (or stages) to reach the final state, e.g., the CSS of SMB chromatography.

A key observation of such kind of system is: although the initial state does not influence

the final state, it does affect the number of cycles required to achieve the final state, and in

turn the computational time for achieving the final state [116]. This implies that a “good”

initial state may result in less number of cycles to reach the final state. Thus, predicting

a “good” initial state is crucial to shortening the computational time of the final state.

In fact, for SMB chromatography, a cascadic multi-level method is proposed to accelerate

the CSS computation in [116]. The idea of the cascadic multi-level method is to use a

lower-fidelity model with a coarse spatial and/or temporal mesh to predict a CSS, and use

it as the initial state on a refined mesh to obtain a CSS with desired accuracy. By doing

so, the runtime for acquiring the CSS of the system can be reduced if the refinement is

chosen appropriately. However, how to refine the spatial/temporal mesh, e.g., how many

levels of refinement should be employed, is empirical.

We propose to use the intermediate ROMs that are generated during the RB construction

process to accelerate FOM simulation for multi-stage systems such as SMB chromatog-

raphy considered in this thesis. At each iteration of the RB generation process, the

intermediate ROM is not yet accurate enough, but its final state (e.g., the CSS in SMB

chromatography) is an approximation of that of the FOM and this state should thus be a

“good” initial state for the FOM simulation in a certain sense.

During the basis construction process, a FOM simulation of the SMB model needs to
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5.3 Accelerating FOM simulation using ROMs as predictors

be performed at the selected parameter to acquire the snapshots for the enrichment of

the current RB, as shown in Step 3 of Algorithm 2. This FOM simulation is often time-

consuming, because it usually starts with a trivial initial state, e.g., zero-initial conditions.

Instead of using a trivial initial condition, we use the approximated CSS solution obtained

by solving the intermediate ROM constructed during the previous iteration step as the

initial state to start the FOM simulation at the current iteration step in Algorithm 2. In

this way, the runtime of the FOM simulation can be reduced because this “good” initial

state reduces the number of switching periods required to achieve the CSS. Certainly,

the reduction depends on the accuracy of the (intermediate) ROM. The more accurate

the (intermediate) ROM is, the more the runtime is reduced. Since the basis construction

usually takes many iterations to obtain a ROM with desired accuracy, reducing the runtime

for the FOM simulations implies that the runtime for the basis construction can be largely

reduced. Moreover, using a ROM as a predictor is easy to implement when the POD-

Greedy algorithm is employed for the basis generation. In fact, only one step needs to be

modified. That is, in Step 3 of Algorithm 2, a ROM simulation at the selected parameter

is first performed, and then the FOM simulation starts from the CSS solution to the ROM

rather than a trivial initial state, as shown in Algorithm 6 in the following.

Algorithm 6 RB generation for the SMB model using the POD-Greedy al-

gorithm with ROM prediction
Input: Ptrain, µ0, εROM(< 1), Nmax.

Output: RB V = [v1, . . . , vN ].

1: Initialization: N = 0, µ? = µ0, ψN (µ?) = 1, VN = {0}, V = [ ].

2: while ψN (µ?) > εROM & N < Nmax do

3: Simulate the ROM at µ? to acquire its CSS solution ûKCSS(µ?), and simulate the

FOM with u0(µ?) = ûKCSS(µ?) to collect snapshots {un(µ?)}Kn=0. (u0(µ?) = 0, a

trivial initial state, when N = 0.)

4: Implement Steps 4–7 in Algorithm 2.

5: end while

Actually, the idea of using a ROM as a predictor can be found in [121], where the solution

to a ROM is used as the initial state for the next iteration during an iterative process of

solving a large-scale linear system (Au = b, A ∈ RN×N , b ∈ RN ) to reduce the number

of the iterations. By contrast, we use the solution to the ROM as the initial state for the

FOM simulation to reduce the runtime for constructing the ROM.
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Numerical Experiments
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In this chapter, we apply the RB PMOR method to three real-life models, which are

described by parametric time-dependent systems and have been introduced in Chapter 2.

The derived error estimations in Chapter 4 are employed to guide the parameter sampling

during the basis construction process. The accelerating techniques proposed in Chapter 5

are used to build the ROM efficiently. To show the performance of the resulting ROMs, we

use the ROMs to implement the underlying optimization problems. In addition, UQ based

on the ROM for nonlinear SMB chromatography is explored so that the performance of

the ROM is further demonstrated. All the computations were carried out using C++ code
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6.1 MOR for batch chromatography

on a PC with an Intel Core 2 Quad CPU Q9550 2.83 GHz 4.00 GB RAM unless stated

otherwise. Parts of the following results have originally presented in [187, 188, 189].

For conciseness, we adopt the following notations: PO-EB refers to the proposed primal-

only output error bound in (4.6), PO-EB-f refers to the proposed primal-only error bound

for the field variable in (4.12), PD-ES refers to the proposed primal-dual output error

bound in (4.32).

6.1 MOR for batch chromatography

Batch chromatography is one of the major processes used for separation problems in chem-

ical engineering, and it is described by a coupled system of convection-diffusion equations,

as introduced in Chapter 2. In this section, we investigate the optimal operation of batch

chromatography. The operating variable µ = (Q, tin) is optimally chosen in a reasonable

parameter domain to maximize the production rate Pr(µ), while respecting the require-

ment of the recovery yield Rec(µ). Here,

Pr(µ) :=
Qs(µ)

tcyc
, Rec(µ) :=

s(µ)

tin(cf
a + cf

b)
,

where

s(µ) =

∫ t4

t3

ca,O(t;µ) dt+

∫ t2

t1

cb,O(t;µ) dt, (6.1)

and cz,O(t;µ) = cz(t, 1;µ) is the concentration of component z (z = a, b) at the outlet of

the column. The optimization problem of batch chromatography can be formulated as

follows:

min
µ∈P
{−Pr(µ)},

s.t. Recmin −Rec(µ) ≤ 0, µ ∈ P,

cz(µ), qz(µ) are the solutions to the system (2.1)–(2.3), z = a, b.

(6.2)

It is worth noting that when solving the system (2.1)–(2.3), the time step size must be

taken relatively small so that the cutting points ti (i = 1, . . . , 4) in (6.1) are properly

determined, and in turn, the related quantities s(µ), P r(µ), and Rec(µ) can be accurately

evaluated. The small time step size results in a large number (up to O(104)) of total time
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steps for every parameter µ ∈ P, which causes difficulties in the error estimation and the

generation of the RB.

The model parameters and operating conditions are presented in Table 6.1. The Henry

constants and thermodynamic coefficients in the isotherm equation (2.2) are given in Ta-

ble 6.2. The parameter domain for the operating variable µ is P = [0.0667, 0.1667] ×
[0.5, 2.0]. The minimum recovery yield Recmin is taken as 80.0%, and the purity re-

quirements are specified as Pua = 95.0%, Pub = 95.0%, which are used to determine the

cutting points t2 and t3 in s(µ). To capture the dynamics precisely, the dimension of

spatial discretization N in the FOM (2.15) is taken as 1500.

Table 6.1: Model parameters and operating conditions for the batch chromatographic

model.

Column dimensions (cm) 2.6 × 10.5

Column porosity ε (-) 0.4

Péclet number Pe (-) 2000

Mass-transfer coefficients κz, z = a, b (1/s) 0.1

Feed concentrations cf
z, z = a, b (g/l) 2.9

Table 6.2: Coefficients of the adsorption isotherm equation for the batch chromatographic

model.

