
Balancing Related Model Order Reduction Applied to Linear
Controlled Evolution Equations with Lévy Noise

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

von Martin Redmann, M.Sc.
(akademischer Grad, Vorname, Name)

geb. am 20.06.1987 in Halle (Saale)

genehmigt durch die Fakultät für Mathematik

der Otto-von-Guericke-Universität Magdeburg

Gutachter: Prof. Dr. Peter Benner

Gutachter: Prof. Dr. Dr. h.c. Wilfried Grecksch

eingereicht am: 23.05.2016

Verteidigung am: 22.07.2016



List of Publications

This thesis is partially based on the papers that are listed below.

Prepints

P. Benner and M. Redmann, Singular Perturbation Approximation for Linear Sys-

tems with Lévy Noise, MPIMD/15-22, Max Planck Institute Magdeburg, 2015 (submitted).

Section 6.4 is based on this preprint. However, the results in Section 6.4 are more general.

P. Benner and M. Redmann, An H2-Type Error Bound for Balancing-Related Model

Order Reduction of Linear Systems with Lévy Noise, MPIMD/15-20, Max Planck Institute
Magdeburg, 2015 (submitted).

This preprint contains the results of Subsection 6.3.2, where a more general framework is cov-
ered.

Publications

P. Benner, T. Damm, M. Redmann, and Y. R. Rodriguez Cruz, Positive

Operators and Stable Truncation, Linear Algebra and its Applications, 498:74–87, 2016.

Parts of Section 6.2 are based on this paper.

P. Benner and M. Redmann, Approximation and Model Order Reduction for Second

Order Systems with Lévy-Noise, AIMS Proceedings, 945–953, 2015.

Results of this paper enter in Sections 5.2 and 6.2.

P. Benner and M. Redmann, Model Reduction for Stochastic Systems, Stochastic
Partial Differential Equations: Analysis and Computations, 3(3):291–338, 2015.

i



Sections 5.1, 6.1 and 6.2 are based on this paper. However, in this thesis the results are explained
more detailed.

P. Benner and M. Redmann, Reachability and Observability Concepts for Stochastic

Systems, Proc. Appl. Math. Mech., 13:381–382, 2013.

Section 6.1 covers this article in a more general framework.

ii



Acknowledgements

An dieser Stelle möchte ich mich bei allen, die mich während der Promotion und darüber hinaus
begleitet haben, bedanken. Das Verfassen dieser Dissertation wäre ohne die Unterstützung von
Familie, Freunden, Kollegen und akademischen Mentoren nicht möglich gewesen.

Zuallererst möchte ich mich bei meinem Betreuer, Professor Peter Benner, bedanken, für dessen
Glauben an dieses Dissertationsthema an der Schnittstelle von Stochastik und Numerik, welcher
mir erst das Promovieren ermöglicht hat. Ich bin ihm sehr dankbar dafür, dass ich an dieser
interessanten Thematik arbeiten durfte und für die Gelegenheit ein Teil seiner Arbeitsgruppe
am Max-Planck-Institut in Magdeburg zu sein. Unter seiner Betreuung habe ich viel Neues
dazu gelernt und ich habe die Freiheiten, die mir von ihm beim Forschen gewährt worden, sehr
geschätzt. Dies trug maßgeblich zum Gelingen dieser Arbeit bei.

Ebenso großer Dank gebührt Professor Wilfried Grecksch. Es war ein großes Privileg so viele
Jahre sein Schüler sein zu dürfen. Er ist mir seit dem Grundstudium stets ein Ansprechpartner
für jegliche Art von Problemen gewesen, und hat mir fachlich und auch in Krisenzeiten immer
mit viel Engagement weiter geholfen. Sein Einsatz und sein Glauben an mich haben sehr zu
meiner Motivation und zur erfolgreichen Erstellung dieser Arbeit beigetragen.

Ich bin dankbar für sehr fruchtbare wissenschaftliche Diskussionen mit Kollegen, insbesondere
mit Professor Tobias Damm, der mir immer mit sehr viel Interesse und Hilfsbereitschaft zur Seite
stand und großen Anteil am erfolgreichen Verfassen dieser Arbeit hat.

Des Weiteren möchte ich all meinen Kollegen an der Martin-Luther-Universität in Halle und in
der Arbeitsgruppe “Computational Methods in Systems and Control Theory” am MPI in Magde-
burg danken. Sie haben dazu beigetragen, dass ich mich nicht nur fachlich, sondern auch men-
schlich weiterentwickelt habe. Im Besonderen danke ich Frank Wusterhausen für viele interes-
sante und Erfolg bringende Diskussionen. Tobias Breiten, Sara Grundel und Martin Stoll danke
ich dafür, dass sie mir zu einem guten Start in Magdeburg verholfen haben und für ihren Beitrag
zu einer positiven Arbeitsatmosphäre. Danke auch an Martin Köhler und Jens Saak, die mir beide
stets unkompliziert und schnell bei IT Problemen ausgeholfen haben. Ich danke ebenso meinen

iii



Bürokollegen Pawan Goyal, Hamdullah Yücel und Jessica Bosch. Mit ihnen hat das Arbeiten
stets Freude bereitet. Ich habe in vielerlei Hinsicht von ihnen gelernt. Ebenso bin ich dankbar
für die vielen tollen Momente abseits der Arbeit.

Mein abschließender Dank gilt meiner Familie und sehr guten Freunden. Ich danke Nils Demant
und Alexander Oettel dafür immer als treue Freunde für mich da zu sein. Für die gemeinsame
Zeit danke ich Franziska Deutschmann, die mich nachhaltig als Mensch geprägt hat und die
mich immer zu Höchstleistungen in Studium und Promotion motiviert hat. Ich danke Melina
Freitag für all ihre Unterstützung, welche mir auch bezüglich der Dissertation und beim weiteren
Arbeiten in der Forschung viel Kraft gegeben hat. Meinen Großeltern, meinen Eltern und meinen
Brüdern danke ich, dass sie immer und bedingungslos für mich da gewesen sind. Liebe Familie,
ihr seid die Besten! Diese Dissertation widme ich euch.

iv



Abstract

In this thesis, we study numerical solutions to linear controlled stochastic (partial) differential
equations (S(P)DEs) with Lévy noise. We summarize well-known results in the theory of infinite
dimensional Lévy processes and introduce the corresponding stochastic calculus. Then, linear
controlled SPDEs in an evolution equation framework are discussed and analyzed. We empha-
size the stochastic heat and damped wave equation and are particularly interested in numerical
solutions of these SPDEs. To this end, we investigate a Galerkin scheme which is a useful tool
to discretize an SPDE in the spatial component. Using the already existing results in the deter-
ministic and Wiener noise setting, a Galerkin method for linear heat and damped wave equations
with Lévy noise is established. Since the resulting semi-discretized SPDEs might be of large
order, we study model order reduction techniques of ordinary systems with Lévy noise in order
to reduce the large dimensions with the goal of saving computational time in mind. Based on the
theory for deterministic linear systems, the main focus in this thesis is on generalizing balancing
related model order reduction schemes to a stochastic setting. Methods like balanced truncation
and the singular perturbation approximation are discussed and properties of the corresponding
reduced order models, such as error bounds and preservation of stability, are investigated. The
efficiency of the two approaches is demonstrated by conducting several numerical experiments.
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Zusammenfassung

In der vorliegenden Arbeit wird die numerische Lösung von gesteuerten stochastischen (par-
tiellen) Differentialgleichungen (S(P)DEs) mit Lévy-Rauschen behandelt. Wir fassen bekan-
nte Resultate auf dem Gebiet der unendlichdimenionalen Lévy-Prozesse zusammen und liefern
die Grundlagen zur dazugehörigen stochastischen Integrationstheorie. Darauf aufbauend führen
wir lineare gesteuerte SPDEs in Form abstrakter Evolutionsgleichungen ein und analysieren
diese. Dabei legen wir insbesondere den Fokus auf stochastische Wärmeleitungs- und gedämpfte
Wellengleichungen, welche wir numerisch approximieren. Wir untersuchen die Galerkin Meth-
ode, welche genutzt werden kann um SPDEs im Ort zu diskretisieren. Auf der Grundlage von
bereits bestehenden Resultaten für deterministische Gleichungen und für SPDEs mit Wiener-
Rauschen, findet die Galerkin Methode hier Anwendung bei linearen Wärmeleitungs- und lin-
earen gedämpften Wellengleichungen mit Lévy-Rauschen. Da die resultierenden semi-
diskretisierten SPDEs von großer Ordnung sein können, betrachten wir Modellreduktionsver-
fahren für gewöhnliche Systeme mit Lévy-Rauschen um die große Dimension zu reduzieren mit
dem Ziel Rechenzeit zu sparen. Auf der Theorie für deterministische linear Systeme aufbauend
werden in dieser Arbeit Modellreduktionsverfahren für SDEs verallgemeinert, bei denen die zu-
grunde liegenden Systeme balanciert werden. Methoden wie das balancierte Abschneiden und
die singulär gestörte Approximation werden diskutiert und die Eigenschaften der dazugehörigen
reduzierten Modelle, wie Fehlerschranken und die Stabilitätserhaltung, untersucht. Die Effizienz
der beiden Ansätze demonstrieren wir durch das Durchführen von numerischen Experimenten.
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1. Introduction

1.1. Motivation for stochastic systems

Many phenomena in real life can be described by ordinary differential equations (ODEs), partial
differential equations (PDEs), or both. Famous examples are the motion of viscous fluids, the
description of water or sound waves and the distribution of heat. For an accurate mathematical
modeling of these real world applications it is often required to take random effects into account.
An example is the financial market, where stock prices and interest rates are randomly impacted.
Furthermore, there are many phenomena in natural sciences containing uncertainties such as the
growth of a population or the movement of particles. Systems that are influenced by wind such
as the surface of a lake or a river might also not just follow deterministic laws. The expansion
of heat delivers another example, where stochastic components could enter, compare Examples
4.14 and 5.3.
Uncertainties in an ODE or PDE model can for example be represented by an additional noise
term. This leads to stochastic differential equations (SDEs) or stochastic PDEs (SPDEs). A
possible way is to consider equations driven by Wiener noise. We refer to Arnold [6]; Kloeden,
Platen [41] and Kuo [47], where Wiener processes, stochastic integrals and SDEs with Wiener
noise are studied. In Da Prato, Zabczyk [20]; Gawarecki, Mandrekar [26] and in Prévôt and
Röckner [56] they treat infinite dimensional Wiener processes as well as Wiener driven SPDEs.
Dealing with Wiener noise yields just continuous systems. This has the disadvantage of not cov-
ering models with jump. Therefore, many financial products cannot be described since jumps
are required to model risky stocks, see Madan et al. [49] or Madan, Seneta [50]. Moreover, the
prices of electricity have discontinuities which is shown in A. Veraart, L. Veraart [69]. Another
example from natural sciences is the surface of a river with waterfalls. The same holds true for
phenomena including effects of wind since jumps appear there as well, compare Examples 4.16
and 5.5. Lévy processes, which in general are not continuous, provide a possible solution to
this problem. One can find detailed information regarding Lévy processes in finite dimensional
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1. Introduction

spaces in Bertoin [15] and Sato [65]. SDEs with Lévy noise with the corresponding integra-
tion theory are well investigated in Applebaum [5]. Peszat, Zabczyk [55] extend the work of
[20, 26, 56]. They provide a comprehensive book containing the stochastic analysis of infinite
dimensional Lévy processes and the theory of Lévy driven SPDEs with various examples.

1.2. Numerical approximations of stochastic systems and

balancing related model order reduction

It is necessary to discretize a time-dependent PDE in space and time in order to solve it numer-
ically. As a possible strategy discretizing in space can be considered as a first step. This can be
done by finite element methods that are for example explained in Thomée [68] for the parabolic
case. To ensure a high accuracy of the approximation this can lead to highly complex systems of
ODEs in terms of the large state space dimension. Solving such complex ODE systems causes
large computational costs which are aimed to be reduced. In this regard, model order reduction
(MOR) becomes a key ingredient. MOR originates in the field of deterministic control theory
and is used to save computational time by replacing large scale systems by systems of low order
in which the main information of the original system should be captured. A particular class of
MOR schemes is called balancing related MOR. They are based on reachability and observabil-
ity concepts and corresponding energy functionals. Now the idea of balancing a system is to
create a system, where the dominant reachable and observable states are the same. Then, the
difficult to observe and difficult to reach states (states producing the least observation energy and
causing the most energy to reach, respectively) are neglected. A famous representative of this
class is balanced truncation (BT) which assumes asymptotic stability of the original system. This
was considered first in Moore [53] for linear deterministic system; see Antoulas [2] or Obinata,
Anderson [54] for a thorough treatment of the topic. BT was also established for deterministic
bilinear systems in Benner, Damm [9] and Zhang et al. [72]. An alternative method to obtain a
reduced order model (ROM) is the singular perturbation approximation (SPA), see Liu, Ander-
son [48] and Fernando, Nicholson [24] for deterministic linear systems. Rather than setting all
truncated states to zero as in BT (compare equation (6.24), where the truncated states are rep-
resented by x1), they are assumed constant which allows to solve for them and thus include this
information in the differential equation for the remaining states. This has the advantage of a zero
steady-state error, a property often important in applications. The SPA also exists for bilinear
systems. For that framework, we refer to Hartmann et al. [28].

2



1. Introduction

As mentioned above, in many situations a deterministic perspective on a problem is not satis-
factory since this approach might neglect random disturbances. So, rather than studying PDE
models it can be more meaningful to consider SPDEs instead to obtain a more accurate model.
By numerical approximations, an SPDE can be reduced to a finite dimensional system as well.
A possibility to do that is the spectral Galerkin method which is for example investigated in
Grecksch, Kloeden [27]; Hausenblas [29]; Jentzen, Kloeden [40]; Blömker, Jentzen [17] for
Wiener driven systems and Redmann, Benner [60] for equations with Lévy noise. Alternatively,
finite element methods can be applied. Based on [68], Kruse investigates this scheme in [45, 46]
for SPDEs with Wiener noise. Barth [7] and Barth, Lang [8] consider finite element approaches
for equations with more general noise processes such as Lévy processes. By semi-discretizing
we reduce an SPDE to an SDE which, similar as in the deterministic framework, might be large
dimensional. For that reason, generalizing MOR techniques to stochastic systems can easily be
motivated and is taken into account. Inspired by the application in the field of numerical solutions
to SPDEs, two types of BT and the SPA are extended to stochastic systems. To this end, balanced
truncation is considered first for SDEs with Wiener noise in Benner, Damm [9] and for systems
with Lévy noise by Benner, Redmann in [14]. Additionally, Benner and Redmann pointed out
the benefit of BT in detail by applying it to Lévy driven damped wave and heat equations, see
[14] and [60]. A second way to generalize BT to stochastic systems is discussed in Benner et
al. [10]; Benner, Damm [22] and Redmann, Benner [59]. This new approach, the so-called type
2 BT, is motivated by the aim of achieving a certain error bound which cannot be proven in the
ansatz used in [14]. Moreover, Redmann and Benner [61] studied the SPA for SDEs with Lévy
noise and successfully applied it to stochastic damped wave equations. From numerical experi-
ments it could be concluded that SPA can be better than BT when using small controls or when
fixing a large time interval for the underlying SDE.
These generalized MOR techniques also play a role in this thesis. In particular, this disserta-
tion contains results from [14, 59, 60, 61]. Furthermore, approaches studied in [9, 10, 22] are
frequently used here as well.
After reducing the state space dimension of a spatially-discretized SPDE, we desire to discretize
the resulting low order SDE in time. The most common method is the so-called Euler-Maruyama
scheme. Explicit and (semi-)implicit approaches for SDEs with Wiener noise are discussed in
[16, 33, 34, 35, 36, 37, 41, 51] and methods with additional Poisson noise are considered in
[25, 31, 32]. As in the deterministic case, the choice of the time step size for explicit schemes
strongly depends on the dimension of the underlying SDE. So, applying explicit methods to large
scale stochastic systems is not efficient in terms of the computational costs. Since the order of
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1. Introduction

the system is already reduced to a low dimension by MOR, explicit Euler-Maruyama methods
can be considered as well without causing too much computational cost.

1.3. Outline of the thesis

In order to render this thesis as self-contained as possible, we summarize the most important
results for Lévy processes and the corresponding integration theory in Chapters 2 and 3. Chapter
2 contains definitions and results mainly from Albeverio, Rüdiger [1]; [5, 55] and Redmann [58].
We start with basic definitions and properties of Lévy processes taking values in Hilbert spaces U

before we discuss particular examples as Poisson, (compensated) compound Poisson and Wiener
processes. They are also the main ingredients to describe a general Lévy process L = (L(t))t≥0

which, as will be detailed in Section 2.4, is represented by the sum of independent processes

L(t) = at +W (t)+ J1 (t)+ J2 (t) , t ≥ 0, (1.1)

where a∈U . W denotes a Wiener process which, apart from a linear drift, is the only continuous
Lévy process. Since W is a Gaussian process, it is square integrable as well. J1 + J2 represents
the discontinuous part of L. J1 covers the jumps of L smaller than a constant r0 > 0 (with respect
to the norm in U), where there might be infinitely many. It is defined as the limit of a sequence
of compensated compound Poisson processes. Moreover, J1 has existing moments of arbitrary
order since it is a Lévy process with bounded jumps. The remaining part J2 turns out to be a
compound Poisson process which is a process with finite jump activity and piece-wise constant
paths. It contains the large jumps of L which roughly speaking are the ones greater or equal than
r0. Because the jumps of J2 are not bounded, the corresponding moments need not exist. So, the
existence of moments of L depends on the existence of moments corresponding to J2.

Studying SPDEs with Lévy noise requires the definition of a stochastic integral of the form∫ t
0 Ψ(s)dL(s), t ≥ 0, where Ψ is an operator-valued stochastic process. In order to define this

kind of integral, the Lévy-Khinchin decomposition in (1.1) becomes a key tool. In Chapter 3,
we define an integral with respect to L by introducing an integral for every summand of the the
decomposition. For the linear drift, the definition of a (path-wise) Bochner integral is needed,
see Denk [23]. Since W and J1 are square integrable mean zero processes, we can cover this part
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1. Introduction

by the definition of ∫ t

0
Ψ(s)dM(s), t ≥ 0, (1.2)

in Section 3.1. Here, the process M is a square integrable Lévy process with mean zero. Due to
the independent, homogeneous increments and the existing second moment there is a symmetric,
non negative definite trace class operator Q such that

E〈M(t),x〉U 〈M(t),y〉U = t 〈Qx,y〉U , x,y ∈U,

which is for example proven in [55]. Having such a covariance operator Q, the definition of (1.2)
becomes similar to the Wiener case. We discuss properties of this integral such as the mean, the
Ito isometry and the martingale property. For the results regarding (1.2) we intensively make
use of the following references [3, 20, 26, 55, 56, 58]. Chapter 3 is concluded by the missing
definition of a stochastic integral with respect to J2. Since J2 has piece-wise constant paths and
just finitely many jumps the corresponding integral is a finite random sum, compare Applebaum
[4].

In Chapter 4, we introduce an abstract controlled linear SPDE that we solve numerically in the
following chapters

dX (t) = [A X (t)+Bu(t)]dt +N (X (t−))dM(t), X (0) = X0 ∈ H, (1.3)

Y (t) = C X (t), t ≥ 0.

Above, A : D(A )→ H is a generator of a contraction semigroup with H being a separable
Hilbert space. The SPDE, driven by a square integrable Lévy process M with mean zero, is
controlled by u(t) ∈ Rm and equipped with a finite dimensional output Y (t) ∈ Rp. The input
operator B ∈ L(Rm,H) and the output operator C ∈ L(H,Rp) are linear and bounded operators.
The same holds for the operator N that is defined on H and takes values in a suitable operator
space. We first show that the cadlag mild solution of the abstract SPDE is well-defined before
we emphasize two examples that are covered by our framework. In particular, we consider
cases, where A = ∆ and A =

[ 0 I
−∆ −αI

]
for α > 0 are included, i.e. the stochastic heat and the

stochastic damped wave equation.

In Chapter 5, we approximate the SPDE in (1.3) with a Galerkin method for the two special cases
mentioned above. For the stochastic heat equation we apply the techniques used in [27, 40, 29]
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1. Introduction

and generalize them to systems with Lévy noise. We moreover contribute a Galerkin scheme
based on similar ideas to a second order systems, i.e. in particular to damped wave equations
with Lévy noise. So, we can reduce (1.3) to a finite dimensional system of the form

dx(t) = [Ax(t)+Bu(t)]dt +
q

∑
k=1

Nkx(t−)dMk(t), t ≥ 0, x(0) = x0 ∈ Rn, (1.4)

yn(t) =Cx(t),

where A, Nk ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and Mk (k = 1, . . . ,q) are uncorrelated square inte-
grable scalar Lévy processes with mean zero. Note that Nk is just a notation of a matrix with
index k and not the k-th matrix power. We show the convergence of the corresponding output yn,
n ∈ N, to the SPDE output Y

E‖yn(t)−Y (t)‖2
2→ 0 for n→ ∞, t ≥ 0.

In order to ensure a small error in E‖yn(t)−Y (t)‖2
2, we fix a large n which is the state space

dimension of equation (1.4). To support the theory in Chapter 5, we plot paths of the Galerkin
solution of stochastic damped wave and heat equations and the corresponding output.

Choosing a large state space dimension n in (1.4) motivates the work done in Chapter 6, where
we consider balancing related MOR techniques for Lévy driven systems. This kind of MOR
requires the mean square asymptotic stability of (1.4), that is

σ

(
In⊗A+A⊗ In +

q

∑
k=1

Nk⊗Nk ·E
[
M2

k (1)
])
⊂ C−.

The idea is to find a system

dx̃(t) = [ARx̃(t)+BRu(t)]dt +
q

∑
k=1

Nk
Rx̃(t−)dMk(t),

ŷ(t) =CRx̃(t)

with AR, Nk
R ∈ Rr×r, BR ∈ Rr×m, CR ∈ Rp×r and r� n such that ŷ≈ yn.

We start with generalized reachability and observability concepts that roughly speaking are used
to characterize the importance of (average) states in system (1.4). The unimportant ones are those
producing the least observation energy and causing the most energy to reach. For this characteri-
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1. Introduction

zation, we introduce Gramians P :=
∫

∞

0 E
[
Φ(s)BBT ΦT (s)

]
ds and Q :=E

[∫
∞

0 ΦT (s)CTCΦ(s)ds
]
,

where the matrix-valued process Φ is the fundamental solution to (1.4). We prove that these
Gramians satisfy

AP+PAT +
q

∑
k=1

NkP(Nk)T E
[
M2

k (1)
]
=−BBT , (1.5)

AT Q+QA+
q

∑
k=1

(Nk)T QNk E
[
M2

k (1)
]
=−CTC, (1.6)

compare [9] for the Wiener case, where E
[
M2

k (1)
]
= 1 for k = 1, . . . ,q. Assuming a minimal

system (every state is reachable and observable), we could further show that the difficult to reach
(observe, respectively) states are contained in the space spanned by the eigenvectors correspond-
ing to the small eigenvalues of P (Q, respectively). As the next step we describe the procedure
of balancing systems with Lévy noise which is similar to the one of the deterministic case [2].
Using a suitable balancing state space invertible transformation matrix T̂ ∈ Rn×n, we obtain a
system with Gramians P = Q = Σ = diag(σ1, . . . ,σn) which guarantees that the dominant reach-
able and observable states are the same. We call the numbers σ1≥ σ2≥ . . .≥ σn Hankel singular
values. In order to then neglect the unimportant states in the balanced system, we investigate two
methods namely BT and SPA for linear controlled systems with Lévy noise. Working with the
partitions

TAT−1 =

[
A11 A12

A21 A22

]
, T NkT−1 =

[
Nk

11 Nk
12

Nk
21 Nk

22

]
, T B =

[
B1

B2

]
, CT−1 =

[
C1 C2

]
(1.7)

the reduced order coefficients for BT are

(AR,Nk
R,BR,CR) = (A11,Nk

11,B1,C1)

and the matrices corresponding to the SPA look as follows:

(AR,Nk
R,BR,CR) = (A11−A12A−1

22 A21,Nk
11−Nk

12A−1
22 A21,B1,C1−C2A−1

22 A21) =: (Ā, N̄k, B̄,C̄).

The properties of both ROMs are quite similar. We show that starting with a completely reachable
and observable original system, this property can be lost in the ROM obtained by BT or SPA,
respectively. Moreover, for both schemes the ROM is neither balanced nor the Hankel singular
values coincide with the ones of the original model in general. We further prove that BT preserves
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mean square asymptotic stability, i.e.

σ

(
Ir⊗A11 +A11⊗ Ir +

q

∑
k=1

Nk
11⊗Nk

11 ·E
[
M2

k (1)
])
⊂ C−,

where we use a more system theoretical approach compared to the proof in Benner et al. [11].
The same we conjecture for the ROM by SPA but so far we can only show that it is mean square
stable, that is

σ

(
Ir⊗ Ā+ Ā⊗ Ir +

q

∑
k=1

N̄k⊗ N̄k ·E
[
M2

k (1)
])
⊂ C−,

where this property is slightly more general than the one proven in [61]. We also establish an
error bound for both methods, where ŷi (i = BT,SPA) is either the reduced order output by BT or
SPA below. The bound is of the form

sup
t∈[0,T ]

E‖yn(t)− ŷi(t)‖2 ≤ (tr(Σ2Ki))
1
2 ‖u‖L2

T
, (1.8)

where Σ2 = diag(σr+1, . . . ,σn) with σr+1, . . . ,σn being the n− r smallest Hankel singular values
corresponding to the difficult to reach and observe states. Depending on the method used, we
have different weighting matrices Ki (i = BT,SPA). Ki mainly consists of matrices from the
partition in (1.7). The less important the neglected states in terms of the concepts we use, the
smaller the values σr+1, . . . ,σn, the smaller the error bound in (1.8) becomes.
To provide a complete summary of the current status in balancing related MOR for stochastic
systems, we moreover discuss the so-called type 2 BT for Lévy driven systems which was first
considered in [10, 22] for the Wiener case. We state the results achieved therein including the
error bound and stability analysis for this ansatz and contribute an H2-type error bound for a
more general framework than in [59]. We there replace the solution of (1.5) by a new Gramian
P2 fulfilling

AT P−1
2 +P−1

2 A+
q

∑
k=1

(Nk)T P−1
2 Nk ·E

[
M2

k (1)
]
≤−P−1

2 BBT P−1
2 .

In contrast to the first approach, a system is constructed, where the solution of (1.6) and now
P2 are diagonalized simultaneously, i.e. we ensure that P2 = Q = 2Σ = diag(2σ1, . . . ,2σn). The
diagonal entries of 2Σ are the Hankel singular values of the type 2 BT. With this new reachability
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Gramian we can still guarantee an error bound of the form (1.8), where the weighting matrix is a
different one and where Σ2 is substituted by 2Σ2 = diag(2σr+1, . . . ,2σn).

To illustrate the efficiency of the generalized balancing related MOR schemes we run several
numerical simulations in Chapter 6. We therefore apply both BT and the SPA to large scale
systems which for example result from semi-discretizing SPDEs with Lévy noise. In particular,
we compare trajectories of outputs corresponding to large scale systems with the ones of ROMs
obtained by using the proposed MOR techniques. Furthermore, we compute the exact errors of
these numerical approximations in order to show the sharpness of the error bounds which we
derive as well. A numerical comparison between BT and the SPA is also provided.

In the appendix, we first briefly state information about finite dimensional semi-martingales and
corresponding Ito formulas, before we discuss scalar Lévy-type integrals and their quadratic
covariation.
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2. Lévy Processes in Hilbert Spaces

In this chapter, we give an overview about basic properties of Lévy processes which we deal with
in the following chapters. This chapter is mainly based on Peszat, Zabczyk [55] but results of
Albeverio, Rüdiger [1]; Applebaum [5] and Redmann [58] also enter here.

2.1. De�nition and basic properties of Lévy processes in

Hilbert spaces

This section is based on Section 4.1 in the book of Peszat and Zabczyk [55], where one also
finds a more detailed overview. Below, let U denote a separable Hilbert space and B (U) be the
corresponding Borel σ -algebra.

Definition 2.1. An U-valued stochastic process L = (L(t))t≥0 has independent increments if

the (U,B (U))-valued random variables L(t1)− L(t0) ,L(t2)− L(t1) , . . . ,L(tn)− L(tn−1) are

independent for arbitrary times 0≤ t0 < t1 < · · ·< tn.

If the random variables L(t +h)−L(t) and L(s+h)−L(s) have the same distribution for s, t ∈
R+ and h > 0, then the process L has homogeneous increments.

Definition 2.2. Suppose L = (L(t))t≥0 to be a stochastic process in U with independent and

homogeneous increments. If furthermore L(0) = 0 holds and L is continuous in probability, i.e.

lim
s→t

P{‖L(s)−L(t)‖U > ε}= 0

for all t ∈ R+ and ε > 0, then L is called Lévy process.

Definition 2.3. Let
(
Ω,F ,(Ft)t≥0 ,P

)1be a filtered probability space. Moreover, if L is an

(Ft)t≥0-adapted Lévy process taking values in U and for all t,h ≥ 0 the random variable

1We assume that (Ft)t≥0 is right-continuous and F0 contains all sets A with P(A) = 0.

10



2. Lévy Processes in Hilbert Spaces

L(t +h)− L(t) is independent of Ft , then L is called Lévy process with respect to the filtra-
tion (Ft)t≥0.

Remark. If one considers a Lévy process in the sense of Definition 2.2 equipped with the natural

filtration, then one automatically obtains the property in Definition 2.3.

Important representatives of the class of Lévy processes are Poisson, Wiener and compound
Poisson processes which we investigate in the Subsections 2.2.1, 2.2.2 and 2.2.3.
Now, let L be a U-valued Lévy process and µt be the distribution of L(t). Furthermore, by µ ∗ν

we denote the convolution of the measures µ and ν .

Proposition 2.4. The family of probability measures (µt)t≥0 has the following property:

µs+t = µs ∗µt .

Proof. The property in Proposition 2.4 is a direct consequence of the decomposition

L(s+ t) = [L(s+ t)−L(t)]+ [L(t)−L(0)] , s, t ≥ 0,

and the independent and homogeneous increments of L.

For that reason, (µt)t≥0 is called convolution semigroup with the neutral element µ0. Here, we
interpret µ0 as a distribution of a random variable which equals 0 with probability 1.

In fact, µt is an infinitely divisible measure since L(t) can be represented by

L(t) =

t
dt

∑
n=1

L(n ·dt)−L((n−1) ·dt) ,

where we choose the number dt such that t
dt ∈N. Since every summand has the same distribution

as L(dt), we have µt = (µdt)
∗ t

dt , where (µdt)
∗ t

dt denotes the t
dt -th convolution of the measure µdt .

Remark. The finite dimensional distributions of a stochastic process with independent incre-

ments are characterized by the distributions of the increments of the process. Hence, a Lévy

process L is determined by the family of distributions (µt)t≥0.

In many cases, we need a certain property for the paths of a Lévy process. Therefore, we intro-
duce the definition below.
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2. Lévy Processes in Hilbert Spaces

Definition 2.5. A stochastic process L = (L(t))t≥0 is cadlag if the following conditions are ful-

filled:

• L has right-continuous trajectories with probability 1, i.e.

P
{

lim
s→t+
‖L(s)−L(t)‖U = 0,∀t ≥ 0

}
= 1

• and left limits L(t−) exist, i.e.

P
{

lim
s→t−
‖L(s)−L(t−)‖U = 0,∀t ≥ 0

}
= 1.

We now formulate a result which contains the vital property for trajectories of Lévy processes.

Theorem 2.6. Every Lévy process L̂ =
(
L̂(t)

)
t≥0 has a cadlag modification. Hence, there is a

cadlag Lévy process L̂ such that P
{

L(t) = L̂(t)
}
= 1 for all t ≥ 0.

Proof. This result and its proof can be found in Theorem 4.3 in [55].

Below, we always assume to have Lévy processes with the cadlag property, i.e. we work with
the cadlag modification from now on. For that reason, the expression ∆L(t) := L(t)−L(t−) is
well-defined for the Lévy process L.

Theorem 2.7. Suppose L = (L(t))t≥0 is a cadlag Lévy process with values in U and bounded

jumps, i.e. ‖L(t)−L(t−)‖U < c P-a.s. for c > 0 and all t ≥ 0, then for arbitrary β > 0 and

t ≥ 0 it holds that

E
[
eβ‖L(t)‖U

]
< ∞.

Proof. One finds this result and its proof in Theorem 4.4 in [55].

Thus, the existence of the moments E‖L(t)‖p
U , p ∈ N, is guaranteed for Lévy processes with

bounded jumps.

2.2. Examples

In this section, we state three important examples for the class of Lévy processes, namely Pois-
son, compound Poisson and Wiener processes. The first two examples are jump processes and
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2. Lévy Processes in Hilbert Spaces

the Wiener process is the only continuous representative.
One can see a trajectory of a compound Poisson process with values in R in the first picture of
Figure 2.1a. It is characterized by random jump times and random jump sizes. The times be-
tween the jumps are represented by independent and exponentially distributed random variables.
The second picture of Figure 2.1a shows a scalar compensated compound Poisson process which
is a compound Poisson process subtracted by its mean function. In this plot we see that the mean
function is linear in case it exists. Figure 2.1b shows paths of scalar Lévy processes. The first one
is a Wiener process and the second picture illustrates a process with a Wiener and a compound
Poisson part such that it is piece-wise continuous with random jumps in between.

0 1 2 3
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−0.5

0

0.5

0 1 2 3

0

0.5

1

1.5

(a) A trajectory of a compound Poisson and a compensated compound Poisson pro-
cess

0 1 2 3

−1

0

1

0 1 2 3

−2

0

2

4

(b) A trajectory of a Wiener process and a combination of a Wiener process and a
compound Poisson process being independent

Figure 2.1.: Trajectories of scalar Lévy processes

2.2.1. Poisson process

We start with discussing the fist representative of the class of Lévy processes which is the so-
called Poisson process. It is a pure jump process which takes values in Z+. The Poisson process
plays a fundamental role in the theory of Lévy processes. It is of importance in the analysis
of the jumps of Lévy processes in Section 2.3 and takes a central role in the Lévy-Khinchin
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2. Lévy Processes in Hilbert Spaces

decomposition which we study in Section 2.4. In this subsection, we mainly focus on basic
properties of the Poisson process.

Definition 2.8. A Poisson process N = (N (t))t≥0 with intensity a < ∞ is a Lévy process for

which the random variable N (t) has a Poisson distribution with parameter at for t ≥ 0, i.e.

P{N (t) = k}= (at)k

k!
e−at for a < ∞, k ∈ Z+.

We take all the propositions of this subsection from Proposition 4.9 in [55]. We provide a repre-
sentation of a Poisson process first.

Proposition 2.9. A Poisson process N = (N (t))t≥0 with intensity a < ∞ has the representation

N (t) =
∞

∑
k=1

χ {τk ≤ t} and τk = T1 +T2 + . . .+Tk, (2.1)

where (Tn)n∈N is a sequence of independent and identically distributed random variables which

are exponentially distributed with parameter a.

Hence, N is a Z+-valued process which has a finite number of jumps on a finite time interval.
Every jump of N is of size 1.

Proposition 2.10. Given a Poisson process N = (N (t))t≥0 with intensity a < ∞ and furthermore

let z ∈ C, then for t ≥ 0

E
[
ezN(t)

]
= exp{at (ez−1)} . (2.2)

The following proposition shows that a Poisson process is characterized by its jump sizes.

Proposition 2.11. A Z+-valued Lévy process N with

P{∆N (t) := N (t)−N (t−) ∈ {0,1}}= 1 (2.3)

is a Poisson process.

2.2.2. Compound Poisson process with values in Hilbert spaces

Compound Poisson processes represent a possible extension of Poisson processes. They have
random jump sizes and can be considered U-valued, where we assume U to be a separable
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2. Lévy Processes in Hilbert Spaces

Hilbert space with the corresponding Borel σ -algebra B (U).

Definition 2.12. Let ν be a finite measure on U with ν ({0}) = 0, then a compound Poisson
process with jump intensity measure ν is a cadlag Lévy process which has the following distri-

bution:

P{L(t) ∈ Γ}= e−ν(U)t
∞

∑
k=0

tk

k!
ν
∗k (Γ) , t ≥ 0, Γ ∈B (U) . (2.4)

Above, ν∗k denotes the k-th convolution of the measure ν and we assume that ν0 = δ0 holds.
Based on the distribution, we now state a representation for a compound Poisson process. This
is a consequence of the following two lemmas which are proven in Theorem 4.15 in [55]. There,
let ν be a finite measure on U with ν ({0}) = 0 and a = ν (U).

Lemma 2.13. Let Z1,Z2, . . . be independent, identically distributed random variables which take

values in U \ {0} with the distribution a−1ν . Additionally, let (N (t))t≥0 be a Poisson process

with intensity a which is independent of the random variables Z1,Z2, . . ., then

L(t) =
N(t)

∑
i=1

Zi, t ≥ 0, (2.5)

is a compound Poisson process with jump intensity measure ν .

Lemma 2.14. Suppose that L is a compound Poisson process with jump intensity measure ν ,

then one finds independent, identically distributed random variables Z1,Z2, . . . with distribution

a−1ν and a Poisson process (N (t))t≥0 with intensity a which is independent of Z1,Z2, . . . such

that L(t) = ∑
N(t)
i=1 Zi.

Remark. • Hence, the random variables N (t) provide the number of jumps of the compound

Poisson process until time t. Consequently, ν (U) = E [N (1)] equals the mean number of

jumps in U in the time interval [0,1].

• Moreover, ν (Γ) gives the mean number of jumps of L in Γ ∈ B (U \{0}) in the time

interval [0,1], since

E

[
N(t)

∑
n=1

χΓ(Zn)

]
=

∞

∑
k=0

P{N(t) = k}E
[

k

∑
n=1

χΓ(Zn)

]
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=
∞

∑
k=0

P{N(t) = k}
k

∑
n=1

P{Zn ∈ Γ}=
∞

∑
k=0

kP{N(t) = k} ν(Γ)

ν(U)
= tν(Γ).

Below, we consider important properties of compound Poisson processes L with jump intensity
measure ν . We start with an equivalent condition for integrability, see Proposition 4.18 (i) in
[55].

Proposition 2.15. L is integrable if ∫
U
‖y‖U ν (dy)< ∞. (2.6)

If (2.6) holds, then

E [L(t)] = t
∫

U
yν (dy) . (2.7)

Here, the last term is interpreted as a Bochner integral.

We introduce the compensated compound Poisson process L̂(t) = L(t)−E [L(t)], t ≥ 0, and
consider, besides properties of L, the ones for L̂ as well.

Proposition 2.16. Let
(
L̂(t)

)
t≥0 be a compensated compound Poisson process with respect to

the filtration (Ft)t≥0, then L̂ is a (Ft)t≥0-martingale.

Proof. Let 0≤ s≤ t, then

〈
E
[
χA
(
L̂(t)− L̂(s)

)]
,x
〉

U = E
[
χA
〈
L̂(t)− L̂(s),x

〉
U

]
for all x ∈U and every A ∈Fs due to the linearity of the Bochner integral. Since the increments
L̂(t)− L̂(s) are independent of Fs, it holds that

〈
E
[
χA
(
L̂(t)− L̂(s)

)]
,x
〉

U = P(A)E
[〈

L̂(t)− L̂(s),x
〉

U

]
= 0,

because L̂ has mean zero. Thus,

E
[
χAL̂(t)

]
= E

[
χAL̂(s)

]
for all A ∈Fs due to the linearity of the Bochner integral.
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We now characterize the second moments of (compensated) compound Poisson processes. The
following results can be found in Proposition 4.18 (iii) in [55].

Proposition 2.17. L is square integrable if and only if∫
U
‖y‖2

U ν (dy)< ∞. (2.8)

If (2.8) holds, then

E
∥∥L̂(t)

∥∥2
U = t

∫
U
‖y‖2

U ν (dy) (2.9)

and

E‖L(t)‖2
U = t

∫
U
‖y‖2

U ν (dy)+ t2
∥∥∥∥∫U

yν (dy)
∥∥∥∥2

U
. (2.10)

Furthermore, for all x, x̃ ∈U and t ≥ 0, we have

E
〈
L̂(t) ,x

〉
U

〈
L̂(t) , x̃

〉
U = t

∫
U
〈x,y〉U 〈x̃,y〉U ν (dy). (2.11)

Finally, we state characteristic functions of L(t) and L̂(t), t ≥ 0.

Proposition 2.18. For all z ∈ C, t ≥ 0 and x ∈U, we have

E
[
ez〈x,L̂(t)〉U

]
= exp

{
−t
∫

U

(
1− ez〈x,y〉U +z〈x,y〉U

)
ν (dy)

}
(2.12)

and

E
[
ez〈x,L(t)〉U

]
= exp

{
−t
∫

U

(
1− ez〈x,y〉U

)
ν (dy)

}
. (2.13)

Proof. For simplicity we just compute the characteristic function of L(t). We can easily conclude
the one of L̂(t) from the characteristic function of L(t). It holds that

E
[
ez〈x,L(t)〉U

]
=

∞

∑
k=0

e−at (at)k

k!
E
[
ez〈x,∑k

n=1 Zn〉U
]
.
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Due to the independence of the random variables Zn, n ∈ N, it follows

E
[
ez〈x,L(t)〉U

]
=

∞

∑
k=0

e−at (at)k

k!

k

∏
n=1

E
[
ez〈x,Zn〉U

]
=

∞

∑
k=0

e−at (at)k

k!

(∫
U

ez〈x,y〉U a−1
ν (dy)

)k

= exp
{
−at +at

∫
U

ez〈x,y〉U a−1
ν (dy)

}
.

Since a =
∫

U 1ν (dy), we obtain

E
[
ez〈x,L(t)〉U

]
= exp

{
−t
∫

U

(
1− ez〈x,y〉U

)
ν (dy)

}
.

2.2.3. Wiener processes in Hilbert spaces

Before dealing with Wiener processes, it is necessary to discuss Gaussian random variables first
which take values in Hilbert spaces. We start with the well-known finite dimensional case to
show the analogy to Hilbert space-valued Gaussian random variables.

We call a random vector Y ∈ Rn Gaussian with mean µ = E[Y ] and covariance matrix Q̃ =

E[(Y −µ) · (Y −µ)T ] if it has the density

fY (y) =
1

(2π)
n
2 det(Q̃)

1
2

exp
{
−1

2
(y−µ)T Q̃−1 (y−µ)

}
, for all y ∈ Rn.

We write Y ∼N
(
µ,Q̃

)
. The expression E〈Y −µ,x〉Rn 〈Y −µ,y〉Rn is given by

E〈Y −µ,x〉Rn 〈Y −µ,y〉Rn =
〈
Q̃x,y

〉
Rn (2.14)

for all x,y ∈ Rn.

We assume U to be a Hilbert space below. The next definition is based on Definition 3.30 in [55].
For a Gaussian with values in U we extend the definition as follows:

Definition 2.19. A U-valued random variable X is called (centered) Gaussian if the scalar ran-

dom variable 〈X ,x〉U is (centered) Gaussian for all x ∈U.

A U-valued stochastic process (X(t))t≥0 is called (centered) Gaussian if the scalar stochastic

process (〈X(t),x〉U)t≥0 is (centered) Gaussian for all x ∈U.
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2. Lévy Processes in Hilbert Spaces

With the help of the next theorem we can formulate property (2.14) for the infinite-dimensional
case as well.

Theorem 2.20. Let the random variable X be centered Gaussian taking values in U, then

E‖X‖2
U < ∞ holds.

Proof. The proof is done in Theorem 3.31 in [55].

Suppose X is a Gaussian random variable in U with E [X ] = µ . With the above Theorem we
conclude that the mapping

(x,y) 7→ E〈X−µ,x〉U 〈X−µ,y〉U

with (x,y)∈U×U is a symmetric, non negative definite and bounded bilinear form on U . There-
fore, there exists a symmetric, non negative definite, linear and bounded operator Q : U →U ,
such that

E〈X−µ,x〉U 〈X−µ,y〉U = 〈Qx,y〉U .

