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Abstract

The interaction of quantum emitters with one-dimensional photon-like reservoirs induces strong and
long-range dissipative couplings that give rise to the emergence of the so-called decoherence free
subspaces (DFSs) which are decoupled from dissipation. When introducing weak perturbations on
the emitters, e.g., driving, the strong collective dissipation enforces an effective coherent evolution
within the DFS. In this work, we show explicitly how by introducing single-site resolved drivings, we
can use the effective dynamics within the DFS to design a universal set of one and two-qubit gates
within the DFS of an ensemble of two-level atom-like systems. Using Liouvillian perturbation theory
we calculate the scaling with the relevant figures of merit of the systems, such as the Purcell factor and
imperfect control of the drivings. Finally, we compare our results with previous proposals using
atomic A systems in leaky cavities.

1. Introduction

Recent theoretical and experimental work has shown that an attractive configuration to engineer strong
collective dissipation is given by one-dimensional (1D) photonic-like systems such as photonic crystal
waveguides [1-10], optical fibers [11—15], metal [16—19] and graphene plasmonic [20-23] waveguides or
superconducting circuits [24]. Their interaction with quantum emitters, usually referred to as waveguide QED,
offers interesting characteristics: (i) the density of modes of the waveguide is inversely proportional to the group
velocity 1 /v, (w,), and therefore is strongly enhanced when the atomic frequency is in a region of slow light, e.g.,
in photonic crystal waveguides close to a band edge. This enhancement implies achieving regions of a large decay
rate into the waveguide, I}p, compared to other decay channels, denoted by I'*, characterized through the
Purcell factor, P, = Tip/T'*; (ii) the 1D guided modes retain a small modal area <2, for propagation lengths
Lprop > A, (the wavelength of the 1D mode associated to the atomic frequency considered); (iii) the interaction
is strongly long-range, favoring individual adressing, and it can even be homogeneous if the positions of the
atom-like systems are chosen properly [25, 26], in contrast to 2D or 3D system. This collective dissipation leads
to the emergence of subradiant states that form the so-called decoherence-free subspace (DES) [27, 28].

Previous works have already considered how to use the DFS of two atoms trapped in leaky cavities to design
one and two-qubit gates using three-level A-type schemes [29-31], where two atomic hyperfine levels are used to
encode the qubit. In the light of the variety of systems available nowadays that allows to engineer robust one-
dimensional DFS [1-24], which may couple to different types of quantum emitters, e.g., atoms, quantum dots,
NV centers or superconducting qubits, it is interesting to revisit the problem and fill some of the gaps that have
not been considered so far, namely, (i) how to encode decoherence-free qubits using only two-level systems
(TLS) (as A-schemes might not be available for all platforms); (ii) extend the proposal to systems with more than
two atoms; (iii) analyze the scaling of the fidelities with the relevant figures of merit of the system, e.g., Pjp, that
in previous works [29-31] was mainly done through numerical analysis; (iv) discuss the consequences of
imperfect addressing on the fidelity of the gates.

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. (a) TLS (in blue) trapped along a one-dimensional waveguide, addressed by single-site resolved control fields. In green, we
depict the pairing that we will use to engineer the computational qubits.(b) Level structure of a TLS with a coherent driving with
amplitude (detuning) €2, (A,) with an additional level to which transitions can be driven off-resonantly to engineer the A, 07, term of
the Hamiltonian. (c) A three-level system in which the excited state is driven far off-resonantly can be made approximately equivalent
to a TLS with modified parameters as shown in the legend.

In this work, we show an implementation of universal quantum gates by using N TLS strongly coupled to 1D
photon-like reservoirs. First, we show that by pairing the TLS, we can define decoherence free-qubits in the
singlet (i.e., antisymmetric) states of each pair. The combination of these singlets form the so-called
computational subspace where we define our operations. Then, we explicitly show how to build single qubit (e.g.,
phase gates and Pauli-X gates) and two-qubit (e.g., controlled Z-gates) operations within the computational
subspace without coupling to the other states in the DFS. By using Liouvillian perturbation theory, we obtain
analytical expressions for the scaling of the fidelities of the operation (I — F o 1//P,p) and estimate the error
when increasing the number of atoms. Finally, we revisit the problem of the implementation with A systems in
leaky cavities [29—31] and show how both lead to a similar scaling.

The paper is divided as follows: in section 2, we introduce the set-up where we implement our proposal and
establish the general formalism that we use to characterize the operations. In section 3, we describe the logical
qubits and computational subspace and show how to build a set of universal quantum gates in the ideal case, that
is, without considering decay into other non-guided modes or deviations from quantum Zeno dynamics
[27,28,32]. Then, in sections 4 and 5, we analyze possible error sources, both analytically and numerically,
including spontaneous emission and imperfect addressing for the different gates of our proposal. Finally, in
section 6, we compare the scaling with the proposal of three-level atoms in leaky cavities already explored in the
literature [29-31].

2. General set-up and formalism

2.1. Set-up: waveguide QED
The general set-up that we consider is depicted in figure 1(a); namely N TLSs, {|g),, |}, }o=1..~> placed at
positions z, and coupled to a 1D field with bosonic annihilation operators a,. Due to the variety of
implementations available nowadays, we will keep the discussion as general as possible without making further
assumptions on the nature of the TLS and/or 1D waveguides.

