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Abstract
The semiconductor industry requires increasingly complex simulations, as with re-

duced feature sizes and increasing working frequencies, parasitic effects like crosstalk
and signal delay need to be accounted for. Due to increasing working frequencies
and reduced feature sizes, the numerical solution of Maxwell’s equations to simulate
model behaviour is desirable. To optimize model behaviour, parametrizations are
incorporated into the model. To deal with the significant computational effort of
exploring the model behavior over the parameter domain, parametric model order
reduction is used.

In this thesis, the reduced basis parametric model order reduction technique is ap-
plied to electromagnetic problems. The focus is on microwave devices governed by the
time-harmonic Maxwell’s equations in first and second order form, with considered
parametric variations in frequency, geometry and material. The three-dimensional
models resemble real-world problems encountered in electrical engineering and this
work shows how the reduced basis method can be applied successfully in this appli-
cation area. In particular, a coplanar waveguide, a branchline coupler and a printed
circuit board is used for numerical simulations with up to 233060 degrees of freedom.

Furthermore, stochastically varying domains are considered, where the reduced
basis computational approach is used to sample statistical moments. The weighted
reduced basis method allows to take the underlying probability distribution into
account.

To certify the approximation error between the full order model and reduced order
model, rigorous error estimation is required. This topic is explored in depth and
multiple methods and techniques are compared, whereby the MinRes estimator for
the inf-sup stability constant shows the most promising results.

On one example, the reduced basis technique is compared with two other commen
model reduction techniques, namely the proper orthogonal decomposition and the
moment matching.

Moreover, a time-dependent example of Maxwell’s equations with stochastic tem-
poral dispersion is considered. The derivation of a coupled system in the electric field
and the polarization is shown and the reduced basis machinery for time-dependent
problems is applied. Also, stochastic coefficients are taken into account for the pa-
rameters of the dispersion.





Zusammenfassung
Die Halbleiterindustrie benötigt zunehmend komplexere Simulationen, da mit klei-

neren Abmessungen und höheren Frequenzen parasitische Effekte wie crosstalk und
Signalverzögerung miteinbezogen werden müssen. Aufgrund höherer Frequenzen und
kleinerer Abmessungen wird die numerische Lösung der Maxwellschen Gleichungen
für die Simulation des Modellverhaltens wünschenswert. Für die Optimierung des
Modellverhaltens wird das Modell parametrisiert. Um den signifikanten numerischen
Aufwand zu leisten, den die Auswertung des Modellverhaltens über den Parameter-
bereich beinhaltet, werden parametrische Modellreduktionsverfahren benutzt.

In dieser Arbeit wird die Reduzierte Basis Methode als Methode der parametrischen
Modellreduktion auf elektromagnetische Probleme angewandt. Der Fokus liegt auf
Mikrowellenbauelementen, die von den zeitharmonischen Maxwellschen Gleichungen
in der Formulierung erster oder zweiter Ordnung bestimmt werden. Die betrachteten
Parametervariationen sind die Frequenz, die Geometrie und Materialkoeffizienten.
Die dreidimensionalen Modelle spiegeln realistische Beispiele aus der Elektrotechnik
wieder und diese Arbeit zeigt, wie die Reduzierte Basis Methode erfolgreich in diesem
Gebiet angewendet werden kann. Im Einzelnen wird ein koplanarer Wellenleiter, ein
Koppler und eine Schaltungsplatine mit bis zu 233060 Freiheitsgraden betrachtet.

Des Weiteren werden stochastische Definitionsbereiche betrachtet, wobei der Re-
duzierte Basis Ansatz benutzt wird, um die statistischen Momente zu samplen. Die
gewichtete Reduzierte Basis Methode ermöglicht es, die zugrunde liegende Wahrschein-
lichkeitsdichte miteinzubeziehen.

Um den Approximationsfehler zwischen dem hochdimensionalen und reduzierten
Modell zu zertifizieren, ist eine rigorose Fehlerschätzung notwendig. Dieses Thema
wird im Detail untersucht und mehrere Methoden und Techniken werden verglichen,
wobei sich der MinRes Schätzer für die inf-sup Stabilitätskonstante als aussichtsreich
erweist.

An einem Beispiel wird die Reduzierte Basis Methode mit zwei anderen häufig
genutzten Modellreduktionsverfahren verglichen, nämlich der ’proper orthogonal de-
composition’ und dem ’moment matching’.

Außerdem wird ein zeitabhängiges Beispiel der Maxwellschen Gleichungen mit
stochastischer zeitlicher Dispersion betrachtet. Die Herleitung eines gekoppelten Sys-
tems im elektrischen Feld und der Polarisation wird gezeigt und die Reduzierte Basis
Methode für zeitabhängige Probleme angewandt. Stochastische Koeffizienten werden
hier ebenfalls betrachtet für die Parameter der Dispersion.
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1 Introduction

Figure 1.1: Hertzian dipole as a source of electromagnetic radiation1.

1.1 Motivation

The simulation of Maxwell’s equations gives insight into electromagnetic (EM) and
optic phenomena and is used in industry as part of efficient production.

For instance, the semiconductor industry depends on the ability to simulate device
behavior. Building actual prototypes is a long and expensive process, so that the
number of prototypes should be kept to a minimum. In chip design, the increasing
clock frequencies and miniaturization cause various effects like crosstalk [DLK10].
The design is unimaginable without an efficient simulation of complex, parametrized
models to high accuracy.

Due to improved algorithms and computing power, more and more complex sim-
ulations can be performed. Parametrized models can benefit from model reduction
in particular, as information obtained from a few parameter solves might extend to
other parameter settings as well. When this is the case and how this can be used will
be the topic of this work.

1Picture thanks to James Nagel from the University of Utah in Salt Lake City, Utah.
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1 Introduction

Of further interest are uncertain parameters, which is the right setting for many
practical applications and this work discusses the model reduction of wave propaga-
tion simulation in dispersive media with uncertain parameters in particular.

1.2 Parametric Model Order Reduction

Figure 1.2: Model reduction of the large-scale equation Ax = b with dependence on
parameter ν using a projection matrix V .

Parametric model order reduction (PMOR) techniques achieve computational im-
provements in solving parametrized partial differential equations (PDEs) to enable
real-time and many-query applications. An embedded system for instance, which is
required to give real-time responses, can only compute with a small scale model. A
PMOR technique can be used to generate an appropriate small scale model to be
used in the embedded system. In design optimization, a parameter configuration is
sought, which gives optimal results. Finding this configuration requires many solves
of the underlying model. So that computation time does not become prohibitive, a
PMOR technique is useful.

The PMOR by a projection matrix V is depicted in Fig. 1.2. Assume that the
underlying PDE has been discretized into a matrix A and input vector b of large
dimension N > 10.000 and depends on a parameter ν. The field solution is the, also
parameter dependent, state vector x = x(ν). Using a rectangular projection matrix
V reduces the problem size to typically N < 100, so that the resulting system can
be solved with little computational effort. However, the matrix V needs to be chosen
carefully to ensure a low approximation error ‖x− V xN‖.
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Figure 1.3: Maxwell eigenmode (10th) of a square with zero boundary conditions.

Various model order reduction (MOR) algorithms have been applied in computa-
tional electromagnetics (CEM). An early effort was the modal expansion [BM82], then
the moment matching model reduction, also called asymptotic waveform evaluation
[PR90], [PDEL97], [AD11] and [Bod13], Padé via Lanczos model reduction [ZDP00]
and [MWWI00], Krylov subspace acceleration [Fre04], [SDK09] and [NS10], a two-
step Lanczos scheme [WMSW02] and Proper Orthogonal Decomposition (POD) and
Discrete Empirical Interpolation (DEI) [HC14], to name a few examples. An overview
can be found in [Sta12] or in chapter 11 of [YZC06]. Model reduction techniques are
also applied in Maxwell eigenvalue problems, see [BW12] for instance.

Besides MOR techniques which work with the state equations, surrogate modeling
techniques based on direct interpolation of the output are used. Results on surrogate
modeling techniques in computational electromagnetics can be found in [GDFZ99],
[LKM03], [CGDD11] and [FKDA13].

Here, the reduced basis method (RBM) is applied, that in recent years has become
a widely used approach for reducing parametrized models described by PDEs.
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1 Introduction

The RBM was first used in the late 1970s in the field of nonlinear structural
analysis [ASB78], [Nag79] and [Noo80]. By introducing further concepts such as
affine parameter dependence, rigorous error estimation in the state, output error
bounds and empirical interpolation, the applicability of the RBM grew considerably.

Output bounds for elliptic PDEs can be found in [MMP01] and [PRV+01] and for
noncoercive linear problems in [MPR02]. In [MPT02], a theoretical framework for
the uniform exponential convergence of the RBM has been given. A reduced basis
element method is introduced in [MR02]. An application of the RBM to a nonlinear
problem is found in [VPP03] and the empirical interpolation technique is introduced
in [BMNP04]. The extension to parabolic problems can be found in [MA05], an
application to Stokes and Navier-Stokes problems in [VP05], [Dep08] and [RHM13].
Natural norm estimators can be found in [SVH+06], and the estimation techniques for
stability factors in [HRSP07] and [CHMR08]. They allow a rigorous error estimation
by either moving to a parameter-dependent (’natural’) norm or using the successive
constraint method to compute lower and upper bounds to the stability constant.
Finite volume discretizations are used in [BM08], high-dimensional parameter settings
(i.e. 25 parameters) in [Sen08] and stochastic parameter settings in [BBM+09]. The
hp-RBM can be found in [EPR10] an application to optimal control in [Ded10], and
a coupled fluid-structure setting is covered in [LQR12], to give an impression of the
scope of the RBM.

The RBM has also been applied to computational electromagnetics in a number of
works. A 2D time-harmonic Maxwell problem with a focus on the error estimation
can be found in [CHMR09], the extension to error bounds in the output can be found
in [CHMR10] and [RLM15]. Electromagnetic scattering is the application in [Pom10],
[GHS12] and [CHM+12], a reduced basis element method in [CHM11]. A first in-
troduction of the RBM to microwave devices has been established in [dlRRM09].
The eddy current equations are the focus of [Jun12] while reduced basis MOR of the
electric field integral equation can be found in [HSZ12] and [FHMS11].

1.4 Thesis Contribution

The RBM in electromagnetic applications shows the potential to enable real-time and
many-query tasks of large-scale models, which would not be possible without model
reduction.

The main focus of this work are microwave devices, where three models, a coplanar
waveguide, a branchline coupler and a printed circuit board are considered. Building
on [dlRRM09] and [CHMR09], this work extends the RBM in electromagnetics to
3-dimensional, multi-parameter models, related to [Pom10] in optical applications.
The RBM shows exponential convergence in the maximum approximation error, such
that low-order models of high accuracy are generated, even in the case of resonant
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Figure 1.4: POD mode (1st) of the electric field in a square domain.

behavior. The parameter studies cover the RBM using bounds on the error in the
state and primal-dual methods giving bounds on the output. The electromagnetic
components considered are excited by ports, i.e. parts of the structure where external
sources such as voltages and currents are applied. The transfer function is then given
as the ratio between output and input signals (cf. [WSW06], [Sta12]). Additionally,
a comparison of Lagrange RB and Taylor RB is performed, as well as a comparison
of the reduced basis, moment matching and proper orthogonal decomposition model
reduction methods.

Furthermore, an accurate lower bound of the inf-sup stability constant is required
for rigorous error estimation. Multiple techniques for obtaining rigorous and non-
rigorous bounds to the stability constant are shown and compared. As resonant
parameter configurations can be captured by the stability constant, this information
can potentially be used a priori in the construction of the reduced model. Novel
bounds are presented, which take information of multiple eigenvalues at a single
parameter configuration into account.

An important task towards more physically accurate parameter settings involve
uncertain parameters, since model behavior can often only be quantified with respect
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1 Introduction

to statistical quantities. The uncertainty quantification by Monte-Carlo and stochas-
tic collocation is performed on the time-harmonic microwave model of a coplanar
waveguide and a time-dependent dispersion model.

This is the first application of the RBM to a dispersive electromagnetic model, to
the best of my knowledge. The POD-Greedy method is used for the reduction of the
time-dependent model and stochastic collocation to quantify statistical quantities.
Fig. 1.4 shows the first POD mode of the electric field in one spatial component.
Again, exponential convergence can be observed, when having two dispersion pa-
rameters in the model. This allows to use a low-order model in the uncertainty
quantification.

1.5 The Stability Constant

To have a rigorous error estimation available, the stability constant of the weak
form of the associated PDE needs to be determined. Besides error estimation, the
stability constant is an important concept for proving existence, uniqueness and well-
posedness of solutions to the weak form of the PDE. Electromagnetics features the
inf-sup stability constant, which is a generalization of the coercivity constant.

Assume the weak form of the PDE is represented by a complex-valued sesquilinear-
form a(·, ·) : X ×X → C, over a Hilbert space X. The sesquilinearform is coercive,
if it is real-valued and there exists an α > 0 , so that

a(u, u) ≥ α‖u‖2X , ∀u ∈ X. (1.1)

The largest possible choice for α is called the coercivity constant, defined as

α = inf
u∈X

a(u, u)

‖u‖2X
. (1.2)

Let A denote the system matrix, which assembles a(·, ·) for a discretisation method
of choice, and M the corresponding mass matrix or inner product matrix. In the
finite dimensional setting, the definition (1.2) is also valid, except that the infimum is
actually attained by a minimizer. Using that a(u, u) = xTAx and ‖u‖2X = xTMx with
x the coordinate representation in the discrete basis of the function u, a generalized
eigenvalue problem is formulated for the computation of α, namely for

Av = λMv, (1.3)

the minimum eigenvalue λmin is the discrete coercivity constant. The condition (1.1)
thus translates as having a positive definite system matrix.
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The time-harmonic Maxwell’s equations do not satisfy (1.1), but the inf-sup con-
dition does grant solvability. It holds

0 < β = inf
u∈X

sup
v∈X

|a(u, v)|
‖u‖X‖v‖X

. (1.4)

Here, β is called the inf-sup stability constant and (1.4) is called the inf-sup con-
dition or Babuška-Brezzi condition or LBB condition. The corresponding eigenvalue
problem (1.3) gives the discrete inf-sup constant as the eigenvalue of minimum mag-
nitude. The condition (1.4) thus translates as having a nonsingular system matrix
and can thus be seen as a generalization of coercivity.

1.6 Thesis Outline

Chapter 2 introduces the topic of computational electromagnetics with a particular
focus on the finite element method, while chapter 3 introduces the certified reduced
basis method. In chapter 4, parameter studies are performed with three microwave
models, a coplanar waveguide, a branchline coupler and a printed circuit board.
For rigorous error estimation, the estimation of the inf-sup stability constant plays a
particular role, which is unfolded in chapter 5. Using reduced order models to quantify
model behavior under uncertain parameters is discussed in chapter 6. Numerical
studies of the time-dependent, dispersive case can be found in chapter 7, and chapter
8 concludes and summarizes the findings.
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2 Computational Electromagnetics

2.1 Maxwell’s Equations

James Clerk Maxwell1 first formulated Maxwell’s equations in his paper “A Dynami-
cal Theory of the Electromagnetic Field” in 1865. He describes electric and magnetic
phenomena and their interaction, which are now known as classical electromagnetism.
The outline given in this section can be found with more detail in [Mon03], [Zag06]
and [Jin14].

The time- and space-dependent vector fields involved in Maxwell’s equations are

� the electric field intensity E, measured in
[
V
m

]
,

� the magnetic field intensity H, measured in
[
A
m

]
,

� the electric flux D, measured in
[
As
m2

]
,

� and the magnetic flux B, measured in
[
V s
m2

]
,

further quantities of importance are

� the charge density ρ, measured in
[
As
m3

]
,

� and the current density j, measured in
[
A
m2

]
,

with the SI units meter (m), second (s), Ampère (A) and Volt (V ).

2.1.1 Integral Form of Maxwell’s Equations

The integral form of the macroscopic Maxwell’s equations is stated for arbitrarily
chosen volume V with boundary ∂V (with outer normal vector n) and surface S
(with normal vector n) with boundary ∂S (with tangential vector τ). It consists of
the four equations:

Faraday’s induction law:∫
S

∂B

∂t
· ndS +

∫
∂S
E · τds = 0, (2.1)

113th June 1831 - 5th November 1879

8



2.1 Maxwell’s Equations

Ampère’s law with displacement current density:∫
∂S
H · τds =

∫
S

∂D

∂t
· ndS +

∫
S
j · ndS, (2.2)

Gauß’ law: ∫
∂V
D · ndS =

∫
V
ρdx, (2.3)

Gauß’ law for magnetism: ∫
∂V
B · ndS = 0. (2.4)

2.1.2 Differential Form of Maxwell’s Equations

Using Stokes’ and Gauß’ theorems, the integral form rewrites in the classical, differ-
ential form as

∂B

∂t
+∇× E = 0, (2.5)

∇ ·B = 0, (2.6)

∂D

∂t
−∇×H = −j, (2.7)

∇ ·D = ρ. (2.8)

The equation (2.5) is the Faraday equation and equation (2.7) is the Ampère equa-
tion. The equations (2.5) - (2.8) will be rewritten in second order form, suitable for
numerical computations, as can be seen in subsection 2.1.6.

2.1.3 Charge Conservation

The continuity equation or conservation of charge is derived by taking the divergence
of equation (2.7) and using equation (2.8) to obtain

∇ · j +
∂ρ

∂t
= 0. (2.9)

Either the equations (2.5), (2.7) and (2.8) can be taken as independent equations,
or the set of equations (2.5), (2.7) and (2.9) can be taken as independent. The
respective remaining equations can then be derived, cf. [Jin14].

9



2 Computational Electromagnetics

2.1.4 Constitutive Material Relations

The field strengths are related to the fluxes by the relations

D = εE, (2.10)

B = µH, (2.11)

with the material parameters permeability ε and permittivity µ. The permittivity
of a medium describes how much electric flux is ’generated’ per unit charge in that
medium. Permeability is the measure of the ability of a material to support the
formation of a magnetic field within itself. In free space these constants are given by

ε0 = 8.854187817× 10−12 As

V m
, (2.12)

µ0 = 4π × 10−7 V s

Am
. (2.13)

In a linear medium it holds ε = εrε0 with relative permittivity εr ≥ 1 and µ = µrµ0

with relative permeability µr ≥ 1. The propagation velocity of the electromagnetic
wave in a non-dispersive medium is given by v = 1√

εµ , which in vacuum is the speed

of light c = 1√
ε0µ0

.

The total source current density j is composed of impressed current density ji and
conduction current density jc as

j = jc + ji, (2.14)

jc = σE, (2.15)

with conductivity σ as a material parameter.

2.1.5 Boundary Conditions

Boundary conditions in electromagnetics are related to the type of material that is
assumed on the boundary. A perfectly electric conducting (PEC) boundary assumes a
σ →∞ relationship inside the bounding material and all fields are assumed to be zero
inside a PEC material. It is used to model metallic boundaries. A perfectly magnetic
conducting (PMC) boundary models a material with very high permeability. It is
only introduced as a mathematical concept for vanishing tangential magnetic fields
at the bounding surface.

10



2.1 Maxwell’s Equations

Perfectly Electric Conducting Boundary

The PEC boundary is characterized by a vanishing tangential electric field E at the
boundary, i.e.

n× E = 0, (2.16)

and is also referred to as an essential or Dirichlet boundary.

Perfectly Magnetic Conducting Boundary

The PMC boundary is characterized by

n×∇× E = 0, (2.17)

and is also referred to as a free or Neumann boundary.

2.1.6 Time-Dependent Maxwell’s Equations

There is a variety of formulations of Maxwell’s equations (2.5) - (2.8) suitable for
discretization and numerical computations. Following [Mon03], the derivation of the
second order formulation in the electric field E is shown, which is used subsequently.
See the literature [Zag06], [Bod13], [RIB13] and [Jin14] for alternative formulations
as saddle point problem in the electric and magnetic field or potential formulations.

From the differential form of Maxwell’s Equations (2.5), (2.7) and the material
relations, it follows

∂H

∂t
= − 1

µ
∇× E, (2.18)

ε
∂2E

∂t2
−∇× ∂H

∂t
= −∂j

∂t
, (2.19)

such that H can be eliminated, leading to

ε
∂2E

∂t2
+∇× 1

µ
∇× E = −∂j

∂t
. (2.20)

Using (2.14) and (2.15), the second-order, time-dependent Maxwell equation in the
electric field E is derived

ε
∂2E

∂t2
+ σ

∂E

∂t
+∇× 1

µ
∇× E = −∂ji

∂t
, (2.21)

with material parameters
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2 Computational Electromagnetics

� the electric permittivity ε, measured in [ AsV m ],

� the magnetic permeability µ, measured in [ V sAm ],

� the conductivity σ, measured in [ A
Vm ].

Taking the divergence of (2.20) shows that if the initial solution satisfies the con-
tinuity equation (2.9), then so will the time-dependent solution. In particular, this
ensures that (2.8) is satisfied.

Two approximations are in use, the high-frequency approximation, which assumes
σ ∂E∂t = 0

ε
∂2E

∂t2
+∇× 1

µ
∇× E = −∂ji

∂t
, (2.22)

and the low-frequency approximation, which assumes ε∂
2E
∂t2

= 0

σ
∂E

∂t
+∇× 1

µ
∇× E = −∂ji

∂t
. (2.23)

For the purpose of this work in microwave applications, mostly the full system
(2.21) is relevant, but in some models, the high-frequency approximation (2.22) is
used.

2.1.7 Time-Harmonic Maxwell’s Equations

In a time-harmonic analysis, assume the electromagnetic fields to be of the form

u(x, t) = Re{û(x)eıωt}, (2.24)

where Re denotes the real part of the complex quantity û(x)eıωt and ω denotes the
angular frequency. With the Laplace transformation, the time derivative turns into
a multiplication with ıω and the unknown field û(x) is now complex-valued. Note
that ı =

√
−1. To simplify notation, the time-harmonic equations will be set using

E instead of Ê. See [Har04] for more details on the derivation.
The equation (2.21) thus transforms into

−εω2E + ıωσE +∇× 1

µ
∇× E = −ıωji. (2.25)

As in the time-dependent case, two approximations to (2.25) are in use, the high-
frequency approximation
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−εω2E +∇× 1

µ
∇× E = −ıωji, (2.26)

and the low frequency approximation

ıωσE +∇× 1

µ
∇× E = −ıωji. (2.27)

2.2 Functional Analysis

The functional analytic background for computational electromagnetics is briefly
stated. For more detailed information and related proofs, see [Hip02], [Mon03],
[Jin11] or [RIB13] amongst many others.

Definition 2.2.1 (Hilbert Spaces). A Hilbert space H is an inner product space over
R or C that is complete w.r.t. the norm induced by the inner product.

Definition 2.2.2 (Lebesque Spaces). A Lebesque space Lp(Ω) for p ≥ 1 over a
domain Ω is the set of functions u which satisfy

‖u‖pLp =

∫
Ω
|u|pdx <∞ for p <∞, (2.28)

‖u‖L∞ = ess sup |u| <∞ for p =∞. (2.29)

The space L2(Ω) is a Hilbert space with inner product

(u, v)L2 =

∫
Ω
uvdx, (2.30)

Definition 2.2.3 (Sobolev Spaces). The Sobolev spaces Hs(Ω) are Hilbert spaces.
The space Hs(Ω) consists of functions in L2 with weak derivatives up to order s which
are also in L2. The inner product is defined as

(u, v)Hs =
s∑
i=0

(Diu,Div)L2 , (2.31)

where Di denotes the weak differential of i-th order.

Definition 2.2.4 (H(curl; Ω) Spaces). The space H(curl; Ω) is the natural space for
the electric field as a solution to Maxwell’s equations in the domain Ω. It is a vector
valued Sobolev space and also a Hilbert space, defined as
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2 Computational Electromagnetics

H(curl; Ω) := {u ∈
[
L2(Ω)

]3 |∇ × u ∈ [L2(Ω)
]3}, (2.32)

and equipped with the inner product

(u, v)H(curl; Ω) := (u, v)L2 +

∫
Ω
∇× u · ∇ × vdx. (2.33)

Consider the variational problem

a(u, v) = f(v) ∀v ∈ X, (2.34)

posed over a Hilbert space X with bounded and coercive sesquilinear form a(·, ·) and
f ∈ X ′. Given a Hilbert space X over R, define the dual space X ′ as the space of
continuous linear functionals φ : X → R.

