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Topological quasi-one-dimensional state of interacting spinless electrons
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By decreasing the transversal confinement potential in interacting one-dimensional spinless elec-
trons and populating the second energetically lowest sub-band, for not too strong interactions system
transitions into a quasi-one-dimensional state with dominant superconducting correlations and one
gapless mode. By combining effective field theory approach and numerical density matrix renormal-
ization group simulations we show that this quasi-one-dimensional state is a topological state that
hosts zero-energy edge modes. We also study the single-particle correlations across the interface
between this quasi-one-dimensional and single-channel states.

I. INTRODUCTION

One surprising result of the integer quantum Hall ef-
fect studies is that band insulators of electrons with
filled Landau levels can possess non-trivial topological
properties1, which in particular make quantum Hall sys-
tems important tools in metrology.

After the work of Haldane2, where it was shown that
Landau levels are not a necessary ingredient for the non-
trivial topological nature of band insulators, many more
electron systems have been shown to possess topologi-
cal properties, including those which do not rely on bro-
ken time-reversal invariance and can occur as in bulk
insulators3–6, so in superconductors with fully gapped7

or partially gapped spectrum8–10 within the particle-
number-non-conserving (BCS-type) as well as particle-
number-conserving models. The most common property
of these topological states is presence of the gapless de-
grees of freedom associated with the boundaries. The
emergence of the new state of the matter, topological
state, apart of the deeper understanding of the behav-
iur of many-electron systems, can also find application
in, e.g., quantum computation due to topologically pro-
tected Majorana quasiparticles that they can host11.

In this work, we revisit the problem of the phase
transition between the single-channel and quasi-one-
dimensional states of interacting quantum wire of spin-
less electrons with decreasing the transversal confine-
ment frequency12–19 in the regime when interactions are
not too strong and two-band description can be applied.
Using combination of effective field theory bosoniza-
tion and density matrix renormalization group (DMRG)
method20,21, we show that when starting populating
the second lowest transverse sub-band, the quasi-one-
dimensional (q1D) ground state with single gapless mode
(a superconductor with quasi-long-range order in pairing
field) is (or at least is connected adiabatically, without
phase transition to) a topological state (Tq1D) charac-
terised by the double degeneracy and emergence of the
zero-energy edge modes for open boundary conditions. In
contrast, for periodic boundary conditions the double de-
generacy of the ground state is lifted. We also check that
the above physics is stable with respect to weak time-
reversal symmetry-breaking perturbations and character-
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FIG. 1. A sketch of the phase diagram of interacting spinless
electrons as function of interaction range and chemical po-
tential or transversal confinement length in the regime when
interactions are not too strong and restriction to the two-
band model can be justified. Tq1D stands for quasi-one-
dimensional superconducting state and CDWπ stands for out
of phase charge-density wave. In each phase, central charge
c indicates the number of gapless modes present. The zigzag
state indicated by the gray area is realized in the regime of
strong interactions and is outside of the two-band approxima-
tion.

ize numerically quantum phase transition from single-
channel regime to Tq1D state. At the end of our work
we study the single-particle correlation functions for the
case when a spatial interface between the single-channel
and Tq1D regimes is present.