In addition, Q is a trace class operator, since

tr(Q) =
∞

∑
n=1
〈Qen,en〉U =

∞

∑
i=1

E〈X−µ,en〉2U = E‖X−µ‖2
U < ∞

for an arbitrary orthonormal basis (en)n∈N of U . We briefly write Q ∈ L+
1 (U), where L+

1 (U) is
the space of all non negative definite and symmetric trace class operators on U .
We now introduce the Wiener process which is another representative of the class of Lévy pro-
cesses. We always denote a Wiener process by W . Da Prato, Zabczyk [20] and Prévôt and
Röckner [56] assume to have Gaussian increments of W in their definitions. This is actually
not necessary. We will see below that the definition we use from [55] implies the Gaussian
distribution.

Definition 2.21. A U-valued Lévy process W = (W (t))t≥0 with mean zero and P-a.s. continuous

trajectories is called Wiener process.

Below, we state important properties of W .

Theorem 2.22. W is a Gaussian process. Moreover, E‖W (t)‖2
U < ∞ holds for all t ≥ 0.
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2. Lévy Processes in Hilbert Spaces

Proof. From the definition given above, W is a Lévy process with almost surely continuous
trajectories and mean zero. Hence, the scalar process 〈W (t),x〉U , t ≥ 0, is a real-valued Lévy
process with almost surely continuous trajectories and mean zero for all x ∈ U . So, Ŵ =

(〈W (t),x〉U)t≥0 is a real-valued Wiener process2. Therefore, Ŵ is a Gaussian process in par-
ticular, such that W is Gaussian by Definition 2.19. Consequently, by Theorem 2.20, W is square
integrable.

From Theorem 2.22, there exists an operators Q(t) ∈ L+
1 (U), such that

E〈W (t),x〉U 〈W (t),y〉U = 〈Q(t)x,y〉U (2.15)

for all t ≥ 0 and x,y ∈U .
Furthermore, Q(t) = tQ0 holds, where Q0 ∈ L+

1 (U). We obtain this property by Theorem 2.39.
Rewriting equation (2.15), we have

E〈W (t),x〉U 〈W (t),y〉U = t 〈Q0x,y〉U (2.16)

for all t ≥ 0 and x,y ∈U . We call the operator Q0 in equation (2.16) covariance operator of W .
The following theorem provides a representation of a Wiener process W . The here given proof
contains more details compared to the one stated in Section 4.4 in [55].

Theorem 2.23. Let Q0 be the covariance operator of W and (en)n∈N be an orthonormal basis

of the Hilbert space U which contains the eigenvectors of Q0. Additionally, let (γn)n∈N be the

corresponding eigenvalues, so that Q0en = γnen for n ∈ N, then

W (t) =
∞

∑
n=1

Wn(t)en, t ≥ 0, (2.17)

where the real-valued Wiener processes

Wn(t) = 〈W (t),en〉U , n ∈ N,

are independent with covariances

E[Wn(s)Wn(t)] = min{s, t} γn

2This property is a consequence of Lévy’s martingale characterization of a standard Wiener process.
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2. Lévy Processes in Hilbert Spaces

for s, t ≥ 0. The series in (2.17) converges P-a.s. and in L2(Ω,F ,P;U). Moreover, it can be

shown that the series ∑
∞
n=1 γn converges.

Proof. The processes (〈W (t),en〉U)t≥0, n ∈ N, are real-valued Lévy processes with mean zero
and almost surely continuous trajectories. Hence, they are real-valued Wiener processes due to
Lévy’s martingale characterization for standard Wiener processes (Theorem 4.12 in [55]). Let
s≥ t, then

E〈W (s)−W (t),en〉U 〈W (t),em〉U = E〈W (s)−W (t),en〉U E〈W (t),em〉U = 0,

since the increments are independent. By (2.16), we obtain

E〈W (s),en〉U 〈W (t),em〉U = E〈W (t),en〉U 〈W (t),em〉U = t 〈Q0en,em〉U = t γn 〈en,em〉U

=

t γn if n = m,

0 if n 6= m.

The convergence with probability 1 is a consequence of the Fourier series representation u =

∑
∞
n=1 〈u,en〉U en of an arbitrary element u∈U . Let us now consider the mean square convergence.

We already know that W (t), t ≥ 0, can be interpreted as the following limit

lim
k→∞

Xk(t) =W (t) P-a.s.

Here, we set Xk = ∑
k
n=1Wn(t)en. It follows

lim
k→∞

‖Xk(t)‖2
U = ‖W (t)‖2

U P-a.s.

Since ‖Xk(t)‖2
U = ∑

k
n=1 |Wn(t)|2, the sequence

(
‖Xk(t)‖2

U

)
k∈N

is increasing and hence, by the
monotone convergence theorem, we obtain

E‖Xk(t)‖2
U → E‖W (t)‖2

U

for k→ ∞. For all k ∈ N it holds that

E‖Xk(t)‖2
U =

k

∑
n=1

E|Wn(t)|2 = t
k

∑
n=1

γn.
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2. Lévy Processes in Hilbert Spaces

Thus, we have

t
∞

∑
n=1

γn = E‖W (t)‖2
U < ∞.

From the following equation

E

∥∥∥∥∥ m

∑
n=k

Wn(t)en

∥∥∥∥∥
2

U

= t
m

∑
n=k

γn

with k < m the convergence of series (2.17) in L2(Ω,F ,P;U) follows, since the right-hand side
tends to zero for k,m→ ∞ and since L2(Ω,F ,P;U) is complete.

Because the distribution of 〈W (t),x〉U is given by N (0, t 〈Q0x,x〉U), we have the following
characteristic function for W (t):

E
[
ei〈W (t),x〉U

]
= exp

{
− t

2
〈Q0x,x〉U

}
, t ≥ 0, x ∈U. (2.18)

Proposition 2.24. Suppose that (W (t))t≥0 is a U-valued Wiener process with respect to the

filtration (Ft)t≥0, then W is an (Ft)t≥0-martingale.

Proof. Let 0≤ s≤ t and A ∈Fs. We derive

〈E [χA (W (t)−W (s))] ,x〉U

for x ∈U . Due to the linearity of the Bochner integral, we have

〈E [χA (W (t)−W (s))] ,x〉U = E [χA 〈W (t)−W (s),x〉U ] .

Since the increments W (t)−W (s) are independent of Fs, we obtain

〈E [χA (W (t)−W (s))] ,x〉U = P(A)E [〈W (t)−W (s),x〉U ] = 0,

because W has mean zero. Again, by the linearity of the Bochner integral it follows that

E [χAW (t)] = E [χAW (s)]

for all A ∈Fs.
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2. Lévy Processes in Hilbert Spaces

2.3. Jumps and jump measures of Lévy processes

In this section, by L = (L(t))t≥0 we denote an arbitrary Lévy process. Further, we define
∆L(t) := L(t)− L(t−) as a jump of L at time t. First of all, we deal with the jumps of L.
Below, we always assume 0≤ t < ∞. Now we introduce the following object:

N (t,A) = #{0≤ s≤ t,∆L(s) ∈ A}= ∑
0≤s≤t

χA (∆L(s)) , A ∈B (U \{0}) , (2.19)

which counts the jumps of L which are in the set A. We only sum over the s in the right hand side
of (2.19), where the corresponding summand is non-zero such that this expression is well-defined
as a sum over a countable set. N we call the jump counting measure corresponding to L. This
definition is helpful for the following.

Definition 2.25. We call the set function ν with ν (A) = E [N (1,A)] for A ∈B (U \{0}) jump
intensity measure of L on U \{0}.

Remark. The set function ν is not necessarily finite on U \{0}. There are also Lévy processes

which have infinitely many jumps on average on the time interval [0,1], compare also [1].

Moreover, we can find sets, in which we have finitely many jumps P-a.s. as well as finitely many
jumps on average on a finite time interval. For that reason, we proceed with the next definition.

Definition 2.26. A set A ∈B (U \{0}) is separated from zero if 0 is no element of the closure of

A, i.e. 0 /∈ Ā.

Lemma 2.27. If A ∈B (U \{0}) is separated from zero, then the random function N is finite,

i.e. N (t,A)< ∞ P-a.s. for all t ≥ 0.

Proof. One finds this result and the corresponding proof in Proposition 2.8 in [1].

We still assume that the set A ∈B (U \{0}) is separated from zero. Hence, N = (N (t,A))t≥0

is a Z+-valued Lévy process which obviously just has jumps of size 1. Consequently, from
Proposition 2.11 N is a Poisson process with parameter ν(A). This we summarize in the theorem
below.

Theorem 2.28. Let A ∈B (U \{0}) be separated from zero, i.e. 0 /∈ Ā, then

P{N(t,A) = n}= (ν(A)t)n

n!
e−ν(A)t , n ∈ N, t ≥ 0. (2.20)
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2. Lévy Processes in Hilbert Spaces

Proof. This result is proven in [5] (Theorem 2.3.5) or in [42] (Proposition 2.15), respectively.

Remark. Since (N(t,A))t≥0 is a Lévy process with bounded jumps, tν(A) = E [N(t,A)] < ∞

holds by Theorem 2.7. Hence, ν(A)< ∞ for sets A ∈B(U \{0}) which are separated from zero.

Theorem 2.29. For pairwise disjoint Borel sets A1, . . . ,Am which are separated from zero and

for distinct times t1, . . . , tm ∈R+, the random variables N(t1,A1), . . . ,N(tm,Am) are independent.

Proof. This statement is proven analogously to Theorem 2.3.5 in [5].

By previous considerations, we obtain the next statement.

Proposition 2.30. (i) For almost all ω ∈Ω and for all t ≥ 0, the set function A→ N(t,A)(ω)

is a σ -finite measure on B(U \{0}).

(ii) The set function A→ ν(A), where ν(A) =E [N(1,A)], is a σ -finite measure on B(U \{0}).

Proof. See Theorem 2.13, Corollary 2.14, Theorem 2.17 and Corollary 2.18 in [1].

Remark. We can extend the set functions that we consider in Proposition 2.30 to set functions

on the σ -algebra B(U) by setting N(t,{0})(ω) = ν({0}) = 0 for almost all ω ∈Ω.

As a next step, we define an integral of the form
∫

A f (x)N(t,dx)(ω) for B(U \ {0})/B(U)-
measurable functions f : U \ {0} → U . Here, the set A ∈B(U \ {0}) is separated from zero,
i.e. 0 /∈ Ā. If we fix ω , then N(t, ·)(ω), t ≥ 0, is a measure on B(U \{0}) by Proposition 2.30.
Therefore,

∫
A f (x)N(t,dx) can be introduced as a random Bochner integral.

Everything that follows is based on Subsection 2.3.2 in the book of Applebaum [5]. Applebaum
considers the same integral there but in the finite dimensional case, where U = Rd .

From Lemma 2.27, we know that N(t,A) is P-a.s. finite for sets A∈B(U \{0}) that are separated
from zero. In particular, this means that there are just finitely many x ∈ A, so that N(t,{x}) 6= 0
holds. Hence, we have ∫

A
f (x)N(t,dx)(ω) = ∑

x∈A
f (x)N(t,{x})(ω) (2.21)

as a finite sum for each t ≥ 0 and almost all ω ∈ Ω. As in (2.19), we do not consider the x ∈ A

in the summation, where the summand is zero. Since N(t,{x}) 6= 0 if and only if ∆L(s) = x for
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at least one time 0≤ s≤ t, we obtain∫
A

f (x)N(t,dx)(ω) = ∑
0≤s≤t

f (∆L(s))χA(∆L(s)) (2.22)

for almost every ω ∈ Ω. Because (N(t,A))t≥0 represents a Poisson process for fixed A, we call
the integral introduced above a Poisson integral. Below, we consider the characteristic function
of
∫

A f (x)N(t,dx), t ≥ 0. The following theorem provides that the distribution of the Poisson
integral is characterized by the jump intensity measure ν . It is already proven for the finite
dimensional case in [5] and here extended to a Hilbert space setting.

Theorem 2.31. Let A be a Borel set separated from zero and y ∈U, then we have

E
[

exp
{

i
〈

y,
∫

A
f (x)N(t,dx)

〉
U

}]
= exp

{
t
∫

A

(
ei〈y, f (x)〉U −1

)
ν (dx)

}
. (2.23)

Proof. We prove this theorem for simple functions first. For that reason, let f (x)=∑
n
i=1 uiχAi (x),

where ui ∈U and Ai are pairwise disjoint Borel subsets of A for every i = 1, . . . ,n. It follows that∫
A f (x)N(t,dx) = ∑

n
i=1 uiN(t,Ai). Thus,

E
[

exp
{

i
〈

y,
∫

A
f (x)N(t,dx)

〉
U

}]
= E

[
exp

{
i

〈
y,

n

∑
i=1

uiN(t,Ai)

〉
U

}]
.

Since the random variables N(t,Ai) are independent, it holds that

E
[

exp
{

i
〈

y,
∫

A
f (x)N(t,dx)

〉
U

}]
=

n

∏
i=1

E [exp{i〈y,ui〉U N(t,Ai)}] .

Due to Proposition 2.10, we obtain

E
[

exp
{

i
〈

y,
∫

A
f (x)N(t,dx)

〉
U

}]
=

n

∏
i=1

exp
{

t
(

ei〈y,ui〉U −1
)

ν(Ai)
}

= exp

{
t

n

∑
i=1

(
ei〈y,ui〉U −1

)
ν(Ai)

}

= exp
{

t
∫

A

(
ei〈y, f (x)〉U −1

)
ν (dx)

}
.
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We can transfer the Poisson integral for simple functions to the representation in (2.22) since

n

∑
i=1

uiN(t,Ai) =
n

∑
i=1

ui ∑
0≤s≤t

χAi (∆L(s)) = ∑
0≤s≤t

n

∑
i=1

uiχAi (∆L(s))χA (∆L(s))

= ∑
0≤s≤t

f (∆L(s))χA (∆L(s)) .

For general measurable functions f̃ we know about the existence of a sequence of simple func-
tions ( fn)n∈N such that fn→ f̃ point-wise for all x ∈U \{0}. This yields∥∥∥∥∥ ∑

0≤s≤t
fn (∆L(s))χA (∆L(s))− ∑

0≤s≤t
f̃ (∆L(s))χA (∆L(s))

∥∥∥∥∥
U

→ 0

for n→ ∞ and for almost every ω ∈Ω. All in all, this means∫
A

fn(x)N(t,dx)→
∫

A
f̃ (x)N(t,dx) P-a.s.

Lebesgue’s theorem provides

E
[

exp
{

i
〈

y,
∫

A
f̃ (x)N(t,dx)

〉
U

}]
= lim

n→∞
E
[

exp
{

i
〈

y,
∫

A
fn(x)N(t,dx)

〉
U

}]
= lim

n→∞
exp
{

t
∫

A

(
ei〈y, fn(x)〉U −1

)
ν (dx)

}
.

Again, by Lebesgue’s theorem, we obtain

E
[

exp
{

i
〈

y,
∫

A
f̃ (x)N(t,dx)

〉
U

}]
= exp

{
t
∫

A

(
ei〈y, f̃ (x)〉U −1

)
ν (dx)

}
.

2.4. Lévy-Khinchin decomposition

Throughout this section, we intensively use arguments and results from Section 4.5 in [55] in
which the Lévy-Khinchin decomposition in Hilbert spaces is proven. Here, we do not prove
new aspects but we contribute a more detailed discussion, e.g. in the proofs, and add more
interpretations compared to [55] for a better understanding of this theory. For a finite dimensional
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version of this result we refer to Section 2.4 in [5].
Let U be a separable Hilbert space and L be an arbitrary U-valued cadlag Lévy process defined
on a filtered probability space

(
Ω,F ,(Ft)t≥0 ,P

)3. Furthermore, let L be an (Ft)t≥0-adapted
process and the increments L(t +h)−L(t) be independent of Ft for t,h≥ 0.
The Lévy-Khinchin decomposition, we consider here, is one of the central results in the theory
of Lévy processes and is helpful to introduce a stochastic integral with respect to L as we do in
Section 3.2. The idea of this decomposition is to express L(t) as the sum of LC (t) and LJ (t),
t ≥ 0. Here, LC is a process with continuous trajectories (P-a.s.) and LJ is the jump part of L.
First of all, we consider the jump part LJ of L and construct a Lévy process which contains all
jumps of L. We assume to have a monotonically decreasing null sequence (rk)k∈Z+

. L has finitely
many jumps in the set A0 = {x : ‖x‖U ≥ r0} on a finite time interval since A0 is separated from
zero. Hence, the expression

LA0 (t) := ∑
0≤s≤t

χA0 (∆L(s))∆L(s) , t ≥ 0, (2.24)

is well-defined as a finite sum (P-a.s.). So, we already have a process which contains jumps
lying in A0. To identify a process including the jumps which are smaller than r0 with respect to
the norm, turns out to be more complicated since we may have infinitely many jumps in Borel
sets which are not separated from zero. We now consider the sets Ak = {x : rk ≤ ‖x‖U < rk−1},
k ∈ N. Obviously, they are separated from zero such that the sums

LAk (t) := ∑
0≤s≤t

χAk (∆L(s))∆L(s) , t ≥ 0,

are finite (P-a.s.). These sums can represent the jumps of the Lévy process in Ak, k ∈ N. So, we
are able to cover the jumps in {x : rn ≤ ‖x‖U ≤ r0}, n ∈ N, by ∑

n
k=1 LAk(t). The “small” jumps

are the ones that cause problems since the series ∑
∞
k=1 LAk(t), t ≥ 0, can be divergent. This ansatz

to represent the jumps in {x : ‖x‖U < r0} is not possible. Before we state a well-defined process
that contains the “small” jumps, we consider Lemmas first which are important for the proof of
the Lévy-Khinchin decomposition.
Below, let LA(t) := ∑0≤s≤t χA (∆L(s))∆L(s), t ≥ 0, for Borel sets A separated from zero. With
the following Lemma we can classify the processes LAk , k ∈ Z+.

3(Ft)t≥0 is right-continuous and complete.
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Lemma 2.32. Let A ∈B (U \{0}) be separated from zero and x ∈U, then

E
[
ei〈x,LA(t)〉U

]
= exp

{
−t
∫

A

(
1− ei〈x,y〉U

)
ν (dy)

}
,

where ν is the jump intensity measure that corresponds to L.

Proof. See Theorem 2.31 with f (x) = x.

Hence, the processes LAk , k ∈ Z+, are compound Poisson processes with jump intensity measure
χAk (y)ν (dy).

Lemma 2.33. Let L be a Lévy process and A separated from zero, then LA and L− LA are

independent Lévy processes.

Proof. One finds the result in Appendix F of [55].

From the two Lemmas above, we conclude the following:

Lemma 2.34. Let A and Ã be disjoint Borel sets that are separated from zero, then LA and LÃ

are independent Lévy processes.

Proof. Since A∪ Ã is separated from zero, by Lemma 2.32 the process LA∪Ã is a compound
Poisson process and hence a Lévy process. Because A and Ã are disjoint, we obtain

LA∪Ã = LA +LÃ.

With Lemma 2.33 the independence of LA and LÃ follows.

As already mentioned, the series ∑
∞
k=1 LAk(t), t ≥ 0, does not converge in general but we can

compensate every summand, i.e. we subtract the mean. The mean exists by Theorem 2.7 due to
the bounded jumps of the Lévy processes LAk , k ∈ N, and is given by E

[
LAk (t)

]
= t

∫
Ak

yν (dy),
see equation (2.7). So, we can formulate the following, which can also be found in Lemma 4.26
in [55].

Theorem 2.35. The series ∑
∞
k=1

(
LAk(t)− t

∫
Ak

yν (dy)
)

converges with probability 1 uniformly

with respect to t on every compact interval [0,T ] as well as in mean square (in L2(Ω,F ,P;U)).
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With the processes from the above theorem and from (2.24) we now completely characterized
the jump part LJ . Before we prove Theorem 2.35, we first of all need another property of the
jump intensity measure ν . We already know that ν is finite on A0 = {x : ‖x‖U ≥ r0}. Next, we
formulate a result that shows the behaviour of ν on {x : ‖x‖U < r0}. We take this result from
Theorem 4.23 in [55], where it is proven with the same techniques.

Lemma 2.36. If ν is the jump intensity measure corresponding to a Lévy process L, then∫
{y:‖y‖U<r0}

‖y‖2
U ν (dy)< ∞.

Proof. Due to Lemma 2.33, L̃ = L−LA0 is a Lévy process. This process has jumps bounded by
r0. Hence, by Theorem 2.7, the second moment of L̃ exists. We set

L̃n(t) :=

(
L̃(t)−

n

∑
k=1

LAk(t)

)
−E

(
L̃(t)−

n

∑
k=1

LAk(t)

)

with n ∈ N and t ≥ 0. This yields

E
∥∥L̃(t)−EL̃(t)

∥∥2
U = E

∥∥∥∥∥L̃n(t)+

(
n

∑
k=1

LAk(t)−E
n

∑
k=1

LAk(t)

)∥∥∥∥∥
2

U

.

By Lemma 2.33, L̃−∑
n
k=1 LAk and ∑

n
k=1 LAk are independent Lévy processes. Thus,

E
∥∥L̃(t)−EL̃(t)

∥∥2
U = E

∥∥L̃n(t)
∥∥2

U +E

∥∥∥∥∥ n

∑
k=1

LAk(t)−E
n

∑
k=1

LAk(t)

∥∥∥∥∥
2

U

.

So, by equation (2.9), we obtain

t
∫
{y:rn≤‖y‖U<r0}

‖y‖2
U ν (dy) = E

∥∥∥∥∥ n

∑
k=1

LAk(t)−E
n

∑
k=1

LAk(t)

∥∥∥∥∥
2

U

≤ E
∥∥L̃(t)−EL̃(t)

∥∥2
U < ∞,

n ∈ N, and hence the result follows for t = 1 and n→ ∞.

Remark. (i) If we set r0 = 1, then
∫

U min{‖y‖2
U ,1}ν (dy)< ∞.

(ii) The measure ν is also called Lévy measure.
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In the following proof the same arguments as in the proof of Lemma 4.26 in [55] are used but it
contains much more details for a better understanding of every step of the proof.

Proof of Theorem 2.35. We start with showing the mean square convergence. By Lemma 2.34 it
is known that LA1, . . . ,LAn , n ∈ N, are independent Lévy processes. Thus,

E

∥∥∥∥∥ n

∑
k=1

(
LAk(t)−ELAk(t)

)∥∥∥∥∥
2

U

=
n

∑
k=1

E
∥∥LAk(t)−ELAk(t)

∥∥2
U . (2.25)

So, F =
(
E
∥∥∑

n
k=1
(
LAk(t)−ELAk(t)

)∥∥2
U

)
n∈N

is a monotonically increasing sequence. More-
over, using (2.9) and Lemma 2.36, we know:

E

∥∥∥∥∥ n

∑
k=1

(
LAk(t)−ELAk(t)

)∥∥∥∥∥
2

U

= t
∫
{y:rn≤‖y‖U<r0}

‖y‖2
U ν (dy)

≤ t
∫
{y:‖y‖U<r0}

‖y‖2
U ν (dy)< ∞

for all n∈N and t ≥ 0 such that F is bounded as well. For that reason, F converges. Furthermore,
by equation (2.25), we obtain

E

∥∥∥∥∥ n

∑
k=m+1

(
LAk(t)−ELAk(t)

)∥∥∥∥∥
2

U

=
n

∑
k=1

E
∥∥LAk(t)−ELAk(t)

∥∥2
U −

m

∑
k=1

E
∥∥LAk(t)−ELAk(t)

∥∥2
U

= E

∥∥∥∥∥ n

∑
k=1

(
LAk(t)−ELAk(t)

)∥∥∥∥∥
2

U

−E

∥∥∥∥∥ m

∑
k=1

(
LAk(t)−ELAk(t)

)∥∥∥∥∥
2

U

(2.26)

for m < n. The term in (2.26) tends to zero for m,n→ ∞ since F converges. Hence, the con-
vergence of the series ∑

∞
k=1
(
LAk(t)−ELAk(t)

)
, t ≥ 0, in L2(Ω,F ,P;U) follows due to the com-

pleteness of the space.
Now, we fix a finite time interval [0,T ] and set Zm,n :=

(
∑

n
k=m

(
LAk(t)−ELAk(t)

))
t∈[0,T ]. Zm,n

is a martingale (with respect to (Ft)t∈[0,T ]) such that ‖Zm,n‖2
U is a submartingale. By Doob’s
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submartingale inequality (Theorem 3.41 in [55]), we have the following:

P

{
sup

0≤t≤T
‖Zm,n(t)‖2

U ≥ ε

}
≤ E‖Zm,n(T )‖2

U
ε

.

The right-hand side tends to zero for m,n→∞. So, the series converges uniformly in probability
on [0,T ] since every Cauchy sequence with respect to a measure, converges with respect to the
measure. The desired convergence with probability 1 is a consequence of Proposition 3.11 and
Corollary 3.12 in [55].

Remark. L̂ = ∑
∞
k=1

(
LAk(t)− t

∫
Ak

yν (dy)
)

, t ≥ 0, is a Lévy process because it is represented by

a sum of independent Lévy processes. Every summand of ∑
∞
k=1

(
LAk(t)− t

∫
Ak

yν (dy)
)

, t ≥ 0, is

a square integrable martingale with respect to (Ft)t≥0. So, L̂ is a square integrable martingale

with respect to (Ft)t≥0 as well.

Below, we state the Lévy-Khinchin decomposition, a result that is also stated in Section 4.5 in
the book of Peszat and Zabczyk [55]. In the corresponding proof, we characterize the continuous
part LC of L.

Theorem 2.37 (Lévy-Khinchin decomposition). Let (rk)k∈Z+
be a monotonically decreasing null

sequence, A0 := {x : ‖x‖U ≥ r0} and Ak := {x : rk ≤ ‖x‖U < rk−1} for k ∈N. Moreover, let ν be

the jump intensity measure of L and a ∈U, then a Lévy process can be decomposed as follows:

L(t) = at +W (t)+
∞

∑
k=1

(
LAk (t)− t

∫
Ak

yν (dy)
)
+LA0 (t) , t ≥ 0. (2.27)

Here, W is a Wiener process, LAk is a compound Poisson process with jump intensity measure

χ{y:rk≤‖y‖U<rk−1} (y)ν (dy) for every fixed k ≥ 1 and LA0 is a compound Poisson process with

jump intensity measure χ{y:‖y‖U≥r0} (y)ν (dy). Additionally, the summands of this decomposition

are independent processes and the series in (2.27) converges in mean square as well as uniformly

with probability 1 on every compact time interval.

Proof. By the above considerations, we already characterized the jump part of L. We define

LC(t) := L(t)−
∞

∑
k=1

(
LAk (t)− t

∫
Ak

yν (dy)
)
−LA0 (t) , t ≥ 0.
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Hence, LC is Lévy process with P-almost surely continuous trajectories. So, a :=E [LC (1)] exists
and W (t) := LC (t)−at, t ≥ 0, is a Lévy process with mean zero and P-almost surely continuous
trajectories. By Definition 2.21, W is a Wiener process. We conclude the independence of the
processes occurring in the decomposition from the Lemmas 2.33 and 2.34.

Many authors choose an alternative representation of the jumps part in the Lévy-Khinchin de-
composition. For example Applebaum in [3] defines the processes LAk , k ∈ Z+, as Poisson
integrals (see Section 2.3), i.e.

LAk(t) =
∫

Ak

xN(t,dx), t ≥ 0.

Applebaum further sets Ñ(t,dx) := N(t,dx)− tν (dx) and rewrites the series in (2.27) as∫
{x:‖x‖U<r0}

xÑ(t,dx) := lim
n→∞

∫
{x:rn<‖x‖U<r0}

xÑ(t,dx) (2.28)

for t ≥ 0, where ∫
A

xÑ(t,dx) :=
∫

A
xN(t,dx)− t

∫
A

xν (dx)

for sets A ∈B(U \{0}) separated from zero. The limit in definition (2.28) is meant to be in the
L2(Ω,F ,P;U) sense or with probability 1, respectively. There are other approaches to define
the integral in (2.28) such as in [1]. This integral representation has the advantage that an Ito
integral with respect to the series in (2.27) can be defined by introducing an integral for the
product measure Ñ(dt,dx).
The article of Applebaum [4] contains the Lévy-Khinchin decomposition for Lévy processes
with values in separable Banach spaces and an even more general result is obtained by Riedle
and van Gaans [63] for Lévy processes taking values in arbitrary Banach spaces.

Remark. We can transfer the processes LAk with k = 0,1, . . . into the form in (2.5). Therefore,

we take the object introduced in (2.19):

N (t,Ak) = #{0≤ s≤ t,∆L(s) ∈ Ak} .

Furthermore, we define a sequence
(
τk

i
)

i∈N of stopping times k ∈ Z+ as follows:

τ
k
1 := inf{t > 0 : ∆L(t) ∈ Ak} and τ

k
i := inf

{
t > τ

k
i−1 : ∆L(t) ∈ Ak

}
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(i = 2,3, . . .). We define

Zk
i = ∆L(τk

i ),

then
(
Zk

i
)

i∈N, k ∈ Z+, is the sequence of independent and identically distributed jump sizes. The

processes LAk , k ∈ Z+ are then given by

LAk(t) =
N(t,Ak)

∑
i=1

Zk
i , t ≥ 0.

The jump sizes Zk
i , k ∈ Z+ and i ∈ N, have the distribution

P
{

Zk
i ∈ Γ

}
=

ν(Γ∩Ak)

ν(Ak)
, Γ ∈B(U \{0}).

Below, we provide a lemma including a detailed proof. The same result can be found in Section
4.6 in [55] but without proof.

Lemma 2.38. Let U be a Hilbert space and L = (L(t))t≥0 be a Lévy process with values in U.

From its Lévy-Khinchin decomposition, we obtain

E
[
ei〈x,L(t)〉U

]
=
∫

U
ei〈x,y〉U µt (dy) = e−tψ(x), x ∈U,

where

ψ (x) =− i〈a,x〉U +
1
2
〈Q0x,x〉U

+
∫

U

(
1− ei〈x,y〉U +χ{y:‖y‖U<1} (y) i〈x,y〉U

)
ν (dy). (2.29)

Above, we use the notation of Theorem 2.37 which means that a ∈ U, Q0 is the covariance

operator of the Wiener part, ν is the jump intensity measure of L and µt denotes the distribution

of L(t).

Proof. From the Lévy-Khinchin decomposition, we obtain

E
[
ei〈x,L(t)〉U

]
= E

[
ei〈x,at〉U

]
·E
[
ei〈x,W (t)〉U

]
·E
[

e
i
〈

x,∑∞
k=1

(
LAk (t)−t

∫
Ak

yν(dy)
)〉

U

]
·E
[
ei〈x,LA0(t)〉U

]
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by the independence of the processes. Below, we derive the characteristic functions of every
component of the decomposition.

E
[
ei〈x,W (t)〉U

]
= e

−t
2 〈Q0x,x〉U

due to (2.18) and

E
[
ei〈x,LA0(t)〉U

]
= e−t

∫
{y:‖y‖≥r0=1} (1−ei〈x,y〉U )ν(dy)

because of Lemma 2.32. The series in the Lévy-Khinchin converges P-almost surely such that
the corresponding characteristic function is

E
[

e
i
〈

x,∑∞
k=1

(
LAk (t)−t

∫
Ak

yν(dy)
)〉

U

]
= lim

n→∞
E
[

e
i
〈

x,∑n
k=1

(
LAk (t)−t

∫
Ak

yν(dy)
)〉

U

]
by Lebesgue’s Theorem. Using Lemma 2.32 yields

E
[

e
i
〈

x,∑n
k=1

(
LAk (t)−t

∫
Ak

yν(dy)
)〉

U

]
= e−t

∫
{y:rn≤‖y‖U<r0=1}(1−ei〈x,y〉U +i〈x,y〉U)ν(dy)

for n ∈ N. Hence, it follows

E
[

e
i
〈

x,∑∞
k=1

(
LAk (t)−t

∫
Ak

yν(dy)
)〉

U

]
= e−t

∫
{y:‖y‖U<r0=1}(1−ei〈x,y〉U +i〈x,y〉U)ν(dy)

.

Finally, we show that the integral in (2.29) is well-defined:∫
{y:‖y‖U<r0=1}

∣∣∣1− ei〈x,y〉U +i〈x,y〉U
∣∣∣ν (dy)+

∫
{y:‖y‖U≥r0=1}

∣∣∣1− ei〈x,y〉U
∣∣∣ν (dy)

≤ k̃
∫
{y:‖y‖U<r0=1}

‖y‖2
U ν (dy)+

∫
{y:‖y‖U≥r0=1}

2ν (dy)< ∞,

where k̃(x) is a suitable constant. The upper bound for the first summand follows by its Taylor
series representation since

∣∣∣1− ei〈x,y〉U +i〈x,y〉U
∣∣∣= ∣∣∣∣∣ ∞

∑
k=2

(i〈x,y〉U)k

k!

∣∣∣∣∣ .
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By the triangle and Cauchy-Schwarz inequalities, we have∣∣∣∣∣ ∞

∑
k=2

(i〈x,y〉U)k

k!

∣∣∣∣∣≤ ∞

∑
k=2

‖x‖k
U ‖y‖k

U
k!

≤
∞

∑
k=2

‖x‖k
U

k!
‖y‖2

U = k̃(x)‖y‖2
U .

The last estimate is a consequence of ‖y‖U < 1.

From Lemma 2.38 we conclude that every Lévy process L is characterized by (a,Q0,ν) which,
for that reason, is called characteristic triple of L.

2.5. Square integrable Lévy processes

Below, we follow the remarks of Peszat and Zabczyk in Section 4.9 in [55] and summarize the
most important results for Lévy processes with existing second moments.
In this section, L denotes an adapted and square integrable Lévy process which is defined on
a filtered probability space (Ω,F ,(Ft)t≥0,P)4 and which takes values in the Hilbert space U .
Furthermore, we assume that the increments L(t + h)−L(t) are independent of Ft for t,h > 0.
In addition, by L+

1 (U) we denote the space of all symmetric, non negative definite trace class
operators on U .

Theorem 2.39. There are m ∈U and an operator Q ∈ L+
1 (U) such that

E〈L(t),x〉U = t 〈m,x〉U ,

E〈L(t)−mt,x〉U 〈L(s)−ms,y〉U = min{s, t}〈Qx,y〉U , (2.30)

E‖L(t)−mt‖2
U = t tr(Q).

for all t,s≥ 0 and x,y ∈U.

Proof. This result is proven in Theorem 4.44 in [55].

We call the vector m and the operator Q in Theorem 2.39 mean and covariance operator of L,
respectively. Next, we state a result which is already proven in Theorem 4.47 (i) in [55]. Since
the proof is quite short, we included it for reasons of completeness.

4We assume that (Ft)t≥0 is right-continuous and F0 contains all sets A with P(A) = 0.
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Theorem 2.40. Suppose L is a Lévy process taking values in U with the corresponding jump

intensity measure ν , then L is square integrable if and only if∫
U
‖y‖2

U ν (dy)< ∞. (2.31)

Proof. We use the decomposition in (2.27). W is square integrable by Theorem 2.22. Moreover,
the series ∑

∞
k=1

(
LAk(t)− t

∫
Ak

yν (dy)
)

converges by Theorem 2.35 in mean square. Hence, it
follows

E

∥∥∥∥∥ ∞

∑
k=1

(
LAk(t)− t

∫
Ak

yν (dy)
)∥∥∥∥∥

2

U

= lim
n→∞

E

∥∥∥∥∥ n

∑
k=1

(
LAk(t)− t

∫
Ak

yν (dy)
)∥∥∥∥∥

2

U

= t
∫
{y:‖y‖U<r0}

‖y‖2
U ν (dy)< ∞.

Finally, the compound Poisson process LA0 with jump intensity measure χ{y:‖y‖U≥r0} (y)ν (dy)

is square integrable by Proposition 2.17 if and only if
∫
{y:‖y‖U≥r0} ‖y‖

2
U ν (dy)< ∞.

If condition (2.31) holds, then the process LA0 is especially integrable. Hence, the mean value
exists and is given by

E [LA0(t)] = t
∫
{y:‖y‖U≥r0}

yν(dy) = t
∫

A0

yν(dy), t ≥ 0.

Using the decomposition in (2.27), we now state a representation for square integrable Lévy
processes L.

Theorem 2.41. Let L be a square integrable Lévy process, then

L(t) = bt +W (t)+MJ(t), P-a.s., t ≥ 0 (2.32)

Here, b∈U, W is a Wiener process and MJ is martingale with respect to (Ft)t≥0 which contains

all jumps of L. Further, we obtain that MJ and W are independent Lévy processes and that

E [L(t)] = tb, t ≥ 0.

Proof. Below, we choose the notation of Theorem 2.37. We set b = a+
∫

A0
yν(dy) and

MJ(t) = ∑
∞
k=1

(
LAk(t)− t

∫
Ak

yν(dy)
)
+
(

LA0(t)− t
∫

A0
yν(dy)

)
, t ≥ 0, and representation (2.32)

follows. The martingale property of the process MJ with respect to the filtration (Ft)t≥0 follows
by the fact that it is the sum of martingales. The independence of the processes W and MJ is a
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consequence of Lemma 2.33. The Wiener process W has mean zero. The same is true for MJ

since it is a process that consists of the sum of compensated processes.

Below, L is a square integrable Lévy process. With the above theorem we can state the structure
of the covariance operator Q of L. For that reason, we consider the following expression and
also use the independence of W and MJ:

E〈W (t)+MJ(t),x〉U 〈W (t)+MJ(t),y〉U
= E〈W (t),x〉U 〈W (t),y〉U +E〈MJ(t),x〉U 〈MJ(t),y〉U (2.33)

= t 〈(Q0 +Q1)x,y〉U

for x,y ∈U and t ≥ 0. So, we obtain Q = Q0 +Q1, where Q0 is the covariance operator of the
Wiener process and Q1 the one of the jump part. In the next theorem, we provide an equation
that characterizes the operator Q1. We take this characterization from Theorem 4.47 (ii) in [55].
We also state a slightly modified proof compared to [55] for reasons of completeness.

Theorem 2.42. Let Q1 be the covariance operator of the jump process MJ , then Q1 is given by:

〈Q1x,y〉U =
∫

U
〈x,z〉U 〈y,z〉ν(dz) (2.34)

with x,y ∈U.

Proof. From the proof of Theorem 2.41 we know that MJ has the following representation:

MJ(t) =
∞

∑
k=1

(
LAk(t)− t

∫
Ak

yν(dy)
)
+

(
LA0(t)− t

∫
A0

yν(dy)
)
, t ≥ 0.

Due to Lemma 2.34, the processes LA0,LA1 ,LA2, . . . are independent. Therefore, we have

E〈MJ(t),x〉U 〈MJ(t),y〉U

= E
〈

LA0(t)− t
∫

A0

yν(dy),x
〉

U

〈
LA0(t)− t

∫
A0

yν(dy),y
〉

U

+
∞

∑
k=1

E
〈

LAk(t)− t
∫

Ak

yν(dy),x
〉

U

〈
LAk(t)− t

∫
Ak

yν(dy),y
〉

U
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for x,y ∈U . Applying equation (2.11) yields

E〈MJ(t),x〉U 〈MJ(t),y〉U = t
∫

U
〈x,z〉U 〈y,z〉ν(dz)

and the result follows.

2.6. Conclusions

In this chapter, we gave a detailed overview on Lévy processes with values in Hilbert spaces. We
started with stating basic properties. Afterwards, important representatives, such as the Wiener
process and the compound Poisson process were discussed. Furthermore, we analyzed the jump
behaviour of general Lévy processes, for example, the number of jumps within certain sets.
Based on these preliminary considerations, we provided the Lévy-Khinchin decomposition of a
general Lévy process, a representation that is often used to introduce a corresponding stochas-
tic integral, see Section 3.2. We concluded this chapter by discussing square integrable Lévy
processes.
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In this chapter, we introduce stochastic integrals with respect to Hilbert space-valued Lévy pro-
cesses. The main focus is on the stochastic analysis of square integrable Lévy martingales M

which are square integrable martingales and Lévy processes at the same time. The definition of
an integral with respect to M, which we introduce in Section 3.1, is the key to establish integrals
for arbitrary Lévy processes. We deal with the more general setting in Section 3.2.
Integrals based on M are similar to integrals of the form

∫ t
0 Φ(s)dW (s), t ∈ [0,T ]. Here, W is a

Wiener process with values in separable Hilbert space and Φ, the integrand, is operator-valued.
This Wiener-type integral is investigated in Section 4.2 in the book of Da Prato and Zabczyk
[20], in Section 2.2 in the work of Gawarecki and Mandrekar [26] as well as in Section 2.3 of
the book of Prévôt and Röckner [56]. Peszat and Zabczyk [55] extend this integral for square
integrable martingales, see Sections 8.2 and 8.3. As an alternative to integrals with respect to
Lévy martingales we refer to the article of Applebaum [3]. Applebaum states an integral which
is based on martingale-valued measures which are much more general. All results of the follow-
ing section are based on the already existing theory in [3, 20, 26, 55, 56] and for all proofs, ideas
from these references are used as well. Additionally, we make use of material and approaches
from Redmann [58].

3.1. Stochastic integrals with respect to Lévy martingales

In this section, let U be a separable Hilbert space and (Ω,F ,(Ft)t≥0,P)1 a filtered probability
space. We assume that M, which is defined on the filtered probability space, is a square integrable
martingale with respect to (Ft)t≥0 and takes values in U . At the same time, we assume that M

is a Lévy process with respect to (Ft)t≥0 (see Definition 2.3). We call the process M Lévy

martingale. We write M ∈M 2
L (U), where M 2

L (U) is the space of all square integrable Lévy
martingales in U .

1(Ft)t≥0 is right-continuous and F0 contains all sets A with P(A) = 0.
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Below, we introduce a stochastic integral of the form
∫ t

0 Ψ(s)dM(s), t ∈ [0,T ], where Ψ(s,ω) is
an operator from U to the separable Hilbert space H.
Throughout this section, L(U,H) denotes the Banach space of all linear and bounded operators
from U to H. First, we characterize the class of simple processes.

Definition 3.1. The L(U,H)-valued process Ψ = (Ψ(t))t∈[0,T ] is called simple if for 0 = t0 <

t1 < .. . < tm+1 = T it has the representation

Ψ(s) =
m

∑
i=0

χ(ti,ti+1](s)Ψi, s ∈ [0,T ]. (3.1)

Here, the random variable Ψi : Ω→ L(U,H) is Fti/B (L(U,H))-measurable, i ∈ {0,1, . . . ,m},
and just takes finitely many values in L(U,H).

Remark. We can rearrange the representation of simple functions in (3.1) as follows

m

∑
i=0

χ(ti,ti+1](s)Ψi =
m

∑
i=0

χ(ti,ti+1](s)
N(i)

∑
j=1

χAi
j
(ω)Φi

j =
m

∑
i=0

N(i)

∑
j=1

χ(ti,ti+1]×Ai
j
(s,ω)Φi

j,

where for i = 1, . . . ,m, we have

• N(i) ∈ N,

• pairwise disjoint sets Ai
1, . . . ,A

i
N(i) ∈Fti and

• Φi
1, . . . ,Φ

i
N(i) ∈ L(U,H).

By S we denote the class of simple processes with values in L(U,H) from now on. For processes
Ψ ∈S , we define

IM
T (Ψ) :=

∫ T

0
Ψ(s)dM(s) :=

m

∑
i=0

Ψi (M(ti+1)−M(ti))

and for 0≤ t0 ≤ t ≤ T , we set

IM
t0,t(Ψ) :=

∫ t

t0
Ψ(s)dM(s) :=

∫ T

0
χ[t0,t](s)Ψ(s)dM(s).

The next theorem deals with the martingale property of the stochastic integral for integrands in
S . This result is well-known in the stochastic analysis and is proven similarly to the Wiener
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case which which can be found in [20, 26, 56]. We also refer to a more general frame work in
[3] and [55]. Below, we use arguments of the Wiener case in the proof and show that they can
also be applied in a more general setting.

Theorem 3.2. For simple integrands Ψ ∈S the stochastic process
(∫ t

0 Ψ(s)dM(s)
)

t∈[0,T ] is a

martingale with respect to (Ft)t∈[0,T ].

Proof. Let 0≤ s < t ≤ T and A ∈Fs. We easily see that

E
[
χAIM

0,t(Ψ)
]
= E

[
χA
(
IM
0,s(Ψ)+ IM

s,t(Ψ)
)]
.