In particular, consider the mapping Φ : X → X ′ : x 7→ φx(·) := (·, x). According to
the Riesz representation theorem, the spaces X and X ′ are isometrically isomorph,
i.e. for each φ ∈ X ′ there exists a unique v ∈ X such that φ(·) = (v, ·)X and
‖φ‖X′ = ‖v‖X .

Definition 2.2.5 (Dual Norm). The dual norm is defined as

‖φ‖X′ = sup
v∈X

|φ(v)|
‖v‖X

. (2.35)

If X is a Hilbert space over C, then X and X ′ are isometrically anti-isomorphic.

Theorem 2.2.6 (Lax-Milgram Theorem). Suppose a : X×X 7→ C is a bounded and
coercive sesquilinear form, where X is a Hilbert space. Then for each f ∈ X ′ there
exists a unique solution u ∈ X to (2.34) and it holds

‖u‖X ≤
C

α
‖f‖X′ , (2.36)

with C the boundedness and α the coercivity constant of a(·, ·).

In computational electromagnetics the resulting sesquilinear forms are often not
coercive but only satisfy the less strict Babuška-Brezzi or inf-sup condition, i.e., there
is a constant β such that

inf
u∈X

sup
v∈X

|a(u, v)|
‖u‖X‖v‖X

:= β > 0. (2.37)
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2.3 Finite Element Method

When the test function space differs from the trial function space, s.t. u ∈ X and
v ∈ Y with X and Y Hilbert spaces, consider a : X × Y 7→ C to be a bounded and
inf-sup stable sesquilinear form, i.e.,

inf
u∈X

sup
v∈Y

|a(u, v)|
‖u‖X‖v‖Y

:= β > 0. (2.38)

see [Mon03] for instance.

Theorem 2.2.7 (Generalized Lax-Milgram theorem). Assume a : X × Y 7→ C to be
a bounded and inf-sup stable sesquilinear form, then for each f ∈ Y ′ there exists a
unique solution u ∈ X such that

a(u, v) = f(v) ∀v ∈ Y, (2.39)

and it holds

‖u‖X ≤
C

β
‖f‖Y ′ . (2.40)

2.3 Finite Element Method

There exist various discretisation methods for the Maxwell’s equations to enable
numerical computation. Frequently used discretisation methods, which work with the
differential form of Maxwell’s equations, are finite elements [Hip02], [Zag06], finite
differences [RIB13], discontinuous Galerkin [HW08] or finite integration techniques
[Wei77]. The method of moments (also boundary element method or fast multipole
method [Har93]) uses the integral form of Maxwell’s equations as starting point.
Here, the finite element method is employed and briefly reviewed in the following.

Typically, an abstract notation for the variational form is chosen, where ue ∈ Xe

is sought, such that

ae(ue, ve) = fe(ve) ∀ve ∈ Xe. (2.41)

The superscript e denotes the infinite dimensional, “exact” problem. As the electric
field as solution ue with PEC boundary conditions on ΓPEC is sought, the correct
space is

Xe = {E ∈ H(curl; Ω) |E × n = 0 on ΓPEC}, (2.42)

in the computational domain Ω, with bilinear or sesquilinear form ae(·, ·) and anti-
linear form fe(·).

Using a conforming discretization space X ⊂ Xe, the infinite dimensional problem
is reformulated over the finite dimensional space X, as find u ∈ X, such that
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2 Computational Electromagnetics

a(u, v) = f(v) ∀v ∈ X. (2.43)

The superscript e has been dropped, since this formulation is using only discretized,
finite dimensional quantities. In the Reduced Basis Method, this formulation is re-
ferred to as the ”truth” formulation, since approximation errors will be measured with
respect to (2.43) and the error between the solutions to (2.43) and (2.41) is assumed
to be negligible, see [RHP08].

Taking the time-harmonic Maxwell’s equation (2.25) as an equation in X, multi-
plying with the complex conjugate of a test function v ∈ X and integrating over the
computational domain Ω, leads to

−εω2(E, v)L2(Ω) + ıωσ(E, v)L2(Ω) +
1

µ
(∇× E,∇× v)L2(Ω) =

−ıω(ji, v)L2(Ω),

(2.44)

where

∫
Ω

1

µ
(∇×∇× E) · vdΩ =

∫
Ω

(
1

µ
∇× E

)
· (∇× v) dΩ +

∫
∂Ω

1

µ
(n×∇× E) · vdA

was used and the term
∫
∂Ω

1
µ (n×∇× E)·vdA vanishes due to the assumption of PEC

and PMC boundary conditions. In particular, PEC boundary conditions are enforced
by setting the appropriate degrees of freedom to zero and are already explicit in the
space X ⊂ Xe. PMC boundary conditions are treated as natural boundaries and are
therefore implicit in the weak formulation (2.44) of the problem. Although there are
also other variational formulations of Maxwell’s equations, (2.44) is commonly used
as the outset for finite element treatment, see [Mon03].

The sesquilinear form and linear form are then defined as

aC(E, v) = −εω2(E, v)L2(Ω) + ıωσ(E, v)L2(Ω) +
1

µ
(∇× E,∇× v)L2(Ω),(2.45)

fC(v) = −ıω(ji, v)L2(Ω), (2.46)

where the subscript C denotes that these are complex forms. Note that the sesquilin-
ear form aC(·, ·) is not hermitian.

The discretization enables solving (2.44) by solving a sparse linear system

Ax = b, (2.47)

for the state vector x ∈ CN of large dimension N , which represents the discrete
electric field solution E. Given a basis {ϕi|i = 1, . . . ,N} of X, the matrix and vector
entries are assembled as

16



2.3 Finite Element Method

Akl = aC(ϕk, ϕl),

bk = fC(ϕk).
(2.48)

2.3.1 Nédélec Finite Elements

This subsection introduces the Nédélec finite element [Ned80], which allows a H(curl;
Ω) conforming discretisation, see also [Zag06], [Mon03] and [Sch03] for proofs and
further details.

The construction of the finite element space X is required to satisfy the following
prerequisites:

� The computational domain is covered by a triangulation, i.e., a union of nonover-
lapping elements K. For instance, triangles (2D) or tetrahedra (3D) are used.

� The basis functions ϕi, i = 1 . . .N are piecewise polynomial.

� The basis functions have local support, i.e., a support which extends over only
a few elements.

Consider the Nédélec element of first kind of order 1. This lowest order edge
element defines the local space N0(K) on a triangle or tetrahedron K as



N0(K) = {a+ b

[
y

−x

]
|a ∈ R2, b ∈ R} for d = 2 and with dim(N0(K)) = 3,

N0(K) = {a+ b×


x

y

z

 |a, b ∈ R3} for d = 3 and with dim(N0(K)) = 6,

(2.49)

and the edge based degrees of freedom

NN0
α : v 7→

∫
Eα

v · τdx (2.50)

defined for all edges Eα, where the α index enumerates over all edges.

In 3 dimensions, the local spaceN0(K) lies between the polynomial spaces
(
P 0(K)

)3
and

(
P 1(K)

)3
.

The nodal basis is formed with the edge-based shape functions (this is the 1-form
Whitney element), as
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ϕα = ∇λα1λα2 − λα1∇λα2 , (2.51)

for each edge Eα = [Vα1 , Vα2 ]. The barycentric coordinate λα1 corresponding to the
vertex Vα1 is the unique linear polynomial which satisfies λα1(Vα2) = δα1α2 . The
shape functions have constant tangential trace on the edges of K,

ϕα · τEβ =
1

|Eβ|
δαβ, (2.52)

for edges Eα, Eβ and it holds

Nβ(φα) =

∫
Eβ

ϕα · τdx = δαβ. (2.53)

Given a continuously differentiable, invertible and surjective mapping from the
reference element to an actual element ΦK : K̂ → K and û ∈ H(curl, K̂), the
H(curl)-conforming transformation, also called Piola transformation [Sch03], is given
by

u = F−TK û ◦ Φ−1
K , (2.54)

which implies u ∈ H(curl,K), with

• in 2D: ∇× u = J−1
K ∇̂ × û ◦ Φ−1

K , (2.55)

• in 3D: ∇× u = J−1
K FK∇̂ × û ◦ Φ−1

K . (2.56)

The Jacobian FK and its determinant JK are defined by

FK(x̂) =

(
∂ΦK,i

∂x̂j
(x̂j)

)
1≤i,j≤d

, (2.57)

JK(x̂) = det (FK(x̂)) . (2.58)

Given a shape function ϕ̂α on the reference element K̂, the shape function ϕα on
the actual element K is derived as

ϕα(x) = F−TK (x̂)ϕ̂α(x̂), (2.59)

using the mapping x = Φ(x̂).
The finite element space X is then obtained by identifying the degrees of freedom

with the edges of the mesh Eα, i.e,

X =
⊕
Eα

span{ϕα}. (2.60)
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2.3 Finite Element Method

Due to the identification of the edges with the degrees of freedom, the Nédélec
elements are also termed edge elements. Characteristic of the H(curl; Ω)-conforming
elements is the tangential continuity across element interfaces. Summarizing, it holds
that

X = {v ∈ H(curl; Ω) |vK ∈ N0(K) ∀K}, (2.61)

for the elements K in the triangulation.

2.3.2 Finite Element Assembly

As stated in (2.48), the entries of the system matrix are computed as Akl = aC(ϕk, ϕl).
A computationally efficient assembly computes element matrices AKkl for all elements

K. This is done by integration on the reference element K̂, taking into account the
element transformations. The essential parts are in 3 dimensions:

(ϕk, ϕl)L2(K) =

∫
K̂

(F−TK ϕ̂k)(F
−T
K ϕ̂k)Jdx̂, (2.62)

(∇× ϕk,∇× ϕl)L2(K) =

∫
K̂
J−1(FK∇× ϕ̂k)(FK∇× ϕ̂k)dx̂, (2.63)

(ji, ϕl)L2(K) =

∫
K̂
ji(F

−T
K ϕ̂l)Jdx̂, (2.64)

and in 2 dimensions:

(ϕk, ϕl)L2(K) =

∫
K̂

(F−TK ϕ̂k)(F
−T
K ϕ̂k)Jdx̂, (2.65)

(∇× ϕk,∇× ϕl)L2(K) =

∫
K̂
J−1(∇× ϕ̂k)(∇× ϕ̂k)dx̂, (2.66)

(ji, ϕl)L2(K) =

∫
K̂
ji(F

−T
K ϕ̂l)Jdx̂. (2.67)

This leads to a sparse system matrix A and a source vector b. Solving the equation
Ax = b for the state x = (x1, ..., xN ) ∈ CN gives the coordinate representation of the
electric field E in the finite element basis, as

E =
N∑
i=1

xiϕi. (2.68)
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2.3.3 Example

This example shows the procedure for deriving numerical solutions to the Maxwell’s
equations using a discretization with 1012 degrees of freedom, which will be rewritten
to real symmetric form with 2024 degrees of freedom.

Consider the second order time-harmonic formulation of Maxwell’s equations for
the electric field E

∇× µ−1∇× E + ıωσE − ω2εE = ıωji, (2.69)

in Ω ⊂ Rd (d = 2, 3) with source term ji, permeability µ, conductivity σ, permittivity
ε and subject to zero electric (PEC) and magnetic (PMC) boundary conditions

E × n = 0 on ΓPEC, (2.70)

∇× E × n = 0 on ΓPMC, (2.71)

such that ∂Ω = ΓPEC ∪ ΓPMC.
By multiplying (2.69) with a test function v, the variational or weak formulation

is established, as

(
µ−1∇× E,∇× v

)
+ ıω (σE, v)− ω2 (εE, v)

= ıω (ji, v) , (2.72)

where (·, ·) denotes the complex L2 inner product over the computational domain Ω.
To evaluate the transfer behavior over a certain frequency range (i.e. ν = ω), the

matrix A is affinely decomposed into parameter-independent matrices as

A = Aµ + ıωAσ − ω2Aε, (2.73)

where the matrices Aµ, Aσ and Aε are discretizations of the respective parts of the
weak form, defined element-wise by

Aµij =
(
µ−1∇× ϕi,∇× ϕj

)
, (2.74)

Aσij = (σϕi, ϕj) = σM, (2.75)

Aεij = (εϕi, ϕj) = εM, (2.76)

Mij = (∇× ϕi,∇× ϕj) + (ϕi, ϕj) , (2.77)

with H(curl; Ω) inner product matrix M and right-hand-side vector b, defined as

bi = (ji, φi). (2.78)
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Figure 2.1: Sparsity pattern of the matrix Aσ.

PEC boundary conditions are incorporated by setting the appropriate degrees of
freedom to zero and PMC boundary conditions are treated as natural boundaries.

The rows and colums corresponding to zero boundary conditions are eliminated
from the assembled matrices. The sparsity pattern for this small example with 1012
degrees of freedom is shown in Fig. 2.1. The sparsity pattern is the same for all
matrices. For this example the, eigenvalues of the matrices Aσ and Aε range from
1×104 to 7×107. The matrix Aµ is singular with a largest eigenvalue of 4×1010. This
is established for matrices with typical values for the material parameters already
included in the assembly.

Splitting the state vector x into real and complex parts x = xreal + ıximag and
using (2.73), the complex linear system can be rewritten as an equivalent system of
twice the dimension over the real numbers

[
Aµ − ω2Aε −ωAσ

−ωAσ −Aµ + ω2Aε

][
xreal

ximag

]
=

[
0

−b

]
. (2.79)

This leads to a real and symmetric system matrix, thus its spectrum is real, which
is advantageous for the computation of eigenvalues required in the error estimation
process.

Let u denote the solution vector of (2.79) and consider the real bilinear form a(·, ·; ν)
defined over the H(curl) conforming finite element space X by the system matrix Aν

from (2.79) as
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2 Computational Electromagnetics

a(u, v; ν) = uTAνv = uT

[
Aµ − ω2Aε −ωAσ

−ωAσ −Aµ + ω2Aε

]
v.

Remark

The example section 2.3.3 shows that the non-hermitian complex form can be recast
into a real symmetric problem of twice the dimension. In subsequent examples,
this form will be adopted, since the real symmetric system matrix A has a real
spectrum, which is advantageous for the computation of eigenvalues required in the
error estimation process, see section 3.2.2.

Except at an eigenfrequency ωi, the system matrix is nonsingular and indefinite.
At an eigenfrequency, the system matrix is singular and the field solution does not de-
pend continuously on the parameter ω. While discontinuities are not captured in the
reduced basis MOR paradigm, section 4.2 shows numerical results of a 2-parameter
example with several resonance configurations. Note that when a p-dimensional pa-
rameter space is considered, the resonance configurations form manifolds of dimension
p− 1 in the parameter space.

2.4 Dispersive Materials

Simulating the propagation of an electromagnetic pulse through certain media like
water and fog or systems like a dielectric waveguide are typical problems of electro-
magnetics. A particular application in medicine is the noninvasive interrogation of
the interior of tissues by electromagnetic waves to give data for medical imaging. The
Maxwell’s equations presented in section 2.1 are altered by taking a relaxation polar-
ization into account, which changes the permittivity ε to a time-dependent quantity,
depending on the history of the electric field strength. This is termed a dispersive
medium for the wave propagation.

Such media are characterized by polar molecules with a permanent dipole moment
and will be modeled here as linear, temporally dispersive media. Considering liquid
or solid dielectrics with polar molecules, the molecules reply to the applied external
field by rotating, i.e., rotating such that the dipole moment is in sync with the
external field. This causes friction, which in turn leads to an exponential damping
of the electromagnetic pulse [Oug06], [BF08], [BBG09]. As a concrete example, one
can think of the water molecule H2O, where the hydrogen atoms are attached at
a certain angle with the oxygen atom. While the molecule as a whole is neutrally
charged, there is a permanent dipole moment due to the particular angle, see Fig.
2.2.

The modeling sets out from the high-frequency approximation (2.22)
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2.4 Dispersive Materials

Figure 2.2: Permanant dipole moment in water.

∇×
(

1

µ0µr
∇× E

)
+ ε0εr∂

2
tE = f, (2.80)

with a broadband input source f . To achieve the broadband source, the curl of a
Gaussian pulse is used in space and the derivative of a Gaussian pulse in time.

The dispersive property is incorporated by replacing ε0εrE(t,x) with

ε0ε∞E(t,x) + ε0

∫ t

−∞
E(t− τ,x)χ(τ)dτ (2.81)

with susceptibility χ. Here, a single pole expansion of the susceptibility in frequency
domain is assumed with relative permittivity at low-frequency limit εs, relative per-
mittivity at high-frequency limit ε∞ and relaxation time τ

χ(ω,x) =
(εs − ε∞)

ıωτ + 1
.

The two terms in (2.81) are the instantaneous polarization ε0ε∞E(t,x) and the
relaxation polarization

ε0

∫ t

−∞
E(t− τ,x)χ(τ)dτ. (2.82)
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Hence, a non-dispersive medium only exhibits instantaneous polarization, but no
relaxation polarization. It is possible to compute with the convolution integral effi-
ciently, see [Jin11], but here the approach is to derive an auxiliary differential equa-
tion for the polarization [Jin11], [CG14], which avoids computation of the convolution
integral. Define P (t,x) as the relaxation polarization

P (t,x) = ε0

∫ t

−∞
E(t− τ,x)χ(τ,x)dτ, (2.83)

which writes in frequency domain, where the convolution turns into a multiplication

P (ω,x) = ε0χ(ω,x)E(ω,x). (2.84)

Using the single-pole expansion for χ, (2.82), it follows

(ıωτ + 1)P (ω,x) = ε0(εs − ε∞)E(ω,x), (2.85)

which leads to

τ∂tP + P = ε0(εs − ε∞)E, (2.86)

such that the coupled system of E and P , or Maxwell-Debye model for short, is given
as

∇×
(

1

µ0
∇× E

)
+ ε0ε∞∂

2
tE = f − ∂2

t P (2.87)

∂tP +
1

τ
P =

ε0(εs − ε∞)

τ
E, (2.88)

with polarization P and a broadband input source f .
Some typical material parameter values are:

water: ε∞ = 1.80, εs = 81.00, τ = 9.400× 10−12 s,

foam: ε∞ = 1.01, εs = 1.16, τ = 6.497× 10−10 s.
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3 Certified Reduced Basis Method

The Reduced Basis Method (RBM) is a parametric model order reduction (PMOR)
method. It is termed Certified Reduced Basis Method, when the approximation
quality is certified by rigorous error estimators. The RBM has been developed to
apply to a wide range of parametrized partial differential equations, see [Roz09] for
an introduction and [RHP08] for a comprehensive overview.

In parameter optimization or inverse problems, it is often required to evaluate a
large-scale, high-fidelity model, which is parametrized with parameter vector ν in a
parameter domain D, for many parameter configurations. This can become com-
putationally infeasible, such that a PMOR method is required. The RBM replaces
the large-scale model (also called truth model) with, say, N > 10.000 degrees of
freedom by a reduced model with typically N < 100 degrees of freedom. Given a
reasonable amount of accuracy, the reduced model can then be applied in parameter
optimization, for instance.

The aim of the RBM is to determine a low order space XN of dimension N .
Typically, a Lagrange Reduced Basis is employed, which is composed of snapshot
solutions XN = span{u(ν1), ..., u(νN )}, with u(ν) the field variable at parameter
location ν. The underlying assumption is that the parametric manifold

Mν = {u(ν)|ν ∈ D}

can be well approximated by a subspace spanned by the well-chosen snapshot solu-
tions.

This chapter will provide the main technical ingredients of the RBM and in par-
ticular give details of the RBM for Maxwell’s equations. In the following sections,
for a general introduction to the RBM, the field variable will be denoted as u, but in
an example, the field variable E is used to emphasize that the electric field solution
to the Maxwell’s equations is sought.

3.1 Technical Preliminaries

Given a parametrized PDE in variational form with bilinear or sesquilinear form
a(., .; ν), defined for all ν ∈ D and continuous linear forms `(.; ν) and f(.; ν). Consider
the truth problem:
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For ν ∈ D ⊂ RP , evaluate

s(ν) = `(u(ν); ν),

where u(ν) ∈ X(Ω) satisfies

a(u(ν), v; ν) = f(v; ν),∀v ∈ X.

(3.1)

The high-dimensional finite element space is denoted by X. Of particular impor-
tance is the transfer function H, which is the mapping of a parameter to the output
H : D → C : ν 7→ s(ν). When only the transfer function is the desired quantity,
methods directly interpolating H such as rational interpolation or Kriging can be em-
ployed. In the section on numerical results, a comparison of interpolation methods
and reduced basis model reduction will be shown.

Given an RB space XN ⊂ X, the truth problem is projected onto the reduced
space:



For ν ∈ D ⊂ RP , evaluate

s(ν) = `(uN (ν); ν),

where uN (ν) ∈ XN (Ω) satisfies

a(uN (ν), vN ; ν) = f(vN ; ν), ∀vN ∈ XN .

(3.2)

Since the reduced space is composed of snapshot solutionsXN = span{u(ν1), ..., u(νN )}
at iteratively chosen parameter configurations SN = {ν1, ..., νN}, the reduced spaces
are hierarchical

X1 ⊂ X2 ⊂ . . . ⊂ XN . (3.3)

The RBM shows exponential convergence rates and generates a low order model
with usually N < 100 [BCD+11]. Given a desired approximation tolerance, the
approximation quality of the reduced order model can be certified using rigorous
error estimators.

Different parameters including frequency, geometric and material parameters can
be simultaneously treated by the RBM and the reduced-order model meets the ac-
curacy requirement for all possible variations of all the parameters in the parameter
space D.

3.1.1 Basic Definitions

The Exact Model

The starting point of the RBM is the variational or weak form of a PDE, e.g.
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ae(ue, ve; ν) = fe(ve; ν), ∀ve ∈ Xe,

with field solution ue, test functions ve and parameter vector ν ∈ D. The superscript
e denotes the “exact”, infinite dimensional formulation.

The High-Fidelity Model

After discretisation and Galerkin projection, the problem is turned into a discrete
formulation of typically large dimension N

a(u, v; ν) = f(v; ν), ∀v ∈ X. (3.4)

The Reduced-Order Model

Using solution snapshots at certain parameter values ν to span a low-dimensional
space XN , one can perform another Galerkin projection onto the space of snapshots
as

a(uN , vN ; ν) = f(vN ; ν), ∀vN ∈ XN ⊂ X. (3.5)

For a well-chosen reduced basis space XN , the solution to the low-dimensional
problem (3.5) approximates the solution to the large-dimensional problem (3.4) in
the sense that the error ‖u − uN‖X is small, and thus also the error in the output
‖`(u(ν); ν)− `(uN (ν); ν)‖X = ‖`(u(ν)− uN (ν); ν)‖X .

In the formulation of Maxwell’s equations, the discrete variational form (3.4) is
posed over the function space X = H(curl) with appropriate Dirichlet boundary
conditions.

The Inf-Sup Stability Constant

The inf-sup stability constant β(ν) is defined as

β(ν) = inf
u∈X

sup
v∈X

|a(u, v; ν)|
‖u‖X‖v‖X

(3.6)

= inf
u∈X

‖a(u, ·; ν)‖X′
‖u‖X

. (3.7)

The linear system corresponding to (3.4) is uniquely solvable when the discrete
inf-sup constant satisfies β(ν) > 0, the case of β(ν) = 0 corresponds to a resonance
configuration.

Further define the supremizing operator T ν : X → X by
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(T νu, ·)X = a(u, ·; ν), (3.8)

such that T νu is the Riesz representer of a(u, ·; ν), which allows to write the stability
constant as

β(ν) = inf
u∈X

‖T νu‖X
‖u‖X

. (3.9)

The stability constant can thus be computed by solving the eigenvalue problem

T νu = λminu (3.10)

for the eigenvalue with minimal magnitude λmin.
Introduce the discrete inner product for the real symmetric form

(u, v)X = uTMv ∀u, v ∈ X (3.11)

with elements Mij = (ϕi, ϕj)L2 and the notation Aν to denote the matrix representa-
tion of a(·, ·; ν). Note that while on the left hand side of (3.11), u and v are functions
in X, on the right hand side, the coordinate representation in the finite element basis
of u and v is used. Eq. (3.8) writes as

(T νu)TMv = uTAνv, ∀u, v ∈ X, (3.12)

which can only be fulfilled for T ν = M−1Aν . Generally, the matrix representing the
operator T ν is dense, so that the equivalent generalized eigenvalue problem

Aνu = λminMu, (3.13)

is solved instead, to obtain β(ν).
Lower bound estimates βLB(ν) ≤ β(ν) are usually constructed with a Successive

Constraint Method (SCM) ([HRSP07]) and will be looked upon in more detail in
chapter 5.