Ha1 (-) 2.69 Hb1 (-) 3.73

Ha2 (-) 0.1 Hb2 (-) 0.3

Ka1 (l/g) 0.0336 Kb1 (l/g) 0.0446

Ka2 (l/g) 1.0 Kb2 (l/g) 3.0

In this section, we show the derivation of the FOM based on the finite volume discretization

for the batch chromatographic model (2.1)–(2.3), and the efficient construction of the

ROM. We use this example to show the performance of the derived error estimations and

the ASS technique presented in the previous chapters. Finally, we show the results for the

ROM-based optimization of batch chromatography.
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6.1 MOR for batch chromatography

6.1.1 ROM construction for batch chromatography

Recall that the fully discrete system for batch chromatographic model is given in (2.15).

That is, the FOM reads

Acn+1
z = Bcnz + dnz −

1− ε
ε

∆thnz , (6.3)

qn+1
z = qnz + ∆thnz , z = a, b, (6.4)

where cnz := cnz (µ), qnz := qnz (µ), dnz := dnz (µ), hnz := hnz (µ) ∈ RN , A,B ∈ RN×N . Detailed

description can be found in Section 2.2.1. The parameter µ characterizes the operating

conditions, i.e., µ := (Q, tin) in this work.

We now construct a RB for each field variable. Let N ∈ N be the number of the RB

vectors for cz and qz, and M ∈ N be the number of the CRB vectors for the operators

ha and hb. Here for simplicity of analysis, we use the same dimension N of the RB for

ca, cb, qa and qb, but one can certainly take different dimensions for the RB. This also

applies to ha and hb. Assume that Gz ∈ RN×M is the CRB for the nonlinear operator hz,

and Vcz , Vqz ∈ RN×N
(
V T
czVcz = I, V T

qzVqz = I
)

are the RB for the field variables cz and qz,

respectively, i.e.,

hnz ≈ Gzβnz , cnz ≈ ĉnz := Vcza
n
cz , qnz ≈ q̂nz := Vqza

n
qz , n = 0, . . . ,K. (6.5)

Applying Galerkin projection and empirical operator interpolation, we formulate the ROM

for the FOM (6.3)–(6.4) as follows:

Âcza
n+1
cz = B̂cza

n
cz + dn0 d̂cz −

1− ε
ε

∆tĤczβ
n
z , (6.6)

an+1
qz = anqz + ∆tĤqzβ

n
z , z = a, b, (6.7)

where ancz := ancz(µ), anqz := anqz(µ) ∈ RN are the unknown vectors of the ROM, and

Âcz = V T
czAVcz , B̂cz = V T

czBVcz , d̂cz = V T
cz e1, Ĥcz = V T

czGz, and Ĥqz = V T
qzGz are the

reduced matrices.

Note that βnz := βnz (µ) = (βz
n
1 , . . . , βz

n
M )T ∈ RM are the vectors of coefficients for the

empirical interpolation of the nonlinear operator hnz , and they are parameter- and time-

dependent. The evaluation of βnz is essentially the same as the computation of the coef-

ficients σi(µ) in (3.30) in Algorithm 3. More specifically, βnz are obtained by solving the

87



6. Numerical Experiments

following system of equations:

M∑
i=1

βz
n
i Gzi(xj) = hz

n
j , j = 1, . . . ,M.

Here, the evaluation of hz
n
j only needs the jth entries (ca

n
j , cb

n
j and qz

n
j ) of the solution

vectors (ca
n, cb

n and qz
n), i.e., hz

n
j = hz(ca

n
j , cb

n
j , qz

n
j ). For the general operator empirical

interpolation, the value of the operator at the interpolation point (e.g., xj) may depend

on more entries of the solution vectors (e.g., the jth entries and their neighbors) [49, 87].

As discussed in Section 3.5, the efficiency of the RB approximation is ensured by a strategy

of suitable offline-online decomposition. During the offline stage, given the training sets

Pcrb
train and Ptrain (they can be chosen differently), Algorithm 3 is implemented to generate

the CRB Gz for the nonlinear operator hz. Then Algorithm 5 is used to generate the

RB matrices Vcz and Vqz for cz and qz, respectively. As a result, all N -dependent and

µ-independent terms are precomputed and assembled to construct the reduced matrices

(e.g., Âcz , B̂cz , d̂cz , Ĥcz , and Ĥqz). For a newly given parameter µ ∈ P, the small-sized

ROM (6.6)–(6.7) is rapidly assembled and solved online so that the solution to the FOM

(6.3)–(6.4) can be recovered by (6.5).

Performance of ASS To investigate the performance of the technique of ASS, we

compare the runtime for RB and CRB generation with different threshold values εASS. As

shown in Algorithm 5 in Chapter 5, the ASS technique is combined with the POD-Greedy

algorithm and is used for RB generation. The error indicator ψN (µ?) in Algorithm 5

involves the contribution from EI. To efficiently generate a CRB for EI, the ASS technique

is also employed. The training set for CRB generation is a sample set with 25 sample points

of µ = (Q, tin), uniformly distributed in the parameter domain. For each sample point,

Algorithm 4 is used to adaptively choose the snapshots for the generation of the CRB. The

runtime of CRB generation with different choices of εASS is shown in Table 6.3. It is seen

that the larger threshold εASS is used, the more the runtime is saved. A lot of redundant

information is discarded due to the adaptive selection process. Particularly, with the

tolerance εASS = 1.0× 10−4, the computational time is reduced by 90.3% compared with

that of the original algorithm without ASS. It should be mentioned that the tolerance εASS

cannot be taken too large; otherwise too much information from the chosen parameter

will be discarded, and the parameter might be selected again afterward due to the bad

approximation at this parameter. A repeated selection requires one more full simulation at
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this parameter, which probably takes more time. Nevertheless, how to choose an optimal

threshold is empirical and problem-dependent.

Table 6.3: Comparison of runtime of the generation of CRBs (Ga, Gb) at the same error

tolerance (εCRB = 1.0× 10−7) with different thresholds for ASS. M ′ = 1 is the number of

the basis vectors for error estimation.
εASS ‖ξM+M ′,a‖ ‖ξM+M ′,b‖ M (GaGb) Runtime (h)

no ASS – 9.2× 10−8 8.5× 10−8 146 152 62.50 (-)

ASS 1.0× 10−4 9.6× 10−8 8.1× 10−8 147 152 6.05 (−90.3%)

ASS 1.0× 10−3 8.7× 10−8 9.9× 10−8 147 152 3.62 (−94.2%)

ASS 1.0× 10−2 9.4× 10−8 6.2× 10−8 144 150 2.70 (−95.7%)

Table 6.4 shows the comparison of the runtime for RB generation by using the POD-

Greedy algorithm with and without ASS. Note that the CRB is precomputed with εASS =

1.0×10−4 for the ASS, and the corresponding runtime for CRB generation is not included

here. The training set is a sample set with 60 points uniformly distributed in the parameter

domain. Here and in the following, the tolerances are chosen as εCRB = 1.0 × 10−7,

εROM = 1.0×10−4, εASS = 1.0×10−4. It is seen that the runtime for generating the ROM

with ASS is reduced by 54.1% compared with that without ASS at the same tolerance

εRB. Moreover, the accuracy of the resulting ROM with ASS is almost the same as that

without ASS.

Table 6.4: Comparison of the runtime for RB generation using the POD-Greedy algorithm

with and without ASS.
Algorithms Runtime (h) 1

POD-Greedy 14.8

ASS-POD-Greedy 6.8 (−54.1%)

1 Due to memory limitations of the PC, this computation was done on a workstation

with 4 Intel Xeon E7-8837 CPUs (8 cores per CPU) 2.67 GHz, 1 TB RAM.