We suppose that s ∈ (tk, tk+1], t ∈ (tl, tl+1] and (tk, tk+1]∩ (tl, tl+1] = /0 w.l.o.g. It holds

E[χAIM
s,t(Ψ)]

= E

[
χA(Ψk (M(tk+1)−M(s))+

l−1

∑
i=k+1

Ψi (M(ti+1)−M(ti))+Ψl (M(t)−M(tl)))

]
.

Below, we use the representation of simple functions given in the remark above and analyze
every summand separately:

E [χA(Ψk (M(tk+1)−M(s)))] = E

[
χA(

N(k)

∑
j=1

χAk
j
Φ

k
j (M(tk+1)−M(s)))

]

=
N(k)

∑
j=1

Φ
k
jE
[
χA∩Ak

j
(M(tk+1)−M(s))

]
= 0,

because A∩Ak
j ∈Fs. Furthermore, we obtain

E

[
χA(

l−1

∑
i=k+1

Ψi (M(ti+1)−M(ti)))

]
= E

[
χA(

l−1

∑
i=k+1

N(i)

∑
j=1

χAi
j
Φ

i
j (M(ti+1)−M(ti)))

]

=
l−1

∑
i=k+1

N(i)

∑
j=1

Φ
i
jE
[
χA∩Ai

j
(M(ti+1)−M(ti))

]
= 0,

since A∩Ai
j ∈Fti . Finally, for the last term it follows

E [χA(Ψl (M(t)−M(tl)))] = E

[
χA(

N(l)

∑
j=1

χAl
j
Φ

l
j (M(t)−M(tl)))

]
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=
N(l)

∑
j=1

Φ
l
jE
[
χA∩Al

j
(M(t)−M(tl))

]
= 0,

due to A∩Al
j ∈Ftl . Summarizing the previous steps yields

E
[
χAIM

0,t(Ψ)
]
= E

[
χAIM

0,s(Ψ)
]

for all A ∈Fs.

Theorem 2.41 implies that every square integrable Lévy process is a martingale if and only if it
has mean zero. Due to equation (2.30) we know that the square integrable Lévy martingale M

has a covariance operator Q ∈ L+
1 (U) which does not depend on time. In fact, the operator Q is

given by:

E〈M(t),x〉U 〈M(t),y〉U = t 〈Qx,y〉U (3.2)

for all t ≥ 0 and x,y ∈U . By the following proposition, the square root of a covariance operator
can be defined.

Proposition 3.3. Let Q̂ ∈ L(U) be non negative definite and symmetric, then there exists a unique

non negative definite and symmetric operator Q̂
1
2 ∈ L(U) such that Q̂

1
2 Q̂

1
2 = Q̂.

Proof. For the proof we refer to Proposition 2.3.4 in [56].

We introduce the Hilbert space of Hilbert-Schmidt operators from U to H. We denote this space
by L(HS)(U,H) and the corresponding norm is ‖·‖L(HS)(U,H). L(HS)(U,H) contains all operators

R ∈ L(U,H) with ‖R‖2
L(HS)(U,H) := tr(RR∗)< ∞, where R∗ is the adjoint operator of R. The inner

product in L(HS)(U,H) is given by 〈R,S〉L(HS)(U,H) := tr(SR∗) for S,R ∈ L(HS)(U,H).

Remark. By Proposition 3.3 there is an operator Q
1
2 corresponding to the covariance operator

Q of M. This square root Q
1
2 is a Hilbert-Schmidt operator since

∥∥∥Q 1
2

∥∥∥2

L(HS)(U)
= tr(Q)< ∞.

Before we resume with the properties of the stochastic integral, we provide the following propo-
sition which contains a well-known result.

Proposition 3.4. Let K be a separable Hilbert space, S ∈ L(K,H) and To ∈ L(HS)(U,K), then

STo ∈ L(HS)(U,H) and ‖STo‖L(HS)(U,H) ≤ ‖S‖L(K,H) ‖To‖L(HS)(U,K).
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Proof. Let (uk)k∈N be an orthonormal basis of U . This yields

‖STo‖2
L(HS)(U,H) = tr(STo(STo)

∗) =
∞

∑
k=1
‖STouk‖2

H

≤ ‖S‖2
L(K,H)

∞

∑
k=1
‖Touk‖2

K = ‖S‖2
L(K,H) ‖To‖2

L(HS)(U,K) < ∞.

In the next theorem, we state important properties for the integral IM
T (Ψ), where Ψ∈S is simple.

These results are proven as in [3, 20, 26, 55, 56]. In particular, we apply techniques from the
Wiener case in the corresponding proof. Again, they can be used for more general integrals with
respect to M.

Theorem 3.5. Let Ψ have the representation (3.1), then

E
[
IM
T (Ψ)

]
= 0 (3.3)

and

E
∥∥IM

T (Ψ)
∥∥2

H = E
∫ T

0

∥∥∥Ψ(s)Q
1
2

∥∥∥2

L(HS)(U,H)
ds. (3.4)

Proof. Let (hk)k∈N be an orthonormal basis of H and (uk)k∈N be an orthonormal basis of U . We
obtain equation (3.3) by

E[IT (Ψ)] = E[
∞

∑
k=1

m

∑
i=0
〈hk,Ψi (M(ti+1)−M(ti))〉H hk]

=
∞

∑
k=1

m

∑
i=0

E[〈Ψ∗i hk,M(ti+1)−M(ti)〉U ]hk

=
∞

∑
k=1

∞

∑
l=1

m

∑
i=0

E[〈hk,Ψiul〉H 〈ul,M(ti+1)−M(ti)〉U ]hk

=
∞

∑
k=1

∞

∑
l=1

m

∑
i=0

E[E{〈hk,Ψiul〉H 〈ul,M(ti+1)−M(ti)〉U |Fti}]hk.

The random variable 〈hk,Ψiul〉H is Fti/B (R)-measurable. Additionally, (〈ul,M(t)〉U)t≥0 is
a martingale with respect to (Ft)t≥0 such that the result follows. We now derive the second
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moment:

E
∥∥IM

T (Ψ)
∥∥2

H = E

∥∥∥∥∥ m

∑
i=0

Ψi (M(ti+1)−M(ti))

∥∥∥∥∥
2

H

=
m

∑
i=0

E‖Ψi (M(ti+1)−M(ti))‖2
H

+
m

∑
i, j=0
i 6= j

E
〈
Ψi (M(ti+1)−M(ti)) ,Ψ j

(
M(t j+1)−M(t j)

)〉
H .

Below, we consider the mixed terms first. Let i < j w.l.o.g. Hence, it holds that

E
〈
Ψi (M(ti+1)−M(ti)) ,Ψ j

(
M(t j+1)−M(t j)

)〉
H

= E
〈
Ψ
∗
jΨi (M(ti+1)−M(ti)) ,M(t j+1)−M(t j)

〉
U

=
∞

∑
l=1

E
〈
Ψ
∗
jΨi (M(ti+1)−M(ti)) ,ul

〉
U

〈
ul,M(t j+1)−M(t j)

〉
U

=
∞

∑
l=1

E
[
E
{〈

Ψ
∗
jΨi (M(ti+1)−M(ti)) ,ul

〉
U

〈
ul,M(t j+1)−M(t j)

〉
U |Ft j

}]
= 0.

We get the last equation since
〈

Ψ∗jΨi (M(ti+1)−M(ti)) ,ul

〉
U

is Ft j/B (R)-measurable. This
holds because

〈
Ψ
∗
jΨi (M(ti+1)−M(ti)) ,ul

〉
U =

〈
Ψi (M(ti+1)−M(ti)) ,Ψ jul

〉
H

=
∞

∑
k=1
〈Ψi (M(ti+1)−M(ti)) ,hk〉H

〈
hk,Ψ jul

〉
H ,

where the terms 〈Ψi (M(ti+1)−M(ti)) ,hk〉H and
〈
hk,Ψ jul

〉
H areFt j/B (R)-measurable. There-

fore, we obtain

E
∥∥IM

T (Ψ)
∥∥2

H =
m

∑
i=0

E‖Ψi (M(ti+1)−M(ti))‖2
H .

We have

E‖Ψi (M(ti+1)−M(ti))‖2
H
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= E
∞

∑
k=1
〈Ψi (M(ti+1)−M(ti)) ,hk〉2H

= E
∞

∑
k=1
〈M(ti+1)−M(ti),Ψ∗i hk〉2U

= E
∞

∑
k=1

(
∞

∑
l=1
〈M(ti+1)−M(ti),ul〉U 〈Ψiul,hk〉H

)2

=
∞

∑
k=1

∞

∑
s,l=1

E [〈M(ti+1)−M(ti),ul〉U 〈Ψiul,hk〉H 〈M(ti+1)−M(ti),us〉U 〈Ψius,hk〉H ]

=
∞

∑
k=1

∞

∑
s,l=1

E [E{〈M(ti+1)−M(ti),ul〉U 〈Ψiul,hk〉H 〈M(ti+1)−M(ti),us〉U 〈Ψius,hk〉H

|Fti}] ,

Since the terms 〈Ψiul,hk〉H and 〈Ψius,hk〉H are Fti/B(R)-measurable and the process
〈M(ti+1)−M(ti),ul〉U 〈M(ti+1)−M(ti),us〉U is independent of Fti , we obtain

E‖Ψi (M(ti+1)−M(ti))‖2
H

= E

[
∞

∑
k=1

∞

∑
s,l=1
〈Ψiul,hk〉H 〈Ψius,hk〉H E [〈M(ti+1)−M(ti),ul〉U 〈M(ti+1)−M(ti),us〉U ]

]
.

Applying equation (3.2) yields

E‖Ψi (M(ti+1)−M(ti))‖2
H = E

∞

∑
k=1

∞

∑
s,l=1
〈Ψiul,hk〉H 〈Ψius,hk〉H 〈Qul,us〉U (ti+1− ti)

= (ti+1− ti)E
∞

∑
k=1

∞

∑
l=1
〈Ψiul,hk〉H

∞

∑
s=1
〈us,Ψ

∗
i hk〉U 〈Qul,us〉U

= (ti+1− ti)E
∞

∑
k=1

∞

∑
l=1
〈Ψiul,hk〉H 〈Ψ∗i hk,Qul〉U

= (ti+1− ti)E
∞

∑
k=1
〈Ψ∗i hk,QΨ

∗
i hk〉U

= (ti+1− ti)E
∞

∑
k=1
〈ΨiQΨ

∗
i hk,hk〉H

= (ti+1− ti)E [tr(ΨiQΨ
∗
i )]

= (ti+1− ti)E
∥∥∥ΨiQ

1
2

∥∥∥2

L(HS)(U,H)
.
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This means

E
∥∥IM

T (Ψ)
∥∥2

H =
m

∑
i=0

(ti+1− ti)E
∥∥∥ΨiQ

1
2

∥∥∥2

L(HS)(U,H)

and result (3.4) follows.

We now extend the space of integrable processes. Therefore, we define PT as the smallest sub-
σ -algebra of B([0,T ])⊗F such that all mappings F : [0,T ]×Ω→ R, which are (Ft)t∈[0,T ]-
adapted with left-continuous trajectories, are measurable with respect to PT . The σ -algebra PT

is generated as follows:

PT = σ ({(s, t]×A : 0≤ s≤ t ≤ T, A ∈Fs}∪{{0}×A : A ∈F0}) . (3.5)

We call a PT/B (U)-measurable mapping F : [0,T ]×Ω→U predictable or U-predictable. A
mapping Ψ on [0,T ]×Ω, which takes values in the set of linear operators from U to H is called
predictable if [0,T ]×Ω 3 (t,ω) 7→Ψ(t,ω)x is PT/B (H)-measurable for all x ∈U .

By L 2
T we introduce the space of all predictable mappings Ψ on [0,T ]×Ω, taking values in the

set of linear operators from U to H, that satisfy ‖Ψ‖T < ∞, where

‖Ψ‖2
T := E

∫ T

0

∥∥∥Ψ(s)Q
1
2

∥∥∥2

L(HS)(U,H)
ds.

We say that two mappings Ψ1,Ψ2 ∈L 2
T are equal in L 2

T if
∥∥∥(Ψ1(s)−Ψ2(s))Q

1
2

∥∥∥
L(HS)(U,H)

= 0

holds P⊗dt-almost surely. Hence,
(
L 2

T ,‖·‖T
)

is a Hilbert space with inner product

〈Ψ1,Ψ2〉T := E
∫ T

0

〈
Ψ1(s)Q

1
2 ,Ψ2(s)Q

1
2

〉
L(HS)(U,H)

ds.

The next remark illustrates that it is important to use predictable integrands if one desires to have
an integral with the martingale property and with mean zero.

Remark. Suppose that N(t), t ≥ 0, is a Poisson process, then M(t) = N(t)−E [N(1)] t is square

integrable Lévy process with mean zero. Ψ(t) := ∆N(t), t ≥ 0, is an adapted process with respect

to the natural filtration but it is not predictable. We then have∫ t

0
Ψ(s)dM(s) = ∑

0≤s≤t
∆N(s) = N(t).
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So, this integral is neither a martingale nor has mean zero. This example can also be found in

[66].

The next Proposition shows that every function in L 2
T can be approximated by a sequence of

simple functions with respect to the norm ‖·‖T . For the proof we use the ideas and techniques of
Lemma 3.1.2 in [67].

Proposition 3.6. The class of simple functions S is dense in L 2
T .

Proof. Let (hk)k∈N and (uk)k∈N be an orthonormal bases of H and U , respectively. For all i, j ∈N
we define the operators Si j ∈ L(U,H) by

Si juk :=

h j for k = i

0 for k 6= i.

The adjoint operator of Si j is given by

S∗i jhk :=

ui for k = j

0 for k 6= j.

Since the following holds:∥∥∥Si jQ
1
2

∥∥∥2

L(HS)
=

∞

∑
k=1

〈
Si jQS∗i jhk,hk

〉
H = 〈Qui,ui〉U ≤ tr(Q),

a mapping, which only takes the value Si j, is an element of L 2
T . We choose a simple function in

S ∈S which is defined the following way

S(s,ω) = χ(t0,t1](s)χA(ω)Si j,

where 0≤ t0 ≤ t1 ≤ T and A ∈Ft0 . By S ⊥ we denote the orthogonal complement of S in L 2
T .

As the next step, we take an arbitrary mapping R ∈S ⊥. We obtain

0 = 〈R,S〉T

= E
∫ T

0

〈
R(s)Q

1
2 ,S(s)Q

1
2

〉
L(HS)(U,H)

ds
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= E

(
χA

∫ t1

t0

∞

∑
k=1

〈
R(s)QS∗i jhk,hk

〉
H ds

)

= E
(

χA

∫ t1

t0

〈
R(s)Qui,h j

〉
H ds

)
.

For G ∈PT we set

µ(G) :=
∫

G

〈
R(s)Qui,h j

〉
H dsP(dω),

such that µ is a signed measure on PT . For all sets G of type (t0, t1]×A, we have µ(G) = 0.
Since the sets of the form (t0, t1]×A represent a π-system (non-empty family of subsets that is
closed under finite intersections, see Section 3.1 in [55]) which generates PT , µ(G) = 0 follows
for all G ∈PT . Hence, we have

〈
R(s)Qui,h j

〉
H = 0 P⊗ds-almost surely for all i, j ∈ N. This

yields R(s)Q = 0 P⊗ds-almost surely. Then,

‖R‖2
T = E

∫ T

0

∥∥∥R(s)Q
1
2

∥∥∥2

L(HS)(U,H)
ds = E

∫ T

0
tr(R(s)QR(s)∗)ds = 0

and consequently S ⊥ = {0}. So, we obtain S̄ = L 2
T .

Let Ψ ∈L 2
T and (Ψn)n∈N ⊂L 2

T be a sequence of simple processes such that

‖Ψn−Ψ‖T → 0

for n→ ∞. The existence of this approximating sequence is ensured by Proposition 3.6. With
equation (3.4) we obtain

E
∥∥∥∥∫ T

0
Ψn(s)dM(s)−

∫ T

0
Ψm(s)dM(s)

∥∥∥∥2

H
= E

∫ T

0

∥∥∥(Ψn(s)−Ψm(s))Q
1
2

∥∥∥2

L(HS)(U,H)
ds. (3.6)

The right-hand side of equation (3.6) tends to zero for m,n→ ∞ since (Ψn)n∈N is a Cauchy
sequence in L 2

T .
(∫ T

0 Ψn(s)dM(s)
)

n∈N
is a Cauchy sequence in L2 (Ω,F ,P;H) and hence

convergent. Therefore, we can define

∫ T

0
Ψ(s)dM(s) := L2− lim

n→∞

∫ T

0
Ψn(s)dM(s)
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and for 0≤ t0 ≤ t ≤ T we set∫ t

t0
Ψ(s)dM(s) := L2− lim

n→∞

∫ t

t0
Ψn(s)dM(s).

Here, “L2− limn→∞” symbolizes the limit in L2 (Ω,F ,P;H).

Below, we transfer properties of integrals for simple processes to
∫ T

0 Ψ(s)dM(s), where Ψ∈L 2
T .

For that reason, we choose a sequence (xn)n∈N with xn :=
∫ T

0 Ψn(s)dM(s). By the definition given
above it converges to x :=

∫ T
0 Ψ(s)dM(s) in mean square. By using elementary estimations, for

n→ ∞ we have

‖E[xn]−E[x]‖H = ‖E[xn− x]‖H ≤ E‖xn− x‖H ≤
(
E‖xn− x‖2

H

) 1
2 → 0.

L2 (Ω,F ,P;H) is a Hilbert space and hence from mean square convergence, the convergence
with respect to the norm follows, i.e.

E‖xn‖2
H → E‖x‖2

H

for n→ ∞. We obtain

E
∥∥∥∥∫ T

0
Ψ(s)dM(s)

∥∥∥∥2

H
= lim

n→∞
E
∫ T

0

∥∥∥Ψn(s)Q
1
2

∥∥∥2

L(HS)(U,H)
ds

= E
∫ T

0

∥∥∥Ψ(s)Q
1
2

∥∥∥2

L(HS)(U,H)
ds

by using the fact that L 2
T is a Hilbert space as well which for n→ ∞ implies

‖Ψn‖2
T →‖Ψ‖2

T .

The martingale property can also be shown for the more general integrands. So, let 0≤ v < t and
A ∈Fv, then ∥∥∥∥EχA

[∫ t

0
Ψn(s)dM(s)−

∫ t

0
Ψ(s)dM(s)

]∥∥∥∥
H

≤ E
[

χA

∥∥∥∥∫ t

0
Ψn(s)dM(s)−

∫ t

0
Ψ(s)dM(s)

∥∥∥∥
H

]
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≤
(
E
∥∥∥∥∫ t

0
Ψn(s)dM(s)−

∫ t

0
Ψ(s)dM(s)

∥∥∥∥2

H

) 1
2

→ 0

for n→ ∞. On the other hand, due to the martingale property for the stochastic integral with
simple integrands, we have∥∥∥∥EχA

[∫ t

0
Ψn(s)dM(s)−

∫ v

0
Ψ(s)dM(s)

]∥∥∥∥
H

=

∥∥∥∥EχA

[∫ v

0
Ψn(s)dM(s)−

∫ v

0
Ψ(s)dM(s)

]∥∥∥∥
H

≤ E
[

χA

∥∥∥∥∫ v

0
Ψn(s)dM(s)−

∫ v

0
Ψ(s)dM(s)

∥∥∥∥
H

]

≤
(
E
∥∥∥∥∫ v

0
Ψn(s)dM(s)−

∫ v

0
Ψ(s)dM(s)

∥∥∥∥2

H

) 1
2

→ 0

for n→ ∞. Thus,

E
[

χA

∫ t

0
Ψ(s)dM(s)

]
= E

[
χA

∫ v

0
Ψ(s)dM(s)

]
holds for all A ∈Fv.

In some cases, like in Section 3.2, we restrict ourselves to an important subset of L 2
T . So, we

introduce L̃ 2
T as the set of all predictable mappings Ψ̃ : Ω× [0,T ]→ L(U,H) that satisfy

E
∫ T

0

∥∥Ψ̃(s)
∥∥2

L(U,H)
ds < ∞. (3.7)

It is easy to see that L̃ 2
T ⊂L 2

T since for Ψ̃ ∈ L̃ 2
T , we obtain

∫ T

0

∥∥∥Ψ̃(s)Q
1
2

∥∥∥2

L(HS)(U,H)
ds≤ tr(Q)E

∫ T

0

∥∥Ψ̃(s)
∥∥2

L(U,H)
ds < ∞

by using Proposition 3.4.

We conclude this section with two further important properties of a stochastic integral which
are frequently used. The first property is already considered by Applebaum in [3] (Theorem 3)
for integrals based on more general martingale-valued measures. Below, we assume that H̃ is
another separable Hilbert space equipped with the norm ‖ · ‖H̃ .
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3. Stochastic Integration

Theorem 3.7. Let C ∈ L(H, H̃) and Ψ ∈L 2
T , then

C
∫ T

0
Ψ(s)dM(s) =

∫ T

0
CΨ(s)dM(s) P-a.s.

Proof. First of all, we ensure that the right-hand side integral is well-defined. This is the case
because by Proposition 3.4 it follows

E
∫ T

0

∥∥∥CΨ(s)Q
1
2

∥∥∥2

L(HS)(U,H̃)
ds≤ ‖C‖2

L(H,H̃)E
∫ T

0

∥∥∥Ψ(s)Q
1
2

∥∥∥2

L(HS)(U,H)
ds < ∞.

Let Ψ̃ ∈S . So, we have

C
∫ T

0
Ψ̃(s)dM(s) =C

m

∑
i=0

Ψi (M(ti+1)−M(ti))

=
m

∑
i=0

CΨi (M(ti+1)−M(ti))

=
∫ T

0
CΨ̃(s)dM(s).

We choose a sequence (Ψn)n∈N of simple functions that approximates Ψ in L 2
T . For n→ ∞

E
∥∥∥∥C∫ T

0
Ψn(s)dM(s)−C

∫ T

0
Ψ(s)dM(s)

∥∥∥∥2

H̃

≤ ‖C‖2
L(H,H̃)E

∥∥∥∥∫ T

0
Ψn(s)dM(s)−

∫ T

0
Ψ(s)dM(s)

∥∥∥∥2

H
→ 0

by the definition of the stochastic integral. Since

E
∥∥∥∥C∫ T

0
Ψn(s)dM(s)−

∫ T

0
CΨ(s)dM(s)

∥∥∥∥2

H̃

= E
∥∥∥∥∫ T

0
CΨn(s)dM(s)−

∫ T

0
CΨ(s)dM(s)

∥∥∥∥2

H̃

= E
∥∥∥∥∫ T

0
C (Ψn(s)−Ψ(s))dM(s)

∥∥∥∥2

H̃

= E
∫ T

0

∥∥∥C (Ψ(s)−Ψn(s))Q
1
2

∥∥∥2

L(HS)(U,H̃)
ds
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3. Stochastic Integration

= ‖C‖2
L(H,H̃)E

∫ T

0

∥∥∥(Ψ(s)−Ψn(s))Q
1
2

∥∥∥2

L(HS)(U,H)
ds→ 0

for n→ ∞, the result follows.

The second property is the mean square continuity of the stochastic integral, compare also with
Theorem 8.7 in [55] for a different proof.

Theorem 3.8. Let Ψ ∈L 2
T , then the process

IM
t (Ψ) =

∫ t

0
Ψ(s)dM(s), t ∈ [0,T ],

is mean square continuous.

Proof. Let 0≤ s≤ t ≤ T . This result directly follows from the Ito isometry

E
∥∥IM

t (Ψ)− IM
s (Ψ)

∥∥2
H = E

∥∥IM
s,t(Ψ)

∥∥2
H =

∫ t

s
E
∥∥∥Ψ(τ)Q

1
2

∥∥∥2

L(HS)(U,H)
dτ

and the continuity of the ordinary integral.

3.2. Stochastic integrals with respect to general Lévy

processes

Stochastic integrals based on Hilbert space-valued Lévy processes are treated in Section 8.6 in
[55]. In [3], such integrals are discussed as well but mainly for deterministic integrands. In both
works the Lévy-Khinchin decomposition of a Lévy process is used in order to define stochastic
integrals. In [4], ideas are stated how to define an integral with respect to Lévy processes taking
values in a separable Banach space.
Below, let U,H be separable Hilbert spaces and

(
Ω,F ,(Ft)t≥0 ,P

)2 be a filtered probability
space. All processes that occur in this section are defined on this probability space. Further, let L

be an arbitrary Lévy process with respect to the filtration (Ft)t≥0 (see Definition 2.3) that takes
values in U . We recall Theorem 2.37. This tells us that L can be decomposed as follows:

L(t) = at +M(t)+P(t), t ≥ 0.

2(Ft)t≥0 is right-continuous and complete.
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3. Stochastic Integration

Here, a ∈U and M is a square integrable martingale and a Lévy process with respect to (Ft)t≥0

as well (We call M square integrable Lévy martingale.). Moreover, P is a compound Poisson
process with respect to (Ft)t≥0. In addition, we know that M contains the continuous part and
the part with jumps bounded by r0 > 0. P is a process with piece-wise constant trajectories which
just has jumps larger than r0 with respect to the norm.
It remains to introduce an integral with respect to P to be able to define one for L. A possible
way to define it is stated in Peszat, Zabczyk [55] but we prefer the ansatz which is sketched in
the article of Applebaum [4].
Below, let N be the jump counting measure corresponding to L that we define in (2.19). By
Proposition 2.30 we know that for all t ≥ 0 and ω ∈ Ω, the function N(t, ·)(ω) is a measure
on B (U \{0}). N can be extended to a measure on B (R+× (U \{0})). So, let S (R+)×
B (U \{0}) be the semiring of sets of the form (t1, t2]×A, A ∈B (U \{0}) and 0≤ t1 < t2. We
set

N((t1, t2]×A)(ω) := N(t2,A)(ω)−N(t1,A)(ω).

Hence, N(dt,dx) is a σ -finite pre-measure for all ω ∈Ω on S (R+)×B (U \{0}). By N(dt,dx)

we also denote the measure which is the unique extension of the pre-measure on the σ -algebra
B (R+× (U \{0})), see Section 2 in [64] for more details. From Section 2.3 we already know
that P can be interpreted as a random Bochner integral:

P(t) =
∫
{x:‖x‖U≥r0}

xN(t,dx), t ≥ 0.

We define an integral with respect to P as a random Bochner integral as well

∫ T

0
Φ(s)dP(s) :=

∫ T

0

∫
{x:‖x‖U≥r0}

Φ(s)xN(ds,dx) (3.8)

for predictable mappings Φ : Ω× [0,T ]→ L(U,H) and T > 0. Since N is a finite counting
measure on [0,T ]×{x : ‖x‖U ≥ r0}, we identify the integral defined in (3.8) with a finite sum

∫ T

0
Φ(s)dP(s) = ∑

0≤s≤T
Φ(s)∆L(s)χ{x:‖x‖U≥r0}(∆L(s)).

for P-almost all ω ∈Ω.
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3. Stochastic Integration

Definition 3.9. We fix a finite time interval [0,T ]. We then call the stochastic process

Y (t) :=
∫ t

0
f (s)ds+

∫ t

0
Ψ̃(s)dM(s)+

∫ t

0
Φ(s)dP(s), t ∈ [0,T ], (3.9)

Lévy-type integral. Here, f : Ω× [0,T ]→ H is B([0,T ])⊗F -measurable and

∫ T

0
‖ f (s)‖H ds < ∞ P-a.s.

holds. Moreover, we choose Ψ̃ ∈ L̃ 2
T defined in (3.7) and a predictable process Φ : Ω× [0,T ]→

L(U,H). The first term in (3.9) is a path-wise Bochner integral and the second term is an integral

with respect to the square integrable Lévy martingale M which we focus on in Section 3.1.

The expression (3.9) contains a definition of a stochastic integral of the form
∫ t

0 Ψ(s)dL(s), t ∈
[0,T ], which we obtain by setting f = Ψa and Ψ̃ = Φ = Ψ for Ψ ∈ L̃ 2

T . If the Lévy process L is
square integrable, then by Section 2.5 it has the representation

L(t) = bt + M̃(t), t ≥ 0,

where b ∈ U and M̃ is a square integrable Lévy martingale. Consequently, in this case the
structure of the Lévy-type integral is simpler.

3.3. Conclusions

In this chapter, we introduced a stochastic integral with respect to a square integrable Lévy pro-
cess taking values in a Hilbert space. Based on the results for the Wiener case, we analyzed
properties such as the mean, the Ito isometry and the martingale property of this stochastic in-
tegral. This chapter was concluded by the definition of an integral with respect to general Lévy
processes using the Lévy-Khinchin decomposition which we studied in Section 2.4.
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4. Linear Controlled SPDEs with Lévy

Noise

Many works deal with stochastic partial differential equations (SPDEs) with Lévy noise. In [55]
equations with additive as well as with multiplicative noise are considered. There, the concepts
of weak and mild solutions are investigated and cases are stated in which both concepts coincide.
Furthermore, in the thesis of Stolze [67], the existence and uniqueness of weak solutions for
equations with additive noise under certain conditions is shown. The basics for the thesis of
Stolze are provided by Applebaum in [3]. In the works of F. Knäble [42] and K. Knäble [43]
more SPDEs with multiplicative noise can be found. All the above references deal with SPDEs
in an abstract Hilbert space setting, but there are also articles, where equations in Banach spaces
are studied, see for example [63].
In this chapter, we discuss linear SPDEs that are driven by Lévy noise which are controlled in
addition. Below, we use an abstract evolution equation approach in order to represent SPDEs.
Therefore, we define C0-semigroups first to be able to characterize mild solutions. Afterwards,
we introduce the model we focus on and show that it is well-defined. We conclude this chapter
with two examples.

4.1. C0-semigroups

We need the concept of C0-semigroups and the corresponding generators which is vital in order
to be able to introduce evolution equations. We take the following definitions and theorems from
the book of Vrabie [70]. He introduces C0-semigroups on Banach spaces but for us the Hilbert
space setting is sufficient. Below, let H denote a separable Hilbert space.

Definition 4.1. A family (S(t))t≥0 of bounded and linear operators S(t) ∈ L(H) is called C0-
semigroup on H if

(i) S(0) = I, where I is the identity on H,
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4. Linear Controlled SPDEs with Lévy Noise

(ii) S(t + s) = S(t)S(s) for all t,s≥ 0,

(iii) limt↓0 S(t)x = x for all x ∈ H.

Remark. Condition (iii) in Definition 4.1 is equivalent to t 7→ S(t)x is continuous for every x∈H.

This strong continuity condition of (S(t))t≥0 is also often used in the literature.

Theorem 4.2. Let (S(t))t≥0 be a C0-semigroup, then there exist constants α̂ ∈R and K ≥ 1 such

that for all t ≥ 0

‖S(t)‖L(H) ≤ K eα̂t . (4.1)

Proof. See Theorem 2.3.1 in [70].

Definition 4.3. An infinitesimal generator or simply generator of a C0-semigroup (S(t))t≥0 is an

operator A : D(A )⊂ H→ H with

• D(A ) =
{

x ∈ H, limt↓0 1
t (S(t)x− x) exists

}
and

• A x = limt↓0 1
t (S(t)x− x) for x ∈ D(A ).

Remark. • The generator of a C0-semigroup is a linear operator but it is not necessarily

bounded.

• A C0-semigroup is called generalized contraction semigroup if K = 1 in (4.1). It is called

contraction semigroup if furthermore α̂ = 0 holds.

Next, we state basic properties of C0-semigroups.

Theorem 4.4. Let A : D(A )⊂ H→ H be the generator of a C0-semigroup (S(t))t≥0, then

(i) for all x ∈ H and t ≥ 0, we have

lim
h↓0

1
h

∫ t+h

t
S(s)x ds = S(t)x,

(ii) for all x ∈ H and t > 0, it holds

∫ t

0
S(s)x ds ∈ D(A ) and A

(∫ t

0
S(s)x ds

)
= S(t)x− x,
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4. Linear Controlled SPDEs with Lévy Noise

(iii) for all x ∈ D(A ) and t ≥ 0, we obtain S(t)x ∈ D(A ), the mapping t 7→ S(t)x is once

continuously differentiable and

d
dt

(S(t)x) = A S(t)x = S(t)A x,

(iv) for all x ∈ D(A ) and 0≤ t0 ≤ t < ∞, we have

∫ t

t0
A S(s)x ds =

∫ t

t0
S(s)A x ds = S(t)x−S(t0)x.

Proof. See Theorem 2.3.2 in [70].

The next theorem contains a very important result for contraction semigroups.

Theorem 4.5. If (S(t))t≥0 is a contraction semigroup on H, then there is a Hilbert space Ĥ that

contains H and a strongly continuous group Ŝ on Ĥ such that PrH Ŝ(t) = S(t), t ≥ 0, where PrH

is the orthogonal projection of Ĥ onto H.

Proof. This result is a consequence of the Theorems 9.22 and 9.23 in [55].

We summarize important properties of the generator of a C0-semigroup in the following two
theorems.

Theorem 4.6. Let A : D(A ) ⊂ H → H be the generator of a C0-semigroup (S(t))t≥0, then

D(A ) is dense in H and A is a closed operator.

Proof. See Theorem 2.4.1 in [70].

Theorem 4.7. If A : D(A ) ⊂ H → H is the generator of two C0-semigroups (S(t))t≥0 and

(T (t))t≥0, then S(t) = T (t) holds for all t ≥ 0.

Proof. See Theorem 2.4.2 in [70].

4.2. Linear controlled evolution equations with Lévy noise

In this section, we deal with an infinite dimensional system, where the noise process is denoted
by M. M takes values in a separable Hilbert space U and is defined on a probability space
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4. Linear Controlled SPDEs with Lévy Noise

(Ω,F ,(Ft)t≥0,P)1. In addition, we assume that M is a Lévy process with respect to (Ft)t≥0

which is square integrable with mean zero (see Definition 2.3). The most important properties
regarding this process and the definition of an integral with respect to M can be found in the
Chapters 2 and 3.

By the assumptions we make on M, with Theorem 2.39 we know about the existence of a co-
variance operator Q which is symmetric, positive definite and of trace class. For x,y ∈U and
s, t ≥ 0, it is characterized by

E〈M(t),x〉U 〈M(s),y〉U = min{t,s}〈Qx,y〉U . (4.2)

Below, by H we denote another separable Hilbert space. We then consider the following stochas-
tic differential equation that is equipped with an output equation:

dX (t) = [A X (t)+Bu(t)]dt +N (X (t−))dM(t), X (0) = X0 ∈ H, (4.3)

Y (t) = C X (t), t ≥ 0.

We make the following assumptions:

• A : D(A )→ H is a generator of a contraction semigroup (S(t))t≥0.

• N is a linear mapping on H with values in the set of all linear operators from U to H such
that N (h)Q

1
2 is a Hilbert-Schmidt operator for every h ∈ H. In addition,∥∥∥N (h)Q

1
2

∥∥∥
LHS(U,H)

≤ M̃ ‖h‖H (4.4)

holds for some constant M̃ > 0, where LHS indicates the Hilbert-Schmidt norm.

• The process u : R+×Ω→ Rm is (Ft)t≥0-adapted with

∫ T

0
E‖u(s)‖2

2 ds < ∞ (4.5)

for each T > 0, where ‖·‖2 denotes the Euclidean norm in Rm.

• B is a linear and bounded operator on Rm with values in H and C ∈ L(H,Rp).

1(Ft)t≥0 is right-continuous and complete.
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4. Linear Controlled SPDEs with Lévy Noise

Remark. Theoretically, the control u can be chosen infinite dimensional and everything that

follows below can be shown as well. There are numerical reasons to assume u to be finite

dimensional. In the context of (balancing related) model order reduction it is often required to

just have a low number of inputs to keep the computational costs low.

Definition 4.8. An (Ft)t≥0-adapted cadlag process (X (t))t≥0 with values in H is called mild
solution of (4.3) if P-almost surely

X (t) = S(t)X0 +
∫ t

0
S(t− s)Bu(s)ds+

∫ t

0
S(t− s)N (X (s−))dM(s) (4.6)

holds for all t ≥ 0.

We now show that the concept of mild solutions for equation (4.3) is well-defined. Furthermore,
we prove the existence and uniqueness of a cadlag mild solution for a fixed control. Therefore,
we state the following lemmas.

Lemma 4.9. Let Ψ : [0,T ]×Ω→ H be a PT/B(H)-measurable process, then

[0,T ]×Ω 3 (s,ω) 7→ χ[0,t)(s)S(t− s)Ψ(s,ω)

is a PT/B(H)-measurable mapping for all t ∈ [0,T ].

Proof. Knoche, Frieler [44] state the proof in Lemma 3.5.

Applying Lemma 4.9, the process∫ t

0
S(t− s)Ψ(s)dM(s), t ∈ [0,T ],

is well-defined for processes Ψ ∈L 2
T since

E
∫ t

0

∥∥∥S(t− s)Ψ(s)Q
1
2

∥∥∥2

L(HS)(U,H)
ds≤ K2 e2α̂T E

∫ T

0

∥∥∥Ψ(s)Q
1
2

∥∥∥2

L(HS)(U,H)
ds < ∞

by using inequality (4.1). In particular, K = 1 and α̂ = 0 because (S(t))t≥0 is a contraction.

Lemma 4.10. Let Ψ be an (Ft)t∈[0,T ]-adapted process with values in H which is P-almost surely

Bochner integrable, then the process∫ t

0
S(t− s)Ψ(s)ds, t ∈ [0,T ],
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is well-defined, P-almost surely continuous and (Ft)t∈[0,T ]-adapted.

Proof. The proof is similar to the one stated in Lemma 3.9 in [44].

Lemma 4.11. Let (Ψ(t)t∈[0,T ]) be an H-valued square integrable martingale with respect to a

filtration (Ft)t∈[0,T ] which is continuous in probability, then Ψ has a cadlag modification.

Proof. For a proof, see [55] (Theorem 3.41).

Theorem 4.12. For a fixed adapted control u fulfilling (4.5), there is a unique mild solution

(X (t))t≥0 to equation (4.3) satisfying

sup
t∈[0,T ]

E‖X (t)‖2
H < ∞.

Proof. Let (B,‖·‖B) be the Banach space of (Ft)t∈[0,T ]-adapted cadlag processes X satisfy-
ing ‖X ‖2

B := supt∈[0,T ]E‖X (t)‖2
H < ∞. We assume that two processes are equal in B if they

coincide dt⊗P-almost surely. We define a mapping

ρ(X )(t) = S(t)X0 +
∫ t

0
S(t− s)Bu(s)ds+

∫ t

0
S(t− s)N (X (s−))dM(s)

for X ∈ B and t ∈ [0,T ] show that it is well-defined. The mapping

[0,T ] 3 t 7→ S(t)X0

is continuous and hence cadlag. Since it is deterministic, obviously it is (Ft)t∈[0,T ]-adapted. Due
to the contraction property of (S(t))t≥0, we have

sup
t∈[0,T ]

E‖S(t)X0‖2
H ≤ ‖X0‖2

H < ∞.

The process Bu(s), s ∈ [0,T ], is (Ft)t∈[0,T ]-adapted because the control u is adapted. This
process is P-almost surely Bochner integrable since

E
[∫ t

0
‖Bu(s)‖H ds

]
≤ ‖B‖L(Rm,H)

∫ T

0
E‖u(s)‖2 ds

≤ ‖B‖L(Rm,H)T
1
2

(∫ T

0
E‖u(s)‖2

2 ds
) 1

2

< ∞
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by using the Cauchy-Schwarz inequality. Hence, the process∫ t

0
S(t− s)Bu(s)ds, t ∈ [0,T ], (4.7)

well-defined and cadlag adapted by Lemma 4.10. We proceed with the process in (4.7). It is in
B because by the Cauchy-Schwarz inequality, we obtain

sup
t∈[0,T ]

E
∥∥∥∥∫ t

0
S(t− s)Bu(s)ds

∥∥∥∥2

H
≤ sup

t∈[0,T ]
t
∫ t

0
E‖S(t− s)Bu(s)‖2

H ds

and furthermore, we have

sup
t∈[0,T ]

E
∥∥∥∥∫ t

0
S(t− s)Bu(s)ds

∥∥∥∥2

H
≤ ‖B‖2

L(Rm,H)T
∫ T

0
E‖u(s)‖2

2 ds < ∞.

We now focus on the stochastic integral. By the remarks below Lemma 4.9, the process(∫ t

0
S(t− s)N (X (s−))dM(s)

)
t∈[0,T ]

(4.8)

is well-defined if the process

N (X (t−)), t ∈ [0,T ], (4.9)

is in the space L 2
T . Since X is cadlag, the process of the left limits (X (t−))t∈[0,T ] is obviously

H-predictable and hence the process in (4.9) is H-predictable. Due to inequality (4.4) and the fact
that X and the process of left limits coincide almost everywhere with respect to the Lebesgue
measure, we have

E
∫ t

0

∥∥∥N (X (s−))Q 1
2

∥∥∥2

L(HS)(U,H)
ds≤ M̃2E

∫ T

0
‖X(s)‖2

H ds≤ M̃2T sup
t∈[0,T ]

E‖X(s)‖2
H < ∞.

In order to show that the stochastic convolution in (4.8) has a cadlag modification we argue as in
Theorem 9.24 in [55]. By Theorem 4.5 the contraction semigroup S can be written in the form
S(t) = PrH Ŝ(t), t ≥ 0, where Ŝ is a strongly continuous group on some larger Hilbert space Ĥ
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and PrH is the orthogonal projection of Ĥ onto H. Thus, for t ∈ [0,T ] we have

∫ t

0
S(t− s)N (X (s−))dM(s) = PrH Ŝ(t)

∫ t

0
Ŝ(−s)N (X (s−))dM(s).

Since S(−s)N (X (s−)), s ∈ [0,T ], belongs to L 2
T , the process

∫ t

0
Ŝ(−s)N (X (s−))dM(s), t ∈ [0,T ], (4.10)

is a square integrable martingale with respect to (Ft)t∈[0,T ] by the results we have obtained in
Section 3.1. It is also continuous in probability by Theorem 3.8 such that with Lemma 4.11 we
conclude that (4.10) has a cadlag modification. Because Ŝ is strongly continuous, the process
(4.8) has a cadlag modification as well.

We now show that the well-defined mapping ρ has exactly one fixed point in B. This is a con-
sequence of the Banach fixed point theorem2 if we can prove that ρ is a contraction, i.e. the
mapping ρ Lipschitz continuous with a Lipschitz constant less than 1. To ensure this, we use
arguments of the proofs of Theorem 3.2 in [44] and Theorem 9.29 in [55]. Following this refer-
ences, we introduce a family of norms ‖·‖B,β , β > 0, which for X ∈ B is given by

‖X ‖2
B,β := sup

t∈[0,T ]
e−β t E‖X (t)‖2

H .

This norms are equivalent to ‖·‖B since

‖X ‖B,β ≤ ‖X ‖B ≤ e
βT
2 ‖X ‖B,β .

Below, let X1,X2 ∈ B, then it holds

E
∥∥∥∥∫ t

0
S(t− s)(N (X1(s−))−N (X2(s−)))dM(s)

∥∥∥∥2

H

=
∫ t

0
E
∥∥∥S(t− s)N (X1(s−)−X2(s−))Q

1
2

∥∥∥2

L(HS)(U,H)
ds

≤
∫ t

0
E
∥∥∥N (X1(s)−X2(s))Q

1
2

∥∥∥2

L(HS)(U,H)
ds

≤ M̃2
∫ t

0
E‖X1(s)−X2(s)‖2

H ds

2We refer to Section IV.7 in [71].
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≤ M̃2
∫ t

0
eβ s ds‖X1−X2‖2

B,β

≤ M̃2 1
β

eβ t ‖X1−X2‖2
B,β

and thus

‖ρ(X1)−ρ(X2)‖B,β =

(
sup

t∈[0,T ]
e−β t E

∥∥∥∥∫ t

0
S(t− s)(N (X1(s−))−N (X2(s−)))dM(s)

∥∥∥∥2

H

) 1
2

≤ M̃
(

1
β

) 1
2

‖X1−X2‖B,β .

Choosing β > M̃2 yields the desired contraction property such that we have unique fixed point
of ρ in B.

Remark. • System (4.3) can be easily extended by adding a term in the drift part that is

Lipschitz continuous in X and by considering more general Lipschitz continuous func-

tions N . For existence and uniqueness results we refer to [44] and [55], where these

assumptions are used in an uncontrolled setting with a predictable mild solution concept.