3.1.2 Affine Decomposition

The RBM requires to have a fast assembly of the reduced linear system as well as
fast evaluations of the error estimator in the sense that the complexity is independent
of the large discretisation size of the full model. This is also termed Offline-Online
decomposition, since an expensive offline phase computes the N -dependent parts,
while the online phase evaluates the reduced solution and error estimates independent
of N .
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The necessary requirement is an affine decomposition of the bilinear and linear
forms as

a(u(ν), v; ν) =

Qa∑
q=1

Θq
a(ν)aq(u(ν), v), (3.14)

f(v; ν) =

Qf∑
q=1

Θq
f (ν)f q(v), (3.15)

where Θq
a(ν) and Θq

f (ν) are scalar coefficient functions of the parameter and aq(u(ν), v)
and f q(v) are parameter-independent bilinear and linear forms.

In the case of only having the frequency ω as parameter, the affine form is readily
established, by expanding (2.73) in the frequency. Material parameters also readily
allow an affine expansion, as the weak form (2.45) already is affine in µ, σ and ε.
An affine decomposition (3.14) enables fast (i.e. N -independent) evaluations of the
input-output behavior of the reduced model as well as the error estimator. In case of
a nonaffine parameter dependence, an affine form can be approximated by using the
empirical interpolation method (EIM, [GMNP07]) or one of the methods building on
the EIM (e.g., [PBWB14] or [CQR14b]). This however shall not be a concern in this
work, since all parameter dependencies considered here are affine in the analytical
sense.

The reduced basis is orthonormalized by a modified Gram-Schmidt process giving
orthonormal basis functions ζi, such that the reduced order solution is represented as

uN (ν) =

N∑
n=1

αn(ν)ζn, (3.16)

for some coefficients αn.
Assuming a reduced basis has been computed as XN = {ζ1, . . . , ζN}, solving system

(3.5) amounts to solving the linear system

N∑
n=1

a(ζn, ζm; ν)αn(ν) = f(ζm), 1 ≤ m ≤ N (3.17)

Using (3.14), the coefficient matrix in (3.17) can be expressed as

N∑
n=1

 Qa∑
q=1

Θq(ν)aq(ζn, ζm)

 . (3.18)
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As the terms aq(ζn, ζm) are parameter-independent, they can be precomputed dur-
ing the offline phase and only small N × N matrices need to be stored. During
the online phase, the reduced system matrix is formed according to (3.18) for each
parameter configuration and only an N ×N linear system needs to be solved.

Denote the reduced parameter-dependent system matrix by AνN =
∑Qa

q=1 Θq(ν)AqN
and the reduced right hand side by bνN and write (3.17) as

AνNuN (ν) = bνN . (3.19)

The terms aq(ζn, ζm) correspond to the matricesAqN , and are parameter-independent,
so they can be precomputed during the offline-phase. The online phase only assembles
the reduced order system matrix according to (3.18).

3.2 Parameter Domain Sampling

3.2.1 Greedy selection

In the RBM, the reduced basis space XN onto which the system is projected is com-
posed of “snapshot“ solutions, i.e. field solution vectors u(νi) at particular parameter
locations SN = {ν1, ..., νN}. To get good approximation properties, while keeping
the size N of the reduced space low, it is essential to choose the snapshot locations
SN carefully.

Algorithm 1: Greedy Sampling Strategy

INPUT: sample set Ξ, tolerance ε
OUTPUT: reduced basis sample set SN , projection space XN

1: Choose ν1 ∈ Ξ arbitrarily
2: Solve (3.4) for u(ν1)
3: Set S1 = {ν1}
4: Set X1 = [u(ν1)]
5: Set N = 1
6: while maxν∈Ξ ∆N (ν) ≥ ε do
7: Set νN+1 = arg maxν∈Ξ ∆N (ν)
8: Solve (3.4) for u(νN+1)
9: Set SN+1 = SN ∪ νN+1

10: Set XN+1 = [XN u(νN+1)]
11: Orthonormalize XN+1

12: Set N = N + 1
13: end while

This can be achieved in an offline greedy process [RHP08], which iteratively chooses
snapshot locations based on evaluating an error estimator ∆N (ν) and choosing in each
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iteration only the snapshot, which is currently least well approximated. Let Ξ denote
a sufficiently fine, discrete sample of the parameter domain D and ε be a prespecified
approximation tolerance, the sampling is shown in pseudocode in algorithm 1.

The greedy sampling terminates once the approximation tolerance ε is certified by
the error estimator. This results in the reduced basis space XN , which allows the
fast online evaluations. Under the assumption that the grid Ξ is sufficiently fine, a
low approximation error holds for all ν ∈ D.

3.2.2 Error Estimator

The error estimator ∆N (ν) fulfills two roles. It is used in the offline phase to choose
the snapshot locations and also in the online phase to measure the accuracy of the
approximation with respect to the truth solution.

Let uN denote the reduced order field solution, obtained after projecting the weak
form onto XN as

a(uN (ν), vN ; ν) = f(vN ; ν), ∀vN ∈ XN . (3.20)

Introducing the error e(ν) and the residual r(·; ν) as

e(ν) = u(ν)− uN (ν),

r(·; ν) = f(·; ν)− a(uN (ν), ·; ν),

it holds

a(e(ν), ·; ν) = r(·; ν).

Let ê(ν) denote the Riesz representer of the residual

(ê(ν), ·)X = r(·; ν),

then it follows

a(e(ν), ·; ν) = (ê(ν), ·)X , (3.21)

(ê(ν), ·)X = (T νe(ν), ·)X , (3.22)

‖r(·; ν)‖X′ = ‖ê(ν)‖X , (3.23)

which means that ê(ν) = T νe(ν) and ‖r(·; ν)‖X′ = ‖T νe(ν)‖X .
The error estimator in the field is given by Lemma 3.2.1.
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Lemma 3.2.1 (Error Estimator in the Electric Field). A rigorous error estimator
in the electric field for the time-harmonic Maxwell’s equations is given by

∆N (ν) =
‖r(·; ν)‖X′
βLB(ν)

, (3.24)

with ‖r(·; ν)‖X′ the dual norm of the residual with respect to the truth solution, and
βLB(ν) is a lower bound to the discrete inf-sup stability constant β(ν).

The rigorous error estimator ∆N (ν) for the reduced basis approximation of order
N satisfies

‖u(ν)− uN (ν)‖X ≤ ∆N (ν), (3.25)

since it holds

‖e(ν)‖X = ‖e(ν)‖X
‖r(·; ν)‖X′
‖T νe(ν)‖X

=
‖r(·; ν)‖X′
‖T νe(ν)‖X
‖e(ν)‖X

≤ ‖r(·; ν)‖X′
infw∈X

‖T νw‖X
‖w‖X

=
‖r(·; ν)‖X′
β(ν)

.

(3.26)

Often one is interested in an output quantity of interest, which can be expressed
as a linear functional of the field solution `(u(ν)), and thus the error in the output
is expressed as

|`(u(ν))− `(uN (ν))| = |`(u(ν)− uN (ν))|. (3.27)

A trivial bound is given by

|`(u(ν)− uN (ν))| ≤ ‖`(·)‖X′‖u(ν)− uN (ν)‖X , (3.28)

which usually is not very sharp. Good a posteriori error bounds on the output
quantity can be derived by considering a primal-dual setup, see the subsection 3.3.5
or the section on noncompliant problems in [RHP08].

In the special case of a compliant output, where the input functional f and the
output functional ` are identical, i.e., ` = f , it holds [RHP08], [Sen07]

|`(u(ν))− `(uN (ν))| =
‖r(·; ν)‖2X′
βLB(ν)

. (3.29)

Several examples of compliant problems are given in [RHP08]. For instance an
elastic block problem is shown, where the input functional is the normal stress on
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a boundary, which also corresponds to the output functional, namely the integrated
displacement functional.

The computation of β(ν) for (3.24) requires the solution of a large-scale eigenvalue
problem, which is not feasible in an offline-online context. Therefore, a successive con-
straint method is used to obtain lower bounds βLB(ν) to the stability constant β(ν).
For technical details see [HRSP07] and chapter 5. For Maxwell’s equations, the SCM
has proven to be the computational ”bottleneck“ of the offline phase ([CHMR09]) as
it requires to solve a large number of eigenvalue and linear optimization problems.
The SCM for the generation of lower bounds to the stability constant is given in
chapter 5. An advanced technique, which is more computationally involved is the
natural norm SCM [HKC+10]. The natural norm SCM reduces the complexity from
O(Q2

a) to O(Qa). To ensure online efficiency, N -independent computations of the
dual norm of the residual as well as βLB(ν) are required.

Besides the absolute error, the relative error is a meaningful measure of the ap-
proximation quality. An estimate of the relative error with respect to the reduced
solution is given by

‖u(ν)− uN (ν)‖X
‖uN (ν)‖X

≤ ∆N (ν)

‖uN (ν)‖X
, (3.30)

while an estimate of the relative error with respect to the full solution is derived using
the triangle inequality as in chapter 5 of [Yue12] from

‖u(ν)− uN (ν)‖X
‖u(ν)‖X

≤
‖u(ν)−uN (ν)‖X
‖uN (ν)‖X∣∣∣1− ‖u(ν)−uN (ν)‖X
‖uN (ν)‖X

∣∣∣ , (3.31)

which under the assumption of 1 − ‖u(ν)−uN (ν)‖X
‖uN (ν)‖X > 0 and ∆N (ν)

‖uN (ν)‖X < 1 gives the
relative error estimator in the electric field, Lemma 3.2.2.

Lemma 3.2.2 (Relative Error Estimator in the Electric Field). The relative error
in the electric field of the time-harmonic Maxwell’s equations w.r.t. the full order
solution is given by

‖u(ν)− uN (ν)‖X
‖u(ν)‖X

≤
∆N (ν)
‖uN (ν)‖X

1− ∆N (ν)
‖uN (ν)‖X

. (3.32)

3.2.3 Dual Norm of the Residual

To compute the dual norm of the residual efficiently, the affine expansion (3.14) is
used:
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r(v; ν) = f(v)− a(uN (ν), v; ν)

= f(v)− a(
N∑
n=1

αn(ν)ζn, v; ν)

= f(v)−
N∑
n=1

αn(ν)a(ζn, v; ν)

= f(v)−
N∑
n=1

αn(ν)

Qa∑
q=1

Θq
a(ν)aq(ζn, v). (3.33)

It holds

(ê(ν), v)X = f(v)−
Qa∑
q=1

N∑
n=1

Θq
a(ν)αn(ν)aq(ζn, v), (3.34)

ê(ν) = C +

Qa∑
q=1

N∑
n=1

Θq
a(ν)αn(ν)Lqn, (3.35)

where C and Lqn are solutions to the associated symmetric, positive definite systems,
sometimes referred to as ”FE Poisson“ problems in the RB literature,

(C, v)X = f(v) ∀v ∈ X, (3.36)

(Lqn, v)X = −aq(ζn, v), ∀v ∈ X. (3.37)

This results in

‖ê(ν)‖2X = (C +

Qa∑
q=1

N∑
n=1

Θq
a(ν)αn(ν)Lqn,

C +

Qa∑
q=1

N∑
n=1

Θq
a(ν)αn(ν)Lqn)X

= (C,C)X +

Qa∑
q=1

N∑
n=1

Θq
a(ν)αn(ν)×2(C,Lqn)X +

Qa∑
q′=1

N∑
n′=1

Θq′(ν)αn′(ν)(Lqn,L
q′

n′)X

 . (3.38)
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In particular, the full order solution is not required to compute the dual norm
of the residual once C and Lqn are computed. The complexity of the a posteriori
error estimation scales with O(Q2

aN
2), Lemma 3.2.3. To achieve a numerically stable

implementation, see [BEOR14].

Lemma 3.2.3 (Complexity of the Residual Norm Computation). The complexity of
the residual computation of the time-harmonic Maxwell’s equations (3.38) scales with
O(Q2

aN
2).

3.2.4 Example

Consider a coplanar waveguide model, governed by the time-harmonic Maxwell’s
equations as

−εω2E + ıωσE +∇× 1

µ
∇× E = −ıωji in Ω, (3.39)

subject to zero boundary conditions

E × n = 0 on ΓPEC,

where ΓPEC = ∂Ω .
This example is concerned with a frequency sweep, i.e., the evaluation of the trans-

fer function over a certain frequency range [ωmin, ωmax]. Considered input and output
ports represent an impressed current and an output voltage, respectively. This model
is investigated in more detail in section 4.1 and a related model is discussed in [BH12].
The quantity of interest is the modulus of the transmission coefficient or impedance,
i.e., the ratio between the output and the input. Applying a normalized input, the
quantity of interest is essentially the output voltage.

The output voltage u is given as the integral of the field solution over a one-
dimensional filament Γout in the three-dimensional computational domain

u = `(E) =

∫
Γout

Edx. (3.40)

Note that `(·) does not depend explicitly on the parameter ω, but implicitly
through E = E(ω). Fig. 3.1 shows the transfer function ‖H(iω)‖ = |u(ω)| in
dB against the frequency range. Fig. 3.2 shows the results of evaluating the re-
duced models of sizes 10, 20 and 30. The maximum and mean relative errors of
the transfer function of the reduced model are shown in Table 3.1. For the sam-
pled frequency range Ξ with 400 equally spaced samples, the maximum relative er-

ror is computed as maxω∈Ξ

∣∣∣u(ω)−uN (ω)
u(ω)

∣∣∣ and the mean relative error is computed as
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Figure 3.1: Frequency response of the coplanar waveguide model in [0.6, 3.0] GHz.

1
|Ξ|
∑

ω∈Ξ

∣∣∣u(ω)−uN (ω)
u(ω)

∣∣∣. In Table 3.2 the same error quantities are computed for 400

randomly selected samples. It becomes obvious, that a reduced model size of 30
might lead to a worse approximation than a reduced model size of 10. The compara-
ble results of Table 3.1 and Table 3.2 verify, that this behavior does extend over the
whole frequency range and not only the parameter samples used in the RBM.

Although the reduced model sizes increase, the approximation quality can degrade.
In particular the reduced model can introduce resonances when no resonances are
found in the full order model. In [BH12], the error decay in the median relative error
is shown, which does not make the unwanted resonances visible.

Since the stability constant βN (ω) of the reduced model is given by

βN (ω) = inf
w∈XN

sup
v∈XN

|a(w, v;ω)|
‖w‖X‖v‖X

,

the case βN (ω) = 0, while β(ω) > 0, is frequently observed. This problem can
be overcome by using a two-sided, or Petrov-Galerkin projection, which guarantees
βN (ω) > β(ω), and thus stability. This is the topic of the next section.
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Figure 3.2: Frequency responses of the reduced models for the coplanar waveguide
model in [0.6, 3.0] GHz.

Table 3.1: Maximum and mean relative error in the transfer function evaluated at
the sample locations used in the RB model reduction.

RB size maximum relative error mean relative error

10 1.102 0.230

15 118.7 1.350

20 54.39 0.587

25 49.45 0.540

30 399.5 1.324

50 0.060 0.001
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Table 3.2: Maximum and mean relative error in the transfer function evaluated at
randomly generated the sample locations.

RB size maximum relative error mean relative error

10 1.103 0.215

15 117.1 1.304

20 381.9 1.411

25 209.7 0.967

30 169.9 0.694

50 0.042 0.001

3.3 Reduced Basis Method in Electromagnetics

While the RBM is applicable to parametrized PDEs in general, this section does
introduce more detail of some technical aspects of the RBM, which have turned out as
useful in electromagnetic applications. In particular the Petrov-Galerkin projection,
also termed two-sided projection, is presented and the transformation of geometric
parameters to a reference configuration. Note that the mathematical tools applied
for the geometric parameters are the same as used in the finite element assembly,
see section 2.3.2. Additionally, details on Taylor reduced basis spaces, advanced
error estimation procedures and reduction of time-dependent Maxwell’s equations
are given.

3.3.1 Petrov-Galerkin Reduced Basis

To preserve stability, it is required that βN (ν) ≥ β(ν), where βN (ν) is the stability
constant of the reduced order system for a parameter vector ν. This is not nec-
essarily satisfied when using Ritz-Galerkin RB-approximations. However, a Petrov-
Galerkin approximation can achieve stability preservation, when chosen appropriately
[MPR02].

Define the supremizing operator T ν : X → X by

(T νu, ·) = a(u, ·; ν), (3.41)

and define the test space X̃ν
N = span{T νζi|i = 1, ..., N} for a given trial space XN =

span{ζi|i = 1, ..., N}. The term supremizing operator arises from the fact that with
definition (3.8), T ν is the Riesz representor of the linear form, obtained from the
second argument of the bilinear form a(·, ·; ν) and satisfies
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‖T νu‖X′ = max
v∈X

a(u, v; ν)

‖v‖X
, (3.42)

and the maximum is attained by v = T νu.
With the linear operators T q : X → X defined by

(T qu, ·) = aq(u, ·; ν), ∀q = 1, . . . , Qa, (3.43)

the supremizing operator satisfies the same affine expansion as the bilinear form
(3.14)

T νu =

Qa∑
q=1

Θq
a(ν)T qu. (3.44)

Given a reduced basis trial space XN = span{ζ1, . . . , ζN}, a parameter-dependent
test space is defined as X̃ν

N = T νXN . From (3.6)-(3.9), the following relation holds
between the stability constant βN (ν) of the reduced model using a two-sided projec-
tion and the full model stability constant β(ν):

Lemma 3.3.1 (Stability of Petrov-Galerkin Projection). The projection with trial
space XN and test space X̃ν

N achieves stability preservation for the time-harmonic
Maxwell’s equations, i.e.,

βN (ν) ≥ β(ν). (3.45)

Proof:

βN (ν) = inf
u∈XN

sup
v∈X̃ν

N

a(u, v; ν)

‖u‖X‖v‖X

= inf
u∈XN

a(u, T νu; ν)

‖u‖X‖T νu‖X

= inf
u∈XN

(T νu, T νu)X
‖u‖X‖T νu‖X

= inf
u∈XN

‖T νu‖X
‖u‖X

≥ inf
u∈X

‖T νu‖X
‖u‖X

= β(ν).

The parameter-dependent test space V ν
N introduces another affine expansion in

the offline-online decomposition, as each trial function ζi has a corresponding test
function T νζi, which can be expanded as
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T νζi =

Qa∑
q=1

Θq
a(ν)T qζi. (3.46)

Using a two-sided approximation, the system (3.17) becomes

N∑
n=1

a(ζn,

Qa∑
q=1

Θq
a(ν)T qζm; ν)αn(ν) (3.47)

=

Qa∑
q=1

Θq
a(ν)f(T qζm), 1 ≤ m ≤ N,

where the left-hand-side can be expanded into

N∑
n=1

 Qa∑
q=1

Qa∑
q′=1

Θq
a(ν)Θq′

a (ν)aq(ζn, T
q′ζm)

αn(ν). (3.48)

During the offline phase, the forms aq(ζn, T
q′ζm) are generated and stored as small

N ×N matrices and can be efficiently evaluated online.
Let VN ∈ RN×N denote the coefficient matrix associated with the reduced basis
{ζ1, . . . , ζN} when they are represented by the finite element basis. Since the functions
ζi are orthonormalized, it holds V T

N VN = IN , with IN the N×N identity matrix. The
matrix representation of the test space is W ν

N = T νVN . The operator T ν is computed
as T ν = M−1Aν with the inner product matrix M defined in (3.11). Since M−1 is a
dense matrix, the computation can only be performed as an action on a vector T νu
in large-scale computations. Instead of explicitly computing M−1, N linear systems
are solved to obtain T νVN .

3.3.2 Example

This section revisits the model setup from example 3.2.4, but a Petrov-Galerkin
reduced basis defined using the supremizing operators is applied instead. In Fig. 3.3
the mean and maximum relative errors in the transfer function are plotted against
the reduced basis size. Comparing with Table 3.1, the error decay is smoother and
no big oscillations occur anymore.

While the assembly of the reduced system needs an additional affine expansion
for the parameter-dependent test spaces, the asymptotic runtime does not increase.
The evaluation of the residual already depends quadratically on Qa, which is the
same complexity as for the assembly of the reduced system with Petrov-Galerkin
projection.
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Figure 3.3: Relative errors plotted against the dimension of the reduced model, mean
relative error (solid line) and maximum relative error (dashed line).

Remark

The stabilizing projection solves the normal equations known from the linear least
squares procedure, in the projection space VN w.r.t. the norm induced by M , since
it solves V T

NA
TM−1AVNx = V T

NA
TM−1b, dropping the parameter ν for notational

convenience.
This is also related to residual minimization, since the ansatz minv∈VN ‖b−Av‖X

also leads to the stabilizing projection [CFCA13].

3.3.3 Geometric Parameters

Production processes in the semiconductor industry are a complex procedure. Inac-
curacies in the produced geometry are a sensitive matter, since this changes system
behavior. As an example, variable widths of microstriplines will be considered in the
chapters on numerical parameter studies. To incorporate geometric parameters in
the reduced basis framework, a particular treatment is necessary. Due to the linear
nature of Maxwell’s equations, an affine dependence on geometric parameters is often
given. However, the computational domain requires a division into subsections, such
that a unique affine dependence holds in each subsection. The consideration of the
linear combination of snapshots for different geometries, is then possible by taking
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each snapshot in a reference configuration.
A geometric parameter is explicitly denoted in the computational domain as Ω =

Ω(ν). The PDE is transformed from the parameter-dependent domain Ω(ν) to a
parameter-independent reference domain Ω(ν). Quantities (i.e. operators and func-
tions) defined on the reference domain are indicated by an overline to distinguish
them from quantities defined on the actual domain. A reference configuration ν is
defined such that there exist affine mappings from an actual domain Ω(ν) to Ω(ν) .

First the computational domain Ω(ν) is partitioned into disjoint regions Ωk(ν),
such that there exist affine mappings T k from the respective regions of the reference
configuration to the real configuration

Tk : Ωk(ν)→ Ωk(ν) : (3.49)

x 7→ x = Gk(ν)x+Dk(ν), with

Gk(ν) ∈ R3×3, Dk(ν) ∈ R3.

Many geometric variations allow such a decomposition. In section 4.1 a geomet-
ric variation in a coplanar waveguide is shown. The affine mappings are piecewise
bijective and collectively continuous, so that a global mapping T can be defined by

T : Ω(ν)→ Ω(ν) : x 7→ x = Tk(x) ∀x ∈ Ωk(ν). (3.50)

Using the Piola transformation for H(curl; Ω)-conforming integral transforms in
three spatial dimensions, it holds

∇× v = |detG(ν)|G(ν)(∇× v) ◦ T−1,

v = (G−T (ν)v) ◦ T−1.

The time-harmonic Maxwell’s equations are mapped to the reference domain using
standard Finite Element transformations of H(curl; Ω) as stated in Lemma 3.3.2.

Lemma 3.3.2. Geometry Transformation
Given an affine transformation T : Ω(ν)→ Ω(ν), it holds

∫
T (Ω(ν))

µ−1(∇× E,∇× v) + ıωσ(E, v)− ω2ε(E, v) dx

=

∫
Ω(ν)

µ−1G−1(ν)(∇× E,∇× v)G−T (ν)|detG(ν)|

+GT (ν)
(
ıωσ(E, v)− ω2ε(E, v)

)
G(ν)

1

|detG(ν)|
dx. (3.51)
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This allows an affine decomposition (3.14) and also rewriting the system into a real
symmetric form (2.80).

3.3.4 Taylor Reduced Basis

In contrast to the Lagrange Reduced Basis space, which uses only snapshot solu-
tions as XN = {u(ν1), ..., u(νN )}, the Taylor Reduced Basis space additionally takes
derivatives w.r.t. the parameter into account [RHP08].

Thus, the RB space XN is defined as

XN = {u(ν1), ∂ν(1)u(ν1), , . . . , ∂ν(p)u(ν1), . . . , u(νN ), ∂ν(1)u(νN ), , . . . , ∂ν(p)u(νN )},

where ∂ν(i) denotes partial derivatives with respect to the i-th component of the
parameter vector ν. The Taylor RB space XN is orthonormalized, as is the Lagrange
RB space, to allow for a reasonable comparison of the size of the reduced spaces.