The composite system is described by the Hamiltonian H = H, + Hj, where Hy, is the free term given by
H, = qu + Hfield, (using h=1)

N
qu = Wa ZUZ» Hfela = qua;aqa (1)
n=1 q

where w, is the TLS energy, o7; = |i), (jl, are atomic operators, and w, is the energy dispersion relation of the
waveguide modes. We consider a dipolar coupling of the form

Hi =) (0%E(z) + h.c), @

with E(z) = 3, ¢ 4 (aq el + a; e~1%),and g, the single photon coupling constant. When the system-reservoir
coupling is weak (Born approximation) and the characteristic timescale of the 1D-reservoir is much faster that
the one of the system (Markov approximation), the evolution of p, the reduced density matrix for the atom-like
system, can be described by a Markovian master equation of the form dp/dt = L[p][25, 26, 33, 34], with the
superoperator
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LIp] = Lm0 poy — poygoy) + h.c, (3)
where
Dy = %eiq(wa)lzn72m. (4)

[p is the rate of decay into waveguide modes, that we will assume to be larger than the rate of spontaneous
emission into all other modes, I'* < Tip, as this is the regime we are interested in. Moreover, as the propagation
lengths of the waveguide modes for many implementations arelong (L, > ),), the atoms can be separated
several wavelengths apart and can therefore be individually addressed as depicted in figure 1(a). In particular, we
assume to control the TLS state through the Hamiltonian (in the interaction picture with respect to H,)

1
Hy,s = ZE (Q,,O'Ze + h.c) + Ao, )

where €2, is the amplitude of the coherent driving (that we consider to be resonant, i.e., w = w,) which controls
the number of excitations of the system, and A, is a phase shift interaction term. The latter can be obtained, e.g.,
in atomic systems, by adding an off-resonant driving to another excited state |e’), as depicted in figure 1(b),
which results in an Stark shift A, = |Q?/(w, — wy). In general, the way of implementing €2, and A, will
depend on the particular system.

For completeness, it is worth mentioning that A systems can also be mapped to effective TLS’s by using an
off-resonant Raman transition as depicted in figure 1(c). By adiabatically eliminating the excited state |¢’), one
can formally project the dynamics to the two metastable states, {|g), |e) }, and find a similar light-matter
Hamiltonian as the one of equation (2), with the advantage that the effective TLS defined by {|g), |e) } will be
long-lived as they are encoded in metastable states. For example, by switching both €2, and €2, at the same time
with detuning 6 >[€2|, [€2,]) as depicted in figure 1(c), we can implement a coherent driving term with

effective amplitude 2 = —=. By switching ¢ in this case big enough one can neglect spontaneous emission

45

[P +19 P
46°
eliminate the photonic modes we also obtain an irreversible transition from |e) — |g), but witha
renormalization of the decay rates I}p — 1“1D|%|2 and T* — F*|%|2. Hence, the Purcell factor P,p = I}p/T*is
unchanged. In that situation our analysis is an alternative implementation to the one developed in [29-31].

processes as they will be proportional to T'* ( ) Moreover, if we switch only €2, and adiabatically

2.2. Decoherence-free subspaces

In the case of equidistant spacing at positions commensurate with the wavelength of the guided mode,

ie., z, = n2mw/q(w,), the effective interaction induced by the waveguide modes yields a pure Dicke model [35]
decay described by

LG
Lolp] = —=(SepSe = SegSeep) + hec (6)

where we have introduced the collective spin operator Sp, = Z,’:’: | O g The states satisfying Seel¥) = Oare
decoherence-free with respect to the collective dissipation Lp. These states can be easily described in the collective

spinbasis {|J, m;, oy) }, that is the eigenstates of the collective operators $* = 3>, S7and S, with
SZU) my, O[]> :](]+ 1)']: my, O(]>) (7(1)
Szl]) my, OZ]> = m]l]) my, OZ]>, (7b)

where ] = N/2, N/2 — 1,...andm; = —], —] + 1,...,]. Theindex ¢ is introduced because the states in the

collective spin basis are degenerate, with degeneracy givenby: oy = 1,..., (I}]) — ( ] Ij 1). Itis easy to observe

in this basis that the states |J, —], ay) are decoherence free, and therefore span the DFS.

. . N
The DFS has a dimension of ( N/2

states which are antisymmetric with the permutation of two atoms. Thus, an alternative way of characterizing
the DFS is to consider all possible (tensor products) of singlet states

[Amn) = (€)m @ 18w — I8)m @ Ie)n)/ﬁ, 8)

where m, n denote the atomic positions of the pair of atoms that form the singlet. This characterization makes it
more difficult to describe an orthonormal basis of the DES. However, we show in the next section that itis
convenient to define our computational subspace.

) (assuming even atom number N), and is composed of all the possible

3
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Table 1. Summary of the optimal parameter settings for the 7/8-gate T, the Pauli gates X, Y, Z, the Hada-
mard gate H, the SWAP-gate and the controlled- (— Z) gate. The subindex denotes on which logical qubit the

gate acts. The settings for the Rabi couplings and detunings are denoted by x,']-i = %(x; + x;). Tisthe dura-
tion for which the operation is applied to obtain the corresponding gate. In general Ap, is alarge detuning
(see equation (17)), that prevents transitions to other statesand €2, = 0 for n > 3.

