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Abstract
The interaction of quantum emitters with one-dimensional photon-like reservoirs induces strong and
long-range dissipative couplings that give rise to the emergence of the so-called decoherence free
subspaces (DFSs)which are decoupled fromdissipation.When introducingweak perturbations on
the emitters, e.g., driving, the strong collective dissipation enforces an effective coherent evolution
within theDFS. In this work, we show explicitly how by introducing single-site resolved drivings, we
can use the effective dynamics within theDFS to design a universal set of one and two-qubit gates
within theDFS of an ensemble of two-level atom-like systems. Using Liouvillian perturbation theory
we calculate the scalingwith the relevant figures ofmerit of the systems, such as the Purcell factor and
imperfect control of the drivings. Finally, we compare our results with previous proposals using
atomicΛ systems in leaky cavities.

1. Introduction

Recent theoretical and experimental work has shown that an attractive configuration to engineer strong
collective dissipation is given by one-dimensional (1D) photonic-like systems such as photonic crystal
waveguides [1–10], opticalfibers [11–15], metal [16–19] and graphene plasmonic [20–23]waveguides or
superconducting circuits [24]. Their interactionwith quantum emitters, usually referred to aswaveguideQED,
offers interesting characteristics: (i) the density ofmodes of thewaveguide is inversely proportional to the group
velocity ( )wv1 g a , and therefore is strongly enhancedwhen the atomic frequency is in a region of slow light, e.g.,
in photonic crystal waveguides close to a band edge. This enhancement implies achieving regions of a large decay
rate into thewaveguide, G1D, compared to other decay channels, denoted by *G , characterized through the
Purcell factor, *= G GP ;1D 1D (ii) the 1D guidedmodes retain a smallmodal areala

2, for propagation lengths
 lLprop a (thewavelength of the 1Dmode associated to the atomic frequency considered); (iii) the interaction

is strongly long-range, favoring individual adressing, and it can even be homogeneous if the positions of the
atom-like systems are chosen properly [25, 26], in contrast to 2Dor 3D system. This collective dissipation leads
to the emergence of subradiant states that form the so-called decoherence-free subspace (DFS) [27, 28].

Previous works have already considered how to use theDFS of two atoms trapped in leaky cavities to design
one and two-qubit gates using three-levelΛ-type schemes [29–31], where two atomic hyperfine levels are used to
encode the qubit. In the light of the variety of systems available nowadays that allows to engineer robust one-
dimensional DFS [1–24], whichmay couple to different types of quantum emitters, e.g., atoms, quantumdots,
NV centers or superconducting qubits, it is interesting to revisit the problem and fill some of the gaps that have
not been considered so far, namely, (i) how to encode decoherence-free qubits using only two-level systems
(TLS) (asΛ-schemesmight not be available for all platforms); (ii) extend the proposal to systemswithmore than
two atoms; (iii) analyze the scaling of the fidelities with the relevant figures ofmerit of the system, e.g., P1D, that
in previousworks [29–31]wasmainly done through numerical analysis; (iv)discuss the consequences of
imperfect addressing on thefidelity of the gates.

OPEN ACCESS

RECEIVED

17December 2015

REVISED

29March 2016

ACCEPTED FOR PUBLICATION

30March 2016

PUBLISHED

28April 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/18/4/043041
mailto:alejandro.gonzalez-tudela@mpq.mpg.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/4/043041&domain=pdf&date_stamp=2016-04-28
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/4/043041&domain=pdf&date_stamp=2016-04-28
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


In this work, we show an implementation of universal quantumgates by usingNTLS strongly coupled to 1D
photon-like reservoirs. First, we show that by pairing the TLS, we can define decoherence free-qubits in the
singlet (i.e., antisymmetric) states of each pair. The combination of these singlets form the so-called
computational subspacewherewe define our operations. Then, we explicitly showhow to build single qubit (e.g.,
phase gates and Pauli-X gates) and two-qubit (e.g., controlledZ-gates) operationswithin the computational
subspacewithout coupling to the other states in theDFS. By using Liouvillian perturbation theory, we obtain
analytical expressions for the scaling of the fidelities of the operation ( - µF P1 1 1D ) and estimate the error
when increasing the number of atoms. Finally, we revisit the problemof the implementationwithΛ systems in
leaky cavities [29–31] and showhowboth lead to a similar scaling.

The paper is divided as follows: in section 2, we introduce the set-upwherewe implement our proposal and
establish the general formalism that we use to characterize the operations. In section 3, we describe the logical
qubits and computational subspace and showhow to build a set of universal quantumgates in the ideal case, that
is, without considering decay into other non-guidedmodes or deviations fromquantumZeno dynamics
[27, 28, 32]. Then, in sections 4 and 5, we analyze possible error sources, both analytically and numerically,
including spontaneous emission and imperfect addressing for the different gates of our proposal. Finally, in
section 6, we compare the scalingwith the proposal of three-level atoms in leaky cavities already explored in the
literature [29–31].

2.General set-up and formalism

2.1. Set-up: waveguideQED
The general set-up thatwe consider is depicted infigure 1(a); namelyNTLSs, {∣ ∣ }ñ ñ =g e,n n n N1 ... , placed at
positions zn and coupled to a 1D fieldwith bosonic annihilation operators aq. Due to the variety of
implementations available nowadays, wewill keep the discussion as general as possible withoutmaking further
assumptions on the nature of the TLS and/or 1Dwaveguides.