It is worth noting that the ASS technique is devised for effectively collecting snapshots, and

it is independent of the error indicator (true error or error bound) employed for the basis

construction. Thus, the ASS is also applicable to other snapshot-based MOR methods,

e.g., the POD method and the POD-DEIM method [43].
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6.1.2 Output error estimation for batch chromatography

The error estimations proposed in Chapter 4 are derived for a scalar evolution equation,

a single PDE. For a system of several coupled PDEs, one can analogously derive an

error estimation for the underlying system by taking all the field variables as one vector.

However, the behavior of the solution to each PDE might be quite different in reality.

Therefore, it is desired to generate different reduced bases for each field variable, rather

than using a unified basis for all the field variables.

Here, we propose to apply the error estimation to each field variable of the underlying

system (2.15). Taking the primal-only error bound in (4.6) applied to for the field variable

cz as an example and recalling the detailed simulation for cz (see (2.15)),

Acn+1
z = Bcnz + dnz −

1− ε
ε

∆thnz , (6.8)

the residual caused by the approximate solution ĉnz in (6.5) is

rn+1
cz (µ) := Bĉnz + dnz −

1− ε
ε

∆tIM [hz(ĉ
n
z )]−Aĉn+1

z . (6.9)

Observe that (6.8), (6.9) correspond to (4.1), (4.2) in the general case, respectively. Com-

pared to the general form (4.1), the additional term dnz in (6.8) comes from the Neumann

boundary condition, which does not depend on the solution cnz . Additionally, the coeffi-

cient matrices A and B are independent of time. Instead of requiring a Lipschitz continuity

condition for hz as a function of cna , cnb and qnz , we assume there exists a positive constant

Lh such that

‖hz(cna , cnb , qnz )− hz(ĉna , ĉnb , q̂nz )‖ ≤ Lh ‖cnz − ĉnz ‖ , n = 0, . . . ,K. (6.10)

Assuming the initial projection error is vanishing e0
cz(µ) = 0, we have a similar estimation

for the approximation error encz(µ) := cnz − ĉnz (n = 1, . . . ,K) as the following:

∥∥encz(µ)
∥∥ ≤ n−1∑

k=0

∥∥A−1
∥∥n−k Gn−1−k

(
τεkEI(µ) +

∥∥∥rk+1
cz (µ)

∥∥∥) , (6.11)

where G = ‖B‖+ τLh, τ = 1−ε
ε ∆t. More tightly,∥∥encz(µ)

∥∥ ≤ ηnN,M,cz(µ)

:=
n−1∑
k=0

(GF,c)
n−1−k

(
τ
∥∥A−1

∥∥ εkEI(µ) +
∥∥∥A−1rk+1

cz (µ)
∥∥∥) , (6.12)
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6.1 MOR for batch chromatography

where GF,c =
∥∥A−1B

∥∥+ τLh
∥∥A−1

∥∥.

Analogously, the error bound for the output of interest encz ,O(µ) := Pcnz − P ĉnz can be

obtained based on the error bound of the field variable. Similar to (4.12), we have∥∥∥en+1
cz ,O

(µ)
∥∥∥ ≤ η̃n+1

N,M,cz
(µ)

:= GO,cη
n
N,M,cz(µ) + τ

∥∥PA−1
∥∥ εnEI(µ) + ‖P‖

∥∥A−1rn+1
cz (µ)

∥∥ , (6.13)

where GO,c =
∥∥PA−1B

∥∥+ τLh
∥∥PA−1

∥∥. Note that P = (0, . . . , 0, 1) ∈ RN in this model,

which means that the norm of the output en+1
cz ,O

(µ) is the absolute value of the last entry

of the field variable error en+1
cz (µ).

Remark 6.1.1. The error estimate for qa and qb in (2.15) can also be obtained similarly

by following the derivation of the error bound for cz presented earlier. As the output of

interest for the system in (2.15) only depends on ca and cb, the error estimations for qa

and qb are not needed for the output error bound, and therefore are not presented here.

Remark 6.1.2. As mentioned earlier, it is possible to derive an error bound for the field

variables U = (ca, cb, qa, qb)
T by considering hz(ca, cb, qz) as a function of the vector U.

However, if the output error bound is derived by considering all the field variables together,

the error bound for the vector U (denoted as ηnN,M,U(µ)) will be involved, just like the error

bound ηnN,M,cz
(µ) for the field variable cz being involved in the output error bound in (6.13).

Obviously, the error bound ηnN,M,U(µ) is much rougher than the bound ηnN,M,cz
(µ).

Note that the above application of the output error bound in (4.12) by handling each field

variable separately is also applied to the primal-dual output error estimation presented in

Section 4.3 for batch chromatography. Moreover, for the SMB model to be presented in

the following sections, the error estimation for the underlying system can be analogously

derived based on that for a scalar equation derived in Chapter 4.

Performance of the primal-only error bound and the primal-dual output error

estimation In the chromatographic model, given a parameter µ, the values of Pr(µ)

and Rec(µ) in (6.2) are determined by the concentrations at the outlet of the column

cnz,O(µ) = Pcnz (µ), n = 0, . . . ,K, z = a, b, which constitute the output of the FOM in

(2.15). Consequently, the output error bound will be taken as the error indicator ψN (µ)

in the greedy algorithm (e.g., Algorithm 5) for the generation of the RB, which yields a

goal-oriented ROM.
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Note that the error bound η̃n+1
N,M,cz

(µ) in (6.13) is the bound for the output error of the

component cz at the time instance tn+1 for a given parameter µ ∈ P. We use the following

error indicator in Algorithm 5, ψN (µ) := max
µ∈Ptrain

max
z∈{a,b}

¯̃ηN,M,cz(µ), where ¯̃ηN,M,cz(µ) :=

1
K

∑K
n=1 η̃

n
N,M,cz

(µ) is the average of the error bound for the output of cz in the whole

evolution process. In accordance, we define the reference true output error as emax
N :=

max
µ∈Ptrain

ēN (µ), where ēN (µ) := max
z∈{a,b}

ēN,cz(µ), ēN,cz(µ) := 1
K

∑K
n=1 ‖cnz,O(µ) − ĉnz,O(µ)||,

and ĉnz,O(µ) is the approximate output response computed by the ROM in (6.6)–(6.7).
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Figure 6.1: Behavior of the primal-only error bounds (PO-EB-f and PO-EB) and the true

output error during the RB construction process for batch chromatography. The field

variable error bound is defined as ηN,cz := max
µ∈Ptrain

max
z∈{a,b}

{η̄N,M,cz(µ)}, where η̄N,M,cz(µ) :=

1
K

∑K
n=1 η

n
N,M,cz

(µ).

Figure 6.1 shows the behavior of the primal-only error bounds: the proposed primal-only

output error bound (PO-EB) and the primal-only filed variable error bound (PO-EB-f),

and the corresponding true output error during the RB extension using Algorithm 5. It is

seen that the output error bound stagnate after certain steps, although the true error is

very small already. The inefficiency of the error bound is mainly due to the accumulation

of the errors over all the previous time steps. The error bound becomes less efficient

when more and more previous errors are accumulated into the current error estimation

over time. In such a case, a sharper error bound should be employed, as explored in
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6.1 MOR for batch chromatography

Section 4.3 and will be demonstrated in the following. Nevertheless, in the absence of

better error bound, an early-stop criterion can be employed as a remedy to the stagnation

resulting from overestimation of the error bound. That is, when the stagnation begins, we

further check the true error at the chosen parameter. If the true error at this parameter

is small enough (e.g., less than the user-specified tolerance), it is assumed that the ROM

is sufficiently accurate and the iteration can be stopped. For more details, please refer

to [187].

