
Low-Rank Iterative Solvers for Large-Scale Stochastic

Galerkin Linear Systems

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium

(Dr. rer. nat.)

von

Dr. rer. pol. Akwum Agwu Onwunta

geb. am 04.02.1979 in Akanu Ohafia, Nigeria

genehmigt durch die Fakultät für Mathematik

der Otto-von-Guericke-Universität Magdeburg

Gutachter: Prof. Dr. Peter Benner

Prof. Dr. Howard Elman

Eingereicht am: 23.03.2016

Verteidigung am: 06.07.2016



Abstract

Many problems in science and engineering are modelled using deterministic partial differ-

ential equations (PDEs). In practice, however, it is not always possible, for example, to

measure some input data or parameters of a given model accurately; this leads to uncer-

tainty in the simulations of the model. Hence, it is reasonable to represent such parameters

in the model as random fields (or variables). This implies that the solution to the resulting

stochastic model is necessarily also a random field. It is therefore of interest to quantify

the influence of these uncertain parameters on the model.

In this dissertation, we study efficient low-rank iterative solvers for problems modelled

via PDEs with random inputs. In particular, we employ the so-called stochastic Galerkin

finite element method for the discretization of the considered problems. The resulting

linear systems are usually very large with tensor product structure and, thus, solving

them can be both time- and computer memory-consuming. Under certain assumptions,

we first show, in the context of diffusion equations with stochastic coefficients, that the

solution of such linear systems can be approximated with a vector of low tensor rank. We

then solve the linear systems using low-rank preconditioned Krylov subspace solvers.

Next, we apply our low-rank approach to solve optimization problems governed by

either steady-state or unsteady PDEs involving random coefficients and whose associ-

ated cost functionals are of tracking-type. Using diffusion equations and Stokes-Brinkman

equations (each with random inputs) as constraint equations, we derive and analyze robust

Schur complement-based preconditioners for solving the resulting optimality linear systems

with all-at-once low-rank iterative solvers. In particular, for the model with stochastic dif-

fusion constraint equations, we show furthermore that, with our proposed preconditioners,

MINRES converges independently of all the spatial, stochastic and temporal parameters in

the discretized models. Besides, in the case of the model with stochastic Stokes-Brinkman

constraint equations, we develop a tensor-based low-rank algorithm to solve the optimality

system. We provide extensive numerical experiments to illustrate that the low-rank scheme

generally reduces the solution storage requirements by two – three orders of magnitude.

i



Zusammenfassung

Zahlreiche Probleme der Wissenschaft und des Ingenieurswesens werden mit determinis-

tischen partiellen Differentialgleichungen (PDE) modelliert. In praktischen Anwendungen

ist es dagegen nicht immer möglich die Eingangsdaten oder Parameter genau zu messen.

Dies führt zu Unsicherheiten in der Simulation des Modells. Es ist somit nowendig, solche

Parameter als Zufallsvariablen im Modell darzustellen. Dies impliziert, dass die Lösung

des stochastischen Modells ebenfalls ein Zufallsfeld ist. Es ist somit von Interesse, den

Einfluss der unsicheren Parameter im Modell zu quantifizieren.

In dieser Dissertation werden effiziente, niedrigrangige iterative Löser für Probleme

untersucht, die mit PDEs mit zufälligen Eingangsdaten modelliert werden. Insbeson-

dere findet die sogenannte stochastische Galerkin finite Elemente Methode Anwendung

um die betrachteten Probleme zu diskretisieren. Die resultierenden linearen Systeme sind

großskalig und weisen eine Tensorstruktur auf, sodass das Lösen sehr Zeit- und Speicher-

intensiv sein kann. Unter gewissen Annahmen wird im Kontext der Diffusionsgleichungen

mit stochastischen Koeffizienten gezeigt, dass die Lösung solcher linearer Systeme mit

einem Vektor von niedrigem Tensorrang approximiert werden kann. Die linearen Systeme

werden dann mit niedrigrangigen vorkonditionierten Krylov-Unterraum Verfahren gelöst.

Des Weiteren wird der niedrigrangige Ansatz in Optimierungsproblemen angewandt,

die durch stationäre oder zeitabhängige PDEs mit zufälligen Koeffizienten bestimmt sind,

und deren Zielfunktionale vom Tracking-Typ sind. Für Diffusionsgleichungen oder Stokes-

Brinkman Gleichungen (jeweils mit zufälligen Eingangsdaten) als Nebenbedingungen, wer-

den robuste Schurkomplement-basierte Vorkonditionierer hergeleitet und analysiert, um

die resultierenden Optimalitätssysteme mit ‘all-at-once’ niedrigrangigen iterativen Lösern

zu lösen. Insbesondere für das Modell mit stochastischen Diffusionsgleichungen als Nebenbe-

dingung, wird gezeigt, dass mit den vorgestellten Vorkonditionierern, das MINRES-Verfahren

unabhängig von den räumlichen, zufälligen und zeitlichen Parametern im diskretisierten

Modell konvergiert. Im Fall der Stokes-Brinkman Gleichungen als Nebenbedingung, wird

ein tensorbasierter niedrigrangiger Algorithmus entwickelt, um das Optimalitätssystem zu

lösen. Ausführliche numerische Experimente illustrieren, dass das niedrigrangige Schema

den Speicherbedarf um zwei bis drei Größenordnungen reduziert.

ii



Declaration of honour

I hereby declare that I produced this thesis without prohibited assistance and that all

sources of information that were used in producing this thesis, including my own publica-

tions, have been clearly marked and referenced.

In particular, I have not wilfully:

• Fabricated data or ignored or removed undesired results.

• Misused statistical methods with the aim of drawing other conclusions than those

warranted by the available data.

• Plagiarized data or publications or presented them in a distorted way.

I know that violations of copyright may lead to injunction and damage claims from the

author or prosecution by the law enforcement authorities.

This work has not previously been submitted as a doctoral thesis in the same or a similar

form in Germany or in any other country. It hast not previously been published as a whole.

Furthermore, this dissertation is, in its entirety, unrelated to the one that I submitted for

my Ph.D in Economics.

—————————————

Location, date

—————————————

Signature

iii



Acknowledgements

First, I am greatly indebted to my supervisor, Prof. Dr. Peter Benner, for giving me the

opportunity and creating an enabling environment for me to complete this dissertation at

the Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Ger-

many. His continual encouragement, invaluable pieces of advice, and unyielding support

will definitely never go unnoticed. I have also been quite fortunate to be mentored by

Dr. Martin Stoll. His phenomenal sense of humour and keen enthusiasm for my research

were quite inspiring to me; I will cherish for a long time the atmosphere of friendliness

and understanding which prevailed between us throughout the period of this work. I will

not forget my gracious and unassuming colleague, Dr. Sergey Dolgov, for all the fruitful

discussions we had concerning tensors and tensor-based algorithms. Quite frankly, I am

very delighted to state unequivocally that Peter, Martin and Sergey were tremendously in-

strumental in ensuring that this work was a success. I commend them for always granting

me audience each time I needed their attention despite their personal tight schedules. Be-

sides, I have tapped quite a lot from their wealth of knowledge thanks to their remarkable

willingness to collaborate with me.

I would also like to appreciate the financial support from the International Max Planck

Research School (IMPRS) for Advanced Methods in Process and System Engineering

(Magdeburg). The former coordinator of IMPRS, Dr. Juergen Koch, provided me with

the necessary assistance that I needed to settle down when I started this work at MPI

Magdeburg. For this and much more, I thank him so much. I will not forget to thank

Prof. Dr. Dominique Thévenin for his words of encouragement to me in his capacity

as a member of my PhD Advisory Committee (PAC). I am equally grateful to many

other colleagues of mine – Dr. Lihong Feng, Dr. Xin Liang, Dr. Jens Saak, Dr. Sara

Grundel, Dr. Jan Heiland, Yongjin Zhang, Petar Mlinaric, Jessica Bosch, Maximilian

Behr, Cleophas Kweyu, Martin Hess, Diana Noatsch-Liebke, Janine Holzmann, Stephanie

Geyer, etc – for contributing in no small measure in making me feel at home at MPI

Magdeburg throughout the period of this work.

My family deserves a special place in my heart for their incredible patience and un-

flinching support. In particular, the love of my life (Ezinne) and our two ‘sweet’ boys

iv



(Michael and Victor) have been wonderful to me. You guys rock my world! Words are

indeed not enough to express my gratitude to you because you are simply amazing. I dedi-

cate this work to you. Finally, I give all the glory to the Almighty God without whom this

work would be impossible. For your amazing grace, steadfast love, and unfailing mercies

upon my life, I want to say thank you Lord; you have been my help during these past

years and you are and will remain my only hope in years to come.

v



Contents

1 Introduction 1

1.1 General overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions and outline of the thesis . . . . . . . . . . . . . . . . . . . . . 6

1.3 Preliminaries and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Numerical methods for PDEs with uncertain parameters 12

2.1 Representation of random fields . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Monte Carlo FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Stochastic collocation FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Stochastic Galerkin FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 An unsteady PDE with random inputs . . . . . . . . . . . . . . . . . . . . . 24

3 Solution methods for the stochastic Galerkin system 26

3.1 Existing iterative solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 A low-rank solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Existence of low-rank solution . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Preconditioning strategies . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 Low-rank preconditioned CG method . . . . . . . . . . . . . . . . . 36

3.2.4 Truncation and matrix inner products . . . . . . . . . . . . . . . . . 38

3.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Diffusion optimal control problems with uncertain inputs 50

4.1 Optimization under uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 A stochastic elliptic control problem . . . . . . . . . . . . . . . . . . . . . . 52

vi



4.2.1 Properties of the optimality system . . . . . . . . . . . . . . . . . . . 56

4.2.2 Preconditioning the steady-state KKT system . . . . . . . . . . . . . 57

4.2.3 Spectral analysis and implementation issues . . . . . . . . . . . . . . 62

4.2.4 Low-rank solution to the steady-state problem . . . . . . . . . . . . 69

4.3 A stochastic parabolic control problem . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Preconditioning the unsteady KKT system . . . . . . . . . . . . . . 77

4.3.2 Spectral analysis and implementation issues . . . . . . . . . . . . . . 79

4.3.3 Low-rank tensor solver for the unsteady problem . . . . . . . . . . . 83

4.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Unsteady Stokes-Brinkman optimal control problem with uncertain in-

puts 94

5.1 Deterministic Brinkman model . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.1 Brinkman optimal control problem with random data . . . . . . . . 97

5.1.2 A fully discrete problem . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Preconditioning Stokes-Brinkman KKT system . . . . . . . . . . . . . . . . 101

5.2.1 A block-triangular preconditioner . . . . . . . . . . . . . . . . . . . . 102

5.2.2 Preconditioning the forward Stokes-Brinkman problem . . . . . . . . 105

5.2.3 Spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 A tensor train solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3.1 Alternating iterative methods . . . . . . . . . . . . . . . . . . . . . . 111

5.3.2 Block alternating iteration . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.3 Pressure elimination in the reduced model . . . . . . . . . . . . . . . 117

5.3.4 Practical implementation . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4.1 Performance of the new block-triangular preconditioner . . . . . . . 123

5.4.2 Experiment with nt (Figure 5.3) . . . . . . . . . . . . . . . . . . . . 123

5.4.3 Experiment with T (Figure 5.4) . . . . . . . . . . . . . . . . . . . . . 124

5.4.4 Experiment with β (Figure 5.5) . . . . . . . . . . . . . . . . . . . . . 125

5.4.5 Experiment with α (Figure 5.6) . . . . . . . . . . . . . . . . . . . . . 126

5.4.6 Experiment with ν1 (Figure 5.7) . . . . . . . . . . . . . . . . . . . . 126

vii



5.4.7 Experiment with the tensor approximation tolerance (Figure 5.8) . . 127

5.4.8 Experiment with n (Figure 5.9) . . . . . . . . . . . . . . . . . . . . . 128

5.4.9 Experiment with %̄ (Figure 5.10) . . . . . . . . . . . . . . . . . . . . 129

5.4.10 3D problem (Figure 5.11) . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Conclusions and outlook 132

viii



Chapter 1

Introduction

1.1 General overview

Many problems in science and engineering involve uncertainties. The behaviours of these

problems are widely predicted through the use of mathematical modelling and computer

simulations. Such predictions are obtained by constructing mathematical models whose

solutions describe the phenomenon of interest and then using computational methods to

approximate the outputs of the models. A class of mathematical models that is usually of

practical interest are partial differential equations (PDEs). Typical examples of PDEs in-

clude diffusion equations, diffusion-convection equations, Stokes equations, Navier-Stokes

equations, etc., see e.g. [39, 87, 96]. In particular, if a system is modelled via a PDE, then

the solution of the PDE often describes how the system behaves if some external forcing

factor(s) acting on the system, as well as the intrinsic characteristics of the system (e.g.

material properties), are known (or deterministic). In many applications, however, one

may instead be interested in determining some unknown parameters in a model by com-

paring the predicted reaction with actual measurements (‘inverse problems’); furthermore,

one may wish to optimize certain parameters of a model in order to obtain a more desirable

outcome, e.g. optimal shapes of airplane wings or the temperature control of a melting

process. Such real-world problems can be mathematically formulated as PDE-constrained

optimization problems. They are a subject of current research.

Optimization problems constrained by deterministic steady-state (or stationary) PDEs

are ubiquitous in science and engineering; moreover, they are often computationally chal-

1



lenging. This is even more so if the constraints are deterministic time-dependent (or

unsteady) PDEs, since one would then need to solve a system of PDEs coupled globally

in time and space, and time-stepping methods quickly reach their limitations due to the

enormous demand for storage [104, 124]. Yet, more challenging than the afore-mentioned

are problems governed by unsteady PDEs involving (countably many) parametric or un-

certain inputs. This class of problems arises because the input parameters of the governing

PDE (such as the diffusivity coefficient in the diffusion equation or the viscosity in the

Navier-Stokes equation) in a given optimization model may be affected by epistemic un-

certainty, that is, uncertainty due to incomplete knowledge that, in principle, could be

remedied through additional measurements or improved measuring devices but for which

such remedies are too costly or impractical to apply. For example, the highly heterogeneous

subsurface properties in groundwater flow simulations can only be measured at relatively

few locations, so at other locations these properties are subject to uncertainty. Incomplete

knowledge can also be forced into a model due to lack of computational resources. For in-

stance, although turbulent flows in computational fluid dynamics are generally thought of

as being adequately modelled by the Navier-Stokes equations [24, 39, 51, 66, 102], in many

practical situations one cannot use that model because the grids necessary to adequately

approximate solutions are so fine that the resulting computational cost is prohibitive; in

such cases, the unresolved scales are sometimes modelled via the addition of uncertainties

into the model [84, 111]. In other situations, however, uncertainty may arise due to an

inherent variability in the system that cannot be reduced by additional experimentation or

improvements in measuring devices. Such uncertainties are referred to as being aleatoric.

Examples include unexpected fluctuations induced in a flow field around an aircraft wing

by wind gusts or on a structure by seismic vibrations [51].

The uncertainty encountered in the course of mathematical modeling usually propa-

gates through the simulations of the model and quantifying its impacts on the solution

of the model is frequently of great importance. By uncertainty quantification (UQ), we

mean a variety of methodologies including uncertainty characterization, parameter esti-

mation/model calibration, and error estimation. More precisely, the goal of UQ is to

learn about the uncertainties in system outputs of interest, given information about the

uncertainties in the system inputs [51]. Probability theory offers a natural framework to

2



describe uncertainty, where all uncertain inputs are treated as random variables or, more

generally, as random fields. Here, the approach relies on, for instance, probability den-

sity functions, expected values, variances, correlation functions, or statistical moments to

provide characterizations of uncertainties. In fact, the classical approach is to model the

random inputs as some idealized processes,1 which can then be analyzed using elegant

tools from classical Ito or Strantonovich calculus. In this case, the governing PDE in the

optimization model is termed a stochastic PDE (see, for example, [72]). In recent times,

there has been a growing interest in studying problems with more correlated random inputs

(‘colored noise’) instead. In this dissertation, we consider probabilistic representations of

uncertainties in problems modelled via PDEs with correlated random inputs (RPDEs)2.

More specifically, these inputs are described by a finite-dimensional random vector, either

because the problem itself can be described by a finite number of random variables or

because inputs are modelled as truncated expansions of random fields. In particular, the

latter is the case when we employ, for instance, a truncated Karhunen-Lòeve expansion

to represent the random coefficients (or inputs) in the governing PDEs. In the context of

correlated random inputs, the classical stochastic calculus, unfortunately, does not readily

apply; therefore, other approaches are required.

The Monte Carlo method is probably the most natural and widely used technique

to solve RPDEs [27]. This method generates ensembles of random realizations for the

prescribed random inputs and utilizes repetitive deterministic solvers for each realization.

Here, the deterministic PDE corresponding to each realization could be discretized using,

for instance, the finite element method, the finite difference method or the finite volume

method. The Monte Carlo method has been applied to many problems and its imple-

mentations are straightforward. It is (formally) independent of the dimensionality of the

random space; that is, it is independent of the number of random variables used to char-

acterize the random inputs. It, however, does not exploit the possible regularity that the

solution might have with respect to the input parameters [128]; moreover, it exhibits a

very slow convergence rate. In order to accelerate its convergence, several techniques have

been developed: the multilevel Monte Carlo method [27], the quasi-Monte Carlo (QMC)

1Typically, these are white noises, such as Wiener processes, Poisson processes, etc.
2To economize notation, however, throughout this thesis we write RPDE for PDE with random inputs,

whereas an optimization problem constrained by such a PDE is denoted by SOCP.

3



method [91], the Markov chain Monte Carlo method (MCMC) [44], the Latin hypercube

sampling method [122], etc. Undoubtedly, these methods can improve the efficiency of the

traditional Monte Carlo method. However, additional restrictions are imposed based on

their specific designs and their applicability is limited.

Another class of methods which has received particular attention are the stochastic

finite element methods (SFEM) [4, 5, 13, 59, 110]. These methods are often designed

to retain the advantages of Monte Carlo simulations; in particular, they enable one to

compute the full statistical characteristics of the solution, while reducing the simulation

time. Two prominent variants of the SFEM are the stochastic collocation finite element

method (SCFEM) [4] and the stochastic Galerkin finite element method (SGFEM)[110].

Both approaches transform the RPDE into a set of deterministic PDEs. The former

samples the stochastic PDE in a set of collocation points and yields a separate deterministic

PDE for each collocation point. One of the main advantages of this method is that it is

nonintrusive in the sense that existing software for deterministic PDEs can readily be

reused. Besides, this decoupled solution technique is highly parallelizable.

In contrast, the SGFEM applies spectral finite element theory to transform an RPDE

into a set of deterministic PDEs. Because SGFEM is based on the projection of the

residual onto the space of approximating polynomials, its accuracy is optimal in the L2

sense. This can considerably reduce the number of required computations. However, the

resulting system of deterministic PDEs generally exhibits coupling or decoupling between

the spatial and parametric components. The coupling or decoupling of the linear systems

depends primarily on the location of the randomness in the RPDEs [129]. If the RPDE

is, for instance, the diffusion equation with a stochastic source term (or stochastic bound-

ary conditions) and a deterministic diffusion coefficient, then we refer to the problem as

additive noise or stochastic right-hand side problem. Here, the application of the SGFEM

discretization then yields a block-diagonal global Galerkin matrix with multiple copies of

one matrix of smaller size on the diagonal. This decoupled linear system may be solved

using block iterative methods as discussed in [35]. On the other hand, a multiplicative

noise or stochastic left-hand side problem, which is a more computationally challenging

problem, occurs when we have a stochastic diffusion coefficient in the PDE, regardless of

the type of source term and boundary conditions, see e.g. [110]. Depending on the type of

4



the random diffusion coefficient and the choice of the stochastic discretization, the global

Galerkin system allows decoupling only in rare cases. If and when there is decoupling,

then the task is to solve a sequence of independent linear systems and this can be handled

with relative ease. In this thesis, we focus mainly on the more difficult case in which the

SGFEM discretization yields prohibitively high dimensional coupled deterministic PDEs,

and hence large-scale tensor-product algebraic systems. These systems require specialized

solution methods, and solvers for the original deterministic problem cannot be straight-

forwardly reused. Nevertheless, the SGFEM approach exhibits fast convergence and other

nice properties [5, 110].

Regardless of the progress made so far in developing stochastic finite element-based

solvers for RPDEs, it is pertinent to remark here that SOCPs have, in our opinion, not

yet received adequate attention. Some of the papers on these problems include [20, 50, 59,

75, 115, 128]. While [50, 59] study the existence and the uniqueness of solutions to control

problems constrained by elliptic RPDEs, the emphasis in [20, 75, 128] is on solvers based

on stochastic collocation methods for SOCPs. Rosseel and Wells in [115] apply a one-

shot method with both SGFEM and collocation approaches to optimal control problems

constrained by elliptic RPDEs. One of their findings is that SGFEM generally exhibits

superior performance compared to the stochastic collocation method, in the sense that,

unlike SGFEM, the non-intrusivity property of the stochastic collocation method is lost

when moments of the state variable appear in the cost functional, or when the control

function is a deterministic function.

The fast convergence and other nice properties exhibited by SGFEM notwithstanding,

the resulting high dimensional tensor-product algebraic systems associated with this intru-

sive approach unfortunately limits its attractiveness in the sense that solving the systems

can be quite computer memory-consuming. Thus, for it to compete favourably with the

sampling-based approaches, there is the need to develop solvers which are particularly

efficient in the reduction of memory requirements of these vast linear systems during prac-

tical simulations of either stochastic forward problems or control problems. This is indeed

the main focus of this dissertation. More specifically, in order to break this inherent curse

of dimensionality, we propose and study in detail efficient low-rank preconditioned Krylov

subspace methods for solving the resulting large-scale stochastic Galerkin linear systems.

5



For the numerical simulation of the SOCPs considered in this thesis, we assume that

the state, the control and the target (or the desired state) are analytic functions depending

on the uncertain parameters [94]. However, we note here that, as pointed out in [115],

problems in which the control is modelled as an unknown stochastic function constitute

stochastic inverse problems and they are different from those with deterministic controls

[146]. In the former, the stochastic properties of the control are unknown but will be

computed. So, in most cases (as we assume in this work), the mean of the computed

stochastic control could be considered as optimal. Depending on the application, the

mean may not, in general, be the sought optimal control, though. Besides, quantifying

the uncertainty in the system response might require additional computational challenges.

1.2 Contributions and outline of the thesis

Recall that our ultimate goal in this thesis is to develop efficient low-rank iterative solvers

for linear systems resulting from SGFEM discretizations. With a view to achieving this

goal, we first give in Section 1.3 the basic definitions and notation on which we shall rely

in the rest of this dissertation. Using the diffusion equation as a prototypical example,

we proceed to discuss in Chapter 2 a finite element-based framework for the numerical

simulation of problems modelled by steady-state and unsteady PDEs with uncertain in-

puts. Here, we specifically elaborate on discretization with SGFEM. Note that most of

the materials in this chapter can be found in already existing literature. In Chapter 3, we

present the first novel contributions of this dissertation, which are based mainly on [13].

More precisely, after proving the existence of a low-rank solution to the stochastic Galerkin

linear system corresponding to an unsteady forward problem, we then analyze low-rank

Krylov subspace solvers for the system. Furthermore, we provide numerical experiments

to demonstrate that these low-rank solvers are effective in reducing the memory and the

computational time requirements, especially when the fluctuations in the random data are

not too large relative to their mean values.

Next, equipped with the low-rank concepts discussed in Chapter 3, we proceed in a nat-

ural way to Chapter 4 to address a relatively more challenging task – the development of

efficient solvers for the saddle point linear systems resulting from the SGFEM discretiza-

6



tion of large-scale optimization problems constrained by either stationary or unsteady

diffusion equations with random inputs. Here, inspired by a state-of-the-art precondi-

tioning strategy employed in the deterministic framework [104, 105, 124], we specifically

derive and analyze robust Schur complement-based block-diagonal preconditioners which

we use in conjunction with a low-rank version of the minimal residual method (MINRES)

for the efficient solution of the optimality systems. More importantly, we also show here

that, with our proposed preconditioners, the convergence of MINRES is independent of

all the spatial, stochastic, and temporal parameters in the discretized models. Besides,

we demonstrate numerically the robustness of our proposed preconditioners. Let us put

our work into perspective here. Various preconditioned Krylov subspace methods for an

accelerated solution of optimality systems in PDE-constrained optimization are consid-

ered in, for example, [17, 34, 39, 62, 88, 104, 105, 124]. Nevertheless, these contributions

are based entirely on deterministic problems and, thus, the resulting saddle point systems

are generally smaller in dimension and have fewer number of discretization parameters

than the stochastic problems considered in this work. In fact, it should be borne in mind

that research on the solution of SOCPs via SGFEM is still in its infancy and deemed

computationally challenging; in particular, numerical results on the subject can hardly be

found in the literature. To the best of our knowledge, this contribution is, to date, the

first detailed study on the preconditioning of the considered class of stochastic problems

and, therefore, the approach presented here evidently pushes the research frontier towards

larger and more challenging problems. Most of the materials in Chapter 4 are based on

the paper [14].

Finally, Chapter 5 – which is based essentially on [11] – studies the most challenging

of the problems considered in this thesis, namely, an unsteady Stokes-Brinkman optimal

control problem with uncertain inputs. The Brinkman model is a parameter-dependent

combination of the Darcy and the Stokes models. It provides a unified approach to model

flows of viscous fluids in both cavity and porous media. As pointed out in [133], in practical

applications, the location and number of the Darcy-Stokes interfaces might not be known a

priori. Hence, the unified equations represent an advantage over the domain decomposition

methods coupling the Darcy and the Stokes equations [2, 25]. The Brinkman model is

typically applied in oil reservoir modeling [108], computational fuel cell dynamics [80, 141]

7



or biomedical engineering [120].

The study of finite element-based solvers for the Brinkman model has, on the one

hand, attracted much attention recently [108, 133, 134, 141]. It is a quite challenging

task, essentially due to the high variability in the coefficients of the model, which may take

very high or very small values. This feature adversely affects not only the preconditioning

of the resulting linear system [133], but also the construction of stable finite element

discretizations [86, 141]. On the other hand, the numerical simulation of optimization

problems constrained by unsteady Brinkman equations has, to the best our knowledge,

not yet received any attention as at the time of writing this thesis. Therefore, in this

chapter, one of our major goals is specifically to study the preconditioning of a linear

system resulting from the discretization of the optimal control problem constrained by the

unsteady Stokes-Brinkman flow involving random data.

As expected, the discretization of the model using SGFEM also leads to prohibitively

high dimensional saddle point optimality systems with Kronecker (tensor) product struc-

ture. To reduce the computational complexity, we impose the Kronecker product structure

on the solution as well. More precisely, we seek an approximate solution in a low-rank

tensor product representation, namely, the Tensor Train decomposition [97], also known as

the Matrix Product States [73]. The tensor decomposition concept is similar to low-rank

model reduction techniques, for example, the proper orthogonal decomposition (POD)

[79]. However, POD solves the full problem in order to derive a reduced model. For

really large-scale systems this is not feasible. Tensor methods aim to construct directly

the reduced solution without a priori information. One of the most powerful tensor-based

algorithms that can effectively accomplish this task is the alternating iterative method

[57, 118, 138]. However, existing alternating solvers for linear systems require a positive

definite matrix. Other novel contributions of this thesis are the extension and adaptation

of these algorithms to solve the optimality systems resulting from the unsteady Stokes-

Brinkman SOCP. The performance of our approach is illustrated with extensive numerical

experiments based on two- and three-dimensional examples. The developed Tensor Train

scheme reduces the solution storage by two – three orders of magnitude. We refer to

[49, 52] for a more detailed overview of tensor methods.

8



1.3 Preliminaries and notation

For the reader’s convenience, we recall here some important concepts, as well as fix the

basic notation on which we shall extensively rely in the rest of this dissertation. Our point

of departure is the following definition.

Definition 1.1. Let X = [x1, . . . , xm] ∈ Rn×m and Y ∈ Rp×q. Then, the Kronecker

product X ⊗ Y ∈ Rnp×mq and the vectorization operator vec : Rn×m → Rnm are defined,

respectively, by

A := X ⊗ Y =


x11Y . . . x1mY

...
. . .

...

x1nY . . . xnmY

 , vec(X) =


x1

...

xm

 . (1.1)

It follows from (1.1) that the vec operator essentially reshapes a matrix into a column

vector by stacking the columns of the matrix. In MATLAB notation, for example, we have

vec(X)=reshape(X,n*m,1). More precisely, we consider the vec operator as a vector space

isomorphism and denote its inverse by vec−1 : Rnm → Rn×m. Kronecker product and vec

operators exhibit the following properties, see e.g., [28]:

vec(AXB) = (BT ⊗A)vec(X), (1.2)

(A⊗B)(C ⊗D) = AC ⊗BD. (1.3)

We will also need the tensor rank of a vectorized matrix, see e.g., [48].

Definition 1.2. Let X ∈ Rn×n and x = vec(X) ∈ Rn2
. Then, the tensor rank of x is the

smallest r ∈ Z+ such that

x =
r∑
i=1

ui ⊗ vi, (1.4)

where ui, vi ∈ Rn. In particular, the tensor rank of the vector x coincides with the rank of

the matrix X.

9



Next, we introduce, for d ∈ N, the following multi-index notation

i1i2 · · · id = i1 + (i2 − 1)n1 + · · ·+ (id − 1)n1n2n3 · · ·nd−1, (1.5)

where nk = #ik, k = 1, . . . , d. Note then, in particular, that if X = [X(i, j)]n,mi,j=1 and

Y = [Y (k, `)]p,qk,`=1, from (1.1), one has

A(ik, j`) = X(i, j)Y (k, `), (1.6)

where ik = (i − 1)p + k = 1, . . . , np, and j` = (j − 1)q + ` = 1, . . . ,mq. Similarly, from

(1.4), we have

x =

r∑
i=1

ui ⊗ vi ⇔ x(jk) =

r∑
i=1

ui(j)vi(k), (1.7)

where j, k = 1, . . . , n, and jk = j + (k − 1)n = 1, . . . , n2.

We next introduce the necessary spaces and stochastic concepts that we will use in

the context of our stochastic discretizations. That said, the triplet (Ω,F,P) denotes a

complete probability space, where Ω is the set of elementary events, F ⊂ 2Ω is a σ-algebra

on Ω and P : F→ [0, 1] is an appropriate probability measure. We write

L2(Ω) := L2(Ω,F,P) =

{
f : Ω→ R measurable,

∫
Ω
f2(ω) dP(ω) < +∞

}
,

to denote the space of all square integrable random variables, which is a Hilbert space

equipped with the inner product

〈f, g〉 =

∫
Ω
f(ω)g(ω) dP(ω), f, g ∈ L2(Ω).

Let D ⊂ Rd with d ∈ {1, 2, 3}, be a bounded open set with Lipschitz boundary ∂D.

Definition 1.3. A mapping z : D×Ω→ R is called a random field if for each fixed x ∈ D,

z(x, ·) is a random variable with respect to (Ω,F,P).

10



We denote the mean and the covariance of z, respectively, by

E[z](x) := 〈z(x, ·)〉 =

∫
Ω
z(x, ω) dP(ω), x ∈ D, (1.8)

and

Cz(x,y) := 〈(z(x, ·)− E[z](x))(z(y, ·)− E[z](y))〉 , x,y ∈ D. (1.9)

The standard deviation of z
(

std(z) =
√
Var(z)

)
is given by

std(z) := σz =

[∫
Ω

(z − E(z))2 dP(ω)

] 1
2

. (1.10)

Next, we denote by Hk(D) the Sobolev space of functions on D whose derivatives up

to order k are square-integrable. In particular, the variational space H1
0 (D) ⊂ H1(D) is

defined by H1
0 (D) =

{
v ∈ H1(D) : v|∂D = 0

}
. Note that the dual space of H1

0 (D), i.e., the

space of all bounded linear functionals f : H1
0 (D)→ R, is denoted by

H−1(D) := H1
0 (D)′,

with norm

||f ||−1 := sup
v∈H1

0 (D)

|f(v)|
||v||1

, f ∈ H−1(D).

We define the Hilbert space L2(D)⊗ L2(Ω) of second-order random fields by

L2(D)⊗ L2(Ω) =

{
υ : D ⊗ Ω→ R measurable,

∫
Ω

∫
D
|υ|2 dxdP(ω) < +∞

}
,

and it is endowed with the norm

||υ||L2(D)⊗L2(Ω) :=

(∫
Ω

∫
D
|υ(x, ω)|2 dxdP(ω)

) 1
2

<∞.

The tensor product spaces H1(D)⊗L2(Ω) and H1
0 (D)⊗L2(Ω) can be defined analogously

[5]. For a Hilbert space H of functions on D and time interval [0, T ], we write L2(0, T ;H)

for the tensor product space L2([0, T ]) ⊗H. However, in particular, we write L2(0, T ;D)

for L2(0, T ;L2(D)); we will be using these last two notations interchangeably.

11



Chapter 2

Numerical methods for PDEs with

uncertain parameters

Consider the deterministic second-order elliptic boundary value problem

−∇ · (a(x)∇y(x)) = u(x), in D, (2.1)

y(x) = 0, on ∂D,

with the source function u ∈ L2(D). The operator ∇ implies differentiation with respect to

the physical coordinate x. The model (2.1) arises, for instance, in the context of ground-

water flow modeling, where the variable y is called the pressure head [27]. The parameter

a is the hydraulic conductivity tensor (or diffusivity coefficient) and it characterizes how

easily water can flow through the rock under a given pressure gradient. We note here that

an alternative formulation of the groundwater flow model (2.1) can be obtained via the

classical Darcy’s law coupled with an incompressibility condition (see e.g. [27, 129]):

v + a∇y = g, ∇ · v = 0, in D, (2.2)

where u := −∇ · g and the quantity v represents the filtration velocity (or Darcy flux).

For our purposes in this dissertation, however, we will stick to the formulation (2.1).

The problem of assessing the safety of a potential deep geological repository for ra-

dioactive waste provides a particularly good example where the model (2.1) is applied. As

12



aptly pointed out in [27], any radionuclides leaking from such a repository could be trans-

ported back to the human environment by groundwater flowing through the rocks beneath

the earth’s surface and very long timescales are involved. Hence, dedicated modelling and

simulation are essential in evaluating the performance of the repository.

In practice, the diffusivity coefficient a is available only at a limited number of spatial

locations, but its values are required at all points of the computational domain for the

simulation1. This fact is the primary source of uncertainty in groundwater flow calcula-

tions. Thus, understanding and quantifying the impact of this uncertainty on predictions

of radionuclide transport is particularly essential for reliable repository safety assessments

[27]. As already noted before, a convenient way to characterize the uncertainty in the

problem consists in incorporating the uncertain diffusivity coefficient as a random vari-

able or space-varying random field. This, in turn, implies that the solution to the resulting

stochastic model is necessarily also a random field; that is, we assume that a = a(x, ω)

is a family of random variables a(x, ·) defined on L2(Ω) with index variable x ∈ D. This

assumption immediately transforms (2.1) to the following formulation. Find a function

y : D × Ω → R such that, P-almost surely, the following linear elliptic diffusion equation

holds

−∇ · (a(x, ω)∇y(x, ω)) = u(x), in D × Ω, (2.3)

y(x, ω) = 0, on ∂D × Ω,

where, we assume that u ∈ L2(D) and that there exist positive constants amin and amax

such that

P (ω ∈ Ω : a(x, ω) ∈ [amin, amax], ∀x ∈ D) = 1. (2.4)

For the weak formulation of the stochastic forward problem (2.3), we essentially seek

y ∈ V := H1
0 (D)⊗ L2(Ω) such that, P-almost surely,

B(y, v) = `(u, v), ∀v ∈ V, (2.5)

1Sometimes, the source term u is also not known exactly.

13



where the bilinear form B(·, ·) is given by

B(y, v) =

∫
Ω

∫
D
a(x, ω)∇y(x, ω) · ∇v(x, ω) dxdP(ω), v, y ∈ V, (2.6)

and

`(u, v) =

∫
Ω

∫
D
u(x)v(x, ω) dxdP(ω), v, u ∈ V. (2.7)

The following existence and uniqueness result of the solution y to (2.3) proved in, for

instance, [59] follows from the Lax-Milgram Lemma [23].

Theorem 2.1. Under the assumption (2.4), there exists a unique solution y ∈ V such

that, P-almost surely, (2.5) holds.

In what follows, we discuss the different popular methods in the literature for dis-

cretizing PDEs with uncertain inputs, bearing in mind the stochastic forward problem

(2.3) as our prototypical model. However, we note here that the first step to solve PDEs

with uncertain inputs consists in representing the random fields in the model with a finite

number of random variables. Thus, we proceed to discuss our random field representation

strategy first before delving into the discretization methods.