Gate Qp b AL A AL, A5, T Apzs
T, 0 0 —Ar 0 0 0 & 0
Z 0 0 Ay 0 0 0 A% 0
X, Qx €R 0 0 0 Ap 0 Hox Ap
Y, Qy € iR 0 0 0 Ap 0 m Ap
ocH; —OpeR 0 V2 Qqu 0 Ap 0 ﬁ Ap
SWAP,, 0 0 0 As 0 As ALS Ap
C2Z)» 0 0 0 Ac 0 0 e Ap

2.3. Quantum Zeno dynamics using Liouvillian perturbation theory
We are interested in the regime where the collective dissipation induced by Lp, with characteristic timescale
I, dominates over any possible perturbation of the system, £ e, with characteristic timescale 7 >> T'jp.
Under these assumptions, any state outside of the DFS will only be virtually populated due to the strong
dissipation and therefore the dynamics will be restricted to the slow subspace, i.e., the DFS. Mathematically, we
formalize this intuitive picture by defining a projection superoperator P (with P? = P) satisfying: PLp=
LpP = 0 that projects out the fast dynamics yielding only the effective evolution in the slow subspace. It is then
possible to integrate out the fast dynamics (see appendix) arriving to an effective master equation given by

JPp

1
W = »Ceff []P),D] = (]P»Cpert]P> + PﬁpertQTQﬁpertP + 0(7_3/F12D))p (9)
—~D

This result to first order (left-hand term in the brackets) accounts for the ideal quantum Zeno dynamics
[27,28,32]. The second order in perturbation theory then yields correction terms mainly coming from slightly
populating the (super)radiant states.

In our case, there will be two types of perturbations, namely,

+ The Hamiltonian Lpe[-] = —i[His, -] to control the atomic state. This results to first order in an effective
Hamiltonian Hg = PH,,sP that couples only atomic states within the DFS. Here, we introduced the
projection onto the DFS for pure states P = >_|d;) (d], where the states |d;) form an orthonormal basis of the
DEFS. We use this effective laser coupling to control the atomic state of the ensemble. Besides, there is a second
order correction resulting from Hj,, that will be relevant for the analysis of the error probability of our
proposal as we show in section 4.

+ The contribution of the emission of photons to other radiative modes different from the guided mode of the
waveguide that we embed into a single decay rate, I'* and describe through the Liouvillian

1"*
Lpere[p]l = Lslp] = ZT(O’ZepUZg — pob, + h.c). (10)

n

This contribution is relevant for the error analysis of the gates in section 4.

3. Universal single- and two-qubit gates

In this section, we show how to engineer a set of universal gates, i.e., defined by any arbitrary single-qubit
rotation and a controlled gate [36], using the effective evolution Heg within the DFS that appear in our
waveguide QED setup. Firstly, due to the large degeneracy of the DFS, we need to define a set of logical qubits
that span our computational subspace. Then, we show how to choose {£2,,, A} such that they define a set of
universal one and two-qubit gates, namely, the phase and Pauli-X (and Y) gate and the controlled-(—2) gate. A
summary of the parameters for these gates can be found in table 1. For completeness, we also give the parameters
for other gates such as the Hadamard or SWAP gates. The former can be easily constructed because all single
qubit rotations can be performed and the latter is constructed through the same idea as the controlled-(—Z)
gate. Due to the degeneracy of the DFS, the challenge lies in defining operations within the computational
subspace, without populating the rest of the states within the DFS. In section 4, we revisit the problem and

4
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Figure 2. (a) Hilbert space of two TLS in the basis of non-DFS and DFS states with energies in the interaction picture with respect to
Hgp,. The blue arrows denote the transitions necessary for the Pauli-X gate. The triplet states |[E) = |ee) and |S) = |eg + ge)/~/2 are
not inside the DFS. (b) DFS of 4 TLS consists of 6 states that split into the 22-dimensional computational subspace and two states in the
auxiliary subspace. The blue (green) arrows denote the transitions necessary for the Pauli-X (and controlled-(—Z2)) gate.

consider the effect of spontaneous emission and second order corrections to the Zeno dynamics that ultimately
limit the fidelity of the operations.

3.1. Definition of logical qubits and computational subspace
Before finding the appropriate gates, we first need to define the logical qubits within the DFS. In principle,

assuming an even number of atoms N, the dimension of the DFS is ( NI\; 2) and therefore, it is possible to encode

log, ( NI\; 2) logical qubits. However, it is more useful to restrict the computational subspace to a smaller set of

states in order to achieve universal quantum computation. As the DFS is spanned by all (tensor) products of
singlet states over two atoms, it is natural to define the logical qubits as

10); = 1Gjj11) = 1g)i ® I)j+1> (11a)
)5 = 14541 = (e); @ Ig)ir1 — 18); @ le)j1)/V2. (11b)

Itis instructive to consider particular examples to see how the DFS and computational space look, i.e., for the
case of N = 2and N = 4 atoms.