Two variants of the Taylor Reduced Basis are considered in chapter 4. With a
Ritz-Galerkin projection, the space XN is used for the ansatz space as well as test
space, while the Petrov-Galerkin projection achieves stability preservation by using
supremizing operators as explained in the subsection on Petrov-Galerkin Reduced
Basis 3.3.1. The linear system to be solved for a snapshot location ν is

Aνu(ν) = b,

with parameter-dependent system matrix Aν and right hand side b. This allows to
compute the derivative ∂ν(i)u(ν) by

∂ν(i)(A
νu(ν)) = ∂ν(i)(b)

(∂ν(i)A
ν)u(ν) +Aν(∂ν(i)u(ν)) = 0

leading to the linear system

Aν(∂ν(i)u(ν)) = −(∂ν(i)A
ν)u(ν).

3.3.5 Primal-Dual Error Estimation

As stated in (3.28), a bound on an output functional `(·) is given by

|`(u(ν)− uN (ν))| ≤ ‖`(·)‖X′‖u(ν)− uN (ν)‖X ≤ ‖`(·)‖X′∆N (ν), (3.52)

which is typically not very sharp. This can be improved upon using a primal-dual
error estimation framework [GS02] and solving the adjoint equation, find ψ ∈ X,
such that
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a(φ, ψ; ν) = `(φ; ν), ∀φ ∈ X. (3.53)

Through the adjoint equation, the dual residual rdu(·; ν) is obtained, such that in
combination with the primal residual rpr(·; ν)

∆s
N (ν) =

‖rpr(·; ν)‖X′‖rdu(·; ν)‖X′
βLB(ν)

(3.54)

gives sharper, yet rigorous bounds in the output error. This setup can also be applied
in the complex case, see [CHMR10]. Since the applications here seek the modulus of
the output voltage, no linear functional can be given. It is instead possible to obtain
a quadratic output after Maxwell’s equations are cast into real form. This is outlined
in the next subsection.

3.3.6 Quadratic Outputs

As was discussed in example 3.2.4, the output quantity of interest is the modulus of
the output voltage, it holds

s(ν) = |`(u)|, (3.55)

where `(·) is a linear functional mapping to C. As discussed in example 2.3.3, it is
advantageous to equivalently transform the Maxwell’s equation into the real form
(2.80). Hence, the output should be reformulated accordingly by two functionals as

s(ν) =
√
`1(u)2 + `2(u)2, (3.56)

where `1(·) and `2(·) are identical except that one acts on the real part and one on
the imaginary part of the solution. Let l1 and l2 be the two vectors of coefficients
for `1(·) and `2(·). Define a quadratic form Q(·, ·) by the matrix l1l

T
1 + l2l

T
2 , then it

holds

s2(ν) = Q(u(ν), u(ν)). (3.57)

Following [Sen07], an expanded formulation can be derived, which leads to a com-
pliant system. Compliant systems typically show very fast convergence of the reduced
model output to the full model output under basis enrichment, see [RHP08].

Expanded Formulation

Define an expanded formulation

Aνx = F (3.58)
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by

Aν =

[
2Aν −Q −Q
−Q −2Aν −Q

]
, (3.59)

F =

[
b

−b

]
, (3.60)

which is simplified from [Sen07], since Aν is real symmetric.

Lemma 3.3.3 (Compliant Expanded System). For the parametric problem Aνx = F ,
it holds

s2(ν) = FTx, (3.61)

i.e., the output of interest is equivalent to the input of the expanded formulation.

To see this, let for some arbitrary, fixed ν be x1 + x2 the solution of the standard
size system and x1 − x2 be such that it solves

Aν(x1 + x2) = b, (3.62)

Aν(x1 − x2) = Q(x1 + x2). (3.63)

Since Aν is symmetric, it also holds

(x1 + x2)TAν = bT . (3.64)

The solution of the expanded system Aνx = F is then given by

[
x1

x2

]
, as

45



3 Certified Reduced Basis Method

Aν
[
x1

x2

]
= F

⇐⇒

{
2Aνx1 −Qx1 −Qx2 = b

−Qx1 − 2Aνx2 −Qx2 = −b

⇐⇒

{
2Aνx1 −Q(x1 + x2) = b

−2Aνx2 −Q(x1 + x2) = −b

⇐⇒

{
2Aνx1 −Aν(x1 − x2) = b

−2Aνx2 −Aν(x1 − x2) = −b

⇐⇒

{
Aν(x1 + x2) = b

−Aν(x1 + x2) = −b.
(3.65)

For the output of the expanded system, it thus holds

FT
[
x1

x2

]
= bTx1 − bTx2

= bT (x1 − x2)

= (x1 + x2)TAν(x1 − x2)

= (x1 + x2)TQ(x1 + x2)

= s2(ν). (3.66)

Remark

The transformation to the expanded system maintains the resonance configurations,
as is shown in section 5.5.

In the course of rewriting the original complex finite element system to real sym-
metric form and by further applying the expanded formulation, the system size has
quadrupled. The offline phase will thus become much slower, and make this approach
only applicable when the original system sizes are small to moderate. The compliancy
will however allow for sharper error estimates, see [Sen07].

To avoid numerical cancellation, the scaling of Q and Aν must be observed. It is
possible to rescale Q by a factor α, which will then carry over to the output, as in
(αs(ν))2 = Fx.
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3.3 Reduced Basis Method in Electromagnetics

3.3.7 Time-Dependent Problems

A time-dependent formulation is typically treated with a POD-Greedy approach
[Haa13], [HO08] or [HRS15] and even nonlinear problems are subjected to this tech-
nique, see [NRP09].

A single trajectory is condensed with a Proper Orthogonal Decomposition (POD),
while a greedy sampling is used in the parameter domain. Given a time-stepping
from t1, . . . , tnT with corresponding solution trajectory u(ti, ; ν), where i = 1, . . . , nT
for a parameter vector ν. A reduced trajectory is obtained by projection and denoted
by uN (ti, ; ν)

An error estimator ∆(ν) over all time steps is defined by

‖u(tn, ν)− uN (tn, ν)‖ ≤
n∑
k=1

akbn−k = ∆(ν), (3.67)

where bn is the residual at timestep n, and a is the inverse Lipschitz constant,

a = sup
n∈{1,...,nT }

sup
w 6=y

‖w − y‖
‖f(w, tn; ν)− f(y, tn; ν)‖

. (3.68)

Rigorous error estimation requires an upper bound on the inverse Lipschitz con-
stant. This is neglected here due to large computational effort, and it is simply set as
a = 1. This choice is used in the computations in chapter 7, such that (3.67) works
as an error indicator.

Given a sampled parameter domain Ξ and a tolerance ε, the algorithm works as
follows [Haa14]

Algorithm 2: POD-Greedy Algorithm

INPUT: sampled parameter domain Ξ, tolerance ε
OUTPUT: POD-Greedy samples SN , projection space XN

1: Choose ν1 ∈ Ξ arbitrarily
2: Solve for u(ti; ν1), where i = 1, . . . , nT
3: Set S1 = {ν1}
4: POD of trajectory gives initial projection basis XN

5: Set k = 1
6: while maxΞ ∆(ν) > ε do
7: Set k = k + 1;
8: Set νk = arg maxΞ ∆(ν)
9: Set Sk = Sk−1 ∪ {ν1}

10: Solve model for u(ti; νk)
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3 Certified Reduced Basis Method

11: e(ti) = u(ti; νk)−ΠXNu(ti; νk), where i = 1, . . . , nT
12: POD of trajectory and append modes to XN

13: end while

The POD performs a singular value decomposition (SVD) on the orthogonal com-
plement of the newly computed trajectory with respect to the current projection
basis XN . The projection onto the space XN is denoted by the operator ΠXN in
the POD-Greedy algorithm. The modes corresponding to the largest singular values
are then appended to the projection basis. This ensures that the most important
information on the trajectory is appended due to the best approximation property
of the SVD.

When the time trajectory is large, the POD can become infeasible to compute.
A compression of the trajectory is thus useful and can be achieved by an adaptive
snapshot selection [ZFLB15]. Successively removing vectors from the trajectory, when
the angle to the last chosen vector is below a threshold angle, can significantly reduce
the size of the trajectory, without impacting the approximation accuracy. A variation
of this is looking at the angle between the current vector and the whole subspace,
which has already been chosen.
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4 Parameter Studies with the Reduced
Basis Method

This chapter examines the application of the RBM to three example models, a
coplanar waveguide, a branchline coupler1 and a printed circuit board. These are
3-dimensional stripline models used in microwave engineering. Their input-output
behavior is characterized by the complex transmission coefficient, i.e., the modulus
of the ratio of the output voltage to an input current. In all these simulations, a
normalized input is considered. This is a simplification from modeling the pattern
of an incoming wave. The discrete ports, where input and output are defined, are
1-dimensional filaments in the 3-dimensional computational domain. As input, the
value 1 is assumed over the 1-dimensional filament as a coarse approximation of an
incoming wave. The correctness of the modeling and simulation of the transmis-
sion line models was established by comparing them with simulations obtained by
the commercial EM-software ’CST Studio Suite’2. To obtain the transfer function
over a certain frequency range requires many solves of the underlying electromagnetic
model. When introducing further parameters, such as geometric and material param-
eters, this becomes unfeasible. Thus, the aim of this chapter is the assessment of the
strengths and weaknesses of the reduced basis model reduction in this setting. It will
be shown that, for a moderate number of parameters, the RBM is computationally
beneficial.

A detailed model description is provided and the affine transformations (3.14) are
shown. For the reference configuration, the parameter-independent matrices of the
affine expansion can be found at the Model Reduction Wiki. Several results are given
on the approximation quality the RBM computes. Assuming a predefined approx-
imation tolerance, the aim is a small size of the reduced models. Some numerical
aspects are emphasized, which are important to efficient and stable implementations.
Additionally, the expanded form (see subsection 3.3.6) is used in a coarsely discretized
model for a fast frequency sweep.

The microstrip models permit a tensor structure of the finite element mesh. First,
a mesh of boxes is generated that respects the geometric features and then each box is
decomposed into six tetrahedrons. The finite element package FEniCS [LMW12] pro-

1The coplanar waveguide and branchline coupler models are available through the Model Reduction
Wiki, www.modelreduction.org.

2CST - Computer Simulation Technology, www.cst.com.
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4 Parameter Studies with the Reduced Basis Method

Figure 4.1: Coplanar waveguide geometry.

vides this functionality in the programming languages Python and C++. The FEniCS
library assembles matrices corresponding to the affine parameter dependence (3.14),
using a discretization with first order Nédélec finite elements. To perform the model
reduction, these matrices are imported into the C++ library libMesh [KPSC06] and
into MATLAB®. When estimating the stability constant, the C++ library libMesh
uses the GLPK3 which allows more complexity for solving linear optimization prob-
lems than the linprog command in MATLAB. The investigation of numerical aspects
of the RBM is mainly implemented in MATLAB.

4.1 Coplanar Waveguide

The geometry of the coplanar waveguide model is shown in Fig. 4.1. It is a trans-
mission line shielded by two layers of a multilayer board within a dielectric substrate
overlay.

3GLPK - GNU Linear Programming Kit www.gnu.org/software/glpk/.
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4.1 Coplanar Waveguide

4.1.1 Model Description

The computational domain is bounded by a shielded box of dimension 140 mm by
100 mm by 50 mm. On all boundaries a PEC condition is enforced. The striplines
are metallic, so that PEC conditions hold there as well. Thus, the interiors of the
metallic striplines are not part of the computational domain. The substrate extends
in the z-direction from 0 mm to 16 mm and the upper part is a low-loss layer. The
discrete ports are defined as 1-dimensional filaments. Assuming the origin at the
lower left and front corner in Fig. 4.1, the input port is located at x = 70 mm, y =
5 mm and extends in the z-direction from 0 mm to 10 mm, while the output port is
located at x = 70 mm, y = 95 mm and extends in the z-direction from 0 mm to 10
mm.

The model is governed by the full time-harmonic Maxwell’s equations and as a
microwave device, it operates at frequencies of a few GHz.

Coplanar Waveguide Model



Define a bounding box BΩ = [0, 140] mm × [0, 100] mm × [0, 50] mm.

Define the three striplines

S1 = [0, 62] mm × [0, 100] mm × [10, 10.5] mm,

S2 = [67, 73] mm × [0, 100] mm × [10, 10.5] mm,

S3 = [78, 140] mm × [0, 100] mm × [10, 10.5] mm.

The computational domain is given by Ω = BΩ \ (S1 ∪ S2 ∪ S3) .

It holds (2.25) in Ω, i.e., − εω2E + ıωσE +∇× 1
µ∇× E = −ıωji,

subject to PEC boundary conditions on ∂Ω, i.e., E × n = 0.

The material coefficients in the substrate (z ≤ 16 mm) are given by

ε = 4.4ε0, µ = µ0, σ = 0.02 Sm .

The material coefficients in the low-loss layer (z > 16 mm) are given by

ε = 1.07ε0, µ = µ0, σ = 0.01 Sm .

The input port is Γin = 70 mm × 5 mm × [0, 10] mm.

The output port is Γout = 70 mm × 95 mm × [0, 10] mm.

The source term is ji = 1 on Γin, ji = 0 else.

The output is l(E) =
∫

Γout
Edz.

51



4 Parameter Studies with the Reduced Basis Method

Figure 4.2: Coplanar waveguide subdomains used in the definition of the affine trans-
formations.

This model description defines the reference configuration. Considered parameters
are the frequency ω and the width of the middle stripline p.

4.1.2 Affine Transformation

To consider the linear combination of snapshots for different geometries and to
work with the geometric parameter in an efficient way, an affine transformation to
the reference geometry is established. The model is decomposed into subdomains
Ω1,Ω2,Ω3 and Ω4 as seen in Fig. 4.2. Note that this choice is not unique.

Quantities (i.e. operators and functions) defined on the reference domain are in-
dicated by an overline to distinguish them from quantities defined on the actual
domain.

When the width of the middle stripline changes from the reference value p =
6 mm, there exist affine mappings Tk from the respective regions of the reference
configuration to the actual configuration according to (3.49).

The subdomains are transformed according to T1, T2, T3 and T4 as
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4.1 Coplanar Waveguide

T1 : Ω1(p)→ Ω1(p) : (x, y, z) 7→ (x, y, z),

T2 : Ω2(p)→ Ω2(p) : (x, y, z) 7→ (p
x− 70

6
+ 70, y, z),

T3 : Ω3(p)→ Ω3(p) : (x, y, z) 7→ ((x− 62)
16− p

10
+ 62, y, z),

T4 : Ω4(p)→ Ω4(p) : (x, y, z) 7→ ((x− 73)
16− p

10
+ 70 +

p

2
, y, z),

which leads to the Jacobians

G1 =

1 0 0

0 1 0

0 0 1

 , G2 =


p
6 0 0

0 1 0

0 0 1

 , G3 = G4 =


16−p

10 0 0

0 1 0

0 0 1

 .

The affine mappings T k are piecewise bijective and collectively continuous, so that
a global mapping T can be defined by

T : Ω(ν)→ Ω(ν) : x 7→ x = Tk(x), ∀x ∈ Ωk(ν).

The PDE is transformed from the parameter-dependent domain Ω(p) to a parameter-
independent reference domain Ω(p).

The Piola transformation for H(curl; Ω)-conforming integral transforms is used to
map differential quantities from the actual domain, see subsection 2.3.1. Thus, the
PDE can be transformed to the reference domain, using standard FE-transformations
of H(curl) with the Piola transformation and the substitution rule

∫
Ω(ν)=T (Ω(ν))

µ−1(∇× E,∇× v) + ıωσ(E, v)− ω2ε(E, v) dx

=

∫
Ω(ν)

µ−1G(ν)(∇× E,∇× v)GT (ν)
1

|detG(ν)|
+G−T (ν)

(
ıωσ(E, v)− ω2ε(E, v)

)
G−1(ν)|detG(ν)| dx, (4.1)

which allows an affine decomposition (3.14) and also to rewrite the system into a
real symmetric form (2.80). In particular, this section takes ω ∈ [1.3, 1.6] GHz and
p ∈ [2, 14] mm into account. This is a substantial geometric variation, as the distance
between the outer striplines is just 16 mm.

The affine expansion (3.14) contains Qa = 5 terms when expanded in the geometric
parameter only andQa = 15 terms when expanded in the frequency and the geometric
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4 Parameter Studies with the Reduced Basis Method

parameter, such that ν = [ω, p]. Since Ω1 is not affected by the geometric parameter,
it holds

∫
Ω1(ν)

µ−1(∇× E,∇× v) + ıωσ(E, v)− ω2ε(E, v) dx

=

∫
Ω1(ν)

µ−1(∇× E,∇× v) + ıωσ(E, v)− ω2ε(E, v) dx,

which gives three terms in the affine expansion with Θ1
a(ν) = 1, Θ2

a(ν) = ω and
Θ3
a(ν) = −ω2. The subdomain Ω2 expands with p in the x-direction, such that it

holds

∫
Ω2(ν)

µ−1(∇× E,∇× v) + ıωσ(E, v)− ω2ε(E, v) dx

=

∫
Ω2(ν)

µ−1G2(ν)(∇× E,∇× v)(G2)T (ν)
1

|detG2(ν)|
+ (G2)−T (ν)

(
ıωσ(E, v)− ω2ε(E, v)

)
(G2)−1(ν)|detG2(ν)| dx, (4.2)

which gives six terms in the affine expansion, namely three terms in the x-coordinates,
Θ4
a(ν) = p

6 , Θ5
a(ν) = 6

pω and Θ6
a(ν) = −6

pω
2 and three terms in the y and z-

coordinates, Θ7
a(ν) = 6

p , Θ8
a(ν) = p

6ω and Θ9
a(ν) = −p

6ω
2. In the same way, there are

six affine terms originating from transforming Ω3∪Ω4, which have the same Jacobians
G3 = G4

∫
Ω3(ν)∪Ω4(ν)

µ−1(∇× E,∇× v) + ıωσ(E, v)− ω2ε(E, v) dx

=

∫
Ω3(ν)∪Ω4(ν)

µ−1G3(ν)(∇× E,∇× v)(G3)T (ν)
1

|detG3(ν)|
+ (G3)−T (ν)

(
ıωσ(E, v)− ω2ε(E, v)

)
(G3)−1(ν)|detG3(ν)| dx, (4.3)

such that Θ10a(ν) = 16−ν
10 , Θ11a(ν) = 10ω

16−ν and Θ12a(ν) = − 10ω2

16−ν acting on the x-

coordinates and Θ13a(ν) = 10
16−ν , Θ14a(ν) = 16−ν

10 ω and Θ15a(ν) = −16−ν
10 ω2 acting

on the y and z-coordinates.

Due to the technical nature of this transformation, errors can happen when this
form is established with pen and paper. It is helpful to assemble the system for
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4.1 Coplanar Waveguide

Figure 4.3: Coplanar waveguide: Frequency response over [0.6, 3.0] GHz obtained
through finite integration solvers.
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Figure 4.4: Coplanar waveguide: Frequency response over [0.6, 3.0] GHz obtained
through finite element solvers.
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a different geometry configuration and check whether it matches with the result
obtained through the affine transformation.

The assembly of the full order system has been performed with the finite element
package FEniCS using a discretization with first order Nédélec finite elements. The
full model of the coplanar waveguide contains 52,134 degrees of freedom in the real
symmetric form (2.80). The discrete port shown in Fig. 4.2 serves as the input
port, the output port is placed at the far side of the waveguide. To establish the
correctness of our simulation, the results were compared with results obtained by
the commercial EM-software ’CST Studio Suite’. In the course of the collaborative
project MoreSim4Nano the frequency response shown in Fig. 4.3 was given for the
coplanar waveguide. This is obtained through solvers using the finite integration
technique. The results of this work do not match perfectly to these results as can be
seen by comparing the results to Fig. 4.4. Since the accurate simulation of devices
with various discretization techniques is beyond the scope of the current work, this
is not further investigated.

4.1.3 Numerical Results

Fig. 4.5 shows the transfer function of the coplanar waveguide in the considered
parameter domain ω ∈ [1.3, 1.6] GHz and p ∈ [2, 14] mm. For comparison, the
transfer function of the reduced order model of dimension N = 45 is shown in Fig.
4.6. For N = 85, the error between full order and reduced order model is plotted in
Fig. 4.7. The chosen snapshot locations are visible, since the error is close to double
precision at these locations.

The relative error ‖u(ν)−uN (ν)‖X
‖u(ν)‖X and the error estimator for the relative error

∆N
‖uN (ν)‖X are plotted in Fig. 4.8 over the reduced basis dimension N . The maximum
and the arithmetic mean are computed over all ν ∈ Ξ for each RB-dimension N . An
exponential convergence of the reduced basis solutions to the full order solutions can
be observed. The RB space is computed over a uniformly sampled parameter space
of 30 by 30 samples.

Due to the large number of affine terms (Qa = 15), an approximation to the lower
bound of the stability constant is used. In particular, only the upper bounds are
computed, see chapter 5, by using a coarse uniform 10 × 30 grid, and the resulting
upper bounds are scaled by a factor of 0.5 to achieve lower bounds. Numerical tests
showed that the SCM generates sharp upper bounds [CHMR09], so that this approach
is justified.

The mean of the estimator for the relative error
‖EN (ν)−EN (ν)‖

XN
‖EN (ν)‖

XN
is plotted in

Fig. 4.9 for the Petrov-Galerkin Lagrange RB space, Galerkin Taylor RB space and
Petrov-Galerkin Taylor RB space. Note that the Taylor RB spaces add three basis
functions at each parameter location instead of one basis function as is the case
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Figure 4.5: Coplanar waveguide: transfer function of full order model.

5

10

1.3
1.4

1.5
1.6

0

20

width (mm)
2π f (GHz)

‖H
(i
ω

)‖
(d

B
)

−5

0

5

10

15

Figure 4.6: Coplanar waveguide: transfer function of the reduced order model of
dimension N = 45.
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Figure 4.7: Coplanar waveguide: error between full order and reduced order model
for N = 85.
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Figure 4.8: Relative error in the field solution plotted over the reduced basis dimen-
sion N for the coplanar waveguide.
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Figure 4.9: Coplanar waveguide: Taylor space mean relative error estimator ∆
EN

.

for Lagrange RB spaces. The greedy algorithm ran until N = 60 basis functions.
Fig. 4.9 shows that the Lagrange RB space performs significantly better in terms
of required model order. All Petrov-Galerkin approximations show an exponential
convergence speed. The mean of the actual absolute error ‖EN (ν) − EN (ν)‖X is
plotted in Fig. 4.10 for the Petrov-Galerkin Lagrange RB space, Galerkin Taylor RB
space and Petrov-Galerkin Taylor RB space. It also shows that the Lagrange RB
space performs significantly better than the Taylor-RB spaces. In the actual relative
error however, the Galerkin Taylor RB space and Petrov-Galerkin Taylor RB space
show similar behavior.

4.1.4 Practical and Numerical Aspects

The timing to obtain the transfer behavior using the full order model is in the range of
several hours, while it can be evaluated with the reduced order model in a few seconds,
see also Table 4.1. However, the offline phase can also take up to several hours.
This strongly depends on what level of accuracy in the stability constant estimation
is desired. To put it in terms of practical applicability: When the offline timing
is not a concern, or is performed on a supercomputer, a rigorous error estimation
procedure is possible. When the offline timing is important and is only performed
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Figure 4.10: Coplanar waveguide: Taylor space mean actual absolute error in the
H(curl; Ω) norm.

on a desktop machine, a non-rigorous error estimation is favorable. See chapter 5
for more details. When the offline timing is crucial, the stability constant estimation
can also be neglected altogether, and the residual serves as an error indicator. This
approach is used in chapter 6, where high-dimensional stochastic parameter spaces
are of concern.

The greedy algorithm can either use the error estimator for the absolute error ∆ or
the relative error ∆

‖EN‖X . Numerical experiments have shown, that the greedy tends
to stall more easily when using the error estimator ∆. I.e., due to numerical inac-
curacies in higher greedy iteration numbers, a parameter location gets chosen twice.
This either leads to a singular projection matrix, or, when using orthonormalization,
creates an infinite loop. This typically happens when the tolerance of the greedy is set
below the numerical accuracy which can be expected. The numerical accuracy which
can be expected depends mostly on the accuracy with which the high-dimensional
linear system is solved.