To circumvent the stagnation of PO-EB, we use the proposed primal-dual output error

estimation (PD-ES) in Section 4.3. Since we have two outputs (ca,O(t;µ), cb,O(t;µ)) in

this model, we define a dual system for each output to compute the individual output

error estimation and take the maximum as the final error estimation for the individual,

as discussed in Remark 4.3.8. Figure 6.2 shows the decay of the error estimation as the

RB is enriched. It is seen that PD-ES works much better than PD-EB. PD-ES goes below

the prespecified tolerance as the number of the RB increases to 45. By contrast, PO-EB

almost stagnates and is still above the tolerance.
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Figure 6.2: Decay of the primal-only error bound (PO-EB), the primal-dual error estima-

tion (PD-ES), and the corresponding true error during the RB construction process for

the batch chromatographic model.

To show the efficiency of PD-ES, we compare the runtime for the generation of the RB.

From Table 6.5, we see that using PD-ES takes slightly more time than using PO-EB. This
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is because the residual of one additional dual system needs to be computed for PD-ES.

However, since PD-ES is much more accurate than PO-EB, it deserves to spend a bit more

computational time for getting a more reliable ROM.

Table 6.5: Comparison of runtime for RB generation using two error estimations.

Error indicator Runtime (h)*

PO-EB 6.8

PD-ES 7.6

* Due to memory limitations of the PC, these computations were done on a workstation

with 4 Intel Xeon E7-8837 CPUs (8 cores per CPU) 2.67 GHz, 1 TB RAM.

Figure 6.3 shows the behavior of the average ratio ρ̃?N during the RB extension process.

We have the same conclusion as that for the academic examples presented in Section 4.4,

i.e., the difference between ‖r̃n+1
pr ‖ and ‖rn+1

pr ‖ becomes small as the accuracy of the ROM

is increased. The ratio stays in the scale of O(1) when the number of basis vectors is larger

than 20. This further shows that the assumption made in Corollaries 4.3.2 and 4.3.3 in

Section 4.3 are reasonable.
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Figure 6.3: Behavior of the average ratio ρ̃?N during the RB construction process for the

batch chromatographic model.

Figure 6.4 shows the location of the parameters selected during the RB extension process

with the greedy algorithm. As mentioned in Section 3.3.2, for time-dependent problems,
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6.1 MOR for batch chromatography

one parameter value can be repeatedly selected to enrich the current RB. The size of the

circle indicates how frequently the same parameter is selected for the RB extension.
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Figure 6.4: Location of the parameters selected during the RB extension process for batch

chromatography. The size of a circle indicates how frequently the parameter is selected

during the process. The bigger the circle is, the more often the parameter is selected.

ROM validation Before addressing the ROM based optimization, we assess the vali-

dation of the ROM. To this end, we perform full and reduced simulations over a test set

with 500 random samples of the parameter in the feasible domain. Table 6.6 shows the

average runtime and the maximal error over the validation set. It is seen that the average

runtime is sped up by a factor of 57 using the ROM, and the maximal true output error is

8.16× 10−7, which is below the prespecified tolerance: εROM = 1× 10−4. In addition, the

concentrations at the outlet of the column computed by using the FOM and the ROM at

a given parameter µ = (Q, tin) = (0.1018, 1.3487) are plotted in Figure 6.5, which shows

that the ROM in (6.6)–(6.7) reproduces the dynamics of the original FOM in (6.3)–(6.4).

Table 6.6: Comparison of runtime for the full and reduced simulations of the batch chro-

matographic over a validation set with 500 random sample points. (εROM = 1× 10−4)

Model Maximal error Average runtime (s)/SpF

FOM (N = 1500) – 339.02 (-)

ROM (N = 45) 8.16× 10−7 5.95 / 57
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Figure 6.5: Concentrations at the outlet of the column using the FOM (N = 1500) and

the ROM (N = 45) at the parameter µ = (Q, tin) = (0.1018, 1.3487).

6.1.3 ROM-based optimization of batch chromatography

We use the global optimizer NLOPT GN DIRECT L, an efficient gradient-free algorithm

in the open library NLopt [101], to solve the optimization problems. Let µk be the vector

of parameters determined by the optimization procedure at the kth iteration, k = 1, 2, . . . .

When ‖µk+1−µk‖ < εopt, the optimization process is stopped and the optimal solution is

obtained. The tolerance is specified as εopt = 1.0× 10−4. It takes 202 iterations to reach

the feasible point, and in each iteration, there are two function evaluations: one is for the

objective and the other is for the constraints. The optimization results are summarized

in Table 6.7. The ROM-based optimization converges to the optimal solution computed

by the FOM-based optimization. Furthermore, the runtime for solving the FOM-based

optimization is significantly reduced. The speedup factor (SpF) is 58.

Table 6.7: Comparison of the results for the optimization of batch chromatography based

on the FOM (N = 1500) and the ROM (N = 45).

Model Objective (Pr) Optimal solution (µ) #Iterations Runtime (h)/SpF

FOM 0.020264 (0.07964, 1.05445) 202 33.88 / -

ROM 0.020266 (0.07964, 1.05445) 202 0.58 / 58
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6.2 MOR for linear SMB chromatography

6.2 MOR for linear SMB chromatography

SMB chromatography is a continuous multi-column process and has been widely used

as an efficient separation technique in chemical engineering. The general description has

been given in Chapter 2, where it is pointed out that different SMB processes are de-

scribed by different isotherm equations. In this section, we consider an SMB model with

linear isotherm equations. In the following, we first show the model and the underlying

optimization problems. Then, we construct a ROM using the POD-Greedy algorithm and

the RBM. Finally, we show the performance of PD-ES (the proposed primal-dual output

error estimation) and the ROM-based optimization.

6.2.1 Model description and optimization

For the linear SMB model, the adsorption equilibrium in (2.5) is defined by the linear

isotherm equation

qEq
z,k := Hzcz,k, k = 1, . . . , Ncol, (6.14)

with Hz being the Henry constant. It is assumed that Ha > Hb. The model parameters

are summarized in Table 6.8.

Table 6.8: Model parameters and operating conditions for the linear SMB model.

Column dimensions (cm) 2.6 × 11

Column porosity ε (-) 0.4

Péclet number Pe (-) 500

Mass-transfer coefficients κz, z = a, b (1/s) 0.1

Feed concentrations cf
z, z = a, b (g/l) 2.9

Henry constants Ha, Hb (-) 3.86, 2.72

As a case study, we use an SMB model with four zones and eight columns, as shown in

Figure 2.2. In this model, four dimensionless quantities mi, i = I, . . . , IV, and the feed

flow rate QF are chosen as the operating parameters. The four dimensionless quantities
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introduced by the triangle theory [122] are defined as

mi =
Qits − εV
V(1− ε)

, i = I, . . . , IV,

where V is the volume of the column. Given a set of parameters µ := (mI, . . . ,mIV, QF),

the SMB process reaches a CSS with periodic switching along the circularly arranged

columns. The CSS condition is defined (2.14), where the CSS tolerance is taken as εCSS =

1 × 10−4 in this model. The interesting parameter domain is taken as P := [4.2, 4.7] ×
[2.5, 3.0]× [3.5, 4.0]× [2.2, 2.7]× [0.05, 0.1].