Two atoms: In this case it is easy to plot the complete Hilbert space (including states outside DES) as it
consists only of 4 states as depicted in figure 2(a). The separation into DFS states and non-DFS states is easily
done in the familiar singlet-triplet basis. The DFS consists of two states: the one with two atoms in the ground
state and the singlet state, i.e., the antisymmetric combination of one single excited state. Thus, we can encode
one logical decoherence free qubit. The other two states are superradiant, i.e., they decay with an enhanced decay
rate of 21 p.

Four atoms: The complete Hilbert space consists of 2* = 16 states, and the dimension of the DFS, shown in

figure 2(b), is (;) = 6. As aforementioned, we want to use as computational subspace the tensor product of the

antisymmetric pairs described in equations (11a) and (11b) , which consists only of 22 = 4 states. This is why in
this situation we have to distinguish within the DFS between the computational space and the additional states

that must be either decoupled or used as auxiliary states. In particular, for N = 4 the auxiliary states are
|A12G34 + A34Gr2) /N3 and |A 3 Ay + Alados) /2.

For N > 4 atoms: In general (for N > 2)the dimension of the DFS, ( ) (for even N), is larger than the

N
N/2
one of the computational subspace, 2V /2 Thus, one can split the projection onto the DFES, P, into two
orthogonal projections, i.e. one into the computational subspace Prg and its orthogonal counterpart Qcs:

P = Pcs + Qs (12a)
Pes = > 10)5 (0] + 1)k (1], (12b)

j odd
such that the effective Hamiltonian can be written as follows
Hefr = PesHias Pos + (PesHias Qs + hoc) + QcsHias css (13)
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which separates the transitions within the computational (auxiliary) subspace PcsH Pcs [ QcsH Qcs] and the
coupling between these two subspaces: PcsH Qcs. This separation will be useful to argue that we can make
operations within the DFS even in the situations with N > 4 as we will show afterwards. For a general situation,
itis easy to show that by projecting H,,, into the computational subspace we obtain an effective evolution inside
the computational subspace given by:

Qi1
PcsHiasPes = Y (%IU? (o] + h.c.) + A1), (14)
j odd
where we used the following notation xf? = %(xi + x;) to abbreviate the combination of parameters.

3.2. Single-qubit gates
The goal is to find the {€2,,, A, } such that they define both the phase and Pauli-X (and Y) gates over the
computational subspace.

Two atoms: This is the simplest situation because the size of the computational space is the same as the one
of the DFS. In this case (see also [30]), a phase shift gate on the logical qubit (a|0)* + 5[1)F—
a0y + Be~¢|1)L)is obtained by applying 2, = 0, A}, = 0foratime T = Aifz' Pauli-X rotations (plus a

™
V2R,
should also set €2}, = A}, = 0aswill be discussed in section 4. The Pauli Y can be obtained as the X just by using
i), € R,sothat we will not discuss it further.

Four atoms: In this case, the way to do phase gates and rotations is the same as for the two atom case.
However, in the case of the rotations, states within the computational subspace couple to auxiliary states for
more than two atoms. In particular, the state |10)" is coupled to the auxiliary state [A; 34, 4 + A 4A;3)/~/2 for
), = 0asshown in figure 2. However, this transition can be made far off-resonance by setting | AJ,| > |Q;].

152 F that will be considered when calculating the fidelity of the

T
34

phase) are obtained for 0 = 2, € R, Af, = 0Oandtime T = . Note that to avoid errors in both cases, one

This results in an additional error rate
operation”.

For N > 4 atoms: Again in the case of rotations, transitions to states outside the computational subspace in
theideal case (2, = A, = 0)are possible when €, = 0, thatis when

QcsHPcs = QcsHetf Pes = 0, (15)
where we use that PesP = Pcs. However, the transitions to these states can be made far off-resonant by setting
Q,=0,and |Q;] < A, = Ap < Lp, n > 3, (16)

because the auxiliary states inside the DFS that the computational subspace couples to extend over more than
two atoms’ and can therefore be detuned as

QcsHOcs ~ ApQcs, (17)

while keeping the desired transition driven by 2, as resonant. One has to make sure that the Stark-shift
introduced by this off-resonant transition is small and possibly correct the detuning that it will induce by
choosing appropriately the applied laser frequency wy .

3.3. Controlled Pauli-Z
For universal quantum computation, a controlled two-qubit gate is required. In this case, the minimal system to
encode the operation is the N = 4 atom case, where two decoherence-free logical qubits can be obtained.

Four atoms: In order to build the controlled-Z gate, we use one of the auxiliary states,
|A12Gs,4 + A3 4G12) /2. Now, itis possible to drive only the transition between this state and |10)* without
affecting the other states within the DFS by the choice 2, = 0, A; = Ay = 0and A} = — A, = 0. A7-pulse
on the state | 10) leads to a relative phase of —1 on this state, i.e.

110} 5 — — [10){ 5, (18)

for %AI_ZT = 27 without affecting the other states of the computational subspace. Hence, we have defined aa
controlled controlled-(—Z2) gate which is equivalent up to single qubit unitaries toa CNOT-gate [36].