In experiments on quantum wires one can change
chemical potential of electron gas by applying a gate
voltage. For strong Coulomb interactions and small
chemical potential, electron gas forms a crystal like one-
dimensional structure for strong transversal confinement:
the so-called Wigner crystal22 melted by quantum fluctu-
ations at large distances23. With increasing the electron
density, or equivalently decreasing the transversal con-
finement frequency, electron gas in the regime of strong
interactions explores the second dimensionality and en-
ters the quasi-one-dimensional planar state with devel-
oping a zigzag structure22. The signatures of such tran-
sitions were revealed experimentally in low-temperature
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transport properties of one-dimensional quantum wires,
in GaAs/AlGaAs heterostructures, as the confinement
strength and the carrier density were varied24,25. Both
the linear and zigzag phases have only one gapless ex-
citation mode, which corresponds to longitudinal slid-
ing of the crystal. The classical transition between the
linear and zigzag structures, induced by decreasing the
transversal confinement frequency, was explored in ex-
periments on ionic chains26–28. For the dipolar systems,
using Monte Carlo simulations, it was observed that
quantum fluctuations smoothen the classical transition
between linear to planar structures29. Approximating
transverse direction with discrete (up or down) variable,
using two leg ladder lattice, it was suggested that quan-
tum fluctuations melt zigzag like order of ladder site den-
sities, however, string order emerges30 as reminiscent of
transversal ordering in the “particle basis”. Using Monte
Carlo simulations, it was shown that long-range order of
transverse coordinates of electrons indeed survives quan-
tum fluctuations present in the zigzag phase19. In Fig.
1, we sketch ground-state phases of spinless electrons
as function of interaction range and chemical potential
based on the previous studies12,13. In our numerical sim-
ulations, restricted to two-band lattice model, we observe
all the phases depicted in Fig. 1, except of the zigzag
planar phase, for which it is crucial to include second di-
mension and hence it is outside of the description based
on purely one-dimensional two-band model.

II. UNIVERSAL EFFECTIVE THEORY

DESCRIBING TRANSITION FROM

SINGLE-CHANNEL REGIME TO Q1D STATE

FOR NOT TOO STRONG INTERACTIONS

In the regime when interactions are small compared
to Fermi energy, to describe the vicinity of the quantum
phase transition between single-channel and q1D states,
instead of developing a zigzag structure in the second
dimension in the q1D state, the appropriate picture is
to think of the starting filling the second lowest trans-
verse sub-band with increasing the chemical potential.
The properties of electron gas, apart of the density and
band structure of the two sub-bands, are described by in-
teraction constants accounting for density-density inter-
actions in the lowest, second and between the two sub-
bands ∼ gx and a pair tunneling ∼ γt between the two
sub-bands. The universal effective theory for electrons
interacting with screened Coulomb repulsion, describing
the vicinity of the quantum phase transition between the
one-dimensional and q1D states, is given by the following
Bose-Fermi Hamiltonian16:

H =
~vF1

2

∫

dx

(

K1(∂θ1)
2 +

(∂φ1)
2

K1

)

(1)

+

∫

dxψ†
2(−

~
2∂2

2m
− µ+ µc)ψ2

+ γt

∫

dx
[

(∂ψ2ψ2 − ψ2∂ψ2)e
2iκθ1 +H.c.

]

.

Indices indicate sub-bands of transversal confinement.
First (energetically lowest) sub-band is always partially
filled and is described by bosonic fields (θ1, φ1) corre-
sponding to phase and density fluctuations in the low-
est sub-band, respectively, with commutation relations
[θ1(x), ∂yφ1(y)] = iδ(x − y). The Luttinger liquid con-
stantK1 as well as sound velocity vF1 are in general com-
plicated functions of microscopic parameters that should
be fixed by comparing with numerics. The second sub-
band, while crossing the phase transition, in the ab-
sence of interaction experiences vacuum to finite density
commensurate-incommensurate (C-IC) phase transition
(indicated by filled bullet in Fig. 1) and is adequately
described by the fermionic degrees. The parameter κ is
related to the strength of density-density interaction be-
tween the sub-bands gx ∼ 1− κ.

For µ < µc, at low energies, the second transverse
quantization mode is negligible and ground state is a triv-
ial phase corresponding to a Luttinger liquid of interact-
ing single-component fermions. However, when µ > µc,
the second transverse quantization mode can not be ig-
nored any more from the low-energy description. Despite
this, bosonization analyses12,16 reveal that in the pres-
ence of interactions on both sides of phase transition, the
system is described by a one-component Luttinger liquid
with one gapless and one gapped mode. Density-density
type interactions can not open a gap, hence, a crucial
term at low energies is the pair-hopping term ∼ γt that
opens a gap in the second mode for µ > µc, where crit-
ical value µc gets renormalized by interactions. One of
the aims of our work is to characterize numerically the
quantum phase transition between two single-component
Luttinger liquid states: purely one dimensional and q1D.
Our main goal is to establish the topological nature of
the latter state.