In this thesis, we seek the optimal operating conditions that maximize the feed throughput

while respecting the purity requirements and the process constraints. The optimization

problem can be formulated as follows:

min
µ∈P

f(µ) = −QF,

s.t. Pua,min − Pua(µ) ≤ 0,

Pub,min − Pub(µ) ≤ 0,

QI −Qmax ≤ 0,

(6.15)

where

Pua(µ) :=

∫ 1
0 c

E
a,CSS(t, µ)dt∫ 1

0 c
E
a,CSS(t, µ)dt+

∫ 1
0 c

E
b,CSS(t, µ)dt

,

Pub(µ) :=

∫ 1
0 c

R
b,CSS(t, µ)dt∫ 1

0 c
R
a,CSS(t, µ)dt+

∫ 1
0 c

R
b,CSS(t, µ)dt

,

(6.16)

are the product purity at the extract and the raffinate outlets, cE
z,CSS(t, µ) and cR

z,CSS(t, µ)

are the CSS concentrations of cz at the extract and the raffinate outlets, respectively,

z = a, b. The constraints Pua,min, Pub,min, and Qmax will be specified in the numerical

experiments in the following. The output is defined as

y(t, µ) := (cE
a,CSS(t;µ), cR

a,CSS(t;µ), cE
b,CSS(t;µ), cR

b,CSS(t;µ)). (6.17)

Solving such an optimization problem is time-consuming because it takes many iterations

to converge and each iteration needs to simulate the original FOM until the CSS is reached.

We now use MOR to tackle this problem.
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6.2.2 ROM construction for linear SMB chromatography

Similarly to the nonlinear SMB model discretized in Section 2.2.2, we use the finite volume

discretization to construct the FOM as follows:Aµ,zc
n+1
z = Bµ,zc

n
z + rnz + tsκzq

n
z ,

qn+1
z = (1− tsκz∆t)qnz + tsκzHz∆tc

n
z .

Note that the coefficient matrices Aµ,z, Bµ,z ∈ RN×N are time independent compared

with the general form in (3.22), rnz ∈ RN comes from the feed conditions, and it does not

depend on the field variables, which is pretty similar to the nonlinear case presented in

detail in Section 2.2.2. Let Vcz ∈ RN×Ncz , Vqz ∈ RN×Nqz be the RB matrices for the field

variables cz, qz, respectively, and ĉnz := Vcza
n
cz , q̂

n
z := Vqza

n
qz be the reduced approximations

of cnz and qnz , accordingly. Here N is the number of degrees of freedom of the FOM for

each field variable, and Ncz , Nqz are the column numbers of the projection matrices for

cz, qz, respectively, z = a, b. By using Galerkin projection, the ROM is formulated as Âµ,za
n+1
cz = B̂µ,za

n
cz + r̂z + tsκzD̂za

n
qz ,

an+1
qz = (1− tsκz∆t)anqz + tsκzHz∆tD̂

T
z a

n
cz ,

where Âµ,z = V T
czAµ,zVcz , B̂µ,z = V T

czBµ,zVcz ∈ RNcz×Ncz , r̂z = V T
cz r

n
z ∈ RNcz and D̂z =

V T
czVqz ∈ RNcz×Nqz are the reduced matrices, and ancz ∈ RNcz , anqz ∈ RNqz are the unknowns

of the ROM, z = a, b.

The training set Ptrain consists of 150 sample points randomly distributed in the parameter

domain. To generate the RB matrices Vcz and Vqz when using the POD-Greedy algorithm,

the snapshots are taken from one CSS period rather than the transient process, since only

the products in the CSS period are of interest. The number of time steps in one period

is still large (O(103)), which is larger than the dimension of the spatial discretization.

To efficiently construct the RB, the ASS technique presented in Chapter 5 is employed.

There are four outputs in this model. The similar strategy as we took for the batch

chromatographic model is employed, i.e., compute an error estimation for each output

and take the maximum to define the error indicator ψN (µ) for every parameter.

Performance of PD-ES (the primal-dual output error estimation) The column

numbers of the RB matrices (Vcz , Vqz , z = a, b) are 82, 83, 83, 83, respectively, when the
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tolerance εROM is taken as 1.0 × 10−3. As shown in the previous example, PD-ES out-

performs PO-EB (the primal-only output error bound), thus we now only use PD-ES to

construct the ROM. Figure 6.6 shows the behavior of PD-ES and the corresponding true

error during the extension of the RB. PD-ES goes below the prespecified tolerance when

the maximal number of the RB reaches 83. However, it does not decay smoothly, unlike

the previous examples. This is because the average ratio ρ̃?N oscillates during the RB ex-

tension process, as illustrated in Figure 6.7. In fact, the oscillation in ρ̃?N will result in the

oscillation in the output error estimation, since we use ρ̃?N to estimate ρn+1(µ) in (4.32).

This is probably due to the multi-switching procedure, which causes extreme difficulty for

MOR, because some error might be introduced after each switch and this error is hard

to measure. In addition, the Péclet number in this model is 500, which is challenging for

MOR, as we have observed for the Burgers’ equation in Section 4.4.2.
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Figure 6.6: Decay of the primal-dual error estimation (PD-ES) and the corresponding true

error during the RB construction process for the linear SMB model.

ROM validation Before the ROM is used to solve the underlying optimization problem,

we validate its accuracy by performing the full and reduced simulation over a test set

with 200 random samples of parameters in the parameter domain. The maximal error

and average runtime are shown in Table 6.9. It is seen that the maximal true error is

1.1× 10−4 and is smaller than the prespecified tolerance. The average runtime is largely

reduced and the speedup factor is 7.

100



6.2 MOR for linear SMB chromatography

0 20 40 60 80
0

10

20

30

40

50

60

70

80

Size of RB: N

R
a

ti
o

Figure 6.7: Behavior of the average ratio ρ̃?N during the RB construction process for the

linear SMB model.

Table 6.9: Comparison of runtime for the full and reduced simulations of linear SMB

model over a validation set with 200 random sample points. (εROM = 1.0× 10−3)

Model Maximal error Average runtime (s)/SpF

FOM (N = 800) – 349.5 / -

ROM 1.1× 10−4 46.7 / 7

6.2.3 ROM-based optimization of linear SMB chromatography

To show the performance of the ROM, we implement both the FOM-based and the ROM-

based optimization. Table 6.10 shows the results using the constraints Pua,min = 99.0%,

Pub,min = 99.0%, Qmax = 0.50 ml/s. We use the gradient-free optimizer, the subroutine

NLOPT LN COBYLA [101], to solve the underlying optimization problems. It is a

local optimizer. Different initial guesses may result in slightly different (locally) optimal

solutions. Indeed, different initial guesses have been tested, and the differences between

the optimal solution to ROM-based optimization and that to the FOM-based one are all

sufficiently small.

Let µk be the parameter chosen by the optimizer at the kth iteration. The iteration

continues until the relative variance of the decision variables µ goes below a prespecified
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tolerance εopt, i.e., when ‖µk+1 − µk‖/‖µk‖ ≤ εopt (εopt = 1× 10−4 in Table 6.10). From

Table 6.10, it is seen that the ROM based optimization is very successful. The runtime for

solving the optimization problem is largely reduced while the optimal solutions are almost

the same as those of the FOM based optimization. The speedup factor achieved by the

ROM-based optimization is 6.

Table 6.10: Comparison of the optimization results based on the FOM and the ROM.

Initial guess FOM ROM

Objective QF [ml/s] 0.07 0.0745 0.0745

Optimal solution

m1 4.50 4.3269 4.3271

m2 2.90 2.8599 2.8603

m3 3.50 3.6036 3.6039

m4 2.30 2.3468 2.3685

QF [ml/s] 0.07 0.0745 0.0745

Constraints

Pua 98.9% 99.0% 99.0%

Pub 99.5% 99.0% 99.0%

Q1 [ml/s] 0.4161 0.4997 0.4998

#Iterations 71 79

Runtime (h) / SpF 5.13 / - 0.82 / 6

6.3 MOR for nonlinear SMB chromatography

Recall that the general description and numerical discretization of the nonlinear SMB

model have been given in Chapter 2. In this section, we consider a binary separation

process of 1, 1′-bi-2-naphthol enantiomers on cellulose triacetate, where a mixture of 72/28

(v/v) heptane/isopropanol is used as eluent [12, 112, 124], which describes a nonlinear

SMB process introduced in Chapter 2. In this process, the feed concentration of each

component is identical and fixed at 2.9 g/l. The maximal allowable internal flow rate

Qmax is 1.0 ml/s. The model parameters are given in Table 6.11, and the Henry constants

for the isotherm function in (2.2) are given in Table 6.12.