For N > 4 atoms: One can restrict the dynamics to the subspace of four atoms in a similar way as for the
single-qubit rotations. With the choice of

In fact, this argument can be reversed to excite the auxiliary state from the computational state | 10)" with the choice A, = 0
and Af, > Q.

The auxiliary states necessarily extend over more than two atoms, because it is orthogonal to the logical qubits and therefore contains
excited (superradiant) triplet states in the ‘pairing’ of the atoms. An antisymmetric combination of such states can be in the DFS, but not in
the computational subspace, and necessarily extends over multiple atom ‘pairs’.
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Figure 3. Infidelities of single and two qubit gates for N = 4 atoms. (a)—(d) Infidelity of a /2 phase shift on the first logical qubit of
four atoms on the state |10 + 00)% /+/2 for (a) A, = 0and Af, = 0,(b) A, = 0.1A} and A, = 0,(c) A, = Ahand A, = 0,
(d) AL = Afzand A, = 20A};. (e) Infidelity of a single qubit Pauli-X gate on the first qubit of four atoms on the state |00)" for
A}, = 10Q,. (f) Infidelity of the controlled- (— Z) gate for four atoms (2 qubits) acting on the state [10 + 11)*/+/2. The black lines in
(d)—(f) represent the scaling of the coupling strength Af;, Q2 and Ay, respectively, for the minimal infidelity with P, /2.

Q,=0,and |[AL| < A, =Ap < Iip,n > 5, (19)

transitions to states over more than four atoms are far off-resonant. As before, this adds an error rate
| Ap P
A

proportional to -=2— with a proportionality factor depending on the coupling strength after the projection onto
D

the DFS.

4. Error analysis: spontaneous emission and imperfect addressing

So far we have considered only the interaction within the ideal quantum Zeno dynamics, where the only possible
sources of error were due to the larger dimension of the DFS with respect to the computational space. In this
section, we take into account other sources of errors that will be present in most of the implementations, namely,
(i) errors coming from spontaneous emission to other modes, with rate I'*, included through L4 [p]asin
equation (10); (ii) errors from deviations from the Zeno Hamiltonian, attributed to photons emitted to the
waveguide from the small population present in the states outside the DFS; (iii) errors that may arise from an
imperfect control of the laser parameters {€2,;, A,}. In what follows, we assume to work in a regime with

Pip > 1, such that the following parameter hierarchy can be satisfied: I'* < ||Heg|| < Iip.

This section discusses, for each gate separately, the numerical results and the analytical approximation of the
fidelity Fbetween the theoretical final (goal) state, |1)¢), and the real atomic state, p, obtained after the gate
operation, i.e., F = (1¢|p|t¢)!/%. The numerical results are obtained by solving the master equation in second
order perturbation theory (see equation (9)). We have checked numerically that this is a good approximation in
the parameter ranges considered throughout this manuscript. To obtain the analytical approximations, we used
the effective non-Hermitian Hamiltonian that can be obtained from the second order master equation (see
appendix).

4.1. Phase shift gate

For the phase shift gate we must set §2,, = Oforallnand A, = Ap > A, forall n > 3 toavoid errors from
transitions to auxiliary states. By choosing A} = A,,1.e., A}, = 0, no errors (from second order perturbation
theory) occur because the computational states do not couple to the radiant ones. However, it is instructive to
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Figure 4. Dependence of infidelity on off-resonance ratio ra = |AJ,/Ap|for 7/2 phase shift on first qubit with A, = Af. (a)
Infidelity varied over the coupling strength A for Py, = 10%. The results correspond to ra = 5 (black), ra = 10 (red)and ra = 15
(blue). (b) Minimal infidelity depending on the Purcell factor P;p. The numerical results (points) corresponding to the values as in (a)

fit well with the approximation (line) of (1 — F)pin o< Py 24 (ra), where the C (ra) is anumber which does not depend on Pyp,.

consider the errors that appear for situations where A}, = 0, e.g, because of imperfect addressing, as this yields a
useful understanding about how to deal with situations where the second order correction cannot be avoided.

Two atoms: For the simplest situation the additional errors due to imperfect addressing, i.e., A, = 0, enter
atarate proportional to | Ap;|* /Tip through the same error channel as the spontaneous emission into all other
modes with rate ['*, that is, via the quantum jump operator |0)" (1|. Then, the infidelity, i.e., 1 — F,fora m/2
phase shift on the normalized state |0)- + (|1)' can be approximated by

2 —12
1o T (p 41000 ) (20)
4 Af Iip

One observes, that in the ideal case, A}, = 0, the infidelity can be arbitrarily close to 0 for large Aj;. If A, is
not negligible, the transition strength A, cannot be chosen arbitrarily large to decrease the infidelity. For

312
example, in the worst case scenario where A, = A, this results in an optimal infidelity scaling MPIBI /2

2
for A, = A, = %\/ MTp.