The composite system is described by theHamiltonian = +H H H0 I, whereH0 is the free term given by
= +H H H0 qb field, (using  = 1)

( )†å åw s w= =
=

H H a a, , 1
n

N

ee
n

q
q q qqb a

1
field

where wa is the TLS energy, ∣ ∣s = ñ ái jij
n

n n are atomic operators, and wq is the energy dispersion relation of the
waveguidemodes.We consider a dipolar coupling of the form

( ( ) ) ( )å s= +H E z h.c. , 2
n

ge
n

nI

with ( ) ( )†= å + -E z g a ae eq q q
qz

q
qzi i , and gq the single photon coupling constant.When the system-reservoir

coupling is weak (Born approximation) and the characteristic timescale of the 1D-reservoir ismuch faster that
the one of the system (Markov approximation), the evolution of ρ, the reduced densitymatrix for the atom-like
system, can be described by aMarkovianmaster equation of the form [ ]r r=td d [25, 26, 33, 34], with the
superoperator

Figure 1. (a)TLS (in blue) trapped along a one-dimensional waveguide, addressed by single-site resolved controlfields. In green, we
depict the pairing that wewill use to engineer the computational qubits.(b) Level structure of a TLSwith a coherent drivingwith
amplitude (detuning) Wn (Dn)with an additional level towhich transitions can be driven off-resonantly to engineer the sDn ee

n term of
theHamiltonian. (c)A three-level system inwhich the excited state is driven far off-resonantly can bemade approximately equivalent
to a TLSwithmodified parameters as shown in the legend.
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[ ] ( ) ( ) år s rs rs s= G - + h.c., 3
n m

n m ge
n

eg
m

eg
m

ge
n

,
,

where

( )( ) ∣ ∣G =
G w -

2
e . 4n m

q z z
,

1D i n ma

G1D is the rate of decay intowaveguidemodes, that wewill assume to be larger than the rate of spontaneous
emission into all othermodes, *G G1D, as this is the regimewe are interested in.Moreover, as the propagation
lengths of thewaveguidemodes formany implementations are long (  lLp a), the atoms can be separated
several wavelengths apart and can therefore be individually addressed as depicted infigure 1(a). In particular, we
assume to control the TLS state through theHamiltonian (in the interaction picturewith respect toHqb)

( ) ( )å s s= W + + DH
1

2
h.c. , 5

n
n ge

n
n ee

n
las

where Wn is the amplitude of the coherent driving (that we consider to be resonant, i.e., w w=L a)which controls
the number of excitations of the system, andDn is a phase shift interaction term. The latter can be obtained, e.g.,
in atomic systems, by adding an off-resonant driving to another excited state ∣ ¢ñe , as depicted infigure 1(b),
which results in an Stark shift ∣ ∣ ( )w wD = W¢ - ¢n

2
a L . In general, theway of implementing Wn andDn will

depend on the particular system.
For completeness, it is worthmentioning thatΛ systems can also bemapped to effective TLS’s by using an

off-resonant Raman transition as depicted infigure 1(c). By adiabatically eliminating the excited state ∣ ¢ñe , one
can formally project the dynamics to the twometastable states, {∣ ∣ }ñ ñg e, , andfind a similar light–matter
Hamiltonian as the one of equation (2), with the advantage that the effective TLS defined by {∣ ∣ }ñ ñg e, will be
long-lived as they are encoded inmetastable states. For example, by switching both Wg and We at the same time
with detuning ( ∣ ∣ ∣ ∣)d W W,g e as depicted infigure 1(c), we can implement a coherent driving termwith

effective amplitude
*

W =
d

W W

4

g e . By switching δ in this case big enough one can neglect spontaneous emission

processes as theywill be proportional to ( )∣ ∣ ∣ ∣
*G

d

W + W

4

e g
2 2

2 .Moreover, if we switch only We and adiabatically

eliminate the photonicmodes we also obtain an irreversible transition from ∣ ∣ñ  ñe g , but with a

renormalization of the decay rates ∣ ∣G  G
d

W
1D 1D 2

2e and ∣ ∣* *G  G
d

W
2

2e . Hence, the Purcell factor *= G GP1D 1D is

unchanged. In that situation our analysis is an alternative implementation to the one developed in [29–31].

2.2.Decoherence-free subspaces
In the case of equidistant spacing at positions commensurate with thewavelength of the guidedmode,
i.e., ( )p w=z n q2n a , the effective interaction induced by thewaveguidemodes yields a pureDickemodel [35]
decay described by

[ ] ( ) ( ) r r r=
G

- +S S S S
2

h.c., 6ge eg eg geD
1D

wherewe have introduced the collective spin operator s= å =Sge n
N

ge
n

1 . The states satisfying ∣Yñ =S 0ge are
decoherence-freewith respect to the collective dissipation D. These states can be easily described in the collective
spin basis {∣ }a ñJ m, ,J J , that is the eigenstates of the collective operators = å =S Si x y z i

2
, .

2 and Szwith

∣ ( )∣ ( )a añ = + ñS J m J J J m a, , 1 , , , 7J J J J
2

∣ ∣ ( )a añ = ñS J m m J m b, , , , , 7z J J J J J

where = - ¼ = - - + ¼J N N m J J J2, 2 1, and , 1, ,J . The index aJ is introduced because the states in the

collective spin basis are degenerate, with degeneracy given by: a = ¼ - -
⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

N
J

N
J

1, ,
1J . It is easy to observe

in this basis that the states ∣ a- ñJ J, , J are decoherence free, and therefore span theDFS.

TheDFS has a dimension of ⎜ ⎟⎛
⎝

⎞
⎠

N
N 2

(assuming even atomnumberN), and is composed of all the possible

states which are antisymmetric with the permutation of two atoms. Thus, an alternative way of characterizing
theDFS is to consider all possible (tensor products) of singlet states

∣ (∣ ∣ ∣ ∣ ) ( )ñ = ñ Ä ñ - ñ Ä ñA e g g e 2 , 8m n m n m n,

where m n, denote the atomic positions of the pair of atoms that form the singlet. This characterizationmakes it
more difficult to describe an orthonormal basis of theDFS.However, we show in the next section that it is
convenient to define our computational subspace.
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2.3.QuantumZeno dynamics using Liouvillian perturbation theory
Weare interested in the regimewhere the collective dissipation induced by D, with characteristic timescale
G-

1D
1, dominates over any possible perturbation of the system, pert, with characteristic timescale t G-

1D
1.