Next, we show the details of the ROM construction, the error behavior during the basis

extension process, and the performance of the ROM in solving the optimization problem.
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Table 6.11: Model parameters and operating conditions for each chromatographic column

in the nonlinear SMB unit.

Number of columns Ncol 8

Column configuration 2-2-2-2

Column dimensions (cm) 2.6 × 10.5

Column porosity ε (-) 0.4

Péclet number Pe (-) 1000

Mass-transfer coefficients κz, z = a, b [ s−1] 0.1, 0.1

Feed concentrations cf
z, z = a, b (g/l) 2.9, 2.9

Table 6.12: Coefficients of the adsorption isotherm equations for the nonlinear SMB model.

Ha1 (-) 2.69 Hb1 (-) 3.73

Ha2 (-) 0.1 Hb2 (-) 0.3

Ka1 (l/g) 0.0336 Kb1 (l/g) 0.0446

Ka2 (l/g) 1.0 Kb2 (l/g) 3.0

Finally, we analyze the robustness of the optimal solution under flow rate uncertainty based

on the resulting ROM. According to the experimental experiences and the triangle theory

in [122], we choose the interesting parameter domain as P := [4.30, 4.60] × [2.40, 2.55] ×
[3.05, 3.25]× [2.10, 2.25]× [0.1, 0.14], which is used as the admissible parameter domain for

the ROM construction and the optimization. The tolerances for constructing the ROM are

taken as εCRB = 1.0× 10−5, εROM = 5.0× 10−3, and the tolerance for the CSS condition

is εCSS = 5.0× 10−4.

6.3.1 ROM construction for nonlinear SMB chromatography

We now implement the RBM presented in Chapter 3 for the nonlinear SMB chromatogra-

phy. For reduced-order modeling of the SMB model in (2.19)–(2.20), to reduce the order

(size), we construct a RB for each variable, i.e., compute the RB matrices Vcz and Vqz

for the variables cz and qz (z = a, b), respectively; to reduce the complexity, we con-
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struct the CRB matrix Gz for the nonlinear term hz (z = a, b). Let ĉnz (µ) := Vczc
n
z,r(µ)

and q̂nz (µ) := Vqzq
n
z,r(µ) be the approximation to cnz (µ) and qnz (µ), respectively. Applying

Galerkin projection, the ROM for the SMB model can be formulated as

Âcz(µ)cn+1
z,r (µ) = B̂cz(µ)cnz,r(µ) + R̂cz r̃

n
z (µ)− 1− ε

ε
∆tĤczβ

n
z (µ), (6.18)

qn+1
z,r = qnz,r + ∆tĤqzβ

n
z (µ), z = a, b, (6.19)

where cnz,r(µ), qnz,r(µ) are the reduced state vectors, βnz (µ) := β(cnz,r(µ), qnz,r(µ);µ) is the

vector of coefficients in the interpolation of hnz (µ) (i.e., ĥnz (µ) = Gzβ
n
z (µ)), and Âcz(µ) =

V T
czA(µ)Vcz , B̂cz(µ) = V T

czB(µ)Vcz , R̂cz = V T
cz e℘f

, Ĥcz := V T
czGz, Ĥqz := V T

qzGz are the

reduced matrices. Here, e℘f
= [0, . . . , 0, 1, 0, . . . , 0]T ∈ RN is ℘fth column of the identity

matrix in RN×N (℘f corresponds to the location of the feed node of the SMB unit in the

spatial grid), and r̃nz (µ) is actually a scalar parameter-dependent coefficient.

As discussed in Section 3.5, the RBM is usually realized by a strategy of offline-online

decomposition. I.e., the construction of the ROM and the use of ROM can be completely

decoupled into two stages. During the offline stage, all terms (R̂cz , Ĥcz , Ĥqz , and the

parameter-independent components, e.g., Âj , B̂j in the affine expressions of Âcz(µ) and

B̂cz(µ) in (3.26)) related to the high dimensional computation are precomputed and stored.

This process can be expensive, but needs to be performed only once. During the online

stage, given any feasible parameter, the reduced matrices (Âcz(µ), B̂cz(µ), R̂cz , Ĥcz , and

Ĥqz) can be rapidly assembled using the precomputed data in the offline stage, and a

small-sized ROM is solved. This online simulation is independent of the high dimension

N , which implies that the offline cost can be paid off by many repeated ROM simulations

under parameter variations. For example, in the optimization process, both objective and

constraints can be cheaply computed by using the ROM without resorting to the FOM.

We take a training set PCRB
train with 150 sample points randomly distributed in the parameter

domain P and use Algorithm 3 to construct the CRB for ha and hb, respectively. Then,

we take a training set PRB
train with 100 random samples and apply Algorithm 2 to compute

the RB for each variable. The error estimator ψ(µ), presented in Section 4.3 is employed

to guide the parameter sampling during the RB extension process. The corresponding

true output error is defined as e(µ) := 1
K

∑K
n=1 e

n(µ), where en(µ) := ‖yn(µ)− ŷn(µ)‖∞,

is the true output error at time step n.

Performance of accelerating FOM simulation using ROMs as predictors As
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mentioned in Chapter 5.3, the RB construction can be accelerated by using intermediate

ROMs as predictors. To study the performance of the acceleration technique, we construct

the RB using Algorithm 2 with and without ROM prediction. The runtime for both

methods are listed in Table 6.13. It is seen that the runtime is reduced by 9.4% by using

the ROM prediction. Note that the speedup is not so much although the time for the

FOM simulation is reduced drastically in each iteration. This is because the time for the

error estimations for all parameters in the training set dominates the whole runtime. In

fact, computing the error estimation for one parameter takes roughly one ROM simulation

time, which is around 0.5 minutes when the RB size N is around 40. As a result, it takes

around 50 minutes to compute the error estimations for all the parameter samples (the

number of parameter samples is 100). Actually, using ROMs as predictors for one FOM

simulation saves around 2.6 minutes (the reduction is 65% on average), which is small

compared with the total estimation time. In this case study, it takes 47 iterations to

construct a ROM with the desired accuracy, and it saves more than 120 minutes in total

by using ROMs as predictors. Moreover, using ROMs as predictors is entirely free, though

the reduction with respect to the total time is not so high. Certainly, if much higher order

FOM is employed, then the reduction by using ROMs as predictors will be much more

significant because the time for FOM simulation takes more weight over the total time for

constructing the ROM.

Table 6.13: Comparison of runtime for the RB construction with or without ROM predic-

tion. ( |PRB
train| = 100)

Methods Runtime (h)

without ROM prediction 28.8

with ROM prediction 26.1 (-9.4%)

Performance of PD-ES (the primal-dual output error estimation) and ROM

validation Figure 6.8 shows the behavior of PD-ES and the corresponding true output

error during the RB construction process. It is seen that PD-ES bounds the true output

error. Moreover, the estimation decays as the RB is enriched, and it goes below the

tolerance εROM when the number of basis vectors is up to 47. To further assess the

reliability of the resulting ROM, we perform full and reduced simulations over a validation

set Pval, which consists of 200 random sample points in the parameter domain. The results

are summarized in Table 6.14. It is seen that the maximal true error, maxµ∈Pval
e(µ), is
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5.6×10−4, which is below the prespecified tolerance. This demonstrates that the resulting

ROM is reliable in the whole parameter domain. Moreover, the average runtime for one

FOM simulation is 287.4 s, while it is only 28.7 s for one ROM simulation. The average

speedup factor (SpF) is 10.
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Figure 6.8: Decay of the primal-dual output error estimation (PD-ES) and the correspond-

ing true error during the RB extension process for the nonlinear SMB model.