III. LATTICE HAMILTONIAN FOR

NUMERICAL SIMULATIONS

The single-band lattice model describing interacting
one-dimensional spinless electrons is given by the follow-
ing Hamiltonian,

H = −t
L
∑

r=1

(a†r+1ar+H.c.)+

L
∑

r=1,r̃=1,2,...

Vr̃a
†
ra

†
r+r̃ar+r̃ar,

(2)
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FIG. 2. Effect of the time-reversal symmetry breaking on the
transition from single-channel to two-channel regimes. Micro-
scopic parameters are W = 1.8, gx = 0 and filling is 1/3 in
the minimal lattice model Eq. (4). For φ = 0 there is a di-
rect transition between two c = 1 one-component Luttinger
liquids. Dashed line is guide for eyes in the region where our
numerical procedure becomes less reliable. Inset: the phase
diagram expected when including density-density type inter-
actions. Two phase transitions for φ = 0, indicated by filled
bullets, merge into a single C-IC point for non-interacting
electrons indicated in Fig. 1. Similar phase diagram is ob-
tained when changing W and filling.

where ar and a†r are fermionic annihilation and creation
operators at site r, t is the hopping rate, and Vr̃ is interac-
tion potential. In the presence of two relevant sub-bands,
we decompose ar → w1a1,r + w2a2,r, where a1,r and
a2,r are operators corresponding to two lowest transver-
sal quantization sub-bands, and coefficients w1 and w2

are such that single-particle processes are diagonal in the
sub-bands basis,

H =−
L
∑

ℓ=1,2;r=1

(tℓa
†
ℓ,r+1aℓ,r +H.c.)

+ gx

L
∑

r=1

n1,rn2,r −
L
∑

ℓ=1,2;r=1

µℓnℓ,r

+

L
∑

ℓj=1,2;r=1,r̃=1,2,...

V ℓ1,ℓ2,ℓ3,ℓ4
r̃ a†ℓ1,ra

†
ℓ2,r+r̃aℓ3,r+r̃aℓ4,r,(3)

where nℓ,r = a†ℓ,raℓ,r are local particle densities and µl

are chemical potentials controlling occupations of the
sub-bands. Our aim is to study the low energy properties
of the ground state of the system when second quantiza-
tion sub-band starts to get populated, properties that
are accounted by the universal effective field theory Eq.
(1). Let us discuss the interaction part of Hamiltonian
(3). We can identify among interaction terms processes,
which similar to the kinetic energy, conserve the relative
parity symmetry of the two sub-bands. These are pro-
cesses which do not involve transfer of odd number of
fermions between the two sub-bands. However, there are

also processes which are called assisted inter-band tun-
neling with amplitudes V 1,1,1,2

1 , V 1,1,2,1
1 , V 1,2,2,2

1 , V 2,1,2,2
1

(plus those obtained from exchanging indices 1 ↔ 2
in the above amplitudes), which involve transfer of odd
number of fermions between the sub-bands and hence
do not preserve the relative parity symmetry of the two
sub-bands. To investigate low-energy properties of the
model (3), we will make drastic simplifications and only
retain terms that are responsible for determining the
infrared thermodynamic properties: these are density-
density type interactions and pair-hopping processes16,17.
Moreover, we will assume the extreme case of very strong
screening. After determining the ground-state properties
for the simplified model (where we ignore relative parity
breaking terms), we will study their effects on the nature
of the ground state phases. In addition, the boundaries
of the open chain can induce scattering from one sub-
band to the other. We will also address the effect of the
single-particle tunneling at the boundaries.
For the lattice Hamiltonian that we will use in our

numerical simulations we will take a minimal model
that captures both the phase transition (between single-
channel and q1D states) as well as the single-component
Luttinger-liquid ground state phases in its vicinity:

H = −J
L
∑

ℓ=1,2;r=1

(

ei(−1)ℓφ/2a†ℓ,r+1aℓ,r +H.c.
)

+
L
∑

r=1

(

Wa†1,ra
†
1,r+1a2,r+1a2,r +H.c.