• The linear operator A in equation (4.3) can be replaced by a generator of a generalized

contraction semigroup.

• Even arbitrary generators A can be used, see Theorem 9.29 in [55], where the required

techniques for a proof are used in a different framework. In this case, one has to modify

the solution concept. Instead of constructing cadlag adapted mild solutions one has to

switch to predictable solutions since the stochastic convolution in equation (4.6) has no

cadlag modification for general A . So, the left limit in the diffusion part of (4.3) has to be

replaced by X (s).

4.3. Examples

In this section, we provide two examples that are covered by the system (4.3). In the first sub-
section, we introduce a framework that includes the stochastic heat equation and in the second
subsection we discuss the stochastic damped wave equation. Here, we keep the notation that is
used in Section 4.2. For more examples with general generator A we refer to [55].
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4. Linear Controlled SPDEs with Lévy Noise

4.3.1. Stochastic heat equation

We suppose that A : D(A )→ H is a densely defined linear operator being self adjoint and
negative definite such that we have an orthonormal basis (hk)k∈N of H consisting of eigenvectors
of A :

A hk =−λkhk, (4.11)

where 0≤ λ1≤ λ2≤ . . . are the corresponding eigenvalues. We then know that the linear operator
A generates a contraction C0-semigroup (S(t))t≥0 defined by

S(t)x =
∞

∑
k=1

e−λkt 〈x,hk〉hk (4.12)

for x ∈ H. It is exponentially stable (α̂ < 0 in (4.1)) for the case 0 < λ1. An important example
that satisfies the assumptions on the generator is A = ∆ which is the heat equation case. Below,
we state two examples in order to demonstrate what is covered by the abstract setting in Section
4.2.

Example 4.13. We consider a bar of length π which is heated on [0, π

2 ]. Moreover, there is ice

at the boundary. So, the temperature of the bar is described by the following stochastic partial

differential equation, where the noise can be interpreted as a random heat source or wind that

affects the bar:

∂X (t,ζ )
∂ t

=
∂ 2

∂ζ 2 X (t,ζ )+1[0, π

2 ]
(ζ )u(t)+aX (t−,ζ )∂M(t)

∂ t
, (4.13)

X (t,0) = 0 = X (t,π),

X (0,ζ ) = X0(ζ )

for a ∈ R, t ≥ 0 and ζ ∈ [0,π]. Here, we assume that

• M is a scalar square integrable Lévy process with zero mean,

• H = L2([0,π]), U = R, m = 1,

• A = ∂ 2

∂ζ 2 , B = 1[0, π

2 ]
(·) and N (x) = ax for x ∈ L2([0,π]).

It is a well-known fact that here the eigenvalues of the second derivative are given by the sequence
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4. Linear Controlled SPDEs with Lévy Noise

−λk = −k2, k ∈ N, and the corresponding eigenvectors which represent an orthonormal basis

are hk =
√

2
π

sin(k·).

If furthermore E
[
M(1)2]a2 < 2, then the solution X h of the uncontrolled SPDE (4.13) is expo-

nentially mean square stable, i.e.

E
∥∥∥X h(t, ·)

∥∥∥2

H
≤ ce−α̃t ‖X0(·)‖2

H (4.14)

for c, α̃ > 0. This is a consequence of Theorem 3.1 in Ichikawa [38] and Theorem 5 in Hauss-

mann [30]. For further information regarding the exponential mean square stability condition

(4.14), see Section 5 in Curtain [18].3

We are interested in the average temperature of the bar on [π

2 ,π] such that the scalar output of

the system is

Y (t) =
2
π

∫
π

π

2

X (t,ζ )dζ , (4.15)

where C x = 2
π

∫
π
π

2
x(ζ )dζ for x ∈ L2([0,π]).

Next, we consider a more complex example with a two dimensional spatial variable and Neu-
mann boundary conditions.

Example 4.14. We consider a two dimensional surface with perfect insulation at the boundary

which is heated in the middle. This can be modeled by the following controlled stochastic partial

differential equation with t ≥ 0 and ζ ∈ [0,π]2:

∂X (t,ζ )
∂ t

= ∆X (t,ζ )+1[ π

4 ,
3π

4 ]2(ζ )u(t)+ e−|ζ1− π

2 |−ζ2 X (t−,ζ )∂M(t)
∂ t

, (4.16)

∂X (t,ζ )
∂n

= 0, t ≥ 0, ζ ∈ ∂ [0,π]2,

X (0,ζ )≡ 0.

Again, M is a scalar square integrable Lévy process with zero mean which can model a random

heat source or the impact of wind.

Further, we set

3Curtain, Ichikawa and Haussmann stated these conditions for exponential mean square stability for the Wiener
case which can be easily generalized for the case of square integrable Lévy processes with mean zero.
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4. Linear Controlled SPDEs with Lévy Noise

• H = L2([0,π]2), U = R, m = 1,

• A is the Laplace operator, B = 1[ π

4 ,
3π

4 ]2(·) and

• N (x) = e−|·− π

2 |−· x for x ∈ L2([0,π]2).

The eigenvalues of the Laplacian on [0,π]2 are given by −λi j = −(i2 + j2), i, j ∈ Z+, and the

corresponding eigenvectors which represent an orthonormal basis are hi j =
fi j

‖ fi j‖H
, where fi j =

cos(i·)cos( j·). For simplicity, to ensure the form given in (4.11), we write −λk, k ∈ N, for the

k-th largest eigenvalue and we denote the corresponding eigenvector by hk.

The scalar output of the system is the average temperature on the non heated area

Y (t) =
4

3π2

∫
[0,π]2\[ π

4 ,
3π

4 ]2
X (t,ζ )dζ , (4.17)

where C x = 4
3π2

∫
[0,π]2\[ π

4 ,
3π

4 ]2 x(ζ )dζ for x ∈ L2([0,π]2).

Remark. • The SPDEs in Examples 4.13 and 4.14 are only symbolic equations. They have

to be interpreted in the sense of a mild solution defined in (4.6).

• In the Examples 4.13 and 4.14, the noise process M can be infinite dimensional as well.

So, the linear mapping N can for example have the form

N (x) =
∞

∑
k=1

νk 〈hk,x〉H hk 〈·,uk〉U ,

where x ∈ H, (uk)k∈N is an orthonormal basis of U and ∑
∞
k=1 ν2

k < ∞. Since N (x) ∈
L(U,H), the corresponding SPDE would be well defined.

4.3.2. Stochastic damped wave equation

In this section, we introduce a damped wave equation with Lévy noise. It is possible to transform
this SPDE into a first order system (4.3) following the approach in [19].
Let M1 and M2 be independent scalar square integrable Lévy processes with zero mean being
defined on a complete probability space (Ω,F ,(Ft)t≥0,P).4 In addition, we assume Mk (k =

1,2) to be (Ft)t≥0-adapted and the increments Mk(t + h)−Mk(t) to be independent of Ft for

4We assume that (Ft)t≥0 is right-continuous and that F0 contains all P null sets.
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t,h≥ 0.
Suppose ˜A : D( ˜A )→ H̃ is a self adjoint and positive definite operator such that we can choose
an orthonormal basis

(
h̃k
)

k∈N of the separable Hilbert space H̃ consisting of eigenvectors of ˜A :

˜A h̃k = λ̃kh̃k,

where 0 < λ̃1 ≤ λ̃2 ≤ . . . are the corresponding eigenvalues. We denote the well defined square
root of ˜A by ˜A

1
2 . D( ˜A

1
2 ) equipped with the inner product 〈x,y〉

D( ˜A
1
2 )

=
〈

˜A
1
2 x, ˜A

1
2 y
〉

H̃
rep-

resents a Hilbert space. In this case, the norm ‖·‖
D( ˜A

1
2 )

is equivalent to the graph norm of the

linear operator ˜A
1
2 .

The equation that we consider next is also studied by Curtain in [19] for M1,M2 being Wiener
processes and u≡ 0. There, the exponential mean square stability is analyzed for example. The
system we focus on is the following (symbolic) second order stochastic differential equation:

Z̈ (t)+αŻ (t)+ ˜A Z (t)+ B̃u(t)+ D̃1Z (t−)Ṁ1(t)+ D̃2Ż (t−)Ṁ2(t) = 0 (4.18)

with initial conditions Z (0) = z0, Ż (0) = z1 and output equation

Y (t) = C
(

Z (t)
Ż (t)

)
, t ≥ 0.

Above, we make the following assumptions:

• The constant α is positive, D̃1 ∈ L(D( ˜A
1
2 ), H̃) and D̃2 ∈ L(H̃).

• B̃ is a linear and bounded operator on Rm with values in H̃ and C ∈ L(D( ˜A
1
2 )× H̃,Rp).

We introduce the Hilbert space H = D( ˜A
1
2 )× H̃ equipped with the inner product〈(

Z̃1
Z̃2

)
,
(

Z̄1
Z̄2

)〉
H
=
〈

˜A
1
2 Z̃1, ˜A

1
2 Z̄1

〉
H̃
+
〈
Z̃2, Z̄2

〉
H̃ .

An orthonormal basis of H is given by (hk)k∈N defined by

h2i−1 = λ̃
− 1

2
i

(
h̃i

0

)
and h2i =

(
0
h̃i

)
(4.19)
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for i ∈N. The second order equation (4.18) can be expressed by the following first order system:

dX (t) = A X (t)+Bu(t)dt +D1X (t−)dM1(t)+D2X (t−)dM2(t), (4.20)

Y (t) = C X (t), t ≥ 0, X (0) = X0 = ( z0
z1 ) ,

where

X (t) =
(

Z (t)
Ż (t)

)
, A =

[
0 I
− ˜A −αI

]
, B =

[
0
−B̃

]
, D1 =

[
0 0
−D̃1 0

]
and D2 =

[
0 0
0 −D̃2

]
.

Regarding this transformation we follow [19], where it is used as well. The next lemma from
[57] provides a stability result and is also needed to define a cadlag mild solution of (4.20).

Lemma 4.15. For every α > 0 the linear operator A with domain D( ˜A )×D( ˜A
1
2 ) generates

an exponential stable contraction semigroup (S(t))t≥0 with

‖S(t)‖L(H) ≤ e−ct ,

where

c≥ 2αλ̃1

4λ̃1 +α(α +
√

α2 +4λ̃1)
.

Of course, system (4.20) can be transformed into the form we have in (4.3) by setting

M =

(
M1

M2

)
and N (x) =

[
D1x D2x

]
,

where x ∈ H and U = R2. Sometimes we use the alternative representation for the (Ft)t≥0-
adapted cadlag mild solution (X (t))t≥0 of (4.20) which for all t ≥ 0 is

X (t) = S(t)X0 +
∫ t

0
S(t− s)Bu(s)ds+

2

∑
i=1

∫ t

0
S(t− s)DiX (s−)dMi(s). (4.21)

We present an example for system (4.18) to conclude this subsection. This example is just a
symbolic SPDE which is defined in the sense of (4.21)

Example 4.16. The lateral displacement of an electricity cable impacted by wind can be modeled
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by the following second order SPDE:

∂ 2

∂ t2 Z (t,ζ )+α
∂

∂ t
Z (t,ζ ) =

∂ 2

∂ζ 2 Z (t,ζ )+ e−(ζ−
π

2 )
2
u(t)+2e−(ζ−

π

2 )
2
Z (t−,ζ ) ∂

∂ t
M1(t)

for t ∈ [0,T ] and ζ ∈ [0,π]. Here, we have

• ˜A =− ∂ 2

∂ζ 2 , the operator B̃ is represented by the function −e−(·−
π

2 )
2
,

• D̃2 = 0, D̃1 is characterized by −2e−(·−
π

2 )
2

and

• H̃ = L2([0,π]), D( ˜A
1
2 ) = H1

0 ([0,π]), m = 1.

The boundary and initial conditions are

Z (0, t) = 0 = Z (π, t) and Z (0,ζ ),
∂

∂ t
Z (t,ζ )

∣∣∣∣
t=0
≡ 0.

The output is an approximation for the position of the middle of the string

Y (t) =
1

2ε

∫ π

2 +ε

π

2−ε

Z (t,ζ )dζ ,

where ε > 0 is small. Here, we set C =
[
Ĉ 0

]
with Ĉ x = 1

2ε

∫ π

2 +ε

π

2−ε
x(ζ )dζ (x ∈ D( ˜A

1
2 )), such

that p = 1.

4.4. Conclusions

In this chapter, we gave an insight into the C0-semigroup theory before we introduced linear con-
trolled SPDEs with Lévy noise in an abstract Hilbert space setting. We discussed the existence
and uniqueness of cadlag mild solutions for these SPDEs and considered two specific examples,
namely the heat and the damped wave equation with Lévy noise.
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5. Numerical Approximations for Linear

SPDEs with Lévy Noise

In this chapter, we investigate a Galerkin scheme that is for example studied by Grecksch, Kloe-
den [27] and Jentzen, Kloeden [40] for particular SPDEs with Wiener noise. One finds a more
general setting in Hausenblas [29]. This chapter is manly based on Benner, Redmann [14] (Sec-
tion 5.1) and [60] (Section 3).
In [27] and [40] the stochastic heat equation driven by Wiener noise is covered. We make use of
these techniques in proving the convergence of the numerical solutions in the case of stochastic
heat equations with Lévy noise in Section 5.1. Furthermore, we derive the Galerkin solution for
particular examples. In Section 5.2, we apply similar ideas to a completely different problem, i.e.
we investigate Galerkin methods for second order systems and apply it to particular examples.
Finally, we illustrate the numerical solutions in a plot, where all the numerical experiments are
run on a desktop computer with a dual-core Intel Pentium processor E5400 and 3GB RAM. All
algorithms are implemented and executed in MATLAB 7.14.0.739 (R2012a) running on Ubuntu
10.04.1 LTS.

In this chapter, we semi-discretize the type of equation we introduce in Section 4.2. Below, we
assume the existence of an orthonormal basis (hk)k∈N of H which belongs to D(A ). For the sep-
arable Hilbert space U , we choose an orthonormal basis (uk)k∈N which consists of eigenvectors
of the covariance operator Q1 of M, see equation (4.2). We denote the corresponding eigenvalues
by (µk)k∈N such that

Quk = µkuk.

We then approximate the mild solution of the infinite dimensional equation (4.3) for special
cases. Therefore, we construct a sequence (Xn)n∈N of finite dimensional adapted cadlag pro-

1By Theorem VI.21 in Reed, Simon [62], Q is a compact operator such that this property follows by the spectral
theorem.
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cesses with values in Hn = span{h1, . . . ,hn} given by

dXn(t) = [AnXn(t)+Bnu(t)]dt +Nn(Xn(t−))dMn(t), t ≥ 0, (5.1)

Xn(0) = X0,n,

where we define

• Mn(t) = ∑
n
k=1 〈M(t),uk〉U uk, t ≥ 0, is a span{u1, . . . ,un}-valued Lévy process,

• Anx = ∑
n
k=1 〈A x,hk〉H hk ∈ Hn holds for all x ∈ D(A ),

• Bnx = ∑
n
k=1 〈Bx,hk〉H hk ∈ Hn holds for all x ∈ Rm,

• Nn(x)y = ∑
n
k=1 〈N (x)y,hk〉H hk ∈ Hn holds for all y ∈U and x ∈ H,

• X0,n = ∑
n
k=1 〈X0,hk〉H hk ∈ Hn.

5.1. Approximation of stochastic heat equations

In this section, we discuss a Galerkin scheme for the special framework in Subsection 4.3.1
which covers the heat equation. So, we choose an orthonormal basis (hk)k∈N of eigenvectors of
A , see equation (4.11). The advantage of this case is that we can use the special structure of the
C0-semigroup in (4.12).

Since An is a bounded operator for every n ∈ N, we know that An generates a C0-semigroup
on Hn of the form Sn(t) = eAnt , t ≥ 0. For all x ∈ Hn, it furthermore has the representation
Sn(t)x = ∑

n
k=1 e−λkt 〈x,hk〉H hk. Hence, ‖(Sn(t)−S(t))x‖H → 0 for n→ ∞.

The mild solution of equation (5.1) is given by

Xn(t) = Sn(t)X0,n +
∫ t

0
Sn(t− s)Bnu(s)ds+

∫ t

0
Sn(t− s)Nn(Xn(s−))dMn(s)

for t ≥ 0. Furthermore, we consider the p-dimensional approximating output

yn(t) = C Xn(t), t ≥ 0.
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Below, one can proof Theorem 5.1 with similar arguments as in [27] and [40]. This shows that
the following is true for n→ ∞ and t ≥ 0:

E‖yn(t)−Y (t)‖2
2→ 0.

We furthermore provide the proof of the following theorem. This proof is missing in Theorem
5.2 of [14].

Theorem 5.1. Under the assumptions on A we made in Subsection 4.3.1,

E‖Xn(t)−X (t)‖2
H → 0

holds for n→ ∞ and t ≥ 0.

Proof.

E‖Xn(t)−X (t)‖2
H ≤ 3E

∥∥S(t)X0−Sn(t)X0,n
∥∥2

H

+3E
∥∥∥∥∫ t

0
(S(t− s)B−Sn(t− s)Bn)u(s)ds

∥∥∥∥2

H

+3E
∥∥∥∥∫ t

0
S(t− s)N (X (s−))dM(s)−

∫ t

0
Sn(t− s)Nn(Xn(s−))dMn(s)

∥∥∥∥2

H
.

Using S(t)x = ∑
∞
i=1 e−λit 〈x,hi〉H hi (x ∈ H) yields

3E
∥∥S(t)X0−Sn(t)X0,n

∥∥2
H = 3E

∥∥∥∥∥ ∞

∑
i=n+1

e−λit 〈X0,hi〉H hi

∥∥∥∥∥
2

H

= 3E
∞

∑
i=n+1

e−2λit 〈X0,hi〉2H

≤ 3E
∥∥X0−X0,n

∥∥2
H . (5.2)

The Hölder inequality delivers

E
∥∥∥∥∫ t

0
S(t− s)Bu(s)−Sn(t− s)Bnu(s)ds

∥∥∥∥2

H
≤ tE

∫ t

0
‖S(t− s)Bu(s)−Sn(t− s)Bnu(s)‖2

H ds.

So, we have

‖S(t− s)Bu(s)−Sn(t− s)Bnu(s)‖2
H =

∞

∑
i=n+1

e−2λit 〈Bu(s),hi〉2H
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≤ ‖Bu(s)−Bnu(s)‖2
H → 0

P- almost surely for n→ ∞ and

3tE
∫ t

0
‖Bu(s)−Bnu(s)‖2

H ds→ 0 (5.3)

for n→ ∞ by Lebesgue’s theorem. Furthermore, we obtain

3E
∥∥∥∥∫ t

0
S(t− s)N (X (s−))dM(s)−

∫ t

0
Sn(t− s)Nn(Xn(s−))dMn(s)

∥∥∥∥2

H

≤ 6E
∥∥∥∥∫ t

0
S(t− s)N (X (s−))−Sn(t− s)Nn(Xn(s−))dM(s)

∥∥∥∥2

H
(5.4)

+6E
∥∥∥∥∫ t

0
Sn(t− s)Nn(Xn(s−))dM(s)−

∫ t

0
Sn(t− s)Nn(Xn(s−))dMn(s)

∥∥∥∥2

H
. (5.5)

By applying the Ito isometry (see Section 3.1) to term (5.4), we have

6E
∥∥∥∥∫ t

0
S(t− s)N (X (s−))−Sn(t− s)Nn(Xn(s−))dM(s)

∥∥∥∥2

H

= 6
∫ t

0
E
∥∥∥(S(t− s)N (X (s−))−Sn(t− s)Nn(Xn(s−)))Q

1
2

∥∥∥2

LHS(U,H)
ds.

Since a cadlag process has just finitely many jumps, we can replace the left limit processes
by the original ones. Furthermore, we insert the definition of the Hilbert-Schmidt norm and
representation of the C0-semigroup and obtain

6E
∥∥∥∥∫ t

0
S(t− s)N (X (s−))−Sn(t− s)Nn(Xn(s−))dM(s)

∥∥∥∥2

H

= 6
∫ t

0
E

∞

∑
k=1

∥∥∥(S(t− s)N (X (s))−Sn(t− s)Nn(Xn(s)))Q
1
2 uk

∥∥∥2

H
ds

= 6
∫ t

0
E

∞

∑
k=1

∥∥∥∥∥ ∞

∑
i=1

e−λi(t−s)〈N (X (s))Q
1
2 uk,hi〉Hhi−

n

∑
i=1

e−λi(t−s)〈N (Xn(s))Q
1
2 uk,hi〉Hhi

∥∥∥∥∥
2

H

ds

≤ 12
∫ t

0
E

∞

∑
k=1

n

∑
i=1

e−2λi(t−s)〈N (X (s)−Xn(s))Q
1
2 uk,hi〉2Hds

+12
∫ t

0
E

∞

∑
k=1

∞

∑
i=n+1

e−2λi(t−s)〈N (X (s))Q
1
2 uk,hi〉2Hds
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≤ 12
∫ t

0
E
∥∥∥N (X (s)−Xn(s))Q

1
2

∥∥∥2

LHS(U,H)
ds (5.6)

+12
∫ t

0
E
∥∥∥(N (X (s))−Nn(X (s)))Q

1
2

∥∥∥2

LHS(U,H)
ds. (5.7)

The term (5.7) converges to zero for n→ ∞ by Lebesgue’s theorem. Moreover, for (5.6) we
obtain

12
∫ t

0
E
∥∥∥N (X (s)−Xn(s))Q

1
2

∥∥∥2

LHS(U,H)
ds≤ 12M̃2

∫ t

0
E‖X (s)−Xn(s)‖2

H ds (5.8)

applying inequality (4.4). Using the Fourier series representation for M and Mn in (5.5), we have

6E
∥∥∥∥∫ t

0
Sn(t− s)Nn(Xn(s−))dM(s)−

∫ t

0
Sn(t− s)Nn(Xn(s−))dMn(s)

∥∥∥∥2

H
=

6E

∥∥∥∥∥ ∞

∑
k=n+1

∫ t

0
Sn(t− s)Nn(Xn(s−))ukd 〈M(s),uk〉U

∥∥∥∥∥
2

H

.

We define Mk(s) := 〈M(s),uk〉U , s≥ 0, and since Mi and M j are uncorrelated processes (i 6= j),
it follows

6E
∥∥∥∥∫ t

0
Sn(t− s)Nn(Xn(s−))dM(s)−

∫ t

0
Sn(t− s)Nn(Xn(s−))dMn(s)

∥∥∥∥2

H

= 6
∞

∑
k=n+1

E
∥∥∥∥∫ t

0
Sn(t− s)Nn(Xn(s−))ukdMk(s)

∥∥∥∥2

H
.

By the Ito isometry and by replacing the left limits, we obtain

6E
∥∥∥∥∫ t

0
Sn(t− s)Nn(Xn(s−))dM(s)−

∫ t

0
Sn(t− s)Nn(Xn(s−))dMn(s)

∥∥∥∥2

H

≤ 6
∞

∑
k=n+1

µk

∫ t

0
E‖Sn(t− s)Nn(Xn(s))uk‖2

H ds

≤ 6
∞

∑
k=n+1

µk

∫ t

0
E‖S(t− s)N (Xn(s))uk‖2

H ds

≤ 12
∞

∑
k=1

µk

∫ t

0
E‖S(t− s)N (X (s)−Xn(s))uk‖2

H ds

+12
∞

∑
k=n+1

µk

∫ t

0
E‖S(t− s)N (X (s))uk‖2

H ds

74



5. Numerical Approximations for Linear SPDEs with Lévy Noise

= 12
∞

∑
k=1

∫ t

0
E
∥∥∥S(t− s)N (X (s)−Xn(s))Q

1
2 uk

∥∥∥2

H
ds

+12
∞

∑
k=n+1

∫ t

0
E
∥∥∥S(t− s)N (X (s))Q

1
2 uk

∥∥∥2

H
ds

≤ 12
∫ t

0
E
∥∥∥N (X (s)−Xn(s))Q

1
2

∥∥∥2

LHS(U,H)
ds

+12
∫ t

0
E

∞

∑
k=n+1

∥∥∥N (X (s))Q
1
2 uk

∥∥∥2

H
ds.

By (4.4), we finally have

6E
∥∥∥∥∫ t

0
Sn(t− s)Nn(Xn(s−))dM(s)−

∫ t

0
Sn(t− s)Nn(Xn(s−))dMn(s)

∥∥∥∥2

H

≤ 12M̃2
∫ t

0
E‖X (s)−Xn(s)‖2

H ds

+12
∫ t

0
E

∞

∑
k=n+1

∥∥∥N (X (s))Q
1
2 uk

∥∥∥2

H
ds. (5.9)

The term (5.9) converges to zero for n→∞ by Lebesgue’s theorem. If N takes values in L(U,H)

the expression (5.9) is less or equal to

E‖Mn(1)−M(1)‖2
U 12

∫ t

0
E‖N (X (s))‖2

L(U,H) ds.

We define fn(t) as the sum of the terms in (5.2), (5.3), (5.7) and (5.9). Summarizing everything,
we obtain

E‖Xn(t)−X (t)‖2
H ≤ fn(t)+24M̃2

∫ t

0
E‖X (s)−Xn(s)‖2

H ds.

Hence,

E‖Xn(t)−X (t)‖2
H ≤ fn(t)e24M̃2t (5.10)

by Gronwall’s inequality. The right hand side of inequality (5.10) converges to zero since fn(t)

tends to zero for n→ ∞.

Remark. • If U = Rq, then one has to replace Mn by M in equation (5.1) since it is not

necessary to discretize the noise. For this finite dimensional case, Theorem 5.1 holds as
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well. In detail, we obtain

E‖Xn(t)−X (t)‖2
H ≤

(
6
∫ t

0
E
∥∥∥(N (X (s))−Nn(X (s)))Q

1
2

∥∥∥2

LHS(Rq,H)
ds

+ 3tE
∫ t

0
‖Bu(s)−Bnu(s)‖2

H ds+3E
∥∥X0−X0,n

∥∥2
H

)
e6M̃2t .

• Since the function f is increasing in inequality (5.10), we have a uniform convergence with

respect to time on a compact interval [0,T ], i.e. for n→ 0

sup
t∈[0,T ]

E‖Xn(t)−X (t)‖2
H → 0.

We now characterize the vector of Fourier coefficients of the Galerkin solution Xn and set

x(t) = (〈Xn(t),h1〉H , . . . ,〈Xn(t),hn〉H)T .

The components of x fulfill the following:

〈Xn(t),hk〉H =
〈
Sn(t)X0,n,hk

〉
H +

∫ t

0
〈Sn(t− s)Bnu(s),hk〉H ds

+

〈∫ t

0
Sn(t− s)Nn(Xn(s−))dMn(s),hk

〉
H
.

Using the representation Sn(t)x = ∑
n
i=1 e−λit 〈x,hi〉H hi (x ∈ Hn), we have

〈
Sn(t)X0,n,hk

〉
H = e−λkt 〈X0,n,hk

〉
H = e−λkt 〈X0,hk〉H

and

〈Sn(t− s)Bnu(s),hk〉H = e−λk(t−s) 〈Bnu(s),hk〉H =
m

∑
l=1

e−λk(t−s) 〈Bel,hk〉H 〈u(s),el〉Rm

for k = 1, . . . ,n, where el is the l-th unit vector in Rm. Furthermore, it holds〈∫ t

0
Sn(t− s)Nn(Xn(s−))dMn(s),hk

〉
H
=

n

∑
j=1

∫ t

0

〈
Sn(t− s)Nn(Xn(s−))u j,hk

〉
H d
〈
M(s),u j

〉
U

=
n

∑
j=1

n

∑
i=1

∫ t

0

〈
Sn(t− s)Nn(hi)u j,hk

〉
H 〈Xn(s−),hi〉H d

〈
M(s),u j

〉
U
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=
n

∑
j=1

n

∑
i=1

∫ t

0
e−λk(t−s) 〈N (hi)u j,hk

〉
H 〈Xn(s−),hi〉H d

〈
M(s),u j

〉
U .

Hence, in compact form x is given by

x(t) = eAt x0 +
∫ t

0
eA(t−s)Bu(s)ds+

n

∑
j=1

∫ t

0
eA(t−s)N jx(s−)dM j(s), (5.11)

where

• A = diag(−λ1, . . . ,−λn), B = (〈Bei,hk〉H) k=1,...,n
i=1,...,m

, N j =
(〈

N (hi)u j,hk
〉

H

)
k,i=1,...,n,

• x0 = (〈X0,h1〉H , . . . ,〈X0,hn〉H)T and M j(s) =
〈
M(s),u j

〉
U .

The processes M j are uncorrelated real-valued Lévy processes with E
∣∣M j(t)

∣∣2 = tµ j, t ≥ 0,
and zero mean. Below, we show that the solution of equation (5.11) fulfills the strong solution
equation as well. We set

g(t) := x0 +
∫ t

0
e−As Bu(s)ds+

n

∑
j=1

∫ t

0
e−As N jx(s−)dM j(s), t ≥ 0,

and determine the stochastic differential of eAt g(t) via the Ito product formula in Corollary A.4:

eT
i x(t) = eT

i eAt g(t) = eT
i g(0)+

∫ t

0
d
(

eT
i eAs

)
g(s−)+

∫ t

0
eT

i eAs dg(s)

= eT
i

(
x0 +

∫ t

0
AeAs g(s)ds+

∫ t

0
Bu(s)ds+

n

∑
j=1

∫ t

0
N jx(s−)dM j(s)

)
,

where ei is the i-th unit vector of Rn and the quadratic covariation terms are zero, since t 7→ eT
i eAt

is a continuous semimartingale with a martingale part of zero, see (A.2). Hence,

x(t) = x0 +
∫ t

0
[Ax(s)+Bu(s)]ds+

n

∑
j=1

∫ t

0
N jx(s−)dM j(s), t ≥ 0. (5.12)

The corresponding output of the Galerkin solution is

yn(t) =Cx(t), t ≥ 0,
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where C = (〈C hk,el〉Rp) l=1,...,p
k=1,...,n

since

〈yn(t),el〉Rp = 〈C Xn(t),el〉Rp =
n

∑
k=1
〈C hk,el〉Rp 〈Xn(t),hk〉H

for l = 1, . . . , p, where el is the l-th unit vector in Rp.

We conclude this section by stating the matrices of the approximate system (5.12) corresponding
to the examples we give in Subsection 4.3.1.

Example 5.2. The Fourier coefficients of the Galerkin solution corresponding to the SPDE in

Example 4.13 is given by (5.12) with

• A = diag
(
−1,−4, . . . ,−n2),

• N = N1 = (〈N (hi),hk〉H)k,i=1,...,n = (〈ahi,hk〉H)k,i=1,...,n = aIn,

• B = (〈B,hk〉H)k=1,...,n =
(〈

1[0, π

2 ]
(·),hk

〉
H

)
k=1,...,n

=

(( 2
π

) 1
2 1

k

[
1− cos(kπ

2 )
])

k=1,...,n
,

where we use H = L2([0,π]), λk = k2 and hk =
√

2
π

sin(k·). Since here U = R and Rm = R, we

just have a trivial basis {1} for both spaces. The corresponding approximate scalar output yn is

characterized by the vector

CT = (C hk)k=1,...,n =

((
2
π

) 3
2 1

k

[
cos(

kπ

2
)− cos(kπ)

])
k=1,...,n

,

where the integral operator C is defined in (4.15).

Example 5.3. The Fourier coefficients of the Galerkin solution corresponding to the SPDE in

Example 4.14 are given by (5.12) with

• A = diag(0,−1,−1,−2, . . .),

• N = N1 =
(〈

e−|·− π

2 |−· hi,hk

〉
H

)
k,i=1,...,n

,

• B =
(〈

1[ π

4 ,
3π

4 ]2(·),hk

〉
H

)
k=1,...,n

,
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where H = L2([0,π]2) and λk, hk are chosen as in Example 4.14. Again, we have a trivial basis

for the spaces U and Rm. The initial state is x0 = 0. Since yn is scalar, C becomes a vector

which is given by CT = (C hk)k=1,...,n, where C is given in (4.17). In Figure 5.1 we illustrate

the Galerkin solution of the stochastic heat equation of Example 4.14 on the time interval [0,π],
where we set M(t) = w(t)− (N(t)− t). The processes (w(t))t∈[0,π] and (N(t))t∈[0,π] are indepen-

dent processes, where w is a standard Wiener process and (N(t))t∈[0,π] is a Poisson process with

parameter 1. In the first picture in Figure 5.1a it can be seen that the middle of the square is

heated by the control that we fix as follows u(t) =−2eT
1 x(t)+ ew(t), t ∈ [0,π]. Here, the control

term ew(t) is of the form ũ(t,ω) = ũD(t)r(t,ω), t ∈ [0,π] and ω ∈ Ω, where r(t,ω) = ew(t,ω) is

interpreted as a multiplicative positive random perturbation of ũD ≡ 1.

The noise acts mainly in a neighborhood of the middle of the x-axis as one can see in the third

graphic in Figure 5.1a. The first jump occurs there which cools down the system. In the picture

after (first picture in Figure 5.1b) the jump also affects the center. The square then regains the

heat from the input until the next jump appears, see third picture in Figure 5.1b and first picture

in Figure 5.1c. Finally, the heat is mainly concentrated in the upper part of the square while

the lower region is colder due to the noise which randomly causes a loss of heat there. The

corresponding output, which is the mean temperature on the non-heated area, is stated in Figure

5.2. There, the interaction of Wiener and Poisson noise can be seen. The trajectory is piece-

wise impacted by the Wiener part and has jumps in between, where the temperature is randomly

reduced.

5.2. Approximation of stochastic damped wave equations

In this section, we discuss an approximation scheme for the first order system that we obtain in
Subsection 4.3.2. Since the noise process is finite dimensional, i.e. U = R2, we do not need to
discretize the noise here. That means that Mn is replaced by M =

(
M1
M2

)
in the Galerkin system

(5.1), where M1,M2 are independent, square integrable and scalar Lévy processes with mean
zero. Furthermore, we have the following generator of a contraction semigroup

A =

[
0 I

− ˜A −αI

]
,

where ˜A is a self adjoint, positive definite operator, compare Lemma 4.15. The orthonormal
basis (hk)k∈N of H, which is characterized by the eigenvectors and eigenvalues of ˜A , is stated
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(a) The time is fixed to t = 0.03,0.63,1.43.
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(b) The time is fixed to t = 1.49,1.96,2.47.
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(c) The time is fixed to t = 2.59,2.83,2.95.

Figure 5.1.: The Galerkin solution to the stochastic heat equation in Example 4.14

in (4.19). Below, we deal with the alternative representation of the mild solution in (4.21). The
operator Nn in the Galerkin equation (5.1) is then determined by the operators Di,n (i = 1,2)
which are given by

Di,nx =
n

∑
k=1
〈Dix,hk〉H hk

for all x ∈ H.

In contrast to the heat equation case, we do not have an explicit representation for the C0-
semigroup (S(t))t≥0. So, the proof of convergence of the Galerkin solution turns out to be
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Figure 5.2.: The output of the stochastic heat equation in Example 4.14

different. We define a C0-semigroup (Sn(t))t≥0 on Hn which is defined by

Sn(t)x =
n

∑
k=1
〈S(t)x,hk〉H hk

for all x ∈ H and generated by An such that the mild solution of equation (5.1) is given by

Xn(t) = Sn(t)X0,n +
∫ t

0
Sn(t− s)Bnu(s)ds+

2

∑
i=1

∫ t

0
Sn(t− s)Di,nXn(s−)dMi(s).

Below, we formulate the central result of this section, where the ideas in [27, 29, 40, 60] are used.

Theorem 5.4. Under the assumptions we made in Subsection 4.3.2, the solution Xn of equation

(5.1) approximates the solution X of equation (4.20), i.e.

E‖Xn(t)−X (t)‖2
H → 0

for n→ ∞ and t ≥ 0. Of course, this implies the convergence of the corresponding outputs

E‖yn(t)−Y (t)‖2
2→ 0.

Proof.

E‖X (t)−Xn(t)‖2
H ≤ 4E

∥∥S(t)X0−Sn(t)X0,n
∥∥2

H
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+4E
∥∥∥∥∫ t

0
(S(t− s)B−Sn(t− s)Bn)u(s)ds

∥∥∥∥2

H

+4E
∥∥∥∥∫ t

0
S(t− s)D1X (s−)−Sn(t− s)D1,nXn(s−)dM1(s)

∥∥∥∥2

H

+4E
∥∥∥∥∫ t

0
S(t− s)D2X (s−)−Sn(t− s)D2,nXn(s−)dM2(s)

∥∥∥∥2

H
.

Since (S(t))t≥0 is a contraction semigroup, we obtain

4E
∥∥S(t)X0−Sn(t)X0,n

∥∥2
H ≤ 8E‖S(t)X0−Sn(t)X0‖2

H +8E
∥∥Sn(t)X0−Sn(t)X0,n

∥∥2
H

≤ 8E‖S(t)X0−Sn(t)X0‖2
H +8E

∥∥X0−X0,n
∥∥2

H . (5.13)

By the representation Sn(t)x = ∑
n
i=1 〈S(t)x,hi〉H hi (x ∈H) and Lebesgue’s theorem, (5.13) tends

to zero for n→ ∞. The Hölder inequality yields

E
∥∥∥∥∫ t

0
(S(t− s)B−Sn(t− s)Bn)u(s)ds

∥∥∥∥2

H

≤ tE
∫ t

0
‖(S(t− s)B−Sn(t− s)Bn)u(s)‖2

H ds.

We obtain

‖S(t− s)Bu(s)−Sn(t− s)Bnu(s)‖2
H

≤ 2‖S(t− s)Bu(s)−Sn(t− s)Bu(s)‖2
H +2‖Sn(t− s)Bu(s)−Sn(t− s)Bnu(s)‖2

H

≤ 2‖S(t− s)Bu(s)−Sn(t− s)Bu(s)‖2
H +2‖Bu(s)−Bnu(s)‖2

H → 0

P- almost surely for n→ ∞ and

8tE
∫ t

0
‖Bu(s)−Bnu(s)‖2

H +‖S(t− s)Bu(s)−Sn(t− s)Bu(s)‖2
H ds→ 0 (5.14)

for n→ ∞ by Lebesgue’s theorem. By applying the Ito isometry from Section 3.1, we have

4E
∥∥∥∥∫ t

0
S(t− s)DiX (s−)−Sn(t− s)Di,nXn(s−)dMi(s)

∥∥∥∥2

H

= 4
∫ t

0
E‖S(t− s)DiX (s−)−Sn(t− s)Di,nXn(s−)‖2

H ds E[M2
i (1)]
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≤ 8E
[∫ t

0
‖S(t− s)DiX (s)−Sn(t− s)DiX (s)‖2

H ds
]
E[M2

i (1)] (5.15)

+8E
[∫ t

0
‖Sn(t− s)DiX (s)−Sn(t− s)Di,nXn(s)‖2

H ds
]
E[M2

i (1)].

The term (5.15) converges to zero for n→ ∞ by Lebesgue’s theorem. Moreover, it holds

8E
[∫ t

0
‖Sn(t− s)DiX (s)−Sn(t− s)Di,nXn(s)‖2

H ds
]
E[M2

i (1)]

≤ 16E
[∫ t

0
‖DiX (s)−Di,nX (s)‖2

H ds
]
E[M2

i (1)] (5.16)

+16E
[∫ t

0
‖Di,nX (s)−Di,nXn(s)‖2

H ds
]
E[M2

i (1)].

Again, by Lebesgue’s theorem the term (5.16) tends to zero for n→ ∞ and

16E
[∫ t

0
‖Di,nX (s)−Di,nXn(s)‖2

H ds
]
E[M2

i (1)]

≤ 16‖Di‖2
L(H)E

[∫ t

0
‖X (s)−Xn(s)‖2

H ds
]
E[M2

i (1)].

Summarizing everything, we obtain

E‖X (t)−Xn(t)‖2
H ≤ fn(t)+ k1

∫ t

0
E‖X (s)−Xn(s)‖2

H ds,

where k1 := 16
(
‖D1‖2

L(H)E[M2
1(1)]+‖D2‖2

L(H)E[M2
2(1)]

)
and fn is a sequence of functions

consisting of the terms (5.13), (5.14), (5.15) and (5.16). Hence,

E‖X (t)−Xn(t)‖2
H ≤ fn(t)+ k1

∫ t

0
fn(s)ek1(t−s) ds (5.17)

by Gronwall’s inequality. The first term of the right hand side of inequality (5.17) converges
to zero since fn(t) converges to zero for n→ ∞. In addition, fn is bounded by the increasing
function f̃ defined by

f̃ (t) := k2

(
E‖X0‖2

H + t
∫ t

0
E‖u(s)‖2

Rm ds+
∫ t

0
E‖X (s)‖2

H ds
)

with a suitable constant k2 > 0. So, fn(s) ≤ f̃ (t) for all 0 ≤ s ≤ t and every n ∈ N. Hence,
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the second term of the right hand side of inequality (5.17) converges to zero by Lebesgue’s
theorem.

Moreover, notice that the mild and the strong solution of equation (5.1) coincide which we use
below. This, we can prove by using Sn(t) = eAnt and by applying the Ito product formula from
Corollary A.4 as in Section 5.1.

First, we determine the components of yn. They are given by

y`n(t) = 〈yn(t),e`〉Rp = 〈C Xn(t),e`〉Rp =
n

∑
k=1
〈C hk,e`〉Rp 〈Xn(t),hk〉H

for `= 1, . . . , p, where e` is the `-th unit vector in Rp. We set

x(t) = (〈Xn(t),h1〉H , . . . ,〈Xn(t),hn〉H)T and C = (〈C hk,e`〉Rp) `=1,...,p
k=1,...,n

and obtain

yn(t) =Cx(t), t ≥ 0. (5.18)

The components xk(t) := 〈Xn(t),hk〉H of x(t) fulfill the following:

dxk(t) = [〈AnXn(t),hk〉H + 〈Bnu(t),hk〉H ]dt +
2

∑
i=1
〈Di,nXn(t−),hk〉H dMi(t).

By using the Fourier series representation of Xn, we obtain

dxk(t) =

[
n

∑
j=1

〈
Anh j,hk

〉
H x j(t)+

m

∑
j=1

〈
Bne j,hk

〉
H

〈
u(t),e j

〉
Rm

]
dt

+
2

∑
i=1

n

∑
j=1

〈
Di,nh j,hk

〉
H x j(t−)dMi(t)

=

[
n

∑
j=1

〈
A h j,hk

〉
H x j(t)+

m

∑
j=1

〈
Be j,hk

〉
H

〈
u(t),e j

〉
Rm

]
dt

+
2

∑
i=1

n

∑
j=1

〈
Dih j,hk

〉
H x j(t−)dMi(t),
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where e j is the j-th unit vector in Rm. Hence, in compact form, x is given by

dx(t) = [Ax(t)+Bu(t)]dt +
2

∑
i=1

Nix(t−)dMi(t), (5.19)

where

• A =
(〈

A h j,hk
〉

H

)
k, j=1,...,n = diag(E1, . . . ,E n

2
) with E` =

(
0
√

λ̃`

−
√

λ̃` −α

)
(` = 1, . . . , n

2 ),

where λ̃` are the eigenvalues of ˜A ,

• B =
(〈

Be j,hk
〉

H

)
k=1,...,n
j=1,...,m

and Ni =
(〈

Dih j,hk
〉

H

)
k, j=1,...,n.

Next, we study the Galerkin solution of Example 4.16.
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(a) The time is fixed to t = 0.94,1.41,1.73.
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(b) The time is fixed to t = 2.36,2.67,3.06.

Figure 5.3.: The Galerkin solution to the stochastic damped wave equation in Example 4.16

Example 5.5. In Example 4.16, the eigenvectors of ˜A = − ∂ 2

∂ζ 2 characterizing the orthonormal

basis (hk)k∈N in (4.19) are given by h̃k =
√

2
π

sin(k·) and the corresponding eigenvalues are

λ̃k = k2 for k ∈ N. The matrices of the Galerkin system (5.19) are
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Figure 5.4.: The output of the stochastic damped wave equation in Example 4.16

• A = diag
(

E1, . . . ,E n
2

)
with E` =

(
0 `
−` −α

)
,

• B = (〈B,hk〉H)k=1,...,n with

〈B,h2`−1〉H = 0, 〈B,h2`〉H =

√
2
π

〈
e−(·−

π

2 )
2
,sin(`·)

〉
L2([0,π])

,

• N2 = 0 and N1 =
(〈

D1h j,hk
〉

H

)
k, j=1,...,n =

(
nk j
)

k, j=1,...,n with

n(2`−1) j = 0, n(2`) j =

0, if j = 2v,
4

πv

〈
sin(`·),e−(·− π

2 )
2
sin(v·)

〉
L2([0,π])

, if j = 2v−1,

for j = 1, . . . ,n and v = 1, . . . , n
2 ,

• and the output matrix C in (5.18) is given by CT = (C hk)k=1,...,n with

C h2` = 0 and C h2`−1 =
1√

2π`2ε

[
cos
(
`
(

π

2
− ε

))
− cos

(
`
(

π

2
+ ε

))]
,

where we assume n to be even and `= 1, . . . , n
2 .