Under these assumptions, any state outside of theDFSwill only be virtually populated due to the strong
dissipation and therefore the dynamics will be restricted to the slow subspace, i.e., theDFS.Mathematically, we
formalize this intuitive picture by defining a projection superoperator  (with  =2 ) satisfying:  =D

  = 0D that projects out the fast dynamics yielding only the effective evolution in the slow subspace. It is then
possible to integrate out the fast dynamics (see appendix) arriving to an effectivemaster equation given by

[ ] ( ) ( )  



       r

r t r
¶
¶

= = +
-

+ G-
⎛
⎝⎜

⎞
⎠⎟t

1
O . 9eff pert pert

D
pert

3
1D
2

This result tofirst order (left-hand term in the brackets) accounts for the ideal quantumZeno dynamics
[27, 28, 32]. The second order in perturbation theory then yields correction termsmainly coming from slightly
populating the (super)radiant states.

In our case, therewill be two types of perturbations, namely,

• TheHamiltonian [·] [ ·] = - Hi ,pert las to control the atomic state. This results tofirst order in an effective
Hamiltonian  =H Heff las that couples only atomic states within theDFS.Here, we introduced the
projection onto theDFS for pure states ∣ ∣ = å ñád di i i , where the states ∣ ñdi form an orthonormal basis of the
DFS.We use this effective laser coupling to control the atomic state of the ensemble. Besides, there is a second
order correction resulting from Hlas that will be relevant for the analysis of the error probability of our
proposal as we show in section 4.

• The contribution of the emission of photons to other radiativemodes different from the guidedmode of the
waveguide that we embed into a single decay rate, *G and describe through the Liouvillian

[ ] [ ] ( ) ( )*
*

  år r s rs rs= =
G

- +
2

h.c. . 10
n

ge
n

eg
n

ee
n

pert

This contribution is relevant for the error analysis of the gates in section 4.

3.Universal single- and two-qubit gates

In this section, we showhow to engineer a set of universal gates, i.e., defined by any arbitrary single-qubit
rotation and a controlled gate [36], using the effective evolution Heff within theDFS that appear in our
waveguideQED setup. Firstly, due to the large degeneracy of theDFS, we need to define a set of logical qubits
that span our computational subspace. Then, we showhow to choose { }W D,n n such that they define a set of
universal one and two-qubit gates, namely, the phase and Pauli-X (andY) gate and the controlled-( )-Z gate. A
summary of the parameters for these gates can be found in table 1. For completeness, we also give the parameters
for other gates such as theHadamard or SWAP gates. The former can be easily constructed because all single
qubit rotations can be performed and the latter is constructed through the same idea as the controlled-( )-Z
gate. Due to the degeneracy of theDFS, the challenge lies in defining operations within the computational
subspace, without populating the rest of the states within theDFS. In section 4, we revisit the problem and

Table 1. Summary of the optimal parameter settings for the p 8-gateT, the Pauli gates X Y Z, , , theHada-
mard gateH, the SWAP-gate and the controlled-( )-Z gate. The subindex denotes onwhich logical qubit the

gate acts. The settings for the Rabi couplings and detunings are denoted by ( )= x x xij i j
1

2
.T is the dura-

tion for which the operation is applied to obtain the corresponding gate. In generalDD is a large detuning
(see equation (17)), that prevents transitions to other states and W = 0n for n 3.

Gate W-
12 W+

12 D+
12 D-

12 D+
34 D-

34 T Dn 5

T1 0 0 −DT 0 0 0 p
D4 T

0

Z1 0 0 DZ 0 0 0
p
DZ

0

X1 W ÎX 0 0 0 DD 0
p
W2 X

DD

Y1 W Î iY 0 0 0 DD 0 ∣ ∣
p
W2 Y

DD

µH1 − W ÎH 0 W2 H 0 DD 0
p
W2 H

DD

SWAP12 0 0 0 DS 0 DS
p
DS

DD

C (-Z )12 0 0 0 DC 0 0
p
D
2 2

C
DD
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consider the effect of spontaneous emission and second order corrections to the Zeno dynamics that ultimately
limit thefidelity of the operations.

3.1.Definition of logical qubits and computational subspace
Before finding the appropriate gates, we first need to define the logical qubits within theDFS. In principle,

assuming an even number of atomsN, the dimension of theDFS is ⎜ ⎟⎛
⎝

⎞
⎠

N
N 2

and therefore, it is possible to encode

⎜ ⎟⎛
⎝

⎞
⎠

N
N

log
22 logical qubits. However, it ismore useful to restrict the computational subspace to a smaller set of

states in order to achieve universal quantum computation. As theDFS is spanned by all (tensor) products of
singlet states over two atoms, it is natural to define the logical qubits as

∣ ∣ ∣ ∣ ( )ñ º ñ = ñ Ä ñ+ +G g g a0 , 11j j j j j
L

, 1 1

∣ ∣ (∣ ∣ ∣ ∣ ) ( )ñ º ñ = ñ Ä ñ - ñ Ä ñ+ + +A e g g e b1 2 . 11j j j j j j j
L

, 1 1 1

It is instructive to consider particular examples to see how theDFS and computational space look, i.e., for the
case ofN=2 andN=4 atoms.

Two atoms: In this case it is easy to plot the completeHilbert space (including states outsideDFS) as it
consists only of 4 states as depicted infigure 2(a). The separation intoDFS states and non-DFS states is easily
done in the familiar singlet-triplet basis. TheDFS consists of two states: the onewith two atoms in the ground
state and the singlet state, i.e., the antisymmetric combination of one single excited state. Thus, we can encode
one logical decoherence free qubit. The other two states are superradiant, i.e., they decaywith an enhanced decay
rate of G2 1D.