)

(4)

+gx

L
∑

r=1

n1,rn2,r +
∑

l,l′,r

gl,l′nl,rnl′,r+1 −
L
∑

ℓ=1,2;r=1

µℓnℓ,r.

The geometry of the lattice is a two-leg ladder with L

rungs and a†ℓ,r creates a fermion on site ℓ = 1, 2 of the
r-th rung. To study effects of time-reversal symmetry
breaking we have introduced nonzero flux φ per ladder
plaquette. We assumed for simplicity t1 = t2 = J and
introduced the denotations W ∼ V 1,1,2,2

1 = V 2,2,1,1
1 ∼ γt,

gl,l′ ∼ V l,l′,l′,l
1 for the nearest-neighbour pair-tunneling

and interactions respectively. The ladder legs play the
role of the transversal quantization sub-bands with lower
leg corresponding to the lowest sub-band and upper leg
to the second sub-band. The relative chemical potential
µ1 − µ2 controls the imbalance of the particle densities
on the ladder legs. Throughout the paper, we will set
J = 1.
Applying the bosonization procedure to the fermions

on the lower leg of the ladder in the simplified lattice
model Eq. (4), while keeping the fermionic description
for the particles on the upper leg and taking the contin-
uum limit gives effective theory Hamiltonian Eq. (1) in
the case of the vanishingly small particle density in the
upper leg. One and the same effective theory Eq. (1)
corresponds to our minimal lattice model Eq. (4) and
the microscopic model of interacting two-band fermions
Eq. (3) for the case when particle density in the second
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sub-band is vanishingly small. Due to this reason, in or-
der to study the universal low-energy properties of the
ground state phases and phase transition between them
described by the effective theory Eq. (1) we will use the
simplified minimal model (4). After establishing the na-
ture of the ground states with the help of the simplified
lattice model, we will address the effects of the terms
that we have omitted in Eq. (4) later on, terms that do
not modify the low energy thermodynamic properties,
but can influence the topological properties, since they
do not preserve the relative parity symmetry.

First, we discuss the gx = gl,l′ = 0 case, as pair-
hopping term is the most relevant one, responsible for
opening of the excitation gap in the vicinity of the quan-
tum phase transition when the second sub-band starts to
fill. The ground-state phase diagram in the parameter
plane of φ and µ1 − µ2 is presented in Fig. 2, where we
identify three different phases, each characterized by the
number of gapless modes counted by the central charge
c that we have calculated numerically (data not shown).

The model (4) for gx = gl,l′ = 0, φ = 0 and µ1−µ2 = 0
was argued to be realizing a topological state with local-
ized zero-energy edge modes (interpreted as Majorana
quasiparticles) at the boundary and doubly degenerate
entanglement spectrum31 away of half-filling, whereas
the appearance of edge modes in the continuous limit
was predicted within bosonization10. It was shown that
the topological state was stable with respect to weakly
disordering local chemical potentials and weak uniform
single-particle tunnelings between the legs. We con-
firm the above properties in our simulation and further
show that in the absence of single-particle tunneling be-
tween the channels, the topological state is stable with
respect to weak time-reversal symmetry breaking and,
most importantly, with varying µ1−µ2 it extends all the
way until transitioning into the single-channel state for
φ = 0. The relevant symmetry protecting the topologi-
cal state is the Z2 relative particle parity symmetry10,31.
Recently exactly solvable number conserving two-wire
fermionic models have been presented, featuring the same
properties32,33 and allowing fully analytic treatment, in
particular, identification of Majorana-like quasiparticles.