In Figure 5.3 we plot the Galerkin solution of the stochastic damped wave equation of Example

4.16 on the time interval [0,π] with α = 2, where we set M1(t) =−2(N(t)− t) with (N(t))t∈[0,π]
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being a Poisson process with parameter 1. Due to the input u(t) = 1, t ∈ [0,π], we give to the

system the string moves up as we can see in the first two pictures in Figure 5.3a. The Poisson

noise causes jumps at random times. This uncertainty here models the effect of wind on the

string. In the third picture in Figure 5.3a the wind appears and pushes back the string. After

the wind stops blowing, the the cable moves up again, see first picture in Figure 5.3b, until it is

impacted twice by wind in the following two pictures. The corresponding output, which is the

position of the middle of the cable, is stated in Figure 5.4. In this graph we have peaks at random

positions characterized by the jumps of the underlying Poisson process. These peaks mark the

appearance of the wind which forces the cable to move in the opposite direction. Whenever the

wind blows, we have a tiny jump in the system which is not visible in Figure 5.4 due to its small

size.

5.3. Conclusions

In this chapter, we introduced a spectral Galerkin scheme for linear controlled SPDEs with Lévy
noise. In particular, we discussed this method for stochastic heat and damped wave equations.
We showed that the Galerkin solution converges to the mild solutions of the SPDEs considered
here. To conclude each of the two sections, we ran simulations on a particular heat and a partic-
ular damped wave equation with scalar Lévy noise.
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6. Linear Ordinary SDEs with Lévy

Noise and Balancing Related Model

Order Reduction

6.1. Linear control with Lévy noise

Before describing type 1 balanced truncation (BT) and the singular perturbation approximation
(SPA) for the stochastic case, we define observability and reachability concepts to motivate both
schemes. We introduce observability and reachability Gramians for our Lévy driven system
like Benner, Damm [9] do (Section 2.2). Additionally, we show that the sets of observable
and reachable states are characterized by these Gramians. This is analogous to deterministic
systems, where observability and reachability concepts are described in Subsections 4.2.1 and
4.2.2 in Antoulas [2].

In this section, we only stress the finite dimensional case, since we apply model order reduction
schemes like BT or the SPA just to large scale ordinary stochastic differential equations which
might come from a spatial discretization of a stochastic partial differential equation (SPDE), see
Chapter 5. One might also think about applying model order reducing techniques to SPDEs
directly but this kind of idea would require different approaches. So, the Gramians of the finite
dimensional case considered here are based on a generalized fundamental solution Φ which is a
matrix-valued stochastic process. Unfortunately, such a fundamental solution does not exist for
an infinite dimensional system of the form (4.3) such that the corresponding Gramians would
have to be defined in a different way.

This section is based on Sections 3.1 and 3.2 in Benner, Redmann [14] and extends [13] by
providing more details and by considering a more general framework.

88



6. Linear Ordinary SDEs with Lévy Noise and Balancing Related Model Order Reduction

6.1.1. Reachability concept

Let M1, . . . ,Mq be real-valued uncorrelated and square integrable Lévy processes with mean
zero defined on a filtered probability space (Ω,F ,(Ft)t≥0,P).1 In addition, we assume Mk

(k = 1, . . . ,q) to be (Ft)t≥0-adapted and the increments Mk(t +h)−Mk(t) to be independent of
Ft for t,h≥ 0.
We consider linear controlled systems of the type that we obtain in Sections 5.1 and 5.2, i.e

dx(t) = [Ax(t)+Bu(t)]dt +
q

∑
k=1

Nkx(t−)dMk(t), t ≥ 0, x(0) = x0 ∈ Rn, (6.1)

where A, Nk ∈ Rn×n and B ∈ Rn×m. Note that Nk is just a notation of a matrix with index k

and not the k-th matrix power. With L2
T we denote the space of all (Ft)t≥0-adapted stochastic

processes v with values in Rm, which are square integrable with respect to P⊗ dt. We call the
norm in L2

T energy norm. It is given by

‖v‖2
L2

T
:= E

∫ T

0
vT (t)v(t)dt = E

∫ T

0
‖v(t)‖2

2 dt,

where we define the processes v1 and v2 to be equal in L2
T if they coincide almost surely with

respect to P⊗dt. For the case T = ∞, we denote the space by L2. Further, we assume controls
u ∈ L2

T for every T > 0. We start with the definition of a solution of (6.1).

Definition 6.1. An Rn-valued and (Ft)t≥0-adapted cadlag process (x(t))t≥0 is called solution

of (6.1) if

x(t) = x0 +
∫ t

0
[Ax(s)+Bu(s)]ds+

q

∑
k=1

∫ t

0
Nkx(s−)dMk(s) (6.2)

P-almost surely holds for all t ≥ 0.

Below, the solution of (6.1) at time t ≥ 0 with initial condition x0 ∈ Rn and given control u is
always denoted by x(t,x0,u). For the solution of (6.1) in the uncontrolled case (u≡ 0), we briefly
write xh,x0 := x(t,x0,0), where xh,x0 is called homogeneous solution. Furthermore, ‖·‖2 denotes
the Euclidean norm. We assume the homogeneous solution to be asymptotically mean square

1We assume that (Ft)t≥0 is right continuous and that F0 contains all P null sets.
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stable, which means that

E
∥∥xh,x0(t)

∥∥2
2→ 0

for t → ∞ and x0 ∈ Rn. This concept of stability is also used in Benner, Damm [9] and is
necessary for defining (infinite) Gramians, which are introduced later.

Proposition 6.2. Let xh,x0 be the solution of (6.1) in the uncontrolled case with any initial value

x0 ∈ Rn, then E
[
xh,x0(t)x

T
h,x0

(t)
]

is the solution of the matrix integral equation

Y(t) = x0xT
0 +

∫ t

0
Y(s)ds AT +A

∫ t

0
Y(s)ds+

q

∑
k=1

Nk
∫ t

0
Y(s)ds

(
Nk
)T

E
[
Mk(1)2] (6.3)

for t ≥ 0.

Proof. We determine the stochastic differential of the matrix-valued process xh,x0xT
h,x0

via using
the Ito formula in Corollary A.5. This yields

xh,x0(t)x
T
h,x0

(t)= x0xT
0 +

∫ t

0
xh,x0(s−)dxT

h,x0
(s)+

∫ t

0
dxh,x0(s)x

T
h,x0

(s−)+
(
[eT

i xh,x0 ,x
T
h,x0

e j]t
)

i, j=1,...,n ,

where ei is the i-th unit vector. We obtain

∫ t

0
xh,x0(s−)dxT

h,x0
(s) =

∫ t

0
xh,x0(s−)xT

h,x0
(s)AT ds+

q

∑
k=1

∫ t

0
xh,x0(s−)xT

h,x0
(s−)(Nk)T dMk(s) and

∫ t

0
dxh,x0(s)x

T
h,x0

(s−) =
∫ t

0
Axh,x0(s)x

T
h,x0

(s−)ds+
q

∑
k=1

∫ t

0
Nkxh,x0(s−)xT

h,x0
(s−)dMk(s)

by inserting the stochastic differential of xh,x0 . Thus, by taking the expectation, we obtain

E
[
xh,x0(t)x

T
h,x0

(t)
]
= x0xT

0 +
∫ t

0
E
[
xh,x0(s−)xT

h,x0
(s)
]

AT ds+
∫ t

0
AE
[
xh,x0(s)x

T
h,x0

(s−)
]

ds

+
(
E[eT

i xh,x0,x
T
h,x0

e j]t
)

i, j=1,...,n

applying that an Ito integral has mean zero, see Section 3.1. Considering equation (A.5), we have

E[eT
i xh,x0 ,x

T
h,x0

e j]t = eT
i

q

∑
k=1

∫ t

0
E
[

Nkxh,x0(s)x
T
h,x0

(s)
(

Nk
)T
]

ds · cke j,
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where ck := E
[
Mk(1)2]. In addition, we use the property that a cadlag process has at most

countably many jumps on a finite time interval (see Theorem 2.7.1 in Applebaum [5]), such that
we can replace the left limit by the function value itself. Thus,

E
[
xh,x0(t)x

T
h,x0

(t)
]
= x0xT

0 +
∫ t

0
E
[
xh,x0(s)x

T
h,x0

(s)
]

ds AT +A
∫ t

0
E
[
xh,x0(s)x

T
h,x0

(s)
]

ds (6.4)

+
q

∑
k=1

Nk
∫ t

0
E
[
xh,x0(s)x

T
h,x0

(s)
]

ds
(

Nk
)T
· ck

which gives the result.

We introduce an additional concept of stability for the homogeneous system (u≡ 0) correspond-
ing to equation (6.1). We call xh,x0 exponentially mean square stable if there exist c,β > 0 such
that

E
∥∥xh,x0(t)

∥∥2
2 ≤ ‖x0‖2

2 ce−β t

for t ≥ 0. This stability concept turns out to be equivalent to asymptotic mean square stability
which is stated in the next theorem.

Theorem 6.3. The following are equivalent:

(i) The uncontrolled equation (6.1) is asymptotically mean square stable.

(ii) The uncontrolled equation (6.1) is exponentially mean square stable.

(iii) The eigenvalues of
(
In⊗A+A⊗ In +∑

q
k=1 Nk⊗Nk ·E

[
Mk(1)2]) have negative real parts.

(iv) There exists a matrix X > 0, such that

AT X +XA+
q

∑
k=1

(Nk)T XNkE
[
M2

k (1)
]
< 0.

(v) For all Y > 0, there exists a matrix X > 0, such that

AT X +XA+
q

∑
k=1

(Nk)T XNkE
[
M2

k (1)
]
=−Y.

Especially, mean square asymptotic stability implies the stability of A, that is σ (A)⊂ C−.
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Proof. With Proposition 6.2 the proof is similar to the Wiener case which is considered in Theo-
rem 3.6.1 in [21]. We make use of the techniques applied in [21] to prove the more general Lévy
noise case below.

From Proposition 6.2 it is known that E
[
xh,x0(t)x

T
h,x0

(t)
]

is the solution of the matrix differential
equation

Ẏ(t) = Y(t) AT +A Y(t)+
m

∑
k=1

Nk Y(t) (Nk)T E
[
Mk(1)2] . (6.5)

Equation (6.5) is equivalent to

d
dt

vec(Y(t)) =

(
I⊗A+A⊗ I +

m

∑
k=1

Nk⊗Nk ·E
[
Mk(1)2])vec(Y(t)) . (6.6)

We first show (iii) ⇒ (ii). From (iii) the asymptotic stability of (6.6) follows. Asymptotic
stability of (6.6) implies exponential stability, such that

‖vec(Y(t))‖2
2 ≤

∥∥vec
(
x0xT

0
)∥∥2

2 K1 e−β1t =
∥∥x0xT

0
∥∥2

F K1 e−β1t ≤
∥∥x0xT

0
∥∥2

2,ind c̃K1 e−β1t

for K1,β1, c̃ > 0, where ‖·‖2,ind is the matrix norm that is induced by ‖·‖2. Since

‖Y(t)‖2
2,ind ≤ ‖Y(t)‖2

F = ‖vec(Y(t))‖2
2

holds, equation (6.5) is exponentially stable and hence (ii) follows. It is obvious that (ii) implies
(i). We now focus on (i)⇒ (iii). From (i) we conclude that equation (6.5) is asymptotically
stable. The asymptotic stability of (6.6) follows by

‖vec(Y(t))‖2
2 = ‖Y(t)‖2

F ≤ c̃‖Y(t)‖2
2,ind

and asymptotic stability of (6.6) implies (iii). We continue with the proof of (iii)⇒ (v). Obvi-
ously, condition (iii) is equivalent to

σ

(
In⊗AT +AT ⊗ In +

q

∑
k=1

(
Nk
)T
⊗
(

Nk
)T
·E
[
Mk(1)2])⊂ C−

which, by the considerations above, is again equivalent to the exponentially mean square stability
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of the following equation

dxh,x0(t) = AT xh,x0(t)dt +
q

∑
k=1

(
Nk
)T

xh,x0(t−)dMk(t), t ≥ 0. (6.7)

Let ΦD be the fundamental solution to the dual system (6.7), i.e. ΦD satisfies

ΦD(t) = In +
∫ t

0
AT

ΦD(s)ds+
q

∑
k=1

∫ t

0
(Nk)T

ΦD(s−)dMk(s).

For an arbitrary matrix Y > 0 the integral

E
∫

∞

0
ΦD(t)Y Φ

T
D(t)dt = X > 0

exists by the exponentially mean square stability of (6.7). We set Y(t) := ΦD(t)Y ΦT
D(t) and as

in Proposition 6.2, we obtain

Y(t) = Y +
∫ t

0
Y(s)ds A+AT

∫ t

0
Y(s)ds+

q

∑
k=1

(
Nk
)T ∫ t

0
Y(s)ds Nk E

[
Mk(1)2]

for t ≥ 0. Letting t → ∞ and using the exponentially mean square stability of the dual system,
we find

−Y = X A+AT X +
q

∑
k=1

(
Nk
)T

X Nk E
[
Mk(1)2]

which is the desired result. Since, (v) obviously implies (iv), it remains to show that (iv)→ (ii).
Let X > 0 such that

AT X +XA+
q

∑
k=1

(Nk)T XNkE
[
M2

k (1)
]
=−Y < 0. (6.8)

So, due to Proposition 6.2, we have

E
[
xT

h,x0
(t)Xxh,x0(t)

]
= E

[
tr
(
Xxh,x0(t)x

T
h,x0

(t)
)]

= tr
(
XE
[
xh,x0(t)x

T
h,x0

(t)
])

= tr
(

X
(

x0xT
0 +

∫ t

0
E
[
xh,x0(s)x

T
h,x0

(s)
]

ds AT +A
∫ t

0
E
[
xh,x0(s)x

T
h,x0

(s)
]

ds
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+
q

∑
k=1

Nk
∫ t

0
E
[
xh,x0(s)x

T
h,x0

(s)
]

ds
(

Nk
)T
· ck

))

= xT
0 Xx0 +E

[∫ t

0
xT

h,x0
(s)AT Xxh,x0(s)ds+

∫ t

0
xT

h,x0
(s)XAxh,x0(s)ds

]
+E

[∫ t

0

q

∑
k=1

xT
h,x0

(s)
(

Nk
)T

XNk · ckxh,x0(s)ds

]
.

Inserting equation (6.8) yields

E
[
xT

h,x0
(t)Xxh,x0(t)

]
= xT

0 Xx0−E
[∫ t

0
xT

h,x0
(s)Y xh,x0(s)ds

]
.

and hence

ġ(t) =−E
[
xT

h,x0
(t)Y xh,x0(t)

]
,

where g(t) := E
[
xT

h,x0
(t)Xxh,x0(t)

]
. Now, let k1 be the smallest and k2 be the largest eigenvalue

of X such that k1vT v≤ vT Xv≤ k2vT v. Furthermore, we assume k3 to be the smallest eigenvalue
of Y , then we obtain

ġ(t)≤−k3E
[
xT

h,x0
(t)xh,x0(t)

]
≤−k3

k2
E
[∫ t

0
xT

h,x0
(s)Xxh,x0(s)ds

]
=−k3

k2
g(t).

By Gronwall’s inequality, we have

E
[
xT

h,x0
(t)xh,x0(t)

]
=

1
k1
E
[
xT

h,x0
(t)Xxh,x0(t)

]
≤ 1

k1
xT

0 Xx0 e−
k3
k2

t ≤ k2

k1
xT

0 x0 e−
k3
k2

t

which yields the required result and concludes the proof.

As in the deterministic case, there exists a fundamental solution, which we define by

Φ(t) :=
[
xh,e1(t),xh,e2(t), . . . ,xh,en(t)

]
for t ≥ 0, where ei is the i-th unit vector (i = 1, . . . ,n). Thus, Φ fulfills the following integral
equation:

Φ(t) = In +
∫ t

0
AΦ(s)ds+

q

∑
k=1

∫ t

0
Nk

Φ(s−)dMk(s).
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The columns of Φ represent a minimal generating set such that we have xh,x0(t) = Φ(t)x0. With
B = [b1,b2, . . . ,bm] one can see that

Φ(t)B = [Φ(t)b1,Φ(t)b2, . . . ,Φ(t)bm] =
[
xh,b1(t),xh,b2(t) . . . ,xh,bm(t)

]
.

Hence, we have

Φ(t)BBT
Φ

T (t) = xh,b1(t)x
T
h,b1

(t)+ xh,b2(t)x
T
h,b2

(t)+ . . .+ xh,bm(t)x
T
h,bm

(t),

such that

E
[
Φ(t)BBT

Φ
T (t)

]
= BBT +

∫ t

0
E
[
Φ(s)BBT

Φ
T (s)

]
ds AT +A

∫ t

0
E
[
Φ(s)BBT

Φ
T (s)

]
ds (6.9)

+
q

∑
k=1

Nk
∫ t

0
E
[
Φ(s)BBT

Φ
T (s)

]
ds (Nk)T E

[
Mk(1)2]

holds for every t ≥ 0. Due to the assumption that the homogeneous solution xh,x0 is asymptot-
ically mean square stable for an arbitrary initial value x0, yielding E

[
xT

h,x0
(t)xh,x0

(t)
]
→ 0 for

t→ ∞, we obtain

0 = BBT +
∫

∞

0
E
[
Φ(s)BBT

Φ
T (s)

]
ds AT +A

∫
∞

0
E
[
Φ(s)BBT

Φ
T (s)

]
ds

+
q

∑
k=1

Nk
∫

∞

0
E
[
Φ(s)BBT

Φ
T (s)

]
ds (Nk)T E

[
Mk(1)2]

by taking the limit t → ∞ in equation (6.9). Therefore, we can conclude that the matrix P :=∫
∞

0 E
[
Φ(s)BBT ΦT (s)

]
ds, which exists by the asymptotic mean square stability assumption, is

the solution to a generalized Lyapunov equation

AP+PAT +
q

∑
k=1

NkP
(

Nk
)T

E
[
Mk(1)2]=−BBT .

P is the reachability Gramian of system (6.1), where this definition of the Gramian is also used
in Benner, Damm [9] for stochastic systems driven by Wiener noise. Note that in this case
E
[
Mk(1)2]= 1.
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Remark. The solution to the matrix equation

0 = BBT +AP+PAT +
q

∑
k=1

NkP(Nk)T ·E
[
Mk(1)2] (6.10)

is unique if and only if the solution to

−vec(BBT ) =

(
In⊗A+A⊗ In +

q

∑
k=1

Nk⊗Nk ·E
[
Mk(1)2])vec(P)

is unique. By the assumption of mean square asymptotic stability the eigenvalues of the matrix

I ⊗ A + A⊗ I + ∑
q
k=1 Nk ⊗Nk ·E

[
Mk(1)2] are non-zero, hence the matrix equation (6.10) is

uniquely solvable.

More general, we consider stochastic processes (Φ(t,τ))t≥τ
with starting time τ ≥ 0 and initial

condition Φ(τ,τ) = In satisfying

Φ(t,τ) = In +
∫ t

τ

AΦ(s,τ)ds+
q

∑
k=1

∫ t

τ

Nk
Φ(s−,τ)dMk(s) (6.11)

for t ≥ τ ≥ 0. We have Φ(t,0) = Φ(t). Analogous to equation (6.9), we can show that

E
[
Φ(t,τ)BBT

Φ
T (t,τ)

]
= BBT +

∫ t

τ

E
[
Φ(s,τ)BBT

Φ
T (s,τ)

]
ds AT (6.12)

+A
∫ t

τ

E
[
Φ(s,τ)BBT

Φ
T (s,τ)

]
ds

+
q

∑
k=1

Nk
∫ t

τ

E
[
Φ(s,τ)BBT

Φ
T (s,τ)

]
ds (Nk)T E

[
Mk(1)2] .

This yields that Y(t) := E
[
Φ(t,τ)BBT ΦT (t,τ)

]
is the solution to the differential equation

Ẏ(t) = AY(t)+Y(t)AT +
q

∑
k=1

NkY(t)(Nk)T E
[
Mk(1)2] (6.13)

for t ≥ τ with initial condition Y(τ) = BBT .

Remark. For t ≥ τ ≥ 0, we have Φ(t,τ) = Φ(t)Φ−1(τ), since Φ(t)Φ−1(τ) fulfills equation

(6.11).

Compared to the deterministic case (Nk = 0) we do not have the semigroup property for the
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fundamental solution. So, it is not true that Φ(t,τ) = Φ(t− τ) P-almost surely holds, because

the trajectories of the noise processes on [0, t − τ] and [τ, t] are different in general. We can

however conclude that E
[
Φ(t,τ)BBT ΦT (t,τ)

]
= E

[
Φ(t− τ)BBT ΦT (t− τ)

]
, since both terms

solve equation (6.13) as can be seen employing (6.9).

Now, we derive the solution representation of the system (6.1) via using the stochastic variation
of constants method. For the Wiener case, this result is stated in Theorem 1.4.1 in Damm [21].

Proposition 6.4. (Φ(t)z(t))t≥0 is a solution to equation (6.1), where z satisfies the differential

equation

dz(t) = Φ
−1(t)Bu(t)dt, z(0) = x0.

Proof. We want to determine the stochastic differential of Φ(t)z(t), t ≥ 0, where its i-th compo-
nent is given by eT

i Φ(t)z(t). Applying the Ito product formula from Corollary A.4 yields

eT
i Φ(t)z(t) = eT

i +
∫ t

0
eT

i Φ(s−)d(z(s))+
∫ t

0
zT (s)d(ΦT (s)ei).

Above, the quadratic covariation terms are zero, since z is a continuous semimartingale with
a martingale part of zero (see equation (A.2)). Applying that s 7→ Φ(ω,s) and s 7→ Φ(ω,s−)
coincide almost everywhere with respect to the Lebesgue measure for P-almost all fixed ω ∈Ω,
we have

eT
i Φ(t)z(t) = eT

i +
∫ t

0
eT

i Φ(s)Φ−1(s)Bu(s)ds+
∫ t

0
zT (s)ΦT (s)AT eids

+
q

∑
k=1

∫ t

0
zT (s)ΦT (s−)(Nk)T eidMk(s)

= eT
i x0 + eT

i

∫ t

0
Bu(s)ds+ eT

i

∫ t

0
AΦ(s)z(s)ds+ eT

i

q

∑
k=1

∫ t

0
Nk

Φ(s−)z(s)dMk(s).

This yields

Φ(t)z(t) = x0 +
∫ t

0
AΦ(s)z(s)ds+

q

∑
k=1

∫ t

0
Nk

Φ(s−)z(s)dMk(s)+
∫ t

0
Bu(s)ds

and hence the required result.

Below, we set Pt :=
∫ t

0 E
[
Φ(s)BBT ΦT (s)

]
ds and call Pt finite reachability Gramian at time t ≥
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0. Furthermore, we define the so-called finite deterministic Gramian PD,t :=
∫ t

0 eAs BBT eAT s ds.
Pt and PD,t , t ≥ 0, coincide in the case Nk = 0. By x(T,0,u) we denote the solution to the
inhomogeneous system (6.1) at time T with initial condition zero for a given input u. From
Proposition 6.4, we already know that

x(T,0,u) =
∫ T

0
Φ(T )Φ−1(t)Bu(t)dt =

∫ T

0
Φ(T, t)Bu(t)dt.

Now, we have the goal to steer the average state of the system (6.1) from zero to any given
x∈Rn via the control u with minimal energy. First of all we need the following definition, which
is motivated by the remarks above Theorem 2.3 in [9].

Definition 6.5. A state x ∈Rn is called reachable on average (from zero) if there is a time T > 0
and a control function u ∈ L2

T , such that we have

E [x(T,0,u)] = x.

We say that the stochastic system is completely reachable if every average vector x ∈ Rn is
reachable. Next, we characterize the set of all reachable average states. First of all, we need the
following proposition, where we define P :=

∫
∞

0 E
[
Φ(s)BBT ΦT (s)

]
ds in analogy to the deter-

ministic case.

Proposition 6.6. The finite reachability Gramians Pt , t > 0, have the same image as the infinite

reachability Gramian P, that is,

imPt = imP

for all t > 0.

Proof. Since P and Pt are positive semidefinite and symmetric by definition it is sufficient to
show that their kernels are equal. First, we assume v ∈ kerP. Thus,

0≤ vT Ptv≤ vT Pv = 0,

since t 7→ vT Ptv is increasing such that v∈ kerPt follows. On the other hand, if v∈ kerPt we have

0 = vT Ptv =
∫ t

0
vTE

[
Φ(s)BBT

Φ
T (s)

]
vds.
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Hence, we can conclude that vTE
[
Φ(s)BBT ΦT (s)

]
v = 0 for almost all s ∈ [0, t]. Additionally,

we know that t 7→ E
[
Φ(t)BBT ΦT (t)

]
is the solution to the linear matrix differential equation

Ẏ(t) = AY(t)+Y(t)AT +
q

∑
k=1

NkY(t)(Nk)T E
[
Mk(1)2]

with initial condition Y(0) = BBT for t ≥ 0. The vectorized form vec(Y) satisfies

vec(Ẏ(t)) =

(
In⊗A+A⊗ In +

q

∑
k=1

Nk⊗Nk ·E
[
Mk(1)2])vec(Y(t)), vec(Y(0)) = vec(BBT ).

Thus, the entries of E
[
Φ(t)BBT ΦT (t)

]
are analytic functions. This implies that the function

f (t) := vTE
[
Φ(t)BBT ΦT (t)

]
v is analytic, such that f ≡ 0 on [0,∞). Thus,

0 =
∫

∞

0
vTE

[
Φ(s)BBT

Φ
T (s)

]
vds = vT Pv

and the result follows.

The next proposition shows that the reachable average states are characterized by the determin-
istic Gramian PD :=

∫
∞

0 eAs BBT eAT s ds, which exists due to the asymptotic stability of the matrix
A, which is a necessary condition for asymptotic mean square stability of system (6.1).

Proposition 6.7. An average state x ∈Rn is reachable (from zero) if and only if x ∈ imPD, where

PD :=
∫

∞

0 eAs BBT eAT s ds.

Proof. Provided x∈ imPD, we will show that this average state can be reached with the following
input function:

[0,T ] 3 t 7→ u(t) = BT eAT (T−t)P#
D,T x, (6.14)

where P#
D,T denotes the Moore-Penrose pseudoinverse of PD,T . Thus, we obtain

E [x(T,0,u)] = E
[∫ T

0
Φ(T, t)BBT eAT (T−t)P#

D,T xdt
]

by inserting the function u. Applying the expectation to both sides of equation (6.11) yields

E [Φ(t,τ)] = eA(t−τ) .
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Using this fact, we obtain

E [x(T,0,u)] =
∫ T

0
eA(T−t)BBT eAT (T−t)P#

D,T xdt.

We substitute s = T − t and since x ∈ imPD,T by Proposition 6.6, we get

E [x(T,0,u)] =
∫ T

0
eAs BBT eAT s dsP#

D,T x = PD,T P#
D,T x = x.

The energy of the input function u(t) = BT eAT (T−t)P#
D,T x is

‖u‖2
L2

T
= xT P#

D,T x < ∞.

On the other hand, if x ∈ Rn is reachable, then there exists an input function u and a time t > 0
such that, by definition,

x = E [x(t,0,u)] = E
[∫ t

0
Φ(t,s)Bu(s)ds

]
=
∫ t

0
eA(t−s)BE [u(s)]ds.

We get the last equation by applying the expectation to both sides of equation (6.1). We assume
that v ∈ kerPD. Hence,

|〈x,v〉2|=
∣∣∣∣∫ t

0

〈
eA(t−s)BE [u(s)] ,v

〉
2

ds
∣∣∣∣= ∣∣∣∣∫ t

0

〈
E [u(s)] ,BT eAT (t−s) v

〉
2

ds
∣∣∣∣ .

Employing the Cauchy-Schwarz inequality, we get

|〈x,v〉2| ≤
∫ t

0
‖E [u(s)]‖2

∥∥∥BT eAT (t−s) v
∥∥∥

2
ds≤

∫ t

0

(
E‖u(s)‖2

2

) 1
2
∥∥∥BT eAT (t−s) v

∥∥∥
2

ds

and by the Hölder inequality, we have

|〈x,v〉2| ≤ ‖u‖L2
t

(∫ t

0

∥∥∥BT eAT (t−s) v
∥∥∥2

2
ds
) 1

2

= ‖u‖L2
t

(
vT
∫ t

0
eA(t−s)BBT eAT (t−s) ds v

) 1
2

= ‖u‖L2
t

(
vT PD,tv

) 1
2 .
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Since t 7→ vT PD,tv is increasing, we obtain

|〈x,v〉2| ≤ ‖u‖L2
t

(
vT PDv

) 1
2 = 0.

Thus, 〈x,v〉2 = 0, such that we can conclude that x ∈ imPD due to imPD = (kerPD)
⊥.

Below, we point out the relation between the reachable set and the reachability Gramian P :=∫
∞

0 E
[
Φ(s)BBT ΦT (s)

]
ds.

Proposition 6.8. If an average state x ∈ Rn is reachable (from zero), then x ∈ imP.

Proof. By definition, there exists an input function u and a time t > 0 such that

x = E [x(t,0,u)] = E
[∫ t

0
Φ(t,s)Bu(s)ds

]
for reachable x ∈ Rn. We assume that v ∈ kerP. So, we have

|〈x,v〉2|=
∣∣∣∣E[∫ t

0
〈Φ(t,s)Bu(s),v〉2 ds

]∣∣∣∣= ∣∣∣∣E[∫ t

0

〈
u(s),BT

Φ
T (t,s)v

〉
2 ds
]∣∣∣∣ .

Employing the Cauchy-Schwarz inequality, we obtain

|〈x,v〉2| ≤ E
[∫ t

0
‖u(s)‖2

∥∥BT
Φ

T (t,s)v
∥∥

2 ds
]
.

By the Hölder inequality, we have

|〈x,v〉2| ≤ ‖u‖L2
t

(
E
[∫ t

0

∥∥BT
Φ

T (t,s)v
∥∥2

2 ds
]) 1

2

= ‖u‖L2
t

(
vTE

[∫ t

0
Φ(t,s)BBT

Φ
T (t,s)ds

]
v
) 1

2

.

With the remarks above Proposition 6.4, we obtain

E
[
Φ(t− s)BBT

Φ
T (t− s)

]
= E

[
Φ(t,s)BBT

Φ
T (t,s)

]
,

such that

|〈x,v〉2| ≤ ‖u‖L2
t

(
vT Ptv

) 1
2 .
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Since t 7→ vT Ptv is increasing, it follows

|〈x,v〉2| ≤ ‖u‖L2
t

(
vT Pv

) 1
2 = 0.

Thus, 〈x,v〉2 = 0, such that we can conclude that x ∈ imP due to imP = (kerP)⊥.

Consequently, by Propositions 6.7 and 6.8, we have imPD ⊆ imP. Now, we state the minimal
energy to steer the system to a desired average state.

Proposition 6.9. Let x ∈Rn be reachable, then the input function given by (6.14) is the one with

the minimal energy to reach x at any time T > 0. This minimal energy is given by xT P#
D,T x, where

P#
D,T is the Moore-Penrose pseudoinverse of PD,T .

Proof. We use the following representation from the proof of Proposition 6.7:

E [x(T,0,u)] =
∫ T

0
eA(T−t)BE [u(t)]dt.

Let u(t) be as in (6.14) and ũ(t), t ∈ [0,T ], an additional function for which we can reach the
average state x at time T , then

∫ T

0
eA(T−t)B(E [ũ(t)]−u(t))dt = 0,

such that

E
[∫ T

0
u(t)T (ũ(t)−u(t))dt

]
=
∫ T

0
u(t)T (E [ũ(t)]−u(t))dt = 0

follows. Hence, with (6.14), we have

‖ũ‖2
L2

T
= ‖u+(ũ−u)‖2

L2
T
= ‖u‖2

L2
T
+‖ũ−u‖2

L2
T
≥ ‖u‖2

L2
T
.

From the proof of Proposition 6.7, we know that the energy of u is given by xT P#
D,T x.

The following result shows that the finite reachability Gramian PT provides information about
the degree of reachability of an average state as well.

Proposition 6.10. Let x ∈ Rn be reachable, then

xT P#
T x≤ xT P#

D,T x
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for every time T > 0.

Proof. Since x is reachable, x ∈ imPT by Proposition 6.6 and Proposition 6.8. Hence, we can
write x = PT P#

T x, where P#
T denotes the Moore-Penrose pseudoinverse of PT . From its defini-

tion, the finite reachability Gramian is represented by PT = E
[∫ T

0 Φ(T − t)BBT ΦT (T − t)dt
]

and since

E
[
Φ(T − t)BBT

Φ
T (T − t)

]
= E

[
Φ(T, t)BBT

Φ
T (T, t)

]
,

we have

x = E
[∫ T

0
Φ(T, t)BBT

Φ
T (T, t)P#

T xdt
]
.

Now, we choose the control u(t) = BT eAT (T−t)P#
D,T x, t ∈ [0,T ], of minimal energy to reach x,

then

E
[∫ T

0
Φ(T, t)B

(
BT

Φ
T (T, t)P#

T x−u(t)
)

dt
]
= 0.

Setting v(t) = BT ΦT (T, t)P#
T x for t ∈ [0,T ] yields

E
[∫ T

0
vT (t)(v(t)−u(t))dt

]
= 0.

We therefore obtain

xT P#
D,T x = ‖u‖2

L2
T
= ‖v+(u− v)‖2

L2
T
= ‖v‖2

L2
T
+‖u− v‖2

L2
T
≥ ‖v‖2

L2
T
= xT P#

T x

which gives the result.

Consequently, the expression xT P#
T x yields a lower bound for the energy to reach x and is the

L2
T -norm squared of the function v(t) = BT ΦT (T, t)P#

T x, t ∈ [0,T ]. With the control v we would
also be able to steer the system to x in case it would be a admissible control. Unfortunately,
unavailable future information enters in v which means that it is not (Ft)t∈[0,T ]- adapted. So, one

can interpret the energy xT
(

P#
T,D−P#

T

)
x as the benefit of knowing the future until time T .

By Proposition 6.9, the minimal energy that is needed to steer the system to x is given by
infT>0 xT P#

D,T x. By definition of the family of matrices PD,T we know that it is increasing in
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time such that the pseudoinverse P#
D,T is decreasing in time. Hence, it is clear that the minimal

energy is given by xT P#
Dx, where P#

D is the pseudoinverse of the deterministic Gramian PD. The
result in Proposition 6.10 provides a lower bound for the minimal energy to reach x:

xT P#x≤ xT P#
Dx (6.15)

with P# being the pseudoinverse of the reachability Gramian P. Using inequality (6.15), we get
only partial information about the degree of reachability of an average state x from P#. So, it
remains an open question whether an alternative reachability concept would be more suitable to
motivate the Gramian P.
Similar results are obtained by Benner and Damm [9] in Theorem 2.3 for stochastic differential
equations driven by Wiener processes. For the deterministic case we refer to Subsection 4.3.1 in
Antoulas [2].

6.1.2. Observability concept

Below, we introduce the concept of observability for the output equation

y(t) =Cx(t) (6.16)

corresponding to the stochastic linear system (6.1), where C ∈ Rp×n. Therefore, we need the
following proposition.

Proposition 6.11. Let Q̂ be a symmetric positive semidefinite matrix and let xh,a := x(·,a,0),
xh,b := x(·,b,0) be the homogeneous solutions to (6.1) with initial conditions a,b ∈ Rn, then

E
[
xh,a(t)T Q̂xh,b(t)

]
= aT Q̂b+E

[∫ t

0
xT

h,a(s)Q̂Axh,b(s)ds
]
+E

[∫ t

0
xT

h,a(s)A
T Q̂xh,b(s)ds

]
+E

[∫ t

0
xh,a(s)T

q

∑
k=1

(Nk)T Q̂NkE
[
Mk(1)2]xh,b(s)ds

]
. (6.17)

Proof. By applying the Ito product formula from Corollary A.4, we have

xT
h,a(t)Q̂xh,b(t) = aTQ̂b+

∫ t

0
xT

h,a(s−)d(Q̂xh,a(s))+
∫ t

0
xT

h,b(s−)Q̂d(xh,a(s))+
n

∑
i=1

[eT
i xh,a,eT

i Q̂xh,b]t ,
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where ei is the i-th unit vector (i = 1, . . . ,n). We get

∫ t

0
xT

h,a(s−)d(Q̂xh,b(s)) =
∫ t

0
xT

h,a(s−)Q̂Axh,b(s)ds+
q

∑
k=1

∫ t

0
xT

h,a(s−)Q̂Nkxh,b(s−)dMk(s)

and∫ t

0
xT

h,b(s−)Q̂d(xh,a(s)) =
∫ t

0
xh,b(s−)T Q̂Axh,a(s)ds+

q

∑
k=1

∫ t

0
xh,b(s−)T Q̂Nkxh,a(s−)dMk(s).

By equation (A.5), the mean of the quadratic covariations is given by

E[eT
i xh,a,eT

i Q̂xh,b]t =
q

∑
k=1

E
∫ t

0
eT

i Nkxh,a(s)eT
i Q̂Nkxh,b(s)ds E

[
Mk(1)2] .

Since by Section 3.1 the Ito integrals have mean zero, we obtain

E
[
xh,a(t)T Q̂xh,b(t)

]
= aT Q̂b+E

[∫ t

0
xT

h,a(s)Q̂Axh,b(s)ds
]
+E

[∫ t

0
xT

h,a(s)A
T Q̂xh,b(s)ds

]
+

q

∑
k=1

E
[∫ t

0
xh,a(s)T (Nk)T Q̂Nkxh,b(s)ds

]
E
[
Mk(1)2]

using that the trajectories of xh,a and xh,b only have jumps on Lebesgue zero sets.

If we set a = ei and b = e j in Proposition 6.11, we obtain

E
[
eT

i Φ(t)T Q̂Φ(t)e j
]
= eT

i Q̂e j +E
[∫ t

0
eT

i Φ
T (s)Q̂AΦ(s)e jds

]
+E

[∫ t

0
eT

i Φ
T (s)AT Q̂Φ(s)e jds

]
+E

[∫ t

0
eT

i Φ(s)T
q

∑
k=1

(Nk)T Q̂NkE
[
Mk(1)2]

Φ(s)e jds

]
.

This yields (letting i, j = 1, . . .n)

E
[
Φ(t)T Q̂Φ(t)

]
= Q̂+E

[∫ t

0
Φ

T (s)Q̂AΦ(s)ds
]
+E

[∫ t

0
Φ

T (s)AT Q̂Φ(s)ds
]

+E

[∫ t

0
Φ(s)T

q

∑
k=1

(Nk)T Q̂NkE
[
Mk(1)2]

Φ(s)ds

]
.
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Let Q be the solution of the generalized Lyapunov equation

AT Q+QA+
q

∑
k=1

(Nk)T QNk E
[
Mk(1)2]=−CTC. (6.18)

Then,

E
[
Φ(t)T QΦ(t)

]
= Q−E

[∫ t

0
Φ

T (s)CTCΦ(s)ds
]

and by taking the limit t→ ∞, we have

Q = E
[∫

∞

0
Φ

T (s)CTCΦ(s)ds
]
, (6.19)

due to the asymptotic mean square stability of the homogeneous equation (u≡ 0), which provides
the existence of the integral in equation (6.19) as well.

Remark. The matrix equation (6.18) is uniquely solvable, since

L :=

(
AT ⊗ In + In⊗AT +

q

∑
k=1

(Nk)T ⊗ (Nk)T ·E
[
Mk(1)2])

has non zero eigenvalues and hence the solution of L ·vec(Q) =−vec(CTC) is unique.

Next, we assume that the system (6.1) is uncontrolled, that means u≡ 0. By using our knowledge
concerning the homogeneous system, x(t,x0,0) is given by Φ(t)x0, where here, x0 ∈ Rn denotes
the initial value of the system. Hence, we obtain y(t) =CΦ(t)x0.
We observe y on a time interval [0,∞). The problem is to find x0 from given observations. The
energy produced by the initial value x0 is

‖y‖2
L2 := E

∫
∞

0
yT (t)y(t)dt = xT

0 E
∫

∞

0
Φ

T (t)CTCΦ(t)dt x0 = xT
0 Qx0, (6.20)

where we set Q := E
∫

∞

0 ΦT (s)CTCΦ(s)ds. As in Benner, Damm [9], Q takes the part of the
observability Gramian of the stochastic system with output equation (6.16). We call a state x0

unobservable if it is in the kernel of Q. Otherwise it is said to be observable. We say that a
system is completely observable if the kernel of Q is trivial.
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6.2. Type 1 balanced truncation for stochastic systems

For obtaining a reduced order model for a deterministic linear time-invariant system, balanced
truncation is a method of major importance. For the procedure of balanced truncation in the
deterministic case, see Antoulas [2], Benner et al. [12] and Obinata, Anderson [54]. In this
section, we want to generalize this method for stochastic linear systems, which are influenced by
Lévy noise.

6.2.1. Procedure

Below, we summarize the results of Section 4.1 in [14]. We assume A, Nk ∈ Rn×n (k = 1, . . . ,q),
B ∈ Rn×m and C ∈ Rp×n, and consider the following stochastic system that may occur after a
space discretization of a stochastic PDE, see Sections 5.1 and 5.2:

dx(t) = [Ax(t)+Bu(t)]dt +
q

∑
k=1

Nkx(t−)dMk(t), t ≥ 0, x(0) = x0, (6.21)

y(t) =Cx(t),

where the noise processes Mk (k = 1, . . . ,q) are uncorrelated real-valued and square integrable
Lévy processes with mean zero. We assume the homogeneous solution xh,x0 , which satisfies

dxh(t) = Axh(t)dt +
q

∑
k=1

Nkxh(t−)dMk(t), t ≥ 0, xh(0) = x0,

to be mean square asymptotically stable. In addition, we require that the system (6.21) is com-
pletely reachable and observable, which is equivalent to PD and Q being positive definite. Hence,
the reachability Gramian P is also positive definite using Propositions 6.7 and 6.8.

Let T̂ ∈ Rn×n be a regular matrix. If we transform the states using

x̂(t) = T̂ x(t),

we obtain the following system:

dx̂(t) = [Ãx̂(t)+ B̃u(t)]dt +
q

∑
k=1

Ñkx̂(t−)dMk(t), x̂(0) = T̂ x0, (6.22)

y(t) = C̃x̂(t), t ≥ 0,
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where Ã = T̂ AT̂−1, Ñk = T̂ NkT̂−1, B̃ = T̂ B and C̃ = CT̂−1. For an arbitrary fixed input u, the
transformed system (6.22) has always the same output as the system (6.21).
The reachability Gramian P :=

∫
∞

0 E
[
Φ(s)BBT ΦT (s)

]
ds of system (6.21) fulfills

−BBT = AP+PAT +
q

∑
k=1

NkP(Nk)T · ck,

where ck = E
[
Mk(1)2]. By multiplying with T̂ from the left and T̂ T from the right, we obtain

−B̃B̃T = T̂ APT̂ T + T̂ PAT T̂ T +
q

∑
k=1

T̂ NkP(Nk)T T̂ T · ck

= ÃT̂ PT̂ T + T̂ PT̂ T ÃT +
q

∑
k=1

ÑkT̂ PT̂ T (Ñk)T · ck.

Hence, the reachability Gramian of the transformed system (6.22) is given by P̃ = T̂ PT̂ T . For
the observability Gramian of the transformed system Q̃ = T̂−T QT̂−1 holds, where the matrix
Q :=

∫
∞

0 E
[
ΦT (s)CTCΦ(s)

]
ds is the observability Gramian of the original system. Hence,

−C̃TC̃ = ÃT Q̃+ Q̃Ã+
q

∑
k=1

(Ñk)T Q̃Ñk · ck.