Table 6.14: Comparison of runtime for the full and reduced simulations of the nonlinear

SMB model over a validation set with 200 random sample points. (εROM = 5.0× 10−3)

Model Maximal error Average runtime (s)/SpF

FOM (N = 800) – 287.4 / -

ROM 5.6× 10−4 28.7 / 10

Here, we comment on different tolerances used for the RB construction for the three

models: the batch chromatographic model, the linear SMB model, and the nonlinear SMB

model. The reason is that each model has its own special issues that need to be treated

carefully. For example, in the batch chromatographic model, the determination of the

cutting points tj (j = 1, . . . , 4) in (6.1) requires a sufficiently accurate ROM because the

concentrations around these points changes drastically and tend to oscillate; in the SMB

models, some error might be introduced by the periodic switching procedure, and it is hard

to measure. Particularly, the nonlinear SMB model exhibits very different behaviors over a
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wide range of parameter domain. All these properties make a single ROM hard to capture

the dynamics with high accuracy. Therefore, without impairing the accuracy requirements

from engineering applications, we take a smaller tolerance for the batch chromatographic

model and a larger one for the nonlinear SMB model. Although a global ROM is employed

in the current study, local basis methods might be considered in the future to improve the

accuracy of the ROM.

6.3.2 ROM-based optimization of nonlinear SMB chromatography

As the ROM is precomputed in the offline stage, it is ready for online computations. When

the ROM is employed for the optimization problem in (6.15), all the quantities computed

through model simulations, e.g., the purity Pua and Pub, will be computed by solving

the ROM in (6.18)–(6.19). Moreover, we do not modify the ROM during the online stage,

since the ROM is reliable and accurate enough in the whole parameter domain.

To show the performance of the ROM, we implement both the FOM-based and the

ROM-based optimization. The constraints are specified as Qmax = 1.0 ml/s, Pua,min =

95.0%, Pub,min = 95.0%. The optimization problems are solved by using the optimizer

NLOPT LN COBYLA from the NLopt library [101]. This is a local derivative-free op-

timizer. Different initial guesses may result in slightly different (locally) optimal solu-

tions. Indeed, different initial guesses have been tested, and the differences between the

optimal solution to the ROM-based optimization and that to the FOM-based one are

all sufficiently small. The initial guess used in Table 6.15 is µ0 = [mI, . . . ,mIV, QF] =

[4.35, 2.42, 3.21, 2.21, 0.11]. Let µk be the parameter chosen by the optimizer at the kth it-

eration. The iteration continues until the relative variance of the decision variables µ goes

below a prespecified tolerance εopt, i.e., when ‖µk+1 − µk‖/‖µk‖ ≤ εopt (εopt = 1 × 10−3

in Table 6.15). The results are summarized in Table 6.15.

It is seen that the FOM-based optimization takes 102 iterations to converge and the ROM-

based one takes 93 iterations. The difference between the optimal solution to the ROM-

based optimization and that to the FOM-based one is acceptable. In the meanwhile, the

runtime for solving the optimization is significantly reduced by using the ROM. Solving the

FOM-based optimization takes 8.124 hours, while solving the ROM-based one takes only

0.786 hours. The speedup factor is 10, which is a big progress compared with the recent
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Table 6.15: Comparison of the optimization results based on the FOM and the ROM.

Initial guess FOM ROM

Objective QF [ml/s] 0.11 0.1218 0.1218

Optimal solution

m1 4.35 4.4467 4.4733

m2 2.42 2.4936 2.4915

m3 3.21 3.1163 3.1175

m4 2.21 2.1987 2.2000

QF [ml/s] 0.11 0.122 0.122

Constraints

Pua 96.1% 95.0% 95.0%

Pub 88.3% 95.0% 95.0%

Q1 [ml/s] 0.6985 1.0 1.0

# Iterations 102 93

Runtime (h) / SpF 8.124 / - 0.786 / 10.3

work in [112]. There, the optimization of a nonlinear SMB model is accelerated using the

POD-based ROMs, and the speedup factor is around 2. There are two reasons for the

improvement: one is that the ROM in [112] is locally reliable, while the proposed ROM is

globally reliable in the parameter domain. As a result, the ROM in [112] has to be updated

during the optimization process, which occupies much computational time. The other is

that only the order of the FOM is reduced using the POD Galerkin projection method

in [112], no reduction was done for the complexity of nonlinear parts, which restricts the

reduction by MOR. By contrast, we have employed the RBM and the EIM to reduce both

the order and the complexity of the FOM.

6.3.3 UQ of nonlinear SMB chromatography

Uncertainties in isotherm parameters, pump stability and calibration, extra-column vol-

umes, and packing reproducibility, are inevitable in every SMB process [127]. There, the

authors proposed an optimal design method for a linear SMB process under flow rate

uncertainty. In this work, we use the Monte-Carlo method [88], the standard UQ method,

to analyze the robustness of the product purity under flow rate uncertainty for a nonlinear

SMB process.
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Table 6.16: UQ for uncertainty of the flow rate QI.

Model Order CPU time (h) E [Pua] [%] E [Pub] [%] δ[Pua] [%] δ[Pub] [%]

FOM 800 2.04 95.00 94.96 0.07 0.15

ROM 47 0.20 94.99 94.96 0.07 0.15

Table 6.17: UQ for uncertainty of the flow rate QII.

Model Order CPU time (h) E [Pua] [%] E [Pub] [%] δ[Pua] [%] δ[Pub] [%]

FOM 800 2.00 94.80 94.96 0.65 0.54

ROM 47 0.20 94.80 94.96 0.65 0.54

To analyze the influence of the flow rate uncertainty in each zone upon the product purity,

the flow rate in a certain zone is allowed to undertake a ±2% deviation while those in the

other zones are fixed. Note that the mean value of the varying flow rate and the fixed value

of the flow rate are the optimal solution obtained by the ROM-based optimization, which

is (QI, . . . , QIV) = (0.99, 0.6144, 0.7362, 0.5578) [ml/s]. The switching period is fixed at

ts = 172 s. For each case, 25 groups of random samples of the parameters are taken for the

UQ based on the FOM and the ROM, respectively. More specifically, for the FOM-based

UQ, we solve the FOM in (2.19)–(2.20) at each group of the sample to compute the output

y(tn, µ) and in turn the product purity in (6.16). For the ROM-based UQ, we solve the

ROM at the same group of parameter samples to compute the corresponding quantities

approximately.

The statistical quantities, e.g., the mean value E [·] and the standard deviation δ[·] of the

product purity, are presented in Tables 6.16–6.19 for the varying flow rate in the four

zones, respectively. It is observed that the purity of the component a is more sensitive to

QII, reflected by larger variance of δ[Pua] in Table 6.17. The purity of the component b

is more sensitive to QIII, reflected by larger variance of δ[Pub] in Table 6.18. By contrast,

Tables 6.16 and 6.19 show that the flow rates QI and QIV have less effect on the purity of

Table 6.18: UQ for uncertainty of the flow rate QIII.

Model Order CPU time (h) E [Pua] [%] E [Pub] [%] δ[Pua] [%] δ[Pub] [%]

FOM 800 1.94 94.78 94.92 0.49 2.20

ROM 47 0.19 94.78 94.92 0.49 2.20
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Table 6.19: UQ for uncertainty of the flow rate QIV.