IV. BOSONIZATION APPROACH FOR THE

FINITE FILLING OF THE SECOND BAND

When the filling of the second sub-band becomes finite
the convenient basis for effective field theory formulation
in this case is provided by symmetric and antisymmetric
combination of the bosonic fields describing lowest and
second transverse quantization modes. Introducing an-
other pair of conjugate bosonic fields (θ2, φ2), describing
phase and density fluctuations of fermions in the second
sub-band, the low-energy properties of the model Eq. (4)

are then governed by the following Hamiltonian density,

H =
~v+
2π

∫

dx

(

K+(∂θ+)
2 +

(∂φ+)
2

K+

)

+
~v−
2π

∫

dx

(

K−(∂θ− −
√
2φ√
π
)2 +

(∂φ−)
2

K−

)

+ αγt

∫

dx cos
√
8πθ−, (5)

where φ± = (φ1 ± φ2)/
√
2, θ+ = (θ1 + θ2)/

√
2, θ− =

(θ1 − θ2 + φx/
√
π)/

√
2, and α is a numerical normaliza-

tion constant. K± are Luttinger-liquid parameters cor-
responding to the total and relative fluctuations of the
two-leg ladder and v± are corresponding velocities.
In deriving this expression, it was assumed that Fermi

wave vectors of the two transverse quantization modes
are strongly mismatched kF1 6= kF2, as fillings of the
two sub-bands are completely different, and there are no
commensurability effects with underlying lattice. In case
when kF1 ≃ kF2, for long-range interactions and small
values of interaction amplitude, instead of superconduct-
ing pairing, an out-of-phase charge-density-wave CDWπ

between the two legs of the ladder dominates13 due to
the competing contribution in the antisymmetric sector
∼ gx cos (

√
8πφ− + 2(kF1 − kF2)x). The phase transi-

tion from the Tq1d state to CDWπ state can be induced
by increasing amplitudes of gx and gl,l′ in the lattice
Hamiltonian Eq. (4) relative to the pair-hopping ampli-
tude γt for µ1 ≃ µ2. CDWπ phase is also characterized by
one gapless mode and has a long-range non-local bosonic

string order30 |〈(n1,i−n2,i)e
iπ

∑j

l=i
(n1,l+n2,l)(n1,j−n2,j)〉|.

Like in the Tq1d state, in CDWπ phase, the single
fermion correlation function decays exponentially with
distance, however, as opposed to the behavior in the
Tq1D state, there is no superconducting quasi-long-range
ordering. Moreover, the properties of CDWπ phase do
not depend crucially on statistics, unlike the behavior in
the Tq1D state.
As mentioned above, for interacting spinless elec-

trons in quantum wire, for arbitrary non-zero interac-
tion strength, the vicinity of the quantum phase tran-
sition point µ = µc from both sides is described by a
single-component Luttinger liquid state16. In the single-
component Luttinger liquid of the q1D state, the sym-
metric mode is gapless, while antisymmetric mode is
gapped, namely, the relative phase fluctuations of the
two sub-bands are locked in the ground state, 〈θ−〉 = 0
or π depending on the sign of αγt.
The Tq1D superconducting phase is characterized by

emergence of non-local string order

Or
s = 〈(a†1,ia2,i+H.c.)eiπ

∑i+r
j=i

(n1,j+n2,j)(a†1,i+ra2,i+r+H.c.)〉.
(6)

Note that the similar effective bosonization formula-
tion Eq. (5) is applicable to hard-core bosons in the
two-channel regime, however, the latter case is not char-
acterized by topological properties, instead the bosonic
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q1D state shows twofold-degenerate ground state as for
open so for periodic boundary conditions and no localized
edge modes. Moreover, the single boson correlation func-
tions are not gapped out, as opposed to fermions10,34. In
the case of bosons one can define a local order parame-
ter that picks up nonzero value in superconducting q1d
state, e.g. for αγt < 0

〈b†1,rb2,r +H.c.〉 = ±κ, (7)

where κ ∼ 〈cos
√
2πθ−〉 6= 0 and + sign in Eq. (7) corre-

sponds to one of the ground states and − to another.
From the expression of the order-parameter equation