In addition, it is easy to verify that the generalized Hankel singular values σ1 ≥ . . .≥ σn > 0 of
(6.21), where σi =

√
eigi(PQ) (i = 1, . . . ,n), are equal to those of (6.22).

As in the deterministic case (see [2] and [54]), we choose T̂ such that Q̃ and P̃ are equal and
diagonal. A system with equal and diagonal Gramians is called balanced. The corresponding
balancing T̂ is given by

T̂ = Σ
1
2 KTU−1 and T̂−1 =UKΣ

− 1
2 , (6.23)

where Σ = diag(σ1, . . . ,σn), U comes from the Cholesky decomposition of P =UUT and K is an
orthogonal matrix corresponding to the eigenvalue decomposition (singular value decomposition,
respectively) of UT QU = KΣ2KT . Therefore, we obtain

Q̃ = P̃ = Σ.

Our aim is to truncate the average states that are difficult to observe and difficult to reach, which
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are those producing least observation energy and causing the most energy to reach, respectively.
By equation (6.20), we can say that the states which are difficult to observe are contained in the
space spanned by the eigenvectors corresponding to the small eigenvalues of Q. Using (6.15), an
average state x is particularly difficult to reach if the expression xT P−1x is large. Those states are
contained in the space spanned by the eigenvectors corresponding to the small eigenvalues of P

(or to the large eigenvalues of P−1, respectively). The eigenspaces that correspond to the small
eigenvalues of P contain all difficult-to-reach states if we would know the future completely,
see the remarks below Proposition 6.10. In a balanced system, the dominant reachable and
observable states are the same.

We consider the following partitions:

T̂ =

[
W T

T T
2

]
, T̂−1 =

[
V T1

]
and x̂ =

(
x̃

x1

)
,

where W T ∈ Rr×n,V ∈ Rn×r and x̃ takes values in Rr (r < n). Hence, we have(
dx̃(t)

dx1(t)

)
=

([
W T AV W T AT1

T T
2 AV T T

2 AT1

](
x̃(t)

x1(t)

)
+

[
W T B

T T
2 B

]
u(t)

)
dt (6.24)

+
q

∑
k=1

[
W T NkV W T NkT1

T T
2 NkV T T

2 NkT1

](
x̃(t−)
x1(t−)

)
dMk(t)

and

y(t) =
[
CV CT1

]( x̃(t)

x1(t)

)
.

By truncating the system and neglecting the x1 terms, the approximating reduced order model is
given by

dx̃(t) = [W T AV x̃(t)+W T Bu(t)]dt +
q

∑
k=1

W T NkV x̃(t−)dMk(t), (6.25)

ŷ(t) =CV x̃(t).
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6.2.2. Stability analysis of the ROM

In this subsection, we prove that balanced truncation (BT) for systems with Lévy noise preserves
mean square asymptotic stability. This is already proven in [11], where the proof is based on
the theory of generalized Lyapunov operators. In contrast to the already existing result we use a
system theoretical ansatz to prove the lemmas that are needed to show the central result of this
subsection.
We will now prove that the ROM by type 1 BT is also mean square asymptotically stable. For
simplicity of the notation, we assume to already have a balanced realization (A,B,C,Nk) of
system (6.21). Below, we use the following partitions

A :=

[
A11 A12

A21 A22

]
, Nk :=

[
Nk

11 Nk
12

Nk
21 Nk

22

]
, B :=

[
B1

B2

]
and C :=

[
C1 C2

]
(6.26)

such that (W T AV,W T B,CV,W T NkV ) = (A11,B1,C1,Nk
11) in system (6.25). Since the system is

balanced, for the reachability equation, we know[
A11 A21

A12 A22

][
Σ1

Σ2

]
+

[
Σ1

Σ2

][
AT

11 AT
12

AT
21 AT

22

]
+

q

∑
k=1

[
Nk

11 Nk
21

Nk
12 Nk

22

][
Σ1

Σ2

][
(Nk

11)
T (Nk

12)
T

(Nk
21)

T (Nk
22)

T

]
· ck

=−
[

B1BT
1 B1BT

2

B2BT
1 B2BT

2

]
(6.27)

and for the observability equation, we have[
AT

11 AT
21

AT
12 AT

22

][
Σ1

Σ2

]
+

[
Σ1

Σ2

][
A11 A12

A21 A22

]
+

q

∑
k=1

[
(Nk

11)
T (Nk

21)
T

(Nk
12)

T (Nk
22)

T

][
Σ1

Σ2

][
Nk

11 Nk
12

Nk
21 Nk

22

]
· ck

=−
[

CT
1 C1 CT

1 C2

CT
2 C1 CT

2 C2

]
, (6.28)

where Σ1 = diag(σ1, . . . ,σr), Σ2 = diag(σr+1, . . . ,σn) and ck = E[Mk(1)2]. We will now show
that the homogeneous solution x̃h,x0 of the reduced system (6.25) fulfilling

dx̃h(t) = A11x̃h(t)dt +
q

∑
k=1

Nk
11x̃h(t−)dMk(t), x̃h(0) = x0, (6.29)

is mean square stable which means that it is bounded in mean square.
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Lemma 6.12. Let Â, N̂1, . . . , N̂q ∈Rd×d . If there exists a positive definite matrix X > 0 such that

ÂX +XÂT +
q

∑
k=1

N̂kX(N̂k)T · ck =−Y,

where Y ≥ 0, then the solution xh,x0 of

dxh(t) = Âxh(t)dt +
q

∑
k=1

N̂kxh(t−)dMk(t), t ≥ 0, xh(0) = x0

is mean square stable, i.e. there exist k1,k2 > 0 such that

E
∥∥xh,x0(t)

∥∥2
2 ≤

k2

k1
‖x0‖2

2 , t ≥ 0. (6.30)

Furthermore, (6.30) is equivalent to

σ

(
Id⊗ Â+ Â⊗ Id +

q

∑
k=1

N̂k⊗ N̂k ·E
[
Mk(1)2])⊂ C− (6.31)

Proof. From equation (6.17), we conclude that

E
[
xh,x0(t)

T Xxh,x0(t)
]
= xT

0 Xx0 +E
[∫ t

0
xT

h,x0
(s)XÂxh,x0(s)ds

]
+E

[∫ t

0
xT

h,x0
(s)ÂT Xxh,x0(s)ds

]
+E

[∫ t

0
xh,x0(s)

T
q

∑
k=1

(N̂k)T XN̂kckxh,x0(s)ds

]
.

Thus,

E
[
xh,x0(t)

T Xxh,x0(t)
]
= xT

0 Xx0−E
[∫ t

0
xT

h,x0
(s)Y xh,x0(s)ds

]
≤ xT

0 Xx0.

Using k1vT v ≤ vT Xv ≤ k2vT v, where k1 is the smallest and k2 the largest eigenvalue of X , we
obtain

k1E
[
xh,x0(t)

T xh,x0(t)
]
≤ k2xT

0 x0.
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Now, E
∥∥xh,x0(t)

∥∥2
2 being bounded is equivalent to the solution E

[
xh,x0(t)x

T
h,x0

(t)
]

of

Ẏ(t) = ÂY(t)+Y(t)ÂT +
q

∑
k=1

N̂kY(t)(N̂k)T E
[
Mk(1)2]

being bounded, compare Proposition 6.2. This again is equivalent to (6.31) and hence gives the
required result.

We select the left upper block of equation (6.27) and obtain

A11Σ1 +Σ1AT
11 +

q

∑
k=1

Nk
11Σ1(Nk

11)
T · ck =−

(
q

∑
k=1

Nk
12Σ2(Nk

12)
T · ck +B1BT

1

)
.

By Lemma 6.12 we conclude that

σ (K)⊂ C−, (6.32)

where K = Ir⊗A11 +A11⊗ Ir +∑
q
k=1 Nk

11⊗Nk
11 ·E

[
Mk(1)2]. It remains to show that K has no

eigenvalues on the imaginary axis. Before doing this, we need another result which is proven in
the next lemma.

Lemma 6.13. Let Ai,Nk
i ∈ Rdi×di (i = 1,2), where k = 1, . . . ,q, with

σ

(
Id1⊗A1 +A1⊗ Id1 +

q

∑
k=1

Nk
1 ⊗Nk

1

)
⊂ C− and σ

(
Id2⊗A2 +A2⊗ Id2 +

q

∑
k=1

Nk
2 ⊗Nk

2

)
⊂ C−,

then it holds

σ

(
Id1⊗A2 +A1⊗ Id2 +

q

∑
k=1

Nk
1 ⊗Nk

2

)
⊂ C−. (6.33)

Proof. Let Φi (i = 1,2) be the fundamental solution of

dxh(t) = Aixh(t)dt +
q

∑
k=1

Nk
i xh(t)dwk(t), t ≥ 0, (6.34)

where w1, . . . ,wq are independent Wiener processes. Moreover, let Ki ∈ Rdi×m, then by Propo-
sition 6.17 the function E

[
Φ1(t)K1KT

2 ΦT
2 (t)

]
, t ≥ 0, is the solution of the following differential
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equation:

Ẏ(t) = Y(t)AT
2 +A1Y(t)+

q

∑
k=1

Nk
1Y(t)(Nk

2)
T , Y(0) = K1KT

2 . (6.35)

This differential equation is asymptotically stable since

∥∥E[Φ1(t)K1KT
2 Φ

T
2 (t)

]∥∥
F ≤ E

∥∥Φ1(t)K1KT
2 Φ

T
2 (t)

∥∥
F ≤

√
E‖Φ1(t)K1‖2

F

√
E‖Φ2(t)K2‖2

F

using the inequality of Cauchy-Schwarz. The term E‖Φ1(t)K1‖2
F is bounded by Lemma 6.12

and the E‖Φ2(t)K2‖2
F tends to zero for t → ∞ by the assumption of mean square asymptotic

stability. Hence,

∥∥E[Φ1(t)K1KT
2 Φ

T
2 (t)

]∥∥
F → 0

for t→∞. The asymptotic stability of the differential equation (6.35) is equivalent to (6.33).

We are now ready to state the central result of this subsection. There, the key ideas of the proof
of Theorem 4.1 in [11] are transfered.

Theorem 6.14. Let (A,B,C,Nk) be an asymptotically mean square stable and balanced realiza-

tion of (6.21) with partitions defined in (6.26). For the diagonal Gramian

Σ =

[
Σ1

Σ2

]

we assume that σ(Σ1)∩σ(Σ2) = /0 holds, then the reduced order model (6.25) is mean square

asymptotically stable, i.e.

σ (K)⊂ C−, (6.36)

where K = Ir⊗A11 +A11⊗ Ir +∑
q
k=1 Nk

11⊗Nk
11 ·E

[
Mk(1)2].

Proof. To simplify the presentation we will restrict our attention to the case, where q = 1. We
further set N = N1

√
E [M1(1)2]. From the proof it will be easy to see that this is no loss of

generality. Using Theorem 3.1 in [11], we obtain

α(K) := max{ℜ(λ ) : λ ∈ σ(K)} ∈ σ(K). (6.37)
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Assume that (6.36) does not hold, then by (6.37) and (6.32), we have 0 ∈ σ (K). Hence, there
exists a nonzero matrix V1 ≥ 0 such that

AT
11V1 +V1A11 +NT

11V1N11 = 0 . (6.38)

The left upper block of (6.27) is

A11Σ1 +Σ1AT
11 +N11Σ1NT

11 =−B1BT
1 −N12Σ2NT

12 . (6.39)

We have

0 = 〈AT
11V1 +V1A11 +NT

11V1N11,Σ1〉F = 〈(V1,A11Σ1 +Σ1AT
11 +N11Σ1NT

11〉F
=−〈V1,B1BT

1 +N12Σ2NT
12〉F

and hence BT
1 V1 = 0 since

0 = 〈V1,B1BT
1 〉F = tr(V1B1BT

1 ) = tr(V
1
2

1 B1BT
1 V

1
2

1 ) =

∥∥∥∥V 1
2

1 B1

∥∥∥∥2

F

Analogously, we obtain NT
12V1 = 0.

Below, we discuss the invariance of kerV1 and imV1. Without loss of generality, we can assume
that V1 has maximal rank, i.e.

(
Ṽ1 ≥ 0 and AT

11Ṽ1 +Ṽ1A11 +NT
11Ṽ1N11 = 0

)
⇒ rankṼ1 ≤ rankV1 . (6.40)

We now observe that kerV1 is invariant under A11 and N11 and imV1 is invariant under AT
11 and

NT
11. To see this, let V1z = 0, then

0 = zT (AT
11V1 +V1A11 +NT

11V1N11
)

z = zT NT
11V1N11z ,

whence also V1N11z = 0, i.e. N11z ∈ kerV1. From this, we have

0 =
(
AT

11V1 +V1A11 +NT
11V1N11

)
z =V1A11z ,

implying A11z ∈ kerV1. Thus, A11 kerV1 ⊂ kerV1 and N11 kerV1 ⊂ kerV1.
Since kerV1 = (imV1)

⊥, it follows further that imV1 is invariant under AT
11 and NT

11.
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Let imV1 = imV11, with V T
11V11 = I, V1 =V11D11V T

11, for some D11 > 0 and kerV1 = imV12 with
V T

12V12 = I, so that in particular V T
11V12 = 0. By the invariance properties, we know that

AT
11V11 =V11ÃT

11 and A11V12 =V12Ã22 (6.41)

for suitable matrices Ã11 and Ã22. Analogously,

NT
11V11 =V11ÑT

11 and N11V12 =V12Ñ22 (6.42)

for suitable matrices Ñ11 and Ñ22. Note that

0 = AT
11V1 +V1A11 +NT

11V1N11

= AT
11V11D11V T

11 +V11D11V T
11A11 +NT

11V11D11V T
11N11

=V11
(
ÃT

11D11 +D11Ã11 + ÑT
11D11Ñ11

)
V T

11 ,

whence ÃT
11D11+D11Ã11+ ÑT

11D11Ñ11 = 0 implying that σ(I⊗ Ã11+ Ã11⊗ I+ Ñ11⊗ Ñ11)⊂C−
by Lemma 6.12. Moreover, NT

12V11 = 0 and BT
1 V11 = 0, because NT

12V1 = 0 and BT
1 V1 = 0.

As a next step, we us a unitary similarity transformation of the Kronecker matrix In⊗A+A⊗In+

N⊗N corresponding to the original model characterizing the mean square asymptotic stability

of the system. Considering the unitary transformation matrix U =

[
V11 V12 0

0 0 I

]
yields

UT AU =

 V T
11A11V11 V T

11A11V12 V T
11A12

V T
12A11V11 V T

12A11V12 V T
12A12

A21V11 A21V12 A22



=

 Ã11 0 V T
11A12

V T
12A11V11 Ã22 V T

12A12

A21V11 A21V12 A22

=:

 Ã11 0 Ã13

Ã21 Ã22 Ã23

Ã31 Ã32 Ã33

= Ã ,

UT NU =

 Ñ11 0 V T
11N12

V T
12N11V11 Ñ22 V T

12N12

N21V11 N21V12 N22
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=

 Ñ11 0 0
V T

12N11V11 Ñ22 V T
12N12

N21V11 N21V12 N22

=:

 Ñ11 0 0
Ñ21 Ñ22 Ñ23

Ñ31 Ñ32 Ñ33

= Ñ ,

UT B =

 V T
11 0

V T
12 0
0 I

[ B1

B2

]
=

 V T
11B1

V T
12B1

B2

=

 0
V T

12B1

B2

=

 0
B̃2

B̃3

= B̃ ,

CU =
[

C̃1 C̃2 C̃3

]
= C̃ , UT

ΣU =

 Σ̃11 Σ̃T
21 0

Σ̃21 Σ̃22 0
0 0 Σ̃33

= Σ̃

with Σ̃33 = Σ2 and σ

([
Σ̃11 Σ̃T

21

Σ̃21 Σ̃22

])
= σ(Σ1).

Let us write Ã1 =

[
Ã11 0
Ã21 Ã22

]
, Ñ1 =

[
Ñ11 0
Ñ21 Ñ22

]
, Σ̃1 =

[
Σ̃11 Σ̃T

21

Σ̃21 Σ̃22

]
and define

T (X) = Ã1X +XÃT
1 + Ñ1XÑT

1 .

As seen above, T ∗(D1) = 0 for D1 =

[
D11 0

0 0

]
, where T ∗ denotes the adjoint operator of T

with respect to the Frobenius inner product.

By construction T (Σ̃1)≤ 0 and T ∗(Σ̃1)≤ 0, whence also (T +T ∗)(Σ̃1)≤ 0 implying

σ(T +T ∗)⊂ C−∩R (6.43)

using Lemma 6.12. Considering the left upper blocks of

ÃΣ̃+ Σ̃ÃT + ÑΣ̃ÑT =−B̃B̃T and (6.44)

ÃT
Σ̃+ Σ̃Ã+ ÑT

Σ̃Ñ =−C̃TC̃ , (6.45)
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we obtain

Σ̃11ÃT
11 + Ã11Σ̃11 + Ñ11Σ̃11ÑT

11 = 0 and (6.46)

ÃT
11Σ̃11 + Σ̃11Ã11 + ÑT

11Σ̃11Ñ11 =−C̃T
1 C̃1− ÑT

21Σ̃22Ñ21− ÑT
31Σ̃33Ñ31

− Σ̃
T
21Ã21− ÃT

21Σ̃21− ÑT
21Σ̃21Ñ11− ÑT

11Σ̃
T
21Ñ21 . (6.47)

Taking the inner product of (6.47) with Σ̃11, we get

〈C̃T
1 C̃1 + ÑT

21Σ̃22Ñ21 + ÑT
31Σ̃33Ñ31, Σ̃11〉F

=−〈Σ̃T
21Ã21 + ÃT

21Σ̃21 + ÑT
21Σ̃21Ñ11 + ÑT

11Σ̃
T
21Ñ21, Σ̃11〉F (6.48)

=−2〈Σ̃T
21Ã21 + ÑT

11Σ̃
T
21Ñ21, Σ̃11〉F

=−2tr
(
(Σ̃T

21Ã21 + ÑT
11Σ̃

T
21Ñ21)Σ̃11

)
=−2tr

(
Σ̃

T
21(Ã21Σ̃11 + Ñ21Σ̃11ÑT

11)
)

= 2〈−Ã21Σ̃11− Ñ21Σ̃11ÑT
11, Σ̃21〉F . (6.49)

The second block in the first column of ÃΣ̃+ Σ̃ÃT + ÑΣÑT =−B̃B̃T is

0 = Σ̃21ÃT
11 + Ñ21Σ̃11ÑT

11 + Ñ22Σ̃21ÑT
11 + Ã21Σ̃11 + Ã22Σ̃21

and hence

−Ã21Σ̃11− Ñ21Σ̃11ÑT
11 = Σ̃21ÃT

11 + Ñ22Σ̃21ÑT
11 + Ã22Σ̃21 =: T21(Σ̃21) . (6.50)

We choose an arbitrary matrix Y of suitable dimension and introduce X as the following block

matrix X =

[
0 0
Y 0

]
with 〈X ,X〉F = 〈Y,Y 〉F . Then, (T +T ∗)(X) =

[
? ?

(T21 +T ∗21)(Y ) ?

]
, so

that by T +T ∗ being self-adjoint and negative semidefinite, we have

0≥ 〈X ,(T +T ∗)(X)〉F = 〈Y,(T21 +T ∗21)(Y )〉F .

Thus, T21 +T ∗21 is self-adjoint and negative semidefinite as well. Using this fact with Y = Σ̃21

and inserting (6.50) into (6.49), we obtain

0≤ 2〈T21(Σ̃21), Σ̃21〉F = 〈(T21 +T ∗21)(Σ̃21), Σ̃21〉F ≤ 0 . (6.51)
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From (6.51) and (6.50) it follows that the right hand side of (6.49) vanishes and consequently

C̃1 = 0 , Ñ21 = 0 , Ñ31 = 0 . (6.52)

Moreover, from (6.51), we obtain

(T21 +T ∗21)(Σ̃21) = 0, (6.53)

because the quadratic form defined by −(T21 +T ∗21) is positive semidefinite.

Exploiting (6.52), we find that the second blocks of the first column of (6.44) and (6.45), respec-
tively take the forms

0 = Σ̃21ÃT
11 + Ñ22Σ̃21ÑT

11 + Ã21Σ̃11 + Ã22Σ̃21 = T21(Σ̃21)+ Ã21Σ̃11,

0 = ÃT
22Σ̃21 + Σ̃21Ã11 + Σ̃22Ã21 + ÑT

22Σ̃21Ñ11 = T ∗21(Σ̃21)+ Σ̃22Ã21 .

Adding these and using (6.53), we get the homogeneous Sylvester equation

0 = Ã21Σ̃11 + Σ̃22Ã21 .

It follows that Ã21 = 0, since all eigenvalues of Σ̃11 and Σ̃22 are strictly positive. Inserting Ã21 =

Ñ21 = 0 in (6.50) we see that T21(Σ̃21) = 0.
Moreover, the mapping X 7→ ÃT

22X +XÃ22 + ÑT
22XÑ22 has all eigenvalues in C− or equivalently

σ
(
I⊗ Ã22 + Ã22⊗ I + Ñ22⊗ Ñ22

)
⊂C−. Otherwise, there would exist a non-zero matrix D22≥ 0

with

ÃT
22D22 +D22Ã22 + ÑT

22D22Ñ22 = 0 .

But then, with D = diag(D11,D22), we would have

T ∗(D) =

[
Ã11 0
0 Ã22

]T [
D11 0

0 D22

]
+

[
D11 0

0 D22

][
Ã11 0
0 Ã22

]

+

[
Ñ11 0
0 Ñ22

]T [
D11 0

0 D22

][
Ñ11 0
0 Ñ22

]
= 0 .

Thus, Ṽ1 = [V11,V12]D[V11,V12]
T would contradict (6.40).
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Hence, σ
(
I⊗ Ã22 + Ã11⊗ I + Ñ11⊗ Ñ22

)
⊂C− by Lemma 6.13 which implies that T21 is invert-

ible. Consequently, we have Σ̃21 = 0 from T21(Σ̃21) = 0.
Now the third blocks of the first column of (6.44) and (6.45), respectively simplify to

0 = Σ̃33ÃT
13 + Ã31Σ̃11 and 0 = ÃT

13Σ̃11 + Σ̃33Ã31 .

By suitable multiplication with Σ̃11 and Σ̃33 we can eliminate either Ã31 or Ã13 to obtain the
equations

0 = Σ̃
2
33ÃT

13− ÃT
13Σ̃

2
11 and 0 = Σ̃

2
33Ã31− Ã31Σ̃

2
11 .

By construction σ(Σ̃11) ⊂ σ(Σ1) and σ(Σ1)∩σ(Σ̃33) = /0. Hence, both Sylvester equations are
uniquely solvable and ÃT

13 = Ã31 = 0. Finally, with Σ̃0 = diag(Σ̃11,0,0) we get

ÃΣ̃0 + Σ̃0ÃT + ÑΣ̃0ÑT = 0 ,

contradicting asymptotic stability of the full system.

Theorem 6.14 has shown that asymptotic mean square stability is preserved in the reduced order
model from balanced truncation. This property is vital in the error bound analysis in Subsection
6.2.4 because it ensures the existence of the Gramians corresponding to the reduced order model.

6.2.3. Further properties of the ROM

Below, we transfer results from Section 4.1 in [14] into this subsection.
One persisting problem is to find an explicit structure of the Gramians of the reduced order model.
As we will see in an example below, in contrast to the deterministic case the reduced order model
is not balanced, that means the Gramians are neither diagonal nor equal. In addition, the Hankel
singular values are different from those of the original system.

Example 6.15. We consider the case, where q = 1 and the noise process is a Wiener process w.

So, the system we focus on is

dx(t) = [Ax(t)+Bu(t)]dt +Nx(t)dw(t), (6.54)

y(t) =Cx(t).

119



6. Linear Ordinary SDEs with Lévy Noise and Balancing Related Model Order Reduction

The following matrices (up to the digits shown) provide a balanced and asymptotically mean

square stable system:

A =

(
−4.4353 3.9992 −0.3287
2.9337 −11.0285 −0.4319
−0.0591 −0.1303 −11.5362

)
, B =

(−3.4648 −1.9391 −3.6790
5.7925 4.1379 2.3036
−0.3258 1.1359 2.8972

)
,

N =
(−1.4886 2.8510 −0.2429

0.4720 0.5803 3.1152
−1.6123 −0.8082 −0.0917

)
, C =

(
−3.0588 0.4275 0.2630
−4.8686 1.2886 1.0769
−4.3349 0.6747 −0.1734

)
.

The Gramians are given by

P = Q = Σ =
(8.4788 0 0

0 3.3232 0
0 0 1.4726

)
.

The reduced order model (r = 2) is asymptotically mean square stable and has the following

Gramians:

PR =
( 7.7470 −0.3562
−0.3562 2.5496

)
and QR =

( 7.7495 −0.2074
−0.2074 2.8980

)
.

The Hankel singular values of the reduced order model are 7.6633 and 2.7001.

At the end of this subsection, we provide a short example that shows that the reduced order
model need not be completely observable and reachable even if the original system is completely
observable and reachable:

Example 6.16. We consider the equations (6.54) with the matrices

(A,B,N,C) =
((−0.25 1

1 −9

)
,
(

0√
7

)
,
(

0 1
1 −3

)
,(0

√
7)
)

and obtain a balanced and asymptotically mean square stable system being completely reach-

able and observable. The Hankel singular values are 2 and 1. Truncating yields a system with

coefficients (A11,B1,N11,C1) = (−0.25,0,0,0) having Gramians PR = QR = 0.

6.2.4. Error bound for type 1 balanced truncation

This subsection consists of the result that are obtained in Section 4.2 of [14].
So, let

(
A,Nk,B,C

)
(k = 1, . . . ,q) be a realization of system (6.21). Furthermore, we assume the
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initial condition of the system to be zero. We introduce the following partitions:

T̂ AT̂−1 =

[
A11 A12

A21 A22

]
, T̂ NkT̂−1 =

[
Nk

11 Nk
12

Nk
21 Nk

22

]
, T̂ B =

[
B1

B2

]
, and CT̂−1 =

[
C1 C2

]
, (6.55)

where T̂ is the balancing transformation defined in (6.23) and
(
A11,Nk

11,B1,C1
)

are the coeffi-
cients of the reduced order model. The output of the reduced (truncated) system is given by

ŷ(t) =C1x̃(t) =C1

∫ t

0
Φ̃(t,s)B1u(s)ds,

where Φ̃ is the fundamental matrix of the truncated system. In addition, we use a result from
[11]. Therein it is proven that the homogeneous equation (u ≡ 0) of the reduced system is still
asymptotically mean square stable. This is vital for the error bound we provide below since the
existence of the Gramians of the reduced order model is ensured. Moreover, we know

y(t) =Cx(t) =C
∫ t

0
Φ(t,s)Bu(s)ds.

It is our goal to steer the average state via the control u and to truncate the average states that
are difficult to reach for obtaining a reduced order model. Therefore, it is a meaningful criterion
to consider the worst case mean error of ŷ(t) and y(t). Below, we give a bound for that kind of
error:

E‖ŷ(t)− y(t)‖2 = E
∥∥∥∥C∫ t

0
Φ(t,s)Bu(s)ds−C1

∫ t

0
Φ̃(t,s)B1u(s)ds

∥∥∥∥
2

≤ E
∫ t

0

∥∥(CΦ(t,s)B−C1Φ̃(t,s)B1
)

u(s)
∥∥

2 ds

≤ E
∫ t

0

∥∥CΦ(t,s)B−C1Φ̃(t,s)B1
∥∥

F ‖u(s)‖2 ds,

and by the Cauchy-Schwarz inequality

E‖ŷ(t)− y(t)‖2 ≤
(
E
∫ t

0

∥∥CΦ(t,s)B−C1Φ̃(t,s)B1
∥∥2

F ds
) 1

2
(
E
∫ t

0
‖u(s)‖2

2 ds
) 1

2

.

holds. Now,

E
∫ t

0

∥∥CΦ(t,s)B−C1Φ̃(t,s)B1
∥∥2

F ds
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= E
∫ t

0
‖CΦ(t,s)B‖2

F +
∥∥C1Φ̃(t,s)B1

∥∥2
F −2

〈
CΦ(t,s)B,C1Φ̃(t,s)B1

〉
F ds

= E
∫ t

0
tr
(
CΦ(t,s)BBT

Φ
T (t,s)CT)ds+E

∫ t

0
tr
(
C1Φ̃(t,s)B1BT

1 Φ̃
T (t,s)CT

1
)

ds

−2E
∫ t

0
tr
(
CΦ(t,s)BBT

1 Φ̃
T (t,s)CT

1
)

ds

= tr
(

C
∫ t

0
E
[
Φ(t,s)BBT

Φ
T (t,s)

]
ds CT

)
+ tr

(
C1

∫ t

0
E
[
Φ̃(t,s)B1BT

1 Φ̃
T (t,s)

]
ds CT

1

)
−2 tr

(
C
∫ t

0
E
[
Φ(t,s)BBT

1 Φ̃
T (t,s)

]
ds CT

1

)
. (6.56)

Due to the remarks before Proposition 6.4, we have

E
[
Φ(t,s)BBT

Φ
T (t,s)

]
= E

[
Φ(t− s)BBT

Φ
T (t− s)

]
and

E
[
Φ̃(t,s)B1BT

1 Φ̃
T (t,s)

]
= E

[
Φ̃(t− s)B1BT

1 Φ̃
T (t− s)

]
for 0≤ s≤ t. Furthermore, we need to analyze the term in (6.56) in order to find an error bound
which is practically useful. For that reason, we need the following proposition:

Proposition 6.17. The Rn×r-valued function E
[
Φ(t)BBT

1 Φ̃T (t)
]
, t ≥ 0, is the solution to the

following differential equation:

Ẏ(t) = Y(t)AT
11 +AY(t)+

q

∑
k=1

NkY(t)(Nk
11)

T E
[
Mk(1)2] , Y(0) = BBT

1 . (6.57)

Proof. With B = [b1, . . . ,bm] and B1 =
[
b̃1, . . . , b̃m

]
, we obtain

Φ(t)BBT
1 Φ̃

T (t) = Φ(t)b1b̃T
1 Φ̃

T (t)+ . . .+Φ(t)bmb̃T
mΦ̃

T (t). (6.58)

By applying the Ito product formula from Corollary A.5, we have

Φ(t)bl b̃T
l Φ̃

T (t) =bl b̃T
l +

∫ t

0
d(Φ(s)bl)b̃T

l Φ̃
T (s−)+

∫ t

0
Φ(s−)bld(b̃T

l Φ̃
T (s))

+
([

eT
i Φbl,eT

j Φ̃b̃l
]

t

)
i=1,...,n
j=1,...,r

.
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From (A.5), we know that

E
[
eT

i Φbl,eT
j Φ̃b̃l

]
t =

q

∑
k=1

E
[∫ t

0
eT

i Nk
Φ(s)bl b̃T

1 Φ̃
T (s)(Nk

11)
T e jds

]
E
[
Mk(1)2] .

The Ito integrals have mean zero by Section 3.1. Hence,

E
[
Φ(t)bl b̃T

l Φ̃
T (t)

]
= bl b̃T

l +E
[∫ t

0
Φ(s)bl b̃T

l Φ̃
T (s)ds

]
AT

11 +AE
[∫ t

0
Φ(s)bl b̃T

l Φ̃
T (s)ds

]
+

q

∑
k=1

NkE
[∫ t

0
Φ(s)bl b̃T

l Φ̃
T (s)ds

]
(Nk

11)
TE
[
Mk(1)2]

using that the trajectories of Φ and Φ̃ only have jumps on Lebesgue zero sets. Using equation
(6.58), we obtain

E
[
Φ(t)BBT

1 Φ̃
T (t)

]
= BBT

1 +E
[∫ t

0
Φ(s)BBT

1 Φ̃
T (s)ds

]
AT

11 (6.59)

+AE
[∫ t

0
Φ(s)BBT

1 Φ̃
T (s)ds

]
+

q

∑
k=1

NkE
[∫ t

0
Φ(s)BBT

1 Φ̃
T (s)ds

]
(Nk

11)
TE
[
Mk(1)2]

which proves the result.

By Proposition 6.17, we can conclude that the function E
[
Φ(t− τ)BBT

1 Φ̃T (t− τ)
]
, t ≥ τ ≥ 0, is

the solution to the equation

Ẏ(t) = Y(t)AT
11 +AY(t)+

q

∑
k=1

NkY(t)(Nk
11)

T E
[
Mk(1)2] , Y(τ) = BBT

1 , (6.60)

for all t ≥ τ ≥ 0. Analogous to Proposition 6.17 we can conclude that E
[
Φ(t,τ)BBT

1 Φ̃T (t,τ)
]

is
also a solution to equation (6.60), which yields

E
[
Φ(t,τ)BBT

1 Φ̃
T (t,τ)

]
= E

[
Φ(t− τ)BBT

1 Φ̃
T (t− τ)

]
(6.61)

for all t ≥ τ ≥ 0. Using equality (6.61), we have

E
∫ t

0

∥∥CΦ(t,s)B−C1Φ̃(t,s)B1
∥∥2

F ds = tr
(

C
∫ t

0
E
[
Φ(t− s)BBT

Φ
T (t− s)

]
ds CT

)
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+ tr
(

C1

∫ t

0
E
[
Φ̃(t− s)B1BT

1 Φ̃
T (t− s)

]
ds CT

1

)
−2 tr

(
C
∫ t

0
E
[
Φ(t− s)BBT

1 Φ̃
T (t− s)

]
ds CT

1

)
.

By substitution, we obtain

E
∫ t

0

∥∥CΦ(t,s)B−C1Φ̃(t,s)B1
∥∥2

F ds = tr
(

C
∫ t

0
E
[
Φ(s)BBT

Φ
T (s)

]
ds CT

)
+ tr

(
C1

∫ t

0
E
[
Φ̃(s)B1BT

1 Φ̃
T (s)

]
ds CT

1

)
−2 tr

(
C
∫ t

0
E
[
Φ(s)BBT

1 Φ̃
T (s)

]
ds CT

1

)
= E

∫ t

0

∥∥CΦ(s)B−C1Φ̃(s)B1
∥∥2

F ds.

The homogeneous equation of the truncated system is still asymptotically mean square stable
due to [11]. Hence, the existence of the matrices PR = E

∫
∞

0 Φ̃(τ)B1BT
1 Φ̃T (τ)dτ ∈ Rr×r and

PM = E
∫

∞

0 Φ(τ)BBT
1 Φ̃T (τ)dτ ∈ Rn×r is guaranteed. Therefore,

E‖ŷ(t)− y(t)‖2 ≤
(
E
∫

∞

0

∥∥CΦ(s)B−C1Φ̃(s)B1
∥∥2

F ds
) 1

2
(
E
∫ t

0
‖u(s)‖2

2 ds
) 1

2

=
(
tr
(
CPCT)+ tr

(
C1PRCT

1
)
−2 tr

(
CPMCT

1
)) 1

2 ‖u‖L2
t

holds, where P = E
∫

∞

0 Φ(τ)BBT ΦT (τ)dτ is the reachability Gramian of the original system, PR

the reachability Gramian of the approximating system and PM a matrix that satisfies the following
equation:

0 = BBT
1 +PMAT

11 +APM +
q

∑
k=1

NkPM(Nk
11)

T E
[
Mk(1)2] , (6.62)

which we get by taking the limit t → ∞ on both sides of equation (6.59). We summarize these
results in the following theorem:

Theorem 6.18. Let
(
A,Nk,B,C

)
be a realization of system (6.21) and

(
A11,Nk

11,B1,C1
)

the co-
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efficients of the reduced order model defined in (6.55), then

sup
t∈[0,T ]

E‖ŷ(t)− y(t)‖2 ≤
(
tr
(
CPCT)+ tr

(
C1PRCT

1
)
−2 tr

(
CPMCT

1
)) 1

2 ‖u‖L2
T

(6.63)

for every T > 0, where y and ŷ are the outputs of the original and the reduced system, respectively.

Here, P denotes the reachability Gramian of system (6.21), PR denotes the reachability Gramian

of the reduced system and PM satisfies equation (6.62).

Remark. If u ∈ L2 we can replace ‖·‖L2
T

by ‖·‖L2 and [0,T ] by R+ in inequality (6.63).

Now, we are ready to specify the error bound from (6.63) in the following proposition.

Proposition 6.19. If the realization (A,Nk,B,C) is balanced, then

tr
(
CPCT +C1PRCT

1 −2CPMCT
1
)

= tr(Σ2(B2BT
2 +2PM,2AT

21))+
q

∑
k=1

tr(Σ2(2Nk
22PM,2(Nk

21)
T +2Nk

21PM,1(Nk
21)

T −Nk
21PR(Nk

21)
T ))ck,

where PM,1 are the first r rows of PM and PM,2 are the last n− r rows of PM, ck = E
[
Mk(1)2] and

Σ2 = diag(σr+1, . . . ,σn).

Proof. For simplicity of notation, we prove this result just for the case q = 1 but of course it is
straightforward to generalize the proof for an arbitrary q. Here, we additionally set N := N1 and
c := c1. Then, we have[

AT
11 AT

21

AT
12 AT

22

][
Σ1

Σ2

]
+

[
Σ1

Σ2

][
A11 A12

A21 A22

]
+

[
NT

11 NT
21

NT
12 NT

22

][
Σ1

Σ2

][
N11 N12

N21 N22

]
c

=−
[

CT
1 C1 CT

1 C2

CT
2 C1 CT

2 C2

]
.

Hence,

AT
11Σ1 +Σ1A11 +NT

11Σ1N11c+NT
21Σ2N21c =−CT

1 C1, (6.64)

AT
22Σ2 +Σ2A22 +NT

22Σ2N22c+NT
12Σ1N12c =−CT

2 C2 (6.65)
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and

AT
21Σ2 +Σ1A12 +NT

11Σ1N12c+NT
21Σ2N22c =−CT

1 C2. (6.66)

Furthermore,[
A11 A12

A21 A22

][
Σ1

Σ2

]
+

[
Σ1

Σ2

][
AT

11 AT
21

AT
12 AT

22

]
+

[
N11 N12

N21 N22

][
Σ1

Σ2

][
NT

11 NT
21

NT
12 NT

22

]
c

=−
[

B1BT
1 B1BT

2

B2BT
1 B2BT

2

]
,

such that one can conclude

A11Σ1 +Σ1AT
11 +N11Σ1NT

11c+N12Σ2NT
12c =−B1BT

1 (6.67)

and

A22Σ2 +Σ2AT
22 +N22Σ2NT

22c+N21Σ1NT
21c =−B2BT

2 . (6.68)

From [
A11 A12

A21 A22

][
PM,1

PM,2

]
+

[
PM,1

PM,2

]
AT

11 +

[
N11 N12

N21 N22

][
PM,1

PM,2

]
NT

11c =−
[

B1BT
1

B2BT
1

]

we also know that

A11PM,1 +A12PM,2 +PM,1AT
11 +N11PM,1NT

11c+N12PM,2NT
11c =−B1BT

1 . (6.69)

We define E :=
(
tr
(
CΣCT)+ tr

(
C1PRCT

1
)
−2 tr

(
CPMCT

1
)) 1

2 and obtain

E 2 = tr

([
C1 C2

][
Σ1

Σ2

][
CT

1

CT
2

])
+ tr

(
C1PRCT

1
)
−2 tr

([
C1 C2

][PM,1

PM,2

]
CT

1

)
= tr(C2Σ2CT

2 +C1Σ1CT
1 +C1PRCT

1 −2C1PM,1CT
1 −2C2PM,2CT

1 ).
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Using equation (6.66) yields

tr(−C2PM,2CT
1 ) = tr(−CT

1 C2PM,2)

= tr(AT
21Σ2PM,2 +Σ1A12PM,2 +NT

11Σ1N12PM,2c+NT
21Σ2N22PM,2c)

= tr(AT
21Σ2PM,2 +A12PM,2Σ1 +N12PM,2NT

11Σ1c+NT
21Σ2N22PM,2c).

By equation (6.69), we obtain

tr(−C2PM,2CT
1 )

= tr(AT
21Σ2PM,2 +NT

21Σ2N22PM,2c)− tr((B1BT
1 +PM,1AT

11 +A11PM,1 +N11PM,1NT
11c)Σ1).

Using equation (6.64), we have

tr(PM,1AT
11 +A11PM,1 +N11PM,1NT

11c)Σ1) = tr(AT
11Σ1 +Σ1A11 +NT

11Σ1N11c)PM,1)

=− tr(CT
1 C1PM,1 +NT

21Σ2N21PM,1c),

and hence

E 2 = tr(C2Σ2CT
2 +C1Σ1CT

1 +C1PRCT
1 )+2tr(AT

21Σ2PM,2 +NT
21Σ2N22PM,2c)

−2tr(B1BT
1 Σ1)+2tr(NT

21Σ2N21PM,1c).

Thus,

E 2 = tr(Σ2(CT
2 C2 +2PM,2AT

21 +2N22PM,2NT
21c+2N21PM,1NT

21c))

+ tr(C1Σ1CT
1 −B1BT

1 Σ1 +BT
1 (QR−Σ1)B1)

using the identity tr(C1PRCT
1 ) = tr(BT

1 QRB1). Inserting equation (6.67) provides

tr(−B1BT
1 Σ1) = tr(A11Σ1Σ1 +Σ1AT

11Σ1 +N11Σ1NT
11Σ1c+N12Σ2NT

12Σ1c)

= tr(Σ1Σ1A11 +Σ1AT
11Σ1 +Σ1NT

11Σ1N11c+N12Σ2NT
12Σ1c)

=− tr(Σ1CT
1 C1)− tr(Σ1NT

21Σ2N21c)+ tr(N12Σ2NT
12Σ1c).
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Therefore,

E 2 = tr(Σ2(CT
2 C2 +2PM,2AT

21 +2N22PM,2NT
21c+2N21PM,1NT

21c))

+ tr(Σ2(NT
12Σ1N12c−N21Σ1NT

21c))

+ tr(BT
1 (QR−Σ1)B1)

holds and from (6.65), it follows that

tr(Σ2NT
12Σ1N12c) = tr(−Σ2(AT

22Σ2 +Σ2A22 +NT
22Σ2N22c+CT

2 C2))

= tr(−Σ2(Σ2AT
22 +A22Σ2 +N22Σ2NT

22c+CT
2 C2)).

Using (6.68) yields

tr(Σ2NT
12Σ1N12c) = tr(Σ2(N21Σ1NT

21c+B2BT
2 −CT

2 C2)),

such that

tr(Σ2(NT
12Σ1N12c−N21Σ1NT

21c)) = tr(Σ2(B2BT
2 −CT

2 C2)),

and hence,

E 2 = tr(Σ2(B2BT
2 +2PM,2AT

21 +2N22PM,2NT
21c+2N21PM,1NT

21c))

+ tr(BT
1 (QR−Σ1)B1).

By definition, the Gramians PR and QR satisfy

AT
11QR +QRA11 +NT

11QRN11c =−CT
1 C1

and

A11PR +PRAT
11 +N11PRNT

11c =−B1BT
1 .
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Thus,

tr(B1BT
1 (QR−Σ1)) = tr(−(A11PR +PRAT

11 +N11PRNT
11c)(QR−Σ1))

= tr(−PR(AT
11(QR−Σ1)+(QR−Σ1)A11 +NT

11(QR−Σ1)N11c))

= tr(−PRNT
21Σ2N21c).

Finally, we have

E 2 = tr(Σ2(B2BT
2 +2PM,2AT

21 +2N22PM,2NT
21c+2N21PM,1NT

21c−N21PRNT
21c)).

If we set Nk = 0 (k = 1, . . . ,q) in Proposition 6.19, then we obtain the H2 error bound of the
deterministic case which can be found in Subsection 7.2.2 of Antoulas [2]. So, the result in
Proposition 6.19 can be interpreted as a generalized H2 error bound. Furthermore, with this
representation of the error bound we are able to emphasize the cases in which balanced truncation
is a good approximation. In Proposition 6.19 the bound depends on Σ2 which contains the n− r

smallest Hankel singular values σr+1, . . . ,σn of the original system. In case these values are
small, the error bound indicates that the reduced order model computed by balanced truncation
is of good quality.