Four atoms: The completeHilbert space consists of =2 164 states, and the dimension of theDFS, shown in

figure 2(b), is( ) =4
2

6. As aforementioned, wewant to use as computational subspace the tensor product of the

antisymmetric pairs described in equations (11a) and (11b) , which consists only of =2 42 states. This is why in
this situationwe have to distinguishwithin theDFS between the computational space and the additional states
thatmust be either decoupled or used as auxiliary states. In particular, forN=4 the auxiliary states are
∣ + ñA G A G 31,2 3,4 3,4 1,2 and ∣ + ñA A A A 21,3 2,4 1,4 2,3 .

For >N 4 atoms: In general (for >N 2) the dimension of theDFS, ⎜ ⎟⎛
⎝

⎞
⎠

N
N 2

(for evenN), is larger than the

one of the computational subspace, 2N 2. Thus, one can split the projection onto theDFS,  , into two
orthogonal projections, i.e. one into the computational subspace CS and its orthogonal counterpartCS:

( )  = + a, 12CS CS

∣ ∣ ∣ ∣ ( ) å= ñ á + ñ á b0 0 1 1 , 12
j

j jCS
odd

L L

such that the effectiveHamiltonian can bewritten as follows

( ) ( )     = + + +H H H Hh.c. , 13eff CS las CS CS las CS CS las CS

Figure 2. (a)Hilbert space of twoTLS in the basis of non-DFS andDFS states with energies in the interaction picture with respect to
Hqb. The blue arrows denote the transitions necessary for the Pauli-X gate. The triplet states ∣ ∣ñ = ñE ee and ∣ ∣ñ = + ñS eg ge 2 are
not inside theDFS. (b)DFS of 4 TLS consists of 6 states that split into the 22-dimensional computational subspace and two states in the
auxiliary subspace. The blue (green) arrows denote the transitions necessary for the Pauli-X (and controlled-(−Z)) gate.
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which separates the transitions within the computational (auxiliary) subspace  HCS CS [ ] HCS CS and the
coupling between these two subspaces:  HCS CS. This separationwill be useful to argue thatwe canmake
operationswithin theDFS even in the situations with >N 4 aswewill show afterwards. For a general situation,
it is easy to show that by projecting Hlas into the computational subspacewe obtain an effective evolution inside
the computational subspace given by:

∣ ∣ ∣ ∣ ( )  å=
W

ñ á + + D ñ á+
-

+
+

⎛
⎝⎜

⎞
⎠⎟H

2
1 0 h.c. 1 1 , 14

j

j j
j j j jCS las CS

odd

, 1 L
, 1

L

wherewe used the following notation ( )= x x xi j i j,
1

2
to abbreviate the combination of parameters.

3.2. Single-qubit gates
The goal is tofind the { }W D,n n such that they define both the phase and Pauli-X (andY) gates over the
computational subspace.

Two atoms: This is the simplest situation because the size of the computational space is the same as the one
of theDFS. In this case (see also [30]), a phase shift gate on the logical qubit ( ∣ ∣a bñ + ñ 0 1L L

∣ ∣a bñ + ñf-0 e 1L i L) is obtained by applying W =- 012 ,D ¹+ 012 for a time = f
D+T

12
. Pauli-X rotations (plus a

phase) are obtained for ¹ W Î D =- +0 , 012 12 and time = p
W-T

2 12
. Note that to avoid errors in both cases, one

should also set W = D =+ - 012 12 aswill be discussed in section 4. The PauliY can be obtained as theX just by using
W Î-i 12 , so thatwewill not discuss it further.

Four atoms: In this case, theway to do phase gates and rotations is the same as for the two atom case.
However, in the case of the rotations, states within the computational subspace couple to auxiliary states for
more than two atoms. In particular, the state ∣ ñ10 L is coupled to the auxiliary state ∣ + ñA A A A 21,3 2,4 1,4 2,3 for
W ¹- 012 as shown infigure 2.However, this transition can bemade far off-resonance by setting ∣ ∣ ∣ ∣D W+ -

34 12 .

This results in an additional error rate ∣ ∣W
D

-

+2
12

2

34
that will be consideredwhen calculating the fidelity of the

operation4.
For >N 4 atoms: Again in the case of rotations, transitions to states outside the computational subspace in

the ideal case (W = D =+ - 012 12 ) are possible when W ¹- 012 , that is when

( )   = ¹H H 0, 15CS CS CS eff CS

wherewe use that   =CS CS. However, the transitions to these states can bemade far off-resonant by setting

∣ ∣ ( )  W = W D = D G- n0, and , 3, 16n n12 D 1D

because the auxiliary states inside theDFS that the computational subspace couples to extend overmore than
two atoms5 and can therefore be detuned as

( )  ~ DH , 17DCS CS CS

while keeping the desired transition driven by W-
12 as resonant. One has tomake sure that the Stark-shift

introduced by this off-resonant transition is small and possibly correct the detuning that it will induce by
choosing appropriately the applied laser frequency wL.

3.3. Controlled Pauli-Z
For universal quantum computation, a controlled two-qubit gate is required. In this case, theminimal system to
encode the operation is theN=4 atom case, where two decoherence-free logical qubits can be obtained.

Four atoms: In order to build the controlled-Z gate, we use one of the auxiliary states,
∣ + ñA G A G 21,2 3,4 3,4 1,2 . Now, it is possible to drive only the transition between this state and ∣ ñ10 L without
affecting the other states within theDFS by the choice W = D = D =0, 0n 3 4 andD = -D ¹ 01 2 . Aπ-pulse
on the state ∣ ñ10 L leads to a relative phase of−1 on this state, i.e.

∣ ⟶ ∣ ( )ñ - ñ10 10 , 181,3
L

1,3
L

for pD =-T 21

2 12 without affecting the other states of the computational subspace. Hence, we have defined a a

controlled controlled-( )-Z gate which is equivalent up to single qubit unitaries to aCNOT-gate [36].
For >N 4 atoms: One can restrict the dynamics to the subspace of four atoms in a similar way as for the

single-qubit rotations.With the choice of

4
In fact, this argument can be reversed to excite the auxiliary state from the computational state ∣ ñ10 L with the choice D =+ 034

and D W+ -
12 12.