(7), it is clear that for bosons the uniform single-particle
tunneling along the rung will lift the two-fold degeneracy
of the ground states immediately, similar to the effect of
magnetic field applied to the classical Ising chain with
two-fold degenerate ground state. For fermions, as al-
ready mentioned, the double degeneracy of the ground
state in the Tq1D state (which only holds for the open
boundary conditions) is immune against weak uniform
single-fermion tunneling along the rung31,35.
Most importantly, the bosonization expression of our

model (5) shows that for small values of fluxes, the
Tq1D state is stable with respect to changing interac-
tion strengths even deep in the phase µ > µc as long as
K− ≥ 1. On the other hand, using Eq. (1) for zero flux
case, it has been shown16 that this same Tq1D phase adi-
abatically extends towards the vicinity of quantum crit-
ical point for arbitrary (non-zero) values of interactions.
The effect of flux is that after φ > φc, the two-component
Luttinger-liquid state (c = 2) is stabilized via the C-IC
phase transition from the topological state.

V. NUMERICAL RESULTS

The numerical data that we will present are obtained
for minimal lattice model (4) for large W and in most
cases gx = gℓ,ℓ′ = 0 (unless stated otherwise) since topo-
logical features are most pronounced for this case. We
have included also in simulations the density-density type
interactions gx and gℓ,ℓ′ 6= 0 in Eq. (4) and checked
that similar properties of the ground state remain sta-
ble, although become less pronounced with increasing
their strengths (until system transitions into the two-
component Luttinger-liquid state or CDWπ state for
kF1 ≃ kF2 for strong density-density interactions, where
topological features disappear).
In Fig. 3, we present single-particle correlation func-

tions obtained for Eq. (4) for µ1 − µ2 = 0.8 and small
value of the flux, starting from the edge. We see that
this correlation function decays exponentially with the
distance in the bulk, as it should be, since single-particle
excitations have a spectral gap (in case of fermions), how-
ever, we see the recovery at the opposite edge. Hence, the
edge modes, responsible for the similar recovery for the
case µ1 = µ2 and φ = 031 are stable with respect to chem-

i
0 5 10 15 20 25 30

c
c 1

i
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0.2

0.4
L=24, up leg
L=24, down leg
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FIG. 3. Subband-resolved single-particle correlation functions
starting from an edge for µ1 − µ2 = 0.8 and φ = 0.1π/2 for
W = 1.8 in Eq. (4). Edge-to-edge correlations show recovery,
due to the edge modes.

µ1 − µ20 1 2 3
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FIG. 4. Behavior of fidelity susceptibility across the quan-
tum phase transition from the two-channel to single-channel
regime for φ = 0 when changing the relative chemical po-
tential. Inset shows behavior of the peak value of fidelity
susceptibility χP with the system size. For computational
reasons in this particular simulation instead of fermions we
use hard-core bosons and assume periodic boundary condi-
tions. Density-density interactions are gx = 1, gl,l′ ≪ gx
corresponding to the case of extremely strong screening and
pair-hopping amplitude is W = 1.8 in Eq. (4). Total parti-
cle density is kept constant, so that the filling corresponds to
one-third particles in average per ladder site.

ical potential difference and weak time-reversal symme-
try breaking when processes breaking relative parity of
the two sub-bands are neglected.
To study numerically the nature of the phase transi-

tion between the Tq1D state and single-channel regimes,
we analyze the behavior of the ground-state fidelity
susceptibility36–39. This is particularly convenient in our
case, since we do not need to specify order parameter.
We study the (reduced) ground-state fidelity susceptibil-
ity with respect to the chemical potential difference,

χ = − 2

L
lim
δ→0

ln |〈ψ0(µ1 − µ2)|ψ0(µ1 − µ2 + δ)〉|
δ2

. (8)

The behavior of the fidelity susceptibility across the
quantum phase transition, obtained from the minimal
lattice model Eq. (4) with unbroken time-reversal sym-
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FIG. 5. Behavior of the string order defined in Eq. (6) in
Tq1D state as function of the distance r, starting from the
rung i = L/4, indicating its long-range ordering in the bulk of
the system. For string order, we present data for open bound-
ary conditions, however, similar behavior (to that shown in
the bulk) holds for systems with periodic boundary conditions
as well. Simulation parameters are φ = gx = gl,l′ = 0 and
W = 1.8 in Eq. (4).