6.2.5. Numerical experiments

In this subsection, we consider a stochastic heat and a stochastic damped wave equation as ex-
amples to support the theory.
For the stochastic heat equation case we conduct parts of the numerical experiments from Sec-
tion 5 in [14] with a different noise process and we furthermore extend them by plots in which
outputs of large order systems are compared with outputs corresponding to ROMs obtained via
BT. For the numerical experiments related to the stochastic damped wave equation we follow
[60] in order to compare outputs of semi-discretized SPDEs with outputs of ROMs by BT.
The numerical experiments in this subsection are run on a desktop computer with a dual-core
Intel Pentium processor E5400 and 3GB RAM. All algorithms are implemented and executed in
MATLAB 7.14.0.739 (R2012a) running on Ubuntu 10.04.1 LTS.
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Balanced truncation applied to a stochastic heat equation

We recall the stochastic heat equation from Example 4.14 (t ∈ [0,π], ζ ∈ [0,π]2):

∂X (t,ζ )
∂ t

= ∆X (t,ζ )+1[ π

4 ,
3π

4 ]2(ζ )u(t)+ e−|ζ1− π

2 |−ζ2X (t−,ζ )∂M(t)
∂ t

,

∂X (t,ζ )
∂n

= 0, t ∈ [0,π], ζ ∈ ∂ [0,π]2,

X (0,ζ )≡ 0,

where M(t) = w(t)− (N(t)− t). We assume here that w(t) and N(t), t ∈ [0,π], are independent
processes, where w is a standard Wiener process and N is a Poisson process with parameter 1.
Instead of the full state, we are only interested in finitely many observations which here is the
average temperature on the non-heated area

Y (t) =
4

3π2

∫
[0,π]2\[ π

4 ,
3π

4 ]2
X (t,ζ )dζ . (6.70)

We approximate Y by the output of the Galerkin solution discusses in Chapter 5. The Galerkin
approximation output for the particular example above is specified in Example 5.3 and looks as
follows

y(t) =Cx(t),

where CT = (C hk)k=1,...,n. Here, C is the integral operator defined at the right hand side in
(6.70) and (hk)k=1,...,n are the eigenvectors of the Laplace operator with homogeneous Neumann
boundary conditions. The corresponding state x is given by (see Example 5.3 again)

x(t) =
∫ t

0
Ax(s)+Bu(s)ds+

∫ t

0
Nx(s−)dM(s), (6.71)

where

• A = diag(0,−1,−1,−2, . . .),

• N =

(〈
e−|·− π

2 |−·hi,hk

〉
L2([0,π])

)
k,i=1,...,n

,

• B =

(〈
1[ π

4 ,
3π

4 ]2(·),hk

〉
L2([0,π])

)
k=1,...,n

.
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We fix the state dimension to n = 1000. We now reduce the Galerkin solution by applying BT.
Before doing this, we have to ensure that the system is mean square asymptotically stable. This
is not satisfied since A has a zero eigenvalue. For that reason, we add a stabilizing feedback
control uS(t) = −2eT

1 x(t), t ∈ [0,π], where e1 is the first unit vector in Rn, such that the control
we use is of the form u(t) = uS(t)+ ũ(t) with arbitrary ũ∈ L2

T for every T > 0. Consequently, we
obtain an equation (6.71), where A and u are replaced by AS = A−2BeT

1 and ũ, respectively. To
now ensure mean square asymptotically stability of the modified system, we have to show that

σ (In⊗A+A⊗ In +NM⊗NM)⊂ C− (6.72)

by Theorem 6.3, where NM = N
√

E [M(1)2]. Property (6.72) now holds since the following
sufficient condition is satisfied (see Corollary 3.6.3 in [21] and Theorem 5 in [30]):∥∥∥∥∫ ∞

0
eAT

S t NT
MNM eASt dt

∥∥∥∥= 0.1316 < 1.

The error between the output ys of the stabilized system and the output ŷ of the ROM by BT from
(6.25) is

sup
t∈[0,π]

E‖ys(t)− ŷ(t)‖2 ≤ E ‖ũ‖L2
T
,

where E is the bound in (6.63). For fixed control functions u1(t) =
√

2
π

w(t), u2(t) =
√

2
1−e−2π e−t ,

t ∈ [0,π], and the reduced order dimensions r = 1,2,4,8 we compute the exact time domain
errors. We compare these exact errors with the corresponding error bounds in the following
table.

Dim. ROM Exact Error (ũ = u1) Exact Error (ũ = u2) Error Bound E

8 3.6163 ·10−6 4.4354 ·10−6 3.8971 ·10−5

4 1.0025 ·10−4 1.2570 ·10−4 7.2362 ·10−4

2 1.0792 ·10−3 1.1681 ·10−3 3.8652 ·10−3

1 3.8439 ·10−3 0.0101 0.0335

In order to obtain the exact errors, we discretize the equations with the Euler-Maruyama scheme.
The theory regarding this method can be found in [41] for the Wiener case and equations with
additional Poisson noise are studied in [31, 32].
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These results show that the balanced truncation error bound, which is a worst case bound holding
for all feasible input functions, also provides a good prediction of the true time domain error. In
particular, it quite well predicts the decrease of the true error for increased dimension of the
reduced order model.

To conclude this subsection, we compare trajectories of the output corresponding to the semi-
discretized stochastic heat equation with the ones of the reduced order model output. We choose
the reduced order dimension r = 1,2,3 and a control of the form ũ(t,ω) = ũD(t)r(t,ω) = ew(t,ω),
t ∈ [0,π] and ω ∈ Ω, where r(t,ω) = ew(t,ω) is interpreted as a multiplicative positive random
perturbation of ũD ≡ 1. Corresponding trajectories are given in Figure 6.1. The outputs shown
there illustrate how the temperature in the non-heated area is increased by the input. Furthermore,
they are continuously impacted by Wiener noise and the Poisson noise causes jumps which re-
duce the temperature. In Figure 6.1a we fix the reduced order dimension to r = 1 and obtain
an output which is already not far from the original one. Setting r = 2 provides a trajectory in
Figure 6.1a which only differs slightly from the output of the original system. Finally, in Figure
6.1c, where r = 3, it is not possible to distinguish between the graphs. Consequently, in this case
the SPDE in Example 4.14 is well represented by a ROM of order three.

Balanced truncation applied to a stochastic damped wave equation

We apply balancing BT to the discretized version of the following SPDE from Example 4.16. It
models the lateral displacement of a damped stretched string with random excitation:

∂ 2

∂ t2 Z (t,ζ )+2
∂

∂ t
Z (t,ζ ) =

∂ 2

∂ζ 2 Z (t,ζ )+ e−(ζ−
π

2 )
2
u(t)+2e−(ζ−

π

2 )
2
Z (t−,ζ ) ∂

∂ t
(t−N(t))

for t,ζ ∈ [0,π], α = 2 and with (N(t))t≥0 being a Poisson process with parameter 1. We have

Dirichlet boundary conditions and Z (0,ζ ), ∂

∂ t Z (t,ζ )
∣∣∣
t=0
≡ 0.

The output, we are interested in, is an approximation for the position of the middle of the string

Y (t) =
1

2ε

∫ π

2 +ε

π

2−ε

Z (t,ζ )dζ ,

where ε > 0. In order to approximate this output, we use the Galerkin scheme outlined in Chapter
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0 0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

Time t

O
u
tp
u
t

Output original system (n = 1000)

Output reduced system (r = 2)

(b) Reduced order dimension r = 2 and ũ(t) = ew(t)
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Figure 6.1.: Average temperature non-heated area compared with reduced order output by BT
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5. From Example 5.5 we know that the Galerkin system looks as follows:

x(t) =
∫ t

0
Ax(s)+Bu(s)ds+

∫ t

0
Nx(s−)dM(s), (6.73)

y(t) =Cx(t), t ≥ 0,

where the coefficients are represented by

• A = diag
(

E1, . . . ,E n
2

)
with El =

(
0 l
−l −2

)
(l = 1, . . . , n

2 ),

• B = (bk)k=1,...,n with

b2l−1 = 0, b2l =

√
2
π

〈
e−(·−

π

2 )
2
,sin(l·)

〉
H
,

• N =
(
nk j
)

k, j=1,...,n with

n(2l−1), j = 0, n(2l), j =

0, if j = 2v,
4

πv

〈
sin(l·),e−(·− π

2 )
2
sin(v·)

〉
H
, if j = 2v−1,

for j = 1, . . . ,n and v = 1, . . . , n
2 ,

• the output matrix is given by CT = (ck)k=1,...,n with

c2l = 0 and c2l−1 =
1√

2πl2

[
cos
(

l
(

π

2
− ε

))
− cos

(
l
(

π

2
+ ε

))]
.

We fix the dimension of the Galerkin solution to n = 1000 and reduce (6.73) by BT. This model
order reduction method only works if the system is mean square asymptotically stable, which
means that

E‖x(t,x0,0)‖2
Rn → 0 (6.74)

for t → ∞ and an arbitrary initial state x0 ∈ Rn. Below, we can ensure that property since the
matrix equation

AT X +XA+NT XN =−I
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has a positive definite solution X > 0, which we check by solving this equation with a numerical
algorithm. Due to Theorem 6.3 this is equivalent to condition (6.74), hence the desired model
order reduction technique can be used. Let ŷ be the ROM output by BT from (6.25). We now
compute the exact error

sup
t∈[0,π]

E‖y(t)− ŷ(t)‖2 ,

and the corresponding error bound in (6.63) for different dimensions r of the reduced order
model. Below, we choose particular normalized control functions u1(t) =

√
2
π

1[0, π

2 ]
(t) and

u2(t) =
√

8
π

1[0, π

2 ]
(t)w(t) (t ∈ [0,π]). Moreover, w is a standard Wiener process and the error

bound is denoted by E1 :=
(
tr
(
CPCT)+ tr

(
C1PRCT

1
)
−2 tr

(
CPMCT

1
)) 1

2 .

Dim. ROM BT Exact Error (u = u1) BT Exact Error (u = u2) Error Bound E1

40 1.9992 ·10−7 2.0024 ·10−7 4.0103 ·10−5

20 4.4660 ·10−6 4.1435 ·10−6 1.2695 ·10−4

10 4.3081 ·10−5 3.2512 ·10−5 3.6395 ·10−4

5 5.1180 ·10−4 4.2176 ·10−4 2.3446 ·10−3

3 0.0114 8.2309 ·10−3 0.0380

(6.75)

In order to obtain the exact errors, we discretize the equations with the Euler-Maruyama scheme,
compare [31, 32, 41].

In Figure 6.2a we plot the output y of the Galerkin system with state space dimension n = 1000
and the output ŷ of the ROM with state space dimension r = 3, where we choose u ≡ u1. Due
to the input, which can be interpreted as electricity flowing through the cable, the curves are
increasing first. Additionally, the cable is randomly hit by wind which is marked by the peaks in
this picture. This effect pushes the cable in the opposite direction. After the current completely
passed the cable, the graphs decrease to zero due to the stability of the system. It is also obvious
that even after such a large reduction of the dimension, the accuracy is quite good. In Figure 6.2b
we increase the dimension of the reduced order model by one so that it is difficult to distinguish
between the output of the ROM and the output of the Galerkin system. Hence, one can conclude
that the output of the SPDE in Example 4.16 can be described by a system of ordinary SDEs of
order four.

We conclude this subsection with pointing out the benefit of model order reduction compared to
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Figure 6.2.: Output of the original model compared with the output of the ROM by BT
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a less fine discretization. Below, we denote the output of the Galerkin system (6.73) with state
space dimension n by yn. We consider the errors

sup
t∈[0,π]

E‖y1000(t)− yn0(t)‖2 , (6.76)

where n0 = 5,10,20 and state this errors in the following table.

n0 Exact error (6.76) with u≡ u1 Exact error (6.76) with u≡ u2

20 4.2207 ·10−4 3.8454 ·10−4

10 4.8938 ·10−3 2.8325 ·10−3

5 0.0277 0.0197

Comparing the exact errors in the table above with the exact error stated in table (6.75), we can
see that BT gives low order systems which are better than low order systems resulting from a less
fine discretization. Here, BT yields ROMs which are more accurate by a factor of almost 100.

6.3. Type 2 balanced truncation for stochastic systems

In Benner et al. [10] and Damm, Benner [22] an example is presented which clarifies that the
H∞-error bound from the deterministic case does not hold for the type 1 BT approach that we
discuss in Section 6.2. For that reason, a new ansatz to extend BT to SDEs, which we call type 2
BT, is considered by Benner et al. [10] or Damm, Benner [22]. There a new reachability Gramian
is used which is not based on the concept introduced in Subsection 6.1.1 and does not allow an
energy interpretation. The Gramian is motivated by the missing H∞-error bound which can be
achieved in the approach here. Moreover, type 2 BT preserves mean square asymptotic stability
as type 1 BT does, see Subsection 6.2.2. In this section, we focus on giving an overview on the
most important results that have already been proven in [10] and [22]. In Subsection 6.3.1, we
briefly discuss the procedure and emphasize results on error bounds and the stability analysis of
the methods. In Subsection 6.3.2, we contribute an H2-type error bound for the new ansatz in
[10] and [22] to close the gap in the error bound analysis. This error bound is already established
in Redmann, Benner [59] for only one noise term. We consider a more general setting here for a
general number q ∈ N of noise terms.
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6.3.1. Comparison with type 1 BT, procedure and properties of the

ROM

We consider the same system as in Subsection 6.2.1, that is

dx(t) = [Ax(t)+Bu(t)]dt +
q

∑
k=1

Nkx(t−)dMk(t), t ≥ 0, x(0) = x0, (6.77)

y(t) =Cx(t)

for A, Nk ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and u ∈ L2
T for every T > 0. M1, . . . ,Mq are scalar

uncorrelated and square integrable Lévy processes with mean zero. These processes are defined
on a filtered probability space (Ω,F ,(Ft)t≥0,P), where (Ft)t≥0 satisfies the usual conditions.
In addition, we assume Mk (k = 1, . . . ,q) to be (Ft)t≥0-adapted and the increments Mk(t +h)−
Mk(t) to be independent of Ft for t,h≥ 0. We denote the solution of equation (6.77) by x(t,x0,u)

and the corresponding output by y(t,x0,u). The SDE in (6.77) is mean square asymptotic stability
which means

E‖x(t,x0,0)‖2
2→ 0 for t→ ∞. (6.78)

Following the arguments in Sections 6.1.1 and 6.1.2 the Gramians of type 1 BT are based on
reachability and observability concepts. If we suppose to have a completely observable and
reachable system, which implies P, Q > 0, we obtain the following result:

(i) The minimal energy to steer the average state to x ∈Rn is bounded from below as follows:

xT P−1x≤ inf
u∈L2

T ,T>0,
E[x(T,0,u)]=x

‖u‖2
L2

T
. (6.79)

(ii) The energy that is caused by the observation of an initial state x0 ∈ Rn is

‖y(·,x0,0)‖2
L2 = xT

0 Qx0,

where the Gramians P and Q are solutions to generalized Lyapunov equations:

AP+PAT +
q

∑
k=1

NkP(Nk)T · ck =−BBT and AT Q+QA+
q

∑
k=1

(Nk)T QNk · ck =−CTC (6.80)
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with ck := E
[
Mk(1)2]. For an H∞-type error bound for type 1 BT we desire to find an arbitrary

constant a > 0 such that

‖y− yR‖L2 ≤ a tr(Σ2)‖u‖L2

holds for Σ2 containing the Hankel singular values corresponding to the truncated part and yR

being the reduced order output by type 1 BT in (6.25). For the deterministic case (N = 0), this
constant is a = 2, see [2]. Example I.3 in [10] or Example II.2 in [22], respectively, show that
such a number a > 0 does not exist for general matrices N.

The idea behind type 2 BT for stochastic systems, introduced in [22], is to replace the reachability
Gramian P satisfying the first equation in (6.80) by a matrix P2 which solves

AT P−1
2 +P−1

2 A+
q

∑
k=1

(Nk)T P−1
2 Nk · ck =−P−1

2 BBT P−1
2 . (6.81)

This new choice has the disadvantage that P2 does not allow an energy interpretation as in (6.79).
If we set Nk = 0 in the first equation of (6.80) and in (6.81), we obtain the same Lyapunov
equation that is used for deterministic BT. Hence, both types of introducing BT for SDEs are
possible generalizations. Unfortunately, there exist no criteria for the existence of a positive
definite solution to (6.81). There are matrices A, B and Nk such that the reachability Gramian P

of type 1 BT is positive definite, but there is no positive definite solution to (6.81), see Example
II.5 in [10]. For that reason, we turn to a more general matrix inequality

AT P−1
2 +P−1

2 A+
q

∑
k=1

(Nk)T P−1
2 Nk · ck ≤−P−1

2 BBT P−1
2 . (6.82)

We have an existence result for this inequality from [10].

Lemma 6.20. Suppose that (6.78) holds, then there is a solution P2 > 0 to inequality (6.82).

Balancing for the new method means that we diagonalize the positive definite solutions to the sec-
ond equation in (6.80) and inequality (6.82) simultaneously. Analogous to the type 1 approach,
there is an invertible transformation matrix T̃ , so that(

A,B,C,Nk
)
7→
(

T̃ AT̃−1, T̃ B,CT̃−1, T̃ NkT̃−1
)
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leads to a system with transformed Gramians

T̃ P2T̃ T = T̃−T QT̃−1 = 2Σ = diag(2σ1, . . . ,2σn)> 0.

The fact that P̃2 := T̃ P2T̃ T is the reachability Gramian of the transformed system is a consequence
of simple rearrangements of the inequality (6.82):

−P−1
2 T̃−1T̃ BBT T̃ T T̃−T P−1

2 =−P−1
2 BBT P−1

2

≥ AT P−1
2 +P−1

2 A+
q

∑
k=1

(Nk)T P−1
2 Nk · ck

= AT T̃ T T̃−T P−1
2 +P−1

2 T̃−1T̃ A+
q

∑
k=1

(Nk)T T̃ T T̃−T P−1
2 T̃−1T̃ Nk · ck.

Pre- and post-multiplying T̃−T and T̃−1 the above matrix inequality yields

−P̃−1
2 (T̃ B)(T̃ B)T P̃−1

2 ≥ (T̃ AT̃−1)T P̃−1
2 + P̃−1

2 (T̃ AT̃−1)+
q

∑
k=1

(T̃ NkT̃−1)T P̃−1
2 (T̃ NkT̃−1) · ck.

The matrix T̃ has the same structure as in the type 1 approach in Subsection 6.2.1. With the
partition

T̃ =

[
W̃ T

T̃ T
2

]
and T̃−1 =

[
Ṽ T̃1

]
,

where W̃ T ∈ Rr×n,Ṽ ∈ Rn×r, we obtain the ROM coefficients(
2A11,2B1,2C1,2Nk

11

)
=
(

W̃ T AṼ ,W̃ T B,CṼ ,W̃ T NkṼ
)
.

Type 2 balanced truncation preserves mean square asymptotic stability as can be shown like in
Theorem II.2 in [10]. So, in the proof of the general Lévy noise case one has to replace the
matrices Nk, which occur in the proof of the Wiener case, by Nk

M := Nk
√
E
[
M2

k (1)
]
.

Theorem 6.21. Let 2σr 6= 2σr+1, then the ROM

dx̃R(t) = 2A11x̃R(t)dt +
q

∑
k=1

2Nk
11x̃R(t−)dMk(t), t ≥ 0, x̃R(0) = x̃R,0
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is mean square asymptotically stable if

dx(t) = Ax(t)dt +
q

∑
k=1

Nkx(t−)dMk(t), t ≥ 0, x(0) = x0

is mean square asymptotically stable.

The advantage of type 2 BT is the existence of an H∞-type error bound which is in contrast to
the type 1 method. Below, a result from [10] and [22], respectively is stated in a more general
framework. This generalization can be shown by substituting Nk with Nk

M in the proof.

Theorem 6.22. If x0 = 0 and x̃R,0 = 0, then for all T > 0, we have

‖y− ỹR‖L2
T
≤ 2(2σr+1 + . . .+ 2σν)‖u‖L2

T
,

where ỹR is the output of the type 2 approach and 2σr+1, . . . ,2σν are the distinct diagonal entries

of 2Σ2 = diag(2σr+1, . . . ,2σn) = diag(2σr+1I, . . . ,2σν I).

As mentioned in [10], the existence of an H2-type error bound is an open question which we
answer in the next section.

6.3.2. H2 error bound for type 2 balanced truncation

For simplicity of notation, we assume to have a balanced realization of system (6.77) in terms
of the type 2 approach. We denote this balanced realization by (2A,2B,2C,2N) in order to dis-
tinguish between the coefficients of the type 1 and the type 2 ansatz. Since we are in a balanced
situation, P2 = Q = 2Σ such that

2AT
2Σ+ 2Σ 2A+

q

∑
k=1

(2Nk)T
2Σ 2Nk · ck =−2CT

2C, (6.83)

2AT
2Σ
−1 + 2Σ

−1
2A+

q

∑
k=1

(2Nk)T
2Σ
−1

2Nk · ck ≤−2Σ
−1

2B 2BT
2Σ
−1, (6.84)

where ck := E
[
M2

k (1)
]
. Below, we use the following suitable partitions:

2A =

[
2A11 2A12

2A21 2A22

]
, 2B =

[
2B1

2B2

]
, 2C =

[
2C1 2C2

]
, 2Nk =

[
2Nk

11 2Nk
12

2Nk
21 2Nk

22

]
, 2Σ =

[
2Σ1

2Σ2

]
.
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By assuming x0 = 0 and x̃R,0 = 0, we obtain representations for the outputs as

y(t) = 2Cx(t) = 2C
∫ t

0
Φ(t,s)2Bu(s)ds and ỹR(t) = 2C1x̃R(t) = 2C1

∫ t

0
Φ̃R(t,s)2B1u(s)ds,

where Φ(t,s) = Φ(t)Φ−1(s), t ≥ s ≥ 0 and Φ̃R is the fundamental matrix of the reduced or-
der system. These representations have been proven in Proposition 6.4. Some straightforward
rearrangements yield a first error estimate

E‖y(t)− ỹR(t)‖2 = E
∥∥∥∥2C

∫ t

0
Φ(t,s)2Bu(s)ds− 2C1

∫ t

0
Φ̃R(t,s)2B1u(s)ds

∥∥∥∥
2

≤ E
∫ t

0

∥∥(2CΦ(t,s)2B− 2C1Φ̃R(t,s)2B1
)

u(s)
∥∥

2 ds

≤ E
∫ t

0

∥∥2CΦ(t,s)2B− 2C1Φ̃R(t,s)2B1
∥∥

F ‖u(s)‖2 ds.

Using the Cauchy inequality, we have that

E‖y(t)− ỹR(t)‖2 ≤
(
E
∫ t

0

∥∥2CΦ(t,s)2B− 2C1Φ̃R(t,s)2B1
∥∥2

F ds
) 1

2
(
E
∫ t

0
‖u(s)‖2

2 ds
) 1

2

.

Following the arguments in Section 6.2.4, we obtain

E
∫ t

0

∥∥2CΦ(t,s)2B− 2C1Φ̃R(t,s)2B1
∥∥2

F ds = E
∫ t

0

∥∥2CΦ(s)2B− 2C1Φ̃R(s)2B1
∥∥2

F ds

≤ E
∫

∞

0

∥∥2CΦ(s)2B− 2C1Φ̃R(s)2B1
∥∥2

F ds

= tr
(

2CP 2CT)+ tr
(

2C1 2PR 2CT
1
)
−2tr

(
2C 2PM 2CT

1
)
,

where the matrices P, 2PR and 2PM exist by assumption (6.78) and Theorem 6.21. They are the
unique solutions to

2AP+P 2AT +
q

∑
k=1

2NkP(2Nk)T · ck =−2B 2BT (6.85)

2A11 2PR + 2PR 2AT
11 +

q

∑
k=1

2Nk
11 2PR(2Nk

11)
T · ck =−2B1 2BT

1 , (6.86)

2A 2PM + 2PM 2AT
11 +

q

∑
k=1

2Nk
2PM(2Nk

11)
T · ck =−2B 2BT

1 . (6.87)
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Thus, we obtain an error bound

sup
t∈[0,T ]

E‖y(t)− ỹR(t)‖2 ≤
(
tr
(

2CP 2CT)+ tr
(

2C1 2PR 2CT
1
)
−2 tr

(
2C 2PM 2CT

1
)) 1

2 ‖u‖L2
T
,

which we specify in the next theorem.

Theorem 6.23. Let the realization (2A,2B,2C,2N) be balanced in terms of the type 2 approach,

then

tr
(

2CP 2CT + 2C1 2PR 2CT
1 −22C 2PM 2CT

1
)

= tr(2Σ2(2B2 2BT
2 +22PM,2 2AT

21))

+
q

∑
k=1

tr(2Σ2(2 2Nk
22 2PM,2 (2Nk

21)
T +2 2Nk

21 2PM,1 (2Nk
21)

T − 2Nk
21 2PR (2Nk

21)
T ))ck,

where 2PM,1 are the first r and 2PM,2 are the last n− r rows of 2PM.

Proof. To simplify the notation in this proof, we set q= 1, N =N1 and c= c1. We further replace
the left subscript 2, marking matrices related to the type 2 approach, by a tilde ~. This means
that we substitute 2A with Ã, for example.

By selecting the left and right upper block of (6.83), we have

ÃT
11Σ̃1 + Σ̃1Ã11 + ÑT

11Σ̃1Ñ11 · c+ ÑT
21Σ̃2Ñ21 · c =−C̃T

1 C̃1, (6.88)

ÃT
21Σ̃2 + Σ̃1Ã12 + ÑT

11Σ̃1Ñ12 · c+ ÑT
21Σ̃2Ñ22 · c =−C̃T

1 C̃2. (6.89)

We introduce the reduced order system observability Gramian which exists by Theorem 6.21

ÃT
11Q̃R + Q̃RÃ11 + ÑT

11Q̃RÑ11 · c =−C̃T
1 C̃1. (6.90)

Furthermore, we define

ε̃ :=
√

tr(C̃PC̃T )+ tr(C̃1P̃RC̃T
1 )−2tr(C̃P̃MC̃T

1 ).

Due to the duality between the equations (6.83) and (6.85), the identity tr(C̃PC̃T ) = tr(B̃T Σ̃B̃)

holds such that

ε̃
2 = tr(B̃T

1 Σ̃1B̃1)+ tr(B̃T
2 Σ̃2B̃2)+ tr(C̃1P̃RC̃T

1 )−2tr(C̃1P̃M,1C̃T
1 )−2tr(C̃2P̃M,2C̃T

1 ), (6.91)
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where we use the partition P̃M =

[
P̃M,1

P̃M,2

]
. We insert equation (6.89) which yields

− tr(C̃2P̃M,2C̃T
1 ) =− tr(P̃M,2C̃T

1 C̃2) = tr(P̃M,2(ÃT
21Σ̃2 + Σ̃1Ã12 + ÑT

11Σ̃1Ñ12 · c+ ÑT
21Σ̃2Ñ22 · c))

= tr(Σ̃2(P̃M,2ÃT
21 + Ñ22P̃M,2ÑT

21 · c))+ tr(Σ̃1(Ã12P̃M,2 + Ñ12P̃M,2ÑT
11 · c)).

By the upper block of equation (6.87), given by

Ã11P̃M,1 + Ã12P̃M,2 + P̃M,1ÃT
11 + Ñ11P̃M,1ÑT

11 · c+ Ñ12P̃M,2ÑT
11 · c =−B̃T

1 B̃1,

we obtain

− tr(C̃2P̃M,2C̃T
1 ) =− tr(Σ̃1(B̃1B̃T

1 + Ã11P̃M,1 + P̃M,1ÃT
11 + Ñ11P̃M,1ÑT

11 · c))
+ tr(Σ̃2(P̃M,2ÃT

21 + Ñ22P̃M,2ÑT
21 · c)).

With equation (6.88), we have

tr(Σ̃1(Ã11P̃M,1 + P̃M,1ÃT
11 + Ñ11P̃M,1ÑT

11 · c)) = tr(P̃M,1(Σ̃1Ã11 + ÃT
11Σ̃1 + ÑT

11Σ̃1Ñ11 · c))
=− tr(P̃M,1(ÑT

21Σ̃2Ñ21 · c+C̃T
1 C̃1)),

so that

− tr(C̃2P̃M,2C̃T
1 ) = tr(Σ̃2(P̃M,2ÃT

21 + Ñ22P̃M,2ÑT
21 · c+ Ñ21P̃M,1ÑT

21))

− tr(B̃T
1 Σ̃1B̃1)+ tr(C̃1P̃M,1C̃T

1 ).

Inserting this result into equation (6.91) gives

ε̃
2 = tr(Σ̃2(B̃2B̃T

2 +2P̃M,2ÃT
21 +2Ñ22P̃M,2ÑT

21 · c+2Ñ21P̃M,1ÑT
21 · c))

+ tr(C̃1P̃RC̃T
1 )− tr(B̃T

1 Σ̃1B̃1).

With equations (6.90) and (6.86) we obtain tr(C̃1P̃RC̃T
1 ) = tr(B̃T

1 Q̃RB̃1). So, we have

tr(C̃1P̃RC̃T
1 )− tr(B̃T

1 Σ̃1B̃1) = tr(B̃1B̃T
1 (Q̃R− Σ̃1)).
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Equation (6.86) again yields

tr(C̃1P̃RC̃T
1 )− tr(B̃T

1 Σ̃1B̃1) =− tr((Ã11P̃R + P̃RÃT
11 + Ñ11P̃RÑT

11 · c)(Q̃R− Σ̃1))

=− tr(P̃R((Q̃R− Σ̃1)Ã11 + ÃT
11(Q̃R− Σ̃1)+ ÑT

11(Q̃R− Σ̃1)Ñ11 · c)).

Below, we subtract equation (6.88) from equation (6.90) and obtain

tr(C̃1P̃RC̃T
1 )− tr(B̃T

1 Σ̃1B̃1) =− tr(P̃RÑT
21Σ̃2Ñ21 · c).

Summarizing the result, we have

ε̃
2 = tr(Σ̃2(B̃2B̃T

2 +2P̃M,2ÃT
21 +2Ñ22P̃M,2ÑT

21 · c+2Ñ21P̃M,1ÑT
21 · c− Ñ21P̃RÑT

21 · c)).

Remark. At this point, we would like to apply type 2 BT to the heat and the damped wave

equation with Lévy noise, presented in Subsection 6.2.5, in order to compare this approach with

type 1 BT. In contrast to type 1 BT, we encounter several issues with type 2 BT in terms of the

availability of the reachability Gramian.

As mentioned after equation (6.81), the existence of a positive definite solution to (6.81) is not

guaranteed. For that reason, the reachability Gramian for type 2 BT is defined as a positive

definite solution to the matrix inequality (6.82).

So far, no algorithm is known to solve the matrix inequality (6.82) or the matrix equality (6.81)

(in case a positive definite solution exists). Therefore, we do not provide numerical examples for

type 2 BT in this section.

6.4. Singular perturbation approximation for stochastic

systems

In Sections 6.2 and 6.3, we discussed two types of balanced truncation (BT) assuming asymp-
totic stability of the original system. The idea of these reduction concepts is to balance the system
such that one creates a system where the dominant reachable and observable states are the same.
Afterwards, the difficult to observe and difficult to reach states are truncated, see [2, 53, 54] for
the deterministic case.

145



6. Linear Ordinary SDEs with Lévy Noise and Balancing Related Model Order Reduction

An alternative method to obtain a reduced order model (ROM) is the singular perturbation ap-
proximation (SPA), see Liu, Anderson [48] and Fernando, Nicholson [24] for deterministic linear
systems. Again, starting with a balanced system in the sense of type 1 BT, the coefficients of the
ROM are modified with respect to type 1 BT. The SPA also exists for bilinear system. For that
framework, we refer to Hartmann et al. [28].
In this section, we generalize the work of Liu and Anderson to linear systems with Lévy noise.
In Subsection 6.4.1, we motivate the SPA for stochastic systems and derive the ROM which co-
incides with the deterministic case ROM if Nk = 0. Next, in Subsections 6.4.2 and 6.4.3, we
analyze the properties of the ROM. First, we consider the stability of the reduced system. We
show that it is mean square stable and discuss why the ideas from Benner et al. [11] (see also
Subsection 6.2.2) cannot be adopted in order to prove the preservation of mean square asymp-
totic stability. Additionally, we state the remaining part to complete the proof of mean square
asymptotic stability for the ROM. Besides the stability analysis of the ROM, we investigate the
reachability and observability in the reduced model resulting from the SPA. With an example we
show that one can lose the complete reachability and observability in the ROM even if one starts
with an entirely reachable and observable original model which is in contrast to the deterministic
case. In Subsection 6.4.4, we assume to have a ROM that preserves the mean square asymptotic
stability which is vital for the existence of the error bound we provide in that section. We obtain
this error bound by modifying the coefficients of the ROM in order to have the same structure as
in the original system. The modified matrices coincide with the ones that are used in the bilinear
case by Hartmann et al. [28]. Furthermore, from that error bound, we can point out the cases in
which we have a good approximation by the SPA. Finally, in Subsection 6.4.5, we compare BT
and the SPA by reducing a large scale system we get from a special discretization of a second
order SPDE with Poisson noise. There, we will see that SPA can be better if one considers the
underlying equations on a larger time interval. We present a second example, which we generate
randomly, to illustrate further advantages of the SPA compared to BT.

6.4.1. Procedure

This subsection delivers an extension of Section 2 in [61], where the case q = 1 is studied.
Let M1, . . . ,Mq be uncorrelated, scalar and square integrable Lévy process with mean zero de-
fined on a filtered probability space (Ω,F ,(Ft)t≥0,P).2 In addition, we assume Mi (i = 1, . . . ,q)
to be (Ft)t≥0-adapted and the increments Mi(t +h)−Mi(t) to be independent of Ft for t,h≥ 0.

2We assume that (Ft)t≥0 is right continuous and that F0 contains all P null sets.
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We consider the following equations that occur in Sections 5.1 and 5.2:

dx(t) = [Ax(t)+Bu(t)]dt +
q

∑
k=1

Nkx(t−)dMk(t), x(0) = x0 ∈ Rn, (6.92)

y(t) =Cx(t), t ≥ 0,

where A, Nk ∈ Rn×n, C ∈ Rp×n, B ∈ Rn×m and x(t−) := lims↑t x(s). We assume the control
u ∈ L2

T for every T > 0. We recall that the solution of (6.92) at time t ≥ 0 with initial condition
x0 ∈ Rn and given control u is always denoted by x(t,x0,u). As in the case of BT, we assume

E‖x(t,x0,0)‖2
2→ 0 (6.93)

for t→∞ and x0 ∈Rn with equivalent conditions stated in Theorem 6.3. This concept of stability
is useful to define the (infinite) Gramians P and Q which we assume to be diagonal and equal
below, i.e., we consider a balanced system (6.92). In general, a system is of course not of that
form but the procedure of how to generate a balanced system is provided in Subsection 6.2.1.
The Gramians P = Σ = Q are solutions of the generalized Lyapunov equations (6.94) and (6.95)

AT
Σ+ΣA+

q

∑
k=1

(Nk)T
ΣNkE

[
M2

k (1)
]
=−CTC, (6.94)

AΣ+ΣAT +
q

∑
k=1

Nk
Σ(Nk)TE

[
M2

k (1)
]
=−BBT , (6.95)

where Σ = diag(σ1, . . . ,σn) with σ1 ≥ . . .≥ σn > 0. We introduce the following partitions

Σ =

[
Σ1

Σ2

]
, A =

[
A11 A12

A21 A22

]
, Nk =

[
Nk

11 Nk
12

Nk
21 Nk

22

]
, C =

[
C1 C2

]
and B =

[
B1

B2

]
,

where Σ1, A11, Nk
11 ∈ Rr×r, C1 ∈ Rp×r and B1 ∈ Rr×m. Using the partition x =

(
x1

x2

)
, the idea

of balanced truncation is to select the first r rows in equation (6.92) and to neglect x2 which
means that we set x2 = 0. This yields a reduced order model with coefficients (A11,Nk

11,C1,B1).
One can find a detailed motivation regarding BT in the stochastic case in [9] and Section 6.2.
From Subsection 6.2.2 we know that balanced truncation preserves asymptotic stability also in
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the stochastic case if σr 6= σr+1, that is,

σ

(
Ir⊗A11 +A11⊗ Ir +

q

∑
k=1

Nk
11⊗Nk

11 ·E
[
M2

k (1)
])
⊂ C−. (6.96)

The same is true for the truncated part meaning

σ

(
In−r⊗A22 +A22⊗ In−r +

q

∑
k=1

Nk
22⊗Nk

22 ·E
[
M2

k (1)
])
⊂ C−. (6.97)

From the properties (6.96) and (6.97) we can also conclude that A11 and A22 are invertible, see
Theorem 6.3.

The method we introduce below is called singular perturbation approximation (SPA) with a more
general idea of setting the symbolic derivative dx2

dt equal to zero instead. We obtain a system(
dx1(t)

0

)
=

([
A11 A12

A21 A22

](
x1(t)

x2(t)

)
+

[
B1

B2

]
u(t)

)
dt +

q

∑
k=1

[
Nk

11 Nk
12

Nk
21 Nk

22

](
x1(t−)
x2(t−)

)
dMk(t),

(6.98)

y(t) =
[
C1 C2

](x1(t)

x2(t)

)
, t ≥ 0,

where we assume x0 = 0 below. From the second line in (6.98), we obtain

0 =
∫ t

0
A21x1(s)+A22x2(s)+B2u(s)ds+

q

∑
k=1

∫ t

0
Nk

21x1(s−)+Nk
22x2(s−)dMk(s), (6.99)

such that an Ito integral equals an ordinary integral which is a strange situation, since the or-
dinary integral is differentiable and the Ito integral is not, in general. We define the process
F(t) =

∫ t
0 a(s)ds+∑

q
k=1

∫ t
0 bk(s)dMk(s), where a(s) :=A21x1(s)+A22x2(s)+B2u(s) and bk(s) :=

Nk
21x1(s−)+Nk

22x2(s−) and determine the mean of the stochastic differential of FT (t)F(t), t ≥ 0.
For that reason, we use an Ito product formula stated in Corollary A.4:

FT (t)F(t) =
∫ t

0
dFT (s)F(s)+

∫ t

0
FT (s)dF(s)+

n−r

∑
i=1

[Fi,Fi]t ,

with [Fi,Fi]t being the quadratic variation part of the i-th component of F . Inserting the differen-
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tial of F and using the property

E

[
n−r

∑
i=1

[Fi,Fi]t

]
=

q

∑
k=1

∫ t

0
E
[
bT

k (s)bk(s)
]

ds E
[
M2

k (1)
]

from Section A.2 yields

E
[
FT (t)F(t)

]
=E

[∫ t

0
aT (s)F(s)ds

]
+E
[∫ t

0
FT (s)a(s)ds

]
+

q

∑
k=1

∫ t

0
E
[
bT

k (s)bk(s)
]

dsE
[
M2

k (1)
]
.

Setting S≡ 0 provides

0 =
q

∑
k=1

∫ t

0
E
[
bT

k (s)bk(s)
]

ds E
[
M2

k (1)
]
=

q

∑
k=1

E
∥∥∥∥∫ t

0
bk(s)dMk(s)

∥∥∥∥2

2
,

since the processes M1, . . . ,Mq are uncorrelated. This implies
∫ t

0 bk(s)dMk(s) = 0 P-a.s. for every
k = 1, . . . ,q. If we apply this to equation (6.99), we get

x2(t) =−(A−1
22 A21x1(t)+A−1

22 B2u(t)). (6.100)

By inserting this in the first line in equation (6.98) we have

x1(t) =
∫ t

0
Āx1(s)+ B̄u(s)ds+

q

∑
k=1

∫ t

0
N̄kx1(s−)+ B̄k

0u(s−)dMk(s) (6.101)

and

ȳ(t) = C̄x1(t)+ D̄u(t),

where

Ā = A11−A12A−1
22 A21, B̄ = B1−A12A−1

22 B2, N̄k = Nk
11−Nk

12A−1
22 A21, C̄ =C1−C2A−1

22 A21,

B̄k
0 =−Nk

12A−1
22 B2 and D̄ =−C2A−1

22 B2.

Remark. (i) The SPA yields a reduced order model (6.101) which has a different structure

than the original model (6.92), meaning that we obtained a system in which the output

equation is controlled and the control in the state equation is disturbed by Lévy noise. If we
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use this ROM, we have to restrict ourselves to controls with existing left limits u(t−), t ≥ 0,

in order for equation (6.101) to be well defined. Since we prefer for a ROM to have the

same shape as the original model we will often emphasize the case (B̄, B̄k
0, D̄) = (B1,0,0)

which we get by setting B2 = 0 in equation (6.100).

(ii) If we set (B̄, B̄k
0, D̄) = (B1,0,0), we precisely obtain the matrices that are recommended for

the SPA in the bilinear case in [28].

6.4.2. Preservation of (asymptotic) mean square stability

Below, we discuss the results of Section 3.1 in [61] for more than one noise term.
In this subsection, we state the first steps how to prove the asymptotic mean square stability of
the ROM by the SPA. Unfortunately, this proof is not complete but our conjecture is that this
property is preserved.
We multiply A−T from the left and A−1 from the right in equation (6.94) and get

ΣÃ+ ÃT
Σ+

q

∑
k=1

(Ñk)T
ΣÑkE

[
M2

k (1)
]
=−C̃TC̃, (6.102)

where Ã = A−1, Ñk = NkA−1 and C̃ = CA−1. It can be shown in a straightforward manner that
using these transformed coefficients Ã and Ñk instead of A and Nk does not effect the asymptotic
mean square stability. By equation (6.95), the corresponding dual equation is

(AΣAT )ÃT + Ã(AΣAT )+
q

∑
k=1

Ñk(AΣAT )(Ñk)
TE
[
M2

k (1)
]
=−BBT . (6.103)

The reason to consider the matrices Ã and Ñk is the following equivalence between its left upper
blocks and the reduced order model coefficients:

σ

(
Ir⊗ Ã11 + Ã11⊗ Ir +

q

∑
k=1

Ñk
11⊗ Ñk

11 · ck

)
⊂C−⇔ σ

(
Ir⊗ Ā+ Ā⊗ Ir +

q

∑
k=1

N̄k⊗ N̄k · ck

)
⊂C−

with ck = E
[
M2

k (1)
]
. Since one can show that

Ã =

[
Ā−1 −A−1

11 A12(A22−A21A−1
11 A12)

−1

−A−1
22 A21Ā−1 (A22−A21A−1

11 A12)
−1

]
,
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we have Ã11 = Ā−1, Ñk
11 = N̄kĀ−1. So, proving asymptotic mean square stability in the ROM is

now transformed into the following problem:
Starting with a system with coefficients Ã and Ñk, show that this property is preserved if one
truncates the system, i.e. one chooses the reduced order coefficients Ã11 and Ñk

11.
The main difficulty is the fact that this system is not balanced since the solution of equation
(6.103) is neither diagonal nor does it coincide with the one from equation (6.102). For that
reason, the ideas that are used for the stability analysis of BT in [11] (see Sections 4.3 – 4.5)
cannot be applied. In the deterministic case, where Nk = 0, the dual equation (6.103) is obtained
by pre- and post-multiplying equation (6.95) with A−1 and A−T which in that case yields a
balanced system, see [48]. Unfortunately, this does not work in the more general framework
Nk 6= 0 because we would get A−1Nk instead of the desired matrix Ñk = NkA−1. We could state
the desired result then under the assumption that A, Nk commute, which would at least partially
prove the conjecture.

Since the solution of equation (6.102) is in diagonal form, we can adopt at least a few arguments
from [11] which we state in the proof of the lemma below.

Lemma 6.24. The reduced order models with the coefficients (Ã11, Ñk
11) or (Ā, N̄k) are mean

square stable, i.e.

σ

(
Ir⊗ Ã11 + Ã11⊗ Ir +

q

∑
k=1

Ñk
11⊗ Ñk

11 · ck

)
⊂ C− (6.104)

and

σ

(
Ir⊗ Ā+ Ā⊗ Ir +

q

∑
k=1

N̄k⊗ N̄k · ck

)
⊂ C−,

where ck = E
[
M2

k (1)
]
.