The error estimator overestimates the actual error by a factor of about ten. Since
the estimator is still strongly correlated with the actual error, this overestimation
does not pose a problem here. After a few greedy iterations, the correlation coefficient
between error estimator and actual error climbs to between 0.7 and 0.85.

The usage of Petrov-Galerkin projections requires multiple solves with the inner
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Figure 4.11: Coplanar waveguide: Transfer function over [0.6, 10] GHz.

product matrix in each greedy iteration. An LU-decomposition of this matrix is thus
computed a-priori.

Output Estimation Using the Expanded Formulation

The expanded formulation introduced in subsection 3.3.6 and derived from [Sen07]
is used in a single parameter example, namely a fast frequency sweep. Consider the
coplanar waveguide in an extended frequency range of [0.6, 10] GHz. The transfer
function is shown in Fig. 4.11.

Since the expanded formulation doubles the system size, a more coarse discretiza-
tion is chosen. The real symmetric system contains 2′024 degrees of freedom, after
elimination of zero boundary conditions, such that the expanded form contains 4′048
degrees of freedom. This is still very small, but using the full-sized system would
have taken several weeks on the machine in use4. The error in the output is typ-
ically estimated using primal-dual methods. Since the transmission coefficient (or
Z-parameter) is a quadratic output, a primal-dual estimation is not directly appli-

4The computations were done in MATLAB2012b on a Ubuntu 12.04 operating system with an
Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz with 8GB RAM.
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Figure 4.12: Coplanar waveguide: Maximum relative error in the output.

cable. Thus, the following comparison uses the field estimator for the non-expanded
form. The expanded form is compliant, such that the field estimator is also the
output estimator. Additionally, the comparison includes a so-called ’Ideal Greedy’,
which uses the exact errors in each greedy iteration. These data are not available in
a practical setting.

As can be observed from the mean and maximum relative error in the output
(Fig. 4.12 and Fig. 4.13), the ideal greedy sampling in the output is superior to the
field estimator by about one order of magnitude. It can also be observed, that the
expanded formulation leads to an accuracy, comparable to the ideal greedy. Conclud-
ingly, when the additional offline cost is affordable, the expanded form can generate
very compact reduced order models.

Since the eigenvalues of the system matrix of the expanded formulation change, the
stability constant estimation has to be done again. For this numerical experiment, the
stability constant has been set to one in all estimators. It can however be expected,
that with a better stability constant estimation, the methods perform even better
compared to the ideal greedy.
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Figure 4.13: Coplanar waveguide: Mean relative error in the output.

4.2 Branchline Coupler

In Fig. 4.14, a branchline coupler model is shown. The striplines, coupled by two
transversal bridges are placed on top of a substrate.

4.2.1 Model Description

The full model of the branchline coupler (Fig. 4.14) contains 27′679 degrees of free-
dom. In the upper part of the model, the relative permittivity is εr = 1 while in the
lower part, the relative permittivity is εr = 2.2. The conductivity is zero in the entire
domain. The dimensions of the shielded box are 23.6 mm by 22 mm by 7 mm.

Considered parameters are the frequency in [1.0, 10.0] GHz and the relative per-
meability which varies within [0.5, 2.0], so that the affine expansion contains Qa = 2
terms.
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Branchline Coupler Model

Define a bounding box BΩ = [0, 23.6] mm × [0, 22] mm × [0, 7] mm.

Define the metallic parts

M1 = [5.7185, 8.1315] mm × [0, 22] mm × [0.744, 0.794] mm,

M2 = [15.4685, 17.8815] mm × [0, 22] mm × [0.744, 0.794] mm,

M3 = [5.7185, 17.8815] mm × [5, 7] mm × [0.744, 0.794] mm,

M4 = [5.7185, 17.8815] mm × [15, 17] mm × [0.744, 0.794] mm,

The computational domain is given by Ω = BΩ \ (M1 ∪M2 ∪M3 ∪M4) .

It holds (2.26) in Ω, i.e., − εω2E +∇× 1
µ∇× E = −ıωji,

subject to PEC boundary conditions on the metallic parts and the ground plate E × n = 0,

and subject to PMC boundary conditions on the other boundaries ∇× E × n = 0.

The material coefficients in the substrate (z ≤ 0.744 mm) are given by

ε = 2.2ε0, µ = µ0.

The material coefficients for z > 0.744 mm are given by

ε = ε0, µ = µ0.

The input port is Γin = 6.925 mm × 1 mm × [0, 0.744] mm.

The output port is Γout = 16.675 mm × 21 mm × [0, 0.744] mm.

The source term is ji = 1 on Γin, ji = 0 else.

The output is l(E) =
∫

Γout
Edz.

The computational domain is bounded by a shielded box of dimension 23.6 mm
by 22 mm by 7 mm. On all boundaries a PEC condition is enforced. The striplines
are metallic, so that PEC conditions hold there as well. Thus, the interiors of the
metallic striplines are not part of the computational domain. The model is governed
by the full time-harmonic Maxwell’s equations and as a microwave device, it operates
at frequencies of a few GHz.

4.2.2 Numerical Results

Since the branchline coupler model has zero conductivity (σ = 0) in the entire compu-
tational domain, the following computations are performed in real arithmetics. The
system matrices are real symmetric for all parameters under consideration, so the
transformation (2.80) is not applied. The forcing term −ıωji actually leads to purely
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4.2 Branchline Coupler

Figure 4.14: Branchline coupler geometry.

imaginary time-harmonic field solutions, but the algorithms produce the same results,
whether a real or purely imaginary formulation is used. To simplify implementation,
the real field solutions are used.

The transfer functions plotted over the parametric domain for the full order and
reduced order model of dimension N = 25 are shown in Fig. 4.15 and Fig. 4.16.
The relative approximation error between these two transfer functions is shown in
Fig. 4.17.

The relative error ‖E(ν)−EN (ν)‖X
‖E(ν)‖X and the error estimator for the relative error

∆N
‖EN (ν)‖X are plotted in Fig. 4.18 over the reduced basis dimension N . The maximum
and the arithmetic mean are computed over all ν ∈ Ξ for each RB-dimension N .
The sample space Ξ is uniform in both parameters and contains 70 samples in the
frequency range [1.0, 10.0] GHz and 80 samples in the material parameter range
[0.5, 2.0].

As the branchline coupler model includes several resonances, the error estimator
∆N might strongly overestimate the absolute error ‖E(ν) − EN (ν)‖X at parameter
locations close to resonances. It can thus happen that the greedy algorithm chooses
a snapshot location twice, which leads to a ’breakdown’ of the offline phase. This
can be overcome by either using an estimator for the relative error ∆N (ν)

‖EN (ν)‖X in the

greedy sampling or by performing the maximization over Ξ\SN .

Due to the difficulty of properly resolving the resonances, the chosen snapshot
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Figure 4.15: Branchline coupler: transfer function of full order model.
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Figure 4.16: Branchline coupler: transfer function of reduced order model of dimen-
sion N = 25.
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Figure 4.17: Branchline coupler: error between full order and reduced order model
for N = 25.

locations follow the resonance configurations (Fig. 4.19), as in [CHMR09].

4.2.3 Numerical Aspects Arising from Resonances

As can be observed from Fig. 4.19, the snapshot locations are close to the resonance
configurations. The greedy algorithm works correctly in this setting, since the sin-
gularities create a large actual error in the vicinity of resonances. The error decay
is not as smooth anymore, as can be observed by comparing Fig. 4.8 and Fig. 4.18.
Thus, it might be possible, that there exist better reduced order models, which the
greedy routine is not able to find.

In particular, an optimization routine within the greedy algorithm to find the
maximum would not work in a model with resonances. The optimization routine
would come arbitrarily close to a singularity and the greedy algorithm ultimately
chooses a parameter location, where the system matrix is singular.
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Figure 4.19: Chosen snapshot locations (yellow/red) follow the resonance configura-
tions (black). Shown for N = 50.
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4.3 Comparison to Surrogate Modeling Techniques

To compare the performance of the RBM with output interpolation techniques, the
algorithms contained in the SUrrogate MOdeling Toolbox (SUMO)5 are run on the
same models. For the coplanar waveguide example, the RBM reaches a relative error
tolerance of 1% in the transfer function with a model order of 29, the Kriging method
provided in the SUMO toolbox requires a model complexity of 55 and the rational
interpolation method a model complexity of 63. A more strict error tolerance of
0.1% is reached by the RBM with 41 basis functions, but the output interpolation
methods were not able to reach this degree of accuracy up to a model complexity
of 200. The branchline coupler example is even more difficult as it contains several
resonance configurations. The output interpolation methods were not able to resolve
these features.

4.4 Summary of Numerical Experiments

The computational results are summarized in Table 4.1. Using the error estimator, a
relative error of less than 1% can be guaranteed at a reduced order of N = 59 for the
coplanar waveguide, while actually this error is satisfied at an even lower order N =
47. Similar findings hold for an error tolerance of 0.1%. For the branchline coupler,
these error criteria are satisfied at a reduced order of N = 21. The error estimators
show a median effectivity of 10 and 7 respectively, i.e. in the median the estimators
will overestimate the actual error by these factors. At resonance configurations and
at snapshot locations, the error estimator often strongly overestimates the actual
error, so that there is a significant difference between the median and arithmetic
mean effectivity. The applicability of the RBM might be limited by large offline
computation times, as can be seen in the coplanar waveguide example. The larger
number of affine terms Qa leads to the increase in offline computational time for the
coplanar waveguide.

The RBM is able to generate low-order models for systems of Maxwell’s equa-
tions under parametric variation of geometry and frequency with exponential conver-
gence speed. The comparison of Lagrange-RB and Taylor-RB spaces showed that the
Lagrange-RB spaces achieve overall better approximation properties. The expanded
form leads to a compliant system, which exhibits rapid convergence in the error of
the reduced system, comparable to an ’Ideal Greedy’.

5The SUMO toolbox[GCC+10] can be obtained from http://www.sumowiki.intec.ugent.be/
index.php/Main_Page.
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4 Parameter Studies with the Reduced Basis Method

Table 4.1: Summary of RBM Performance

waveguide coupler

Full Model Order 52,134 27,679

min{N |max ∆N (ν)
‖EN (ν)‖X ≤ 1%} 59 21

min{N |max ∆N (ν)
‖EN (ν)‖X ≤ 0.1%} 83 21

min{N |max ‖E(ν)−EN (ν)‖X
‖E(ν)‖X ≤ 1%} 47 21

min{N |max ‖E(ν)−EN (ν)‖X
‖E(ν)‖X ≤ 0.1%} 68 21

Timing Offline Phase 15,809 s 2,275 s

Timing Full Simulation (all ν ∈ Ξ) 7,930 s 8,644 s

Timing Reduced Simulation (all ν ∈ Ξ) 10 s (N=85) 1 s (N=25)

Mean Effectivity 11 1537

Median Effectivity 7 10

4.5 Printed Circuit Board

A third example is given by a printed circuit board (Fig. 4.20), discretized with the
finite integration technique. While designed as a multi-input, multi-output (MIMO)
model, this work only takes a single input and a single output into account to show
the capabilities of the reduced basis method. The inputs and outputs are realized as
ports, which are single degrees of freedom in the model.

The model makes use of the saddle point form of Maxwell’s equations and includes
233′060 degrees of freedom6. Since the modeling and discretization was not part of
the work at hand, the model is only briefly summarized in the following. See [Wei77]
for an introduction to the finite integration discretization technique.

The saddle point form uses a discretized time-dependent state variable as x(t) =
[ET (t), HT (t)]T with discretized electric field E(t) and magnetic field H(t). Dis-
cretization of Maxwell’s equations leads to a linear time-invariant (LTI) system as

(
Mε 0

0 Mµ

)
ẋ(t) =

(
−Mσ CH

−CE 0

)
x(t) + Bu(t), (4.4)

y(t) = Cx(t), (4.5)

6This model was provided through the department of electrical engineering of the Technical Uni-
versity Darmstadt, Germany.
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4.5 Printed Circuit Board

Figure 4.20: Printed circuit board MIMO model.

where Mε,Mµ and Mσ are mass matrices from the discretization of the the material
parameters permittivity, permeability and conductivity, respectively. With the finite
integration technique, these matrices are diagonal. The matrices CE and CH are
discrete curl operators for the electric and magnetic field, u(t) is the input and y(t)
the output. Further introducing the matrices

E =

(
Mε 0

0 Mµ

)
, (4.6)

A =

(
−Mσ CH

−CE 0

)
, (4.7)

and moving to frequency domain leads to

ıωEx = Ax+ Bu, (4.8)

y = Cx. (4.9)

In terms of the reduced basis notation, the system matrix depends on the frequency
ω as the only parameter as Aω = iωE − A. The input functional is f = Bu and the
output functional is s(ω) = `(ω) = Cx(ω).
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Figure 4.21: Printed circuit board transfer function in f ∈ [8, 10] GHz with ω = 2πf .

The printed circuit board is a lossless model, i.e., Mσ = 0. As a consequence, the
electric field is purely imaginary and the magnetic field is real. Since the output port
is associated to a single degree of freedom, no quadratic form arises from the modulus
of complex numbers.

Due to the large system size of 233′060 degrees of freedom, the system is kept
in complex form and no transformation to real form such as (2.80) is applied. The
estimation of the stability constant is also not applied due to the large system size.
Thus, only the residual serves as an error indicator, see [CHMR10] for the efficient
implementation in the complex case.

The frequency range f ∈ [8, 10] GHz with ω = 2πf is sampled with 100 equidistant
frequency samples. The corresponding transfer function is shown in Fig. 4.21. The
relative error in the output is shown in Fig. 4.22 for three different reduced basis
sizes, namely N = 5, N = 10 and N = 15. The maximum and arithmetic mean of
the relative approximation error in the field is shown in Fig. 4.23 and in the output
in Fig. 4.24 over each reduced basis dimension. The maximum relative error in the
output drops below 1 × 10−3 at a reduced basis dimension of N = 9 and below
below 1× 10−6 at a reduced basis dimension of N = 15. This is a huge reduction in
complexity from the original system size.

While a certified accuracy is not given through error estimators in this example,
a heuristic method can still be employed. Either by computing the expensive actual
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4.6 Comparison of Reduced Basis Method to Proper Orthogonal
Decomposition and Moment Matching
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Figure 4.22: Actual relative error in the output plotted for reduced basis dimensions
N = 5, N = 10 and N = 15.

errors at some locations or by solving the related eigenvalue problem to compute a
rigorous bound on the error.

4.6 Comparison of Reduced Basis Method to Proper
Orthogonal Decomposition and Moment Matching

The reduced basis model reduction is compared with the proper orthogonal decom-
position (POD) and moment matching (MM, also known as Padé approximation
or Krylov subspace-based MOR) on the printed circuit board model. As with the
reduced basis method, the POD and MM are widely used for model reduction pur-
poses, see [SC12], [HC14] concerning the POD and [SWAW09], [BF14] about MM in
electromagnetic applications.

4.6.1 Proper Orthogonal Decomposition

The POD computes optimal approximation spaces in the mean-squared error. Given
a set of r snapshots as X = [x1, . . . , xr], the POD computes the matrix V of rank
N , which best approximates the snapshots in the 2-norm as a minimization over all
V ∈ RN×N with V TV = I,
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Figure 4.23: Actual relative error in the field plotted over the reduced basis dimension
N for the printed circuit board.

PODN (X) = arg min
V

1

r

r∑
i=1

‖xi − V V Txi‖22. (4.10)

The singular value decomposition (SVD) computes the matrix decomposition V1SV
T

2 =
X, where the N leftmost columns of V1 give the desired matrix V . The columns of
the matrix V are also called POD-modes.

In the current example, the snapshots are taken at equidistant locations in the 1-
dimensional parameter domain. The matrix V is employed in a one-sided projection
of the system to obtain the reduced order model.

4.6.2 Moment Matching

The approach presented here follows the numerically robust, implicit moment match-
ing implementation from [BF14]. From (4.8) with s = iω, it follows

(sE − A)x = Bu. (4.11)
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Figure 4.24: Actual relative error in the output plotted over the reduced basis dimen-
sion N for the printed circuit board.

Expanding the state around a point s̃0 leads to

x = (I − σM)−1Ẽ−1Bu (4.12)

=

∞∑
m=0

(σM)mBMu (4.13)

= BMu+ σMBMu+ (σM)2BMu+ . . .+ (σM)jBMu+ . . . (4.14)

with σ = s− s̃0, Ẽ = s̃0E − A, M = −Ẽ−1E and BM = Ẽ−1B.
Define R0 = BM and Rj = MRj−1, j = 1, 2, . . ., and consider the subspace R =

span{R0, . . . , Rj , . . . , Rm}. The projection space V is derived as an orthonormal basis
of R, making use of the recursive relations between the Rj . See [BF14] for details.

With this choice of the one-sided projection space V , the moment matching prop-
erty up to order m is achieved, i.e., the transfer function of the full and reduced order
model match up to the m-th derivative at the expansion point

∂j

∂s̃j0
y(s̃0) =

∂j

∂s̃j0
yN (s̃0), j = 0, . . . ,m. (4.15)
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This process is repeated for equidistantly chosen sample points in the 1-dimensional
parameter domain to derive a compound projection space V . For each expansion
point, the main computational effort lies in the LU-decomposition of the matrix
Ẽ, such that no further linear system solves are necessary. There is a relation to
the reduced basis Taylor spaces, which also take derivatives of the snapshots with
respect to parameters into account. Both projection spaces span the same space
as the Rj are the derivatives of the state with respect to the parameter. However,
the computational procedure is more robust in the moment matching case, when
comparing numerical results with subsection 4.1.3.

4.6.3 Numerical Results

The numerical comparison uses the model setup of the printed circuit board, see
section 4.5, where the reduced basis results can also be found.

The POD typically takes only a fraction of the POD-modes into account, corre-
sponding to a certain percentage of the singular values. This truncation was not used
here, on the one hand to have control on the resulting reduced model sizes, and on
the other hand to show the maximum attainable accuracy from this approach. With
equidistantly chosen samples for each POD-reduced model, the projection spaces are
not hierarchical.

The MM also uses equidistantly chosen samples as expansion points and are thus
not hierarchical. The moments were computed up to second order, so that at each
expansion point, three vectors are added to the projection space.

In 4.25 and 4.26, the comparison of the methods in the mean and maximum ap-
proximation error over the reduced model order is shown. The RBM and POD have
been computed up to an order of 20 and the MM uses 10 expansion points, resulting
in a maximum reduced model size of 30. For this model, all three methods show
essentially the same approximation quality up to order 12 or a mean error of 1×10−9

and maximum error of 1×10−7. A difference is visible in the maximum attainable
accuracy, where the POD comes to 1×10−11 in the mean error over the sampled grid
and 1×10−10 in the maximum error, while the RBM stalls essentially as the residual
is not resolved with the required accuracy to continue automatic basis enrichment.

In 4.27 and 4.28 the mean and maximum approximation error over the compu-
tational effort is compared. Computing the LU-decomposition for the expansion
points requires approximately the same computational effort as a linear solve for this
example and is thus shown on the same scale.

Put into this perspective, the MM shows a superior performance for this model.
While the RB and POD require approximately the same computational effort (the
SVD does not add to this, since computing the ’economical SVD’ with up to 20
vectors is not expensive) for the snapshot computation, the MM saves a factor of
three, which for this example directly corresponds to the choice of matching up to
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Figure 4.25: Mean relative error in the output plotted over the reduced model dimen-
sion N for the printed circuit board.
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Figure 4.26: Maximum relative error in the output plotted over the reduced basis
dimension N for the printed circuit board.
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Figure 4.27: Mean relative error in the output plotted over the linear solves/LU de-
compositions for the printed circuit board.
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Figure 4.28: Maximum relative error in the output plotted over the linear solves/LU
decompositions for the printed circuit board.
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the second moment.
The reduced basis methods provides the feature of error estimates to certify the

accuracy, however these estimates could in principle also be evaluated for a POD or
MM projection matrix, given an affine parameter dependency.
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5 Estimating the Inf-Sup Stability
Constant

In chapter 4, it is shown that the RBM generates low order models of microscale
semiconductor devices under variation of frequency and geometry or material pa-
rameters. Thus, the RBM enables the efficient evaluation of parametrized models in
many-query and real-time contexts.

This chapter focuses on the efficient estimation of the discrete stability constant,
which is a challenging problem in the context of Maxwell’s equations. When reli-
able lower bounds are used in the Reduced Basis error estimation, it enables the
generation of reduced order models with certified accuracy. Tests and comparisons
of rigorous and non-rigorous techniques to compute lower bounds to the discrete
stability constant are shown and compared.

The error estimator measures the accuracy between the full order and reduced
order model and is defined by (3.24) as

∆N (ν) =
‖r(·; ν)‖X′
βLB(ν)

, (5.1)

which involves a lower bound βLB(ν) to the parametrized inf-sup stability constant
β(ν), defined by (3.6), as

β(ν) = inf
u∈X

sup
v∈X

|a(u, v; ν)|
‖u‖X‖v‖X

(5.2)

= inf
u∈X

‖a(u, ·; ν)‖X′
‖u‖X

. (5.3)

Since numerical examples show that the stability constant can vary over several
orders of magnitude, the reliability of the error estimator depends on an accurate
lower bound. In particular in examples with resonant behavior, the stability constant
can vary from zero (resonant parameter configuration) up to 1× 106.

Of particular interest in the approximation of β(ν) are the stability constants of
the reduced order systems for the Galerkin projection

βGN (ν) = min
w∈XN

max
v∈XN

|a(w, v; ν)|
‖w‖X‖v‖X

, (5.4)
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5.1 Problem Description

and the Petrov-Galerkin projection

βPGN (ν) = min
w∈XN

‖T νw‖X
‖w‖X

, (5.5)

obtained from introducing the Riesz representor, or supremizing operator T ν defined
via the relation (T νw, v)X = a(w, v; ν), ∀v ∈ X, see the definition in equation (3.8).

5.1 Problem Description

Evaluating the stability constant β(ν) for a parameter configuration ν requires solving
the eigenvalue problem (3.13)

Aνu = λminMu, (5.6)

with system matrix Aν and inner product matrix M for the eigenvalue of minimum
magnitude λmin. The computational effort of solving this eigenvalue problem is typi-
cally significantly larger than solving the linear system with Aν . Implementationwise,
the MATLAB command eigs is used or, for C++ codes, the Jacobi-Davidson solver
from the SLEPC library is used. The task to compute approximations to β(ν) for all
ν ∈ D requires multiple eigenvalue solves. For Maxwell’s equations, this leads to very
large offline timings, as pointed out in [CHMR09]. For this reason, an investigation
into approximations of β(ν) instead of rigorous lower bounds is also undertaken in
this chapter.

As in the approximation of the transfer function, the idea of using interpolation
methods to get approximations of β(ν) seems natural. The Kriging interpolation
method is also tested and compared to the estimators which take the structure of the
underlying problems into account.

5.2 Successive Constraint Method

The Successive Constraint Method (SCM) outlined here, based on [HRSP07] and
[CHMR09], computes lower bounds to the stability constant by solving a linear op-
timization problem with constraints given by exact solves at chosen parameter con-
figurations. This formulation is possible due to the affine parameter dependence.
The parameter configurations for the exact solves are chosen by evaluating lower and
upper bounds on the parametrized stability constant, which indicate the currently
least well approximated parameter location.

The SCM has a quadratic complexity in the number of terms in the affine expansion
Qa, which can lead to long computation times of the offline phase. A natural norm
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5 Estimating the Inf-Sup Stability Constant

SCM, with linear complexity in Qa is presented in [HKC+10], which also achieves
lower bounds to the stability constant, but is algorithmically more involved. A cer-
tified natural norm SCM can be found in [Che15], which computes lower and upper
bounds to the parametrized stability constant.

Using (3.9), the squared inf-sup constant satisfies

(β(ν))2 = min
u∈X

(T νu, T νu)X
‖u‖2X

, (5.7)

which can be expanded as

(β(ν))2 = min
u∈X

Qa∑
q′=1

Qa∑
q′′=q′

(2− δq′q′′)Θq′(ν)Θq′′(ν)

(
T q
′
u, T q

′′
u
)
X

‖u‖2X
.

Symmetrizing the problem using elementary properties of the scalar product and

defining Zq
′′

q′ (ν) as Zq
′′

q′ (ν) = Θq′(ν)Θq′′(ν), it follows

(β(ν))2 = minu∈X

(∑Qa
q=1

(
Zqq (ν)−

∑Qa
q′=1,q′ 6=q Z

q′
q (ν)

)
(T qu,T qu)X
‖u‖2X

(5.8)

+
∑Qa

q′=1

∑Qa
q′′=q′+1 Z

q′′

q′ (ν)

(
T q
′
u+T q

′′
u,T q

′
u+T q

′′
u
)
X

‖u‖2X

)
.