2.1 Representation of random fields

Suppose that we have a random field z : D × Ω → R with known continuous covariance

function Cz(x,y). Then, z(x, ω) admits a proper orthogonal decomposition or Karhunen-

Lòeve expansion (KLE)

z(x, ω) = E[z](x) + σz

∞∑
i=1

√
λiϑi(x)ξi(ω), N ∈ N, (2.8)

where σz is the standard deviation of z and the random variables {ξi}Ni=1 are centered,

normalized and mutually uncorrelated; see e.g., [110]. Here, Cz(x,y) is non-negative

definite and {λi, ϑi} are its corresponding eigenvalues and eigenfunctions; that is,

∫
D
Cz(x,y)ϑi(y) dy = λiϑi(x).

14



The eigenfunctions {ϑi} form a complete orthogonal basis in L2(D). The eigenvalues {λi}

form a sequence of non-negative real numbers decreasing to zero and

∞∑
i=1

λi =

∫
D
Var[z](x) dx.

In practical computation, one often employs a truncated Karhunen-Lòeve expansion (KLE):

z(x, ω) ≈ zN (x, ω) = E[z](x) + σz

N∑
i=1

√
λiϑi(x)ξi(ω), N ∈ N. (2.9)

The series (2.9) represents the best N -term approximation of z and, by Mercer’s Theorem

[113, p. 245], we have

sup
x∈D

E
[
(z − zN )2

]
= sup

x∈D

∞∑
i>N

λiϑ
2
i (x)→ 0 as N →∞.

In the sequel, we will employ the so-called finite noise assumption, which states that

a random field z(x, ω) can be approximated with a prescribed finite number of random

variables ξ := {ξ1, ξ2, . . . , ξN}, where N ∈ N and ξi(ω) : Ω→ Γi ⊆ R; this is, for instance,

the case when we use a joint N -term KLE to approximate in (2.3) the random coefficient

a(x, ω) ≈ aN (x, ξ(ω)) = a(x, ξ1(ω), ξ2(ω), . . . , ξN (ω)). (2.10)

We also make the simplifying assumption that each random variable is independent and

characterized by a probability density function ρi : Γi → [0, 1]. If the distribution mea-

sure of the random vector ξ(ω) is absolutely continuous with respect to the Lebesgue

measure, then there exists a joint probability density function ρ : Γ → R+, where

Γ :=
∏N
i=1 Γi ⊂ RN , ρ(ξ) =

∏N
i=1 ρi(ξi), and ρ ∈ L∞(Γ). In particular, given the paramet-

ric representation (2.10) of a(x, ω), the Doob-Dynkin Lemma, cf. [5], guarantees that y,

the solution corresponding to the RPDE (2.3), admits exactly the same parametrization;

that is, y(x, ω) = y(x, ξ1(ω), ξ2(ω), . . . , ξN (ω)). The number N has to be large enough so

that the approximation error is sufficiently small. Furthermore, we can now replace the

probability space (Ω,F,P) with (Ω,B(Γ), ρ(ξ)dξ), where B(Γ) denotes the Borel σ-algebra

on Γ and ρ(ξ)dξ is the finite measure of the vector ξ. Besides, denoting the space of square-

15



integrable random variables with respect to the density ρ by L2
ρ(Γ), we introduce the space

L2(D)⊗ L2
ρ(Γ), equipped with the norm

||υ||L2(D)⊗L2
ρ(Γ) :=

(∫
Γ
||υ(·, ξ)||2L2(D)ρ(ξ) dξ

) 1
2

<∞. (2.11)

Similarly, using equations (1.10) and (1.8) we have

std(z) =

[∫
Γ
(z(ξ)− E(z(ξ)))2ρ(ξ) dξ

] 1
2

and E[z] = 〈z〉 =

∫
Γ
z(ξ)ρ(ξ) dξ <∞. (2.12)

Based on the fact that we can express the solution y of the stochastic elliptic problem

(2.3) as y(x, ξ) = y(x, ξ1, . . . , ξN ), it is natural to treat y(x, ξ), a function of d spatial

variables and N random parameters, as a function of d + N variables. This leads us to

consider the Galerkin weak formulation (2.5) of (2.3), with respect to both physical and

parameter space, in the following form: find y ∈ Vρ := H1
0 (D)⊗L2

ρ(Γ) such that, P-almost

surely,

E
[∫
D
aN (x, ξ)∇y(x, ξ) · ∇v(x, ξ) dx

]
= E

[∫
D
u(x)v(x, ξ) dx

]
, v ∈ Vρ. (2.13)

Now, let Vh,ρ := Xh⊗L2
ρ(Γ), where Xh ⊂ H1

0 (D) and dim(Xh) = J. Then, stochastic finite

element methods proceed by discretizing the physical domain D in the usual way, leading

to the semi-discrete problem: find yh ∈ Vh,ρ such that, P-almost surely,

E
[∫
D
aN (x, ξ)∇yh(x, ξ) · ∇v(x, ξ) dx

]
= E

[∫
D
uh(x)v(x, ξ) dx

]
, v ∈ Vh,ρ. (2.14)

As noted before, one could tackle (2.14) with either Monte Carlo finite element meth-

ods (MCFEM) [27] or stochastic collocation finite element methods (SCFEM) [4, 42] or

SGFEM [3, 5]. In this thesis, we shall rely solely on the SGFEM for spatial and stochas-

tic discretizations, and our exposition here particularly follows closely the framework in

[110, 115]. First, however, we next give a brief overview of how to perform discretiza-

tion with MCFEM and SCFEM, which will then be followed by a detailed description of

SGFEM discretization.

16



2.2 Monte Carlo FEM

In general, Monte Carlo methods are sampling-based techniques for computing statistical

quantities. In the context of RPDEs, one randomly samples the parameter vector ξ ∈ Γ

and computes realizations of the parametric PDE. Markov’s inequality shows that the

Monte Carlo method converges like 1/
√
QMC where QMC denotes the sample size, see

e.g.,[142]. For this reason, Monte Carlo methods require a large sample size to determine

‘good’ approximations of the solution. To this end, let ξk = {ξk1 , . . . , ξkN} ∈ Γ be a sample

of ξ. If akN (x) = aN (x, ξk) is strictly positive, then each ykh(x) = y(x, ξk) ∈ Xh satisfies

∫
D
akN (x)∇ykh(x) · ∇v(x) dx =

∫
D
u(x)v(x) dx, v ∈ Xh. (2.15)

Here, discretizing (2.15) leads to a sequence of decoupled symmetric positive definite linear

systems

Akyk = b, k = 1, 2, . . . , QMC , Ak ∈ RJ×J . (2.16)

Each linear system in (2.16) can be solved using, for instance, the conjugate gradient

method (CG) [39]. Furthermore, one can easily compute the moments of the solution as

follows:

E(y(x, ·)m) ≈ 1

QMC

QMC∑
k=1

y(x, ξk)m, m = 1, 2, . . .

For a more detailed discussion on Monte Carlo methods and their hybrids, see e.g., [27, 51]

and the references therein.

2.3 Stochastic collocation FEM

An alternative to the MCFEM is the collocation method, which samples (2.14) at a pre-

determined set of points ξk = {ξk1 , . . . , ξkn} ∈ Γ and constructs a high-order polynomial

approximation yhn to the solution function y which is then obtained by performing La-

grange interpolation. More precisely, following [47], one has

yhn(x, ξk) =

n∑
k=1

ykh(x)L̂k(ξ
k), (2.17)

17



where ykh(x) = y(x, ξk) ∈ Xh satisfies (2.14) at ξk ∈ Γ and L̂k(ξ
k) is a multivariate

Lagrange polynomial. By construction, the approximation yhn(x, ξk) is contained in the

finite-dimensional subspace Xh ⊗ Yn of the Hilbert space H1
0 (D) ⊗ L2

ρ(Γ). In particular,

Yn ⊂ L2
ρ(Γ), where Yn := span{L̂1(ξk), . . . , L̂n(ξk)} and dim(Yn) = n. Full tensor SCFEMs

[37, 142] use Cartesian products of interpolation points on each Γk. Possibilities include

Clenshaw-Curtis points and Gauss points. If nk + 1 points are selected on Γk, then

n =
∏N
k=1(nk + 1), which quickly becomes intractable as N increases.

Sparse grid stochastic collocation methods [12, 15, 37, 142] are based on interpolation

rules (such as the Stroud interpolation formulas) for high-dimensional problems. Let Zi

be a set of points on Γk, of size mi + 1 where m0 = 1 and mi = 2i−1 for i ∈ N. For a given

approximation level `, the sparse grid on Γ is then defined via

H(`,N) :=
⋃

`≤||i||1≤`+N

Zi1 × · · · × ZiN , i = (i1, . . . , iN ) ∈ NN .

The error incurred by approximating y(x, ξ) with yhn(x, ξk) is due to interpolation. If p

denotes the largest value for which polynomials of total degree p are interpolated exactly

in (2.17), then sparse grid methods achieve total degree p accuracy with ` = p + 1 using

far fewer points than full tensor methods [9].

Just like in MCFEM, ykh(x) in (2.17) solves (2.14) at ξk ∈ Γ, so that with a suitable

finite element basis for Xh, this leads to a decoupled set of linear systems. We refer the

interested reader to [4, 37, 42, 47, 51, 142] for details on SCFEM and solution of the

resulting linear systems.

2.4 Stochastic Galerkin FEM

The SGFEM is an intrusive approach2 in which, like the SCFEM, one seeks y in a finite-

dimensional subspace Xh⊗Yn ⊂ H1
0 (D)⊗L2

ρ(Γ), consisting of tensor products of determin-

istic functions defined on the spatial domain and stochastic functions defined on the prob-

ability space [51, 110]. However, unlike in SGFEM, the stochastic subspace Yn ⊂ L2
ρ(Γ)

2Generally, SGFEM techniques are intrusive in the sense that they are non-ensemble-based methods;
that is, they require the solution of discrete systems that couple all spatial and probabilistic degrees of
freedom.

18



is spanned by multivariate Lagrangian polynomials in the SCFEM. Different classes of

SGFEMs are distinguished by their choices for Yn. One class of SGFEMs uses tensor

products of piecewise polynomials on the subdomains Γi ⊂ Γ [5, 35, 93]. In this approach,

the polynomial degree is fixed and approximation is improved by refining the partition

of Γ. The classical, so-called spectral SGFEM (see e.g. [36, 43, 81, 110]) employs global

polynomials of total degree n in N random variables ξi on Γ. In this approach, there is

no partitioning of Γ and approximation is improved by increasing the polynomial degree.

We shall adopt the latter method in this dissertation. To this end, suppose first that

Xh ⊂ H1
0 (D) is a space of standard Lagrangian finite element functions on a partition T

into triangles (or rectangles) of the domain D defined by

Xh := {vh ∈ H1
0 (D) : vh ∈ Pk(Ξ) ∀Ξ ∈ T},

where Ξ ∈ T is a cell and Pk is the space of Lagrangian polynomials of degree k. In par-

ticular, let Xh = span{φj(x), j = 1, . . . , J}. Next, for the discretization of the stochastic

domain we define the set I by

I :=

{
i = (i1, . . . , iN ) ∈ NN : |i| =

∑
k

ik ≤ n

}
,

and let Yn ⊂ L2
ρ(Γ) be such that Yn := span{ψi(ξ) = ΠN

k=1ψ
ik
k (ξk) : i ∈ I}. Herein,

{ψi(ξ)} are N -variate orthogonal polynomials of degree at most n, whereas I is a set of

all multi-indices of length N satisfying |i| =
∑

k ik ≤ n. It can then be shown that3

P := dim(Yn) = dim(I) = 1 +

n∑
k=1

1

k!

k−1∏
j=0

(N + j) =
(N + n)!

N !n!
. (2.18)

Hence, it turns out that there exists a bijection µ : {1, . . . , P} → I that assigns a unique

integer i to each multi-index µ(i) ∈ I.

Note that when all the random variables ξi are independent and identically distributed

Gaussian, the spectral approach uses a basis of multidimensional Hermite polynomials of

total degree n termed the polynomial chaos, a terminology originally introduced by Nor-

3Note that if tensor product polynomials are used and aN is linear in ξ as in (2.9), then the subspace
Yn possesses a basis that decouples the resulting linear system of equations [47].

19



bert Wiener [140] in the context of turbulence modeling. The use of Hermite polynomials

ensures that the corresponding basis functions are orthogonal with respect to the Gaus-

sian probability measure. This leads to sparse linear systems, a crucial property that

must be exploited for fast solution schemes [110]. Relying on the fact that there ex-

ists a one-to-one correspondence between the probability density functions of alternative

distributions and the weight functions of certain orthogonal polynomials, the concept of

Hermite polynomials chaos has been extended to generalized polynomial chaos [143]. For

instance, if uniform random variables (having support on a bounded interval) are chosen,

then Legendre polynomials are the correct choice. Similarly, Jacobi polynomials go with

beta-distributed random variables. When random variables with bounded images are used,

the convergence and approximation properties of the resulting SGFEM are discussed in

[5]. Throughout this thesis, we shall rely on Legendre polynomial chaos.

Example 2.2. To illustrate here how the space Yn is constructed [110], consider the case

of uniform random variables with N = 2 and n = 3. Then Yn is a set of two-dimensional

Legendre polynomials (products of a univariate Legendre polynomial in ξ1 and a univariate

Legendre polynomial in ξ2) of degree less than or equal to three. Each of the basis functions

is associated with a multi-index ν = (ν1, ν2), where the components represent the degrees

of the polynomials in ξ1 and ξ2. Since the total degree of the polynomial is three, we have

the possibilities ν = (0,0), (1,0), (2,0), (3,0), (0,1), (1,1), (2,1), (0,2), (1,2), and (0, 3).

Since the univariate Legendre polynomials of degrees 0, 1, 2, 3 are L0(x) = 1, L1(x) =

x, L2(x) = 1
2(3x2 − 1), and L3(x) = 1

2(5x3 − 3x), we have

Yn = span {ψi(ξ)}9i=0

= {1, ξ1,
1

2
(3ξ2

1 − 1),
1

2
(5ξ3

1 − 3ξ1), ξ2, ξ1ξ2,
1

2
(3ξ2

1 − 1)ξ2,
1

2
(3ξ2

2 − 1),

1

2
ξ1(3ξ2

2 − 1),
1

2
(5ξ3

2 − 3ξ2)}.

So, spectral SGFEM essentially entails performing a Galerkin projection onto Whn :=

Xh ⊗ Yn ⊂ H1
0 (D)⊗ L2

ρ(Γ) using basis functions rhn of the form

rhn =

J∑
j=1

∑
k∈I

rjkφj(x)ψk(ξ), (2.19)

20



where rij is a degree of freedom. Note, in particular, that

E(rhn) =

〈
J∑
j=1

∑
k∈I

rjkφj(x)ψk(ξ)

〉

=
J∑
j=1

P−1∑
k=0

rjkφj(x) 〈ψk(ξ)〉

=

J∑
j=1

P−1∑
k=0

rjkφj(x)δ0k =

J∑
j=1

rj0φj(x), (2.20)

since

〈ψ0(ξ)〉 = 1, 〈ψj(ξ)〉 = 0, j > 0, 〈ψj(ξ)ψk(ξ)〉 =
〈
ψ2
j (ξ)

〉
δjk. (2.21)

Now, our variational problem is to find yhn ∈Whn satisfying

E

[∫
D

(
a0 + σa

N∑
i=1

√
λiϑi(x)ξi

)
∇yhn(x, ξ) · ∇v(x, ξ) dx

]
=

E
[∫
D
u(x)v(x, ξ) dx

]
, ∀v ∈Whn, (2.22)

where a0 = E[a]. Expanding yhn and the test functions in the chosen basis in (2.22), we

see that

yhn =
P−1∑
k=0

J∑
j=1

yjkφj(x)ψk(ξ) =
P−1∑
k=0

ykψk(ξ),

where {φj} are Q1 finite elements and {ψi} are multi-dimensional Legendre polynomials,

yields the JP × JP coupled linear system of equations with block structure:

Ky = u, (2.23)

where

K =



K(0,0) K(0,1) · · · K(0,P−1)

. . .

... K(k,k)
...

. . .

K(P−1,0) K(P−1,1) · · · K(P−1,P−1)


, y =



y0

...

yk
...

yP−1


, u =



u0

...

uk
...

uP−1


,

21



yk,uk ∈ RJ , k = 0, . . . , P−1, and the blocks K(p,q) of the stochastic Galerkin matrix K are

linear combinations of N+1 weighted stiffness matrices of dimension J, with each of them

having the same sparsity pattern equivalent to that of the corresponding deterministic

problem. More specifically, for p, q = 0, . . . , P − 1, we have

K(p,q) = 〈ψp(ξ)ψq(ξ)〉K0 +

N∑
i=1

〈ξiψp(ξ)ψq(ξ)〉Ki, (2.24)

and the stiffness matrices Ki ∈ RJ×J , i = 0, 1, . . . , N, are given, respectively, by

K0(j, k) =

∫
D
E[a](x)∇φj(x)∇φk(x) dx, (2.25)

Ki(j, k) = σa
√
λi

∫
D
ϑi(x)∇φj(x)∇φk(x) dx, i > 0, (2.26)

where E[a] > 0 due to (2.4), so that K0 is symmetric and positive definite. The block

K0 captures the mean information in the model and appears on the diagonal blocks of

K, whereas the other blocks Ki, i = 1, . . . , N, represent the fluctuations in the model. In

Kronecker product notation, one obtains

K := G0 ⊗K0 +

N∑
i=1

Gi ⊗Ki, u := g0 ⊗ u0, (2.27)

where 
G0 = diag

(〈
ψ2

0

〉
,
〈
ψ2

1

〉
, . . . ,

〈
ψ2
P−1

〉)
,

Gi(j, k) = 〈ξiψjψk〉 , i = 1, . . . , N,

(2.28)

and the vectors g0 ∈ RP and u0 ∈ RJ are defined via

g0(i) = 〈ψi−1(ξ)〉 , i = 1, . . . , P, u0(j) =

∫
D
u(x)φj(x) dx, j = 1, . . . , J, (2.29)

due to the orthogonality of the stochastic basis functions with respect to the probability

measure of the distribution of the chosen random variables (cf. (2.21)). Observe that

uk = 0 ∈ RJ , k = 1, . . . , P − 1.

Now, suppose we denote (normalized) univariate orthogonal polynomials by {ϕk}.

22



Then, recall that the sequence {ϕk} satisfies the three-term recurrence relation [37]

ϕk+1(x) = (x− αk)ϕk(x)− βkϕk−1(x), x ∈ R,

with ϕ0 = 1, ϕ−1 = 0, it turns out that

G0(j, k) = 〈ψj , ψk〉 =

N∏
i=1

〈ϕji , ϕki〉 =

N∏
i=1

δjiki = δjk, (2.30)

and for i > 0, we have

Gi(j, k) = 〈ξiψj , ψk〉

= 〈ξiϕj , ϕk〉
N∏

l=1,l 6=i
〈ϕjl , ϕkl〉

= (〈ϕji+1, ϕki〉+ αji〈ϕji , ϕki〉+ βji〈ϕji−1, ϕki〉)
N∏

l=1,l 6=i
〈ϕjl , ϕkl〉. (2.31)

Hence, G0 is a diagonal matrix whereas for k > 0, the matrix Gk has at most three non-

zero elements per row. Moreover, for symmetric density functions ρ, the coefficients αj

in the recurrence relation vanish so that the matrices Gk have a most two non-zeros per

row, see e.g. [37, 110]. This is the case when using, for instance, Legendre or Hermite

polynomial chaos.

The matrices Gk possess hierarchical structure. More specifically, for a polynomial

chaos of order n, note that each Gk ∈ RP×P (cf. (2.18)) can be written in block form as

Gk =

 Ĝk F Tk

Fk Dk

 , Ĝk ∈ RPa×Pa , Fk ∈ RPb×Pa , Dk ∈ RPb×Pb , (2.32)

where P = Pa + Pb = (N+n)!
N !n! and Pa = (N+n−1)!

N !(n−1)! . The matrix Ĝk is defined exactly the

same way as Gk and corresponds to a chaos of order n− 1. By recursion, Ĝk has a similar

structure to that of (2.32). The recursion terminates with Ĝk ∈ R1×1.

It turns out that the global stochastic Galerkin matrix K inherits the hierarchical

structure of the Gk thanks to the Kronecker product representation (2.27). Besides, K is

symmetric and positive definite; it is highly sparse as many of the sums in (2.24) are zero.

23



2.5 An unsteady PDE with random inputs

In an attempt to extend our discussion on the above model problem to a time-dependent

case, we consider the stochastic initial-boundary value problem: find a random function

y : [0, T ]×D × Ω→ R, such that, P-almost surely in Ω, the following parabolic equation

holds: 

∂y(t,x, ω)

∂t
−∇ · (a(x, ω)∇y(t,x, ω)) = u(t,x), in (0, T ]×D × Ω,

y(t,x, ω) = 0, on (0, T ]× ∂D × Ω,

y(0,x, ω) = 0, in D × Ω,

(2.33)

where the source function satisfies u ∈ L2(0, T ;D) and, as before, a(x, ω) is assumed to

be uniformly positive in D × Ω. For the existence and uniqueness of (2.33), see e.g., [93].

We note here that, unlike the steady-state problem, the time-dependent model problem

presents the additional challenge of solving a large coupled linear system for each time

step [81, 114, 143, 144]. We will need to work with the linear systems resulting from both

the stationary and the unsteady models in the sequel.

Now, using SGFEM for the spatial and the stochastic discretizations of (2.33) yields

the system of ordinary differential equations [13]:

(G0 ⊗M)
dy(t)

dt
+

(
N∑
i=0

Gi ⊗Ki

)
y(t) = g0 ⊗ u0, (2.34)

where

M(j, k) =

∫
D
φj(x)φk(x) dx (2.35)

is the finite element mass matrix. For time discretization, we use the implicit Euler method

to avoid stability issues. To this end, we set tn = nτ, n = 0, 1, . . . , nt, with τ = T/nt.

Moreover, we define the computed numerical approximation y(tn) := yn, so that (2.34)

yields

G0 ⊗M
(

yn − yn−1

τ

)
+

(
N∑
i=0

Gi ⊗Ki

)
yn = (g0 ⊗ u0)n , (2.36)

24



or, equivalently,

K̂τyn = bn, (2.37)

where

bn = (G0 ⊗M) yn−1 + τ (g0 ⊗ u0)n , (2.38)

and

K̂τ = G0 ⊗M + τ

N∑
i=0

Gi ⊗Ki

= G0 ⊗ K̃0 +

N∑
i=1

Gi ⊗ K̃i, (2.39)

with K̃0 := M + τK0, K̃i = τKi, i = 1, . . . , N.

Having completed our discussion on three different discretization approaches, we pro-

ceed next to Chapter 3 to discuss the solution methods for the linear system (2.37).

25



Chapter 3

Solution methods for the

stochastic Galerkin system

In this chapter, we present low-rank solvers for the stochastic Galerkin linear systems

obtained in Chapter 2. Here, we first recall the major existing solution methods in Sec-

tion 3.1 before proceeding to propose our low-rank iterative methods in Section 3.2. The

low-rank preconditioned iterative solvers presented herein are based on [13]. Numerical

experiments are provided to demonstrate that these solvers are effective, especially when

the fluctuations in the random data are not too large relative to their mean values.

3.1 Existing iterative solvers

The stochastic Galerkin method requires the solution of the symmetric and positive-

definite (spd) Galerkin system (2.37). Once its solution is obtained, statistical quantities

such as moments or a probability distribution associated with the solution process can be

computed cheaply. Provided the size of the linear system is relatively small, note that one

could assemble the entire Galerkin matrix and solve the linear system with, for example,

Gaussian elimination. Gaussian elimination would entail O((JP )3) work. For a fairly

large-scale linear system, this approach is, however, inefficient in terms of memory usage

since it requires assembling the full stochastic Galerkin matrix K̂τ .

A major class of iterative solvers in the context of large-scale SGFEM are the multilevel

methods. These methods essentially build a hierarchy of levels with respect to either the

26



spatial (deterministic) discretization or the stochastic discretization (c.f (2.32)) to solve

the stochastic Galerkin system. The approach is considered in [81, 114]. In addition to

numerical results, [114] use local Fourier mode analysis techniques for theoretical inves-

tigations on the solver performance. Elman and Furnival [36] also consider a multilevel

method based on a hierarchy of spatial grids and prove independence of the multilevel

convergence rate of deterministic and stochastic discretization parameters for a random

diffusion coefficient of special form. The second approach, which is based on a hierarchy

of stochastic shape functions, has been considered in [68, 121].

The Krylov subspace methods are probably the most popular methods for solving

large, sparse linear systems (see e.g. [39] and the references therein). The basic idea

behind the Krylov subspace methods is the following. Consider, for arbitrary A ∈ Rm×m

and b ∈ Rm, the linear system

Ax = b. (3.1)

Suppose now that x0 is an initial guess for the solution x of (3.1), and define the initial

residual r0 = b−Ax0. Krylov subspace methods are iterative methods whose kth iterate

xk satisfies

xk ∈ x0 + Kk(A,x0), k = 1, 2, . . . , (3.2)

where

Kk(A,x0) := span
{

r0,Ar0, . . . ,Ak−1r0

}
(3.3)

denotes the kth Krylov subspace generated by A and r0. The Krylov subspaces form a

nested sequence that ends with dimension d = dim(Km(A, r0)) ≤ m, i.e.,

K1(A, r0) ⊂ . . . ⊂ Kd(A, r0) = · · · = Km(A, r0).

In particular, for each k ≤ d, the Krylov subspace Kk(A, r0) has dimension k. Because

of the k degrees of freedom in the choice of the iterate xk, k constraints are required to

27



make xk unique. In Krylov subspace methods this is achieved by requiring that the kth

residual rk = b − Axk is orthogonal (with respect to the Euclidean inner product) to a

k-dimensional space Ck, called the constraints space:

rk = b−Axk ∈ r0 +AKk(A, r0), (3.4)

where rk ⊥ Ck. It can be shown [17] that there exists a uniquely defined iterate xk of the

form (3.2) and for which the residual rk = b−Axk satisfies (3.4) if

(a) A is symmetric positive definite and Ck = Kk(A, r0), or

(b) A is nonsingular and Ck = AKk(A, r0).

In particular, (a) characterizes the conjugate gradient (CG) method [39] whereas (b)

characterizes the minimal residual (MINRES) method [100] and the generalized minimal

residual (GMRES) method [117].

In this thesis, the Krylov subspace solvers will be a chief cornerstone in our discussions.

In particular, since K̂τ is symmetric and positive definite, we elect to focus in this chapter

on the preconditioned conjugate gradient method1 (PCG) to solve the system (2.37). Algo-

rithm 3.1 shows the PCG for solving an arbitrary symmetric and positive definite system,

say, (3.1), with a suitable preconditioner P. Note that CG only requires the evaluation of

matrix-vector products so that it is unnecessary to store the assembled matrix K̂τ [37, 110].

Indeed, one can perform the matrix-vector products implicitly following a procedure de-

scribed by Pellissetti and Ghanem in [106]. More specifically, each matrix K̃k is assembled

and the matrix-vector product is expressed as (K̂τy)j = ΣP−1
i=0 ΣN

k=0 〈ξkψiψj〉 (K̃kyi). The

terms (K̃kyi) are precomputed and then appropriately scaled as needed. This approach is

efficient since most of the terms 〈ξkψiψj〉 are zero [37]. The cost of performing the matrix-

vector product in this manner is essentially determined by the computation of (K̃kyi) for

0 ≤ k ≤ N and 0 ≤ i ≤ P − 1, which entails P (N + 1) sparse matrix-vector products

by matrices K̃k of order J . The implicit matrix-vector product also only requires the

assembly of N +1 order-J stiffness matrices and the assembly of the components 〈ξkψiψj〉

of Gk.

1The concept of and the need for preconditioning linear systems will be made clearer in the sequel, see
also e.g., [39, Chapter 2].

28



Algorithm 3.1 The preconditioned conjugate gradient method (PCG)

1: Choose x(0), compute r(1) = b−Ax(0)

2: Solve Pz(1) = r(1), set p(0) = z(0)

3: for j = 0 until convergence do
4: αj =

〈
z(j), r(j)

〉
/
〈
Ap(j),p(j)

〉
5: x(j+1) = x(j) + αjp

(j)

6: r(j+1) = r(j) − αjAp(j)

7: < Test for convergence >
8: solve Pz(j+1) = r(j+1)

9: βj+1 =
〈
z(j+1), r(j)

〉
/
〈
z(j), r(j)

〉
10: p(j+1) = z(j) + βjp

(j)

11: end for

We remark here that recycled Krylov subspace methods [101] have also been employed

in [65, 129] to study stochastic Galerkin linear systems. It is observed in these papers that

subspace recycling results in considerable savings in terms of CPU time requirements.

Notwithstanding the advantages of the full solution methods presented above, we want

to emphasize that the matrix dimensions quickly become prohibitively large with respect

to the discretization parameters. As a consequence, one expects overwhelming memory

and computational time requirements. Hence, it becomes impossible to compute the full

solution to an SGFEM discretized problem. For instance, in practical applications such

as groundwater flow problems, the length N of the random vector ξ is usually large due

to the presence of small correlation length in the covariance function of a. This, in turn,

increases the value of P in (2.18) (and hence the dimension of K̂τ ) quite fast, see e.g., [42].

This is a major drawback of the SGFEM. In order to break the curse of dimensionality

associated with this problem, we propose a low-rank approximation to the solution of the

linear system (2.37). The low-rank technique presented here only needs to store a small

portion of the vectors in comparison to the full problem and we want to theoretically

justify this approach in the sequel.

3.2 A low-rank solution approach

Observe first from (2.37), (2.39) and (1.2) that the stochastic Galerkin linear system (2.37)

can be written as a matrix equation. That is, since

(
N∑
k=0

Gk ⊗ K̃k

)
vec(Y ) = vec

(
N∑
k=0

K̃kY G
T
k

)
= vec (U) ,

29



where U, Y ∈ RJ×P , Gk ∈ RP×P , K̃k ∈ RJ×J , k = 0, 1, . . . , N, we have

N∑
k=0

K̃kY G
T
k = EF T , (3.5)

where U = EF T , E = u0 ∈ RJ×r, F = g0 ∈ RP×r, with r = 1 and u0, g0 as defined

in (2.29). The matrix equation (3.5) can be viewed as a generalized Sylvester equation in

the unknown Y. A fundamental challenge when solving (3.5) in the large-scale setting is

storing the solution matrix Y which is typically dense even though Gk and K̃k are sparse.

In practical applications, however, one generally has r � J, P. When this happens, we

will refer to (3.5) as having a low-rank right-hand side. In this case, the resulting storage

requirements for the data E and F of (3.5) are O(J+P )r. However, the right-hand side U

itself, as well as the solution matrix Y, has O(JP ) storage requirements. Thus we see that,

in the large-scale case, even storing a solution to (3.5) is computationally challenging! We

shall soon see that in the large-scale, low-rank right-hand side scenario it is often the case

that a solution may be approximated as Y ≈WV T with W and V both having q columns,

where q � J, P, and this is what is meant by a low-rank approximation. If one attempts

to solve for the low-rank factors W and V instead of Y, then the cost of storage for an

approximate solution to (3.5) is reduced by a factor of

(J + P )q

JP
;

so, if q � min(J, P ), then we achieve significant memory savings. The problem therefore

becomes computationally tractable. A depiction of a low-rank approximation to a dense

solution matrix Y when J = P is given in Figure 3.1.

Figure 3.1: Approximation of a matrix Y by its low-rank components W and V.

Y ≈ W

V T

30



Finally, we note here that for an arbitrary matrix A ∈ Rn×m, one can compute the

best rank-r approximation Ar = WrV
T
r of A via the singular value decomposition (SVD)

[46], where Ar is obtained by dropping all but the first r largest singular values of A, with

Wr ∈ Rn×r and Vr ∈ Rm×r. More specifically, let A = ŨΣṼ T be the SVD of A. Then,

we can define Wr = ŨrΣr and Vr = Ṽr, where Σr is the diagonal matrix containing the

first r largest (diagonal entries of Σ) singular values of A, whereas Ũr and Ṽr contain,

respectively, the first r columns of Ũ and Ṽ . By the Eckart-Young-Mirsky theorem (see

e.g. [46]), the matrix Ar is the best approximation of A in the set of all rank-r matrices

with respect to the Frobenius norm.

3.2.1 Existence of low-rank solution

In what follows, we focus our attention on the solution of the system (2.37) using low-

rank Krylov subspace solvers. First, however, we show, under certain conditions, that the

solution of (2.37) can be approximated with a vector of low tensor rank. Our point of

departure is the so-called Sherman-Morrison-Woodbury formula (see e.g. [145]), on which

we shall rely to prove our main result in this chapter.

Lemma 3.1. Let X ∈ Rn×n be nonsingular and let Y, Z ∈ Rn×m, with m ≤ n. Then

X + Y ZT is invertible if and only if I + ZTX−1Y is invertible, with

(X + Y ZT )−1 = X−1 −X−1Y (I + ZTX−1Y )−1ZTX−1. (3.6)

We can now state our main result, which shows that the solution of the system (2.37)

can indeed be approximated with a vector of low tensor rank. For this purpose, we split

the matrix (2.39) as follows:

K̂τ = G0 ⊗ K̃0︸ ︷︷ ︸
:=L

+
N∑
i=1

Gi ⊗ K̃i. (3.7)

Observe then from (2.25), (2.28), (2.35) and (2.39) that L in (3.7) is symmetric and positive

definite. Furthermore, let the stochastic matrices Gi, i = 1, . . . , N, be decomposed in low-

31



rank format:

Gi := WiV
T
i , Wi, Vi ∈ RP×ri , i = 1, . . . , N. (3.8)

We illustrate the low-rank nature of these matrices in Section 3.3. Since also the stiffness

matrices K̃i, i = 1, . . . , N, are symmetric, then each of them admits the factorization:

K̃i := LiDiL
T
i = L̃iL

T
i , L̃i, Li ∈ RJ×J , i = 1, . . . , N, (3.9)

where L̃i := LiDi, i = 1, . . . , N, with Di and Li (and hence L̃i) being, respectively,

diagonal and lower triangular matrices. The following result holds, see also [10, 13].

Theorem 3.2. Let K̂τ denote a matrix of Kronecker product structure as in (2.39).

Let Gi, i = 1, . . . , N, have the low-rank representation (3.8) with r =
∑N

j=1 rj , and

let K̃i, i = 1, . . . , N, be given by the decomposition (3.9). Suppose further that W =

[W1⊗ L̃1, . . . ,WN ⊗ L̃N ] and V = [V1⊗L1, . . . , VN ⊗LN ]. For all time steps n ≥ 2, let the

tensor rank of bn ≤ `, where `� JP. Then, the linear system (2.37) admits the low-rank

solution vector yn of the form

yn =
(
G−1

0 ⊗ K̃
−1
0

)
(bn −W ŷ) , (3.10)

where the vector ŷ ∈ RJ ·r is the solution of

(IJ ·r + V TL−1W )ŷ = V TL−1bn. (3.11)

Moreover, the tensor rank of yn in (3.10) is at most

(i) r + 1, if n = 1, and

(ii) r + `, if n ≥ 2.

Proof. Observe first from (1.3), (3.8) and (3.9) that we have the low-rank representation

N∑
i=1

Gi ⊗ K̃i =
N∑
i=1

(WiV
T
i )⊗ (L̃iL

T
i ) =

N∑
i=1

(Wi ⊗ L̃i)(V T
i ⊗ LTi ) = WV T . (3.12)

32



Hence, from Lemma 3.1, (3.7) and (3.12), we note that

K̂−1
τ = (L+WV T )−1 = L−1 − L−1W (IJ ·r + V TL−1W )−1V TL−1,

so that

yn = K̂−1
τ bn ⇔ yn = L−1

bn −W (IJ ·r + V TL−1W )−1V TL−1bn︸ ︷︷ ︸
=ŷ

 . (3.13)

Now, by definition, the symmetric and positive definite matrix L satisfies L−1 = G−1
0 ⊗

K̃−1
0 , which, together with (3.13), immediately yields (3.10).

To show (i), it suffices to show that the tensor rank of b1−W ŷ is at most r+ 1. Now,

note that

rank(vec−1(b1 −W ŷ)) ≤ rank(vec−1(b1)) + rank(vec−1(−W ŷ)). (3.14)

From (2.38), we see that b1 = τ (g0 ⊗ u0) , since y0 = 0 and the source term u is time-

independent. But then, since the orthogonal polynomials {ψj} satisfy

g0(j) = 〈ψj〉 =


1, j = 0,

0, otherwise,

it follows from (2.29) that vec−1(g0 ⊗ u0) ∈ RJ×P is a matrix of rank 1. Hence, b1 is a

vector of tensor rank 1. Next, we show that the tensor rank of W ŷ is r, which, together

with (3.14), completes the proof of (i). To that end, note from (3.13) that since the

vector ŷ ∈ RJr, with r =
∑N

j=1 rj , we can reshape ŷ to obtain the matrix Ŷ ∈ RJ×r via

the operator vec−1. More specifically, we have vec−1(ŷ) = [Ŷ1, . . . , ŶN ] = Ŷ , where the

submatrices Ŷi ∈ RJ×ri . Now, set Zi := LiŶi, i = 1, . . . , N. Observe then from (1.2) that

W ŷ =
N∑
i=1

(Wi ⊗ Li)vec(Ŷi) =

N∑
i=1

vec(LiŶiW
T
i ) =

N∑
i=1

vec(ZiW
T
i ) =

N∑
i=1

ri∑
j=1

Wij ⊗ ZTij .