Model Order CPU time (h) E [Pua] [%] E [Pub] [%] δ[Pua] [%] δ[Pub] [%]

FOM 800 2.03 94.93 95.04 0.02 0.03

ROM 47 0.20 94.92 95.04 0.03 0.04

both products, since the variance are all much smaller. In addition, the statistic quantities

(the mean and the standard derivation of the product purity) obtained from the ROM are

almost the same as those obtained from the FOM. The runtime is significantly reduced

using the ROM, and the SpF for all cases is around 10.
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Figure 6.9: Effect of QI on the product purity Pua and Pub using the FOM and the ROM,

respectively.

Figures 6.9–6.12 show the profiles of the product purity corresponding to the varying flow

rates in zone I, II, III, and IV, respectively. It is shown that the results computed by using

the ROM have the same behavior as those of the FOM. Figure 6.9 shows that the purity

of both products does not change monotonically as the flow rate in zone I increases (or

decreases), unlike the behavior of a linear SMB model presented in [127], where the changes

of the purity with respect to the flow rate are all monotonic. This reflects the complex

nonlinear relation between the purity and the flow rate in the nonlinear SMB model. It

is also noteworthy from Figure 6.11 that as the flow rate QIII increases, the purity of
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Figure 6.10: Effect of QII on the product purity Pua and Pub using the FOM and the

ROM, respectively.

the component b becomes higher while the purity of the component a becomes lower.

Moreover, only one value of QIII (provided that the other conditions are fixed) satisfies

the purity requirement of both components, which is exactly the optimal solution.

In summary, the optimal solution is still reliable if the deviations of the flow rates in zone II

and III are relatively small. From Figures 6.10 and 6.11, if the purity is allowed to deviate

±0.5% from the mean value 95.0%, the purified products are still acceptable as long as

the deviations of the flow rates in zones II and III are less than 1.0%. Nevertheless, the

flow rates in zone I and IV have less influence on the product purity, as can be seen from

Figures 6.9 and 6.12. Through the UQ, it is further demonstrated that the parametric

ROM is qualified for the many-query task.
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Figure 6.11: Effect of QIII on the product purity Pua and Pub using the FOM and the

ROM, respectively.
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This chapter concludes the thesis, summarizes its contributions, and shows some perspec-

tives on the future work.

7.1 Conclusions

In this thesis, we have explored MOR for parametric nonlinear time-dependent problems.

Motivated by real-life models from chemical engineering, we start with a compact review

of commonly used MOR methods, and then choose the RBM as the tool to deal with the

underlying problems. In particular, we focus on error estimation and efficient RB gener-

ation for constructing ROMs. Some new error estimations and accelerating strategies are

proposed for PMOR of parameter- and time-dependent problems. The proposed methods

are not only tested by academic examples but also applied to real-life models. In addition,

ROM-based optimization and ROM-based UQ of batch and SMB chromatography have

been explored. The main contributions can be summarized as follows:

1. Two output error estimations are derived for PMOR of parameterized nonlinear

evolution equations.
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2. The ASS technique is proposed to reduce the cost of ROM construction by effectively

collecting the snapshots, and it is suitable for snapshot-based MOR methods applied

to time-dependent problems.

3. Accelerating FOM simulation by using ROMs as predictors is proposed for multi-

stage systems.

4. ROM-based optimization of batch and SMB chromatography is successfully imple-

mented, and the significance of the reduction in computational cost by using the

parametric ROMs is demonstrated.

5. ROM-based UQ of nonlinear SMB chromatography is preliminarily explored, and the

robustness of the separation process is efficiently analyzed by using the parametric

ROM.

As mentioned in the introduction, this thesis is aimed at deriving efficient and sharp

error bounds/estimation and seeking better strategies for the generation of parametric

ROMs that are reliable in a wide range of the parameter values. In Chapter 4, we derived

a primal-only output error bound based on the analysis of the residual of the primal

system in a fully discrete framework of projection-based PMOR for evolution equations.

Although the derived error bound is efficient, it may lose its sharpness for some problems

especially when a large number of time steps are needed. To circumvent the problem, we

proposed a sharper primal-dual output error bound by introducing and using a novel dual

approach. However, an estimation needs to be performed for practical computation of the

primal-dual error bound. As a result, it reduces to an output error estimation. The error

bound/estimation are derived algebraically in the finite-dimensional vector space so that

they are independent of the spatial discretization method employed. Moreover, they are

applicable to various (P)MOR methods for estimating the error in the time domain, as

reviewed in Chapter 3. Results of the academic numerical examples show that the proposed

error estimations are applicable to a broad class of parameterized evolution equations.

In Chapter 5, we addressed how to efficiently construct ROMs for certain kinds of problems,

and proposed two accelerating techniques for parameterized time-dependent problems. For

problems that require a large number of time steps, we proposed the ASS technique to

collect the snapshots effectively by discarding the redundant information according to

the solution variations within the time trajectory for a given parameter. With ASS, the
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offline time can be largely reduced, while the accuracy of the ROM can be guaranteed.

For multi-stage systems, like the SMB process considered in this thesis, the offline cost

can be further reduced by accelerating FOM simulation using (intermediate) ROMs as

predictors during the RB construction process, as shown in Section 6.3.1.

The performance of the parametric ROMs is demonstrated in time-critical applications

to real-life models in chemical engineering. ROM-based optimization of batch and SMB

chromatography and UQ of a nonlinear SMB model have been explored, as detailed in

Chapter 6.

7.2 Future work

Many problems remain to be investigated in the future and are specified as follows. First,

the derived primal-dual output error bound is applicable to a broad class of evolution

equations, and it is fairly sharp and efficient. However, since the quantity ρn(µ) in the

primal-dual error bound needs to be estimated, the rigorousness of the error estimate

cannot be guaranteed, though loss of the “upper bound” property was not observed for

the examples tested in this thesis. A convincing and more reliable estimation of ρn(µ) in

the primal-dual error bound deserves further investigation.

Second, the proposed error estimations are derived based on a quasi-implicit scheme,

where the nonlinear parts are computed by using an explicit scheme. The extension to

a more general case, i.e., computing nonlinear parts by using an implicit scheme, is also

possible, though it is not straightforward. In that case, the resulting system of nonlinear

equations can be solved, e.g., by the Newton method. Nevertheless, the Jacobian should be

efficiently computed and the error estimation should be re-studied, which deserve further

investigation.

Third, when (P)MOR is applied to physical models, e.g., problems in fluid dynamics and

chemical engineering, special attention should be paid to certain quantities with physical

meaning, e.g., the pressure, the density, the concentration, and those that should be

positive or satisfy some critical conditions. In fact, many strategies (e.g., methods based

on the (local) maximum principle) have been proposed to preserve the positivity in solving

the high-fidelity model. However, when MOR is applied, there is no physical meaning in
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the reduced state vector, and it is difficult to guarantee the positivity of the (prolongated)

reduced approximation. Actually, for time-dependent problems, it is impractical to check

whether the positivity of the reduced approximation is preserved at each time instance

because the computation of the reduced approximation needs to prolongate the reduced

state from the (reduced) low-dimensional space back to the (original) high-dimensional

space and this is time-consuming. However, for special systems, e.g., the multi-stage

systems like the SMB model considered in this thesis, it might be possible to check it at

the end of each stage (or period). Further investigation is desired.

Last but not least, to deal with the nonlinearity in the model, the EIM or a similar

technique can be employed. That is, an additional basis, e.g., the CRB for the EIM, is

constructed for the interpolation, and this basis is usually constructed before the gener-

ation of RB for the field variable, as discussed in Section 3.4. Moreover, to ensure the

accuracy of the interpolation, the dimension of the CRB is often simply taken very high.

This is, however, unnecessary because the error introduced by the projection dominates

the total error when the dimension of the RB is relatively low. Thus, how to well balance

the dimensions of the two bases (i.e., the RB and the CRB) is also an interesting topic for

research.
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