5
The auxiliary states necessarily extend overmore than two atoms, because it is orthogonal to the logical qubits and therefore contains

excited (superradiant) triplet states in the ‘pairing’ of the atoms. An antisymmetric combination of such states can be in theDFS, but not in
the computational subspace, and necessarily extends overmultiple atom ‘pairs’.

6
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∣ ∣ ( )  W = D D = D G- n0, and , 5, 19n n12 D 1D

transitions to states overmore than four atoms are far off-resonant. As before, this adds an error rate

proportional to ∣ ∣D
D

-
12

2

D
with a proportionality factor depending on the coupling strength after the projection onto

theDFS.

4. Error analysis: spontaneous emission and imperfect addressing

So farwe have considered only the interactionwithin the ideal quantumZeno dynamics, where the only possible
sources of errorwere due to the larger dimension of theDFSwith respect to the computational space. In this
section, we take into account other sources of errors that will be present inmost of the implementations, namely,
(i) errors coming from spontaneous emission to othermodes, with rate *G , included through [ ]* r as in
equation (10); (ii) errors fromdeviations from the ZenoHamiltonian, attributed to photons emitted to the
waveguide from the small population present in the states outside theDFS; (iii) errors thatmay arise from an
imperfect control of the laser parameters { }W D,n n . Inwhat follows, we assume towork in a regimewith

P 11D , such that the following parameter hierarchy can be satisfied: ∣∣ ∣∣ *G GHeff 1D.
This section discusses, for each gate separately, the numerical results and the analytical approximation of the

fidelity F between the theoretical final (goal) state, ∣y ñf , and the real atomic state, ρ, obtained after the gate
operation, i.e., ∣ ∣y r y= á ñF f f

1 2. The numerical results are obtained by solving themaster equation in second
order perturbation theory (see equation (9)).We have checked numerically that this is a good approximation in
the parameter ranges considered throughout thismanuscript. To obtain the analytical approximations, we used
the effective non-HermitianHamiltonian that can be obtained from the second ordermaster equation (see
appendix).

4.1. Phase shift gate
For the phase shift gate wemust set W = 0n for all n and D = D D-

n D 12 for all n 3 to avoid errors from
transitions to auxiliary states. By choosingD = D1 2, i.e.,D =- 012 , no errors (from second order perturbation
theory) occur because the computational states do not couple to the radiant ones.However, it is instructive to

Figure 3. Infidelities of single and two qubit gates forN=4 atoms. (a)–(d) Infidelity of a p 2 phase shift on the first logical qubit of
four atoms on the state ∣ + ñ10 00 2L for (a) D =- 012 and D =+ 034 , (b)D = D- +0.112 12 andD =+ 034 , (c)D = D- +

12 12 andD =+ 034 ,
(d) D = D- +

12 12 andD = D+ +2034 12. (e) Infidelity of a single qubit Pauli-X gate on thefirst qubit of four atoms on the state ∣ ñ00 L for
D = W+ -1034 12. (f) Infidelity of the controlled-( )-Z gate for four atoms (2 qubits) acting on the state ∣ + ñ10 11 2L . The black lines in
(d)–(f) represent the scaling of the coupling strength D W+ -,12 12 and D-

12, respectively, for theminimal infidelity with -P1D
1 2.
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consider the errors that appear for situations whereD ¹- 012 , e.g, because of imperfect addressing, as this yields a
useful understanding about how to deal with situationswhere the second order correction cannot be avoided.

Two atoms: For the simplest situation the additional errors due to imperfect addressing, i.e.,D ¹- 012 , enter
at a rate proportional to ∣ ∣D G-

12
2

1D through the same error channel as the spontaneous emission into all other
modeswith rate *G , that is, via the quantum jumpoperator ∣ ∣ñ á0 1L . Then, the infidelity, i.e., - F1 , for a p 2
phase shift on the normalized state ∣ ∣a bñ + ñ0 1L L can be approximated by

∣ ∣ ∣ ∣ ( )*
b p

- »
D

G +
D
G+

-⎛
⎝⎜

⎞
⎠⎟F1

4
4 . 20

2

12

12
2

1D

One observes, that in the ideal case,D =- 012 , the infidelity can be arbitrarily close to 0 for largeD+
12. IfD

-
12 is

not negligible, the transition strengthD+
12 cannot be chosen arbitrarily large to decrease the infidelity. For

example, in theworst case scenariowhereD = D- +
12 12 this results in an optimal infidelity scaling ∣ ∣b p -P

2 1D
1 22

for *D = D = G G+ -
12 12

1

2 1D .

Four atoms: A similar behavior can be obtained by choosingD =- 012 such that the infidelity is arbitrarily
close to 0 (see figure 3(a)). Slight deviations from this ideal value do not change this behavior drastically (see
figure 3(b)). However, whenD-

12 is not negligible, it leads to two types of errors that decrease the fidelity (see
figure 3(c)): (i) virtual population of non-DFS states, which leads to an error rate proportional to ∣ ∣D G-

12
2

1D as
for two atoms; and (ii) transitions to auxiliary states, in particular ∣ + ñA G A G 21,2 3,4 3,4 1,2 . The latter can be
made far off-resonance by applying a detuning on the second qubit such that ∣ ∣ ∣ ∣ D D G- +

12 34 1D.With a large
off-resonance ratio ∣ ∣ = D DD

+ -r 134 12 , one still achieves a small infidelity (see figure 3(d)).
As shown infigures 3(a)–(d), the detuning of the third and fourth atom is important whenD-

12 cannot be
neglected. As expected, the infidelity decreases by increasing the off-resonance ratio rΔ (see figure 4(a)). For large
enough Dr , the infidelity can be analytically approximated by

⟶
∣ ∣

∣ ∣ ( )*p
-

G
D

+
D
G

¥

+

+
D ⎛

⎝⎜
⎞
⎠⎟F1

8
2 . 21

r

12

12

1D

This leads to aminimal infidelityµ -P1D
1 2 (see figure 4(b)) for *D = D = G G+ - 212 12 1D .