But then, by assumption, {ri}Ni=1 sums up to r. Hence, the tensor rank of W ŷ is r.

Finally, to prove the assertion (ii), suppose that, for n ≥ 2, the tensor rank of bn is

33



at most ` � JP. Since the tensor rank of W ŷ is r, it trivially follows from the previous

argument and the definition of bn in (2.38) that (ii) holds with ` ≥ 1.

Remark 3.3. Note that, G0 is just a P ×P identity matrix if we work with orthonormal

basis polynomials {ψi}. Hence, in this special case, (3.10) reduces to

yn =
(
IP ⊗ K̃−1

0

)
(bn −W ŷ) .

Remark 3.4. Note that if we implement (3.10) in Theorem 3.2 straightforwardly, then

the tensor rank tends to grow as the time step n increases. Hence, the assumption that

∀n ≥ 2, the tensor rank of the right hand side bn is at most `, where 1 ≤ `� JP. In fact,

in practical computations, the tensor rank of yn−1 is truncated with respect to its singular

value decay to ensure that the tensor rank of bn is kept under control. The decay rates of

the singular values of the right hand sides and final solution (reshaped as J ×P matrices)

are numerically illustrated in Section 3.3.

Remark 3.5. We note here that Theorem 3.2 provides a theoretical evidence for the

existence of low-rank tensor approximation to the solution of (2.37) as JP →∞.

3.2.2 Preconditioning strategies

It is noteworthy that the stochastic Galerkin matrix generally suffers from poor condi-

tioning; see, e.g. [110]. This can induce the deterioration of the rate of convergence of

the Krylov subspace methods as the problem size increases. Nevertheless, this and other

causes of slow convergence rates are typically remedied by the use of a suitable precondi-

tioner P. Conceptually, we need a matrix P such that P−1K̂τ has better spectral properties

(essentially, clustered eigenvalues) and for which P−1v is cheap to compute for any vector

v of appropriate dimension. In practice, though, we typically aim to preserve symmetry;

this can certainly be achieved when P is symmetric positive definite [107].

Regardless of the preconditioners used, a major issue in solving (2.37) is evident. More

precisely, one has to solve an enormous elliptic system in each timestep. Due to the coupled

nature of the systems, this exercise can be both computer memory- and time-consuming

(cf. Section 3.3). To mitigate this problem, we propose to solve (2.37) with two optimal

34



preconditioners, together with a low-rank PCG method [78]. First, however, we introduce

the preconditioners which we will use in what follows.

Mean-based preconditioner

Observe first that in general the submatrix matrix K0 has a much more significant con-

tribution than the other Ki’s representing the random fluctuations of the system. Since

K0 only gives contributions to the main block diagonal of the global stochastic Galerkin

matrix, the resulting system of linear equations will be strongly block-diagonally domi-

nant if the random field a in (2.3) has small fluctuations away from its mean value. This

important observation was exploited by Pellissetti and Ghanem in [106] to construct a

block Jacobi preconditioner, which was subsequently termed the mean-based precondi-

tioner. More precisely, the mean-based preconditioner is given by

P0 := G0 ⊗ K̃0. (3.15)

Now, observe that this is just the matrix L in Theorem 3.2 and that G0 is a diagonal

matrix due to the orthogonality of the stochastic basis functions {ψi}. Hence, P0 is a block-

diagonal matrix. Moreover, by definition, K̃0 = M + τK0, so that K̃0 is symmetric and

positive definite since M and K0 are both symmetric and positive definite from (2.35) and

(2.25). So, P0 is positive definite and P−1
0 = G−1

0 ⊗K̃
−1
0 , where G−1

0 (j, j) = 1/G0(j, j) > 0.

The preconditioner then entails the approximate action of P uncoupled copies of K̃−1
0 .

Ullmann preconditioner

Ullmann in [130] points out that the mean-based preconditioner does not take into ac-

count all the information contained in K̂τ and thus proposes and analyses an optimal

preconditioner which we refer to as the Ullmann preconditioner in the sequel. It is given

by

P1 :=
N∑
i=0

trace(K̃T
i K̃0)

trace(K̃T
0 K̃0)

Gi︸ ︷︷ ︸
:=G

⊗K̃0. (3.16)

35



Observe from (3.16) and (3.15) that P1 can be thought of as a ‘perturbed’ version of P0

since

P1 = G0 ⊗ K̃0︸ ︷︷ ︸
:=P0

+
N∑
i=1

trace(K̃T
i K̃0)

trace(K̃T
0 K̃0)

Gi ⊗ K̃0. (3.17)

It is inspired by the first part of the following result obtained by Van Loan and Pitsianis.

Lemma 3.6. [132] Suppose m = m1m2, n = n1n2, and X ∈ Rm×n. If R ∈ Rm2×n2 is

fixed, then the matrix L ∈ Rm1×n1 defined by

Li,j :=
trace(XT

i,jR)

trace(RTR)
, i = 1, . . . ,m1, j = 1, . . . , n1, (3.18)

minimizes ||X−L⊗R||F , where XT
i,j = X((i−1)m2+1 : im2, (j−1)n2+1 : jn2). Likewise,

if L ∈ Rm1×n1 is fixed, then the matrix R ∈ Rm2×n2 defined by

Ri,j :=
trace(X̃T

i,jL)

trace(LTL)
, i = 1, . . . ,m2, j = 1, . . . , n2, (3.19)

minimizes ||X − L⊗R||F , where X̃T
i,j = X(i : m2 : m, j : n2 : n).

Van Loan and Pitsianis further show that the matrices L defined in (3.18) and R

defined in (3.19) are symmetric and positive definite provided X and R or L, respectively,

are symmetric and positive definite.

Now, if we set X = K̂τ and R = K̃0 in (2.37), it follows from (3.18) that the matrix G

in (3.16) minimizes ||K̂τ −G⊗ K̃0||F . More interestingly, P1 inherits the sparsity pattern,

symmetry and positive definiteness of the Galerkin matrix K̂τ . Besides, unlike P0, it makes

use of all the information in K̂τ . Unfortunately, by reason of its construction, P1 loses the

block-diagonal structure enjoyed by P0 which makes it more expensive to invert than P0.

3.2.3 Low-rank preconditioned CG method

Having presented the preconditioners, we proceed in this section to discuss the low-rank

preconditioned conjugate gradient (LRPCG) method [78]. The basic idea behind LRPCG

is that the iterates in the algorithm are truncated based on the decay of their singular

values. Thus, at each iteration, the iterates are put in low-rank format (cf. (3.8)). The

36



Algorithm 3.2 Low-rank preconditioned conjugate gradient method (LRPCG)

1: Input: Matrix functions K̂τ ,P : RJ×P → RJ×P , right hand side Bn ∈ RJ×P in
low-rank format. Truncation operator Tε w.r.t relative accuracy ε.

2: Output: Matrix yn ∈ RJ×P fulfilling ||K̂τ (yn)−Bn||F ≤ tol.
3: yn0 = 0, R0 = Bn, Z0 = P−1(R0), P0 = Z0, Q0 = K̂τ (P0),
4: ϑ0 = 〈P0, Q0〉 , k = 0.
5: while ||Rk||F > tol do
6: ωk = 〈Rk, Pk〉 /ϑk
7: ynk+1 = ynk + ωkPk, ynk+1 ← Tε(ynk+1)

8: Rk+1 = Bn − K̂τ (ynk+1), Optionally : Rk+1 ← Tε(Rk+1)
9: Zk+1 = P−1(Rk+1)

10: βk+1 = −〈Zk+1, Qk〉 /ϑk
11: Pk+1 = Zk+1 + βkPk, Pk+1 ← Tε(Pk+1)
12: Qk+1 = K̂τ (Pk+1), Optionally : Qk+1 ← Tε(Qk+1)
13: ϑk+1 = 〈Pk, Qk〉
14: k = k + 1
15: end while
16: yn = ynk

truncation, no doubt, introduces further error in the solution. However, the truncation

tolerance can be so tightened that the error becomes negligible. More importantly, the

computer memory required to store the matrices is reduced, thereby enabling large-scale

computations.

First, we present LRPCG in Algorithm 3.2. We point out a few things regarding the

implementation of LRPCG with respect to the solution of (2.37). Note that, in Algo-

rithm 3.2, all vectors in RJ ·P (cf. (2.37)) are reshaped into RJ×P matrices by the vec−1

operator. Now, recall that for each fixed time step n = 1, 2, . . . , nt, we need to solve an

elliptic system using the LRPCG algorithm. In particular, for each solve, we need to

evaluate K̂τ (X) = K̂τvec(X), where X := ynk or Pk. For this purpose, we set

K̂τvec(X) =

(
N∑
i=0

Gi ⊗ K̃i

)
vec(X), (3.20)

where X ∈ RJ×P is of low-rank, say, r :

X = WV T , W ∈ RJ×r, V ∈ RP×r, r � J, P,

W = [w1, . . . , wr], V ∈ [v1, . . . , vr],

37



so that, using (1.2), one gets

vec(X) = vec

(
r∑
i=1

ujv
T
j

)
=

r∑
j=1

vec(ujv
T
j ) =

r∑
j=1

vj ⊗ uj . (3.21)

Hence, we have

K̂τvec(X) =

(
N∑
i=0

Gi ⊗ K̃i

)
vec(X)

=

(
N∑
i=0

Gi ⊗ K̃i

) r∑
j=1

vj ⊗ uj


=

N∑
i=0

r∑
j=1

(Givj)⊗ (K̃iuj) :=

(N+1)r∑
k=1

v̂k ⊗ ûk ∈ RJP×1, (3.22)

where v̂k ∈ RP , ûk ∈ RJ and we then have to reshape (3.22) to have

K̂τ (X) := vec−1(K̂τvec(X)) ∈ RJ×P . (3.23)

Moreover, in order to apply any of the two preconditioners to the residual matrices Rk,

that is, P−1(Rk), we have to ensure that the Rk are in low-rank format as in (3.21), so we

can obtain similar expressions as in (3.22) and (3.23), since P−1 := P−1
i , i = 0, 1, have

the same size and Kronecker product structure as K̂τ . The right hand side of (2.37), that

is, bn = (G0 ⊗M) yn−1 + τ (g0 ⊗ u0) is also reshaped such that Bn := vec−1(bn) ∈ RJ×P

and Bn is as well put in low-rank format. Finally, observe from (1.4) that the operation

in (3.22) has increased the tensor rank of the resulting vector. Hence, it is important that

the iterates ynk are truncated in every iteration by a truncation operator Tε based on the

decay of their singular values in order to keep the growth of the ranks under control. In

the sequel, we describe how the truncation operation works, as well as how to exploit the

low-rank format of the matrices to compute the inner products in Algorithm 3.2.

3.2.4 Truncation and matrix inner products

We start this section by assuming that the matrix of interest X is represented by two

low-rank factors W and V , i.e., X = WV T . Our iterative procedure starts with a low-

rank decomposition of the right hand side, but the ranks of the low-rank factors increase

38



either via the low-rank matrix vector products or vector recurrences. For this purpose,

it is necessary to find new low-rank approximations W̃ and Ṽ that approximate the old

product WV T ≈ Tε(X) = W̃ Ṽ T , where the truncation operator Tε satisfies

||X − Tε(X)|| ≤ ε||X||F ,

for some truncation tolerance ε. The columns of the matrix Tε(X) have been compressed,

and for this reason this operation is sometimes referred to as a column compression.

Kressner and Tobler discuss in [77] that one can obtain the new low-rank representation

by performing skinny QR factorizations of both matrices, i.e., W = QwRw and V = QvRv.

We then note that X = QwRwR
T
vQ

T
v and an SVD of RwR

T
v = BΣCT allows us to compute

a representation of lower rank. Depending on the truncation tolerance we can drop small

singular values in Σ. The new low-rank factors are then obtained via

W̃ = QwB(:, 1 : r) and Ṽ = QvC(:, 1 : r)Σ(1 : r, 1 : r),

where we have used MATLAB notation. Here, the truncation rank r′ ≤ r is chosen such

that the singular values sr satisfy

√
s2
r′+1 + . . .+ s2

r ≤ ε
√
s2

1 + . . .+ s2
r ,

where ε is the truncation tolerance. This operation leads to X ≈ W̃ Ṽ T . We have im-

plemented this approach in MATLAB but noted that the computation of the skinny QR

factorization was rather slow. An alternative approach that we used, which due to some

internal handling within MATLAB typically produces fast results, exploits the MAT-

LAB function svds to directly compute, via a function handle, the truncated SVD of

WV T ≈ BΣCT without ever forming the matrix (see also [124]). Again, we drop small

singular values in Σ to obtain Ṽ and W̃ . The computation of the truncated SVD is

typically done via a procedure based on a Krylov subspace method where we require mul-

tiplication with the matrix WV T . It is easy to see that we can perform this multiplication

using the matrix factored form. This approach proved advantageous in terms of the time

needed for the truncation. Alternative ways to compute the truncated SVD are possible

39



and can be found in [6, 56, 123]. The cost of computing the truncation depends, for ex-

ample in the truncated SVD approach, on the cost of multiplying with the matrix WV T .

Assuming that W ∈ RJ×r, then every iteration of an iterative procedure to compute the

truncated SVD needs O(Jr) flops to compute the multiplication with W and analogously

O(Pr) for the multiplication with V T .

Additionally, we have to ensure that the inner products within the iterative solver are

computed efficiently. To that end, suppose that

Y = WY V
T
Y , WY ∈ RJ×rY , VY ∈ RP×rY ,

Z = WZV
T
Z , WZ ∈ RJ×rZ , VZ ∈ RP×rZ .

Then, due to the properties of the trace operator2, we see that

trace

(WY V
T
Y

)T︸ ︷︷ ︸
Large

(
WZV

T
Z

)︸ ︷︷ ︸
Large

 = trace

V T
Z VY︸ ︷︷ ︸
Small

W T
Y WZ︸ ︷︷ ︸

Small

 (3.24)

allows us to compute the trace of small matrices rather than of the ones from the full model.

More precisely, we first compute V T
Z VY ∈ RrZ×rY with (2JrY rZ) flops, W T

Y WZ ∈ RrY ×rZ

with (2PrY rZ) flops, and then the diagonal elements of the product of the two matrices

with (2rY rZ) flops. In total, we therefore require 2(J + P + 1)rY rZ flops.

From a numerical analyst’s point of view, one may object that low-rank truncations

introduce an error in the LRPCG procedure as given by Algorithm 3.2, so that any or-

thogonality or optimality properties of the conjugate gradient method that are due to

recursions would be lost, and this is certainly a valid point. In fact, as noted in [77],

the residual must be explicitly calculated as Rnk+1 = Bn − K̂τ (ynk+1), n = 0, 1, 2, . . . , in

order to ensure numerical stability, and this requires a modification in the derivation of

Algorithm 3.2 so that coefficients do not depend on any recursions for the residual, un-

like in the vector-based Algorithm 3.1. Despite such an objection, the method is capable

of delivering quality approximations while dramatically reducing memory requirements.

Having discussed the low-rank solver, we proceed to the next section to investigate its

performance in conjunction with the preconditioners.

2Recall that 〈Y,Z〉 = vec (Y )T vec (Z) = trace
(
Y TZ

)
.

40



3.3 Numerical experiments

To demonstrate the performance of the low-rank approach presented in this chapter, we

consider the 2D version of our model problem (2.33). More precisely, we choose f = 1 and

D = [−1, 1]2. The random input a is characterized by the covariance function

Ca(x,y) = σ2 exp

(
−|x1 − y1|

`1
− |x2 − y2|

`2

)
, ∀(x,y) ∈ D. (3.25)

The eigenpairs (λj , ϑj) of the KLE of a are given explicitly in [43]. In the simulations,

we set the correlation lengths `1 = `2 = 1 and the mean of the random field E(a) = 1.

Note that decreasing the correlation lengths slows down the decay of the eigenvalues in the

KLE of a, and therefore more random variables are then required to sufficiently capture

the randomness in the model [110]. That is, the resulting effect is an increase in the

parameter N. The reverse is the case when the correlation lengths are increased.

Next, we investigate the behavior of the solvers for different values of the discretization

parameters J,N, n, σa. Moreover, we choose ξ = {ξ1, . . . , ξN} such that ξj ∼ U [−1, 1],

and {ψj} are N -dimensional Legendre polynomials with support in [−1, 1]N . We perform

spatial discretization using Q1 finite elements. Moreover, all the numerical experiments

are performed on an Ubuntu Linux machine with 2GB RAM using MATLAB 7.14 together

with a MATLAB version of HSL MI20 [21] based on the classical AMG method as described

in [127]. We implement each of the two preconditioners P0 and P1 using one V-cycle of

AMG with symmetric Gauss-Seidel (SGS) smoothing to approximately invert K̃0. We

remark here that we apply the method as a black-box in each experiment and the set-

up of the approximation to K̃0 only needs to be performed once. In the experiments, the

linear systems are solved for time T = 1 and 16 timesteps. We write DoF to mean the total

degrees of freedom for the matrix K̂τ ; that is; DoF(K̂τ ) = JP. All figures are obtained with

the mean-based preconditioner P0. Unless otherwise stated, all iterations for all solvers

herein are terminated when the relative residual error, measured in the Euclidean norm,

is reduced to tol = 10−4. We remark here that the stopping iteration tolerance tol should

be chosen such that the truncation tolerance ε ≤ tol; otherwise, one would be essentially

iterating on the ‘noise’ from the low-rank truncations, as it were.

First, in Figures 3.2, 3.3 and 3.4, we illustrate, for the 2D model problem, the singular

41



values decay of the stochastic matrix G1, as well as those of the right hand sides at different

time steps and the final solution at T = 1. In these figures, we see that the decay is slow.

Nevertheless, the matrix G1 is rank deficient, which justifies its low-rank representation

in Theorem 3.2. We note here that the singular values of the stochastic matrices Gk are

indeed the same since the matrices are permutations of one another [110] and, hence, their

ranks are equal. In particular, their rank is roughly P/2 for all k > 0. However, as already

pointed out, G0 is diagonal and of full rank P.

As an illustration of the results of Theorem 3.2, observe first from Figure 3.2 that the

rank of the matrices Gk (represented here by G1) is 32 while P = 56. Now, recall from

the theorem that the rank of the low-rank solution is determined mainly by the ranks of

the stochastic matrices Gk regardless of the dimension of the stiffness matrices K̃k. More

precisely, we have from the figure and the theorem that r =
∑N

j=1 rj = 5 × rank(G1) =

5 × 32 = 160. Thus, with the truncation tolerance ε = 10−10, for example, we see from

Figure 3.2 that the tensor ranks of the right hand sides bn are at most `, where ` = 20.

Hence, one can approximate the solution to the linear systems with a solution vector whose

tensor rank at each time step is at most 160 + ` = 180. So, it turns out that the result

of the theorem is particularly important if the size of the stiffness matrices K̃k increases;

that is, J →∞, while P is kept constant. As for the right hand sides, the decays at all the

Figure 3.2: Singular values decay of the stochastic matrix G1 (left) and the right hand
sides at different times t ∈ {0.125, 0.25, 0.5}, as well as the final solution at t = T (right),
DoF(K̂τ ) = 340480 with J = 6080, P = 56 (i.e. N = 5, n = 3), σa = 0.01 and tol = 10−8.

10 20 30 40 50
10

−20

10
−15

10
−10

10
−5

10
0

10
5

si
ng

ul
ar

 v
al

ue
s

k

solution with sigma=0.01

 

 

t=0.125
t=0.25
t=0.5
t=1

10 20 30 40 50
10

−70

10
−60

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

si
ng

ul
ar

 v
al

ue
s

k

stochastic matrix G
1

42



Figure 3.3: Singular values decay of the right hand sides at different times t ∈
{0.125, 0.25, 0.5}, as well as the final solution at t = T , with σa = 0.1 (left) and σa = 0.5
(right), DoF(K̂τ ) = 340480 with J = 6080, P = 56 (i.e. N = 5, n = 3), and tol = 10−8.

10 20 30 40 50
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

si
ng

ul
ar

 v
al

ue
s

k

solution with sigma=0.1

 

 

t=0.125

t=0.25

t=0.5

t=1

10 20 30 40 50
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

si
ng

ul
ar

 v
al

ue
s

k

solution with sigma=0.5

 

 

t=0.125

t=0.25

t=0.5

t=1

Figure 3.4: Singular values decay of the stochastic matrix G1 (left) and the right hand
sides at different times t ∈ {0.125, 0.25, 0.5}, as well as the final solution at t = T , (right),
DoF(K̂τ ) = 1276800 with J = 6080, P = 210 (i.e.N = 6, n = 4), σa = 0.3 and tol = 10−8.

50 100 150 200
10

−15

10
−10

10
−5

10
0

10
5

si
ng

ul
ar

 v
al

ue
s

k

solution with sigma=0.3

 

 

t=0.125
t=0.25
t=0.5
t=1

50 100 150 200
10

−100

10
−80

10
−60

10
−40

10
−20

10
0

si
ng

ul
ar

 v
al

ue
s

k

stochastic matrix G
1

43



respective time steps (e.g. t = 0.125, 0.25, 0.5) are quite similar. Thus, we truncate the

right hand sides with the same truncation tolerance. Figures 3.2 and 3.3, in particular,

illustrate that, keeping other parameters fixed, increasing the variance of the random field

a slows down the decay of the singular values of both the right hand sides and the final

solution.

Tables 3.1, 3.2, 3.3, 3.4 and 3.5 report further the results of the simulations of the

model, keeping all but one parameter constant in each table. Here, the linear systems are

solved using LRPCG, as well as using the standard preconditioned CG method which we

have denoted as full model (FM), that is, without low-rank truncation. As benchmarks to

Table 3.1: Simulation results showing relative errors, total CPU times (in seconds), ranks
of truncated solutions, memory (in KB), and total number of iterations from precondi-
tioned low-rank solvers (second and third columns) compared with those from standard
preconditioned CG (last two columns) for σa = 0.01, T = 1, J = 6080, and various P ;
Par represents the tuple (N,n, P ).

Timesteps=16 P0 + LRPCG P1 + LRPCG P0 + FM P1 + FM
Truncation tol 10−4(10−6) 10−4(10−6)

Par=(3,3,20)
Ranks 6 (8) 6 (10)
Memory 381.3 (524.2) 285.9 (571.9) 950 950
#iter 32 (32) 32 (32) 32 32
Total CPU time 20.4 (21.9) 20.7 (21.1) 119.4 123.6
Rel error 8.0e-5 (8.9e-6) 2.4e-4 (1.1e-6)

Par=(5,3,56)
Ranks 9 (12) 9 (16)
Memory 527.3 (814.9) 431.4 (910.8) 2660 2660
#iter 32 (32) 32 (32) 32 32
Total CPU time 52.4 (58.0) 54.7 (58.8) 197.0 195.1
Rel error 2.2e-4 (1.2e-5) 4.0e-4 (4.1e-6)

Par=(4,4,70)
Ranks 8 (10) 8 (13)
Memory 480.5 (672.6) 384.4 (768.7) 3325 3325
#iter 33 (32) 32 (33) 32 32
Total CPU time 54.5 (52.7) 54.5 ( 57.3) 208.5 208.3
Rel error 8.0e-5 (1.3e-5) 3.3e-4 (3.8e-6)

Par=(6,3,84)
Ranks 9 (14) 10 (18)
Memory 577.9 (866.8) 481.6 (1059.4) 3990 3990
#iter 32 (32) 32 (32) 32 32
Total CPU time 139.6 (133.1) 112.5 (156.1) 228.1 229.9
Rel error 3.0e-4 (1.3e-5) 4.4e-4 (4.3e-6)

44



compare the performance of the solution methods, we report the total iteration counts, the

total CPU times, memory requirements (in kilobytes), the ranks of the truncated solutions

and the relative error from the LRPCG solution with respect to the FM solution, measured

in the Euclidean norm. By the memory requirement of a low-rank solution X = WV T ,

we mean the sum of the two separate computer memories occupied by its factors W and

V T , since X is computed and stored in this format, unlike the solution from FM.

In Tables 3.1, 3.2, and 3.5, we show results for varying P, J, and σa, respectively,

while keeping other parameters constant. In all the tables reported in this chapter, the

second and the third columns show the outputs from LRPCG while the last two are from

FM (using just the MATLAB command pcg). Also in the second and third columns, the

quantities in brackets are outputs computed with the corresponding truncation tolerance.

Note that in Tables 3.1 and 3.4, we have specifically used the tuple of parameters (N,n, P ).

Thus, (5, 3, 56), for example, implies that N = 5, n = 3, and P = 56 (cf. (2.18)).

A major observation from Tables 3.1, 3.2, 3.3 and 3.5 is that for σa ≤ 0.2 and indepen-

dently of the preconditioner used, LRPCG clearly outperforms FM in terms of CPU times

and memory requirements, while maintaining fairly the same iterations as FM. From Ta-

bles 3.2 and 3.3, the efficiency as J →∞ of the LRPCG compared to FM with respect to

CPU times and memory reduction is particularly noteworthy. For instance, if J = 24448

and ε = 10−6, we see from Table 3.2 that the low-rank approach reduces the computa-

tional time by roughly a factor of 10 and memory required to store the solution by a factor

of 4, while maintaining the same iteration counts as FM. In fact, this observation further

corroborates the theoretical implication of Theorem 3.2 that the low-rank approach is of

particular interest if the size of the stiffness matrices K̃k gets arbitrarily large; the FM

deteriorates in this case as it suddenly struggles to cope with the increased computational

complexity. Note in particular from Table 3.3 that with the FM, MATLAB indeed fails

with J = 392704 and P = 210, as the size of the global stochastic Galerkin matrix K̂τ at

each timestep is now increased to more than 82 million degrees of freedom. Yet, LRPCG

handles this task in about 200 minutes with ε = 10−6, σa = 0.1; that is, roughly 13 min-

utes per timestep. In this case, however, we are not able to report the relative error unlike

in the other tables because the solution from FM terminates with ‘out of memory’, which

we have denoted as ‘OoM’. On the other hand, if J is relatively small and P is varied as

45



Table 3.2: Simulation results showing relative errors, total CPU times (in seconds), ranks
of truncated solutions, memory (in KB), and total number of iterations from precondi-
tioned low-rank solvers (second and third columns) compared with those from standard
preconditioned CG (last two columns) for N = 6, n = 3, (i.e P = 84), σa = 0.01, and
various J.

Timesteps=16 P0 + LRPCG P1 + LRPCG P0 + FM P1 + FM
Truncation tol 10−4(10−6) 10−4(10−6)

J = 368
Ranks 10 (14) 10 (17)
Memory 42.4 (68.1) 42.7 (77.7) 241.5 241.5
#iter 32 (32) 32 (32) 32 32
Total CPU time 35.0 (41.1) 45.9 (43.5) 10.2 14.2
Rel error 3.0e-4 (1.2e-5) 4.2e-4 (6.0e-6)

J = 1504
Ranks 9 (14) 10 (17)
Memory 148.8 (223.3) 124.1 (260.5) 987 987
#iter 32 (32) 32 (33) 32 32
Total CPU time 64.8 (66.5) 69.7 (70.0) 21.8 27.2
Rel error 3.0e-4 (1.2e-5) 4.4e-4 (6.0e-6)

J = 6080
Ranks 9 (14) 10 (18)
Memory 577.9 (866.8) 481.6 (1059.4) 3990 3990
#iter 32 (32) 32 (32) 32 32
Total CPU time 139.6 (133.1) 112.5 (156.1) 228.1 229.9
Rel error 3.0e-4 (1.3e-5) 4.4e-4 (4.3e-6)

J = 24448
Ranks 9 (14) 10 (18)
Memory 2299.9 (3449.8) 1916.5 (4216.4) 16044 16044
#iter 32 (32) 32 (32) 32 32
Total CPU time 352.0 (426.7) 347.8 (419.4) 3769.4 3853.4
Rel error 3.0e-4 (1.3e-5) 4.5e-4 (4.3e-6)

in Table 3.4, then FM does better than LRPCG in terms of CPU time only. Although

reported only for the case σa = 0.01 in Table 3.2, we also observed a similar trend as σa

is varied and a small J is kept constant. But then, in practical applications one is usually

more interested in large-scale simulations in which case (J and P are large and) LRPCG

will naturally be a preferred option. Another key observation evident from all the tables

is that decreasing the truncation tolerance generally reduces the relative error but, as ex-

pected, at the cost of comparatively more computational time and memory requirements.

Regarding the preconditioners, we note that, compared to the Ullmann preconditioner P1,

the mean-based preconditioner P0 generally yields lower ranks of the low-rank solution,

46



Table 3.3: Simulation results showing total CPU times (in seconds), ranks of truncated
solutions, memory (in KB), and total iterations using low-rank preconditioned CG for
DoF(K̂τ ) ≈ 82.5× 106 with J = 392704, P = 210 (i.e N = 6, n = 4), and various σa.

Timesteps=16 P0 + LRPCG P1 + LRPCG P0 or P1 + FM
Truncation tol 10−4(10−6) 10−4(10−6)

σa = 0.001
Ranks 1 (10) 2 (12)
Memory 3069.6 (49114.25) 6139.2 (49114.25)
#iter 24 (32) 32 (32)
Total CPU time 2680.7 (4775.5) 3335.4 (4944.9) OoM

σa = 0.01
Ranks 9 (12) 10 (18)
Memory 36835.7 (55253.5) 30696.4 (67532.1)
#iter 32 (32) 32 (32)
Total CPU time 4157.3 (5149.9) 4115.3 (5249.8) OoM

σa = 0.1
Ranks 20 (47) 20 (52)
Memory 89019.6 (174969.5) 82880.3 (171899.9)
#iter 49 (49) 51 (48)
Total CPU time 8354.5 (12419.0) 8069.3 (11801.0) OoM

Table 3.4: Simulation results showing relative errors, total CPU times (in seconds), ranks
of truncated solutions, memory (in KB), and total number of iterations from precondi-
tioned low-rank solvers (second and third columns) compared with those from standard
preconditioned CG (last two columns) for σa = 0.01, J = 1504, and various P ; Par
represents the tuple (N,n, P ).

Timesteps=16 P0 + LRPCG P1 + LRPCG P0 + FM P1 + FM
Truncation tol 10−4(10−6) 10−4(10−6)

Par=(3,3,20)
Ranks 6 (8) 6 (10)
Memory 95.25 (130.9) 71.4 (142.9) 235 235
#iter 32 (32) 32 (32) 32 32
Total CPU time 19.4 (17.0) 19.9 (18.1) 12.7 15.3
Rel error 8.0e-5 (8.7e-6) 2.4e-4 (1.0e-6)

Par=(5,3,56)
Ranks 9 (12) 9 (16)
Memory 134.1 (207.2) 109.7 (243.8) 658 658
#iter 33 (32) 32 (33) 32 32
Total CPU time 63.8 ( 69.4) 69.2 (69.5) 20.0 23.6
Rel error 2.2e-4 (1.2e-5) 3.9e-4 (4.1e-6)

less CPU times and less memory requirements for small truncation tolerance. However,

both of them maintain relatively equal iteration counts either with LRPCG or FM.

In spite of the advantages enjoyed by LRPCG as outlined above, its performance is

47



adversely affected by increase in the standard deviation σa of the input data. This obser-

vation is also true for FM, albeit to a lesser degree. It is indeed evident from Table 3.5

that both LRPCG and FM exhibit deteriorating performance as σa increases, regardless

of which of the two preconditioners (that is, P0 or P1) is used. Accordingly, the decay of

singular values of the solution matrices becomes slower and slower as earlier demonstrated

by Figures 3.2, 3.3 and 3.4. Furthermore, as we can see from Table 3.5, even though rel-

atively high variance limits the performance of both considered preconditioners, P0 tends

to be more adversely affected by the increase than P1 in terms of both iteration counts

and CPU time. This is perhaps explained by the fact that, unlike P1, the mean-based

Table 3.5: Simulation results showing relative errors, total CPU times (in seconds), ranks
of truncated solutions, memory (in KB), and total number of iterations from precondi-
tioned low-rank solvers (second and third columns) compared with those from standard
preconditioned CG (last two columns) for J = 6, 080, N = 6, n = 3, (i.e P = 84) and
various σa.

Timesteps=16 P0 + LRPCG P1 + LRPCG P0 + FM P1 + FM
Truncation tol 10−4(10−6) 10−4(10−6)

σa = 0.01
Ranks 9 (14) 10 (18)
Memory 577.9 (866.8) 481.6 (1059.4) 3990 3990
#iter 32 (32) 32 (32) 32 32
Total CPU time 139.6 (133.1) 112.5 (156.1) 228.1 229.9
Rel error 3.0e-4 (1.3e-5) 4.4e-4 (4.3e-6)

σa = 0.1
Ranks 27 (54) 21 (55)
Memory 2070.7 (2744.9) 1348.4 (2696.8) 3990 3990
#iter 49 (49) 48 (48) 49 48
Total CPU time 206.0 (275.7) 196.4 (283.7) 342.6 352.6
Rel error 8.7e-4 (1.1e-4) 9.0e-4 (2.1e-4)

σa = 0.2
Ranks 46 (73) 49 (77)
Memory 3033.8 (3804.3) 2985.7 (3804.3) 3990 3990
#iter 65 (72) 65 (64) 65 64
Total CPU time 200.6 (353.8) 218.6 (286.0) 508.9 524.9
Rel error 1.3e-4 (3.2e-4) 9.3e-4 (2.9e-6)

σa = 0.3
Ranks 81 (84) 84 (84)
Memory 5393.5 (5700.6) 6308.5 (5778.8) 3990 3990
#iter 102 (242) 90 (108) 83 80
Total CPU time 911.6 (5478.7) 750.6 (1251.9) 590.1 835.1
Rel error 1.0e-3 (2.8e-4) 9.5e-4 (3.7e-4)

48



preconditioner P0 is block-diagonal; thus, as σa increases, we see from (2.25), (2.26) and

(2.37) that the off-diagonal blocks of the global stochastic Galerkin matrix K̂τ become

more significant and they are not represented in the preconditioner. Here, we note, in par-

ticular, that the deteriorating performance of P0 as variance increases confirms a similar

observation made in an earlier study [110] by Powell and Elman in which CG was pre-

conditioned with P0, but without low-rank truncations. Due to this drawback, we remark

here that we have done most of our computations using relatively small values of variance.

In particular, we used σa = 0.01 to obtain the results in Tables 3.1, 3.2 and 3.4. We also

did further experiments with σa ∈ {0.1, 0.2} and ε = 10−8 and made similar observations

in the performance of LRPCG and FM.

In summary, with a view to reducing the computational time and memory requirements

of the solution of arbitrarily large stochastic Galerkin linear systems, we have provided a

theoretical basis for a low-rank solver to achieve these goals. More precisely, we solved

the linear systems (2.37) using a low-rank conjugate gradient solver, together with two

different preconditioners. In general, the combination of each of the preconditioners and

the low-rank iterative solver seems quite promising for large-scale simulation of models

whose random input data have comparatively low variance, as it reduces the computer

memory and computational time required to solve the stochastic Galerkin linear system

compared to the conventional method.

In the rest of the thesis, we proceed to develop efficient low-rank solvers for SOCPs,

which are a class of higher dimensional problems. First, in Chapter 4, we discuss diffusion

SOCPs after which we proceed to Chapter 5 to consider a Stokes-Brinkman SOCP.

49



Chapter 4

Diffusion optimal control problems

with uncertain inputs

In this chapter and the next, we focus on the numerical simulation of SOCPs. As was

pointed out by Rosseel and Wells in [115], the SGFEM can be applied straightforwardly to

stochastic optimal control problems. Howover, the efficient solution of SGFEM problems

can hinge on the development and application of effective preconditioners. This is, indeed,

our major concern in this chapter. More specifically, we construct efficient preconditioners

to be used with all-at-once low-rank Krylov subspace solvers for the optimality (saddle

point) systems arising from SGFEM discretization of SOCPs1.

4.1 Optimization under uncertainty

In many applications, forces or boundary conditions are to be determined such that the

response of a physical or engineering system is optimal in some sense. These problems

can often be formulated as the minimization of an objective functional subject to a set of

constraint equations in the form of PDEs. For problems that involve uncertainty, incorpo-

rating stochastic information into a control formulation can lead to a quantification of the

statistics of the system response. Mathematically speaking, stochastic PDE-constrained

optimization problems or SOCPs are closely related to stochastic inverse problems, where

the control variable corresponds to the parameter to be identified [64, 146].

1Instead of solving the linear systems iteratively for each time step in the unsteady problems considered
here, we solve for all time steps at once.