Introducing the notation yq′,q′′ for the ν-independent parts of (5.8),

yq,q(u) =
(T qu, T qu)X
‖u‖2X

, (5.9)

yq′,q′′(u) =

(
T q
′
u+ T q

′′
u, T q

′
u+ T q

′′
u
)
X

‖u‖2X
, q′′ > q′, (5.10)

and defining the set Y as

Y = { y = (y1,1, ..., yQa,Qa) ∈ R
Qa(Qa+1)

2 | (5.11)

∃u ∈ X s.t. yq,q = yq,q(u), yq′,q′′ = yq′,q′′(u)},

allows to formulate the stability constant as a minimization problem over Y
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5.2 Successive Constraint Method

(β(ν))2 = min
y∈Y
J (ν; y), (5.12)

with the objective function

J : D × R
Qa(Qa+1)

2 → R (5.13)

J (ν; y) =

Qa∑
q=1

Zqq (ν)−
Qa∑

q′=1,q′ 6=q
Zq
′
q (ν)

 yq,q +

Qa∑
q′=1

Qa∑
q′′=q′+1

Zq
′′

q′ (ν)yq′,q′′ .

The central idea of the SCM is to define sets YLB and YUB such that YUB ⊂ Y ⊂
YLB holds, which implies

min
y∈YLB

J (ν, y) ≤ min
y∈Y
J (ν, y) ≤ min

y∈YUB
J (ν, y),

such that bounds on the discrete inf-sup constant are given by

(βLB(ν;CK))2 = min
y∈YLB(CK)

J (ν, y),

(βUB(ν;CK))2 = min
y∈YUB(CK)

J (ν, y).

Define the continuity constraint Box B and the constraint sample CK as

B =

Qa∏
q′=1

Qa∏
q′′=q′

[
min
w∈X

yq′,q′′(w),max
w∈X

yq′,q′′(w)

]
,

CK = {ν1, ..., νK} ⊂ Ξ.

The lower bound and upper bound sets are defined as

YLB(CK) = {y ∈ B|J (ν ′, y) ≥ β(ν ′) ∀ν ′ ∈ CK ,
J (ν ′, y) ≥ βLB(ν ′;CK−1) ∀ν ′ ∈ Ξ\CK},

YUB(CK) = {y∗(νk)|y∗(νk) = arg min
y∈Y
J (νk; y), νk ∈ CK}.
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5 Estimating the Inf-Sup Stability Constant

The lower bound set is motivated by constraining the bounding box B. It holds Y ⊂
B, but the bounding box is too large to yield useful bounds. When the discrete inf-sup
constant is solved at parameter locations CK , then each condition J (ν ′, y) ≥ β(ν ′)

constrains the set B. Geometrically, the Qa(Qa+1)
2 -dimensional set B is constrained

by a hyperplane which touches Y at the minimizer of ν ′. The second condition
J (ν ′, y) ≥ βLB(ν ′;CK−1) is introduced to ensure monotonically increasing lower

bounds with growing k. This leads to a linear program with Qa(Qa+1)
2 design variables

and Qa(Qa + 1) + |Ξ| inequality constraints. The upper bound set is the discrete set
of minimizers at parameter locations CK .

Algorithm 3 summarizes the SCM in pseudocode. The approximation quality can
be controlled by the relative error tolerance εSCM . Comparing to Algorithm 1 shows
that the SCM is also a greedy procedure.

Algorithm 3: Successive Constraint Method

INPUT: sampled parameter domain Ξ, tolerance εSCM
OUTPUT: lower bounds βLB(ν) and upper bounds βUB(ν) for all ν ∈ Ξ
1: set K = 1
2: choose CK = {νK} arbitrarily
3: compute β(νK), i.e., solve (5.6)

4: while maxν∈Ξ
βUB(ν;CK)−βLB(ν;CK)

βUB(ν;CK) ≥ εSCM do

5: set νK+1 = arg maxν∈Ξ
βUB(ν;CK)−βLB(ν;CK)

βUB(ν;CK)

6: compute β(νK+1), i.e., solve (5.6)
7: set CK+1 = CK ∪ {νK+1}
8: set K = K + 1
9: end while

Numerical Experiments

As an example, consider the coplanar waveguide model (section 4.1) in a fast fre-
quency sweep setting, where the parameter domain [0.6, 3.0] GHz is discretized with
1′000 uniformly chosen samples. Fig. 5.1 shows the relative approximation error to
the stability constant as the maximum over the sampled parameter domain. Since a
lower bound βLB(ν) and an upper bound βUB(ν) to the stability constant is available,
the relative approximation error eβ(ν) can be evaluated as

eβ(ν) =
|βUB(ν;CK)− βLB(ν;CK)|

|βUB(ν;CK)|
(5.14)

at each SCM iteration K. The maximum remains at 1 for many iterations, since each
sample νi ∈ CK only improves the lower bounds in a small neighborhood of νi. Once
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Figure 5.1: SCM relative approximation error to the stability constant. Shown is
the maximum error over the sampled parameter domain versus the SCM
iteration number.

the parameter domain is explored, the error quickly drops to the desired tolerance of
εSCM = 0.1.

It can be computationally beneficial to include randomized constraints in the SCM.
This is the case when the main computational effort lies with the linear programs
and not the eigenvalue problems. The idea is to sample the scalar coefficient func-
tions Θq(ν) randomly and independently from each other. This generates additional
constraints in the linear program, which can enhance the convergence. Let r denote a
vector of Qa uniformly and independently sampled variables in [0, 1]. Let r(q) denote
the q-th entry, and define the system matrix corresponding to r as Ar =

∑Qa
q=1 r(q)A

q

and the stability constant computed from this system matrix is denoted βr. Further
define the objective functional JR(r; y) for the random vectors as

JR(r; y) =

Qa∑
q=1

r(q)r(q)− Qa∑
q′=1,q′ 6=q

r(q)r(q′)

 yq,q +

Qa∑
q′=1

Qa∑
q′′=q′+1

r(q′)r(q′′)yq′,q′′ .

Let RK denote the set of the first K generated random vectors rk and define the
lower bound set
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5 Estimating the Inf-Sup Stability Constant

YRLB(CK , RK) = {y ∈ B|J (ν ′, y) ≥ β(ν ′) ∀ν ′ ∈ CK ,
JR(r, y) ≥ βr ∀r ∈ RK ,
J (ν ′, y) ≥ βLB(ν ′;CK−1) ∀ν ′ ∈ Ξ\CK},

and the corresponding lower bound on the discrete inf-sup constant is given by

(βRLB(ν;CK , RK))2 = min
y∈YRLB(CK ,RK)

J (ν, y).

Then the SCM can be altered to an SCM with random constraints depicted in
pseudocode in algorithm 4.

Fig. 5.1 shows this as ’SCM with Random Constraints’ where only 138 instead of
520 iterations are necessary. Note however, that with the random constraints, there
are two solved eigenproblems in each iteration. One eigenproblem arising from the
standard SCM and one with randomized constraints.

Algorithm 4: Successive Constraint Method with Random Constraints

INPUT: sampled parameter domain Ξ, tolerance εSCM
OUTPUT: lower bounds βLB(ν) and upper bounds βUB(ν) for all ν ∈ Ξ
1: set K = 1
2: choose CK = {νK} arbitrarily
3: generate RK = {rK} by a random number generator
4: compute β(νK), i.e., solve (5.6)
5: compute βrK , i.e., solve (5.6)

6: while maxν∈Ξ
βUB(ν;CK)−βRLB(ν;CK ,RK)

βUB(ν;CK) ≥ εSCM do

7: set νK+1 = arg maxν∈Ξ
βUB(ν;CK)−βRLB(ν;CK ,RK)

βUB(ν;CK)
8: generate rK+1 by a random number generator
9: compute β(νK+1), i.e., solve (5.6)

10: compute βrK+1 , i.e., solve (5.6)
11: set CK+1 = CK ∪ {νK+1}
12: set RK+1 = RK ∪ {rK+1}
13: set K = K + 1
14: end while

5.2.1 Successive Constraint Method Variants

The computational time of the SCM benefits from keeping only the currently active
constraints from one iteration to the next, see [VHFP11]. This does not influence the
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computed bounds. The SCM can be further improved upon with the natural norm
SCM (NNSCM), which reduces the complexity from O(Q2

a) to O(Qa) [HKC+10]. It
is thus applicable to problems with large affine expansions. It generates a decom-
position of the parameter domain, where the stability constant in each subdomain
is computer with respect to a reference stability constant. The certified natural
norm SCM (cNNSCM) [Che15] builds upon the NNSCM, in that it computes rigor-
ous bounds on the stbility constant. These methods promise further computational
gains, they are however not implemented in the computational examples.

5.3 Non-Rigorous Estimators

As the computational complexity of the SCM for computation of rigorous error es-
timators often is too high in the case of Maxwell’s equations, we consider estima-
tors βN (ν) ≈ β(ν). In particular, this section uses the upper bounds derived from
[HRSP07], and the MinRes, also called Petrov-Galerkin, and Galerkin estimators
(method 1 and method 3 from [MPR02]). The Kriging method [Ste99] directly in-
terpolates the function β(ν) and is also applied to the examples for comparison.

5.3.1 Successive Constraint Method Upper Bounds

While the lower bounds generated by the SCM are usually not sharp, the upper
bounds are. This motivates a non-rigorous method. In short, upper bounds βSCMN (ν) =
βUB(ν;CK) are computed for all ν ∈ Ξ, and applied with a scaling factor 0 < σUB <
1, as in

∆N (ν) =
‖r(·; ν)‖X′
σUBβSCMN (ν)

.

The set CK is obtained using typical sampling techniques. Here, we used Latin
hypercubes (see [Han91]) as sample sets, but numerical examples indicate that a
uniform deterministic sampling of the parameter domain yields about the same ap-
proximation quality as Latin hypercubes. A typical stopping criterion would be, that
when a newly enriched sample space CK does not significantly improve the upper
bounds, the algorithm can stop. Numerical examples suggest, that a choice of σUB
close to one, such as σUB = 0.9 is valid in this case.

As in section 5.2, it holds (β(ν))2 = miny∈Y J (ν; y) with the objective function

J : D × R
Q(Q+1)

2 → R

J (ν; y) =

Q∑
q=1

Zqq (ν)−
Q∑

q′=1,q′ 6=q
Zq
′
q (ν)

 yq,q +

Q∑
q′=1

Q∑
q′′=q′+1

Zq
′′

q′ (ν)yq′,q′′ .
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Constraining the minimization to

YUB(CK) = {y∗(νk)|y∗(νk) = arg min
y∈Y
J (νk; y), νk ∈ CK},

leads to the estimator (βSCMN (ν))2 = miny∈YUB J (ν; y), which satisfies βSCMN (ν) ≥
β(ν).

5.3.2 Galerkin Estimator

The Galerkin estimator is obtained when restricting the minimizing as well as maxi-
mizing space

βGN (ν) = min
w∈XN

max
v∈XN

a(w, v; ν)

‖w‖X‖v‖X
,

and is not necessarily an upper or lower bound to the discrete stability constant β(ν).
As the trial as well as test space is restricted, the large-scale eigenvalue problem

(5.6) is projected onto XN , i.e. solve for each parameter

XT
NA

νXNx = λminX
T
NMXNx (5.15)

for the eigenvalue of minimum magnitude, which then serves as an estimate to the
stability constant.

Alternatively, an estimator can be derived by solving

XT
NM

−1AνXNx = λminx (5.16)

for the eigenvalue of minimum magnitude. In the section on numerical results, using
this approximation will be briefly discussed.

Similar to the sampling of the field solution, the choice of the projection space
XN is driven by the idea, that the eigenvectors at certain parameter locations χ(νi)
provide a good approximation space. In [MPR02], it is shown that using the χ(νi)
gives arbitrarily good approximations with increasing sample size. Intuitively, this
becomes clear when considering that the projected system is supposed to approximate
eigenvectors χ(ν) for ν ∈ Ξ. Adding the field solutions E(νi), the space XG

N is defined
as

XG
N = {χ(νi)|i = 1, . . . , N} ∪ {E(νi)|i = 1, . . . , N}, (5.17)
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and XN is set as a rectangular matrix of an orthonormalized basis of the space XG
N .

The parameter domain is sampled using Latin hypercubes (see [Han91]) with sam-
ples νi, from which XG

N is derived. The estimator βGN (ν) is then evaluated for all
parameters of interest.

5.3.3 MinRes Estimator

An upper bound estimator can be derived by restricting the minimizing space to a
subset XN ⊂ X and define the MinRes estimator βPGN (ν)

βPGN (ν) := min
w∈XN

‖T νw‖X
‖w‖X

≥ min
w∈X

‖T νw‖X
‖w‖X

= β(ν). (5.18)

This estimator is termed MinRes estimator in [MPR02]. In particular, this ansatz
corresponds to the stability constant of the reduced Petrov-Galerkin system, intro-
duced in section 3.3.1. As in (5.17), choose

XPG
N = {χ(νi)|i = 1 . . . N} ∪ {E(νi)|i = 1 . . . N}, (5.19)

where χ(νi) is the eigenvector corresponding to β(νi). Let XN denote a rectangu-
lar matrix of an orthonormalized basis of the space XPG

N and solve the generalized
eigenvalue problem

XT
N (Aν)TM−1AνXNx = λminX

T
NMXNx, (5.20)

for the eigenvalue of minimum magnitude. This is a dense, generalized eigenvalue
problem but only of small size, since the large and sparse matrices are projected.
Taking the squared stability constant shows

(
βPGN (ν)

)2
= min

w∈XN

(T νw, T νw)X
(w,w)X

= min
w∈XN

wT (T ν)TMT νw

wTMw

= min
w∈XN

wT (Aν)TM−1Aνw

wTMw
,

using T ν = M−1Aν . Thus, the solution of (5.20) solves the minimization problem.
As βPGN (ν) is an upper bound to the discrete stability constant, it can be applied

as in
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∆N (ν) =
‖r(·; ν)‖X′
σUBβPGN (ν)

, (5.21)

with 0 < σUB < 1. However, numerical results indicate that the upper bounds of the
MinRes estimator are tight and allow for a choice of σUB close to one.

5.3.4 Kriging Interpolation Method

As a technique for interpolating functions depending on several parameters Kriging
is often used. Even though it was originally used to approximate functions that
have a non-deterministic character, it has become popular in computational science
and engineering applications in general, to create metamodels of black box functions,
that are expensive to evaluate. It typically gives better results than polynomial
approximation. This subsection describes the basic idea, see [LNS02] or [Ste99] for a
more detailed analysis.

Assume given parameter locations ν1, . . . , νn and the observation vector B =
[. . . , β(νi), . . . ]

T . The aim is to create an interpolant (metamodel) β̂. In this setup,
it is assumed that β as well as its estimator β̂ are random fields and that β̂ is a linear
combination of the given observations:

β̂(ν) =
n∑
i=1

λi(ν)β(νi) (5.22)

such that the variance Var[β̂−β] is minimized under the constraint that the expected
value E[β̂ − β] = 0. A linear regression model is used in this chapter, which means
that the random variable X(ν) = β(ν) −

∑2
0 αifi(ν) has zero expected value and a

covariance function given by

E[X(ν)X(µ)] = R(θ, ν, µ), (5.23)

where the fi span the space of linear functions for two parameters. Here, the covari-
ance function is given by a cubic spline and θ is determined during the algorithm to
best approximate. For this, the MATLAB® package DACE [LNS02] is used. An-
other choice is the SUMO toolbox [GCC+10], where comparable results would be
expected.

The error is
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β̂(ν)− β(ν) =

n∑
i=1

λi(ν)β(νi)− β(ν)

=
n∑
i=1

λi(ν)(
2∑

k=0

αkfk(νi) +X(νi))− (
2∑

k=0

αkfk(ν) +X(ν))

=
n∑
i=1

λi(ν)X(νi)−X(ν) +
2∑

k=0

αk(
n∑
i=1

λi(ν)fk(νi)− fk(ν)) (5.24)

For an unbiased predictor, demand that
∑n

i=1 λi(ν)fk(νi) = fk(ν), such that the
mean squared error of the predictor (5.22) is

E[(β̂(ν)− β(ν))2)] = E[(

n∑
i=1

λi(ν)X(νi)−X(ν))2]

= E[(X2(ν) +

n∑
i=1

n∑
k=1

λi(ν)λk(ν)X(νi)X(νk)

− 2

n∑
k=1

λi(ν)X(νi)X(ν))]

= 1 +

n∑
i=1

n∑
k=1

λi(ν)λk(ν)R(θ, νi, νk)− 2

n∑
k=1

λi(ν)R(θ, νi, ν),

(5.25)

with Lagrange function using Lagrange multiplier µ

L(λ, µ) =1 +
n∑
i=1

n∑
k=1

λi(ν)λk(ν)R(θ, νi, νk)

− 2
n∑
k=1

λi(ν)R(θ, νi, ν)− µ(
n∑
i=1

λi(ν)fk(νi)− fk(ν)). (5.26)

Imposing necessary optimality conditions using the notation Rij = R(θ, νi, νj) for
entries of the matrix R, λ =

∑n
i=1 λi(ν), r = [R(θ, ν1, ν), . . . , R(θ, νn, ν)]T , f =

[f0(ν)f1(ν)f2(ν)] and F = [f(ν1) . . . f(νn)]T leads to the linear system

(
R F

F T 0

)(
λ

µ̃

)
=

(
r

f

)
, (5.27)
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with definition µ̃ = −µ
2 . The solution is given as

µ̃ = (F TR−1F )−1(F TR−1r − f),

λ = R−1(r − Fµ̃), (5.28)

and the predictor is

β̂(ν) = (r − Fµ̃)TR−1[β(ν1) . . . β(νn)]T

= rTR−1[β(ν1) . . . β(νn)]T

− (F TR−1r − f)T (F TR−1F )−1F TR−1[β(ν1) . . . β(νn)]T . (5.29)

The regression problem

F [α0α1α2]T ' [β(ν1) . . . β(νn)]T (5.30)

has the generalized least squares solution

[α?0α
?
1α

?
2]T = (F TR−1F )−1F TR−1[β(ν1) . . . β(νn)]T . (5.31)

leading to the predictor

β̂(ν) = rTR−1[β(ν1) . . . β(νn)]T − (F TR−1r − f)T [α?0α
?
1α

?
2]T

= fT [α?0α
?
1α

?
2]T + rTR−1([β(ν1) . . . β(νn)]T − F [α?0α

?
1α

?
2]T )

= f(ν)Tα? + r(ν)Tγ?, (5.32)

with α? = [α?0α
?
1α

?
2]T and γ? = R−1([β(ν1) . . . β(νn)]T − F [α?0α

?
1α

?
2]T ). This means

that the predictor is a radial basis function interpolation with radial basis function
given by R with linear detrending [Ste99].

5.3.5 Comparison of Non-Rigorous Estimators

The non-rigorous estimators are compared on two examples. The coplanar waveguide
model (section 4.1) as an example of a lossy broadband structure and a 2D antenna
as an example of a highly resonant structure.
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Figure 5.2: Coplanar waveguide: Stability constant plotted over parametric variation
of frequency and geometry.

Figure 5.3: Coplanar waveguide: Stability constant plotted over parametric variation
of frequency, geometry and conductivity scaling.
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Coplanar Waveguide

The coplanar waveguide (section 4.1) is considered with two different parametriza-
tions. The parametric variation of frequency and geometry defines a two-dimensional
parameter domain and the additional variation of the conductivity defines a three
dimensional parameter domain.

The parametric variation in the frequency is ω ∈ [1.3, 1.6] GHz and in the width
of the middle strip line it is p ∈ [2.0, 14.0] mm. In the three parameter model, the
conductivity in the lower part additionally varies in [0.005, 0.02] S/m and the conduc-
tivity in the upper part varies in [0.01, 0.04] S/m. Both conductivities vary with the
same conductivity scaling parameter and it does not have a particular application in
mind, but is used formally to investigate the estimators on a three parameter model.

For the coplanar waveguide example, the discrete stability constant β(ν) is shown
in Fig. 5.2 under parametric variation of frequency and the width of the middle strip
line. Fig. 5.3 shows the three parameter example with additional parametric variation
of the conductivity.

The two-dimensional parametric domain is sampled using latin hypercubes and the
eigenproblem corresponding to the computation of β(ν) is solved at these parameter
locations. As the main computational effort lies in solving the eigenproblems, the
number of eigenproblems solved is plotted versus the relative approximation error to
compare the approximation quality of the estimators.

The numerical results of the mean error (Fig. 5.4 and Fig. 5.5) and the maximum
error (Fig. 5.6 and Fig. 5.7) over a fine grid of the parameter domain show a clear
indication for the MinRes estimator. It is the only estimator which resolves the
stability constant with a mean error of less than 1%. The SCM upper bounds and
the Kriging method also show convergence, but at a lower rate than the MinRes
approximation, while the Galerkin estimator does not show convergence and probably
requires a significantly larger train set. As the Kriging method is non-intrusive, it can
be readily applied to many problems, see [MN14] for the approximation of stability
factors in nonlinear PDEs.

The mean and maximum errors are computed by taking the mean/maximum over

the relative errors erel(ν) = |β(ν)−βN (ν)|
β(ν) of a sampled grid of dimension 30×35 in the

two parameter scenario and 10 × 10 × 15 in the three parameter case. This grid is
independent from the Latin hypercube samples used in the training process.

Table 5.1 shows the computation times1 of the estimators using five precomputed
basis vectors (i.e. function evaluations in case of Kriging). The precomputation of
the basis vectors took 160s, so this requires the largest portion of computational time.
Thus, the computation of the estimators is dominated by evaluating the large-scale
discrete stability constant, which is about 1.5 hours to generate the convergence plots.

1The computations were done in MATLAB2012b on a Ubuntu 12.04 operating system with an
Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz with 8GB RAM.
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Figure 5.4: Coplanar waveguide: Convergence of mean error over fine reference sam-
ple set in the two parameter example. Plotted is the number of eigen-
problems solved versus the mean relative approximation error.
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Figure 5.5: Coplanar waveguide: Convergence of mean error over fine reference sam-
ple set in the three parameter example. Plotted is the number of eigen-
problems solved versus the mean relative approximation error.
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Figure 5.6: Coplanar waveguide: Convergence of maximum error over fine reference
sample set in the two parameter example. Plotted is the number of eigen-
problems solved versus the maximum relative approximation error.
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Figure 5.7: Coplanar waveguide: Convergence of maximum error over fine reference
sample set in the three parameter example. Plotted is the number of
eigenproblems solved versus the maximum relative approximation error.

96
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Table 5.1: Comparison of Timings

Estimator Computation Time

MinRes 12s

Galerkin 0.6s

SCM upper bounds 30s

Kriging 0.6s

Table 5.2: Improving MinRes

Number of Eigenvectors mean relative error

1 0.1928

3 0.0152

5 0.0100

Evaluating the Galerkin and Kriging estimators over the sample set has a negligible
computational time. Also the SCM upper bounds (30s) and MinRes (12s) have a
computational time which is much less than the function evaluations. The SCM
bounds take a larger computation time as the evaluation of the objective functional
J (ν, y) for all y ∈ YUB is expensive. Taking into account the time required for
function evaluations however, the computation times of the estimators are comparable
for the model under consideration. In our test case a single function evaluation takes
32s, so that adding additional observations in the Kriging for instance does exceed
the total computation times of the other estimators.

In Table 5.2, the effect of using eigenvectors corresponding to the three and five
smallest eigenvalues is investigated. The aim is to further increase the quality of the
MinRes estimator. It uses 15 sample points in the two parameter example and collects
the eigenvectors in the projection spaceXN . The rationale behind this investigation is
that the additional eigenvectors might serve as good approximations to the minimizers
at other sample points. The numerical results show a significant improvement of the
approximation quality for small increases in the number of eigenvalues. Also note
that the computational time does not increase significantly by gathering additional
eigenvectors.

The two variants of the Galerkin estimator (5.15) and (5.16) are compared in
Table 5.3. Both tend to underestimate the stability constant, which leads to worse
approximations when increasing the basis size. They are not effective for the model
problem under consideration.