4.2. Pauli-X gate
For rotations around the x-axis, we setD = D = 01 2 , and D = D W-

n D 12 for all n 3 to avoid transitions to
auxiliary states. In contrast to the phase shift gate, even in the ideal case, W =+ 012 , errors will occur because W-

12

couples to state outside theDFS, as shown schematically infigure 2(a) for the two atom case.Moreover, we also
include a short discussion on deviations due to imperfect control on ( )D ¹ 01 2 and W+

12.
Two atoms: Using W =+ 012 , the error rate fromdeviations from theZenoHamiltonian enters in the same

way as from the spontaneous emission into all othermodes, that is via the quantum jumpoperator ∣ ∣ñ á0 1L . The
corresponding decay rate is (∣ ∣ ∣ ∣ )D + W G- - 212

2
12

2
1D. The error from W ¹+ 012 enters differently, but can still be

included in the estimation of the infidelity. Neglecting the errors fromD ¹+ 012 , the infidelity for a Pauli-X gate

( ∣ ∣ pW =- T 21

2 12 ) on state ∣ ñ1 L can be approximated by

Figure 4.Dependence of infidelity on off-resonance ratio ∣ ∣= D DD
+ -r 34 12 for p 2 phase shift on first qubit withD = D- +

12 12. (a)
Infidelity varied over the coupling strengthD+

12 for =P 101D
4. The results correspond to =Dr 5 (black), =Dr 10 (red) and =Dr 15

(blue). (b)Minimal infidelity depending on the Purcell factor P1D. The numerical results (points) corresponding to the values as in (a)
fit well with the approximation (line) of ( ) ( )- µ +-

DF P C r1 min 1D
1 2 , where the ( )DC r is a numberwhich does not depend on P1D.
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∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ ( )*

p
e- »

W
G +

W
G

+
D
G

+
W
G

º-

- - +⎛
⎝⎜

⎞
⎠⎟F1

1

2 2 2 2
. 22

12

12
2

1D

12
2

1D

12
2

1D
0

In the ideal case of perfect control of addressing parameters, i.e.,D = W =- + 012 12 , theminimal value of the

infidelity, proportional to -P1D
1 2, is obtained at ∣ ∣ *W = G G- 212 1D . Note, that even for W = W- +

12 12 andD =- 012 ,

the infidelity is still proportional to -P1D
1 2.

Four atoms: In this case, apart from the transitions out of theDFS, W-
12 also couples states inside theDFS, but

out of the computational space (see figure 2) such that we need to detune these processes to achieve the rotations.
As already explained in the previous section, this can be done by setting ∣ ∣ ∣ ∣ W D G- +

12 34 1D. As expected, the
infidelity decreases when increasing the off-resonance ratio ∣ ∣= D WW

+ -r 34 12 (see figure 5). For large enough
ratios ( )Wr 4 , the infidelity can be approximated by

( )e
a

- » +
W

F
r

1 , 230 2

where the constant ( )a = 1 can be obtained through a numericalfit. The infidelity of a p 2-pulse on the state
∣ ñ00 L is plotted infigure 3(e), whereas theminimal infidelity is shown to scalewith -P1D

1 2 infigure 6.

4.3. Controlled Pauli-Z
For the controlled-( )-Z gate, we set W = 0n for all D =+n, 012 and ∣ ∣D = D D-

n D 12 for all n 5. AsD-
12

couples ∣ ñ10 L and ∣ ñ11 L also to states outside theDFS, thefidelity shows a similar behavior as the Pauli-X gate (see
figure 3(f) for examplewithN=4), i.e., there is an optimalD-

12 that sets themaximumfidelity.
The infidelity can be approximated similarly to equation (20), i.e., after a controlled Pauli-Z gate

(∣ ∣ pD =- T 212 ) acting on the state (∣ )+ ñ10 11 2L , by

∣ ∣
∣ ∣ ( )*

p
- »

D
G +

D
G-

-⎛
⎝⎜

⎞
⎠⎟F1

3

2 2

3

4
, 24

12

12

1D

which attains itsminimal value, p P3 2 1D , for ∣ ∣ *D = G G- 4 312 1D . As for the single qubit gates, the infidelity
scales with -P1D

1 2, shown in blue circles infigure 6.

4.4. Summary of analysis
Summing up, from the explicit analysis with two and four TLS, we have shown both numerically and analytically
that both the single-qubit rotations and the controlled (−Z) gate show a scaling of the infidelity as -P1D

1 2 (see
figure 6). Only for small values of the Purcell factor P1D does theminimal infidelity deviate slightly from the
theoretical analysis because the hierarchy  *G W D G- -,12 12 1D is no longer well satisfied.

Moreover, in theN=4 case, we also showed how to deal with the errors that come from the larger size of the
DFSwith respect to the computational one. For single qubit rotations in a systemof four emitters, the choice
∣ ∣ ∣ ∣ ∣ ∣ W D D G- + +,12 12 34 1D ensures that the dynamics can be restricted to two atoms. In the extreme casewhere
∣ ∣ D G+

34 1D the perturbation analysis is no longer valid. However, in this case the levels are so strongly shifted,
that they are decoupled from the collective dissipation, so that the system can be described as a systemof only
two emitters. The same is true, if the emitters can be completely decoupled from thewaveguide by othermeans
available in a particular implementation. Formore atoms the same arguments hold as the second order

Figure 5. (a)Numerical calculation of infidelity of Pauli-X gate on the first qubit on the state ∣ ñ00 L forN=4 atomswithD = W+ -1034 12
and =P 101D

4 for different values of the off-resonance ratio, that is =Wr 2 (black), =Wr 5 (red) and =Wr 10 (blue). (b) Scaling of the
minimal infidelity for the same values as in (a) for different Purcell factors, that is =P 101D

3 (black), =P 101D
4 (red) and =P 101D

5

(blue).
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correction introduced fromdeviations fromZeno dynamics satisfies

( )  
 





   r
G

1
, 25pert

D
pert

pert
2

1D

where pert is the perturbation to the purely collective decay and · denotes themaximumnorm. This is
independent of the atomnumberN, because pert does not increase with the number of atoms for one and

two-qubit gates. So there is an upper limit on the second order correction, which leads to the -P1D
1 2-scaling.