Four atoms: A similar behavior can be obtained by choosing A, = 0 such that the infidelity is arbitrarily
close to 0 (see figure 3(a)). Slight deviations from this ideal value do not change this behavior drastically (see
figure 3(b)). However, when A, is not negligible, it leads to two types of errors that decrease the fidelity (see
figure 3(c)): (i) virtual population of non-DFS states, which leads to an error rate proportional to | A}, |* /Ip as
for two atoms; and (ii) transitions to auxiliary states, in particular |A; , G5 4 + A3 4G1,)/~/2. Thelatter can be
made far off-resonance by applying a detuning on the second qubit such that |A;| < |A3,] < Tip. Withalarge
off-resonance ratio ra = |A3,/Ap| > 1, onestill achieves a small infidelity (see figure 3(d)).

As shown in figures 3(a)—(d), the detuning of the third and fourth atom is important when A, cannot be
neglected. As expected, the infidelity decreases by increasing the off-resonance ratio ra (see figure 4(a)). For large
enough 7, the infidelity can be analytically approximated by

TA— OO * +
1-F>5 1( P+ + , 180 ) 21)
8 LIAL Iip

This leads to a minimal infidelity oc Py} /2 (see figure 4(b)) for Af, = A, = (T*T1p/2.

4.2. Pauli-X gate

For rotations around the x-axis, weset Ay = A, = 0,and A, = Ap > Qp, forall n > 3 to avoid transitions to
auxiliary states. In contrast to the phase shift gate, even in the ideal case, )5, = 0, errors will occur because €2;,
couples to state outside the DFS, as shown schematically in figure 2(a) for the two atom case. Moreover, we also
include a short discussion on deviations due to imperfect control on 4\ 3, = 0and .

Two atoms: Using ), = 0, the error rate from deviations from the Zeno Hamiltonian enters in the same
way as from the spontaneous emission into all other modes, that is via the quantum jump operator |0); (1|. The
corresponding decay rate is (|A,> + |57 /2)/Tip. The error from €2}, = 0 enters differently, but can still be
included in the estimation of the infidelity. Neglecting the errors from A, = 0, the infidelity for a Pauli-X gate
(%|Ql’2| T = w/2) onstate |1); can be approximated by

8
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Figure 5. (a) Numerical calculation of infidelity of Pauli-X gate on the first qubit on the state |00)* for N = 4 atoms with AJ; = 10Q;,
and P;p = 10* for different values of the off-resonance ratio, thatis r, = 2 (black), ro = 5 (red) and r, = 10 (blue). (b) Scaling of the
minimal infidelity for the same values as in (a) for different Purcell factors, thatis P,p = 103 (black), P,p = 10* (red) and P,p = 103
(blue).
1 7 Q2 Ap|? QL7
1| - Fr L _ (I‘* n 1€2,, n 1A i 1$2,5] = . (22)
2 V2195 2Lp Lip 2Lp
In the ideal case of perfect control of addressing parameters, i.e., Aj, = €2}, = 0, the minimal value of the
infidelity, proportional to Pﬁ)l/ ?,isobtained at |Q},| = /2I"*I}p. Note, thateven for {2, = Q;5and A, = 0,

the infidelity is still proportional to P,/ 2.

Four atoms: In this case, apart from the transitions out of the DFS, €7 also couples states inside the DFS, but
out of the computational space (see figure 2) such that we need to detune these processes to achieve the rotations.
As already explained in the previous section, this can be done by setting |Q)};| < |A3;] < Tip. As expected, the
infidelity decreases when increasing the off-resonance ratio r, = |AJ,/€21,| (see figure 5). For large enough
ratios r (=4), the infidelity can be approximated by

1 - Fae+ =, (23)
sl

where the constant & = (1) can be obtained through a numerical fit. The infidelity of a 7 /2-pulse on the state
|00)L is plotted in figure 3(e), whereas the minimal infidelity is shown to scale with P,;}/? in figure 6.

4.3. Controlled Pauli-Z
For the controlled-(—2) gate, weset 2, = O forall n, Aj; = 0and A, = Ap > |Ap|foralln > 5.As A},
couples [10)L and |11)! also to states outside the DFS, the fidelity shows a similar behavior as the Pauli-X gate (see
figure 3(f) for example with N = 4), i.e., there is an optimal Ay, that sets the maximum fidelity.

The infidelity can be approximated similarly to equation (20), i.e., after a controlled Pauli-Z gate

(AL|T/2 = m)actingon thestate (|10 + 11)%)/+/2, by

A
1Fz737r_(F*+z| 12'), (24)
242145 4 Tip
which attains its minimal value, 37//2P,p, for |A};| = /4T*Tip/3. As for the single qubit gates, the infidelity

scales with P}/2, shown in blue circles in figure 6.

4.4. Summary of analysis

Summing up, from the explicit analysis with two and four TLS, we have shown both numerically and analytically
that both the single-qubit rotations and the controlled (—Z) gate show a scaling of the infidelity as Pj}/? (see
figure 6). Only for small values of the Purcell factor P;p does the minimal infidelity deviate slightly from the
theoretical analysis because the hierarchy I'™* < Q7,, A, < Iipisno longer well satisfied.