50



In this dissertation, we will formulate our model SOCPs as follows:

min
y∈Y,u∈U

J (y, u) subject to c(y, u) = 0, (4.1)

where the constraint equation c(y, u) = 0 represents a PDE with uncertain coefficient(s) to

be specified in the sequel, and J : Y×U → R is a real-valued differentiable cost functional

of tracking type and Y,U represent some suitably defined function spaces. Specifically, we

consider this cost functional:

J (y, u) :=
1

2
||y − ȳ||2L2(D)⊗L2(Ω) +

α

2
||std(y)||2L2(D) +

β

2
||u||2L2(D)⊗L2(Ω). (4.2)

In what follows, we treat the functions y, u and ȳ as real-valued random fields represent-

ing, respectively, the state variable, the control variable and the prescribed target system

response. Thus, the objective functional J (y, u) is a deterministic quantity with uncer-

tain terms. We note here that y and u are the solutions variables; only ȳ will be given.

Moreover, ȳ and u could be modelled deterministically. However, as mentioned earlier,

problems with an unknown stochastic control constitute stochastic inverse problems and

are different from control problems where the focus is on computing the optimal deter-

ministic control. So, in most cases (as we assume in this work), the mean of the computed

stochastic control could be considered as optimal. Depending on the application, the mean

may not be the sought optimal control, though. Besides, the uncertainty in the system

response might require additional computational challenges.

In the spirit of [115], we remark here that the control variable u could also be de-

composed additively into unknown deterministic (to be computed) and known stochastic

components:

u(x, ω) = ū(x) + û(x, ω),

where ū : D → R is deterministic and is the mean of u and û : D ×Ω→ R is a zero-mean

stochastic part. The goal in this case is to compute ū, which constitutes the signal sent

to a control device. The actual controller response is u, with û modelling the uncertainty

in the controller response for a given instruction.

The positive constant β in (4.2) represents the parameter for the penalization of the

51



action of the control u, whereas α penalizes the standard deviation std(y) of the state

y. If β is large, then u must be small, and y may not be very close to ȳ. In contrast,

smaller values of β allow a much larger set of controls u which in turn may allow better

approximation of ȳ by y. In fact, one expects that ||u|| → 0 as β → ∞. Similarly, large

values of α imply very low variance of the state y, for which there is obviously little or no

need for uncertainty quantification in the model. In what follows, we shall focus mainly

on distributed control problems, in which case the control and the source term of the PDE

constraint are one and the same. However, we do believe that our discussion generalizes

to boundary control problems as well [104, 105, 124, 126].

Our aim in this chapter is to apply our low-rank approach, together with SGFEM,

to two prototypical models, namely, optimization problems constrained by (a) stationary

diffusion equations, (b) unsteady diffusion equations, and in each of the two cases, both the

constraint equations and the objective functional have uncertain inputs. These problems

pose increased computational complexity due to enormous memory requirements by the

resulting often ill-conditioned linear systems representing the Karush-Kuhn-Tucker (KKT)

conditions. In more specific terms, this chapter focuses on the development and analyses

of efficient block-diagonal Schur complement-based preconditioners for use with low-rank

MINRES algorithms to tackle the large-scale optimality linear systems. The materials

herein are mainly from the paper [14].

4.2 A stochastic elliptic control problem

Our first SOCP consists in minimizing the cost functional J (y(x, ω), u(x, ω)) defined in

(4.2) subject, P-almost surely, to the following linear elliptic diffusion equation2:


−∇ · (a(x, ω)∇y(x, ω)) = u(x, ω), in D × Ω,

y(x, ω) = 0, on ∂D × Ω,

(4.3)

2In this dissertation, we do not consider the case of state- or control- or mixed control-state-constrained
problems [55, 103, 109]. These problems can be tackled via the use of, for instance, semi-smooth Newton
algorithms [54, 61, 67].

52



where a : D × Ω→ R is a random coefficient field and the forcing term on the right hand

side u : D × Ω→ R denotes a random control function. Furthermore, we assume that

u ∈ L2(D)⊗ L2(Ω) a.e., (4.4)

and that there exist positive constants amin and amax such that (2.4) is satisfied.

Recasting the above SOCP given by (4.2) and (4.3) into a saddle-point formulation,

Chen and Quarteroni in [26] prove the existence and uniqueness of its solution. More

precisely, the following result holds.

Theorem 4.1. [26, Theorem 3.5] Let (4.2) and (2.4) be satisfied and let α = 0 in (4.2).

Then, there exists a unique optimal solution (y, u, f) to the SOCP (4.2) and (4.3) satisfying

the stochastic optimality conditions

B(y, v) = `(u, v), v ∈ H1
0 (D)⊗ L2(Ω),

`(βu− f, w) = 0, w ∈ L2(D)⊗ L2(Ω),

B′(y, r) + `(y, r) = `(ȳ, r), r ∈ H1
0 (D)⊗ L2(Ω),

where f is the adjoint variable or Lagrangian parameter associated with the optimal solu-

tion and ` is as given by (2.7). Here, B′ is the adjoint bilinear form of B as defined in

(2.6); that is, B′(y, r) = B(r, y).

We note here that the cost functional considered in [26, 59] does not include ||std(y)||2L2(D).

But then, their results extend to the more general form of J (y, u) discussed in this thesis

due to the Frechét differentiability of ||std(y)||2L2(D); see, for example, [115].

As our major concern in this dissertation is to study efficient solvers resulting from the

discretization of our model problems, we proceed next to recall the two common approaches

in the literature to solve these optimization problems [125, 126]. The first method is the

so-called optimize-then-discretize (OTD) approach. Here, one essentially considers the

infinite-dimensional problem, writes down the first order conditions and then discretizes

the first order conditions. An alternative strategy, namely, the discretize-then-optimize

(DTO) approach involves discretizing the problem first and then building a discrete La-

grangian functional with the corresponding first order conditions. The commutativity of

53



the DTO and OTD schemes when applied to optimal control problems constrained by

PDEs has been a subject of debate in recent times (see [82] for an overview). In what

follows, we will adopt the DTO strategy because, for the SOCPs considered in this dis-

sertation, it leads to a symmetric saddle point linear system which fits in nicely with our

preconditioning strategy.

Next, we note that an application of SGFEM to the cost functional (4.2) immediately

yields

1

2
(y − ȳ)TM(y − ȳ) +

α

2
yTMty +

β

2
uTMu, (4.5)

where

M := G0 ⊗M, Mt := H0 ⊗M, H0 := diag
(
0,
〈
ψ2

1

〉
, . . . ,

〈
ψ2
P−1

〉)
, (4.6)

with M ∈ RJ×J the mass matrix and G0 the diagonal matrix defined, respectively, in

(2.35) and (2.28). Similarly, as was done in Chapter 2, a direct application of SGFEM to

the state equation (4.3) yields

Ky =Mu, (4.7)

where K is as given by (2.24).

Our discrete SOCP now is to minimize (4.5) subject to (4.7). The Lagrangian func-

tional L of this optimization problem is given by

L(y,u, f) :=
1

2
(y − ȳ)TM(y − ȳ) +

α

2
yTMty +

β

2
uTMu + fT (−Ky +Mu− d),

where f denotes the Lagrangian multiplier or adjoint associated with the constraint. Here,

d := diag(G0)e1⊗ d̃, where the vector d̃ represents, in general, contributions from bound-

ary conditions with respect to the spatial discretization and e1 = [1, 0, . . . , 0]T . Now,

applying the first order conditions to the Lagrangian yields, respectively, the adjoint equa-

54



tion, the gradient equation and the state equation:

Ly(y,u, f) = 0 ⇒ (M+ αMt)y −Kf =Mȳ,

Lu(y,u, f) = 0 ⇒ βMu +Mf = 0,

Lf (y,u, f) = 0 ⇒ −Ky +Mu = d,

or, alternatively, the following optimality system [115]


Mα 0 −KT

0 βM MT

−K M 0


︸ ︷︷ ︸

:=A


y

u

f

 =


Mȳ

0

d

 , (4.8)

where

Mα = M+ αMt

= (G0 ⊗M) + α(H0 ⊗M)

= Gα ⊗M, (4.9)

with Gα := G0 + αH0, so that

Gα(j, k) =



〈
ψ2

0

〉
, if j = k = 0,

(1 + α)
〈
ψ2
j

〉
, if j = k = 1, 2, . . . , P − 1,

0, otherwise.

(4.10)

We note from (2.28), (4.9) and (4.10) that if α = 0, then Gα = G0 and, hence, Mα =M.

Moreover, we assume that the parameter N in the KLE of the random input a is chosen

such that K stays symmetric and positive definite [110]. The system (4.8) is usually of

huge dimension. As a result, the use of direct solvers for this system is out of the question.

In what follows, we consider efficient iterative solvers instead. First, however, we discuss

some properties of the optimality system (4.8) on which we shall subsequently rely to build

our theory.

55



4.2.1 Properties of the optimality system

Now, observe that the matrix A in (4.8) is of saddle point form:

A =

 A BT

B 0

 , (4.11)

where

A =

 Mα 0

0 βM

 , B = [−K M], (4.12)

with A being symmetric and positive definite. Moreover, B has full row rank since both

K and M are invertible. Note that saddle point systems and their solvers have been

extensively discussed in, for instance, [17, 39] and the references therein.

Next, we recall the following well-known result from [17, Section 3.2], which guarantees

the existence of a unique solution to (4.8).

Theorem 4.2. Suppose that the matrices A and B are as defined in (4.12). Assume that

A is symmetric and positive definite. Then, the saddle point matrix A defined in (4.11)

is invertible if and only if BT has full column rank.

Now, note that by the following congruence transformation

 I 0

BA−1 I


 A BT

B 0


 I A−1BT

0 I

 =

 A 0

0 −S

 , (4.13)

where S = BA−1BT is called the Schur complement, we know that A is indefinite, with

n positive and m negative eigenvalues, where A ∈ Rn×n and B ∈ Rm×n, see e.g. [17, 41].

Generally speaking, unless m is very small (which is seldom the case in practice), the

matrix A is highly indefinite, in the sense that it has many eigenvalues of both signs.

Besides indefiniteness, the saddle point matrix usually has conditioning issues due

essentially to the fact that its eigenvalues vary with, for instance, the spatial discretization

parameter h. The following result [17, 116] establishes the eigenvalue bounds for A. See

also [95] for related spectral results.

56



Theorem 4.3. [17, Theorem 3.5] Let the matrices A, A and B be as in Theorem 4.2. Let

θ1 and θn denote the largest and smallest eigenvalues of A, and let s1 and sm denote the

largest and smallest singular values of B. Denote by λ(A) the spectrum of A. Then

λ(A) ⊂ I− ∪ I+, (4.14)

where

I− =

[
1

2

(
θn −

√
θ2
n + 4s2

1

)
,
1

2

(
θ1 −

√
θ2

1 + 4s2
m

)]
and

I+ =

[
θn,

1

2

(
θ1 +

√
θ2

1 + 4s2
m

)]
.

Now, observe from Theorem 4.3 that the spectral condition number κ(A) of the matrix

A given by

κ(A) :=
max |λ(A)|
min |λ(A)|

(4.15)

grows unboundedly as either θn = λmin(A) or sm = smin(B) goes to zero (assuming that

λmax(A) and smax(B) are kept constant).

4.2.2 Preconditioning the steady-state KKT system

When the optimality system (4.8) is large and sparse, iterative methods such as Krylov

subspace methods are particularly attractive because their storage requirements typically

depend only on the number of nonzeros in the coefficient matrix. As we have already noted

in Chapter 3, an optimal Krylov subspace solver for the indefinite saddle point system is

the MINRES algorithm originally proposed by Paige and Saunders in [100]. However, the

twin issues of indefiniteness and poor conditioning exhibited by the saddle point KKT

system (as discussed in Section 4.2.1 above) adversely affect the convergence of MINRES.

Hence, we need to construct robust preconditioners that would accelerate the convergence

of MINRES. By robust preconditioners, we mean those with which the iterative solver

used is insensitive to the parameters of the discretized model. Algorithm 4.1 shows the

vector-based preconditioned MINRES method [39, p. 192] for solving the saddle point

57



Algorithm 4.1 The preconditioned MINRES method

1: Set v(0) = 0, w(0) = 0, γ0 = 0
2: Choose x(0), compute v(1) = b−Ax(0)

3: Solve Pz(1) = v(1), set γ1 =
√〈

z(1),v(1)
〉

4: Set η = γ1, s0 = s1 = 0, c0 = c1 = 1
5: for j = 1 until convergence do
6: z(j) = z(j)/γj
7: δj =

〈
Az(j), z(j)

〉
8: v(j+1) = Az(j) − (δj/γj)v

(j) − (γj/γj−1)v(j−1)

9: solve Pz(j+1) = v(j+1)

10: γj+1 =
√〈

z(j+1),v(j+1)
〉

11: α0 = cjδj − cj−1sjγj

12: α1 =
√
α2
0 + γ2j+1

13: α2 = sjδj + cj−1cjγj
14: α3 = sj−1γj
15: cj+1 = α0/α1

16: sj+1 = γj+1/α1

17: w(j+1) = (z(j) − α3w
(j−1) − α2w

(j))/α1

18: x(j) = x(j−1) + cj+1ηw
(j+1)

19: η = −sj+1η
20: < Test for convergence >
21: end for

system (4.8) Ax = b, where x and b represent, respectively, the solution and the right

hand side vectors in the system.

In what follows, we focus mainly on a block-diagonal preconditioning strategy for

solving (4.8); that is, we specifically consider preconditioners P of the form

P :=

 A 0

0 BA−1BT

 =


Mα 0 0

0 βM 0

0 0 S

 , (4.16)

where the Schur complement S is given by

S = BA−1BT = KM−1
α K +

1

β
M, (4.17)

since K andM are symmetric. Note that many preconditioners for saddle point matrices

have been proposed, such as block-triangular [22, 71], constraint [33, 69], augmented

Lagrangian [45], and splitting-based [16, 119] preconditioners. For more details, we refer

to the survey work of Benzi, Golub and Liesen in [17]. However, there is still motivation

for further research in this area. For example, most preconditioners are not robust when β

58



is small. Recently, though, Pearson et al. [104, 105] have developed a new approximation

of the Schur complement and used it to facilitate regularization-robust preconditioning for

a broad range of deterministic optimal control problems.

The following proposition, whose proof we include herein to make our treatment more

self-contained, describes the spectrum of the preconditioned matrix Q := P−1A.

Proposition 4.4. [89, Proposition 1] Let the matrices A and P be as given, respectively,

by (4.11) and (4.16). Then, the preconditioned matrix Q satisfies

Q(Q− I)(Q2 −Q− I) = 0. (4.18)

Proof. Observe first that

Q = P−1A =

 I A−1BT

(BA−1BT )−1B 0

 , (4.19)

so that

(
Q− 1

2
I

)2

=

 1
4I +A−1BT (BA−1BT )−1B 0

0 5
4I

 . (4.20)

But then, the matrix A−1BT (BA−1BT )−1B is a projection. Thus,

[(
Q− 1

2
I

)2

− 1

4
I

]2

=

[(
Q− 1

2
I

)2

− 1

4
I

]
,

which yields (4.18).

Observe that if Q is non-singular, then (4.18) in Proposition 4.4 tells us that Q has

only the three non-zero distinct eigenvalues
{

1, 1±
√

5
2

}
and is therefore diagonalizable.

Hence, any Krylov subspace method with optimality property, such as MINRES, will

terminate after at most three iterations. We note here, however, that (4.16) is only an

ideal preconditioner for our saddle point system (4.8) in the sense that it is not cheap

to solve the system with it. In practice, one often has to approximate its three diagonal

blocks with positive definite matrices in order to use P with MINRES. This gives good

59



clustering of the eigenvalues as long as the approximations are spectrally close to the exact

operators. An effective approach to approximate blocks (1, 1) and (2, 2) is, for example,

to approximate the mass matrices M in each of the two blocks via Chebyshev semi-

iteration [137]. More specifically, for a given system involving a mass matrix Mx = b, the

Chebyshev semi-iteration, as given by Algorithm 4.2, is used to speed up a relaxed Jacobi

iteration:

xk+1 = Hxk + g,

where H = I − θD−1
0 M, g = θD−1

0 b, D0 = diag(M). The optimal relaxation parameter

θ must be chosen in such a way that the spectrum of the matrix H is symmetric about

the origin. For instance, for a mesh of square Q1 elements in 2 dimensions, λ(D−1
0 M) ⊂

[1/4, 9/4]; moreover, if θ = 4/5, then we get λ(H) ⊂ [−4/5, 4/5]; see e.g. [136].

Approximating the Schur complement S, that is, block (3, 3) poses more difficulty,

however. One possibility [112] is to approximate S by dropping the term 1
βM to obtain

S0 := KM−1
α KT . (4.21)

The intuitive reasoning behind this is that the first term clearly carries more information

in some sense – it contains the discrete Poisson operator whereas the second term consists

only of mass matrices which can be thought of as identity or natural inclusion operators

in some finite element spaces. Therefore, if β is sufficently large (hence 1/β sufficiently

small) one can hope that this gives a reasonable approximation.

An alternative and more robust approach, which we adopt here and in the rest of

Algorithm 4.2 Chebyshev semi-iterative algorithm for ` steps

1: Set D0 = diag(M).
2: Set relaxation parameter θ.
3: Compute g = θD−1

0 b.
4: Set H = I − θD−1

0 M (this can be used implicitly).
5: Set x0 = 0 and xk = Hxk−1 + g.
6: Set c0 = 2 and c1 = θ.
7: for k = 1, . . . , l do
8: ck+1 = θck − 1

4ck−1.
9: ϑk+1 = θ ck

ck+1
.

10: xk+1 = ϑk+1(Hxk + g − xk−1) + xk−1.
11: end for

60



this dissertation, was first introduced in [105] (see also [39, Chapter 5]) in the context of

deterministic optimal control problems. In this case, S is approximated by a matrix S1 of

the form

S1 = (K +Mu)M−1
α (K +Mu)T , (4.22)

whereMu is determined by ‘matching’ the terms in the expressions for S1 and S as given,

respectively, by (4.22) and (4.17). More precisely, we ignore the cross terms (that is,

KM−1
α Mu +MuM−1

α K) in the expansion of S1 to get

MuM−1
α Mu =

1

β
M =

1

β
MM−1M. (4.23)

Now, observe from (2.28), (4.9) and (4.10) that we have Mα = Gα ⊗M. Moreover, note

that ideally in (4.2), we have α ≥ 0. So, to derive an approximation to S1, we consider

first of all the case α = 0. In this case, it is easy to see that (4.23) holds if we set

Mu =
1√
β
M, (4.24)

since Mα = M. If α > 0, then we apply the following trick. We proceed first to replace

in equation (4.10) the (0, 0) entry in the diagonal matrix Gα by (1 + α)
〈
ψ2

0

〉
, so that we

can then obtain

Mα = Gα ⊗M ≈ (1 + α)G0 ⊗M = (1 + α)M.

It turns out then that (4.23) holds if and only if

Mu =

√
1 + α

β
M,

with which we recover (4.24) for α = 0. Hence, we have

S1 =

(
K +

√
1 + α

β
M
)

︸ ︷︷ ︸
:=Z

M−1
α

(
K +

√
1 + α

β
M
)T

. (4.25)

We point out here that the expression for Mu implies that the ignored cross terms are

61



O(β−1/2) instead of O(β−1) in (4.21).

4.2.3 Spectral analysis and implementation issues

The effectiveness of the iterative solver used to solve our KKT system depends to a large

extent on how well the approximation S1 represents the exact Schur complement. To

measure this, we need to consider the eigenvalues of the preconditioned Schur complement

S−1
1 S. In what follows, we proceed to derive the spectrum λ(S−1

1 S) of S−1
1 S by examining

the Rayleigh quotient

R(x) :=
xTSx

xTS1x
,

for any non-zero vector x of appropriate dimension. We shall rely on the following results

on positive definite matrices.

Proposition 4.5. [90, Theorem 2] Let X = AB + BA, where A and B are positive

definite, Hermitian square matrices. Then, X is positive definite if

κ(B) <

(√
κ(A) + 1√
κ(A)− 1

)2

,

where κ(·) is as defined by (4.15).

Proposition 4.6. Let A and B be symmetric and positive definite matrices. Then, the

matrix X = ABA is also symmetric and positive definite.

Proof. Let y = Ax, x 6= 0. Now, note that A is invertible since it is positive definite,

which implies that y 6= 0 for all x 6= 0. Thus, for all x 6= 0, we have

xTABAx = (ATx)TB(Ax)

= (Ax)TB(Ax)

= yTBy > 0,

which shows that X is positive definite. It remains to prove that X is symmetric. Now,

observe that

XT = (ABA)T = ATBTAT = ABA = X.

62



We can now prove the main result of this section, which characterizes the spectrum of

the preconditioned Schur complement S−1
1 S.

Theorem 4.7. Let α ∈ [0,+∞). Then, the eigenvalues of S−1
1 S satisfy

λ(S−1
1 S) ⊂

[
1

2(1 + α)
, 1

)
∀α <

(√
κ(K) + 1√
κ(K)− 1

)2

− 1, (4.26)

where K =
∑N

i=0Gi ⊗Ki is as defined by (2.24).

Proof. Suppose that α ∈ [0,+∞). Define the diagonal matrices Υ and Eα by

Υ = diag(0, IP−1) and Eα = (IP + αΥ)⊗ IJ , (4.27)

where In denotes the identity matrix of dimension n ∈ N. Clearly,

IJP � Eα � (1 + α)IJP and IJP � E−1
α � (1 + α)−1IJP , (4.28)

where, for arbitrary square matrices X and Y, we write X � Y if X − Y ≥ 0, and vice

versa. Moreover, from (1.3), (2.27), (2.28) and (4.9), we obtain

Mα = G0 ⊗M + αH0 ⊗M

= (G0 + αH0)⊗M

= (G0IP + αG0Υ)⊗ (MIJ)

= (G0 ⊗M)(IP ⊗ IJ) + (G0 ⊗M)(αΥ⊗ IJ)

= (G0 ⊗M) [(IP ⊗ IJ) + (αΥ⊗ IJ)]

= M [(IP + αΥ)⊗ IJ ]

= MEα = EαM, (4.29)

since both G0 and IP +αΥ are diagonal matrices and therefore commute with each other.

Now, recall from (4.25) that the approximation S1 to the Schur complement S is given by

S1 = KM−1
α K +

1 + α

β
MM−1

α M+

√
1 + α

β

[
KM−1

α M+MM−1
α K

]
, (4.30)

63



and that the preconditioned Schur complement S−1
1 S is similar to the matrix

M1/2S−1
1 SM−1/2 = (M−1/2S1M−1/2)−1(M−1/2SM−1/2). (4.31)

It therefore follows from (4.17), (4.25), (4.29), (4.30) and (4.31) that

S−1
1 S ∼

(
CE−1

α C +
1 + α

β
E−1
α +

√
1 + α

β

(
CE−1

α + E−1
α C

))−1 (
CE−1

α C + β−1IJP
)

=
(
βCE−1

α C + (1 + α)E−1
α +

√
β(1 + α)

(
CE−1

α + E−1
α C

))−1 (
βCE−1

α C + IJP
)
,

where ∼ implies similarity transformation and C := M−1/2KM−1/2. Now, observe that

the matrix C is symmetric and positive definite so that λ(C) ⊂ (0,+∞) . Consider now the

Raleigh quotient

R(x) :=
xT
[
βCE−1

α C + IJP
]
x

xT
[
βCE−1

α C + (1 + α)E−1
α +

√
β(1 + α)

(
CE−1

α + E−1
α C

)]
x
.

Now, it is easy to see that xTE−1
α x > 0. Next, observe from (4.29) that

CE−1
α + E−1

α C = M−1/2KM−1/2E−1
α + E−1

α M−1/2KM−1/2

= M−1/2KE−1
α M−1/2 +M−1/2E−1

α KM−1/2

= M−1/2
[
KE−1

α + E−1
α K

]
M−1/2. (4.32)

But then, using (4.15) we see that κ(E−1
α ) = 1 + α, so that Proposition 4.5 yields

xT (KE−1
α + E−1

α K)x > 0 for α+ 1 <

(√
κ(K) + 1√
κ(K)− 1

)2

. (4.33)

Therefore, keeping in mind that bothM−1/2 and KE−1
α +E−1

α K are symmetric and positive

definite, we see from (4.32) and Proposition 4.6 that the matrix xT (CE−1
α + E−1

α C)x > 0.

Similarly, Proposition 4.6 guarantees that xTCE−1
α Cx > 0 holds. Hence, the denominator

of R(x) is strictly positive. Thus, using (4.28), we obtain

R(x) ≤
xT
[
βCE−1

α C + (1 + α)E−1
α

]
x

xT
[
βCE−1

α C + (1 + α)E−1
α +

√
β(1 + α)

(
CE−1

α + E−1
α C

)]
x
< 1,

64



from which we deduce that λmax := maxR(x) < 1.

Now, recall that, for any two vectors z1, z2 of appropriate dimensions, the Cauchy-

Schwarz Inequality implies 〈zT1 z2〉2 ≤ (zT1 z1)(zT2 z2). Thus, setting zT1 = xTCE−1/2
α and

z2 = E−1/2
α x, we obtain

(
xTCE−1

α x
)2 ≤ (xTCE−1

α Cx
)

(xTE−1
α x). (4.34)

Similarly, if we set zT1 = xTE−1/2
α and z2 = E−1/2

α Cx, then we get

(
xTE−1

α Cx
)2 ≤ (xTCE−1

α Cx
)

(xTE−1
α x), (4.35)

so that

xT (CE−1
α + E−1

α C)x ≤ 2
√(

xTCE−1
α Cx

)
(xTE−1

α x). (4.36)

Moreover, note that since (a+ b)2 ≤ 2(a2 + b2) ∀a, b ∈ R, then

1

(a+ b)2
≥ 1

2(a2 + b2)
, ∀a, b ∈ R. (4.37)

Hence, using (4.28), (4.36) and (4.37), one obtains

R(x) =
xT
[
βCE−1

α C + IJP
]
x

xT
[
βCE−1

α C + (1 + α)E−1
α +

√
β(1 + α)

(
CE−1

α + E−1
α C

)]
x

≥
xT
[
βCE−1

α C + IJP
]
x

βxTCE−1
α Cx+ (1 + α)xTE−1

α x+ 2
√
β(1 + α)

(
xTCE−1

α Cx
)

(xTE−1
α x)

=
xTβCE−1

α Cx+ xT IJPx[
β1/2(xTCE−1

α Cx)1/2 + (1 + α)1/2(xTE−1
α x)1/2

]2
≥ xTβCE−1

α Cx+ xT IJPx

2
[
βxTCE−1

α Cx+ (1 + α)xTE−1
α x

]
≥ xTβCE−1

α Cx+ xTE−1
α x

2
[
βxTCE−1

α Cx+ (1 + α)xTE−1
α x

]
≥ xTE−1

α x

2(1 + α)xTE−1
α x

=
1

2(1 + α)
, (4.38)

so that λmin := minR(x) ≥ 1
2(1+α) , thereby concluding the proof of the theorem.

65



Note that, in the context of a deterministic optimal control problem, Pearson and

Wathen in [105, Theorem 4] have independently obtained, specifically for α = 0, a similar

result to that of Theorem 4.7; see also [39, Lemma 5.2]. We, however, point out herein

that, in addition to the generalization of the said result, ours yields a sharper bound than

the one that these authors obtained. Moreover, with the exception of the parameter α,

the result of Theorem 4.7 is independent of the discretization parameters in the system.

The following result is an immediate consequence of Theorem 4.7.

Theorem 4.8. Let A be the KKT matrix given by (4.11) and define Ps by

Ps :=

 A 0

0 S1

 ,
where A and S1 are given, respectively, by (4.12) and (4.25). Moreover, assume that

α <

(√
κ(K)+1√
κ(K)−1

)2

− 1, where K is as defined in Theorem 4.7. Then, the eigenvalues of the

matrix P−1
s A satisfy

λ(P−1
s A) = {1} ∪ I− ∪ I+, (4.39)

where

I− =

(
1

2
(1−

√
5),

1

2

(
1−

√
1 +

2

1 + α

)]
and

I+ =

[
1

2

(
1 +

√
1 +

2

1 + α

)
,
1

2
(1 +

√
5)

)
.

Proof. First, we note that P−1
s A possesses the same eigenvalues as the symmetric matrix

given by

P−1/2
s AP−1/2

s =

 I A−1/2BTS
−1/2
1

S
−1/2
1 BA−1/2 0

 .
Now, using [41, Lemma 2.1], we know that the eigenvalues of P−1/2

s AP−1/2
s are either 1

or have the form 1
2

(
1±
√

1 + 4s2
)
, where s is a singular value of X := S

−1/2
1 BA−1/2; in

other words, s2 is an eigenvalue of XXT . Since S−1
1 S is similar to XXT , the result (4.39)

follows immediately from Theorem 4.7.

66



It turns out that the equality of the lengths of the intervals I− and I+ in Theorem 4.8

is of paramount importance in establishing the convergence of MINRES [39, 107] as shown

in the following.

Proposition 4.9. [39, Theorem 4.14] Let Ax = b be a saddle point linear system with

A as given by (4.11). Let the eigenvalues of the preconditioned P−1A be contained in the

intervals [−µ1,−µ0]∪ [ν0, ν1] with µ1−µ0 = ν1− ν0. Then, after 2k steps of MINRES the

residual r(2k) = b−Ax(2k) satisfies the bound

||r(2k)||P−1 ≤ 2

(√
µ1ν1 −

√
µ0ν0√

µ1ν1 +
√
µ0ν0

)k
||r(0)||P−1 , k ∈ N. (4.40)

Remark 4.10. We note here that the bound (4.40) can be pessimistic, particularly if

the negative and positive eigenvalues of P−1A lie in intervals of significantly different

lengths [107]. However, it certainly shows that knowledge of the extreme eigenvalues of

P−1A can provide useful information about the speed of convergence of MINRES. From

the bound (4.40), we additionally discern that a sufficient condition for fast convergence

is that µ1/µ0 and ν1/ν0 are small, since this will ensure that the eigenvalues are clustered

away from the origin. The latter point is a crucial one since small eigenvalues can hinder

the convergence of MINRES.

Remark 4.11. Due to the minimization property of MINRES [39, p. 211], we have

||r(2k+1)||P−1 ≤ ||r(2k)||P−1 , k ∈ N. (4.41)

However, the possibility that no reduction in the residual norm occurs at every other step

is not precluded. Indeed, the so-called ‘stair-casing’ where ||r(2k+1)||P−1 = ||r(2k)||P−1 is

often noticed in computations.

As a consequence of Theorem 4.8, Proposition 4.9 and (4.41), we immediately obtain

the following result which confirms that the convergence of MINRES is independent of all

the discretization and regularization parameters in the considered model save α.

Corollary 4.12. Let the eigenvalues of P−1
s A be as given in Theorem 4.8 and let Ax = b

with A as given by (4.11). Assume, furthermore, that α <

(√
κ(K)+1√
κ(K)−1

)2

− 1, where K is

67



as defined in Theorem 4.7. Then, after k steps of MINRES, the residual r(k) = b−Ax(k)

satisfies the bound

||r(k)||P−1
s
≤ 2

(
1− 1/δ

1 + 1/δ

)k
||r(0)||P−1

s
, k ∈ N, (4.42)

where δ =
√

2(1 + α).

The robustness of S1 notwithstanding, we cannot implement it as it is, as this is

equivalent to solving the forward problem twice per iteration due to the presence of

Z := K +
√

1+α
β M and its transpose in (4.25). Hence, we need to derive an appropriate

approximation for Z. To this end, observe first, from (2.27), that since

Z = K +

√
1 + α

β
M

=

(
N∑
i=0

Gi ⊗Ki

)
+

√
1 + α

β
(G0 ⊗M)

=
N∑
i=0

Gi ⊗ K̂i, (4.43)

with K̂0 := K0 +
√

1+α
β M, K̂i = Ki, i = 1, . . . , N, one could approximate Z using, for

example, the block-diagonal mean-based preconditioner which was considered in Chapter 3

(see also [13, 110]):

Z0 := G0 ⊗ K̂0. (4.44)

For a practical algorithm, S1 could then be implemented using multigrid techniques for

K̂0 in Z0. As we noted in Chapter 3, (4.44) is best suited for systems for which the

variance of the random input a is small relative to its mean. That is, its performance,

unfortunately, deteriorates with increasing σa. It would therefore not be quite useful in

real-world applications in which the variability in the model is reasonably high. Therefore,

as an alternative to mitigate this inherent deficiency, in our numerical experiments we

also consider approximate solves with Z (i.e., Zx = b) via a preconditioned Richardson

iteration as given by Algorithm 4.3. In our experience, the latter approach proved more

efficient (with just a few iterations) than the former, especially as we increased the variance

68



Algorithm 4.3 Preconditioned Richardson iteration for Zx = b.

1: Select x0

2: Set P̂ := Z0

3: for k = 0, 1, 2, . . . do
4: rk = b−Zxk
5: xk+1 = xk + P̂−1rk
6: end for

of the random field a.

In a nutshell, we outline below the dominant operations – which we refer to as AprecOut

– in the application of our proposed block-diagonal preconditioner P in (4.16).

• (1,1) block: 1 Chebyshev semi-iteration for the mass matrix M.

• (2,2) block: 1 Chebyshev semi-iteration for the mass matrix M.

• (3,3) block: 2 multigrid (or preconditioned Richardson iteration) operations: 1 for

Z0 (resp. Z) and 1 for its transpose.

• Total: 2 Chebyshev semi-iterations and 2 multigrid (or preconditioned Richardson

iteration) operations.

Having been equipped with a suitable preconditioner, we proceed to the next section

to discuss our Krylov subspace solver.

4.2.4 Low-rank solution to the steady-state problem

As we have already pointed out in Section 4.2.2, the MINRES algorithm is an optimal

solver for the system (4.8). Hence, we will use it, together with (4.16), to solve (4.8). In

particular, our approach is based on the low-rank version of MINRES [14, 124]. For a

detailed discussion of the existence of low-rank approximation to the KKT system in the

deterministic setting, we refer the interested reader to [124]. The existence result in [124]

easily generalizes to the stochastic Galerkin KKT system considered herein.

In this section, we present the low-rank MINRES solver. Now, observe first that using

69



the identity (1.2), the linear system (4.8) can be rewritten as AX = R, where

A =


Gα ⊗M 0 −

N∑
i=0

Gi ⊗Ki

0 β(G0 ⊗M) G0 ⊗M

−
N∑
i=0

Gi ⊗Ki G0 ⊗M 0

 ,

X =


vec(Y )

vec(U)

vec(F )

 , R =


vec(R1)

0

vec(R3)

 ,
and

Y = [y0, . . . , yP−1], U = [u0, . . . , uP−1], F = [f0, . . . , fP−1],

R1 = vec−1((G0 ⊗M)ȳ), R3 = vec−1(d).

Hence, (1.2) implies that

AX = vec




MYGTα −

N∑
i=0

KiFG
T
i

βMUGT0 +MFGT0

−
N∑
i=0

KiY G
T
i +MUGT0



 = vec



R1

0

R3


 . (4.45)

As noted before, the low-rank approach is essentially based on the assumption that

both the solution matrix X and the right hand side matrix R admit low-rank representa-

tions; that is,


Y = WY V

T
Y , with WY ∈ RJ×r1 , VY ∈ RP×r1

U = WUV
T
U , with WU ∈ RJ×r2 , VU ∈ RP×r2

F = WFV
T
F , with WF ∈ RJ×r3 , VF ∈ RP×r3 ,

(4.46)

where, in general, r1,2,3 � J, P. Substituting (4.46) in (4.45) and ignoring the vec operator,

70



we then obtain
MWY V

T
Y G

T
α −

N∑
i=0

KiWFV
T
F G

T
i

βMWUV
T
U G

T
0 +MWFV

T
F G

T
0

−
N∑
i=0

KiWY V
T
Y G

T
i +MWUV

T
U G

T
0

 =


R11R

T
12

0

R31R
T
32

 , (4.47)

where R11R
T
12 and R31R

T
32 are the low-rank representations of the R1 and R3, respectively.

The attractiveness of this approach lies therefore in the fact that one can rewrite the

three block rows in the left hand side in (4.47), respectively, as



(first block row)[ MWY −K0WF · · · −KNWF ]



V TY G
T
α

V TF G
T
0

...

V TF G
T
N


,

(second block row) [ βMWU MWF ]

 V TU G
T
0

V TF G
T
0

 ,

(third block row) [ −K0WY · · · −KNWY MWU ]



V TY G
T
0

...

V TY G
T
N

V TU G
T
0


,

(4.48)

so that the low-rank nature of the factors guarantees fewer multiplications with the sub-

matrices while maintaining smaller storage requirements. More precisely, keeping in mind

that

x = vec



X11X

T
12

X21X
T
22

X31X
T
32


 (4.49)

71



Algorithm 4.4 Matrix-vector multiplication in low-rank MINRES: Amult

1: Input: W11,W12,W21,W22,W31,W32

2: Output: X11, X12, X21, X22, X31, X32

3: X11 = [MW11 −K0W31 · · · −KNW31]
4: X12 = [GαW12 G0W32 · · · GNW32]
5: X21 = [βMW21 MW31]
6: X22 = [G0W22 G0W32]
7: X31 = [−K0W11 · · · −KNW11 MW21]
8: X32 = [ G0W12 · · · GNW12 G0W22]

corresponds to the associated vector x from a vector-based version of MINRES, matrix-

vector multiplication in our low-rank MINRES is given by Algorithm 4.4.