Finally, the error rate stemming from spontaneous emission of the logical states ∣ ∣ñ = ñA1 L is proportional to the
number of excited states in the system. Therefore, the gatefidelity does depend on the full state, and can be upper
bounded by considering theworst-case state, that is the statewith ∣ ñ1 L in all other computational qubits, which
indeedwill depend on the atomnumber.

5. Further error analysis:finite propagation length of 1Dmodes

For completeness, it is interesting to consider another source of error thatmay be very relevant for some
implementations with short propagation lengths, e.g., plasmonicwaveguides [16–19]. Thefinite propagation
length enters into the decaymatrix [18] as

( )( ) ∣ ∣ ∣ ∣ ∣ ∣G =
G

=
Gw - - - - -

2
e e

2
e , 26n m

q z z z z L x n m
,

1D i 1Dn m n ma prop

if the atoms are equidistantly placed amultiple of awavelength apart, d andwherewe introduced =x d Lprop as
the perturbation parameter. For simplicity, we restrict our discussion to the casewithN=2, where analytical
expressions can be obtained. In that situation, thefinite propagation length only leads to the replacements

( ) ( )* * *G  G + G - » G + G- x1 e , 27x
1D 1D

( ( )) ( ) ( )G  G - - » G -- x2 2 1 e 2 , 28x
1D 1D 1D

when x 1. Therefore, the scaling of the infidelity is then given by

( )
( )*

- µ
G + G
G -

» +-F
x

x
P P x1

2

1

2
, 291D

1D
1D

1 2
1D
1 2

which scales as P1 1D as long as xP 11D ,that is, that the distance between neighboring emitters satisfies
∣ ∣ = - +

-d z z L Pn n 1 prop 1D
1. Formore atoms, it is difficult to obtain the analytical scaling as the superradiant

state is not an eigenstate of themodified decaymatrix and thus theDFS states change aswell. However, because
thefinite propagation length enters as ∣ ∣» - -- - z z Le 1z z L

m n prop
m n prop it can be treated as a perturbation to

the Liouvillian of equation (6) that will be kept small as long as Nd Lprop [37].
Depending on the particular implementation other errors have to be considered, e.g., for atoms trapped

close to a dielectric waveguide the separation condition ∣ ∣ ( )p w- =z z n q2n m a might not be satisfied exactly or
because its position is changing over time due to atomicmotion.However, itsmain effect can be approximated
as an effective increase of *G that is small with current state of the art parameters for photonic crystal
waveguides, as discussed in [37].

Figure 6. Scaling behavior of theminimal infidelity for the Pauli-X (red squares) and controlled-( )-Z gates (blue circles)with the
same parameters as infigures 3(e) and (f). The scaling fits well with the scaling -P1D

1 2 (black line) for large enough values of the Purcell
factor P1D. For the phase shift gate the infidelity is arbitrarily close to 0 in the ideal case.
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6. Comparison to three-level atoms

The use of theDFS of atomicΛ-systems in cavityQED setups has already been considered in detail in the
literature [29–31]. In that case, a three-level systemwith aΛ-type level structure is used to define a logical qubit
in the twometastable states ∣ ñ0 and ∣ ñ1 . The excited state ∣ ñe decays to one of themetastable states, say ∣ ñ1 .When
two atoms are inside the cavity an additional decoherence-free state emerges, i.e., (∣ ∣ )ñ - ñe e1 1 2 , that can be
used to define aCNOTgate in the so-called bad-cavity limit, where the atom-cavity coupling (g) is smaller than
the cavity lossesκ, but the decay into the cavity ( kg 2 ) is still bigger than into the rest of the decay channels ( *G ).

The ratio between the good/bad processes is the so-called cooperativity
*

=
kG

C
g 2

, which therefore plays a similar

role as P1D in our proposal. The errors in theCNOTgate come both from *G , and fromdeviations from the
ZenoHamiltonian, giving rise to an optimal infidelity proportional to C1 , which is similar to the one that we
found using only TLSs. As argued in [38] the scaling of the infidelity with the inverse square root of the Purcell
factor (or cooperativity for cavityQED setups) is typical for proposals using controlled unitary dynamics. It
originates from the trade-off between cancelling errors from spontaneous emitted photons and the ones coming
from cavity/waveguide emission, which lead to the optimal scalingwith -P1D

1 2. There have been proposedways
with atomicΛ systems for overcoming this error scaling either by using dissipative state preparation [39] or
heraldingmeasurements [40, 41]. An interesting perspective of our proposal is how to extrapolate these ideas to
the two-level emitter situation to overcome the -P1D

1 2 scaling.
We also note that using TLS the computational qubits have afinite lifetime compared to the

implementations using atomicmetastable states. However, (i) there are situations inwhich onewould like to use
gates to build a given atomic state within theDFS in order tomap it immediately into a photonic state in the
waveguide [37] such that long lifetimes are not required; (ii) some of the implementations have extremely long-
lived qubits, e.g.superconducting systems [24]. (iii)Moreover, ifΛ schemes are available, as in atoms, we can
also implement our single and two-qubit gates withmetastable states with the equivalence shown infigure 1(c).
In that case, our proposal just constitutes a complementary way of doing universal quantum computation
withinDFS.