Moreover, in the N = 4 case, we also showed how to deal with the errors that come from the larger size of the
DFS with respect to the computational one. For single qubit rotations in a system of four emitters, the choice
1051, 1ALl < |AY,l < Tp ensures that the dynamics can be restricted to two atoms. In the extreme case where
|A7,| > Tip the perturbation analysis is no longer valid. However, in this case the levels are so strongly shifted,
that they are decoupled from the collective dissipation, so that the system can be described as a system of only
two emitters. The same is true, if the emitters can be completely decoupled from the waveguide by other means
available in a particular implementation. For more atoms the same arguments hold as the second order
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Figure 6. Scaling behavior of the minimal infidelity for the Pauli-X (red squares) and controlled- (—Z) gates (blue circles) with the
same parameters as in figures 3(e) and (f). The scaling fits well with the scaling Pp}/? (black line) for large enough values of the Purcell

factor Pyp. For the phase shift gate the infidelity is arbitrarily close to 0 in the ideal case.

correction introduced from deviations from Zeno dynamics satisfies

1€ pert|
b

1D

||P£pertQLQ£perthH < (25)
Lp
where L. is the perturbation to the purely collective decay and ||-|| denotes the maximum norm. This is
independent of the atom number N, because || L;,er¢ || does not increase with the number of atoms for one and
two-qubit gates. So there is an upper limit on the second order correction, which leads to the Py /2_scaling.
Finally, the error rate stemming from spontaneous emission of the logical states |1); = |A) is proportional to the
number of excited states in the system. Therefore, the gate fidelity does depend on the full state, and can be upper
bounded by considering the worst-case state, that is the state with |1); in all other computational qubits, which
indeed will depend on the atom number.

5. Further error analysis: finite propagation length of 1D modes

For completeness, it is interesting to consider another source of error that may be very relevant for some
implementations with short propagation lengths, e.g., plasmonic waveguides [ 16—19]. The finite propagation
length enters into the decay matrix [18] as

T — 1D gtz zule ozl Loy — 1D g—xin—m| 26)

' 2
ifthe atoms are equidistantly placed a multiple of a wavelength apart, d and where we introduced x = d/L op as

the perturbation parameter. For simplicity, we restrict our discussion to the case with N = 2, where analytical
expressions can be obtained. In that situation, the finite propagation length only leads to the replacements

I* = T* + Tip(1 — e) = I + Tipx, (27)
2lip = Iip2 = (A —e™) = Lip(2 — %), (28)
when x < 1. Therefore, the scaling of the infidelity is then given by

*
|- Fo | EDX o pio ooy (29)
Lip(2 —x) 2

which scalesas 1/ \/m aslongas xP|p < L,thatis, that the distance between neighboring emitters satisfies
d=lz, — zy11| < Lprop P, For more atoms, it is difficult to obtain the analytical scaling as the superradiant
state is not an eigenstate of the modified decay matrix and thus the DFS states change as well. However, because
the finite propagation length entersas e~ [en=zalLoor s 1 — |z — 24l / Lprop it can be treated as a perturbation to
the Liouvillian of equation (6) that will be kept small aslongas Nd < Lyop, [37].

Depending on the particular implementation other errors have to be considered, e.g., for atoms trapped
close to a dielectric waveguide the separation condition |z,, — z,,| = n27/q(w,) might not be satisfied exactly or
because its position is changing over time due to atomic motion. However, its main effect can be approximated
as an effective increase of I'* that is small with current state of the art parameters for photonic crystal
waveguides, as discussed in [37].
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6. Comparison to three-level atoms

The use of the DFS of atomic A-systems in cavity QED setups has already been considered in detail in the
literature [29—31]. In that case, a three-level system with a A-type level structure is used to define a logical qubit
in the two metastable states |0) and |1). The excited state |e) decays to one of the metastable states, say |1). When
two atoms are inside the cavity an additional decoherence-free state emerges, i.e., (|1e) — |el))/~/2, that can be
used to define a CNOT gate in the so-called bad-cavity limit, where the atom-cavity coupling (g) is smaller than
the cavity losses , but the decay into the cavity (g2/ k) is still bigger than into the rest of the decay channels (I'*).
The ratio between the good/bad processes is the so-called cooperativity C = Hg—;, which therefore plays a similar
role as Pp in our proposal. The errors in the CNOT gate come both from I'*, and from deviations from the
Zeno Hamiltonian, giving rise to an optimal infidelity proportional to 1,/+/C, which is similar to the one that we
found using only TLSs. As argued in [38] the scaling of the infidelity with the inverse square root of the Purcell
factor (or cooperativity for cavity QED setups) is typical for proposals using controlled unitary dynamics. It
originates from the trade-off between cancelling errors from spontaneous emitted photons and the ones coming
from cavity/waveguide emission, which lead to the optimal scaling with P}/, There have been proposed ways
with atomic A systems for overcoming this error scaling either by using dissipative state preparation [39] or
heralding measurements [40, 41]. An interesting perspective of our proposal is how to extrapolate these ideas to
the two-level emitter situation to overcome the Py}/? scaling.

We also note that using TLS the computational qubits have a finite lifetime compared to the
implementations using atomic metastable states. However, (i) there are situations in which one would like to use
gates to build a given atomic state within the DFS in order to map it immediately into a photonic state in the
waveguide [37] such that long lifetimes are not required; (ii) some of the implementations have extremely long-
lived qubits, e.g. superconducting systems [24]. (iii) Moreover, if A schemes are available, as in atoms, we can
also implement our single and two-qubit gates with metastable states with the equivalence shown in figure 1(c).
In that case, our proposal just constitutes a complementary way of doing universal quantum computation
within DFS.