Note that the truncation operation is again necessary because the new computed fac-

tors could have increased ranks compared to the original factors in (4.48). Hence, a

truncation of the factors Xij , i, j = 1, 2, 3, in Algorithm 4.4 is used to construct new

factors; for instance,

[X̃11, X̃12] := Tε (X11, X12) = Tε


[MW11 −K0W31 · · · −KNW31]



W T
12G

T
α

W T
32G

T
0

...

W T
32G

T
N




,

where Tε is the truncation operator with a prescribed tolerance ε as described in Section

3.2.4.

The inner products within the iterative low-rank solver are computed efficiently via

the procedure also discussed in Section 3.2.4. In particular, using (3.24), we obtain

〈x,y〉 = trace
(
(X11X

T
12)TY11Y

T
12

)
+ trace

(
(X21X

T
22)TY21Y

T
22

)
+ trace

(
(X31X

T
32)TY31Y

T
32

)
= trace

(
Y T

12X12X
T
11Y11

)
+ trace

(
Y T

22X22X
T
21Y21

)
+ trace

(
Y T

32X32X
T
31Y31

)
, (4.50)

where the vector y is defined analogously as in (4.49).

Algorithm 4.5 shows the low-rank preconditioned minimum residual method. We note

72



Algorithm 4.5 Low-rank preconditioned MINRES

1: Zero-initialization of V
(0)

11 , . . . , W
(0)
11 , . . . , and V

(1)
11 , . . . , W

(1)
11 , . . . .

2: Choose X
(0)
11 , X

(0)
12 , X

(0)
21 , X

(0)
22 , X

(0)
31 , X

(0)
32

3: Set V11, V12, . . . to normalized residual

4: Set
[
Z

(1)
11 , Z

(1)
12 , Z

(1)
21 , Z

(1)
22 , Z

(1)
31 , Z

(1)
32

]
= Aprec

(
V

(1)
11 , V

(1)
12 , V

(1)
21 , V

(1)
22 , V

(1)
31 , V

(1)
32

)
5: Set η = γ1, s0 = s1 = 0, c0 = c1 = 1; γ1 =

√
tracepoduct

(
Z

(1)
11 , . . . , V

(1)
11 , . . .

)
6: while residual norm > tolerance do
7: Z

(j)
11 = Z

(j)
11 /γj , Z

(j)
21 = Z

(j)
21 /γj , Z

(j)
31 = Z

(j)
31 /γj ,

8: [H11, H12, H21, H22, H31, H32] = Amult
(
Z

(j)
11 , Z

(j)
12 , Z

(j)
21 , Z

(j)
22 , Z

(j)
31 , Z

(j)
32

)
9: δj = traceproduct

(
H11, H12, H21, H22, H31, H32, Z

(j)
11 , Z

(j)
12 , Z

(j)
21 , Z

(j)
22 , Z

(j)
31 , Z

(j)
32

)
10:

[
V

(j+1)
11 , V

(j+1)
12

]
= Tε

([
H11 − δj

γj
V

(j)
11 − γj

γj−1
V

(j−1)
11

]
,
[
H12 V

(j)
12 V

(j−1)
12

]T)
11:

[
V

(j+1)
21 , V

(j+1)
22

]
= Tε

([
H21 − δj

γj
V

(j)
21 − γj

γj−1
V

(j−1)
21

]
,
[
H22 V

(j)
22 V

(j−1)
22

]T)
12:

[
V

(j+1)
31 , V

(j+1)
32

]
= Tε

([
H31 − δj

γj
V

(j)
31 − γj

γj−1
V

(j−1)
31

]
,
[
H32 V

(j)
32 V

(j−1)
32

]T)
13:

[
Z

(j+1)
11 , Z

(j+1)
12 , Z

(j+1)
21 , Z

(j+1)
22 , Z

(j+1)
31 , Z

(j+1)
32

]
=

Aprec
(
V

(j+1)
11 , V

(j+1)
12 , V

(j+1)
21 , V

(j+1)
22 , V

(j+1)
31 , V

(j+1)
32

)
14: γj+1 =

√
tracepoduct

(
Z

(j+1)
11 , . . . , V

(j+1)
11 , . . .

)
15: α0 = cjδj − cj−1sjγj

16: α1 =
√
α2

0 + γ2
j+1

17: α2 = sjδj + cj−1cjγj
18: α3 = sj−1γj
19: cj+1 = α0/α1

20: sj+1 = γj+1/α1

21:

[
W

(j+1)
11 ,W

(j+1)
12

]
= Tε

([
Z

(j)
11 − α3W

(j−1)
11 − α2W

(j)
11

]
,
[
Z

(j)
12 W

(j−1)
12 W

(j)
12

]T)
22:

[
W

(j+1)
21 ,W

(j+1)
22

]
= Tε

([
Z

(j)
21 − α3W

(j−1)
21 − α2W

(j)
21

]
,
[
Z

(j)
22 W

(j−1)
22 W

(j)
22

]T)
23:

[
W

(j+1)
31 ,W

(j+1)
32

]
= Tε

([
Z

(j)
31 − α3W

(j−1)
31 − α2W

(j)
31

]
,
[
Z

(j)
32 W

(j−1)
32 W

(j)
32

]T)
24: η = −sj+1η
25: if Convergence criterion fulfilled then
26: Compute approximate solution
27: stop
28: end if
29: end while

here that in the algorithm, the square brackets [ ] without comma(s) inside them should

be understood as concatenation of matrices. Besides, the functions traceproduct and

Amult, given respectively by (4.50) and Algorithm 4.4, implement the inner products and

matrix-vector multiplication. In principle, the preconditioner P should have a structure

73



Algorithm 4.6 Preconditioner implementation in low-rank MINRES: Aprec

1: Input: W11,W12,W21,W22,W31,W32

2: Output: X11, X12, X21, X22, X31, X32

3: Solve: MX11 = W11 via Chebyshev semi-iteration
4: Solve: GαX12 = W12

5: Solve: βMX21 = W21 via Chebyshev semi-iteration
6: Solve: G0X22 = W22

7: Compute X31 and X32 as the low-rank solution of S1 with the right hand side defined
by W31 and W32, using (3,3) in the procedure AprecOut at the end of Section 4.2.3.

that allows P−1 to benefit from low-rank format as well. This is the case with the pre-

conditioners discussed so far, and we implement them via the function Aprec given by

Algorithm 4.6, following also the procedure AprecOut outlined at the end of Section 4.2.3.

In Section 4.4, we use numerical experiments to illustrate the performance of low-rank

MINRES, together with the preconditioners discussed in Section 4.2.2. Next, we proceed

to Section 4.3 to present an unsteady analogue of the model problem considered so far.

4.3 A stochastic parabolic control problem

In an attempt to extend our discussion on the above model problem to a time-dependent

case (see e.g. [20]), we now consider the following parabolic SOCP: Minimize

J (t, y, u) :=
1

2
||y − ȳ||2L2(0,T ;D)⊗L2(Ω) +

α

2
||std(y)||2L2(0,T ;D) +

β

2
||u||2L2(0,T ;D)⊗L2(Ω) (4.51)

subject, P-almost surely, to



∂y(t,x, ω)

∂t
−∇ · (a(x, ω)∇y(t,x, ω)) = u(t,x, ω), in (0, T ]×D × Ω,

y(t,x, ω) = 0, on (0, T ]× ∂D × Ω,

y(0,x, ω) = y0, in D × Ω,

(4.52)

where the random control function satisfies

u ∈ L2(0, T ;D)⊗ L2(Ω), a.e,

and, as before, a(x, ω) is assumed to be uniformly positive in D×Ω. We note here that the

time-dependence of this problem introduces an additional degree of freedom which makes

74



the system matrix here (a lot) larger than the system matrix in the steady-state case.

We use the trapezoidal rule for temporal discretization (as was done for deterministic

problems in e.g. [104, 124]) and SGFEM in the spatial and the stochastic domains to get

the following discrete objective function

τ

2
(y − ȳ)TMa(y − ȳ) +

τα

2
yTMby +

τβ

2
uTM2u, (4.53)

where τ represents the time step size, and


Ma = blkdiag

(
1
2M,M, . . . ,M, 1

2M
)
,

Mb = blkdiag
(

1
2Mt,Mt, . . . ,Mt,

1
2Mt

)
,

(4.54)

with M and Mt as defined in (4.6). Note that, in (4.53) and (4.54), we have M2 =Ma.

Here, denoting the number of time steps by nt, we also note that

y =


y1

...

ynt

 , ȳ =


ȳ1

...

ȳnt

 and u =


u1

...

unt

 ,

with yi, ȳi,ui ∈ RJP×1, i = 1, . . . , nt.

For an all-at-once discretization of the state equation (4.52), we use the implicit Euler

method together with SGFEM to get

M
(

yi+1 − yi

τ

)
+Kyi+1 =Mui+1,

⇒ (M+ τK)︸ ︷︷ ︸
:=L0

yi+1 − τMui+1 =Myi,

or, equivalently,

Kτy − τNu = d,

75



where

Kτ :=



L0

−M L0

. . .
. . .

−M L0


, N :=



M

M
. . .

M


, d :=



My0

0

...

0


,

where L0 :=M+ τK = G0 ⊗ (M + τK0) + τ
∑N

i=1Gi ⊗Ki. Observe that the matrix Kτ

in this case is not symmetric, unlike the matrix K in the stationary case.

Again, we apply first order conditions to the Lagrangian functional Lτ of this opti-

mization problem

Lτ (y,u, f) :=
τ

2
(y − ȳ)TMa(y − ȳ) +

τα

2
yTMby +

τβ

2
uTM2u + fT (−Kτy + τNu− d)

to obtain the saddle point system


τM1 0 −KTτ

0 βτM2 τN T

−Kτ τN 0




y

u

f

 =


τMaȳ

0

d

 , (4.55)

where, from (4.54) and (4.6),

M1 = Ma + αMb

= (D ⊗M) + α(D ⊗Mt)

= D ⊗ (M+ αMt)

= D ⊗Gα ⊗M = D ⊗Mα, (4.56)

with Gα and Mα as defined in (4.10) and (4.9), respectively. Besides,

D = diag

(
1

2
, 1 . . . , 1,

1

2

)
∈ Rnt×nt . (4.57)

76



We note here that

Kτ = (Int ⊗ L0) + (C ⊗M) = Int ⊗

[
N∑
i=0

Gi ⊗ K̃i

]
+ (C ⊗G0 ⊗M), (4.58)

where, as before, K̃0 = M + τK0, K̃i = τKi, i = 1, . . . , N. The matrix C ∈ Rnt×nt comes

from the implicit Euler discretization and is given by

C =



0

−1 0

. . .
. . .

−1 0


, (4.59)

and Int is the identity matrix of dimension nt. The use of other temporal discretizations is,

of course, possible. The Crank-Nicolson scheme, for instance, can be written in a similar

way. Moreover,

N = Int ⊗G0 ⊗M, M2 = D ⊗G0 ⊗M. (4.60)

Hence, each of the block matrices Kτ ,N ,M1 and M2 belongs to RJPnt×JPnt , since Gi ∈

RP×P , i = 0, . . . , P−1, and M,Ki ∈ RJ×J , i = 0, . . . , N. So, the overall coefficient matrix

in (4.55) is of dimension 3JPnt × 3JPnt.

4.3.1 Preconditioning the unsteady KKT system

As in the case of the optimality system associated with the stationary model problem, we

need a good preconditioner to solve (4.55). To this end, we will proceed as before and

rewrite the saddle point system (4.55) as

A =

 τM1 0

0 τβM2

 , B = [−Kτ τN ], (4.61)

77



in the notation of (4.11). Again, we are interested in a block-diagonal preconditioner to

approximate the solution to (4.55). More precisely, we seek a preconditioner of the form

P̂ =


A1

A2

S2

 ,

with blocks A1 ≈ τD ⊗ Gα ⊗ M and A2 ≈ τβD ⊗ G0 ⊗ M, and as we noted before,

both approximations could be accomplished by applying a Chebyshev semi-iteration on

the mass matrix M in the blocks. The matrices D,G0 and Gα are easy to invert since

they are diagonal matrices. Moreover, S2 is an approximation to the (negative) Schur

complement Sτ = BA−1BT , that is,

Sτ :=
1

τ
KτM−1

1 K
T
τ +

τ

β
NM−1

2 N
T . (4.62)

As in the time-independent case, we consider an approximation of the Schur comple-

ment of the form:

S2 =
1

τ

(
Kτ + M̂u

)
M−1

1

(
Kτ + M̂u

)T
, (4.63)

where M̂u is again determined via the ‘terms-matching’ procedure so that both the first

and second terms in Sτ and S2 are matched, but the cross terms in S2 are ignored; that

is, we have

M̂uM−1
1 M̂u =

τ2

β
NM−1

2 N
T ,

from which we deduce that M̂u = γN , with γ = τ
√

1+α
β , by using similar arguments as

before, so that

S2 =
1

τ

(
Kτ + τ

√
1 + α

β
N
)

︸ ︷︷ ︸
:=Ẑ

M−1
1

(
Kτ + τ

√
1 + α

β
N
)T

(4.64)

=
1

τ

(
KτM−1

1 K
T
τ +

τ2(1 + α)

β
NM−1

1 N + τ

√
1 + α

β

[
KτM−1

1 N +NM−1
1 K

T
τ

])
,

where, from (4.60), we have used the fact that N = N T .

78



4.3.2 Spectral analysis and implementation issues

As in the stationary case, we have the following result regarding the eigenvalues of the

preconditioned Schur complement S−1
2 Sτ .

Theorem 4.13. Let α ∈ [0,+∞). Then, the eigenvalues of S−1
2 Sτ satisfy

λ(S−1
2 Sτ ) ⊂

[
1

2(1 + α)
, 1

)
∀α <

(√
κ(K) + 1√
κ(K)− 1

)2

− 1, (4.65)

where K =
∑N

i=0Gi ⊗Ki is as defined by (2.24).

Proof. Let Int := I, and observe first from (4.58) that we can rewrite Kτ as

Kτ = (I + C)⊗ (G0 ⊗M) + I ⊗ τ
N∑
i=0

(Gi ⊗Ki) = J0 ⊗M+ τI ⊗K, (4.66)

where

J0 = I + C =



1

−1 1

. . .
. . .

−1 1


,

and K, the coefficient matrix associated with the stationary forward problem, is positive

definite. Now, using (4.27), (4.29), (4.56), (4.60), we see that

M1 = D ⊗Mα

= D ⊗MEα

= (D ⊗M)(I ⊗ Eα)

= M2Fα = FαM2, (4.67)

where Fα = I⊗Eα. Observe here that since Fα andM2 commute and are both invertible,

one has

M−1
1 =M−1

2 F
−1
α = F−1

α M−1
2 =M−1/2

2 F−1
α M

−1/2
2 . (4.68)

79



Next, define the matrix X by

X := (D ⊗ I)M−1/2
2 KτM−1/2

2

= D1/2J0D
−1/2 ⊗ I + τI ⊗M−1/2KM−1/2. (4.69)

Note then that X is similar to J0 ⊗ I + τI ⊗M−1K = (D ⊗ I)M−1
2 Kτ . Moreover, since

S−1
2 Sτ ∼ (D ⊗ I)−1M1/2

2 S−1
2 SτM−1/2

2 (D ⊗ I)

=
[
(D ⊗ I)M−1/2

2 S2M−1/2
2 (D ⊗ I)

]−1 [
(D ⊗ I)M−1/2

2 SτM−1/2
2 (D ⊗ I)

]
,

we see, from (4.62), (4.64), (4.67), (4.68) and (4.69) that

S−1
2 Sτ ∼

[
(D ⊗ I)M−1/2

2 S2M−1/2
2 (D ⊗ I)

]−1 [
(D ⊗ I)M−1/2

2 SτM−1/2
2 (D ⊗ I)

]
=[

βXF−1
α X T + τ2(1 + α)F−1

α + τ
√
β(1 + α)

(
XF−1

α + F−1
α X T

)]−1 (
βXF−1

α X T + τ2I
)
.

Now, consider the Raleigh quotient

R(x) :=
xT
[
βXF−1

α X T + τ2I
]
x

xT
[
βXF−1

α X T + τ2(1 + α)F−1
α + τ

√
β(1 + α)

(
XF−1

α + F−1
α X T

)]
x
.

But then,

XF−1
α + F−1

α X T = D1/2(J0 + JT0 )D−1/2 ⊗ E−1
α + τI ⊗M−1/2(KE−1

α + E−1
α K)M−1/2.

Since the matrix D1/2(J0 + JT0 )D−1/2 is the sum of two positive definite matrices, it is

therefore positive definite. Besides, from (4.33), we know that

xT (KE−1
α + E−1

α K)x > 0, ∀α <

(√
κ(K) + 1√
κ(K)− 1

)2

− 1.

It follows that XF−1
α +F−1

α X T � 0. Furthermore, it is easy to check that both XF−1
α X T

and F−1
α are also positive definite. Hence, using (4.28), we obtain

R(x) ≤
xT
[
βXF−1

α X + τ2(1 + α)F−1
α

]
x

xT
[
βXF−1

α X T + τ2(1 + α)F−1
α + τ

√
β(1 + α)

(
XF−1

α + F−1
α X T

)]
x
< 1.

80



from which we deduce that λmax := maxR(x) < 1.

Next, we again employ the Cauchy-Schwarz Inequality as in the proof of the second

part of Theorem 4.7 to obtain

(
xTXF−1

α x
)2 ≤ (xTXF−1

α X Tx
)

(xTF−1
α x) (4.70)

and

(
xTF−1

α X Tx
)2 ≤ (xTXF−1

α X Tx
)

(xTF−1
α x), (4.71)

so that

xT (XF−1
α + F−1

α X T )x ≤ 2
√(

xTXF−1
α X Tx

)
(xTF−1

α x). (4.72)

Hence, using (4.72), (4.37) and (4.33), we get

R(x) =
xT
[
βXF−1

α X T + τ2I
]
x

xT
[
βXF−1

α X T + τ2(1 + α)F−1
α + τ

√
β(1 + α)

(
XF−1

α + F−1
α X T

)]
x

≥
xT
[
βXF−1

α X T + τ2I
]
x

βxTXF−1
α X Tx+ τ2(1 + α)xTF−1

α x+ 2τ
√
β(1 + α)

(
xTXF−1

α X Tx
)

(xTF−1
α x)

=
xT
[
βXF−1

α X T + τ2I
]
x[

β1/2(xTXF−1
α X Tx)1/2 + τ(1 + α)1/2(xTF−1

α x)1/2
]2

≥
xT
[
βXF−1

α X T + τ2I
]
x

2
[
βxTXF−1

α X Tx+ τ2(1 + α)xTF−1
α x

]
≥ βxTXF−1

α X Tx+ τ2xTF−1
α x

2
[
βxTXF−1

α X Tx+ τ2(1 + α)xTF−1
α x

]
≥ xTF−1

α x

2(1 + α)xTF−1
α x

=
1

2(1 + α)
, (4.73)

which shows that λmin := minR(x) ≥ 1
2(1+α) , thereby concluding the proof of the theorem.

Remark 4.14. Note that, we can argue exactly the same way as in Theorem 4.8 to

characterize the spectrum of the preconditioned KKT system in the unsteady case, if we

81



define A as the global coefficient matrix and Ps as

Ps =

 A 0

0 S2

 ,
where A and S2 are given by (4.61) and (4.64), respectively. Furthermore, the convergence

result of Corollary 4.12 still holds.

It turns out that, if we specifically use Legendre polynomials and piecewise linear (or

bilinear) approximation in the SGFEM discretization of the SOCPs considered herein,

then the following result proved by Powell and Elman enables us to further bound the

parameter α in Theorems 4.7 and 4.13 above.

Proposition 4.15. [110, Lemma 3.7] Let the matrices Gk in (2.28) be defined using

normalized Legendre polynomials in uniform random variables on a bounded symmetric

interval [−ν, ν], and suppose that piecewise linear (or bilinear) approximation is used for

the spatial discretization, on quasi-uniform meshes. Let (λi, ϑi) be the eigenpairs associated

with the N -term KLE of the random field aN . Then κ(K) ≤ Φ/Ψ, where Φ = c2E(a) + η

and Ψ = c1h
2E(a)− η, with

η = c2σaC
max
n+1

N∑
i=1

√
λi||ϑi(x)||∞,

where Cmax
n+1 is the maximal root of the Legendre polynomial of degree n + 1, σa is the

standard deviation of the random field a, h is the spatial discretization parameter, and c1

and c2 are constants independent of h,N, and n.

We can now state the following result regarding the proposed approximations S1 and

S2 given, respectively, by (4.25) and (4.64).

Corollary 4.16. Let α ∈ [0,+∞) and define the matrix Ŝi, i = 1, 2, by

Ŝi =


S as given by (4.17), i = 1,

Sτ as given by (4.62), i = 2.

(4.74)

82



Then, the spectrum of S−1
i Ŝi satisfies

λ(S−1
i Ŝi) ⊂

[
1

2(1 + α)
, 1

)
, α < µ̃2 − 1, i = 1, 2, (4.75)

where µ̃ =
1+p+2

√
p

p−1 , p 6= 1 and p := Φ/Ψ, with Φ and Ψ as defined in Proposition 4.15.

Proof. By Proposition 4.15, the condition number of the stochastic Galerkin matrix K is

bounded by p2. Substituting this into the bound in Theorems 4.7 and 4.13 immediately

yields the result (4.75).

Next, we derive a practical version of S2. Observe from (4.58), (4.60) and (4.64) that

Ẑ := Kτ + γN

= [(Int ⊗ L0) + (C ⊗M)] + γ(Int ⊗M)

= Int ⊗

[(
G0 ⊗ (M + τK0) + τ

N∑
i=1

Gi ⊗Ki

)
+ γ(G0 ⊗M)

]
+ (C ⊗M)

= Int ⊗

[
G0 ⊗ Y + τ

N∑
i=1

Gi ⊗Ki

]
+ (C ⊗G0 ⊗M), (4.76)

where Y = (1 + γ)M + τK0. Hence, using similar arguments as in Section 4.2.2 we can

now approximate Ẑ using

Ẑ0 := Int ⊗G0 ⊗ Y. (4.77)

In practice, we thus approximate S2 by applying a cheap multigrid process to Y in each

of the diagonal blocks of Ẑ0 and ẐT0 . The expression (4.77) is admittedly not the best

possible approximation to S2 due essentially to the same reasons provided in the case of

S1 in Section 4.2.2. Besides, the absence of the term C ⊗ G0 ⊗M in Ẑ0 would likely

impact negatively on the performance of Ẑ0. Again, solves with Ẑ via the preconditioned

Richardson iteration can substantially mitigate these short-comings.

4.3.3 Low-rank tensor solver for the unsteady problem

As can be seen from (4.58), for instance, the time-dependent problem leads to an additional

Kronecker product. Indeed, although the low-rank solver presented in the stationary case

83



reduces storage problems in large-scale simulations, the low-rank factors become infeasible

in higher dimensions. Further data compression can, fortunately, be achieved with more

advanced high-dimensional tensor product decompositions. Together with preconditioned

MINRES, we henceforth solve the linear system discussed in the rest of this thesis using an

elegant and robust tensor format called Tensor Train (TT) format which was introduced

in [97]. To that end, we proceed next to give a general overview of the TT decomposition.

First, we recall that a tensor y := y(i1, . . . , id), ik = 1, . . . , nk is an n1 × n2 × . . .× nd

multi-dimensional array, where the integers n1, n2, . . . , nd are called the mode sizes and

d is the order of y. The tensor y admits a tensor train decomposition or TT- format

[29, 49, 52, 70, 97] if it can be expressed as

y(i1, . . . , id) =

r1...rd−1∑
s1...sd−1=1

y(1)
s1 (i1)y(2)

s1,s2(i2) · · ·y(d−1)
sd−2,sd−1

(id−1)y(d)
sd−1

(id), (4.78)

where each factor y(k), k = 1, . . . , d, (commonly known as TT block or core) is an rk−1×rk

matrix for each fixed ik, 1 ≤ ik ≤ nk. Moreover, the numbers rk are called the TT ranks.

More precisely, y(k) is a three-dimensional array, and it can essentially be treated as an

rk−1 × ik × rk array with elements y(k)(sk−1, ik, sk) = y
(k)
sk−1,sk(ik). Here, the boundary

conditions r0 = rd = 1 are imposed on the decomposition to make the matrix-by-matrix

products a scalar. The decomposition can be expressed in index form as

y(i1, . . . , id) =

r1...rd−1∑
s1...sd−1=1

y(1)(s0, i1, s1)y(2)(s1, i2, s2) · · ·y(d)(sd−1, id, sd), (4.79)

where s0 = sd = 1. It turns out that TT-decomposition yields a low-rank format for

tensors as it is derived by a repeated application of low-rank approximation [97]. To see

this [31], set

i2 · · · id = i2 + (i3 − 1)n2 + · · ·+ (id − 1)n2n3 · · ·nd−1. (4.80)

Then, by regrouping of indices, one can rewrite y as a matrix Y1 ∈ Rn1×n2···nd with

Y1(i1, i2 · · · id) = y(i1, . . . , id). Thus, applying a low-rank SVD to the matrix Y1 yields

Y1 ≈ U1Σ1V
T

1 , U1 ∈ Rn1×r1 , V1 ∈ Rn2···nd×r1 .

84



The first factor U1 is of moderate dimension and can be stored as y
(1)
s1 (i1) = U1(i1, s1),

where s1 = 1, . . . , r1 and i1 = 1, . . . , n1. The remaining matrix Σ1V
T

1 depends on s1 and

i2 · · · id. Next, we regroup these indices as follows

Y2(s1i2, i3 · · · id) = Σ1(s1, s1)V T
1 (s1, i2 · · · id),

and compute the next SVD:

Y2 ≈ U2Σ2V
T

2 , U2 ∈ Rr1n2×r2 , V2 ∈ Rn3···nd×r2 .

Now, U2 can be reshaped to a 3D tensor of moderate size y
(2)
s1,s2(i2) = U2(i2s1, s2), where

i2s1 = i2 + (s1 − 1)n2; the decomposition is also applied to Σ2V
T

2 . Proceeding in this

manner, one eventually obtains the TT format (4.78) with the total storage of at most

dnr2 memory cells, where rk ≤ r, nk ≤ n. In particular, if r is small, then this requirement

is much smaller than the storage of the full array, nd.

For our purposes in this thesis, we henceforth narrow down our discussion on TT

decomposition to the three independent variables t, ω and x of the solution y of the KKT

systems. Here, we separate t, ω and x, but not the inner components of x. Now, note

that the elements of the tensor y can be naturally enumerated by three indices i, j, k,

corresponding to t, ω and x, respectively. We can then consider y as a three-dimensional

tensor with elements

y(i, j, k) ≈
r1,r2∑
s1,s2=1

y(1)
s1 (i)y(2)

s1,s2(j)y(3)
s2 (k) (4.81)

with r1, r2 as the TT ranks, y(m), m = 1, 2, 3 as the TT blocks and y(1) ∈ Rnt×r1 ,

y(2) ∈ Rr1×P×r2 and y(3) ∈ Rr2×J . Notice that we can fix some of the indices, e.g.

y(2)(j) ∈ Rr1×r2 is a matrix slice, y
(2)
s1,s2 ∈ RP is a vector, and y

(2)
s1,s2(j) is a scalar. The

total number of elements in all factors is ntr1 + r1Pr2 + r2J = O(Jr + Pr2), where

r ≥ r1, r2, since in our case J ∼ nt � P . Therefore, if r � J , the amount of memory

consumed by the TT format is much less than JPnt, needed for the full vector y. Particular

values of r1, r2 depend on the accuracy we enforce in Eq. (4.81). Although it is difficult

in general to estimate the TT ranks theoretically, there is a reliable numerical TT-SVD

85



procedure, which computes a quasi-optimal TT decomposition, using a sequence of singular

value decompositions (SVD) [97]. In what follows we will use y(i, j, k) and y(ijk), where

ijk = (i− 1)PJ + (j − 1)J + k, interchangeably to describe the elements of a tensor y.

Proposition 4.17. The 3D tensor y =
[
y(ijk)

]nt,P,J
i,j,k=1

defined in (4.81) satisfies

y(i, j, k) =

r1,r2∑
s1,s2=1

y(1)
s1 (i)y(2)

s1,s2(j)y(3)
s2 (k) ⇔ y =

r1,r2∑
s1,s2=1

y(1)
s1 ⊗ (y(2)

s1,s2)T ⊗ (y(3)
s2 )T ,

(4.82)

where the tensor y
(2)
s1,s2 ∈ R1×P×1 is understood as a 1× P matrix.

Proof. Define the vector Zs2 by

Zs2 ≡
r1∑
s1=1

y(1)
s1 ⊗ (y(2)

s1,s2)T .

Observe then from (1.7) that

Zs2 ≡
r1∑
s1=1

y(1)
s1 ⊗ (y(2)

s1,s2)T ⇔ Zs2(ij) =

r1∑
s1=1

y(1)
s1 (i)y(2)

s1,s2(j). (4.83)

Thus, using (4.83), we have

y =

r2∑
s2=1

Zs2 ⊗ (y(3)
s2 )T ⇔ y(ijk) =

r2∑
s2=1

Zs2(ij)y(3)
s2 (k) =

r1,r2∑
s1,s2=1

y(1)
s1 (i)y(2)

s1,s2(j)y(3)
s2 (k),

thereby completing the proof of (4.82).

The complexity of the TT-SVD is O(J2Pnt) when we compress a full tensor. However,

in the course of computations we mostly need to re-compress a tensor, given already in

the TT format, but with (overly) larger ranks. For example, given a matrix as a sum of

Kronecker products, A =
∑R

q=1Aq ⊗ Bq ⊗ Cq and a vector y in the format (4.81), the

matrix-vector product can be written as follows [118, 97],

g = Ay =

r1,r2∑
s1,s2=1

R,R∑
q1,q2=1

(
Aq1y

(1)
s1

)
⊗
(
δq1,q2Bq1(y(2)

s1,s2)T
)
⊗
(
Cq2(y(3)

s2 )T
)
, (4.84)

where δq1,q2 = 1 if q1 = q2 and zero otherwise. To see this, assume that the tensor g in

86



(4.84) admits TT format indexed by, say, ζ1 and ζ2, with

g =

ρ1,ρ2∑
ζ1,ζ2=1

g
(1)
ζ1
⊗ (g

(2)
ζ1,ζ2

)T ⊗ (g
(3)
ζ2

)T . (4.85)

Note then that the indices ζ1 and ζ2 must be independent and that one should have

g
(1)
ζ1

= Aq1y
(1)
s1 ⇒ ζ1 = q1s1 = q1 + (s1 − 1)R,

g
(2)
ζ1,ζ2

= Bq1(y(2)
s1,s2)T δq1,q2 ⇒ ζ1 = q1s1, ζ2 = q2s2 = q2 + (s2 − 1)R,

g
(3)
ζ2

= Cq2(y(3)
s2 )T ⇒ ζ2 = q2s2.

To explain why we introduced the indices q1, q2, suppose that the above TT representation

of g were not so; then

g
(1)
ζ1

= Aqy
(1)
s1 ⇒ ζ1 = qs1 = q + (s1 − 1)R,

g
(2)
ζ1,ζ2

= Bq(y
(2)
s1,s2)T ⇒ ζ1 = qs1, ζ2 = s2,

and

g
(3)
ζ2

= Cq(y
(3)
s2 )T = Cq(y

(3)
ζ2

)T .

But then, the block g(3) is now enumerated by two indices q and ζ2 instead of only one,

thereby contradicting a unique TT representation.

Similarly, linear combination, inner product and truncation (or rounding) operators

applied to tensors in TT format are given explicitly in [97]. Each bracket in the right-hand

side of (4.84) is a larger TT block, the new rank indices are s′1 = q1s1, s′2 = q2s2, and

hence the TT ranks are Rr1, Rr2. However, g might be approximated accurately enough

with much smaller ranks. When applied to the TT format (4.84) instead of the full tensor,

the TT-SVD requires O(JR2r2 +PR3r3) operations [97]. These properties allow to adopt

classical iterative methods such as MINRES or GMRES in an inexact fashion, keeping

all Krylov vectors in the TT format and performing the TT-SVD re-compression (or TT

truncation) [1, 8, 29, 78].

The matrix setup for MINRES previously discussed in Section 4.2.4 is of course a

87



special case of the more general tensor problem. As we noted, algebraic operations (matrix,

scalar products and additions) and the SVD re-compression procedure in the TT format

allow to rewrite any classical iterative method, keeping all vectors in the tensor format

and performing only structured operations [8, 29, 77].

As pointed out in [29], the TT-format is stable in the sense that one can always find the

best approximation of tensors computed via a sequence of QR and SVD decompositions of

auxiliary matrices. The TT-decomposition algorithm is implemented in the TT-toolbox

[98] and comes with a number of basic linear algebra operations, such as addition, subtrac-

tion, matrix-by-vector product, etc. Unfortunately, these operations lead to prohibitive

increase in the TT-ranks. Thus, one necessarily has to truncate (or round) the resulting

tensor after implementing each of the operations. Generally speaking, the excessive rank

growth that characterizes TT-MINRES usually slows down the convergence rate of the

algorithm, though. It is, nevertheless, just fine for the size of the linear system considered

for numerical experiments in this chapter. In Chapter 5, we extend and adapt alternat-

ing solvers in TT format to efficiently solve the higher dimensional problems considered

therein.

There are, of course, other tensor formats such as canonical, hierarchical and Tucker

formats which could be used to represent tensors [49] and hence solve our linear sys-

tems. However, our choice of TT-format (or TT toolbox) is due to its relative elegance

and convenience in implementation. The details of its implementation are found in [98].

A comprehensive overview of low-rank tensor decompositions can be found in [49] and

the references therein. In our numerical experiments, we use preconditioned MINRES,

together with the TT toolbox, to solve the linear system (4.55).

4.4 Numerical experiments

In this section, we present some numerical results using the the same covariance function

(3.25). Moreover, as in Chapter 3, we choose ξ = {ξ1, . . . , ξN} such that ξj ∼ U [−1, 1],

and {ψj} are N -dimensional Legendre polynomials with support in [−1, 1]N . The spatial

discretization uses Q1 finite elements. We equally investigate the behavior of the solvers

(low-rank MINRES and TT-MINRES) for different values of the stochastic discretization

88



Table 4.1: Simulation results showing the total number of iterations from low-rank pre-
conditioned MINRES and the total CPU times (in seconds) using the mean-based pre-
conditioner Z0 in (4.44) with α = 1, β ∈ {10−2, 10−3, 10−4, 10−5}, σa = 0.1, and selected
spatial (J) and stochastic (P ) degrees of freedom.

LR-MINRES # iter (t) # iter (t) # iter (t) # iter (t)

P
J

481 1985 8065 32513

β = 10−2

20 25 (32.8) 25 (115.4) 27 (250.5) 29 (736.6)
84 25 (119.7) 27 (380.4) 27 (582.2) 29 (1619.6)
210 25 (141.6) 27 (392.8) 27 (594.69) 29 (1673.9)

β = 10−3

20 21 (25.7) 21 (113.8) 25 (260.9) 25 (666.8)
84 21 (128.9) 23 (363.7) 25 (607.6) 25 (1438.1)
210 21 (145.6) 23 (385.5) 25 (600.8) 25 (1471.8)

β = 10−4

20 19 (8.2) 21 (17.4) 23 (67.4) 23 (618.3)
84 19 (18.8) 21 (42.5) 23 (229.7) 23 (1313.7)
210 19 (19.6) 21 (44.9) 23 (276.9) 23 (1450.0)

β = 10−5

20 17 (19.6) 17 (84.8) 21 (223.7) 21 (578.3)
84 17 (99.9) 19 (306.4) 21 (520.7) 21 (1217.2)
210 17 (115.4) 19 (313.63) 21 (515.6) 23 (1322.6)

parameters J, P, σa, as well as α and β. Besides, we implement each of the mean-based

preconditioners Z0 and Ẑ0 as given, respectively, by (4.44) and (4.77) using one V-cycle of

AMG [21] with symmetric Gauss-Seidel (SGS) smoothing to approximately invert K̃0. In

the considered unsteady SOCP model (that is, in Section 4.3), the resulting linear systems

were solved for time T = 1. Moreover, the target in both models is the stochastic solution

of the forward model with right hand side 1 and zero Dirichlet boundary conditions3.

Tables 4.1, 4.3, 4.4 and 4.5 show the results from the low-rank preconditioned MINRES

for the model constrained by steady-state diffusion equation. In Table 4.2 we give the

total dimensions of the KKT systems in (4.8) for various discretization parameters which

we used to obtain the results in Tables 4.1. Herein, h is the spatial mesh size and the

dimensions range between 28, 000 and 20 million.