7. Conclusion and outlook

Summing up, we have shown how to implement a universal set of quantumgates using theDFSs appearing
within TLS interacting with 1Dphoton-like reservoirs.We have given an explicit construction of single and two-
qubit gates for logical qubits defined in theDFS and analyzed possible sources of errors such as spontaneous
emission to othermodes, coupling to states outside of theDFS, imperfect addressing and finite propagation
lengths. Through both analytical and numerical analysis, we have shown the fidelities of the gates scale generally
with ( )- µ -F P1 min 1D

1 2, analogous to the one usingΛ schemes [29–31]. Thus, this workwidens up the
zoology of quantum emitters that can be used to implement quantumgates withinwaveguideQED setups. An
interesting outlook for the application of these gates is to use them for generating entangled states ofmany
emitters within theDFS, which afterwards can bemapped intowaveguidemultiphoton states in a very efficient
way [37, 41, 42].

Acknowledgments

Wegratefully acknowledge discussions with Ignacio Cirac. Thework of AGT andVPwas funded by the
EuropeanUnion integrated project Simulators and Interfaces withQuantum Systems (SIQS). AGT also
acknowledges support fromAlexander VonHumboldt Foundation and Intra-EuropeanMarie-Curie
FellowshipNanoQuIS (625955). HJK acknowledges funding by the Institute ofQuantum Information and
Matter, aNational Science Fundation (NSF)Physics Frontier Center with support of theMoore Foundation, by
the Air ForceOffice of Scientific Research, QuantumMemories in Photon-Atomic-Solid State Systems
(QuMPASS)MultidisciplinaryUniversity Research Initiative (MURI), by theDepartment ofDefenseNational
Security Science and Engineering Faculty Fellows (DoDNSSEFF)program, byNSFPHY1205729 and support as
aMax Planck Institute forQuantumOpticsDistinguished Scholar.

Appendix. Second order Liouvillian perturbation theory

When the system evolves under a very strong collective decay, the driving termHlas and the decay into other bath
modesmay be treated as a perturbation to the collective dissipation given by D [43, 44]. In order to describe
these perturbations as generally as possible, we denote themby a Liouvillian pert, and assume that it has a
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relevant timescale τ. If the timescale satisfies, t G1 1D, the dynamics of the atomic system can be formally
projected into theDFS of the Liovillian D, by using a projection operator  satisfying:   = = 0D D . This
projector can be found via the right (left) eigenoperators rij (cij) corresponding to the eigenvalue 0 of D, which
are combined to

( ) år r c r= á ñ, , A.1
i j

ij ij
,

where ( )†á ñ =A B A B, Tr is the inner product on the space of densitymatrices. The orthogonal eigenoperators
are indexed such that c r d d r rá ñ = = á ñ, ,ij kl i k j l ij kl, , .We also define the orthogonal part of   = -, 1 . The
left eigenoperators can be derived from the right ones by

( )( ) ( )c r a r a r= + + +¼S S S S S S , A.2ij ij ij eg ij ge ij eg eg ij ge ge
1 2

where the coefficients ( )aij
n are determined by c rá ñ =, 0ij D .With this choice, the projector is independent of

the choice of rij and hence, one can choose ∣ ∣r = ñád dij i j , where ∣ ñdi are orthonormal states from theDFS.Using
these projectors, one can formally integrate out the fast dynamics outside theDFS, described byr:

( ) ( )      r r r= + +
t

a
d

d
, A.3D pert pert

( ) [ ( ) ( )] ( )

( ) ( ) ( )

  

  

    

  
òr t t r t

r t

= + -

» - + G- -

t

b

d exp t

, A.3

t

0
D pert pert

D
1

pert
2

1D
2

where the last approximation is obtained by (i) applying aMarkov approximation ( ) ( )r t r» t in the integral;
(ii)neglecting terms of higher order in t G- ;1

1D and (iii) extending the integral to infinity.
Plugging this into the equation for theDFS-part of the state, that is

( )       r r r r= + =
t

d

d
, A.4pert pert eff

yields an effective Liouvillian of the atomic systemwithin theDFS given (up to second order in t G-1
1D) by

( ) ( )  


      t= +
-

+ G-1
O . A.5eff pert pert

D
pert

3
1D
2

Thefirst order of this Liouvillian, i.e.,  pert , is the effective evolution inducedwithin theDFS induced by
the strong collective dissipation. This is commonly referred to as the ideal quantumZeno dynamics [27, 28, 32]
as it can be understood as the effective dynamics enforced by the continuousmonitoring of the atomic system
due to the interaction of thewaveguidemodes. The second order term stems from slight population of (super)
radiantmodes that generates some corrections on the ideal quantumZeno dynamics.

It is instructive towrite the effectivemaster equation derived in equation (A.4) in a form that separates the
non-hermitian evolution and the contribution coming fromquantum jumpprocesses. For our particular
situation, considering the perturbation of * andHlas as defined in themain text, it can be shown after some
algebra that

˙ [ ] ( ) ( )† † † †
* r r r r r r r= - + + + - -H o o o o o o o oi , , A.6eff 1 2 2 1 2 1 2 1

where  =H Heff las andwherewe used the projection  [ ] for pure states inside [outside] of theDFS as
defined in themain text. Furthermore, ( )    = =G + - -

o S S H o H,1 2

1
las 2 las

1D can be obtained by noting

that the second order term reduces to simplematrixmultiplication in the corresponding subspace because
    = =A A0 for all operatorsA6. Although this does not look like a Liouvillian in Lindblad form, it is

trace-preserving, as

( ) å år c c= á ñ = á ñ =A A A ATr Tr , , Tr , A.7
i j

ij ij
i

ii
,

because cå = 1i ii . From equation (A.6), it is straightforward to define a non-HermitianHamiltonian from the
abovemaster equation, that is

( )†*
 ås s= -

G
-

⎛
⎝⎜

⎞
⎠⎟H H o oi

2
i , A.8nh

n
eg
n

ge
n

eff 2 1

which describes the no-jump evolution, and that we use to get the analytical estimations of the infidelity.

6
Wewant to note that if it was possible to detect the photons emitted to thewaveguide and post-select, the term ( )† † r r+o o o o1 2 2 1 would

vanish and the systemwould be described by pure states except for the spontaneous emission into non-guidedmodes.
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