Proof. We use a suitable partition of Ã, Ñk, C̃, Σ and obtain the following equation for the left
upper block of (6.102):

Σ1Ã11 + ÃT
11Σ1 +

q

∑
k=1

(Ñk
11)

T
Σ1Ñk

11 · ck =−C̃T
1 C̃1−

q

∑
k=1

(Ñk
21)

T
Σ2Ñk

21 · ck, (6.105)

with Ñk
21 = (Nk

21−Nk
22A−1

22 A21)Ā−1 and C̃1 = C̄Ā−1. Consequently, by Corollary 3.2 in [11], we
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obtain property (6.104). With the same argument, it also holds that

σ

(
Ir⊗ Ā+ Ā⊗ Ir +

q

∑
k=1

N̄k⊗ N̄k ·E
[
M2

k (1)
])
⊂ C−,

since by pre- and post-multiplying (6.105) with ĀT and Ā, we get

ĀT
Σ1 +Σ1Ā+

q

∑
k=1

(N̄k)T
Σ1N̄k · ck =−C̄TC̄−

q

∑
k=1

(Nk
21−Nk

22A−1
22 A21)

T
Σ2(Nk

21−Nk
22A−1

22 A21) · ck

and hence the result holds.

Using Theorem 3.1 in [11], we obtain

α(K̄) := max{ℜ(λ ) : λ ∈ σ(K̄)} ∈ σ(K̄)

with K̄ = Ir⊗ Ã11 + Ã11⊗ Ir +∑
q
k=1 Ñk

11⊗ Ñk
11ck. By (6.104) it remains to show that 0 6∈ σ(K̄) to

get the desired asymptotic mean square stability. We summarize this as follows:

Conjecture 6.25. The reduced order model with coefficients (Ā, N̄k) is asymptotically mean

square stable, i.e. 0 6∈ σ(K̄).

The result in Conjecture 6.25 is theoretically important for the existence of the error bound we
state in Subsection 6.4.4. Practically, it is easy to check if zero is an eigenvalue of K̄ or not since
the reduced order dimension r is usually small.

6.4.3. Other properties in the ROM

In this subsection, we point out that starting with a completely observable and reachable original
system one can lose these properties in the ROM. Furthermore, with the help of an example, we
discuss that the ROM with modified coefficients is not balanced. In addition, we briefly show
that the reduced system is not balanced which is in contrast to the deterministic case. Here, we
just emphasize the case, where q = 1. Moreover, we set M = M1, N = N1, N̄ = N̄1 and B̄0 = B̄1

0.
This part of the thesis uses results of Section 3.2 in [61] and contributes a further discussion
about the structure of the ROM Gramians and Hankel singular values in Example 6.29.

We recall that the fundamental solution of the state equation (6.92) is an Rn×n-valued process Φ
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satisfying

dΦ(t) = AΦ(t)dt +NΦ(t−)dM(t), Φ(0) = In t ≥ 0.

Summarizing the facts that are shown in Section 6.1, we recall the observability Gramian Q :=∫
∞

0 E
[
ΦT (s)CTCΦ(s)

]
ds and the reachability Gramian P =

∫
∞

0 E
[
Φ(s)BBT ΦT (s)

]
ds which ex-

ist by assumption (6.93). Q and P solve equations (6.94) and (6.95), respectively, which is proven
in Section 6.1. Here, we are in a balanced situation which means that

P = Q = Σ = diag(σ1, . . . ,σn).

We know that system (6.92) is completely observable if and only if the Gramian Q is positive
definite. Since the reachability concept for system (6.92), used in Section 6.1, neglects the in-
formation that is contained in N, it is not surprising that P can only provide partial information
about the reachability of a state x ∈ Rn. To be more precise, if x is reachable, then x ∈ imP

but the other direction is not true. So, it is necessary to introduce the deterministic Gramian
PD =

∫
∞

0 eAt BBT eAT t dt. Again, using the results in Section 6.1, we know that system (6.92) is
completely reachable if and only if PD > 0. This is analogous to the deterministic case, for which
the results are stated in [2].
Since the ROM (6.101) has a different structure than the original model, one might think that
the Gramian of the ROM has to be defined differently in order to characterize observability and
reachability of the system. We will see soon that the additional matrices B̄0 and D̄ have no im-
pact in that context. In order to discuss this property we repeat the concepts of observability and
reachability of the ROM:

dx1(t) = [Āx1(t)+ B̄u(t)]dt +[N̄x1(t−)+ B̄0u(t−)]dM(t), x1(0) = x̄0, (6.106)

ȳ(t) = C̄x1(t)+ D̄u(t). (6.107)

Since the observability concept is considered in the uncontrolled case (u≡ 0), the matrix D̄ does
not enter in the following definition.

Definition 6.26. An initial state x̄0 is called observable if the corresponding observation energy

is positive:

∥∥C̄x1(·, x̄0,0)
∥∥2

L2 := E
∫

∞

0

∥∥C̄x1(t, x̄0,0)
∥∥2

2 dt > 0.
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Since we have C̄x1(t, x̄0,0) = C̄Φ̄(t)x̄0, t ≥ 0, it follows that

∥∥C̄x1(·, x̄0,0)
∥∥2

L2 = x̄T
0 Q̄Rx0

with Q̄R := E
∫

∞

0 Φ̄T (t)C̄TC̄Φ̄(t)dt. Here, Φ̄ denotes the fundamental solution of the ROM.
Hence, the ROM is completely reachable if and only if Q̄R > 0. Below, we distinguish be-
tween the solution of (6.106) for general B̄0 which we denote by x1(t, x̄0,u) and the solution of
(6.106) in case B̄0 = 0 which we denote by x0

1(t, x̄0,u), t ≥ 0. Now, we define reachable average
states.

Definition 6.27. A state x̄ is called reachable on average (from zero) if there is a time T > 0 and

a control function u ∈ L2
T , such that we have

E [x1(T,0,u)] = x̄.

Applying the expectation on both sides of equation (6.106) and using the property that the Ito
integral has mean zero yields that the functions E [x1(t, x̄0,u)] and E

[
x0

1(t, x̄0,u)
]
, t ≥ 0, are both

solutions of the ODE

ẋ(t) = Āx(t)+ B̄E[u(t)], x(0) = x̄0, t ≥ 0.

Hence, both expected values coincide, such that the matrix B̄0 can be completely neglected in
the reachability concept. Setting B̄0 = 0 provides a system of the same form as the original
model (6.92). Consequently, we know that the ROM (6.106) is completely reachable if and
only if P̄D,R :=

∫
∞

0 eĀt B̄B̄T eĀT t dt > 0. The next example shows that starting with a completely
observable and completely reachable system does not mean that the ROM has these properties
as well.

Example 6.28. We define a system (6.92) with E
[
M2(1)

]
= 1 and coefficients

(A,B,C,N) =


−

17
2 8 8
−8 −20 −20
−8 −20 −41

2

 ,

0
0
1

 ,
(

0 0 1
)
,

 1 4 4
−4 2 2
−4 2 2


 ,

which is asymptotically mean square stable. In addition, we have a balanced system since for the

solution of the equations (6.94) and (6.95) it holds that P = Q = diag(2,1,1). Consequently, it is
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also completely observable. The complete reachability follows from PD > 0. The corresponding

one dimensional ROM has the coefficients

(Ā, B̄, B̄0,C̄, D̄, N̄) = (−117
10

,0,0,0,2,−3
5
).

Since there is no control in the state equation of the ROM and the output of the uncontrolled

ROM is identically zero, the reduced order system is neither completely reachable nor com-

pletely observable. Of course, this also holds for the modified ROM, where one sets (B̄, B̄0, D̄) :=
(B1,0,0) = (0,0,0).

The fact that reachability and observability are not necessarily preserved by the SPA is not sur-
prising since analogous observations are made for BT in Subsection 6.2.3 or in [14], respectively.

We conclude this subsection by stating an example which shows that the reduced order model
is not balanced for the case (B̄, B̄0, D̄) := (B1,0,0). Moreover, the Hankel singular values of
the reduced system do not coincide with those of the original system which is in contrast to the
deterministic case, see [48]. This fact is again not surprising since we made the same observation
in Subsection 6.2.3 for BT.
We illustrate these properties with an example below. Here, P̄R := E

∫
∞

0 Φ̄(t)B̄1BT
1 Φ̄T (t)dt is

considered to be the reachability Gramian of the reduced system.

Example 6.29. We consider the case, where M is a Wiener process which we denote by w:

dx(t) = [Ax(t)+Bu(t)]dt +Nx(t)dw(t),

y(t) =Cx(t).

The following matrices (up to the digits shown) provide a balanced and asymptotically mean

square stable system:

A =

−5 2 2
2 −10 −4
−2 −4 −20

 , B =CT =

 4.89898 0 0
−3.26599 4.83046 0
0.40825 1.51814 5.61503

 , N =

1 1 1
1 1 1
1 1 1

 .
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The Gramians are given by

P = Q = Σ =

3 0 0
0 2 0
0 0 1

 .

The reduced order model (r = 2) has the coefficients

Ā =
(−4.8 2.4

2.4 −9.2

)
, B1 =

( 4.89898 0 0
−3.26599 4.83046 0

)
, C̄ =

(
4.85815 −3.34764
−0.15181 4.52683
−0.56150 −1.12301

)
, N̄ =

(
0.9 0.8
0.9 0.8

)
and is asymptotically mean square stable. It has the following Gramians:

P̄R =

(
2.835288 −0.059676
−0.059676 2.022759

)
and Q̄R =

(
2.80743 −0.12660
−0.12660 1.91368

)
.

The Hankel singular values of the reduced order model are 2.8312 and 1.9570 which are different

from the Hankel singular values of the original system.

6.4.4. Error bound for the SPA

We transfer results from Section 4 in [61] to this subsection which we state for a general setting.
In this subsection, we provide an error bound for the case (B̄, B̄0, D̄) = (B1,0,0) and x0 = 0.
In the error bound below, the matrix P̄R := E

∫
∞

0 Φ̄(t)B1BT
1 Φ̄T (t)dt enters. For its existence we

assume that the mean square asymptotic stability is preserved in the ROM. This means that

0 6∈ σ

(
Ir⊗ Ā+ Ā⊗ Ir +

q

∑
k=1

N̄k⊗ N̄k ·E
[
M2

k (1)
])

, (6.108)

which is a consequence of the discussion in Subsection 6.4.2. Condition (6.108) is usually easy
to check since the reduced order dimension r is small.

Following the arguments in Section 4.2 in [14] or Subsection 6.2.4 in this work, respectively, the
error of the SPA is bounded as follows:

sup
t∈[0,T ]

E‖y(t)− ȳ(t)‖2 ≤
(
tr
(
CΣCT)+ tr

(
C̄P̄RC̄T)−2 tr

(
CP̄GC̄T)) 1

2 ‖u‖2
L2

T
, (6.109)
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where

APG +PGĀT +
q

∑
k=1

NkPG(N̄k)TE
[
M2

k (1)
]

=−BBT
1 , (6.110)

ĀPR +PRĀT +
q

∑
k=1

N̄kPR(N̄k)TE
[
M2

k (1)
]

=−B1BT
1 .

Below, we specify this bound to emphasize the cases in which the SPA performs well.

Theorem 6.30. If the ROM is asymptotically mean square stable, then

tr
(
CΣCT)+ tr

(
C̄P̄RC̄T)−2 tr

(
CP̄GC̄T)

= tr(2Σ2(
q

∑
k=1

(Nk
22P̄G,2 +Nk

21P̄G,1)(Nk
21−Nk

22A−1
22 A21)

T ck− (A22P̄G,2 +A21P̄G,1)(A−1
22 A21)

T ))

+ tr(Σ2(B2BT
2 −

q

∑
k=1

(Nk
21−Nk

22A−1
22 A21)P̄R(Nk

21−Nk
22A−1

22 A21)
T ck)),

where P̄G,1 are the first r rows of P̄G, P̄G,2 are the last n− r rows of P̄G, ck = E
[
M2

k (1)
]

and

Σ2 = diag(σr+1, . . . ,σn) is the matrix of truncated Hankel singular values.

Proof. To simplify the notation in the proof, we set q = 1, c1 = c and N1 = N. Below, it is easy
to see that this simplification does not cause a loss of generality. The right lower block of (6.94)
satisfies

AT
22Σ2 +Σ2A22 +NT

22Σ2N22c+NT
12Σ1N12c =−CT

2 C2. (6.111)

If we multiply (6.94) with A−T from the left and select the left and right upper block of this
equation, we obtain

Σ1 + Ā−T (Σ1A11−AT
21A−T

22 Σ2A21 + N̄T
Σ1N11c+(N21−N22A−1

22 A21)
T

Σ2N21c) =−Ā−TC̄TC1,

Ā−T (Σ1A12−AT
21A−T

22 Σ2A22 + N̄T
Σ1N12c+(N21−N22A−1

22 A21)
T

Σ2N22c) =−Ā−TC̄TC2

and thus

ĀT
Σ1 +Σ1A11−AT

21A−T
22 Σ2A21 + N̄T

Σ1N11c+(N21−N22A−1
22 A21)

T
Σ2N21c =−C̄TC1, (6.112)

Σ1A12−AT
21A−T

22 Σ2A22 + N̄T
Σ1N12c+(N21−N22A−1

22 A21)
T

Σ2N22c =−C̄TC2. (6.113)
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Furthermore, using (6.95) one can conclude

A11Σ1 +Σ1AT
11 +N11Σ1NT

11c+N12Σ2NT
12c =−B1BT

1 (6.114)

and

A22Σ2 +Σ2AT
22 +N22Σ2NT

22c+N21Σ1NT
21c =−B2BT

2 . (6.115)

From the partition of (6.110)[
A11 A12

A21 A22

][
P̄G,1

P̄G,2

]
+

[
P̄G,1

P̄G,2

]
ĀT +

[
N11 N12

N21 N22

][
P̄G,1

P̄G,2

]
N̄T c =−

[
B1BT

1

B2BT
1

]

we also know that

A11P̄G,1 +A12P̄G,2 + P̄G,1ĀT +N11P̄G,1N̄T c+N12P̄G,2N̄T c =−B1BT
1 , (6.116)

A21P̄G,1 +A22P̄G,2 + P̄G,2ĀT +N22P̄G,2N̄T c+N21P̄G,1N̄T c =−B2BT
1 . (6.117)

We define E :=
(
tr
(
CΣCT)+ tr

(
C̄P̄RC̄T)−2 tr

(
CP̄GC̄T)) 1

2 and obtain

E 2 = tr

([
C1 C2

][
Σ1

Σ2

][
CT

1

CT
2

])
+ tr

(
C̄P̄RC̄T)−2 tr

([
C1 C2

][P̄G,1

P̄G,2

]
C̄T

)
= tr(C2Σ2CT

2 +C1Σ1CT
1 +C̄P̄RC̄T −2C1P̄G,1C̄T −2C2P̄G,2C̄T ).

Using equation (6.113) yields

tr(−C2P̄G,2C̄T ) = tr(−C̄TC2P̄G,2)

= tr(Σ1A12P̄G,2−AT
21A−T

22 Σ2A22P̄G,2 + N̄T
Σ1N12P̄G,2c+(N21−N22A−1

22 A21)
T

Σ2N22P̄G,2c)

= tr(A12P̄G,2Σ1−AT
21A−T

22 Σ2A22P̄G,2 +N12P̄G,2N̄T
Σ1c+(N21−N22A−1

22 A21)
T

Σ2N22P̄G,2c).

By equation (6.116) we obtain

tr(−C2P̄G,2C̄T ) = tr(−AT
21A−T

22 Σ2A22P̄G,2 +(N21−N22A−1
22 A21)

T
Σ2N22P̄G,2c)

− tr((B1BT
1 + P̄G,1ĀT +A11P̄G,1 +N11P̄G,1N̄T c)Σ1).
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Using equation (6.112), we have

tr(P̄G,1ĀT +A11P̄G,1 +N11P̄G,1N̄T c)Σ1) = tr(ĀT
Σ1 +Σ1A11 + N̄T

Σ1N11c)P̄G,1)

=− tr(C̄TC1P̄G,1 +(N21−N22A−1
22 A21)

T
Σ2N21P̄G,1c− (A−1

22 A21)
T

Σ2A21P̄G,1)

and hence,

E 2 = tr(C2Σ2CT
2 +C1Σ1CT

1 +C̄P̄RC̄T )−2tr(B1BT
1 Σ1)

+2tr(−(A−1
22 A21)

T
Σ2A22P̄G,2 +(N21−N22A−1

22 A21)
T

Σ2N22P̄G,2c)

+2tr((N21−N22A−1
22 A21)

T
Σ2N21P̄G,1c− (A−1

22 A21)
T

Σ2A21P̄G,1).

Thus,

E 2 = tr(Σ2(CT
2 C2−2(A22P̄G,2 +A21P̄G,1)(A−1

22 A21)
T )

+ tr(2Σ2(N22P̄G,2 +N21P̄G,1)(N21−N22A−1
22 A21)

T c))

+ tr(C1Σ1CT
1 +C̄P̄RC̄T −2B1BT

1 Σ1). (6.118)

By definition, the Gramians P̄R and Q̄R satisfy

ĀT Q̄R + Q̄RĀ+ N̄T Q̄RN̄c =−C̄TC̄ (6.119)

and

ĀP̄R + P̄RĀT + N̄P̄RN̄T c =−B1BT
1 , (6.120)

such that one can conclude tr(C̄P̄RC̄T ) = tr(BT
1 Q̄RB1) from inserting (6.119) into tr(C̄P̄RC̄T ).

Consequently,

tr(C1Σ1CT
1 +C̄P̄RC̄T −2B1BT

1 Σ1) = tr(C1Σ1CT
1 −B1BT

1 Σ1)+ tr(BT
1 (Q̄R−Σ1)B1).
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Inserting equation (6.114) gives

tr(−B1BT
1 Σ1) = tr(A11Σ1Σ1 +Σ1AT

11Σ1 +N11Σ1NT
11cΣ1 +N12Σ2NT

12cΣ1)

= tr(Σ1Σ1A11 +Σ1AT
11Σ1 +Σ1NT

11Σ1N11c+N12Σ2NT
12Σ1c)

=− tr(Σ1CT
1 C1)− tr(Σ1NT

21Σ2N21c)+ tr(N12Σ2NT
12Σ1c)

and therefore

tr(C1Σ1CT
1 −B1BT

1 Σ1) = tr(N12Σ2NT
12Σ1c)− tr(Σ1NT

21Σ2N21c)

holds. From (6.111) it follows that

tr(Σ2NT
12Σ1N12c) = tr(−Σ2(AT

22Σ2 +Σ2A22 +NT
22Σ2N22c+CT

2 C2))

= tr(−Σ2(Σ2AT
22 +A22Σ2 +N22Σ2NT

22c+CT
2 C2)).

Using (6.115) then yields

tr(Σ2NT
12Σ1N12c) = tr(Σ2(N21Σ1NT

21c+B2BT
2 −CT

2 C2)),

such that

tr(C1Σ1CT
1 −B1BT

1 Σ1) = tr(Σ2(B2BT
2 −CT

2 C2)).

Below, we analyze the term tr(BT
1 (Q̄R−Σ1)B1). First, notice that the following holds:

ĀT
Σ1 +Σ1Ā+ N̄T

Σ1N̄c =−C̄TC̄− (N21−N22A−1
22 A21)

T
Σ2(N21−N22A−1

22 A21)c.

With (6.119) we thus know that

ĀT (Q̄R−Σ1)+(Q̄R−Σ1)Ā+ N̄T (Q̄R−Σ1)N̄c (6.121)

= (N21−N22A−1
22 A21)

T
Σ2(N21−N22A−1

22 A21)c.
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Applying the equations (6.120) and (6.121) yields

tr(BT
1 (Q̄R−Σ1)B1) =− tr((ĀP̄R + P̄RĀT + N̄P̄RN̄T c)(Q̄R−Σ1))

=− tr(P̄R((Q̄R−Σ1)Ā+ ĀT (Q̄R−Σ1)+ N̄T (Q̄R−Σ1)N̄c))

=− tr(P̄R(N21−N22A−1
22 A21)

T
Σ2(N21−N22A−1

22 A21)c).

We apply these results to (6.118) and obtain

E 2 = tr(2Σ2((N22P̄G,2 +N21P̄G,1)(N21−N22A−1
22 A21)

T c− (A22P̄G,2 +A21P̄G,1)(A−1
22 A21)

T ))

+ tr(Σ2(B2BT
2 − (N21−N22A−1

22 A21)P̄R(N21−N22A−1
22 A21)

T c))

which gives the result of this theorem and concludes the proof.

The error bound representation in Theorem 6.30 depends on Σ2 which contains the n−r smallest
Hankel singular values σr+1, . . . ,σn of the original system. In case these values are small, the
error bound indicates that the reduced order model obtained by the SPA is of good quality.

6.4.5. Numerical experiments

In this subsection, we compare BT which is discussed in Section 6.2 (see also [9, 14]) and the
SPA which we consider above. The aim is to point out the cases, when the SPA is better in order
to motivate the practical relevance of this method. We start with an example which we obtain
by discretizing an SPDE in the spatial component and afterwards we state a randomly generated
example to illustrate further effects. Both examples are not in the balanced form already but
balancing these systems can be done easily by the procedure stated in Subsection 6.2.1 and [14].
The numerical experiments are run on a desktop computer with a dual-core Intel Pentium proces-
sor E5400 and 3GB RAM. All algorithms are implemented and executed in MATLAB 7.14.0.739
(R2012a) running on Ubuntu 10.04.1 LTS.
The numerical results are taken from Section 5.1 in [61] and extended by output plots showing
the performance of the SPA.

SPDE example

To compare BT and the SPA we use an example created in [60]. There, a second order SPDE
with Lévy noise is considered and approximated by a large scale system of ordinary SDEs. The
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same example can also be found in Subsection 4.3.2 with the corresponding approximation in
Section 5.2.

We apply balancing related model order reduction to the discretized version of the following
SPDE we introduced in Example 4.16. As we mention there, it models the lateral displacement
of an electricity cable impacted by wind:

∂ 2

∂ t2 Z (t,ζ )+2
∂

∂ t
Z (t,ζ ) =

∂ 2

∂ζ 2 Z (t,ζ )+ e−(ζ−
π

2 )
2
u(t)+2e−(ζ−

π

2 )
2
Z (t−,ζ ) ∂

∂ t
M(t)

for t,ζ ∈ [0,π] and the damping factor α = 2. Here, we choose a particular M(t) =−(N(t)− t)

with (N(t))t≥0 being a Poisson process with parameter 1. The boundary and initial conditions
are

Z (0, t) = 0 = Z (π, t) and Z (0,ζ ),
∂

∂ t
Z (t,ζ )

∣∣∣∣
t=0
≡ 0.

The output is an approximation for the position of the middle of the string, that is,

Y (t) =
1

2ε

∫ π

2 +ε

π

2−ε

Z (t,ζ )dζ ,

where ε > 0.

The structure of the approximating SDE with state space dimension n is stated at the end of
Section 5.2. Below, we specify the matrix of the approximating SDE:

dx(t) = [Ax(t)+Bu(t)]dt +Nx(s−)dM(s), yn(t) =Cx(t), t ≥ 0, (6.122)

where

• the initial condition is x0 = 0,

• A = diag
(

E1, . . . ,E n
2

)
with E` =

(
0 `
−` −2

)
,

• B = (bk)k=1,...,n with

b2`−1 = 0, b2` =

√
2
π

〈
e−(·−

π

2 )
2
,sin(`·)

〉
H
,
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• N =
(
nk j
)

k, j=1,...,n with

n(2`−1) j = 0, n(2`) j =

0, if j = 2v,
4

πv

〈
sin(`·),e−(·− π

2 )
2
sin(v·)

〉
H
, if j = 2v−1,

for j = 1, . . . ,n and v = 1, . . . , n
2 ,

• the output matrix C is given by CT = (ck)k=1,...,n with

c2` = 0 and c2`−1 =
1√

2π`2ε

[
cos
(
`
(

π

2
− ε

))
− cos

(
`
(

π

2
+ ε

))]
,

where we assume n to be even, ` = 1, . . . , n
2 and H = L2 ([0,π]). Following the arguments in

Section 5.2 this approximation is meaningful since

E |yn(t)−Y (t)|2→ 0

for n→ ∞ and t ≥ 0. Now, we fix the dimension of (6.122) to n = 1000. We check numerically
that there is a positive definite solution X > 0 to

AT X +XA+NT XN =−I.

This is equivalent to asymptotic mean square stability due to Theorem 6.3 (see also [60]), that is

E‖x(t,x0,0)‖2
2→ 0

for t→ ∞ and any initial condition. So, we can apply balanced truncation and SPA, respectively
below. We consider the deviation between yn and the outputs of the ROMs via BT and via the
SPA in the norm on the left hand side of (6.109). We insert particular normalized control func-
tions u1(t) =

√
2
π

1[0, π

2 ]
(t) and u2(t) =

√
8

π
1[0, π

2 ]
(t)w(t) (t ∈ [0,π]), where w is a Wiener process.

We take the exact errors and the error bound E1 (see Theorem 6.18) of BT from [60] and we ad-
ditionally determine these values for the SPA, where E2 denotes the corresponding error bound
stated in Theorem 6.30. Furthermore, we set (B̄, B̄0, D̄) = (B1,0,0). We obtain the exact errors
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by discretizing the equations with the Euler-Maruyama scheme that is discussed in [31, 32, 41].

Dim. ROM BT Exact Error (u = u1) BT Exact Error (u = u2) Error Bound E1

40 1.9992 ·10−7 2.0024 ·10−7 4.0103 ·10−5

20 4.4660 ·10−6 4.1435 ·10−6 1.2695 ·10−4

10 4.3081 ·10−5 3.2512 ·10−5 3.6395 ·10−4

5 5.1180 ·10−4 4.2176 ·10−4 2.3446 ·10−3

3 0.0114 8.2309 ·10−3 0.0380

Dim. ROM SPA Exact Error (u = u1) SPA Exact Error (u = u2) Error Bound E2

40 2.5543 ·10−6 2.3302 ·10−6 4.1799 ·10−5

20 1.1382 ·10−5 7.1896 ·10−6 1.2808 ·10−4

10 4.7307 ·10−5 3.3501 ·10−5 3.4039 ·10−4

5 6.2538 ·10−4 5.0726 ·10−4 2.3876 ·10−3

3 0.0168 0.0124 0.0629

The above tables show the exact errors and the error bounds for BT and SPA ROMs of dimensions
r = 3,5,10,20,40. From these numerical results we see that BT is slightly better than the SPA on
a time interval [0,π] in terms of the actual errors (and, in most cases, also for the error bounds).

When we observe the trajectories for u≡ u1 in Figure 6.3, we can see that the SPA does not well
estimate the jumps if the reduced order dimension is r = 3 which is in contrast to BT, compare
Figure 6.2a. If r = 4, the ROM by SPA is quite accurate what is shown in Figure 6.3b. So, there
is no visible difference to BT, see Figure 6.2b.

We are also interested in the long run behavior of the system (6.122). Therefore, we increase
the length of the time interval and consider (6.122) on [0,8.5π] next and repeat the procedure.
This is done due to the expected zero steady-state error that is known for the deterministic case.
Again, we use normalized controls ũ1(t) =

√
2

8.5π
1[0, 8.5π

2 ](t) and ũ2(t) =
√

8
8.5π

1[0, 8.5π

2 ](t)w(t) (t ∈
[0,8.5π]) and obtain better results for the SPA for growing dimensions of the ROM in the table
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Figure 6.3.: Output of the original model compared with the output of the ROM by SPA on the
time interval [0,π]
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below. There, we compare the ROMs of dimensions r = 3,5,6,10,20 obtained by BT and SPA.

Dim. ROM Error SPA (u= ũ1) Error BT (u= ũ1) Error SPA (u= ũ2) Error BT (u= ũ2)

20 3.0098 ·10−6 4.2581 ·10−6 3.1226 ·10−6 3.6249 ·10−6

10 1.6609 ·10−5 2.3312 ·10−5 1.5577 ·10−5 2.0886 ·10−5

6 5.5366 ·10−5 7.4563 ·10−5 4.9357 ·10−5 6.5983 ·10−5

5 5.7379 ·10−4 5.2218 ·10−4 5.1004 ·10−4 4.7717 ·10−4

3 0.0158 0.0101 0.0142 9.0102 ·10−3

Below, we would like to compare different outputs visually. Since the reduced order models of
BT and the SPA are quite accurate it is not possible to distinguish between the trajectories. For
that reason and to conclude this subsection, we create a random example.

Randomly generated example

Here, we consider an example of the form (6.122) with Wiener noise. We generate this by
using the MATLAB commands rand(·, ·) and randn(·, ·) which provide matrices of uniformly
and normally distributed random numbers, respectively.

We set the state space dimension of the original model to n = 500, the reduced order system
dimension to r = 2 and

A = JDJ−1

with

D =−diag(10abs(randn(n,1)))−2In and J = randn(n),

where we use “randn(’state’,1)” for D and ”randn(’state’,2)“ for J. The matrices B, C, N are also
random and generated by

B = randn(n,n), C = randn(1,n) and N = rand(n)/100,

where we use ”rand(’state’,1)” for N, ”rand(’state’,3)“ for B and “rand(’state’,4)” for C. One can
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Figure 6.4.: Comparison of BT and SPA using a particular trajectory
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check numerically that there is a positive definite solution X to

AT X +XA+NT XN =−I.

By Theorem 6.3 this means that the system is asymptotically mean square stable. We insert the
controls ui (i = 1, . . . ,n) on [0,12]

ui(t) =

ki if t ∈ [0,2]∪ [5,7]
0 else,

where the ki are randomly generated constants.
In Figure 6.4a we visualize a trajectory of the output of the original model and in Figure 6.4b
we compare the point-wise error of BT with the point-wise error of the SPA for a particular
trajectory and r = 2. If the graph in Figure 6.4b is above zero (red line), then the SPA is better.
From the two plots we observe that the SPA is a better approximation if the output curve is flat.
In this case, it seems to be a good assumption to suppose certain state components to be constant
(symbolic derivative dX2

dt = 0, see (6.98)), whereas BT provides a smaller error, where the slope
of the output is big.

6.5. Conclusions

In this chapter, we introduced reachability and observability concepts for linear control systems
with Lévy noise. Moreover, we used generalized Gramians to characterize the degree of reach-
ability and observability of a state in a stochastic system. Based on certain Gramians, we con-
sidered both type 1 and type 2 balanced truncation model order reduction for stochastic systems,
provided stability results and theoretical error bounds as well as a comparison between both
types of balanced truncation. Furthermore, we introduced the singular perturbation approxima-
tion as an alternative model order reduction technique for stochastic systems, derived theoretical
error bounds and provided a detailed discussion within the stability analysis. We also discussed
numerical examples to support the theory, e.g., we applied balanced truncation and the singular
perturbation approximation to a stochastic heat equation and a damped wave equation. To this
end, it could be shown that model order reduction using balanced truncation and the singular per-
turbation approximation performs well in the context of reducing the state space dimension of
particular semi-discretized SPDEs, that is, we obtained small exact errors and tight error bounds.
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7.1. Summary

In this thesis, we stated the most important results regarding the stochastic analysis of Lévy
processes. We studied Lévy processes taking values in Hilbert spaces in Chapter 2, discussed
important properties and introduced several representatives for this class of processes. Based on
the Lévy-Khinchin decomposition, stated in Chapter 2, we defined a stochastic integral with re-
spect to Hilbert space valued Lévy processes and pointed out the mean, the second moment and
the martingale property of the integral in Chapter 3. These results form the basis for stochastic
partial differential equations (SPDEs) with Lévy noise. Controlled linear SPDEs in an abstract
evolution equation setting were introduced in Chapter 4. In particular, we investigated stochastic
heat and damped wave equations with Lévy noise which we approximated by a Galerkin scheme
in Chapter 5. We also showed the convergence of the Galerkin solution to the mild solution
of the corresponding SPDE. The discretization led to numerical solutions of high-dimensional
linear ordinary SDEs. These large scale systems provided a motivation to generalize balanc-
ing related model order reduction, known from the deterministic setting, for linear controlled
stochastic equations which are mean square asymptotically stable. The key idea was to use mod-
ified reachability and observability concepts which we investigated for linear systems with Lévy
noise. Based on these new concepts we established balancing related model order reduction tech-
niques for linear controlled systems with Lévy noise, that is, balanced truncation (BT) and the
singular perturbation approximation (SPA) to stochastic systems, see Chapter 6. In a balanced
setting, the reduced order model from BT is obtained by setting all truncated states equal to zero.
In the SPA however, truncated states are assumed constant which allows to solve for them and
thus include this information in the differential equation for the remaining states. This has the
advantage of a zero steady-state error which is often important in applications. We explained
the procedure of BT and moreover proved an error bound for BT, showed the preservation of
mean square asymptotic stability, discussed further properties such as the loss of reachability

169



7. Conclusions

and observability in the reduced order model as well as the structure of the reduced order model
Gramians and Hankel singular values. In order to illustrate the good quality of BT for stochastic
systems we furthermore run simulations on the heat and damped wave equation with Lévy noise.
For the SPA approach similar properties can be observed and proven, but the preservation of
mean square asymptotic stability could so far not be shown. In contrast to BT we only stated a
proof for the mean square stability of the reduced order model. Using numerical experiments on
the stochastic damped wave equation, we pointed out the cases in which we have a good approx-
imation by the SPA. It further turned out that BT is more accurate than the SPA for small time
intervals and that SPA can perform better if a larger time interval or small controls are considered
for the underlying equations.

7.2. Outlook

In this thesis new aspects within the field of model order reduction for linear stochastic control
systems were revealed. In particular, we used a Galerkin technique to discretize an SPDE in
space and we treated the resulting large scale systems with generalized balancing related model
order techniques but there are still several open questions and different approaches that are worth
considering and discussing in the context of model order reduction for stochastic systems.

The Galerkin method is restricted to SPDEs with simple domains. In order to make model
order reduction applicable to a wider class of SPDEs, it would be interesting to investigate and
generalize further approximation schemes for SPDEs, such as finite element methods, in order
to be able to handle highly complex domains and even more complex SPDEs.

Besides the already extended techniques such as BT and SPA, our idea is to introduce further
model order reduction techniques in a stochastic setting that are for example based on a different
choice of Gramians or which are not balancing related. We see the main problem in generalizing
other schemes from the deterministic linear framework in the absence of transfer functions. Many
methods in the deterministic case are based on these transfer functions which unfortunately do
not exist for systems driven by Lévy noise. Hence, the most challenging part would be to find an
alternative concept in the stochastic case.

BT and the SPA are methods which are restricted to mean square asymptotically stable systems.
This can be a natural assumption but as soon as the noise is too “large”, the stability assumption
does not hold anymore. For that reason, alternative methods should be considered which allow
the reduction of stochastic systems that are unstable. A first step is to consider systems which are
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asymptotically stable without a noise component (i.e. the matrix A is Hurwitz) but then become
unstable because of an additional noise term which is too “large”. As a next step one could think
of model order reduction methods, where the underlying SDEs have a coefficient matrix A which
is not asymptotically stable.

Model order reduction is a discipline which originates in the field of deterministic control theory
and some methods were extended to controlled stochastic settings in this thesis. We think that it is
also an interesting question to consider non controlled stochastic settings since many realizations
are needed to derive moments of the output such that the output has to be evaluated several times.
Replacing the control term by additive noise would be a setting one can think of.

Further issues arise when nonlinear systems are considered. So far our methods are restricted
to linear stochastic systems. In order to reduce nonlinear equations such as the semi-discretized
stochastic Navier-Stokes equation one has to think about more advanced approaches.

So far every numerical example we considered in this thesis had no space dependent noise. The
reason is that large computational costs we encounter to obtain a reduced order model for semi-
discretized SPDEs with space dependent noise. To obtain a reduced order model from BT or
SPA, Lyapunov equations need to be solved. The more noise terms we have, the more expensive
it is to solve these equations. Semi-discretized versions of SPDEs with space dependent noise,
would have a number of noise terms that is equal to the state space dimension. It is therefore
interesting to develop and analyze methods to approximate infinite dimensional noise by low
dimensional noise processes such that we not just reduce systems in the state dimension but also
in the dimension of the noise.

171



A. Appendix

This appendix contains material of Section 2 in Benner, Redmann [14].
Let all stochastic processes appearing in this section be defined on a filtered probability space
(Ω,F ,(Ft)t≥0,P)1. We denote the set of all cadlag2 square integrable R-valued martingales
with respect to (Ft)t≥0 by M 2(R).

A.1. Semimartingales and Ito's formula in Rd

Below, we introduce the class of semimartingales.

Definition A.1. (i) An (Ft)t≥0-adapted cadlag process X with values in R is called semi-
martingale if it has the representation X = X0 +M +A. Here, X0 is an F0-measurable

random variable, M ∈M 2(R) and A is a cadlag process of bounded variation.3

(ii) An Rd-valued process ~X is called semimartingale if all components are real-valued semi-

martingales.

The following is based on Proposition 17.2 in [52].

Proposition A.2. Let M,N ∈M 2(R), then there exists a unique predictable process4 〈M,N〉 of

bounded variation such that MN−〈M,N〉 is a martingale with respect to (Ft)t≥0.

Next, we consider a decomposition of square integrable martingales (see Theorem 4.18 in [39]).

Theorem A.3. A process M ∈M 2(R) has the following representation:

M(t) = M0 +Mc(t)+Md(t), t ≥ 0,

1(Ft)t≥0 shall be right continuous and complete.
2Cadlag means that P-almost all paths are right continuous and the left limits exist.
3This means that P-almost all paths are of bounded variation.
4We define the predictable σ -algebra in (3.5).
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where Mc(0) = Md(0) = 0, M0 is an F0-measurable random variable, Mc is a continuous pro-

cess in M 2(R) and Md ∈M 2(R).

We need the quadratic covariation [Z1,Z2] of two real-valued semimartingales Z1 and Z2, which
can be introduced by

[Z1,Z2]t := Z1(t)Z2(t)−Z1(0)Z2(0)−
∫ t

0
Z1(s−)dZ2(s)−

∫ t

0
Z2(s−)dZ1(s) (A.1)

for t ≥ 0. By the linearity of the integrals in (A.1) we obtain the property

[Z1,Z2]t =
1
2
([Z1 +Z2,Z1 +Z2]t− [Z1,Z1]t− [Z2,Z2]t) , t ≥ 0.

From Theorem 4.52 in [39], we know that [Z1,Z2] is also given by

[Z1,Z2]t = 〈Mc
1,M

c
2〉t + ∑

0≤s≤t
∆Z1(s)∆Z2(s) (A.2)

for t ≥ 0, where Mc
1 and Mc

2 are the continuous martingale parts of Z1 and Z2. Furthermore, we
set ∆Z(s) := Z(s)−Z(s−) with Z(s−) := limt↑s Z(t) for a real-valued semimartingale Z. If we
rearrange equation (A.1), we obtain the Ito product formula

Z1(t)Z2(t) = Z1(0)Z2(0)+
∫ t

0
Z1(s−)dZ2(s)+

∫ t

0
Z2(s−)dZ1(s)+ [Z1,Z2]t (A.3)

for t ≥ 0, which we use for the following corollaries:

Corollary A.4. Let Y and Z be two Rd-valued semimartingales, then

Y T (t)Z(t) = Y T (0)Z(0)+
∫ t

0
ZT (s−)dY (s)+

∫ t

0
Y T (s−)dZ(s)+

d

∑
i=1

[Yi,Zi]t

for all t ≥ 0.

Proof. We have

Y T (t)Z(t) =
d

∑
i=1

Yi(t)Zi(t) =
d

∑
i=1

(
Yi(0)Zi(0)+

∫ t

0
Zi(s−)dYi(s)+

∫ t

0
Yi(s−)dZi(s)+ [Yi,Zi]t

)
= Y T (0)Z(0)+

∫ t

0
ZT (s−)dY (s)+

∫ t

0
Y T (s−)dZ(s)+

d

∑
i=1

[Yi,Zi]t
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by applying the product formula in (A.3).

Corollary A.5. Let Y be an Rd-valued and Z be an Rn-valued semimartingale, then

Y (t)ZT (t) = Y (0)ZT (0)+
∫ t

0
dY (s)ZT (s−)+

∫ t

0
Y (s−)dZT (s)+

(
[Yi,Z j]t

)
i=1,...,d
j=1,...,n

for all t ≥ 0.

Proof. We consider the stochastic differential of the i j-th component of the matrix-valued pro-
cess Y (t)ZT (t), t ≥ 0, and obtain the following via the product formula in (A.3):

eT
i Y (t)ZT (t)e j = eT

i Y (0)ZT (0)e j +
∫ t

0
ZT (s−)e jd(eT

i Y (s))+
∫ t

0
eT

i Y (s−)d(ZT (s)e j)

+ [eT
i Y,ZT e j]t

= eT
i Y (0)ZT (0)e j + eT

i

∫ t

0
d(Y (s))ZT (s−)e j + eT

i

∫ t

0
Y (s−)d(ZT (s))e j +[Yi,Z j]t

for all t ≥ 0, i ∈ {1, . . . ,d}, and j ∈ {1, . . . ,n}, where ei is the i-th unit vector in Rd or in Rn,
respectively. Hence, in compact form we have

Y (t)ZT (t) = Y (0)ZT (0)+
∫ t

0
dY (s)ZT (s−)+

∫ t

0
Y (s−)dZT (s)+

(
[Yi,Z j]t

)
i=1,...,d
j=1,...,n

for all t ≥ 0.

A.2. Lévy-type integrals in R

Below, we want to determine the mean of the quadratic covariation of the following Lévy-type
integrals:

Z̃1(t) = Z̃1(0)+
∫ t

0
A1(s)ds+

q

∑
i=1

∫ t

0
Bi

1(s)dMi(s), t ≥ 0,

Z̃2(t) = Z̃2(0)+
∫ t

0
A2(s)ds+

q

∑
i=1

∫ t

0
Bi

2(s)dMi(s), t ≥ 0,

where the processes Mi (i = 1, . . . ,q) are uncorrelated scalar square integrable Lévy processes
with mean zero. In addition, the processes Bi

1,B
i
2 are integrable with respect to Mi (i = 1, . . . ,q),
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which by Section 3.1 means that they are predictable with

E
∫ t

0

∣∣Bi(s)
∣∣2 ds < ∞, t ≥ 0.

Furthermore, A1 and A2 are P-almost surely Lebesgue integrable and (Ft)t≥0-adapted.

We set b1(t) := ∑
q
i=1
∫ t

0 Bi
1(s)dMi(s) and b2(t) := ∑

q
i=1
∫ t

0 Bi
2(s)dMi(s) and obtain

[
Z̃1, Z̃2

]
t = [b1,b2]t

for t ≥ 0 considering equation (A.2), because Z̃i has the same jumps and the same martingale
part as bi (i = 1,2). We know that

[b1,b2]t =
1
2
([b1 +b2,b1 +b2]t− [b1,b1]t− [b2,b2]t) (A.4)

for t ≥ 0. Using the definition in (A.1) yields

[b1,b1]t = (b1(t))
2−2

∫ t

0
b1(s−)db1(s) = (b1(t))

2−2
q

∑
i=1

∫ t

0
b1(s−)Bi

1(s)dMi(s).

Thus,

E [b1,b1]t = E
[
(b1(t))

2
]
.

Since Mi and M j are uncorrelated processes for i 6= j, we get

E
[
(b1(t))

2
]
=

q

∑
i=1

E

[(∫ t

0
Bi

1(s)dMi(s)
)2
]
=

q

∑
i=1

∫ t

0
E
[(

Bi
1(s)
)2
]

ds · ci

by applying the Ito isometry proven in Section 3.1, where ci := E
[(

Mi(1)
)2
]
. Hence,

E [b1,b1]t =
q

∑
i=1

∫ t

0
E
[(

Bi
1(s)
)2
]

ds · ci.
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Analogously, we can show that

E [b2,b2]t =
q

∑
i=1

∫ t

0
E
[(

Bi
2(s)
)2
]

ds · ci and

E [b1 +b2,b1 +b2]t =
q

∑
i=1

∫ t

0
E
[(

Bi
1 +Bi

2(s)
)2
]

ds · ci

hold for t ≥ 0. Considering equation (A.4), we obtain

E
[
Z̃1, Z̃2

]
t = E [b1,b2]t =

q

∑
i=1

∫ t

0
E
[
Bi

1Bi
2(s)
]

ds · ci. (A.5)

At the end of this section, we refer to Subsection 4.4.3 in Applebaum [5]. There, one can find
some remarks regarding the quadratic covariation of the Lévy-type integrals defined in that book.
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