The results in Tables 4.1, 4.4 and 4.5 were obtained with α = 1, whereas those in

Table 4.3 were computed with α = 0. We have solved the linear systems using our pro-

3Note that this is not an ’inverse crime’ as the right-hand side of the forward model used is deterministic,
unlike in the state equation.

89



Table 4.2: Dimension of global coefficient matrix A in (4.8); here dim(A) = 3JP.

P (N,n)
J(h)

481
(

1
24

)
1985

(
1
25

)
8065

(
1
26

)
32513

(
1
27

)
20 (N = 3, n = 3) 28, 860 119, 100 483, 900 1, 950, 780
84 (N = 6, n = 3) 121, 212 500, 220 2, 032, 380 8, 193, 276
210 (N = 6, n = 4) 303, 030 1, 250, 550 5, 080, 950 20, 483, 190

Table 4.3: Simulation results using the mean-based preconditioner Z0 in (4.44) with σa =
0.1, α = 0, β ∈ {10−3, 10−4, 10−5}, and J = 1985 (h = 1

25
).

LR-MINRES # iter (t) # iter (t) # iter (t)

P 20 84 210

dim(A) = 3JP 119, 100 500, 220 1, 250, 550

β = 10−3 19 (96.4) 21 ( 336.0) 21 (347.93)
β = 10−4 17 (86.3) 19 ( 302.6) 19 (305.64)
β = 10−5 15 (77.4) 17 ( 273.6) 17 (283.24)

posed block-diagonal preconditioner, together with the approximation S1 for the Schur

complement S. To compare their practical performances, we use both the mean-based

preconditioner in (4.44) (denoted henceforth by MBP) and the preconditioned Richardson

iteration in Algorithm 4.3 (with just 4 iterations, and denoted by PRI) for approximating4

Z in S1.

We observe first that Table 4.1 confirms our theoretical prediction that with a relatively

low variance (here σa = 0.1), our proposed block-diagonal preconditioner, when used

together with MBP, is robust with respect to the discretization parameters. Furthermore,

Table 4.5 shows that the preconditioner performs relatively better with PRI than it does

with MBP, especially as the standard deviation σa increases from 1% to 40%. Indeed,

the iterations are clearly indicative of benign dependence of PRI on σa, unlike MBP. In

general, the iterations obtained with MBP took slightly less CPU time, though. So, these

results generally suggest that PRI should be preferred to MBP when dealing with higher

fluctuations in the random input a. We remark here, though, that for σa > 0.5, we can no

longer guarantee the positive-definiteness of the matrix K corresponding to the forward

problem [110].

We have reported in Table 4.4 the values of the tracking term and the cost functional

4Recall that the PRI method uses MBP for approximate solves.

90



Table 4.4: Tracking term and the cost functional in the steady-state model using the
mean-based preconditioner Z0 in (4.44) for different values of β and with α = 1, σa =
0.1, J = 1985 (h = 1

25
), P = 84 (N = 6, n = 3).

β 10−2 10−4 10−6 10−10

||y − ȳ||2L2(D)⊗L2
ρ(Γ) 5.1× 10−3 1.8× 10−4 1.2× 10−4 1.2× 10−4

J (y, u) 1.4× 10−2 4.2× 10−4 2.5× 10−4 2.5× 10−4

Table 4.5: Simulation results comparing between mean-based preconditioning (MBP) and
the preconditioned Richardson iteration (PRI) in approximating S1 in low-rank precondi-
tioned MINRES with α = 1, β = 10−4.

LR-MINRES # iter (t) # iter (t) # iter (t) # iter (t)

P
J(h)

481
(
h = 1

24

)
1985

(
h = 1

25

)
8065

(
h = 1

26

)
32513

(
h = 1

27

)
σa = 0.01 with MBP

20 17 (7.4) 19 (16.7) 19 (53.4) 21 (544.8)
84 17 (17.0) 19 (39.0) 19 (190.0) 21 (1190.0)
210 17 (18.4) 19 (40.4) 19 (470.0) 21 (1230.2)

σa = 0.1 with MBP

20 19 (8.2) 21 (17.4) 23 (67.4) 23 (618.3)
84 19 (18.6) 21 (42.5) 23 (229.7) 23 (1313.7)
210 19 (19.8) 21 (44.9) 23 (576.9) 23 (1450.0)

σa = 0.4 with MBP

20 33 (13.8) 37 (28.0) 41 (115.3) 43 (1049.8)
84 35 (33.8) 41 (84.5) 45 (447.0) 47 (2610.4)
210 41 (41.9) 47 (98.4) 47 (782.3) 55 (3161.1)

σa = 0.01 with PRI

20 15 (13.5) 15 (20.5) 17 (82.2) 19 (1142.4)
84 15 (31.8) 15 (57.6) 17 (332.5) 19 (2117.4)
210 15 (35.0) 15 (61.9) 17 (314.9) 19 (2777.2)

σa = 0.1 with PRI

20 15 (14.2) 17 (23.6) 17 (100.4) 19 (560.0)
84 15 (32.4) 17 (66.5) 17 (350.6) 19 (2124.0)
210 15 (34.4) 17 (82.9) 17 (375.5) 19 (2463.9)

σa = 0.4 with PRI

20 15 (13.6) 17 (27.1) 19 (109.2) 21 (1158.3)
84 15 (34.6) 17 (78.7) 19 (402.7) 19 (2577.4)
210 15 (34.5) 17 (80.7) 19 (414.5) 21 (2958.2)

for α = 1 and σa = 0.1. As expected, the tracking term gets smaller and smaller as the

regularization parameter β decreases, and the cost functional also decreases accordingly

converging, respectively, to 1.2× 10−4 and 2.5× 10−4.

Observe from Tables 4.1 and 4.5 that the timings for P = 84 and P = 210 are nearly

91



constant but much higher than those for P = 20. Our extensive numerical experiments

revealed that the timings, in general, have a strong dependence on the number of random

variables N , which in turn determines P ; see also [13]. Now, recall that for P = 20

the (stochastic) matrices Gk ∈ RP×P used in the simulations were obtained with only

N = 3 random variables, whereas the other two cases were obtained with N = 6 random

variables (cf. Table 4.2). So, we believe, in particular, that the timings which are roughly

constant for simulations with P = 84 and P = 210 are due to the fact that both cases

were computed with exactly the same value of N .

Next, in Table 4.6 we present our results for the unsteady diffusion constrained model

as discussed in Section 4.3. Here, for α ∈ {0, 1} and different values of β, we present the

outputs of our simulations showing the total CPU times and the total number of iterations

from preconditioned TT-MINRES. Also, DoF=J · P · nt is the size of each of the 9 block

matrices in KKT matrix A; that is, A is of dimension 3DoF. Here, we have done the

computations with J = 1985 (h = 1
25

), P = 56 (N = 5, n = 3), σa = 0.1, and various nt.

As in the steady-state case, we see from Table 4.6 that TT-MINRES, when used

together with our mean-based preconditioner as given by (4.77) is quite robust, but in

general yields fewer iterations for α = 0 than for α = 1. We remark here that we used a

smaller tolerance tol = 10−3 in the unsteady case because MATLAB took a lot more time

due to the rapid growth of TT-ranks. Although not reported here, we also got robust two-

digit TT-MINRES iterations when we used tol = 10−5; these iterations were, as expected,

Table 4.6: Simulation results using the mean-based preconditioner Ẑ0 in (4.77) with the
model with time-dependent diffusion constraint for selected parameter values and degrees
of freedom.

TT-MINRES # iter (t) # iter (t) # iter (t)

nt 25 26 28

dim(A) = 3JPnt 10, 671, 360 21, 342, 720 85, 370, 880

α = 1, tol = 10−3

β = 10−5 6 (285.5) 6 (300.0) 8 (372.2)
β = 10−6 4 (77.6) 4 (130.9) 4 (126.7)
β = 10−8 4 (56.7) 4 (59.4) 4 (64.9)

α = 0, tol = 10−3

β = 10−5 4 (207.3) 6 (366.5) 6 (229.5)
β = 10−6 4 (153.9) 4 (158.3) 4 (172.0)
β = 10−8 2 (35.2) 2 (37.8) 2 (40.0)

92



even better with the preconditioned Richardson algorithm.

In a nutshell, we have derived and implemented in this chapter robust block-diagonal

Schur complement-based preconditioners together with low-rank MINRES for the solution

of linear systems arising from the SGFEM discretization of optimal control problems

constrained by either stationary or unsteady diffusion equations with random inputs.

We proceed next to Chapter 5 to discuss also efficient low-rank solvers for a more

challenging problem, namely, the unsteady Stokes-Brinkman optimal control problem with

uncertain inputs.

93



Chapter 5

Unsteady Stokes-Brinkman

optimal control problem with

uncertain inputs

In this chapter, we study efficient low-rank tensor-based iterative solvers for an unsteady

Stokes-Brinkman SOCP. The Brinkman model is a parameter-dependent combination of

the Darcy and the Stokes models. It provides a unified approach to model flows of viscous

fluids in a cavity and a porous medium. In biomedical engineering it could be used to

model, for instance, the reduction of vorticity of blood flow through intra cranial aneurysms

[120]. However, the value of the fluid viscosity ν may not be known precisely. Instead

of guessing a value, one can model ν as a random variable defined in some complete

probability space. This could be interpreted as a scenario where the volume of blood

moving through intra cranial aneurysms is uncertain due to measurement error in ν or

probably some other factors.

As aptly pointed out in a related study in the framework of a deterministic control prob-

lem [85], efficient procedures for the numerical solution of the resulting Stokes-Brinkman

SOCP is required because the model is expensive to solve, especially when solutions need

to capture fine details (such as velocity and thermal boundary layers, etc.); moreover, the

finite element assembling discretization procedures for the spatial domain could become

expensive. The introduction of a suitable low-rank numerical scheme is thus instrumental

94



to reduce both the storage requirements and the computational complexity. With a view

to achieving these goals in this thesis, we discuss a low-rank tensor-based technique for

solving high dimensional tensor product linear systems resulting from the SGFEM dis-

cretization of a Stokes-Brinkman SOCP. The materials in this chapter are based on [11].

Our point of departure is the deterministic Brinkman model.

5.1 Deterministic Brinkman model

Suppose now that the spatial domain D consists of two parts, namely, a porous medium Dp

and a viscous flow medium Ds. That is, D = Dp∪Ds. The generalized unsteady Brinkman

problem reads



∂v(t,x)

∂t
− ν∆v(t,x) + %(x)v(t,x) +∇p(t,x) = u(t,x), in (0, T ]×D,

−∇ · v(t,x) = 0, on (0, T ]×D,

v(t,x) = h(t,x), on [0, T ]× ∂D,

v(0,x) = v0(x), in D,

(5.1)

where v and p are, respectively, the fluid velocity and the fluid pressure, and h is the

boundary condition. The parameter ν represents the fluid viscosity. Moreover, % is the

inverse permeability tensor of the medium. We assume here that % ∈ L2(D)∩L∞(D) and

that the source term u ∈ L2(D). The challenge of this problem is that the coefficient %

takes two extreme values: it is very small in the viscous flow medium Ds so that the PDE

behaves like the unsteady Stokes flow, and very big in the porous medium Dp in which

case the PDE behaves like the unsteady Darcy equations. This feature naturally arises, for

instance, in fractured vuggy karst reservoirs where the model (5.1) is also widely applied;

see e.g., [108] and the references therein. As illustrated in Fig. 5.1, such oil reservoirs

are characterized by the presence of vugs and caves at multiple scales. The medium can

be described, at each individual scale, as an ensemble of porous media with well defined

properties (porosity and permeability), and a free flow region where the fluid (oil, water,

gas) meets no resistance from the surrounding rock.

Popov et. al in [108] point out that the computational difficulty in such reservoirs is

95



Figure 5.1: Conceptual model of a fractured vuggy reservoir at multiple scales [108].

 

 

 

 

 

 

essentially attributed to the co-existence of porous and free flow regions, typically at several

scales. Indeed, the presence of individual voids such as vugs and caves in a surrounding

porous medium can significantly alter the permeability of the medium. Another inherent

feature of such reservoirs is the fact that fractures and long range caves typically form

various types of connected networks which change the effective permeability of the media

by several orders of magnitude. Moreover, lack of precise knowledge of the exact position

of the interface between the porous media (rock) and the and vugs/caves often poses yet

another difficult problem to tackle.

For a mixed finite element discretization of the Brinkman problem [86, 120, 133, 141]

in the primal variables v and p, let Vh ⊂ L2(0, T ;H1
0 (D)) and Wh ⊂ L2(0, T ;L2(D)) be

finite element spaces with stable elements (i.e. elements that satisfy the inf-sup condition,

e.g. mini elements as discussed in [120]) such that Vh = span{φ1, . . . , φJv} and Wh =

span{ϕ̃1, . . . , ϕ̃Jp}. Performing a Galerkin projection on Vh and Wh and using implicit

Euler for the temporal discretization, while taking into account the boundary conditions,

leads to the following equations:


Mvi −Mvi−1

τ
+ (νK +M%)vi +BT pi = Mui + gi,

Bvi = 0,

(5.2)

96



where the mass matrix M is as defined in (2.35), B =
[
−
∫
D ϕ̃k∇ · φk′

]
is the discrete

divergence operator, K =
[∫
D∇φk : ∇φk′

]
is a matrix representing the vector Laplacian

operator, and M% =
[∫
D %φkφk′

]
is the matrix associated with the term which involves the

inverse permeability coefficient %(x), and τ is the size of the time step.

Remark 5.1. In the special case where M% = 0 in (5.2), we get the unsteady Stokes

problem.

5.1.1 Brinkman optimal control problem with random data

Suppose now that, even though the fluid viscosity ν is time-independent and spatially

constant but that its value is not known precisely. As noted before, instead of guessing

a value, we can model ν as a random variable defined on the complete probability space

(Ω,F,P). The corresponding Brinkman velocity and pressure are consequently also random

and the numerical solution of the associated SOCP is far more challenging. More precisely,

the SOCP which we will solve in the rest of this thesis consists in minimizing the cost

functional of tracking-type

J =
1

2
||v − v̄||2L2(0,T ;D)⊗L2(Ω) +

α

2
||std(v)||2L2(0,T ;D) +

β

2
||u||2L2(0,T ;D)⊗L2(Ω) (5.3)

subject, P-almost surely, to the state equations



∂v(t,x, ω)

∂t
− ν(ω)∆v(t,x, ω) + %(x)v(t,x, ω) +∇p(t,x, ω) = u(t,x, ω), in QT × Ω,

−∇ · v(t,x, ω) = 0, on QT × Ω,

v(t,x, ω) = h(t,x, ω), on Q′T × Ω,

v(0,x, ω) = v0(x, ω), in D × Ω,

where QT := (0, T ] × D and Q′T := [0, T ] × ∂D. Here, v, v̄, p : D × T × Ω → R are

random fields [13] representing the state (velocity), the target (or the desired state) and

the pressure. The viscosity ν in the state equations is modeled as1

ν(ω) = ν0 + ν1ξ(ω), ν0, ν1 ∈ R+, (5.4)

1There are, of course, other ways of modeling ν, see, e.g., [84, Chapter 7]

97



where ξ is a uniformly distributed random variable with ξ ∼ U(−1, 1). Furthermore, we

assume that the control and the target satisfy

u, v̄ ∈ L2(0, T ;D)⊗ L2(Ω), (5.5)

and that, for some νmin, νmax ∈ R+ satisfying 0 < νmin < νmax < +∞, we have

P (ω ∈ Ω : ν(ω) ∈ [νmin, νmax]) = 1. (5.6)

5.1.2 A fully discrete problem

As in Chapter 4, we will herein adopt the DTO strategy, together with SGFEM, for

discretizing the Stokes-Brinkman problem. More specifically, we assume that p, u, v, and

v̄ admit the following respective representations:



p(t,x, ω) =

Jp∑
k=1

P−1∑
j=0

pkj(t)ϕ̃k(x)ψj(ξ(ω)),

u(t,x, ω) =

Jv∑
k=1

P−1∑
j=0

ukj(t)φk(x)ψj(ξ(ω)),

v(t,x, ω) =

Jv∑
k=1

P−1∑
j=0

vkj(t)φk(x)ψj(ξ(ω)),

v̄(t,x, ω) =

Jv∑
k=1

P−1∑
j=0

v̄kj(t)φk(x)ψj(ξ(ω)),

(5.7)

where {ψj}P−1
j=0 are univariate orthogonal polynomials of order at most P satisfying (2.21).

We apply to the cost functional (5.3) the trapezoidal rule for temporal discretization,

and themini finite elements [120], together with Legendre polynomial chaos in the SGFEM

for spatial and stochastic discretizations [110], to get the following discrete cost functional

J (y,u) :=
τ

2
(y − ȳ)TMa(y − ȳ) +

τα

2
yTMby +

τβ

2
uTM2u, (5.8)

where yT =
[
vT1 ,p

T
1 , . . . ,v

T
nt ,p

T
nt

]
∈ RJPnt , J := Jv + Jp, and uT =

[
uT1 , . . . ,u

T
nt

]
denote

98



the long vectors of all time snapshots of the state and control, respectively,


Ma = blkdiag

(
1
2M, 0,M, 0, . . . ,M, 0, 1

2M, 0
)
, M := G0 ⊗M,

Mb = blkdiag
(

1
2Mt, 0,Mt, 0, . . . ,Mt, 0,

1
2Mt, 0

)
, Mt := H0 ⊗M,

M2 = blkdiag
(

1
2M,M, . . . ,M, 1

2M
)
,

(5.9)

where G0, H0 and M are as given by (2.28), (2.35) and (4.6), respectively.

For an all-at-once discretization of the state equation, as in Section 4.3, we use the

implicit Euler method, together with SGFEM, to get

Ky −Nu = g, (5.10)

where

K =



L̄

−M̄ L̄
. . .

. . .

−M̄ L̄


, N =



N̂

N̂
. . .

N̂


, g =



M̄y0 + g0
1

g0
2

...

g0
nt


,

with

N̂ = G0 ⊗N, N =

 M

0

 , M̄ = G0 ⊗ τ−1M̄, M̄ =

 M 0

0 0

 , (5.11)

and, in the notation of [111],

L̄ =

 A BT

B 0

 (5.12)

represents an instance of the time-dependent Brinkman problem with

A = G0 ⊗A+G1 ⊗ ν1K, A = τ−1M + ν0K +M%, B = G0 ⊗B, (5.13)

and G1(j, j′) =
〈
ξψj(ξ)ψj′(ξ)

〉
. Note that since we are using Legendre polynomials for the

SGFEM discretization, G0 is a diagonal matrix whereas G1 is a tridiagonal matrix with

99



zeros on the main diagonal (see e.g., [110, 111]). This implies that the matrices A and B in

(5.13) are, respectively, block-tridiagonal and block-diagonal. Furthermore, the matrices

K, M and M% are positive definite; however, L̄ is an indefinite block sparse matrix with

sparse blocks.

As before, it will be convenient to work with the Kronecker product representations of

the system matrices. To this end, observe that

K = Int ⊗G0 ⊗

A BT

B 0

+ Int ⊗G1 ⊗

ν1K 0

0 0

+ C ⊗G0 ⊗

τ−1M 0

0 0

 , (5.14)

where the matrix C is as defined in (4.59), and

N = Int ⊗G0 ⊗N. (5.15)

The structure of the right-hand side g in (5.10) is problem-dependent. However, in our

experiments we will use y0 = 0 and a static deterministic g0 coming from Dirichlet bound-

ary conditions, such that g = g0 = e ⊗ e1 ⊗

g0
v

g0
p

, where e is the vector of all ones, and

e1 is the first unit vector.

Now, note from (5.8) and (5.10) that the discrete Lagrangian functional of the SOCP

is given by

L :=
τ

2
(y − ȳ)TMa(y − ȳ) +

τα

2
yTMby +

τβ

2
uTM2u + fT (−Ky +Nu + g),

where f is the Lagrange multiplier. Hence, as before, applying the first order conditions

to the Lagrangian L yields, respectively, the adjoint equation, the gradient equation and

the state equation:

Ly(y,u, f) = 0 ⇒ τ(Ma + αMb)y −Kf = τMaȳ,

Lu(y,u, f) = 0 ⇒ βτM2u +N f = 0,

Lf (y,u, f) = 0 ⇒ −Ky +Nu = g,

100



or, alternatively, the following KKT system


τM1 0 −KT

0 βτM2 NT

−K N 0


︸ ︷︷ ︸

:=A


y

u

f

 =


b1

0

g

 , (5.16)

where b1 = τMaȳ, and

M1 = Ma + αMb = D ⊗Gα ⊗ M̄, M2 = D ⊗M = D ⊗G0 ⊗M. (5.17)

Moreover, D and Gα are as given, respectively, by (4.57) and (4.10). We note here that if

the desired state is also static and deterministic, then one gets ȳ = e⊗ e1 ⊗

v̄

0

.

Remark 5.2. Note that, with the exception of block (2,2), the third matrices in the Kro-

necker representations of all the blocks in (5.16) are themselves also block matrices.

5.2 Preconditioning Stokes-Brinkman KKT system

As in the case of the diffusion equation in Chapter 4, the KKT coefficient matrix A in (5.16)

is usually ill-conditioned and thus requires a suitable preconditioner to solve (5.16) effi-

ciently. A block-diagonal preconditioner, discussed in the framework of the deterministic

unsteady Stokes control problem [126], is written in the form P1 = blockdiag(M̃1, βM2, S̃1),

where S̃1 = 1
τ (K +Ms)M̃1

−1 (
KT +Ms

)T
is the approximate Schur complement, and

M̃1 is some perturbation to M1, since M1 is rank-deficient. Here, the matrix Ms is

again determined via a matching argument. In particular, in [126] the authors suggest the

following augmentation,

M̃1 =

D ⊗Gα ⊗M
D ⊗Gα ⊗

(
‖M‖22τβ

)
I

 ,
where I is the identity of the size of the pressure grid. However, this approach is tricky. For

example, it is not obvious how to generalize it to the case in whichM1 is numerically rank-

deficient, i.e. its eigenvalues form a gradually decaying sequence instead of two distinct

101



clusters. This will occur in the low-rank tensor methods; consequently, instead of M1, we

will work with its Galerkin projection in the sequel. More specifically, we proceed next

to Section 5.2.1 to propose another preconditioner which circumvents this deficiency and

yields faster convergence even with the original sparse M1.

5.2.1 A block-triangular preconditioner

We begin by replacing the KKT coefficient matrix A in (5.16) with the matrix Ã given by

Ã := Aρ =


−KT 0 τM1

NT βτM2 0

0 N −K

 =

 Φ Υ

Ψ −K

 ,

where

ρ =


0 0 I

0 I 0

I 0 0

 , Φ =

 −KT 0

NT βτM2

 , Υ =

 τM1

0

 , Ψ =

 0

N


T

.

Note that the matrix ρ swaps the first and the third block columns of A in the product

Aρ; it swaps the first and the third block rows of A in the product ρA. Next, observe also

that we can factorize the matrix Ã as follows Φ Υ

Ψ −K

 =

 I 0

ΨΦ−1 I


 Φ Υ

0 −S2

 , (5.18)

where

Φ−1 =

 −K−T 0

1
τβM

−1
2 NTK−T 1

τβM
−1
2

 , (5.19)

102



and S2 = K + ΨΦ−1Υ = K + 1
βNM

−1
2 NTK−TM1. But then, from (5.11), (5.15) and

(5.17), we obtain

NM−1
2 NT = D−1 ⊗G0 ⊗ M̄ = D−1 ⊗

 τM 0

0 0

 =: M−1. (5.20)

Therefore,

S2 = K + ΨΦ−1Υ = K +
1

β
M−1K

−TM1. (5.21)

We propose to right-precondition Ã with the matrix

PD =

 Φ Υ

0 −S2

 . (5.22)

It follows from (5.18) that

ÃP−1
D = AρP−1

D = AP−1
2 =

 I 0

ΨΦ−1 I

 , (5.23)

where the right preconditioner P2 for the original KKT matrix A satisfies

P−1
2 = ρP−1

D =


0 0 −S−1

2

1
βτM

−1
2 NTK−T 1

βτM
−1
2

1
βM

−1
2 NTK−TM1S

−1
2

−K−T 0 −K−T τM1S
−1
2

 . (5.24)

It can be noticed that (5.23) immediately implies (AP−1
2 − I)2 = 0; hence, such Krylov

solvers as the GMRES method will converge in two iterations if P−1
2 is applied exactly,

see e.g. [39, Section 9.1].

The seemingly complicated structure of (5.24) notwithstanding, matrix-vector prod-

ucts with P−1
2 can be implemented fairly easily. For instance, suppose now that we want

to solve x = P−1
2 y, where x = [x1,x2,x3]T , y = [y1,y2,y3]T . Then, it can easily be

103



shown that an efficient way to implement the matrix-vector product is


x1 = −S−1

2 y3

x3 = −K−T (y1 − τM1x1)

x2 = τ−1β−1M−1
2 (y2 −NTx3).

(5.25)

Next, following the preconditioning strategy which we employed in Chapter 4, we

approximate the Schur complement S2 in (5.21) with a matrix of the form

S̃2 = (K +Ml)K
−T (KT +Mr

)
.

= K +MlK
−TMr +Ml +KK−TMr, (5.26)

where Ml and Mr are again determined using the matching argument between the exact

Schur complement S2 and the approximation S̃2. More precisely, we ignore the last two

terms in (5.26) and match the first and second terms with those in (5.21) to get Mr =

β−1/2M1, and Ml = β−1/2M−1, where M1 and M−1 are as defined, respectively, in (5.17)

and (5.20). Hence, we have

S̃2 =

(
K +

1√
β
M−1

)
K−T

(
KT +

1√
β
M1

)
. (5.27)

For matrix-vector products, the factors
(
K + 1√

β
M−1

)
and

(
KT + 1√

β
M1

)
can be

kept as sums of four Kronecker products, with the first three coming from K in (5.14),

and the fourth corresponding to M−1 in (5.20) and M1 in (5.17), respectively. However,

our ultimate goal is to apply S̃−1
2 , where solving a linear system with exact factors is

indeed a very difficult computational task. As a result, we instead approximate them by

one Kronecker-product term: we approximate K by the first term from (5.14), whereas

we set M1 ≈ Int ⊗ (1 + α)G0 ⊗ M̄ and M−1 ≈ Int ⊗G0 ⊗ M̄ ; therefore,

(
K +

1√
β
Mi

)
≈ Int ⊗G0 ⊗

A+ ηiM BT

B 0

 , (5.28)

where i ∈ {−1, 1}, and η−1 = 1/
√
β, η1 = (1 +α)/

√
β. Inside alternating tensor methods

104



(cf. Section 5.3.4), the matrix Int ⊗ G0 will be further reduced, but the concept of the

one-term preconditioner remains the same.

5.2.2 Preconditioning the forward Stokes-Brinkman problem

In linear systems of the form (5.28), Int and G0 can be inverted straightforwardly, while

the spatial matrix may require a special treatment. To this end, we can use either the

GMRES or the preconditioned Richardson iteration (c.f. Algorithm 4.3), together with

the block-triangular preconditioner

PSB =

 Ã 0

B −S0

 , (5.29)

where S0 = BÃ−1BT is the Schur complement and Ã = ν0K + M% + (τ−1 + η)M with

η = 1√
β

or η = 1+α√
β
. So, we need P−1

SB, that is,

P−1
SB =

 Ã−1 0

S−1
0 BÃ−1 −S−1

0

 . (5.30)

In what follows, we derive the approximation to the blocks of P−1
SB. First, to approximate

Ã, we can use algebraic multigrid methods, since Ã is symmetric and positive definite.

Next, we need an approximation to the Schur complement S0. As was pointed out in

[39, 126], the pressure mass matrix is a very effective approximation for S0 in the case of

stationary Stokes equations. However, as we are considering an unsteady Stokes-Brinkman

constraint, this does not apply since Ã has an entirely different structure. Thus, following

[39, Chapter 9], we proceed to derive the so-called Cahouet-Chabard approximation to

S0 using a technique for the steady Navier-Stokes equation, which is based on the least

squares commutator (see Chapter 9 of [39]) defined by

E := (L)∇−∇(Lp),

where L = (τ−1 + η)I + ∆ + % and Lp = (τ−1 + η)Ip + ∆p + %p is defined similarly

but on the pressure space. As was noted in [126], these operators are only used for the

105



purpose of deriving matrix preconditioners and no function spaces or boundary conditions

are defined here. Assuming the least squares commutator is small, we obtain the following

finite element discretization of the differential operators

Eh = (M−1Ã)M−1BT −M−1BT (M−1
p Ãp) ≈ 0, (5.31)

where Ã, B and M are as defined previously, and

Ãp = ν0Kp +M%p + (τ−1 + η)Mp. (5.32)

The smallness Eh ≈ 0 should be understood in the sense that the norm of the commutator

is much smaller than the norm of either term in (5.31). Next, we pre-multiply (5.31) by

BÃ−1M and post-multiply it by Ã−1
p Mp to obtain

BM−1BT Ã−1
p Mp −BÃ−1BT ≈ 0, (5.33)

or, equivalently (with ≈ meaning again the proximity in the norm),

S0 ≈ BM−1BT Ã−1
p Mp. (5.34)

Now, note that the matrix on the right hand side of (5.34) is not, in general, a practical

choice for the Schur complement S0 since BM−1BT is not easy to work with because it is

dense. Fortunately, though, BM−1BT is spectrally equivalent to the Laplacian Kp defined

on the pressure space [38]; that is, Kp ∼ BM−1BT in the sense that there exist constants

c0 and c1 independent of h such that 0 < c0 ≤ c1 <∞ with

c0 ≤
〈
BM−1BTv,v

〉
〈Kpv,v〉

≤ c1, ∀v ∈ RJp , v 6= 0.

This observation suggests that in general a discrete Laplacian on the pressure space is

what is needed in place of BM−1BT in (5.34). Hence, from (5.34), we obtain

S0 ≈ KpÃ
−1
p Mp, (5.35)

106



and from (5.32) and (5.35), we have

S−1
0 ≈M−1

p

(
ν0Kp +Mkp + (τ−1 + η)Mp

)
K−1
p . (5.36)

The inverse of the pressure Laplacian K−1
p is approximated using algebraic multigrid

methods, whereas the use of the Chebyshev semi-iteration will suffice for M−1
p . We note

here that, as pointed out in Chapter 9 of [39], the pressure Laplacian represents a Neu-

mann problem because the pressure basis functions form a partition of unity. Indeed, this

property is independent of the boundary conditions attached to the flow problem. To

solve the problem of indefiniteness of Kp we just pin a boundary node in Kp (see, e.g.,

[19]). Afterwards, we use the AMG package provided by [21].

5.2.3 Spectral analysis

As before, to measure how well the exact Schur complement is represented by its ap-

proximation, we need to consider the eigenvalues of the preconditioned Schur complement

S−1
2 S̃2. We are, however, unable to give a general estimate. Instead, we restrict our

analysis to the regularization parameters α and β.

Theorem 5.3. If the system matrix K in (5.14) and its velocity block are invertible, then

there exist constants C1 and C2 such that

cond(S−1
2 S̃2) ≤ (1 + C1β

1/2) for β sufficiently small,

cond(S−1
2 S̃2) ≤ (1 + C2β

−1/2) for β sufficiently large,

(5.37)

where C1 and C2 are independent of β.

Proof. Recall first that if

KT =

 AT BT

B 0

 ,
where

B = Int ⊗G0 ⊗B, (5.38)

107



A = Int ⊗G0 ⊗ (ν0K +M% + τ−1M) + Int ⊗G1 ⊗ ν1K + C ⊗G0 ⊗ τ−1M, (5.39)

and that both KT and A are non-singular, then

K−T =

 A−T −A−TBTS−1BA−T A−TBTS−1

S−1BA−T −S−1

 , (5.40)

and

KK−T =

 AA−T (I − PK) + PK (AA−T − I)BTS−1

0 I

 ,
where S = BA−TBT , PK = BTS−1BA−T , and I is an identity of suitable sizes, see e.g.

[17]. Notice that PK = P 2
K ; that is, the matrix PK is a projector and, from (5.38) and

(5.39), it is also β-independent. From (5.17), (5.20) and (5.40), we have that

β−1M−1K
−TM1 =

 M? 0

0 0

 , (5.41)

where

M? = β−1M−1K11M1, (5.42)

M−1 = D−1⊗G0⊗M and M1 = D⊗Gα⊗M are the velocity submatrices of M−1 and M1,

as given by (5.20) and (5.17), respectively, and K11 = A−T (I − PK) denotes the (1,1)

block of K−T . Thus, using (5.42), (5.41) and (5.21), we get

S2 = K + β−1M−1K
−TM1 =

 A? BT

B 0

 , (5.43)

where

A? = A+M?. (5.44)

108



Next, observe from (5.26) that

S̃2 − S2 = β−1/2(M−1 +KK−TM1) =

 U 0

0 0

 , (5.45)

where

U = β−1/2
(
M−1 +

(
AA−T (I − PK) + PK

)
M1

)︸ ︷︷ ︸
:=U1

. (5.46)

Notice from (5.46) that U1 is also β-independent. Now, using (5.40), (5.43) and (5.45), we

have

S−1
2 S̃2 =

 I 0

0 I

+

 A? BT

B 0


−1  U 0

0 0

 (5.47)

=

 I +A−1
? (I − P?)U 0

S−1
? BA−1

? U I

 ,
where S? = BA−1

? B
T and

P? = BTS−1
? BA−1

? (5.48)

is another projector. Thus, the eigenvalues of S−1
2 S̃2 are contained in the set {1} ∪

λ
(
I +A−1

? (I − P?)U
)
.

To prove the first part of the assertion (5.37), suppose now that β is sufficiently small.

Then, from (5.42) and (5.44), the norm of M? is much larger than the norm of A, ‖M?‖ =

‖β−1M−1K11M1‖ � ‖A‖, since A is independent of β. That is, we take β much less than

the β-independent bound ‖M−1K11M1‖/‖A‖. Hence, A? ≈M?. In particular, we have

0 < ĉβ ≤ ‖A−1
? ‖ ≤ Ĉβ

and

0 < c′β−1 ≤ ‖S−1
? ‖ ≤ C ′β−1,

109



from which, together with (5.48), we deduce that the norm of the projector P? is asymp-

totically β-independent. Finally, from (5.46), we have ‖U‖ = ‖β−1/2U1‖ := C̃β−1/2, and

‖A−1
? (I − P?)U‖ ≤ C1β

1/2. That is, λ(S−1
2 S̃2) ∈ [1 − C1β

1/2, 1 + C1β
1/2] → {1} when

β → 0.

On the other hand, when β is large, the norm of M? is small, and A? ≈ A, a matrix

independent of β. The only multiplication with β comes from U ; therefore, ‖A−1
? (I −

P?)U‖ ≤ C2β
−1/2 → 0 when β →∞. Again, the matrix S−1

2 S̃2 becomes well conditioned

in β in the limit, thereby completing the proof of the theorem.

For intermediate β, we expect that S̃2 is still a good approximation to S2, and do

observe that in practice. For small matrices we have illustrated the distribution of the

eigenvalues of I + A−1
? (I − P?)U explicitly in Figure 5.2. As we can see from the left

figure, as β is varied, the eigenvalues are mostly clustered between 1 and 2.2, regardless

of the value of β. Note in particular that the eigenvalues approach the maximum 2.2 for

intermediate β = 10−4, but remain closer to 1 for both larger and smaller β. This is also

depicted in the experiment in Section 5.4.4: β = 10−4 is the kink point for the error, and

the maximum point for the CPU time.

On the other hand, Figure 5.2 (right) shows that, keeping β = 1, the eigenvalues of

I +A−1
? (I −P?)U are clustered around 1 if 0 ≤ α ≤ 1, but drastically increase for α > 1.

Again, this observation confirms the deterioration in the performance of our solver as α

Figure 5.2: Eigenvalue distribution of the matrix I +A−1
? (I −P?)U using the parameters

ν1 = 0.1, J = 642, P = 4, nt = 4. Left: α = 1 and β is varied. Right: β = 1 and α is
varied.

2000 4000 6000 8000 10000
1

1.2

1.4

1.6

1.8

2

2.2

eigenvalues

β = 10−8

β = 10−4

β = 100

β = 104

β = 108

2000 4000 6000 8000 10000
0

10

20

30

40

50
eigenvalues

α = 10−4

α = 100

α = 104

110



increases in Section 5.4.5. The scenario α � 1 is not of much practical interest anyway,

as this would imply a very low value of the variance, in which case we lose the point of

uncertainty quantification in the problem.

5.3 A tensor train solver

5.3.1 Alternating iterative methods

Notwithstanding the TT truncation, as we noted before, the Krylov vectors may still

develop rather large TT ranks – much larger than the ranks of the exact solution, in

particular. Unless a very good preconditioner is available such that the method converges

in about 10 iterations, the TT-GMRES approach may become too expensive. For problems

of some special forms, such as the Lyapunov equations, one can employ ADI [135] or tensor

product Krylov methods [77]. For more general problems we have to employ more general

alternating methods [57, 118].