The MinRes estimator clearly manages to resolve the stability constant better
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Table 5.3: Comparison of Galerkin variants

No. of Eigenvectors mean error (5.15) mean error (5.16)

120 0.800 0.352

240 0.693 0.440

360 0.812 0.466

than all the other estimators. To use this estimator in a practical setting, a heuristic
stopping criterion can be used, in the sense that if newly computed stability constants
are already well resolved, the algorithm can stop.

Antenna

As an example of a highly resonant structure, we consider a rod antenna in a 2D unit
square. The material coefficients are given by µr = 1, σ = 0 and εr is set to 1 in one
half of the domain Ω1, while it is a parameter in the other half of the domain Ω2,
satisfying εr ∈ [2, 6]. The domain is shown in Fig. 5.8. The discretization has 4880
degrees of freedom and is done with 2D Nédélec finite elements and the boundary
is PEC. The source term is applied as a sine wave over the rod Γ. Additionally,
we consider a parametric variation in frequency of ω ∈

[
3π
2 ,

7π
2

]
. The values of

the stability constant are shown in Fig. 5.9, close to a resonance configuration the
stability constant tends to zero. This is a modified version of the model discussed in
[CHMR09].

The numerical results of the mean error (Fig. 5.10) and the maximum error (Fig. 5.11)
over a fine grid of the parameter domain show a different picture. The difference is
that the Galerkin estimator also provides accurate bounds, similar to the MinRes
estimator, while the SCM upper bounds and the Kriging do not properly resolve the
problem. Note that due to the many resonances, the maximum error remains large
as it is difficult to resolve every sample point. The difference between maximum and
mean error is three to four orders of magnitude in this example, while it is only about
one order of magnitude in the waveguide example.

The mean and maximum errors are computed by taking the mean/maximum over

the relative errors erel(ν) = |β(ν)−βN (ν)|
β(ν) of a sampled grid of dimension 170×150. This

grid is independent from the Latin hypercube samples used in the training process.

Table 5.4 shows the computation times of the estimators using five precomputed
basis vectors (i.e., function evaluations in case of Kriging), in the same way as done
in Table 5.1 for the coplanar waveguide example. Since this model is of smaller size,
namely 4880 degrees of freedom, the precomputation of the five basis vectors takes
only 1 s, so the computational time lies in computing the estimates.
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Figure 5.8: Computational domain of the rod antenna.
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Figure 5.9: Log-plot of the stability constant plotted over parametric variation of
frequency and relative permittivity in the antenna model.
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Figure 5.10: Convergence of mean error over fine reference sample set in the antenna
example. Plotted is the number of eigenproblems solved versus the mean
relative approximation error.
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Figure 5.11: Convergence of maximum error over fine reference sample set in the
antenna example. Plotted is the number of eigenproblems solved versus
the maximum relative approximation error.
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Table 5.4: Comparison of Timings excluding eigenvalue computation for the antenna
example.

Estimator Computation Time

MinRes 4 s

Galerkin 1.3 s

SCM upper bounds 3.8 s

Kriging 1.3 s

Evaluating the Galerkin and Kriging estimators over the sample set has a com-
putational time of 1.3 s. The SCM upper bounds take 3.8 s and MinRes estimates
4 s. The ratio between the estimate changes in comparison to the coplanar waveg-
uide example, since not only is the number of degrees of freedom smaller, but also
the number of affine terms. Since Qa = 3 for the antenna example is smaller than
Qa = 15 in the coplanar waveguide example, the algorithms which have a quadratic
dependence on Qa (i.e., MinRes and SCM upper bounds) perform better.

The computation time of Galerkin and SCM estimators increase in comparison to
Table 5.1, since the antenna example uses a finer grid of 170× 150 samples. The two
parameter coplanar waveguide example uses a grid of 30× 35 samples.

5.3.6 Comparison to Residual Based Estimators

We perform a comparison to established residual based estimators, where the stability
constant is assumed to be one, i.e., no estimation of the stability constant takes place.
The numerical results of the mean error (Fig. 5.12) from a reduced basis size of 55 to
80 show an advantage in model accuracy when using more precise stability constant
estimates. For a fixed reduced basis size, the highest accuracy is achieved when
using the precise Galerkin and MinRes estimates, while the SCM estimators give an
average accuracy and the Kriging and only residual estimates (”no estimates”) give
the lowest accuracy. The relative error is measured in the L2 norm of the electric
field. The estimators use the stability constant estimates corresponding to 40 solved
eigenproblems. Due to the many resonances in the model, the maximum relative
error does not fall below 100% for all estimators.

In the coplanar waveguide example, no advantage can be observed when using
more accurate estimates, see Fig. 5.13. This might be due to limited parametric
variation in the model, such that the heuristic greedy-maximum sampling does not
benefit from improved estimates.

The MinRes estimator manages to resolve the stability constant properly in the
considered examples. The Galerkin estimator, which is computed faster than the
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Figure 5.12: Reduced basis size versus the mean relative error in the field solution in
the L2 norm in the antenna example.
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norm in the coplanar waveguide example.
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5.4 Successive Constraint Method with Matrix-Valued Constraints

MinRes estimator, also resolved the antenna example well. The computational effort
of the estimators lies in solving the required eigenproblems. If this computational
effort is not prohibitive, model reduction driven by error indicators can benefit from
using these improved bounds. An advantage of using precise estimates of the stability
constant is that the error estimates are rigorous, i.e., in a resonance model, the
algorithm is aware of where the large errors occur, effectively being aware of the
resonance locations. To use this estimator in a practical setting, a heuristic stopping
criterion can be used, in the sense that if newly computed stability constants are
already well resolved, the algorithm can stop. An open question is if and how the
estimators can be incorporated into two-level approximation schemes for non-affine
parameter dependence such as the one presented in [LMR12].

5.4 Successive Constraint Method with Matrix-Valued
Constraints

Since the lower bounds generated by the SCM are not tight, the idea is to further
constrain the set YLB, such that the minimization

αLB(ν) = min
y∈YLB

J (ν, y),

yields better bounds on the coercivity constant α or inf-sup constant β, respectively.
The technique is outlined here for the coercivity constant and not the inf-sup constant.
It is however analogously applicable to the inf-sup constant, but much more technical.
Since the obtained numerical results from a Poisson problem did not show a significant
improvement, the implementation has not been taken to a level where it is applicable
to the inf-sup constant.

To incorporate more data from the bilinear form than just the Rayleigh quotient,
the bilinear form is sampled on 2- (or in general p-) dimensional subspaces, thus
creating more constraints and effectively a smaller bounding set. This moves the
problem from a linear programming problem to a general optimization problem with
a concave objective function.

Define analogously to (5.11)

Y2×2 ={y = (Y1, ..., YQa)|∃u1, u2 ∈ X (5.33)

with u1 ⊥ u2, ‖u1‖X = 1, ‖u2‖X = 1,

s.t. Yq =

(
aq(u1, u1) aq(u2, u1)

aq(u1, u2) aq(u2, u2)

)
},

103



5 Estimating the Inf-Sup Stability Constant

and the objective function as

J (ν; y) = λmin

 Qa∑
q=1

Θq(ν)Yq

 . (5.34)

The coercivity constant is then characterized by

α(ν) = min
y∈Y2×2

J (ν; y). (5.35)

Define bounding box B

B = {y = {Y1, . . . , YQa}|σ−q I ≤ Yq ≤ σ+
q I ∀q = 1, . . . , Qa}, (5.36)

where

σ−q = min
w∈X

aq(w,w)

‖w‖X
, (5.37)

σ+
q = max

w∈X

aq(w,w)

‖w‖X
, (5.38)

and for a constraint set of parameter samples CK , define

Y2×2
LB (CK) ≡{y = (Y1, ..., YQa) ∈ B |

∀µ′ ∈ CK ,

∑Q
q=1 Θq(ν

′)Yq ≥ Λ1(ν ′)I and∑Q
q=1 Θq(ν

′)trace (Yq) ≥ Λ1(ν ′) + Λ2(ν ′)

 .

Since Y ⊂ YLB, a lower bound is given by

αLB(ν) = min
y∈Y2×2

LB

J (ν, y). (5.39)

This optimization problem resembles a semidefinite programming problem with
the exception of the objective function. Since the objective function minimizes the
minimal eigenvalue of a 2× 2 matrix, a semidefinite program solver can not be used,
since the objective function cannot be cast as a linear functional in this case [VB96].
The use of a general optimization routine is therefore necessary. The computational
time is thus greatly increased from the standard SCM, which requires only linear
programs. Concludingly, since the experiments gave only minimal improvement in
the lower bound (Fig. 5.14), this approach is in its current form not beneficial.
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Figure 5.14: Comparison of standard SCM with matrix-valued SCM. The underly-
ing problem is a Poisson problem, see the ’Thermal Block’ example in
[RHP08].

5.5 Stability Constant of the Expanded system

Numerical tests showed, that the stability constant is not invariant under the trans-
formation to the expanded system (3.58). Nevertheless, the resonance configurations
are maintained, i.e., the expanded system matrix Aν (3.60) has a zero eigenvalue if
and only if the real, symmetric system matrix Aν has a zero eigenvalue.

Theorem 5.5.1 (Invariance of Singularities for the Expanded System). The ex-
panded system matrix Aν (3.60) is singular if and only if the real symmetric system
matrix Aν is singular.

Proof:
“⇒”

Assume Aν is singular, i.e., there exists a vector

[
v1

v2

]
with Aν

[
v1

v2

]
=

[
0

0

]
.

It is:

Aν
[
v1

v2

]
=

[
2Aν −Q −Q
−Q −2Aν −Q

][
v1

v2

]

=

[
2Aνv1 −Qv1 −Qv2

−Qv1 − 2Aνv2 −Qv2

]
,
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so that

2Aνv1 = Q(v1 + v2), (5.40)

2Aνv2 = −Q(v1 + v2), (5.41)

from which follows that Aν(v1 + v2) = 0, i.e., Aν is singular.
“⇐”
Assume Aν is singular, i.e., there exists a v such that Aνv = 0.
It then holds:

Aν
[

v

−v

]
=

[
2Aν −Q −Q
−Q −2Aν −Q

][
v

−v

]
=

[
2Aνv

2Aνv

]
=

[
0

0

]
,

i.e., Aν is singular.
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6 Stochastic Coefficients

Working with a deterministic model configuration assumes that the model, i.e.,
boundary and initial conditions, sources, material parameters and geometry, is known
to an unnatural degree of accuracy. The value of simulation results can thus be ques-
tioned and asked to be replaced by more meaningful statistical quantities.

Since the lithographic processes in semiconductor production are susceptible to
inaccuracies, there is a certain need for numerical simulations to reflect these inac-
curacies. The approach followed here, assumes normally distributed stochastic coef-
ficients to define the geometry. This leads to an ensemble of field solutions, derived
from realizations of the stochastic coefficients when taking the underlying distribution
into account. The transfer function is then measured in terms of statistical moments
(i.e., expectation and variance), which allows to quantify the system behavior. As-
suming an underlying stochastic distribution for the parameters, does not imply that
the transfer function follows the same underlying distribution, as will be seen from
numerical examples.

Sampling the transfer function by Monte-Carlo (MC) or stochastic collocation (SC)
enables the approximation of the statistical moments. The MC method suffers from
a slow mean convergence as O(1/

√
n), where n is the sample size [Gla03]. The SC

sample sizes on the other hand, grow exponentially in the parameter dimension. This
motivates the combination of sampling and model reduction. The basic idea is to
compute a reduced model valid over the sample set and use this model in the MC
and SC methods. Since the sample set will depend on the probability distribution,
the model reduction should take the distribution into account. Weighting the error
estimator with the probability measure is a natural approach to achieve this [CQR13].
In [BBM+09] and [Wie13], the error estimation has been extended to the statistical
moments, assuming boundedness in the random variations.

While there are numerous publications regarding stochastic coefficients (see [XH05],
[XT06] or [CQR14a]), the particular application to time-harmonic Maxwell’s equa-
tions can be found in [HWCW10], [BS15] or [HBon]. In contrast to previous work,
this work considers stochastic collocation for models with several random geometric
parameters.

The aim of the following computation is to show, that sampling strategies for the
statistical moments benefit from the RBM and that it is necessary, since the solution
at the mean parameter values is not the same as the mean of the ensembles.

As in [BBM+09], realizations of the random solutions are associated with deter-
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ministic solutions of a deterministic PDE with a parametrization corresponding to
the stochastic coefficients. Of particular interest are small random variations in ge-
ometry, due to inaccuracies in the production process. As an example application,
the coplanar waveguide is used, see section 4.1 for a model description.

6.1 The Weighted Reduced Basis Sampling

Let (Ωω,F ,P) denote a probability space. Given is a square integrable random
variable Y : Ωω → Γ ⊂ Rp with probability density function ρ and a function
g : Rp → Rd, where p is the number of parameters. The function g corresponds to
a mapping of realizations of a random variable to the output of the electromagnetic
system such that g(Y ) also is square-integrable [BS15].

Assuming normally distributed random variables, the probability density for the
random variable Y is given by the multivariate normal distribution

ρ(ν) =
1√

(2π)p det (Σ)
exp(−1

2
(ν − µ)TΣ−1(ν − µ)), (6.1)

with p-by-1 vectors ν of parameter realizations, µ of expectations and Σ a p-by-p sym-
metric positive definite covariance matrix. Since the parameter variations considered
here are uncorrelated, Σ is diagonal.

In a precomputation phase, a reduced model is generated which gives approximate
solutions to the sampling of the statistical moments. A greedy sampling with the error
estimator (3.24) is typically unfeasible, since the stochastic parameter spaces are too
large. Thus, the error estimator ∆N is weighted with the probability distribution
[CQR13], such that either

∆ρ,β
N (ν) =

‖r(·; ν)‖X′ρ(ν)

βLB(ν)
, (6.2)

can be used, or the error indicator

∆ρ
N (ν) = ‖r(·; ν)‖X′ρ(ν). (6.3)

Since the sampling of the stability constant also becomes unfeasible under stochas-
tic coefficients, the error indicator (6.3) is used. Using the greedy sampling 3.2.1 with
∆ρ
N generates a model, which enables the statistical sampling.

6.2 Sampling Statistical Moments

In statistical analysis, the expectation and variance of quantities of interest like the
response surface w.r.t. uncertain parameters is computed. Evaluating the expected
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transfer function E(g(Y )) and variance of the transfer function Var(g(Y )) under para-
metric variations, is computing the integrals

E(g(Y )) =

∫
Γ
g(x)ρ(x)dx, (6.4)

and

Var(g(Y )) =

∫
Γ
(g(x)− E(g(Y )))2ρ(x)dx (6.5)

=

∫
Γ
(g(x))2ρ(x)dx− (E(g(Y )))2, (6.6)

respectively.
To compute the expectation, the integral is replaced by a quadrature rule

E(g(Y )) =

∫
Γ
g(x)ρ(x)dx ≈

n∑
i=1

g(ξi)wi, (6.7)

with sample points ξi, weights wi and sample size n.
The software package SGMGA [Bur11], computes Hermite Genz-Keister quadra-

ture points and weights for the integral∫ ∞
−∞

g(x)exp(−x2)dx ≈
n∑
i=1

g(xi)wi. (6.8)

Applying integration by substitution to adjust to a (µi, σi) normally distributed
random variable leads to

E(g(Y )) ≈ 1√
π

n∑
i=1

g(
√

2σixi + µi)wi, (6.9)

and

Var(g(Y )) ≈ 1√
π

n∑
i=1

(g(
√

2σixi + µi))
2wi − (E(g(Y )))2. (6.10)

The number of sample points depends on the quadrature rule and the number of
parameters in an irregular fashion, see [BS15] and the references therein. Monte-Carlo
simulations use equally weighted samples, which are generated using the underlying
distribution. A drawback of the Monte-Carlo simulation is its mean convergence
rate of O(1/

√
n). The stochastic collocation is performed with Hermite Genz-Keister

sparse grids, generated by the Smolyak algorithm. These types of methods can exhibit
a mean convergence rate of O((log n)p/n) , see [PT97].
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6.3 Coplanar Waveguide with Stochastic Coefficients

This section covers the coplanar waveguide, investigated in section 4.1, with uncertain
geometric parameters. Related approaches with uncertain geometries of microwave
models can be found in [LPS99] or [HP06].

6.3.1 Model Setup

The model is governed by the second order time-harmonic Maxwell’s equations in
the electric field E

∇× µ−1∇× E + ıωσE − ω2εE = −ıωji in Ω, (6.11)

subject to essential boundary conditions E × n = 0 on ΓPEC = ∂Ω. The parameter
vector ν is introduced to denote parametric dependence in frequency ω, geometry
and material coefficients (µ, σ, ε).

After discretization with H(curl)-conforming Nédélec finite elements, solving (2.72)
reduces to solving a parameter-dependent sparse linear system A(ν)x(ν) = ıωb(ν) for
the state vector x(ν), which represents the electric field solution E(ν) in the discrete
space X.

Using the transformation outlined in example 2.3.3, the state vector x is split into
real and complex parts x = xreal + ıximag. The complex linear system is rewritten
as an equivalent system of twice the dimension over the real numbers. This leads
to a real and symmetric system matrix (2.79), where the parametric dependence
on ν carries over through the transformation. The full order simulation has been
performed with the finite element package FEniCS [LMW12].

The model setup at hand considers only geometric stochastic variations with a
deterministic parameter in the frequency. However, the computational approach is
also applicable to more general parametric variations.

In section 3.3.3, the affine transformations required to map to the reference domain
are shown for a deterministic geometric parameter in the coplanar waveguide. Fig. 6.1
shows the separation of the middle stripline into subsections. In the model with 10
geometric parameters, the affine transformation for a single geometry parameter is
extended to multiple parameters by splitting the computational domain into distinct
parts and applying the transformation to each subdomain. The same separation is
used for two and three geometric parameters. Most computations use the model with
two geometric parameters, since a finer discretization leads to models too complex
to sample.

The geometric variations lead to an affine parameter dependence in the bilinear
form. The affine decomposition for a single geometry parameter is then extended to
multiple parameters by splitting the computational domain into distinct parts and
applying the transformation to each subdomain.
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6.3 Coplanar Waveguide with Stochastic Coefficients

Figure 6.1: In the reference configuration, the width of the middle stripline is uni-
formly 6 mm. The width of the middle stripline varies for each colored
part independently in the model with 10 geometric parameters.

The parameter setup assumes the segments of the middle stripline width to be
normally distributed with mean 6 mm and standard deviation 0.1 mm. The underly-
ing geometry gives bounds to the degree of parametric variations, so that technically
a truncated normal distribution is considered. However, this difference is marginal,
i.e., the probability is less than 1×10−100 that a realization is outside the geometry
bounds. The frequency range under consideration is ω ∈ [1.3, 1.6] GHz.

The reduced space XN is built iteratively by a greedy sampling using the weighted
error indicator (6.3). Starting from an initial reduced space, spanned by the snapshots
at the expected values of the stochastic parameters, an error indicator is evaluated
over the parametric domain. The next snapshot will then be chosen where the max-
imum of the error indicator is attained.
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Figure 6.2: Bode plot over [1.3, 1.6] GHz. Sample expectation computed by Monte-
Carlo simulation with a standard deviation of σ = 0.1 mm. Transfer func-
tion without geometric variation (dark blue), two geometric parameters
(green), three geometric parameters (red) and ten geometric parameters
(light blue).

6.3.2 Numerical Experiments

In Fig. 6.2 the frequency response is shown for different discretizations of the ge-
ometry. A Monte-Carlo simulation computed the mean trajectories. A direction is
visible, in that with a finer resolution of geometry, the transfer function moves to the
left until 1.45 GHz.

The weighted RBM uses a sample size of 20 in the frequency and 25 in the geometry.
Only two geometric parameters are considered in the following. This is to keep the
sample spaces reasonably small, since they grow exponentially with the number of
parameters. The sample set in the geometric parameter covers the interval [5.5, 6.5].
Less than 1×10−6 possible realizations of the normally distributed parameters are
neglected by this interval, which ensures that most trajectories are well approximated.
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Figure 6.3: Realizations of the Monte-Carlo sampling with two geometric parameters
(green). In black the ±3σωp deviations from the mean.

Fig. 6.3 shows the ±3σ variations from the mean in black. The Monte-Carlo
sampled transfer functions are shown in green. Of the realizations, 97% are within
the ±3σ deviation over the whole frequency interval.

Despite the use of an error indicator, the approximation quality can still be as-
sessed. Computing the field solution at a number (here 20) of randomly chosen pa-
rameter locations (uniformly in the deterministic parameter and normally distributed
in the stochastic coefficients), allows to check the error decay at these locations, see
Fig. 6.4. Since only a one-sided projection is used here, the error decay is not as
smooth as when using the two-sided projections with supremizing operators.

The reduced model of order 73 reaches an approximation tolerance of 5×10−6

and is used subsequently. It is plugged into a Monte-Carlo simulation with 20’000
solves, where the computation time is negligible, as the resulting systems are only
of size 73 × 73. For the stochastic collocation RB the reduced system has been
evaluated at the Hermite Genz-Keister (HGK) points. The ’mean expectation’ shows
the arithmetic mean of the computed expected transfer function as an indicator to
compare the results. The ’mean relative error’ shows the mean of the relative error in
the transfer function with respect to the chosen reference solution. Each parameter
configuration requires 20 solves to resolve the transfer function.

The ’mean expectation’ shows the arithmetic mean of the computed expected trans-
fer function as an indicator to compare the results. The ’mean relative error’ shows
the mean of the relative error in the transfer function with respect to the chosen refer-
ence solution. The ’mean std. deviation’ shows the arithmetic mean of the computed
sample standard deviation over the frequency range. Each parameter configuration
requires 20 solves to resolve the transfer function. The table is ordered with respect
to accuracy of the methods.

In Table 6.1 the Monte-Carlo simulation serves as a reference solution for the
expectation. Most methods agree with the Monte-Carlo simulation up to an error
of 1 × 10−3 and also the reduced order model shows comparable accuracy to the
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Figure 6.4: Mean relative approximation error in the H(curl; Ω) norm plotted against
reduced basis size.

collocation and Monte-Carlo simulation. As the methods show a comparable mean
relative error over the frequency range, it is reasonable to look at the stochastic
collocation of order 4 as reference, which is shown in Table 6.2 and Table 6.3. The
collocation rule of order 4 shows an agreement to 1× 10−5 with the rules of order 3
and order 2 in the expectation. The reduced basis results confirm with an accuracy
of 5× 10−4.

6.4 Possible Extensions

The approach presented here is heuristic in nature, since the convergence is only
assumed from comparing results from different computational techniques, namely
Monte-Carlo simulation and stochastic collocation, either with or without reduced
basis model reduction. Depending on which result is taken as reference, very different
conclusions on the achieved accuracy can be drawn, as was discussed on the presented
results.

This can be remedied by extending the studies from [HUW13] to the Maxwell’s
equations. The studies provide error estimates in the expectation and variance for the
coercive case, which can be extended to the inf-sup stable case. Since the problem
studied here, depends affinely on the deterministic parameter and the stochastic
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6.5 Further Computational Approaches

Table 6.1: Comparison of computed expectation using the Monte-Carlo simulation of
the full system as reference.

Method Linear Systems mean expectation mean relative error

Monte-Carlo 14’000 solves 3.372528 reference

HGK (order 4) 2’020 solves 3.373268 1.1 · 10−3

HGK (order 3) 900 solves 3.373268 1.1 · 10−3

HGK (order 2) 420 solves 3.373266 1.1 · 10−3

HGK (order 1) 100 solves 3.373639 1.4 · 10−3

Monte-Carlo RB 73 solves 3.373168 1.8 · 10−3

HGK (order 4) RB 73 solves 3.373436 1.5 · 10−3

coefficients, no empirical interpolation or Karhunen-Loève expansion is considered.

It is shown in [HUW13], that the expectation of the error bound for the deter-
ministic problem gives on error bound on the error of the expectations between the
full and reduced order model. This is formulated in Lemma 6.4.1 for the Maxwell’s
equations.

Lemma 6.4.1 (Error Bound on the Expectation). The error of the expectations of
the full order solution E(ν, ω) and reduced order solution EN (ν, ω) are rigorously
bounded by the expectation of the error estimator for the deterministic case.

|E[E(ν, ω)]− E[EN (ν, ω)]| ≤ E[∆N (ν, ω)] = E[
‖r(·; ν, ω)‖X′
βLB(ν, ω)

] (6.12)

The proof uses the statement for the deterministic case, Lemma 3.2.1, and linearity
of the expectation. Similar error estimates can be established for linear and quadratic
outputs and for the variance. This procedure would allow a certification of the
accuracy of the obtained results.