7. Conclusion and outlook

Summing up, we have shown how to implement a universal set of quantum gates using the DFSs appearing
within TLS interacting with 1D photon-like reservoirs. We have given an explicit construction of single and two-
qubit gates for logical qubits defined in the DFS and analyzed possible sources of errors such as spontaneous
emission to other modes, coupling to states outside of the DFS, imperfect addressing and finite propagation
lengths. Through both analytical and numerical analysis, we have shown the fidelities of the gates scale generally
with (1 — F)pin o< Pﬁ)l/ 2, analogous to the one using A schemes [29—31]. Thus, this work widens up the
zoology of quantum emitters that can be used to implement quantum gates within waveguide QED setups. An
interesting outlook for the application of these gates is to use them for generating entangled states of many
emitters within the DFS, which afterwards can be mapped into waveguide multiphoton states in a very efficient
way [37,41,42].
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Appendix. Second order Liouvillian perturbation theory

When the system evolves under a very strong collective decay, the driving term Hy,, and the decay into other bath
modes may be treated as a perturbation to the collective dissipation given by L, [43, 44]. In order to describe
these perturbations as generally as possible, we denote them by a Liouvillian £ ey, and assume that it hasa
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relevant timescale 7. If the timescale satisfies, 7 > 1/I}p, the dynamics of the atomic system can be formally
projected into the DFS of the Liovillian Lp, by using a projection operator P satistying: PLp = LpP = 0. This
projector can be found via the right (left) eigenoperators p;; (x;;) corresponding to the eigenvalue 0 of Lp, which
are combined to

Pp = Zpij <Xij’ ) (A1)
i,j

where (A, B) = Tr(AB) is the inner product on the space of density matrices. The orthogonal eigenoperators
are indexed such that (x;;, ;) = Gik6j1 = (p; py)- Wealso define the orthogonal partof P, Q = 1 — P. The
left eigenoperators can be derived from the right ones by

Xij = P + O Seg 04 See + 5 Seg Seg 03 Sge Sget -+ > (A.2)

where the coefficients ag” are determined by (x;;, Lpp) = 0. With this choice, the projector is independent of
the choice of p;; and hence, one can choose p; = |d;) (4|, where |d;) are orthonormal states from the DFS. Using

these projectors, one can formally integrate out the fast dynamics outside the DES, described by Qp:

d
EQP = Q (ED + Epert)(@p + Qﬁpertpp) (A.3a)

Qp(t) = fo dr exp QL + Lper) Q(t — T)1QLperPp(7)
~ Q(_‘Clsl)(@ﬁpertpp + 0(7_—2/1-\12D)’ (A3b)

where the last approximation is obtained by (i) applying a Markov approximation p (7) =~ p(t) in the integral;
(i) neglecting terms of higher order in 7~!/T}p; and (iii) extending the integral to infinity.
Plugging this into the equation for the DFS-part of the state, that is

d
Epp = ]P)ﬁpert]P)p + ]P‘Cpert@p = ACeff]Pp’ (A4)

yields an effective Liouvillian of the atomic system within the DFS given (up to second order in 77!/I}p) by

Lot = PLoerP + Mme%@ﬁme +O(r3/Ty). (A5)
— ~D

The first order of this Liouvillian, i.e., ]P’meIP, is the effective evolution induced within the DFS induced by
the strong collective dissipation. This is commonly referred to as the ideal quantum Zeno dynamics [27, 28, 32]
asit can be understood as the effective dynamics enforced by the continuous monitoring of the atomic system
due to the interaction of the waveguide modes. The second order term stems from slight population of (super)
radiant modes that generates some corrections on the ideal quantum Zeno dynamics.

It is instructive to write the effective master equation derived in equation (A.4) in a form that separates the
non-hermitian evolution and the contribution coming from quantum jump processes. For our particular
situation, considering the perturbation of L, and Hy,, as defined in the main text, it can be shown after some
algebra that

p = —ilHet> p] + PLxp + P(o1p0] + 02p0]) — 0jo1p — poj oy, (A.6)

where H¢ = PHy, P and where we used the projection P [ Q] for pure states inside [outside] of the DFS as
—1
defined in the main text. Furthermore, 0, = Q(%S*S’) OH,,'P, 0, = QH,,P can be obtained by noting

that the second order term reduces to simple matrix multiplication in the corresponding subspace because
PPAQ = 0 = PQAP for all operators A°. Although this does not look like a Liouvillian in Lindblad form, it is
trace-preserving, as

TrlPA = ) Trp; (x;» A) = > (Xi» A) = TrA, (A7)

ij i
because )_; x;; = 1. From equation (A.6), it is straightforward to define a non-Hermitian Hamiltonian from the
above master equation, that s

I .
Hy = P(Heff ~ i Y OO — 10501)P, (A.8)
n
which describes the no-jump evolution, and that we use to get the analytical estimations of the infidelity.

6 e . . .
We want to note that if it was possible to detect the photons emitted to the waveguide and post-select, the term P(0; poj + 0, po,) would
vanish and the system would be described by pure states except for the spontaneous emission into non-guided modes.
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