The main idea behind the alternating tensor methods is to reduce the problem to the

elements of a particular TT block and iterate over different TT blocks until convergence

is achieved. In the mathematical community, the concept started with Alternating Least

Squares (ALS) method which is used to minimize the misfit of a tensor by a low-rank

tensor model, see the surveys [49, 74]. This was later extended to the solution of linear

systems [57, 99]. In quantum physics, a powerful realization of the alternation idea is the

Density Matrix Renormalization Group (DMRG) algorithm [138], which is mainly used for

eigenvalue problems, but also for linear systems [63]. Later on, the ALS/DMRG methods

were combined with the classical gradient descent iteration: besides the ALS iteration, the

TT blocks are explicitly augmented by the partial TT format of the residual surrogate.

The DMRG algorithm with a single center site [139] uses the surrogate of the Krylov

vector and the Alternating Minimal Energy (AMEn) method [32] uses the actual residual.

The latter was later adopted for eigenvalue problems as well [60, 76].

Consider a linear system Ay = g, where y is sought with some initial guess in the TT

format; that is,

y(i, j, k) =

r1,r2∑
s1,s2=1

y(1)
s1 (i)y(2)

s1,s2(j)y(3)
s2 (k),

111



or, equivalently,

y =

r1,r2∑
s1,s2=1

y(1)
s1 ⊗ (y(2)

s1,s2)T ⊗ (y(3)
s2 )T ,

from Proposition 4.17. The ALS method reduces this system to the elements of a chosen

TT block y(m) in the course of iterations m = 1, 2, 3. Notice that the TT format is linear

w.r.t. each particular TT block, i.e. we can write

y = Y1y
(1) = Y2y

(2) = Y3y
(3),

where the frame matrices Ym, m = 1, 2, 3, are constructed as follows:

Y1 = Int ⊗
r2∑
s2=1

(
y(2)
s2

)T
⊗
(
y(3)
s2

)T
∈ RntPJ×ntr1 ,

Y2 = y(1) ⊗ IP ⊗
(
y(3)

)T
∈ RntPJ×r1Pr2 ,

Y3 =

r1∑
s1=1

y(1)
s1 ⊗ y(2)

s1 ⊗ IJ ∈ RntPJ×r2J ,

(5.49)

where2

y(1) ∈ Rnt×r1 , y(2) ∈ Rr1×P×r2 , and y(3) ∈ Rr1×J

are as defined in (4.81), and hence, y
(1)
s1 ∈ Rnt×1, y

(2)
s1 ∈ RP×r2 , y

(2)
s2 ∈ Rr1×P and

y
(3)
s2 ∈ R1×J . In other words, each frame matrix Ym constitutes the TT format with the

block y(m) replaced by the identity matrix of the corresponding size. To see this, fix s1

and consider, for example, the first expression in (5.49). Here, we have

Y1(s1) = Int ⊗
r2∑
s2=1

(
y(2)
s1,s2

)T
⊗
(
y(3)
s2

)T
.

Since y
(1)
s1 = y

(1)
s1 ⊗ 1⊗ 1, it trivially follows that

y =

r1∑
s1=1

Y1(s1)y(1)
s1 =

r1,r2∑
s1,s2=1

(Inty
(1)
s1 )⊗

(
y(2)
s1,s2

)T
⊗
(
y(3)
s2

)T
.

The remaining two cases can be proven similarly. These frame matrices are used to project

2Note that each y(m), m = 1, 2, 3 is reshaped into a column vector, say, ŷ(m) such that the number of
columns of the frame matrix Ym matches the length of ŷ(m).

112



the linear system. The ALS method updates the TT format by solving the following

Galerkin linear systems:

(
Y T

1 AY1

)
y(1) = Y T

1 g, (5.50)(
Y T

2 AY2

)
y(2) = Y T

2 g, (5.51)(
Y T

3 AY3

)
y(3) = Y T

3 g, (5.52)

and so on from the first step. Using the QR decompositions of the properly reshaped

TT blocks, it is easy to make the frame matrices orthogonal, and therefore preserve the

stability of the Galerkin systems, if A is positive definite. For example, it is enough

to make y(1) column-orthogonal and y(3) row-orthogonal to make the whole Y2 column-

orthogonal. Since this step is never a bottleneck, we always assume that the frame matrices

are orthogonal, before solving (5.50)–(5.52).

However, the convergence of this algorithm is questionable. It is possible that the sys-

tems (5.50)–(5.52) remain the same within machine precision in two consecutive iterations,

while the true residual of the initial linear system g−Ay is large. The AMEn algorithm

[32] was, in fact, developed to circumvent this problem. In what follows, we give a brief

idea of the AMEn algorithm, adapted to 3-dimensional tensors, and then extended for

saddle-point systems. To this end, note first that in addition to the solution, in AMEn we

essentially approximate the residual in the TT format:

g −Ay ≈ z =

ρ1,ρ2∑
ζ1,ζ2=1

z
(1)
ζ1
⊗ (z

(2)
ζ1,ζ2

)T ⊗ (z
(3)
ζ2

)T . (5.53)

A very low accuracy is often sufficient for the residual (in our experiments we use ρ1 =

ρ2 = 2), so we can use the simple ALS method to approximate the residual. Along the

lines of (5.49), we construct the orthogonal residual frame matrices Zm from (5.53) and

compute z(m) = ZT
m(g − Ay) in a sequence m = 1, 2, 3, and so on. Since both A and

g are given in the TT format, this computation is inexpensive. Moreover, it is enough

to compute z(m) only once after the m-th step of (5.50)–(5.52), i.e. perform one ALS

iteration for z whenever the solution changes.

The crucial step now is the enrichment of the solution. Having solved (5.50), for

113



example, we concatenate y(1) and z(1) as follows,

y
(1)
s′1

(i) =

 y
(1)
s′1

(i), s′1 = 1, . . . , r1,

z
(1)
s′1−r1

(i), s′1 = r1 + 1, . . . , r1 + ρ1,

and so on. The enrichment has a two-fold consequence. First, the residual can be well

approximated in the basis of columns of the frame matrices, which prevents the Galerkin

projection from a premature stagnation. Second, we can start from a low-rank initial

guess and increase the TT ranks gradually, preventing them from becoming significantly

larger than the ranks of the exact solution.

5.3.2 Block alternating iteration

The AMEn method performs well for positive definite matrices. However, the method

may fail if we apply it to solve the KKT system (5.16) with the saddle-point matrix. The

Galerkin projections (5.50)–(5.52) obey the Poincaré Separation Theorem [58, Section

4.3], and since the spectrum has both positive and negative parts, some of the eigenvalues

may interlace with zero. Consequently, the projected matrices become degenerate and

the calculation stops. To avoid this problem, we store the state y, control u and adjoint

f vectors in the shared, or block TT format [30], and preserve the KKT structure in the

reduced system. Suppose that y,u, f are collected into a long vector ŵT = [wT
1 ,w

T
2 ,w

T
3 ] =

[yT ,uT , fT ]. The block TT format for ŵ can now be written in either of three variants:

wl(i, j, k) =

r1,r2∑
s1,s2=1

ŵ(1)
s1 (i, l)w(2)

s1,s2(j)w(3)
s2 (k), (5.54)

wl(i, j, k) =

r1,r2∑
s1,s2=1

w(1)
s1 (i)ŵ(2)

s1,s2(j, l)w(3)
s2 (k), (5.55)

wl(i, j, k) =

r1,r2∑
s1,s2=1

w(1)
s1 (i)w(2)

s1,s2(j)ŵ(3)
s2 (k, l). (5.56)

The only difference between these three variants is in which TT block the index l

(l = 1, 2, 3) is placed, but we need these different representations in different AMEn steps,

as explained below. It is easy to switch between the representations using the SVD [30].

Given the variant (5.54), we reshape ŵ(1) to a matrix Ŵ (1) ∈ Rnt×3r1 , compute the

114



truncated SVD, namely, Ŵ (1) ≈ UΣV T , where U ∈ Rnt×r′1 , so the elements of U can

be enumerated by two indices, U(i, s′1), i = 1, . . . , nt, s
′
1 = 1, . . . , r′1. Therefore, w(1) in

(5.55) or (5.56) can be replaced by U . Then the matrix ΣV T is reshaped to a matrix

R ∈ R3r′1×r1 , indexed as R(ls′1, s1), and multiplied with w(2) as follows:

ŵ
(2)
s′1,s2

(j, l) :=

r1∑
s1=1

R(ls′1, s1)w(2)
s1,s2(j).

We notice that the result ŵ(2) can overwrite w(2) in (5.55), since it has the same form.

In the same way, we can convert (5.55) to (5.56), or the other way around. Generally,

the TT ranks change after such transformations. However, in the numerical practice the

ranks remain comparatively the same in different block representations. The transition

from one block variant to another is performed routinely in the AMEn iteration. Note

that each of the variants (5.54)–(5.56) induces only one frame matrix Wm of the form

(5.49), since the frame matrices do not depend on l:

W1 = Int ⊗
r2∑
s2=1

(
w(2)
s2

)T
⊗
(
w(3)
s2

)T
,

W2 = w(1) ⊗ IP ⊗
(
w(3)

)T
,

W3 =

r1∑
s1=1

w(1)
s1 ⊗w(2)

s1 ⊗ IJ .

Therefore, to assemble the first reduced system (5.50), we need the first block representa-

tion (5.54), for the second system (5.51) we need (5.55), and so on. However, each frame

matrix has the column size JPnt, which coincides with the size of each of the blocks of

(5.16), not the whole KKT matrix. Besides, we need a system of equations w.r.t. the

index l, carried in the TT block under consideration. Thus, a natural generalization of

(5.50)–(5.52) is the following


W T

mτM1Wm 0 −W T
mK

TWm

0 W T
mβτM2Wm W T

mN
TWm

−W T
mKWm W T

mNWm 0

 ŵ(m) =


W T

mτMaȳ

0

W T
mg

 , (5.57)

for m = 1, 2, 3.

115



Algorithm 5.1 Block AMEn iteration

Require: Blocks of the matrix A, right-hand side g, initial guesses w and z in the TT
format (5.54).

Ensure: Approximations of the solution w and residual z.
1: while not converged do
2: for m = 1, 2, 3 do
3: Prepare and solve (5.57).

4: Compute the residual ẑ(m) =

ZT
m(g1 − A1,:ŵ)

ZT
m(g2 − A2,:ŵ)

ZT
m(g3 − A3,:ŵ)

 .
5: if m < 3 then
6: Compute SVD of the solution: ŵ(m)(im, l) ≈ w(m)(im)ΣV (l).
7: Move l to the right: ŵ(m+1)(im+1, l) = ΣV (l)w(m+1)(im+1).
8: Compute SVD of the residual: ẑ(m)(im, l) ≈ z(m)(im)ΣV (l).

9: Define W(m) :=W(m)(sm−1im, sm) = w
(m)
sm−1,sm(im).

10: Define Z(m) := Z(m)(sm−1im, sm) = z
(m)
sm−1,sm(im).

11: [W(m) Z(m)] = QR.

12: w
(m)
sm−1,sm(im) = Q(sm−1im, sm).

13: end if
14: end for
15: for m = 3, 2, 1 do
16: Prepare and solve (5.57).

17: Compute the residual ẑ(m) =

ZT
m(g1 − A1,:ŵ)

ZT
m(g2 − A2,:ŵ)

ZT
m(g3 − A3,:ŵ)

 .
18: if m > 1 then
19: Compute SVD of the solution: ŵ(m)(im, l) ≈ U(l)Σw(m)(im).
20: Move l to the left: ŵ(m−1)(im−1, l) = w(m−1)(im−1)U(l)Σ.
21: Compute SVD of the residual: ẑ(m)(im, l) ≈ U(l)Σz(m)(im).

22: Define W(m) :=W(m)(sm−1, imsm) = w
(m)
sm−1,sm(im).

23: Define Z(m) := Z(m)(sm−1, imsm) = z
(m)
sm−1,sm(im).

24: [(W(m))T (Z(m))T ] = QR.

25: w
(m)
sm−1,sm(im) = Q(imsm, sm−1).

26: end if
27: end for
28: end while

After this system is solved, we use the SVD procedure outlined above to switch to the

next block TT representation, compute the residual and enrich the new w(m) (which does

not contain l anymore). The residual is also kept in the block form, zT = [zT1 , z
T
2 , z

T
3 ], where

zl denotes the residual in the l-th row of the KKT system (5.16), and is approximated

in the appropriate block TT representation. Its active block is computed as z(m)(l) =

ZT
m(gl − Al,:w), and then the index l is replaced in the next TT block by the same

SVD procedure. The pseudocode of the proposed block AMEn procedure is presented

116



in Algorithm 5.1. For brevity, we omit the rank indices (e.g. w(m)(im) is an rm−1 × rm

matrix, and so on), and introduce a uniform notation im, where i1 = i, i2 = j and i3 = k.

Since the block M1 is symmetric and semidefinite, the same property is inherited by

the corresponding blocks in (5.57). However, K is the Stokes-Brinkman matrix, which is

indefinite. We could consider the 2 × 2 Stokes-Brinkman block structure and the 3 × 3

KKT structure on the same level, and solve the 5× 5 block system. However, the second

row of the Stokes-Brinkman matrix has a very particular meaning, which we can exploit

to reduce the complexity in what follows.

5.3.3 Pressure elimination in the reduced model

The low-rank separation of space and time variables has been used for a while in the

numerical simulation of the Navier-Stokes equation. The proper orthogonal decomposi-

tion (POD) is a well-known approach to model reduction [79]. It reshapes the veloc-

ity component of the solution to a matrix Y = [y(ij, k)], computes the truncated SVD

Y ≈ UΣV T , and uses the columns of V for the Galerkin reduction of the velocity opera-

tors. If we were solving the continuous equation, we would have a vector-valued function

V = V (x) ∈ Rr, where r is the number of POD terms, and the reduced solution sought

in the form y(x, t) ≈ V (x)e(t). Plugging this into the Stokes-Brinkman equation, and

projecting the velocity equation onto V , we have


de
dt − ν〈V

T ,∆V 〉e+ 〈V T , %V 〉e+ 〈V T ,∇p〉 = 〈V T , u〉,

∇ · V e = 0.
(5.58)

Since e(t) is not fixed a priori, from the second row of (5.58) we have ∇ · V (x) = 0.

However, then in the first row 〈V T ,∇p〉 = −〈∇ · V T , p〉 = 0; that is, the reduced model

contains no pressure at all. In the discrete formulation, we have the system (5.12), and the

pressure part V TBTp is not exactly zero due to the boundary conditions. Nevertheless, it

is often heuristically assumed that its magnitude is small [7]. If it is not the case, there

are nonlinear corrections available [92]. They are important for the POD approach, since

the last step there is the solution of the time-dependent reduced model. However, the

alternating methods are different: we may stop the iteration at the spatial TT block and

117



return the block TT format of the form (5.56), instead of (5.54) in the POD counterpart.

Therefore, we perform the pressure exclusion trick (even if V TBTp is not small) differently.

When we solve (5.57) for the spatial TT block (m = 3), we consider the 5× 5 Stokes-

KKT structure



τM̂1 0 0 −Â −B̂T

0 0 0 −B̂ 0

0 0 βτM̂2 N̂T 0

−Â −B̂T N̂ 0 0

−B̂ 0 0 0 0





ŵ(3)(1)

ŵ(3)(2)

ŵ(3)(3)

ŵ(3)(4)

ŵ(3)(5)


=



b̂1

0

0

ĝv

ĝp


, (5.59)

where M̂1 = D̂α ⊗M , M̂2 = D̂0 ⊗M , N̂ = Î0 ⊗M , B̂ = Î0 ⊗B,

Â = Î0 ⊗
(
τ−1M + ν0K +M%

)
+ Î1 ⊗ ν1K + Ĉ0 ⊗ τ−1M,

the reduced matrices corresponding to the time t and the event ω are computed as

Î0 =WT
3 (I ⊗G0)W3, Î1 =WT

3 (I ⊗G1)W3, Ĉ0 =WT
3 (C ⊗G0)W3,

D̂0 =WT
3 (D ⊗G0)W3, D̂α =WT

3 (D ⊗Gα)W3,

(5.60)

whereas the right-hand side parts are

b̂1 =WT
3 (De⊗G0e1)⊗ τ v̄,

ĝv

ĝp

 =WT
3 (e⊗ e1)⊗

g0
v

g0
p

 ,

and W3 =
r1∑
s1=1

w
(1)
s1 ⊗ w

(2)
s1 ∈ RntP×r2 is a chunk of the frame matrix W3. We had to

introduce this chunk and the Kronecker structures above in order to explain the precon-

ditioner in the next section. Note that each of the reduced matrices in (5.60) belong to

Rr2×r2 . Besides, we see that the solution components ŵ(3)(2) and ŵ(3)(5) denote the state

and adjoint pressures, respectively. The new TT block is assembled from the remaining

components only, w(3) =
[
ŵ(3)(1), ŵ(3)(3), ŵ(3)(4)

]
.

For the subsequent AMEn steps (m = 2, 1), we do not assume the pressure components

to be small, but we assume that they will not change significantly. Therefore, their

118



contributions to the velocity equations can be recast to the right-hand side. More precisely,

we construct the TT formats

δb1 =
∑
s1,s2

w(1)
s1 ⊗G0w

(2)
s1,s2 ⊗B

T ŵ(3)
s2 (5), δg =

∑
s1,s2

w(1)
s1 ⊗G0w

(2)
s1,s2 ⊗B

T ŵ(3)
s2 (2),

and correct the right-hand side of (5.16) as follows,


b1

0

g

 →


b1 + δb1

0

g + δg

 .

After that, we conduct AMEn steps m = 2, 1, 2 with the system of the form (5.57), where

K contains now only the velocity equation, and hence is positive definite. When we come

back to m = 3, we drop the right-hand side corrections and solve the full system (5.59).

If we are to stop the iteration, we return the full solution, including ŵ(3)(2) and ŵ(3)(5).

Due to the Galerkin projection, the accuracy depends only on how good the common TT

blocks w(1) and w(2) represent all solution components. Although it is unclear whether it is

allowed in general to ’freeze’ some components, in our numerical experiments we observed

that the solution is accurate enough; that is, the blocks w(1) and w(2) are computed

accurately using only the velocity information.

5.3.4 Practical implementation

The preconditioner developed in Section 5.2.1 needs to be adjusted to the local problem

(5.59). Although the reduced matrices (5.60) are small, they are dense, and it is impractical

to compute the blocks of (5.59) explicitly. However, note that all of them are single

Kronecker products except Â. Moreover, if the norms of K and M% are sufficiently large,

and ν1 is small, then the first term in Â dominates. Therefore, we replace Â by its first

term Î0 ⊗
(
τ−1M + ν0K +M%

)
during the preconditioning. This also allows to avoid the

second level of preconditioning for the Stokes-Brinkman system (5.29). Since B̂ contains

119



Î0, we can assemble the Stokes-Brinkman matrix in the Kronecker form as well,

K̂ = Î0 ⊗

τ−1M + ν0K +M% BT

B 0

 .
In the computation of x3 in (5.25), we can solve linear systems with K̂ directly. For two-

dimensional cases, this approach is faster than iterations with (5.29). In the same way we

approximate the factors of the Schur complement (5.27), e.g.

K̂T + M̂r ≈ Î0 ⊗


(

1
τ + 1√

β

‖D̂α‖
‖Î0‖

)
M + ν0K +M% BT

B 0

 , (5.61)

where we approximated M̂r = 1√
β
D̂α⊗M by Î0

‖D̂α‖
‖Î0‖
√
β
⊗M , and D̂α and Î0 are defined in

(5.60). For three dimensional problems (Section 5.4.10), the matrices become more dense,

and we have to use iterative methods, preconditioning the velocity block by a multigrid

cycle. Similar approximation of the preconditioners in the form of one Kronecker product

is performed for the TT blocks w(1) and w(2). Although they are smaller than the spatial

block, they are still too large to form and solve the systems (5.57) directly. The crucial

point here, fortunately, is that the new preconditioner does not need to invert M1 (cf.

(5.25)).

5.4 Numerical experiments

A systematic study of the proposed technique will be conducted on two- and three-

dimensional examples. We first consider the Stokes(-Brinkman) flow constraints on D =

[0, 1]2 with the inflow boundary conditions

v1|x1=0 = x2(1− x2), v2|x1=0 = 0, v|x2=0 = v|x2=1 = 0,

and ‘do-nothing’ boundary conditions at x1 = 1. The velocity operators are discretized

with mini elements [120] and the pressure operators are discretized with piecewise linear

finite elements. The stiffness matrices are assembled in the FEniCS 1.5.0 package [83].

120



For the Stokes-Brinkman equation, the coefficient is chosen as follows:

%(x) =

 %̄, (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.152,

0, otherwise.

The right-hand side and the initial condition are zeros. The desired state is the determin-

istic stationary solution of the forward Stokes-Brinkman problem.

The model is characterized by 8 parameters: the spatial grid size J , the number of time

steps nt, the time interval T , regularization parameters α and β, variance ν1, a threshold

for the tensor approximation and the AMEn algorithm ε, and the porosity coefficient %̄.

For the sake of brevity, we perform 8 experiments, fixing all parameters to their default

values and varying only one of them. The default parameters are the following: one-

dimensional spatial grid size n = 64 (so that J = 29059), time grid size nt = 210, time

interval T = 1, regularization parameters β = 10−6 and α = 1, variance parameter3

ν1 = 0.1, approximation tolerance ε = 10−6, and pure Stokes coefficient %̄ = 0. The

mean viscosity is always fixed at ν0 = 1, since the behavior of the model is the same if

ν0 ∼ 1/T , so we can investigate either of these parameters. The stochastic polynomial

degree is chosen as P = 16.

We investigate several kinds of discrepancies, such as the residual, the misfit w.r.t. the

desired state, and so on. Therefore, it is convenient to introduce a unifying notation. All

errors are measured in the Frobenius norm, i.e. given the reference y? and trial y vectors,

we compute

E(y,y?) = ‖y − y?‖F /‖y?‖F . (5.62)

By ’residual’, we mean the maximal relative residual among the KKT system rows:

residual = max
(
E(τM1y −KT f , τMaȳ); E(τβM2u,NTf); E(−Ky + Nu,g)

)
.

Since the KKT matrix is rather ill-conditioned, we also estimate the Frobenius-norm errors

of the state and control components of the solution as follows. For each experiment, we

3In applications involving highly heterogeneous media, such as subsurface diffusion, the variance of
a random field may be several orders in magnitude. However, a highly viscous fluid is more or less
homogeneous, and the 10% variance is realistic. This is the case, for example, in biomedical modeling
[120].

121



solve the system with two thresholds, ε and 0.1ε. The solution components of the latter

run, denoted as y? and u?, are taken as the reference ones, and the relative errors are

computed by (5.62).

Remark 5.4. This error estimate can be justified similarly to the Richardson extrapola-

tion. Suppose the true error expands as ‖y − yex‖ = Cεδ + o(εδ) for some C > 0, δ > 0.

Using the triangle inequality twice, we get ‖y − yex‖ ≤ ‖y − y?‖ + ‖y? − yex‖ and

‖y−y?‖ ≤ ‖y−yex‖+‖yex−y?‖, and by our assumption ‖y?−yex‖ = 10−δ ·Cεδ+o(εδ).

Therefore, (1 − 10−δ)‖y − yex‖ ≤ ‖y − y?‖ + o(εδ) ≤ (1 + 10−δ)‖y − yex‖. So we can

estimate both δ and ‖y − yex‖ from ‖y − y?‖. In the AMEn algorithm, the error usually

depends linearly on ε, i.e. the assumption holds with δ = 1, and the true error is bounded

by 1
0.9‖y − y?‖+ o(ε).

The complexity indicators are the CPU time, memory consumption and the number

of iterations. The CPU time is measured for a sequential MATLAB R2012b program, run

under Linux at Intel Xeon X5650 CPU with 2.67GHz. As in Chapter 4, the TT algorithms

are implemented within the TT-Toolbox [98]. The memory consumption is reported as

the memory compression ratio by the TT format. It is computed as the number of TT

elements over the total number of degrees of freedom in the solution, i.e.

% Mem =
ntr1 + r1Pr2 + r2J

JPnt
· 100. (5.63)

By ’iterations’, we mean the total number of FGMRES iterations, spent in solving the

reduced systems (5.59) for the spatial TT block, in all AMEn steps. The FGMRES is

used with the block-triangular preconditioner (5.25) for the KKT level only (the Stokes-

like systems (5.61) are solved directly in two-dimensional examples).

Remark 5.5. Note that, in the figures on the right hand sides of Figures 5.3 – 5.10, each

of the multiple vertical axes corresponds only to the plot bearing the respective colour in the

figure question. More precisely, the blue vertical axis correponds to the plot for proportion

of memory consumption only; the black vertical axis is only for the plot for the CPU times,

whereas the red vertical axis is just for the plot for iterations.

122



Table 5.1: 2D Stokes, comparison of spatial preconditioners

P1 P2

β Iterations CPU time Iterations CPU time

10−2 1264 6197 194 2015
10−4 738 3700 201 1968
10−6 196 759 108 700
10−8 163 465 72 322

5.4.1 Performance of the new block-triangular preconditioner

It is illustrative to compare the new preconditioner (5.25) with the established block-

diagonal preconditioner P1 from [126], mentioned at the beginning of Section 5.2. We test

P1 using the MINRES method, for the spatial TT block only. The comparison with P2

(5.25) is given in Table 5.1. We see that P2 provides faster convergence in terms of both

iterations and time. Therefore, we use P2 in all the remaining experiments in this chapter.

5.4.2 Experiment with nt (Figure 5.3)

In the first test, we vary the number of time steps from 25 to 212. In addition to general

errors, we report also the convergence of the mean value of the velocity with the time grid

refinement. The mean value is computed over all variables:

〈v〉 =
τ

T

Jv ,Jv ,nt∑
k,k′,i=1

M(k, k′)D(i, i)y(i, 1, k′) ≈
∫
D

∫
Ω

1

T

∫ T

0
v(x, ω, t)dtdP(ω)dx.

Figure 5.3: 2D Stokes, experiment with nt. Left: Residual, errors w.r.t. the reference
solutions, and the mean value error w.r.t. the time grid level. Right: CPU time, total
number of iterations in spatial systems, memory compression ratio as given by (5.63).

5 6 7 8 9 10 11 12

−6

−5

−4

−3

log2 nt

log10 errors

residual

E(y,y?)

E(u,u?)

E(〈v〉, 〈v12〉)

5 6 7 8 9 10 11 12
200

400

600

800

1,000

1,200

1,400

1,600

1,800

CPU
tim

e
Ite

ra
tio

ns

% Mem

log2 nt

CPU time (sec.)

0.2

0.3

0.4

0.5

0.6

0.7

% Mem

50

100

150

200

Iterations

123



Note that y has the form [v,p] w.r.t. the index k, so that the summation k, k′ = 1, . . . , Jv

extracts only the velocity. The reference value 〈v12〉 is computed on the grid nt = 212.

The distance from 〈v〉 decays proportionally to 2−nt , as expected for the implicit Euler

scheme.

The errors grow proportionally to the grid size, since the matrix becomes more ill-

conditioned. However, the CPU times and the numbers of iterations grow only as a

small power of log nt. The behavior of the CPU time is very close to the behavior of the

iterations, while the TT ranks (and hence the memory) are almost stable w.r.t. nt. This

shows that the main reason for the increase in time is the deterioration of the quality of the

preconditioner (since we use the rank-1 approximation (5.61)). A more robust (in terms

of iterations) preconditioner should also involve the term related to the time derivative.

However, each iteration might become more costly. Future research is needed to make the

preconditioner suitable for extreme parameters.

5.4.3 Experiment with T (Figure 5.4)

Since the initial condition is zero, while the desired state is not for any time step, the

time interval influences the model significantly. The smaller the interval, the larger the

force (in our terminology, control) that must be exerted to drive the system to the desired

state. This is true not only for the physical behavior, but also for the computational efforts

Figure 5.4: 2D Stokes, experiment with T . Left: Residual and errors w.r.t. the refer-
ence solutions. Right: CPU time, total number of iterations in spatial systems, memory
compression ratio as given by (5.63).

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−6

−5

−4

−3

−2

−1

0

log10 T

log10 errors

residual

E(y,y?)

E(u,u?)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

1,000

2,000

3,000

4,000

log10 T

CPU time (sec.)

0.2

0.4

0.6

0.8

% Mem

0

200

400

600

800

Iterations

124



required to solve the system. For T = 0.01, the matrix becomes too ill-conditioned, and

800 iterations are not enough to compute the spatial TT block accurately enough. For

larger T, both the error and the complexity decrease.

5.4.4 Experiment with β (Figure 5.5)

Although there are rigorous mathematical ways to estimate β for a given problem, such as

the L-curve analysis [53] or the discrepancy principle [40], we do not follow them here for

a couple of reasons. First, the value of β may be suggested by the physical considerations

(i.e. the maximal force available). Second, we want to demonstrate robustness of our

approach for as wide range as possible. Therefore, we vary β from 10−12 to 103.

We see that the errors are smaller for smaller β and stabilize at some levels when

β increases. When β is small, the model reconstructs the deterministic Stokes solution

quite accurately, as can be seen from the discrepancy E(v, v̄). In addition, we report the

deviation of the mean solution at the final time from the desired state. This quantity is

much smaller and less dependent on β than the global misfit: since the initial state is zero,

the misfit in the first time steps will always be rather large, but in the latter steps the

systems converges to the stationary solution. From the complexity figure, we see that the

most difficult are the cases with intermediate β. The memory consumption increases with

β, since the solution drives away from the rank-1 desired state.

Figure 5.5: 2D Stokes, experiment with β. Left: Residual and errors w.r.t. the reference
solutions, and the distance to the desired state. Right: CPU time, total number of
iterations in spatial systems, memory compression ratio as given by (5.63).

−12 −10 −8 −6 −4 −2 0 2

−6

−5

−4

−3

−2

log10 β

log10 errors

residual

E(y,y?)

E(u,u?)

E(〈v(T )〉, v̄(T ))

E(v, v̄)

−12 −10 −8 −6 −4 −2 0 2

500

1,000

1,500

2,000

log10 β

CPU time (sec.)

0.2

0.4

0.6

0.8

% Mem

60

80

100

120

140

160

180

200

Iterations

125



Figure 5.6: 2D Stokes, experiment with α. Left: Residual and errors w.r.t. the reference
solutions, and the relative standard deviation. Right: CPU time, total number of iterations
in spatial systems, memory compression ratio as given by (5.63).

−3 −2 −1 0 1 2 3

−5

−4.5

−4

−3.5

−3

−2.5

residual

E(u,u?)

std(v)/〈v〉, ν1 = 0.1

E(y,y?)

std(v)/〈v〉, ν1 = 0.9

log10 α

log10 errors

−3 −2 −1 0 1 2 3

1,000

1,500

2,000

2,500

3,000

3,500

log10 α

CPU time (sec.)

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66
% Mem

100

200

300

400

500

600

Iterations

5.4.5 Experiment with α (Figure 5.6)

This parameter is supposed to penalize the standard deviation of the velocity. The (dis-

crete) deviation is defined as follows,

std(v) =

√√√√ τ

T

Jv ,Jv ,nt∑
k,k′,i=1

P∑
j=2

M(k, k′)G0(j, j)D(i, i)y2(i, j, k′).

In Fig. 5.6, we report the relative deviations for two variance parameters, ν1 = 0.1 and

ν1 = 0.9. We see that in both cases the deviation decreases only marginally with α varying

from 10−3 to 102. In particular, for ν1 = 0.1, it seems that the minimization of ‖v − v̄‖

with a deterministic v̄ delivers v with already a quasi-minimal variance as well. For larger

ν1, the deviation decreases more significantly. We could expect this effect to develop

further for α > 103. However, the preconditioner deteriorates rapidly with larger α. In

particular, for α = 104, GMRES did not converge below the threshold ε = 10−6 after 900

iterations. Further investigation is needed to develop reliable methods for damping the

solution variance.

5.4.6 Experiment with ν1 (Figure 5.7)

The ratio of maximal and minimal viscosities due to the stochasticity is νmax/νmin =

(1 + ν1)/(1− ν1). If ν1 � 1, it grows almost linearly, νmax/νmin ≈ 1 + 2ν1. If ν1 is close to

126



Figure 5.7: 2D Stokes, experiment with ν1. Left: Residual and errors w.r.t. the reference
solutions, the relative standard deviation and the distance to the desired state. Right:
CPU time, total number of iterations in spatial systems, memory compression ratio as
given by (5.63).

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−6

−5

−4

−3

−2

−1

log10 ν1

log10 errors

residual

E(y,y?)

E(u,u?)

E(v, v̄)

std(v)/〈v〉

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

2.6

2.8

3

3.2

3.4

log10 ν1

log10 CPU time (sec.)

0.2

0.4

0.6

0.8

1

% Mem

100

150

200

250

300

Iterations

1, the behavior becomes essentially nonlinear, e.g. for ν1 = 0.9 we have νmax/νmin = 19.

The same can be seen in both error and complexity figures. The residuals and errors are

almost stable for small ν1, and the standard deviation grows linearly, while for ν1 > 0.5,

all quantities grow faster. In particular, the distance to the desired state becomes larger

since the Stokes system becomes more stiff. All three complexity indicators grow rapidly

as ν1 → 1 as well.

5.4.7 Experiment with the tensor approximation tolerance (Figure 5.8)

Here, we confirm the consistency of the error estimate E(y,y?), see Remark 5.4. In

experiments with positive definite matrices, it was observed that residuals and errors decay

proportionally to ε. In this problem, this is only the case for ε between 10−4 and 10−5.

For smaller tolerances the residual and the control error are approximately proportional

to ε0.5, and the state error almost stagnates. This may be caused by the indefiniteness of

the problem and the pressure exclusion trick. Unfortunately, we are unable to study their

effects separately, as the reduced systems (5.50), (5.51) and (5.52) become degenerate if

we try to apply the AMEn to an indefinite system directly.

127



Figure 5.8: 2D Stokes, experiment with ε. Left: Residual and errors w.r.t. the refer-
ence solutions. Right: CPU time, total number of iterations in spatial systems, memory
compression ratio as given by (5.63).

−8 −7.5 −7 −6.5 −6 −5.5 −5 −4.5 −4

−5

−4

−3

−2

log10 ε

log10 errors

residual

E(y,y?)

E(u,u?)

−8 −7.5 −7 −6.5 −6 −5.5 −5 −4.5 −4

400

600

800

1,000

1,200

1,400

1,600

log10 ε

CPU time (sec.)

0.4

0.5

0.6

0.7

0.8

0.9

% Mem

80

100

120

140

160

Iterations

5.4.8 Experiment with n (Figure 5.9)

The mesh generator in FEniCS is initialized with the number of mesh steps in one dimen-

sion n. The number of degrees of freedom for the pressure is (n+ 1)2, since the pressure is

discretized with linear elements, but together with the cubic mini elements for two com-

ponents of the velocity, the total number of DoFs is J ≈ 7n2. As in the time grid test, in

addition to the residual and errors w.r.t. the reference solution, we investigate the error

decay w.r.t. the grid refinement. The reference velocity for this test, 〈v8〉, is the mean

value computed at the grid n = 28. The approximation error decays with the rate n−1.4.

Figure 5.9: 2D Stokes, experiment with n. Left: Residual and errors w.r.t. the reference
solutions, and the mean value error w.r.t. the spatial grid level. Right: CPU time, total
number of iterations in spatial systems, memory compression ratio as given by (5.63).

4 4.5 5 5.5 6 6.5 7 7.5 8
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

log2 n

log10 errors

residual

E(y,y?)

E(u,u?)

E(〈v〉, 〈v8〉)

4 4.5 5 5.5 6 6.5 7 7.5 8

6

8

10

12

log2 n

log2 CPU time (sec.)

0.5

0.55

0.6

0.65

0.7

0.75
% Mem

90

100

110

120

130

Iterations

128



The most time-consuming stage in the scheme is the solution of the system for the

spatial TT block. The sparsity of the spatial matrix allows its efficient factorization, such

that the CPU time grows proportionally to n2, i.e. linear w.r.t. the total number of spatial

degrees of freedom. Interestingly, the number of iterations, TT ranks and the residual are

smaller for larger n. This is due to the rank-1 approximation used for the factors of the

preconditioner (5.27). For larger n, the norm of the discrete Laplace operator becomes

larger, and the rank-1 term becomes a better approximation to the whole matrix.

5.4.9 Experiment with %̄ (Figure 5.10)

Finally, we take %̄ nonzero and investigate the Stokes-Brinkman model. For some reasons,

with n = 64 and %̄ > 105, the velocity matrix becomes indefinite. This might be due

to the Gibbs phenomenon of the quadrature rule employed in FEniCS in computation

of the stiffness matrix elements corresponding to the interface of %(x). A detailed study

would require interfering with the FEniCS source codes and this was not conducted. As a

remedy, we perform this test with n = 128. This produces correct matrices up to %̄ = 106.