6.5 Further Computational Approaches

Besides stochastic collocation and Monte-Carlo simulation, other computational ap-
proaches are in use.

The stochastic Galerkin method [GS91] discretizes the space of uncertain param-
eters and is thus also termed as stochastic finite element method. The resulting
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6 Stochastic Coefficients

Table 6.2: Comparison of computed expectation using the stochastic collocation with
Hermite Genz-Keister (order 4) rule as reference.

Method Linear solves mean expectation mean rel. error

HGK (4th) 2’020 3.373268 reference

HGK (3rd) 900 3.373268 1.8 · 10−6

HGK (2nd) 420 3.373266 3.3 · 10−5

HGK (4th) RB 73 3.373436 5.4 · 10−4

MC RB (20k) 73 3.373168 8.1 · 10−4

MC 14’000 3.372528 1.1 · 10−3

MC RB (14k) 73 3.383087 2.1 · 10−2

systems are very large, as they assemble through a Kronecker product of the discreti-
sation in physical space and parameter space.

The proper generalized decomposition (PGD, [CKL14]) is a technique to separate
the parameter dependencies of the solution into a product of functions. Since the
decomposition iteratively improves on the approximation quality, this can be used
as a model reduction technique. It requires a priori knowledge on which parameter
dependencies can be seperated. See [TMN14] for an application of the PGD to
stochastic parameters.

6.6 Summary of Numerical Experiments

The RB approach to Uncertainty Quantification shows the potential to significantly
reduce the computational costs. While a weighted sampling gave accurate results in
the computed example, this result can be certified by using error estimators in the
statistical quantities, see [HUW13] for more details.

The computational complexity does not only scale with the solved linear systems.
The RB method requires additionally the evaluation of the residual over the para-
metric domain, which increases computational complexity by a factor between two
and three. The cost for evaluating the residual thus becomes the bottleneck when
using a tensor grid in higher parameter dimensions. Using appropriate sparse grids or
other techniques as sampling space thus seems a viable future research perspective.
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6.6 Summary of Numerical Experiments

Table 6.3: Comparison of computed standard deviation using the stochastic colloca-
tion with Hermite Genz-Keister (order 4) rule as reference.

Method Linear Systems mean std. deviation

HGK (4th) 2’020 0.1015

HGK (3rd) 900 0.1015

HGK (2nd) 420 0.1004

HGK (4th) RB 73 0.1009

MC RB (20k) 73 0.0963

MC 14’000 0.1160

MC RB (14k) 73 0.0959
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7 Reduced Basis Model Reduction for
Time-Dependent Maxwell’s Equations
with Stochastic Temporal Dispersion

7.1 Reduced Basis Model Reduction of Time-Dependent
Problems

As outlined in section 3.3.7, time-dependent problems are typically treated with a
POD-Greedy approach [HO08], [Haa14]. The POD compression in time offers some
tuning options. Either a fixed number of modes can be appended to the projection
basis, or a number of modes corresponding to a percentage of the sum of the singular
values. A high percentage, such as 99% is typically sufficient to resolve the trajectory
accurately. This will be used here, such that the modes corresponding to the largest
singular values are chosen until the sum of the associated singular values reaches 99%
of the sum of all singular values.

In section 2.4, the time-dependent Maxwell’s equations with temporal dispersion
are derived. It is based on a single-pole expansion of the electric susceptibility χ.
Such an expansion is also called a Debye model. To avoid computing the convolution
integral, an auxiliary differential equation in the polarization is derived [Jin11], see
(7.2) and (7.3). The resulting equations are termed Maxwell’s equations with bipolar
orientational temporal dispersion, or Maxwell-Debye model for short [BF08]. Here,
the term ε0εrE(t,x) is replaced by

ε0ε∞E(t,x) + ε0

∫ t

−∞
E(t− τ,x)χ(τ)dτ. (7.1)

The Debye relaxation models polar molecules with a permanent dipole moment.
Under the application of an external field, the molecules rotate and cause friction,
which leads to an exponential damping.

The POD-Greedy approach evaluates the error indicator (3.67) over the parameter
domain to select the next parameter configuration. At this parameter configuration,
the trajectory is computed and condensed by the POD. The dominant modes are
then appended to the projection basis.
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7.2 Maxwell’s Equations with Dielectric Relaxation - Computations on a
Unit Square

7.2 Maxwell’s Equations with Dielectric Relaxation -
Computations on a Unit Square

Consider the Maxwell-Debye model formulated as second-order form in the electric
field E and the polarization P

1

µ0
∇×∇× E + ε0ε∞∂

2
tE = f − ∂2

t P (7.2)

∂tP +
1

τ
P =

ε0(εs − ε∞)

τ
E (7.3)

with relaxation time τ , relative permittivity at low-frequency limit εs and relative
permittivity at high-frequency limit ε∞, and a broadband input source f , which
is modeled as a Gaussian pulse. The equations are discretized with Nèdèlec finite
elements of first order over a 2D unit square, i.e., 1 m-by-1 m.

Either normalized physical values can be used or actual, physical values. This work
uses physical values to simulate wave propagation through media such as water or
foam. Since the relaxation time is in the range of nanoseconds, the time-stepping
is chosen as ∆t = 1 × 10−11 s. To achieve a broadband input source, a Gaussian
pulse is assumed at the center of the computational domain. To excite the system,
the Gaussian pulse is taken in the magnetic fields z-component, perpendicular to the
computational domain. The excitation to the electric field in the x- and y-component,
occurs then by taking the curl of the pulse. Experiments have shown, that this excites
a large number of frequencies. The derivative of the Gaussian pulse is used to excite
the system in time.

The computational mesh consists of 9′680 degrees of freedom and assumes a PEC
condition on all boundaries. The time-stepping is realized by a Runge-Kutta-Nyström
scheme in the electric field and an explicit Euler in the polarization. The Runge-
Kutta-Nyström scheme [CSS92] makes use of the particular form Ë = F(t, E) found
in (7.2) by a simple transformation so that ∂2

tE is on one side of the equation and
F(t, E) denotes the other side. The equations (7.2) and (7.3) are solved in turn, i.e.
assuming an initial condition of E(t, x) = 0 and P (t, x) = 0, first (7.2) is solved and
then the time derivative of (7.3) is solved for ∂2

t P with ∂tE plugged in. The solution
for ∂2

t P is then used in (7.2) for the next timestep. The Runge-Kutta-Nyström
scheme used here computes for each timestep tk
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with Stochastic Temporal Dispersion
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k3),

such that ∂2
tE(tk+1) can be computed by evaluating F at tk+1, but this is actually

not necessary, since ∂2
tE(tk+1) is not required in (7.3).

In Fig. 7.1 and Fig. 7.2, two example trajectories are shown. Due to the smaller
permittivities in Fig. 7.1, the propagation velocity is larger and the fields are not as
strongly damped as in Fig. 7.2.

7.3 POD-Greedy Model Order Reduction

The model is parametrized by τ ∈ [1× 10−10, 1× 10−6] s and ∆ε = εs − ε∞ ∈ [1, 5],
defining the 2-dimensional parameter domain D = [1 × 10−10, 1 × 10−6] × [1, 5]. A
reduced model which accurately captures the dynamics in the parameter domain D
is generated.

The greedy algorithm iteratively builds a basis for a reduced model by evaluating
an error indicator over a sampled parameter domain and adding basis vectors at the
parameter location where the error indicator attains its maximum. A parameter lo-
cation is denoted by a parameter vector ν = [τ,∆ε] and trajectories of 5000 timesteps
were computed for each parameter evaluation.

An initial parameter location is chosen in the center of the parameter domain. The
full-order model trajectory is computed at this parameter location (in the electric
field and the polarization) and a POD-basis is computed for the polarization and
the electric field independently from each other by capturing 99% of the energy
of the modes. A composite basis of reduced dimension 2N is then established by
taking the N largest modes from the POD-basis of the electric field and polarization,
respectively. The error indicator is based on the residual R(w; ν), which is evaluated
over the sampled parameter domain, i.e. 9-by-5 samples.

The greedy algorithm took four iterations to compute a basis which accurately
captures the dynamics in the domain, i.e. the actual relative error is less than 1×10−6

at a reduced dimension of 150. The full order model is of dimension 9680.
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7.3 POD-Greedy Model Order Reduction

Figure 7.1: Snapshots of one component of the trajectory using ε∞ = 1, εs−ε∞ = 0.5
and τ = 1×10−9. From top left to bottom right, timesteps 100, 150, 200,
250, 300, 350, 400, 450 and 500.
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7 Reduced Basis Model Reduction for Time-Dependent Maxwell’s Equations
with Stochastic Temporal Dispersion

Figure 7.2: Snapshots of one component of the trajectory using ε∞ = 2, εs−ε∞ = 1.5
and τ = 1×10−8. From top left to bottom right, timesteps 100, 150, 200,
250, 300, 350, 400, 450 and 500.
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7.4 Uncertainty Quantification
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Figure 7.3: Maximum of the actual relative error plotted against the reduced model
size.

Fig. 7.3 shows the actual relative error in the L2-norm for varying reduced model
sizes. Plotted is the maximum attained over the sampled parameter domain, averaged
over all timesteps. Exponential convergence speed can be seen, starting at a reduced
basis size of about 110.

7.4 Uncertainty Quantification

Consider τ and ∆ε as normally distributed, stochastically varying parameters of
the generated reduced model. Using Monte-Carlo simulation, Hermite Genz-Keister
stochastic collocation and Gauss-Hermite stochastic collocation, the expectation and
variance can be computed and empirically validated by comparing the error amongst
the different methods. The theoretical and computational approach taken is the same
as outlined in chapter 6.

Using the reduced model significantly reduces computational costs, as each sample
point evaluation uses the reduced model. The dominating computational effort then
lies in the number of system solves used to generate the reduced model.

The stochastic setting could be already incorporated in the model reduction by
using the weighted RB, which has been introduced in [CQR13]. In the weighted RB,
the error indicator takes the probability distribution into account as well.

Both stochastic parameters are modeled as normally distributed random variables
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Figure 7.4: Mean trajectory of the Monte-Carlo simulation in green, the± σ-variation
is shown in black. Of the Monte-Carlo realizations, 32% fit the σ-tube
over all timesteps.

and are assumed to be stochastically independent from each other. The SGMGA
package [Bur11] is employed for computation of Hermite Genz-Keister and Gauss-
Hermite integration points and weights. A single degree of freedom has been chosen
as output functional and trajectories of 5000 timesteps were computed for each pa-
rameter evaluation. In Table 7.1 the Gauss-Hermite (GH) stochastic collocation of
order 4 serves as a reference solution for the expectation. The Hermite Genz-Keister
(HGK) stochastic collocation of order 4 shows similar results when taken as a ref-
erence solution for the expectation. As the Monte-Carlo (MC) simulation coincides
with other methods only to a level of 10−2, the GH of 4th order is a more viable
reference choice.

The RB model size used was 200 for all computations, which shows a relative error
of 3 · 10−10 to the full order model at the expectation values of the parameter. The
Monte-Carlo simulation performed 10000 solves with the reduced model, while the
collocation methods of 4th order only took 97 solves (GH) and 101 solves (HGK),
respectively.

In summary, the RB approach to Uncertainty Quantification significantly reduces
the computational costs, when used in a sampling with a weighted error indicator.
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Figure 7.5: Solution at the mean parameter values (blue) and expectation of the
Monte-Carlo simulation (red). Due to the oscillations around zero and
the increasing shift between both trajectories, the error is larger than
50%.

Table 7.1: Comparison of methods using the stochastic collocation with Gauss-
Hermite (order 4) rule as reference.

Method mean expectation mean rel. error mean std. dev.

GH (4th) 2.8577464 · 10−25 reference 4.4318510 · 10−22

HGK (4th) 2.8577467 · 10−25 1.52 · 10−08 4.4318509 · 10−22

HGK (3rd) 2.8577504 · 10−25 6.57 · 10−07 4.4318448 · 10−22

GH (3rd) 2.8577492 · 10−25 1.01 · 10−06 4.4318551 · 10−22

HGK (2nd) 2.8584345 · 10−25 1.63 · 10−04 4.4289067 · 10−22

GH (2nd) 2.8585074 · 10−25 1.65 · 10−04 4.4284254 · 10−22

MC 2.7470865 · 10−25 3.66 · 10−02 4.3727445 · 10−22
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Figure 7.6: Trajectory of a degree of freedom, which was hit by the main wavefront.
Mean trajectory of the Monte-Carlo simulation in green, the± σ-variation
is shown in black.
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8 Conclusions and Outlook

It could be shown, that the RBM computes low-order, accurate models of three-
dimensional industrial applications governed by Maxwell’s equations. The chosen
input-output relation corresponds to Z-parameters, where the Petrov-Galerkin pro-
jection based on the supremizing operators turned out to significantly increase the
approximation quality.

The central concept of the offline-online decomposition can be viewed from different
angles, depending on the available resources. The standpoint of having a virtually
infinite offline time, i.e., offline computations are performed on supercomputers and
the task is broken down into parallelizable parts (for instance by a decomposition of
the parameter domain), allows for rigorous error estimation, certifying the accuracy
in the online phase. It potentially also generates the lowest-order models, as a large
offline time can make use of compliant expanded formulations or use an optimization
routine to determine the precise location of the current maximum error estimate. In
practice, the offline time might be limited, such that heuristic techniques of stability
constant estimation or checking the accuracy by computing the full order solution at a
few random solutions are of value. While the offline computational times for rigorous
error estimation are a matter of ongoing investigation, non-rigorous error estimation
computes usable models in a reasonable time. In particular, the MinRes estimator
gives accurate approximations to the stability constant, as shown in chapter 5.

In the case of geometries set by stochastic coefficients, the weighted RBM generates
a reduced order model, valid over the range of the random variables. This potentially
allows for multiple purposes. In this work, the benefit in collocation methods was
shown. As the different collocation methods showed an agreement up to an order
of 1×10−6 in the statistical moments using the reduced basis model, the weighted
sampling can be considered usable. But even with a weighted error indicator, high di-
mensional stochastic parameter spaces require a huge number of residual evaluations.
In this setting, the evaluations of the coefficient functions turned out to be limiting
the runtime, such that the modeling with an EIM-like compression technique for affine
expansions with many terms might be of use in more complex models. Using sparse
grids as a sample space might also potentially remedy this situation. The reduced
model could also be used in a stochastic Galerkin setting for instance. Since the affine
parameter dependency is maintained in the reduced order model, the reduced order
model could be computed a priori and then the stochastic Galerkin method is applied
to the reduced order model. This would lead to significantly smaller system sizes in
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8 Conclusions and Outlook

the stochastic Galerkin method. Deriving error bounds in the statistical moments is
desirable in this context.

Besides the time-harmonic Maxwell’s equations, also the time-dependent case is
amenable to the RBM. The case of temporally dispersive materials shows, that the
RBM can compress even such complex, parametric models, thus enabling more physi-
cal simulations. In particular, nonlinear relations in Maxwell’s equations are currently
unexplored by the RBM, while being present in many engineering problems.

Comparing the RBM to established techniques for the model reduction in electro-
magnetics, namely the proper orthogonal decomposition (POD) and moment match-
ing (MM), shows that the RBM gives comparable accuracy. A particular feature is
the error estimation, which is not common in POD or MM, and could even give the
RBM an advantage over POD and MM in more complex models. The comparison
showed an advantage of the MM when considering the computational effort. The
computation of additional moments is not expensive when the LU decomposition of
the system matrix is available. This could be of use to the reduced basis methodol-
ogy, in that also derivatives similar to the MM are included in the RB space. The
potential advantage were a reduced offline time while maintaining the same accu-
racy. However, when directly using the RB Taylor spaces, such an advantage was not
visible, although this might be due to model specific differences.

The RBM is designed as a black-box algorithm for parameter estimation in a wide
variety of engineering tasks. Judging from the presented results, the RBM is beneficial
in fast frequency sweeps, affine parameter dependencies with moderate (≤ 3) number
of parameters and coupled linear problems, when a relaxed, i.e., non-rigorous, error
estimation is used.
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Theses

1. This work deals with the application of the reduced basis model reduction to
electromagnetic problems. It shows that the reduced basis method is beneficial
in parameter estimation tasks.

2. The fundamentals of computational electromagnetics and the reduced basis
method are presented. Particularities, such as the Petrov-Galerkin projection
and the MinRes estimator, which allow the successful application of the reduced
basis method to computational electromagnetics are discussed in depth.

3. Numerical examples show an exponential convergence of the approximation
error between the high-fidelity and reduced-order model.

4. The benefit of proper sampling with an error estimator instead of an error
indicator is shown.

5. Since a rigorous error estimation can be too computationally involved due to
the expensive inf-sup constant estimation, quickly computable, non-rigorous
alternatives are explored. The MinRes estimator gave the most accurate ap-
proximations.

6. Stochastically varying parameters influence the transfer function, such that the
solution at the mean parameter values does not match the expectation of the
transfer function.

7. The stochastic collocation in combination with the reduced basis method pro-
vides an efficient computational technique for sampling the statistical moments.

8. Weighting the error estimator or error indicator with the probability density
function allows to sample the parameter domain efficiently.

9. The reduced basis method is also applied to time-dependent Maxwell’s equa-
tions with stochastically varying temporal dispersion, which shows the poten-
tial, that the reduced basis method can be used in more physically motivated
models. In particular, nonlinear material relations are often encountered in
Maxwell’s equations, which might be amenable to the reduced basis model re-
duction.
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Theses

10. In the case of a quickly oscillating time-dependent electromagnetic field with
stochastically varying temporal dispersion, the solution at the mean parameter
values and the expectation of the transfer function, show an increasing shift in
time. This creates a significant relative error between both trajectories.
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first type. Technical report, 2003.

140



Bibliography

[Sen07] S. Sen. Reduced Basis Approximation and A Posteriori Error Estima-
tion for Non-Coercive Elliptic Problems: Application to Acoustics. PhD
thesis, Massachusetts Institute of Technology, 2007.

[Sen08] S. Sen. Reduced-basis approximation and a posteriori error estimation
for many-parameter heat conduction problems. Numerical Heat Trans-
fer, Part B: Fundamentals, 54(5):369–389, 2008.

[SVH+06] S. Sen, K. Veroy, D.B.P. Huynh, S. Deparis, N.C. Nguyen, and A.T.
Patera. Natural norm a posteriori error estimators for reduced basis
approximations. Journal of Computational Physics, 217(1):37 – 62, 2006.
Uncertainty Quantification in Simulation Science.

[Sta12] K. K. Stavrakakis. Model Order Reduction Methods for Parametrized
Systems in Electromagnetic Field Simulations. PhD thesis, Technical
University Darmstadt, 2012.

[SWAW09] K. K. Stavrakakis, T. Wittig, W. Ackermann, and T. Weiland. Lineariza-
tion of Parametric FIT-Discretized Systems for Model Order Reduction.
IEEE Transactions on Magnetics, 45:1380 – 1383, 2009.

[Ste99] M. L. Stein. Interpolation of Spatial Data. Some Theory for Kriging.
New York, NY: Springer, 1999.

[TMN14] L. Tamellini, O. Le Maitre, and A. Nouy. Model reduction based on
proper generalized decomposition for the stochastic steady incompress-
ible Navier–Stokes equations. SIAM Journal on Scientific Computing,
36(3):A1089–A1117, 2014.

[VHFP11] S. Vallaghe, A. Le Hyaric, M. Fouquembergh, and C. Prud’homme. A
successive constraint method with minimal offline constraints for lower
bounds of parametric coercivity constant. Technical report, 2011.

[VB96] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Rev.,
38(1):49–95, March 1996.

[VP05] K. Veroy and A. T. Patera. Certified real-time solution of the
parametrized steady incompressible Navier-Stokes equations: rigorous
reduced-basis a posteriori error bounds. International Journal for Nu-
merical Methods in Fluids, 47(8-9):773–788, 2005.

[VPP03] Karen Veroy, Christophe Prud’homme, and Anthony T. Patera.
Reduced-basis approximation of the viscous Burgers equation: rigorous
a posteriori error bounds. Comptes Rendus Mathematique, 337(9):619 –
624, 2003.

141



Bibliography

[Wei77] T. Weiland. A discretization method for the solution of Maxwell’s equa-
tions for six-component fields. Electron. Commun. AEUE, 31(3):116 –
120, 1977.

[Wie13] B. Wieland. Reduced Basis Methods for Partial Differential Equations
with Stochastic Influences. PhD thesis, Ulm University, 2013.

[WMSW02] T. Wittig, I. Munteanu, R. Schuhmann, and T. Weiland. Two-Step
Lanczos algorithm for model order reduction. IEEE Transactions on
Magnetics 38, 2:673 – 676, 2002.

[WSW06] T. Wittig, R. Schuhmann, and T. Weiland. Model order reduction for
large systems in computational electromagnetics. Linear Algebra and its
Applications, 415:499 – 530, 2006.

[XH05] D. Xiu and J. S. Hesthaven. High-order collocation methods for dif-
ferential equations with random inputs. SIAM Journal on Scientific
Computing, 27(3):1118–1139, 2005.

[XT06] D. Xiu and D. M. Tartakovsky. Numerical methods for differential
equations in random domains. SIAM Journal on Scientific Computing,
28(3):1167 – 1185, 2006.

[YZC06] Yu Y. Zhu and A. C. Cangellaris. Multigrid finite element methods
for electromagnetic field modeling. IEEE Press series on electromag-
netic wave theory. Piscataway, N.J. IEEE Press Hoboken, N.J. Wiley-
Interscience, 2006.

[Yue12] Y. Yue. The Use of Model Order Reduction in Design Optimization Al-
gorithms (Het gebruik van modelreductie in algoritmen voor ontwerpop-
timalisatie). PhD thesis, Numerical Analysis and Applied Mathematics
Section, Department of Computer Science, Faculty of Engineering Sci-
ence, November 2012. Meerbergen, Karl (supervisor).

[Zag06] S. Zaglmayr. High Order Finite Element Methods for Electromagnetic
Field Computation. PhD thesis, JKU Linz, 2006.

[ZFLB15] Y. Zhang, L. Feng, S. Li, and P. Benner. Accelerating pde constrained
optimization by the reduced basis method: application to batch chro-
matography. International Journal for Numerical Methods in Engineer-
ing, 2015.

[ZDP00] T. Zhou, S. L. Dvorak, and J. L. Prince. Application of the Pade via
Lanczos (PVL) algorithm to electromagnetic systems with expansion

142



Bibliography

at infinity. In Proc. of 2000 Electronic Components and Technology
Conference, pages 1515 – 1520, 2000.

143





Statement of Scientific Cooperations

The work at hand has been developed in cooperation with various coauthors. In
the following, the contributions of the coauthors are clarified. The following people
contributed to this work:

� Peter Benner (PB), Max Planck Institute for Dynamics of Complex Technical
Systems;

� Christopher Beattie (CB), Virginia Tech;

� Jan Hesthaven (JH), EPFL;

� Sara Grundel (SG), Max Planck Institute for Dynamics of Complex Technical
Systems.

8.1 Chapter 4

PB provided the idea to pursue this topic and advised during the ongoing work.

8.2 Chapter 5

PB advised during the ongoing work, SG provided the Kriging method section 5.3.4
and numerical computations and CB provided the section 5.4 on the SCM with
matrix-valued constraints.

8.3 Chapter 6

PB provided the idea to pursue this topic and advised during the ongoing work.

8.4 Chapter 7

JH provided the idea to pursue this topic and advised during the ongoing work.

Magdeburg, 22nd February 2016

145



Statement of Scientific Cooperations

146



Declaration of Honor

I hereby declare that I produced this thesis without prohibited assistance and that
all sources of information that were used in producing this thesis, including my own
publications, have been clearly marked and referenced.

In particular I have not wilfully:

� Fabricated data or ignored or removed undesired results.

� Misused statistical methods with the aim of drawing other conclusions than
those warranted by the available data.

� Plagiarised data or publications or presented them in a disorted way.

I know that violations of copyright may lead to injunction and damage claims from
the author or prosecution by the law enforcement authorities.

This work has not previously been submitted as a doctoral thesis in the same or a
similar form in Germany or in any other country. It hast not previously been
published as a whole.

Magdeburg, the 22nd February 2016

147



Schriftliche Ehrenerklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter
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