We see that the scheme is quite robust in the considered range of the coefficient. The

error estimates decay with increasing %̄, since the system becomes closer to the Darcy

model. The CPU time and the number of iterations show a chaotic behavior behavior due

to randomization in the AMEn algorithm and CPU workload, but this fluctuation is only

Figure 5.10: 2D Stokes-Brinkmann, experiment with %̄. Left: Residual and errors w.r.t.
the reference solutions. Right: CPU time, total number of iterations in spatial systems,
memory compression ratio as given by (5.63).

0 1 2 3 4 5 6

−6

−5.5

−5

−4.5

−4

−3.5

log10 %̄

log10 errors

residual

E(y,y?)

E(u,u?)

0 1 2 3 4 5 6
2,000

2,500

3,000

3,500

4,000

log10 %̄

CPU time (sec.)

0.4

0.5

0.6

0.7

0.8
% Mem

80

100

120

140

160
Iterations

129



10–20% compared to the average values. This fluctuation is always observed; here, it is

however not big, i.e. the time is ”constant” on average.

5.4.10 3D problem (Figure 5.11)

Finally, we demonstrate that our approach is suitable for larger 3D problems. We consider

the three-dimensional Stokes-Brinkman problem on the domain [0, 1] × [0, 1] × [0, 5] as

constraints, with the coefficient

%(x) =

 104, (x1 − 0.5)2 + (x2 − 0.5)2 + (x3 − 2.5)2 ≤ 0.12,

0, otherwise,

and the inflow boundary condition v1|x1=0 = x2(1 − x2) and zero conditions at other

boundaries. The one-dimensional grid sizes are 16, 16, 32 for x1, x2, x3, respectively, which

results in Jv = 212355 degrees of freedom for the velocity. Note that the full system size

without tensor approximations would have been larger than 2 billion, which is intractable

on our hardware by any means. Other parameters are the same as in the 2D tests except

ν1 = 0.01 and ε = 10−4.

Since the direct elimination is too expensive for such matrices, we used the commutator-

based preconditioner (5.35) for the Schur complement in the Stokes matrices, and the

velocity matrix was approximated by one V-cycle of the HSL MI20 algebraic multigrid [21].

The iterative method is two-level. First, we employed the block-triangular preconditioner

for the KKT structure in the FGMRES method with unlimited number of iterations.

Second, for all Stokes-like matrices in the preconditioning step, e.g. in (5.61), we used

another FGMRES method with 50 iterations, preconditioned by (5.35) with the multigrid.

That many inner iterations are needed because the commutator preconditioner deteriorates

rapidly with the size of the porosity region. The KKT solver conducted in total 152

iterations, which took 148985 seconds of the CPU time. Nevertheless, the maximal TT

rank of the solution is 8, so the TT format consumed only 0.2% of the memory required

for the full solution. The final residual is 4.1 · 10−4, and the misfit with the desired state

E(v, v̄) = 2.8 ·10−3. The mean and the standard deviation of the solution at the final time

are shown in Fig. 5.11. We notice a clear perturbation around the region with nonzero

130



Figure 5.11: 3D Stokes-Brinkman. Left: mean values at the last time step, right: standard
deviations. Top: velocity, middle: pressure, bottom: control.

Brinkman coefficient. In particular, the largest deviations are attained at the interface,

while in the homogeneous region the velocity is almost deterministic. The deviation of

the pressure grows proportionally to the mean magnitude (note that the mean pressure

is mostly negative, while the deviation is not, hence the color map in the right middle

figure was reversed). The control exhibits a clear interface around the Brinkman region.

Another interesting feature is that the deviation of the control is larger than its mean.

131



Chapter 6

Conclusions and outlook

The use of classical spectral SGFEM in discretizing models governed by PDEs with un-

certain inputs is standard in the literature. More often than not, SGFEM discretization

leads to large dimensional coupled linear systems with tensor product structure. Hence,

the straightforward storage of the solution consumes a vast amount of memory. How-

ever, since Galerkin approximation yields a best approximation with respect to the energy

norm, as well as a favorable framework for error estimation [18], it is worth pursuing more

computationally efficient ways to simulate these models using SGFEMs. With a view to

reducing the computational time and memory requirements of the solution of such arbi-

trarily large linear systems, we have provided a theoretical basis for a low-rank solver to

achieve these goals in this dissertation. Furthermore, we have solved the linear systems

(2.37) resulting from the forward problem (2.33) using a low-rank conjugate gradient it-

erative solver, together with two different preconditioners. In general, the combination

of each of the preconditioners and the low-rank iterative solver seems quite promising for

large-scale simulation of models whose random input data have comparatively low vari-

ance, as it reduces the computer memory and computational time required to solve the

stochastic Galerkin linear system compared to the conventional method.

We have also considered low-rank approaches to the solution of optimal control prob-

lems constrained by either diffusion equations or Stokes-Brinkman equations with uncer-

tain inputs. In the context of diffusion SOCPs, we have proposed robust Schur complement-

based block-diagonal preconditioners to simulate the considered problems. Crucially, we

have presented detailed analyses of the spectra of the derived preconditioners. Here, our

132



approach to the solution of the KKT linear systems entails a formulation that solves the

systems at once (for all time steps in the unsteady case). The all-at-once strategy often

leads to a large system that cannot be solved with direct solvers. However, combining our

proposed preconditioners with appropriate low-rank iterative solvers has proven efficient in

accomplishing the tasks. In particular, inexact solves with the derived Schur complements

via a few iterations of the preconditioned Richardson algorithm seem quite promising.

Next, the most challenging problem considered in this thesis – unsteady Stokes-Brinkman

SOCP – yields a saddle-point linear system, which requires a special treatment with tensor-

based techniques. We have proposed a new Schur complement-based block-triangular

preconditioner which is free from auxiliary perturbations and provides smaller condition

numbers of the preconditioned matrix compared to an already existing preconditioner pro-

posed in the framework of a deterministic Stokes control problem in [126]. Furthermore,

we have extended the alternating minimal energy algorithm such that it preserves the

saddle-point structure and solves this system robustly. In particular, by employing the

developed tensor product decomposition methods for the Stokes-Brinkman SOCP, we have

reduced its solution storage requirements by two – three orders of magnitude. It is per-

haps pertinent to state here that, although the low-rank approach discussed in this work

introduces further error in the simulation due to the low-rank truncations, the relative tol-

erance of the truncation operator can be so tightened that the error will become negligible.

More importantly, even though the low-rank truncation does not come free of charge, it

enables the solution of unsteady UQ problems that would be otherwise intractable.

Several directions for future research are possible. To begin with, we note here that in

many applications such as groundwater flow modeling [27, 131], one frequently encounters

cases where the diffusivity coefficient in (2.3) is modelled as a ≈ exp(aN ), where aN is of

the form (2.9). This is the so-called stochastically nonlinear case and it leads to a block

dense linear system of the form (2.24), where the number of blocks depends nonlinearly

on N ; hence, the cost of solving the linear system becomes increasingly expensive as N

increases [131]. The possible presence of a small correlation length in the covariance

function associated with the random field a further exacerbates the problem since N then

has to be large to control the error between a and the approximation aN . The more random

variables are needed to parameterize the uncertainty in the logarithm of the diffusivity

133



coefficient, the higher the cost of a matrix-vector product with the SGFEM matrix and,

thus, the higher the cost of one iteration (with or without a preconditioner) in the CG

or MINRES algorithm. Hence, in the context of the stochastically nonlinear case, it will

be reasonable to investigate the performance of our proposed low-rank iterative solvers

as discussed particularly in Chapter 4. Another natural extension would be to apply the

tensor techniques developed in Chapter 5 to nonlinear Navier-Stokes SOCPs. Furthermore,

we admit here that the block-triangular preconditioner presented in Section 5.2.1 still needs

improvement, especially for large stochastic variance parameter ν1, variance-penalizing

regularization parameter α and many time steps. More complex models, such as those

with uncertain boundary conditions and random domain, are also a challenging topic for

future investigation.

134



Bibliography

[1] R. Andreev and C. Tobler, Multilevel preconditioning and low rank tensor itera-

tion for space-time simultaneous discretizations of parabolic PDEs, Numerical Linear

Algebra with Applications, 22 (2015), pp. 317–337.

[2] H. Antil, M. Heinkenschloss, and R. H. W. Hoppe, Domain decomposition

and balanced truncation model reduction for shape optimization of the Stokes system,

Optimization Methods and Software, 26 (2011), pp. 643–669.

[3] I. Babus̆ka and P. Chatzipantelidis, On solving linear elliptic stochastic partial

differential equations, Computer Methods in Applied Mechanics and Engineering,

191 (2002), pp. 4093–4122.

[4] I. Babus̆ka, F. Nobile, and R. Tempone, A stochastic collocation method for

elliptic partial differential equations with random input data, SIAM Journal on Nu-

merical Analysis, 45 (2007), pp. 1005–1034.

[5] I. Babus̆ka, R. Tempone, and G. Zouraris, Galerkin finite element approxima-

tions of stochastic elliptic partial differential equations, SIAM Journal on Numerical

Analysis, 42 (2004), pp. 800–825.

[6] J. Baglama and L. Reichel, Augmented implicitly restarted Lanczos bidiagonal-

ization methods, SIAM Journal on Scientific Computing, 27 (2005), pp. 19–42.

[7] M. J. Balajewicz, E. H. Dowell, and B. R. Noack, Low-dimensional

modelling of high-Reynolds-number shear flows incorporating constraints from the

Navier-Stokes equation, Journal of Fluid Mechanics, 729 (2013), pp. 285–308.

135



[8] J. Ballani and L. Grasedyck, A projection method to solve linear systems in

tensor format, Numerical Linear Algebra with Applications, 20 (2013), pp. 27–43.

[9] V. Barthelmann, E. Novak, and K. Ritter, High dimensional polynomial

interpolation on sparse grids, Advances in Computational Mathematics, 12 (2000),

pp. 273 – 288.

[10] P. Benner and T. Breiten, Low rank methods for a class of generalized Lyapunov

equations and related issues, Numerische Mathematik, 124 (2013), pp. 441–470.

[11] P. Benner, S. Dolgov, A. Onwunta, and M. Stoll, Low-rank solvers for

unsteady Stokes-Brinkman optimal control problem with random data, Computer

Methods in Applied Mechanics and Engineering, 304 (2016), pp. 26–54.

[12] P. Benner and M. W. Hess, Reduced basis modeling for uncertainty quantification

of electromagnetic problems in stochastically varying domain, Scientific Computing

in Electrical Engineering SCEE 2014, Accepted, (2015).

[13] P. Benner, A. Onwunta, and M. Stoll, Low-rank solution of unsteady diffusion

equations with stochastic coefficients, SIAM/ASA Journal on Uncertainty Quantifi-

cation, 3 (2015), pp. 622 – 649.

[14] , Block-diagonal preconditioning for optimal control problems constrained by

PDEs with uncertain inputs, SIAM Journal on Matrix Analysis and Applications,

37 (2016), pp. 491 – 518.

[15] P. Benner and J. Schneider, Uncertainty quantification for Maxwell’s equations

using stochastic collocation and model order reduction, International Journal for

Uncertainty Quantification, 5 (2015), pp. 195 – 208.

[16] M. Benzi and G. H. Golub, A preconditioner for generalized saddle point prob-

lems, SIAM Journal on Matrix Analysis and Applications, 26 (2004), pp. 20 – 41.

[17] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point

problems, Acta Numerica, 14 (2005), pp. 1 – 137.

136



[18] A. Bespalov, C. E. Powell, and D. Silvester, Energy norm a posteriori error

estimation for parametric operator equations, SIAM Journal on Scientific Comput-

ing, 36 (2013), pp. A339 – A363.

[19] P. Bochev and R. B. Lehoucq, On the finite element solution of the pure Neu-

mann problem, SIAM Review, 47 (2005), pp. 50–66.

[20] A. Borzi and G. von Winckel, Multigrid methods and sparse-grid collocation

techniques for parabolic optimal control problems with random coefficients, SIAM

Journal on Scientific Computing, 31 (2009), pp. 2172 – 2192.

[21] J. Boyle, M. D. Mihajlovic, and J. A. Scott, HSL MI20: An efficient AMG

preconditioner for finite element problems in 3D, International Journal for Numerical

Methods in Engineering, 82 (2010), pp. 64–98.

[22] J. H. Bramble and J. E. Pasciak, A preconditioning technique for indefinite

systems resulting from mixed approximations of elliptic problems, Mathematics of

Computation, 50 (1988), pp. 1 – 17.

[23] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element

Methods, vol. Second Edition, Springer, 2012.

[24] A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formula-

tions for convection dominated flows with particular emphasis on the incompressible

Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering,

32 (1982), pp. 199–259.

[25] A. Caiazzo, V. John, and U Wilbrandt, On classical iterative subdomain meth-

ods for the Stokes-Darcy problem, Computational Geosciences, 18 (2014), pp. 711–

728.

[26] P. Chen and A. Quarteroni, Weighted reduced basis method for stochastic op-

timal control problems with elliptic PDE constraint, SIAM/ASA Journal on Uncer-

tainty Quantification, 2 (2014), pp. 364 – 396.

137



[27] K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup, Multilevel

Monte Carlo methods and applications to elliptic PDEs with random coefficients,

Computing and Visualization in Science, 14 (2011), pp. 3–15.

[28] T. Damm, Direct methods and ADI-preconditioned Krylov subspace methods for gen-

eralized Lyapunov equations, Numerical Linear Algebra and Applications, 15 (2008),

pp. 853–871.

[29] S. V. Dolgov, TT-GMRES: Solution to a linear system in the structured tensor

format, Russian Journal of Numerical Analysis and Mathematical Modelling, 28

(2013), pp. 149–172.

[30] S. V. Dolgov, B. N. Khoromskij, I. V. Oseledets, and D. V. Savostyanov,

Computation of extreme eigenvalues in higher dimensions using block tensor train

format, Computer Physics Communications, 185 (2014), pp. 1207–1216.

[31] S. V. Dolgov, J. W. Pearson, D. V. Savostyanov, and M. Stoll, Fast

tensor product solvers for optimization problems with fractional differential equations

as constraints, Applied Mathematics and Computation, To appear, (2016).

[32] S. V. Dolgov and D. V. Savostyanov, Alternating minimal energy methods

for linear systems in higher dimensions, SIAM Journal on Scientific Computing, 36

(2014), pp. A2248–A2271.

[33] H. S. Dollar, N. I. M. Gould, W. H. A. Schilders, and A. J. Wathen,

Implicit-factorization preconditioning and iterative solvers for regularized saddle-

point systems, SIAM Journal on Matrix Analysis and Applications, 28 (2006),

pp. 170 – 189.

[34] H. S. Dollar, N. I. M. Gould, M. Stoll, and A. J. Wathen, Preconditioning

saddle-point systems with applications in optimization, SIAM Journal on Scientific

Computing, 32 (2010), pp. 249 – 270.

[35] H. Elman, O. G. Ernst, D. P. O’Leary, and M. Stewart, Efficient itera-

tive algorithms for the stochastic finite element method with applications to acoustic

138



scattering, Computer Methods in Applied Mechanics and Engineering, 194 (2005),

pp. 1037–1055.

[36] H. Elman and D. Furnival, Solving steady-state diffusion problem using multi-

grid, IMA Journal of Numerical Analysis, 27 (2007), pp. 675–688.

[37] H. Elman, C. Miller, E. Phipps, and R. S. Tuminaro, Assessment of col-

location and Galerkin approaches to linear diffussion equations with random data,

International Journal for Uncertainty Quantification, 1 (2011), pp. 19–33.

[38] H. Elman, D. Silvester, and A. Wathen, Finite Elements and Fast Iterative

Solvers with Applications in Incompressible Fluid Dynamics, Numerical Mathemat-

ics and Scientific Computation, Oxford University Press, New York, 2005.

[39] , Finite Elements and Fast Iterative Solvers, vol. Second Edition, Oxford Uni-

versity Press, 2014.

[40] W. H. Engl, Discrepancy principles for Tikhonov regularization of ill-posed prob-

lems leading to optimal convergence rates, Journal of Optimization Theory and Ap-

plications, 52 (1987), pp. 209–215.

[41] B. Fischer, A. Ramage, D. J. Silvester, and A. J. Wathen, Minimum resid-

ual methods for augmented systems, BIT, 38 (1998), pp. 527–543.

[42] P. Frauenfelder, C. Schwab, and R. A. Todor, Finite elements for elliptic

problems with stochastic coefficients, Computer Methods in Applied Mechanics and

Engineering, 194 (2005), pp. 205–228.

[43] R. G. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral Approach,

Springer-Verlag, New York, 1996.

[44] W. Gilks, S. Richardson, and D. Spiegelhalter, Markov Chain Monte Carlo

in Practice, Chapman & Hall, London, 1995.

[45] G. H. Golub and C. Greif, On solving block-structured indefinite linear systems,

SIAM Journal on Scientific Computing, 24 (2003), pp. 2076 – 2092.

139



[46] G. H. Golub and C. H. Van Loan, Matrix Computations, Johns Hopkins Uni-

versity Press, 1996.

[47] A. D. Gordon and C. E. Powell, Solving stochastic collocation systems with al-

gebraic multigrid, in Numerical Mathematics and Advanced Applications, G. Kreiss

et al., ed., Springer-Verlag, 2009, pp. 377–384.

[48] L. Grasedyck, Existence and computation of low Kronecker-rank approximations

for large linear systems of tensor product structure, Computing, 72 (2004), pp. 247–

265.

[49] L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-rank

tensor approximation techniques, GAMM-Mitteilungen, 36 (2013), pp. 53 – 78.

[50] M. D. Gunzburger, H.-C. Lee, and J. Lee, Error estimates of stochastic optimal

Neumann boundary control problems, IMA Journal on Numerical Analysis, 49 (2011),

pp. 1532 – 1552.

[51] M. D. Gunzburger, C. G. Webster, and G. Zhang, Stochastic finite element

methods for equations with random input data, Acta Numerica, 23 (2014), pp. 521–

650.

[52] W. Hackbusch, Tensor Spaces And Numerical Tensor Calculus, Springer–Verlag,

Berlin, 2012.

[53] P. C. Hansen and D. P. O’Leary, The use of the L-curve in the regularization

of discrete ill-posed problems, SIAM Journal on Scientific Computing, 14 (1993),

pp. 1487–1503.

[54] R. Herzog and E. Sachs, Preconditioned conjugate gradient method for optimal

control problems with control and state constraints, SIAM Journal on Matrix Analysis

and Applications, 31 (2010), pp. 2291 – 2317.

[55] M. Hintermüller, K. Ito, and K. Kunisch, The primal-dual active set strategy

as a semi-smooth Newton method, SIAM Journal on Optimization, 13 (2002), pp. 865

– 888.

140



[56] M. E. Hochstenbach, A Jacobi-Davidson type SVD method, SIAM Journal on

Scientific Computing, 23 (2001), pp. 606–628.

[57] S. Holtz, T. Rohwedder, and R. Schneider, The alternating linear scheme

for tensor optimization in the tensor train format, SIAM Journal on Scientific Com-

puting, 34 (2012), pp. A683–A713.

[58] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press,

Cambridge, 1990.

[59] L. S. Hou, J. Lee, and H. Manouzi, Finite element approximations of stochastic

optimal control problems constrained by stochastic elliptic PDEs, Journal of Mathe-

matical Analysis and Applications, 384 (2011), pp. 87–103.

[60] C. Hubig, I. P. McCulloch, U. Schollwöck, and F. A. Wolf, Strictly

single-site DMRG algorithm with subspace expansion, Physical Review B, 91 (2015),

p. 155115.

[61] K. Ito and K. Kunisch, Semi-smooth Newton methods for state-constrained opti-

mal control problems, Systems and Control Letters, 50 (2003), pp. 221 – 228.

[62] K. Ito, K. Kunisch, V. Schulz, and I. Gherman, Approximate nullspace it-

erations for KKT systems, SIAM Journal on Matrix Analysis and Applications, 31

(2010), pp. 1835–1847.

[63] E. Jeckelmann, Dynamical density matrix renormalization group method, Physical

Review B, 66 (2002), p. 045114.

[64] B. Jin and J. Zou, Inversion of Robin coefficient by a spectral stochastic finite

element approach, Journal of Computational Physics, 227 (2008), pp. 3282 – 3306.

[65] C. Jin, X-C. Cai., and C. Li, Parallel domain decomposition methods for stochas-

tic elliptic equations, SIAM Journal on Scientific Computing, 29 (2007), pp. 2096 –

2114.

141



[66] H. Johnston and J. G. Liu, Accurate, stable and efficient Navier-Stokes solvers

based on explicit treatment of the pressure term, Journal of Computational Physics,

199 (2004), pp. 221–259.

[67] Ch. Kanzow, Inexact semi-smooth Newton methods for large-scale complementarity

problems, Optimization Methods and Software, 19 (2004), pp. 309 – 325.

[68] A. Keese, Numerical Solution of Systems with Stochastic Uncertainties: A General

Purpose Framework for Stochastic Finite Elements, PhD thesis, Fachbereich fuer

Mathematik und Informatik, Technische Universitaet Braunschweig, 2004.

[69] C. Keller, N. I. M. Gould, and A. J. Wathen, Implicit-factorization precondi-

tioning and iterative solvers for regularized saddle-point systems, SIAM Journal on

Matrix Analysis and Applications, 21 (2000), pp. 1300 – 1317.

[70] B. N. Khoromskij, Tensor numerical methods for high-dimensional PDEs: Basic

theory and initial applications, arXiv preprint 1409.7970, 2014. ESAIM Proceedings,

To appear.

[71] A. Klawonn, Block-triangular preconditioners for saddle point problems with a

penalty term, SIAM Journal on Scientific Computing, 19 (1998), pp. 172 – 184.

[72] P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equa-

tions, Springer-Verlag, New York, 1999.

[73] A. Klümper, A. Schadschneider, and J. Zittartz, Matrix product ground

states for one-dimensional spin-1 quantum antiferromagnets, Europhysics Letters,

24 (1993), pp. 293–297.

[74] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM

Review, 51 (2009), pp. 455–500.

[75] D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloe-

men Waanders, A trust-region algorithm with adaptive stochastic collocation for

PDE optimization under uncertainty, SIAM Journal on Scientific Computing, 35

(2013), pp. A1847 – A1879.

142



[76] D. Kressner, M. Steinlechner, and A. Uschmajew, Low-rank tensor meth-

ods with subspace correction for symmetric eigenvalue problems, SIAM Journal on

Scientific Computing, 36 (2014), pp. A2346–A2368.

[77] D. Kressner and C. Tobler, Krylov subspace methods for linear systems with

tensor product structure, SIAM Journal on Matrix Analysis and Applications, 31

(2010), pp. 1688–1714.

[78] , Low-rank tensor Krylov subspace methods for parametrized linear systems,

SIAM Journal on Matrix Analysis and Applications, 32 (2011), pp. 1288–1316.

[79] K. Kunisch and S. Volkwein, Galerkin POD methods for parabolic problems,

Numerische Mathematik, 90 (2001), pp. 117–148.

[80] J. Larminie and A. Dicks, Fuel cell systems explained, vol. Second Edition, Wiley,

2013.

[81] O. P. Le Mâıtre, O. M. Knio, B. J. Debusschere, H. N. Najm, and R. G.

Ghanem, A multigrid solver for two-dimensional stochastic diffusion equations,

Computer Methods in Applied Mechanics and Engineering, 192 (2003), pp. 4723–

4744.

[82] D. Leykekhman, Investigation of commutative properties of discontinuous Galerkin

methods in PDE-constrained optimal control problems, Journal of Scientific Comput-

ing, 53 (2012), pp. 483 – 511.

[83] A. Logg, K. A. Mardal, and G. N. Wells (Eds.), Automated Solution of

Differential Equations by the Finite Element Method, Springer, 2012.

[84] O. P. Le Mâıtre and O. M. Knio, Spectral Methods for Uncertainty Quantifica-

tion with Applications to Computational Fluid Dynamics, Springer, 2010.

[85] A. Manzoni, A. Quarteroni, and G. Rozza, Shape optimization for viscous

flows by reduced basis methods and free-form deformation, International Journal for

Numerical Methods in Fluids, 70 (2012), pp. 646 – 670.

143



[86] K. A. Mardal, X. C. Tai, and R. Winther., A mixed formulation for the

Brinkman problem, SIAM Journal on Numerical Analysis, 40 (2002), pp. 1605 –

1631.

[87] K. A. Mardal and R. Winther, Preconditioning discretizations of systems of

partial differential equations, Numerical Linear Algebra with Applications, 18 (2011),

pp. 1–40.

[88] T. Mathew, M. Sarkis, and C. Schaerer, Analysis of block matrix precondi-

tioners for elliptic optimal control problems, Numerical Linear Algebra with Appli-

cations, 14 (2007), pp. 257–279.

[89] M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for

indefinite linear systems, SIAM Journal on Scientific Computing, 21 (2000), pp. 1969

– 1972.

[90] D. W. Nicholson, Eigenvalue bounds for AB+BA with A, B positive definite ma-

trices, Linear Algebra and its Applications, 24 (1979), pp. 173 – 183.

[91] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods,

SIAM, Philadelphia, 1992.

[92] B. R. Noack, P. Papas, and P. A. Monkewitz, The need for a pressure-term

representation in empirical Galerkin models of incompressible shear flows, Journal

of Fluid Mechanics, 523 (2005), pp. 339–365.

[93] F. Nobile and R. Tempone, Analysis and implementation issues for the numerical

approximation of parabolic equations with random coefficients, International Journal

for Numerical Methods in Engineering, 80 (2009), pp. 979 – 1006.

[94] , Analysis and implementation issues for the numerical approximation of

parabolic equations with random coeffients, International Journal of Numerical Meth-

ods in Engineering, 80/6-7 (2009), pp. 979–1006.

[95] Y. Notay, A new analysis of block preconditioners for saddle point problems, SIAM

Journal on Matrix Analysis and Applications, 35 (2014), pp. 143 – 173.

144



[96] J. Ockendon, S. Howison, A. Lacey, and A. Movchan, Applied Partial Dif-

ferential Equations, Oxford University Press, Oxford, 2003.

[97] I. V. Oseledets, Tensor train decomposition, SIAM Journal on Scientific Comput-

ing, 33 (2011), pp. 2295 – 2317.

[98] I. V. Oseledets, S. Dolgov, V. Kazeev, D. Savostyanov, O. Lebe-

deva, P. Zhlobich, T. Mach, and L. Song, TT-Toolbox, 2016.

https://github.com/oseledets/TT-Toolbox.

[99] I. V. Oseledets and S. V. Dolgov, Solution of linear systems and matrix

inversion in the TT-format, SIAM Journal on Scientific Computing, 34 (2012),

pp. A2718–A2739.

[100] C. C. Paige and M. A. Saunders, Solutions of sparse indefinite systems of linear

equations, SIAM Journal on Numerical Analysis, 12 (1975), pp. 617–629.

[101] M. L. Parks, E. de Sturler, G. Mackey, D. D. Johnson, and S. Maiti, Re-

cycling Krylov subspaces for sequences of linear systems, SIAM Journal on Scientific

Computing, 28 (2006), pp. 1651 – 1674.

[102] J. W. Pearson, Preconditioned iterative methods for Navier-Stokes control prob-

lems, Journal of Computational Physics, 292 (2015), pp. 194 – 207.

[103] J. W. Pearson, M. Stoll, and A. Wathen, Preconditioners for state constrained

optimal control problems with Moreau-Yosida penalty function, Numerical Linear

Algebra with Applications, (2011), pp. 81 – 97.

[104] J. W. Pearson, M. Stoll, and A. J. Wathen, Regularization-robust precondi-

tioners for time-dependent PDE-constrained optimization problems, SIAM Journal

on Matrix Analysis and Applications, 33 (2012), pp. 1126–1152.

[105] J. W. Pearson and A. J. Wathen, A new approximation of the Schur complement

in preconditioners for PDE-constrained optimization, Numerical Linear Algebra with

Applications, 19 (2012), pp. 816 – 829.

145



[106] M. F. Pellissetti and R. G. Ghanem, Iterative solution of systems of linear

equations arising in the context of stochastic finite elements, Advances in Engineering

Software, 31 (2000), pp. 607–616.

[107] J. Pestana and A. J. Wathen, Natural preconditioning and iterative methods for

saddle point systems, SIAM Review, 57 (2015), pp. 71 – 91.

[108] P. Popov, Y. Efendiev, and G. Qin, Multiscale modeling and simulations of

flows in naturally fractured Karst reservoirs, Communications in Compuational

Physics, 6 (2009), pp. 162 – 184.

[109] M. Porcelli, V. Simoncini, and M. Tani, Preconditioning of active-set Newton

methods for PDE-constrained optimal control problems, SIAM Journal on Scientific

Computing, 37 (2015), pp. S472 – S502.

[110] C. E. Powell and H. Elman, Block-diagonal preconditioning for spectral stochas-

tic finite-element systems, IMA Journal of Numerical Analysis, 29 (2009), pp. 350–

375.

[111] C. E. Powell and D. J. Silvester, Preconditioning steady-state Navier-Stokes

equations with random data, SIAM Journal on Scientific Computing, 34 (2012),

pp. A2482 – A2506.

[112] T. Rees, H. S. Dollar, and A. J. Wathen, Optimal solvers for PDE-constrained

optimization, SIAM Journal on Scientific Computing, 32 (2010), pp. 271–298.

[113] F. Riesz and B. Sz.-Nagy, Functional Analysis, Dover, New York, 1990.

[114] E. Rosseel, T. Boonen, and S. Vandewalle, Algebraic multigrid for stationary

and time-dependent partial differential equations with stochastic coefficients, Numer-

ical Linear Algebra and Applications, 15 (2008), pp. 141–163.

[115] E. Rosseel and G. N. Wells, Optimal control with stochastic PDE constraints

and uncertain controls, Computer Methods in Applied Mechanics and Engineering,

213-216 (2012), pp. 152–167.

146



[116] T. Rusten and R. Winther, A preconditioned iterative method for saddle point

problems, SIAM Journal on Matrix Analysis and Applications, 13 (1992), p. 887.

[117] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm

for solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical

Computing, 7 (1986), pp. 856–869.

[118] U. Schollwöck, The density–matrix renormalization group, Reviews of Modern

Physics, 77 (2005), pp. 259–315.

[119] V. Simoncini and M. Benzi, Spectral properties of the Hermitian and skew-

Hermitian splitting preconditioner for saddle point problems, SIAM Journal on Ma-

trix Analysis and Applications, 26 (2004), pp. 377 – 389.

[120] J. Sogn, Stabilized finite element methods for the Brinkman equation on fitted and

fictitious domains, Master’s Thesis, University of Oslo, 2014.

[121] B. Soused́ık and R. G. Ghanem, Truncated hierrarchical preconditioning for the

stochastic Galerkin FEM, International Journal for Uncertainty Quantification, 4

(2014), pp. 333 – 348.

[122] M. Stein, Large sample properties of simulations using Latin hypercube sampling,

Technometrics, 29 (1987), pp. 143 – 151.

[123] M. Stoll, A Krylov-Schur approach to the truncated SVD, Linear Algebra and its

Applications, 436 (2012), pp. 2795–2806.

[124] M. Stoll and T. Breiten, A low-rank in time approach to PDE-constrained

optimization, SIAM Journal on Scientific Computing, 37 (2015), pp. B1 – B29.

[125] M. Stoll and A. Wathen, Preconditioning for partial differential equation con-

strained optimization with control constraints, Numerical Linear Algebra with Ap-

plications, 19 (2012), pp. 53–71.

[126] , All-at-once solution of time-dependent Stokes control, Journal of Computa-

tional Physics, 232 (2013), pp. 498–515.

147



[127] K. Stüben, An introduction to algebraic multigrid, in Multigrid, A. Schuller U. Trot-

tenberg, C. Oosterlee, ed., Academic Press, 2001, pp. 413 – 532.

[128] H. Tiesler, R. M. Kirby, D. Xiu, and T. Preusser, Stochastic collocation for

optimal control problems with stochastic PDE constraints, SIAM Journal on Control

and Optimization, 50 (2012), pp. 2659 – 2682.

[129] E. Ullmann, Solution Strategies for Stochastic Finite Element Discretizations, PhD

thesis, Technischen Universitaet Bergakademie Freiberg, 2008.

[130] , A Kronecker product preconditioner for stochastic Galerkin finite element dis-

cretizations, SIAM Journal on Scientific Computing, 32 (2010), pp. 923–946.

[131] E. Ullmann and C. E. Powell, Solving log-transformed random diffusion prob-

lems by stochastic Galerkin mixed finite element methods, SIAM/ASA Journal on

Uncertainty Quantification, 3 (2015), pp. 509 – 534.

[132] C. F. Van Loan and N. P. Pitsianis, Approximation with Kronecker products,

in Linear Algebra for Large Scale and Real Time Applications, M. S. Moonen and

G. H. Golub, eds., Kluwer Publications, Dordrecht, 1992, pp. 293–314.

[133] P. S. Vassilevski and U. Villa, A block-diagonal algebraic multigrid precondi-

tioner for the Brinkman problem, SIAM Journal on Scientific Computing, 35 (2013),

pp. S3 – S17.

[134] , A mixed formulation for the Brinkman problem, SIAM Journal on Numerical

Analysis, 52 (2014), pp. 258 – 281.

[135] E. L. Wachspress, The ADI Model Problem, Springer, New York, 2013.

[136] A. J. Wathen, On relaxation of Jacobi iteration for consistent and generalized mass

matrices, Communications in Applied Numerical Methods, 7 (1991), pp. 93 – 102.

[137] A. J. Wathen and T. Rees, Chebyshev semi-iteration in preconditioning for prob-

lems including the mass matrix, Electronic Transactions in Numerical Analysis, 34

(2008), pp. 125–135.

148



[138] S. R. White, Density matrix algorithms for quantum renormalization groups, Phys-

ical Review B, 48 (1993), pp. 10345–10356.

[139] , Density matrix renormalization group algorithms with a single center site,

Physical Review B, 72 (2005), p. 180403.

[140] I. Wiener, The homogeneous chaos, American Journal of Mathematics, 60 (1938),

pp. 897 – 936.

[141] X. P. Xie, J. C. Xu, and G. R. Xue, Uniformly stable finite element methods for

Darcy-Stokes-Brinkman models, Journal of Computational Mathematics, 26 (2008),

pp. 437 – 455.

[142] D. Xiu and J. S. Hesthaven, High-order collocation methods for differential

equations with random inputs, SIAM Journal on Scientific Computing, 27 (2005),

pp. 1118 – 1139.

[143] D. Xiu and G. E. Karniadakis, A new stochastic approach to transient heat con-

duction modeling with uncertainty, International Journal of Heat & Mass Transfer,

46 (2003), pp. 4681–4693.

[144] D. Xiu and J. Shen, Efficient stochastic Galerkin methods for random diffusion,

Journal of Computational Physics, 228 (2009), pp. 266–281.

[145] E. L. Yip, A note on the stability of solving a rank-p modification of a linear sys-

tem by the Sherman-Morrison-Woodbury formula, SIAM Journal on Scientific and

Statistical Computing, 7 (1986), pp. 507 – 513.

[146] N. Zabaras and B. Ganapathysubramanian, A scalable framework for the solu-

tion of stochastic inverse problems using a sparse grid collocation approach, Journal

of Computational Physics, 227 (2008), pp. 4697 – 4735.

149


	Introduction
	General overview
	Contributions and outline of the thesis
	Preliminaries and notation

	Numerical methods for PDEs with uncertain parameters
	Representation of random fields
	Monte Carlo FEM
	Stochastic collocation FEM
	Stochastic Galerkin FEM
	An unsteady PDE with random inputs

	Solution methods for the stochastic Galerkin system
	Existing iterative solvers
	A low-rank solution approach
	Existence of low-rank solution
	Preconditioning strategies
	Low-rank preconditioned CG method
	Truncation and matrix inner products

	Numerical experiments

	Diffusion optimal control problems with uncertain inputs
	Optimization under uncertainty
	A stochastic elliptic control problem
	Properties of the optimality system
	Preconditioning the steady-state KKT system
	Spectral analysis and implementation issues
	Low-rank solution to the steady-state problem

	A stochastic parabolic control problem
	Preconditioning the unsteady KKT system
	Spectral analysis and implementation issues
	Low-rank tensor solver for the unsteady problem

	Numerical experiments

	Unsteady Stokes-Brinkman optimal control problem with uncertain inputs
	Deterministic Brinkman model
	Brinkman optimal control problem with random data
	A fully discrete problem

	Preconditioning Stokes-Brinkman KKT system
	A block-triangular preconditioner
	Preconditioning the forward Stokes-Brinkman problem
	Spectral analysis

	A tensor train solver
	Alternating iterative methods
	Block alternating iteration
	Pressure elimination in the reduced model
	Practical implementation

	Numerical experiments
	Performance of the new block-triangular preconditioner
	Experiment with nt (Figure 5.3)
	Experiment with T (Figure 5.4)
	Experiment with  (Figure 5.5)
	Experiment with  (Figure 5.6)
	Experiment with 1 (Figure 5.7)
	Experiment with the tensor approximation tolerance (Figure 5.8)
	Experiment with n (Figure 5.9)
	Experiment with  (Figure 5.10)
	3D problem (Figure 5.11)


	Conclusions and outlook