metry, for W = 1.8, gx = 1 and gl,l′ ≪ gx is presented in
Fig. 4. With increasing the system size the peak value
of the fidelity susceptibility χP scales linearly, suggesting
the Ising-type nature of the quantum phase transition,
consistent with the bosonization analyses17. In fact, the
phase transition predicted theoretically17 is not of purely
Ising nature, however, fidelity susceptibility studies pre-
sented here can not distinguish such details40. Also, it
has been suggested that in the weak coupling limit, the
phase transition is of z = 2 character, similar to the
Lifshitz point of non-interacting fermions, and only in
strong coupling regime the effective Lorentz invariance
emerges, producing c = 3/2 criticality that is similar to
Ising criticality superimposed on top of the overall gap-
less Luttinger-liquid charge mode. Our numerical simula-
tions are done in strong coupling regime, where we resolve
well-defined peak in fidelity susceptibility. To address the
situation in the weak-coupling regime, we should consider
both pair-tunneling as well as density-density type inter-
actions much weaker than Fermi energy. For the moment,
we can not comment on the nature of criticality in the
weak coupling regime with the method that we use.

In Fig. 5, we plot the behavior of non-local string or-
der parameter defined in Eq. (6). We see that the string
order saturates in the bulk, hence, the Tq1D supercon-
ducting state has indeed nonzero string order.

A useful quantity for determining phase boundaries nu-
merically in the presence of flux is the chiral current41,42

defined as jc = 〈∂H∂φ 〉. In Fig. 6, we plot the behavior

of chiral current as function of the flux for different val-
ues of µ1 − µ2. One can see that chiral current develops
cusplike behavior at the phase boundaries, characteristic
to C-IC phase transitions. In single-channel regime, the
chiral current is strongly suppressed.

As already mentioned, the relative parity symmetry
is only an effective, but not an exact symmetry of the
microscopic model of quantum wire of spinless fermions
Eq. (3), due to the assisted interband tunneling bulk
processes and due to the boundary that provides parti-
cle scattering from one sub-band to the other. We have
checked that in the presence of time-reversal symmetry,

φ/(π/2)
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FIG. 6. Behavior of the chiral current as function of flux for
different values of chemical potentials for φ = gx = gl,l′ = 0
and W = 1.8.

the uniform assisted interband tunneling processes along
the ladder do not lift the double degeneracy of the topo-
logical state and do not remove edge modes as long as
they are weak and the ground state remains to be su-
perconducting state. Value of the non-local string order
parameter Eq. (6) depends very weakly on amplitudes of
the assisted interband tunneling processes.

We have also checked that a weak local single-particle
tunneling (the most important process is tunneling at
the edge, since in bulk single-particle states are gapped)
also does not lift the double degeneracy of the ground
state when time-reversal symmetry is present. In this re-
spect the situation is similar to the case of exactly solv-
able fermionic ladder model realizing topological state32.
However, in the absence of time-reversal symmetry, we
observe that when considering single-particle tunneling
between the two legs at one of the edges only, the double
degeneracy of the ground state is removed immediately
(splitting between two ground states opens linearly with
the amplitude of the local tunneling) and edge modes
disappear. Interestingly, in the absence of time-reversal
symmetry, when considering equal single-particle tunnel-
ing at both edges the two-fold degeneracy of the ground
state is not lifted. Thus the important symmetry pro-
tecting the edge modes, when relative particle parity and
time-reversal symmetry both are broken, is the reflection
symmetry in the middle of the ladder that maps two
edges onto each other. Hence, some discrete Z2 symme-
try is needed for protecting the topological state (rela-
tive particle parity or time-reversal or reflection symme-
try in the middle of the ladder mapping two edges onto
each other). In this respect our case looks similar to the
symmetry protected topological Haldane state of spin-1
chain43.
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FIG. 7. Interface between the two-channel and the single-
channel regimes. The transversal lateral confinement frequen-
cies are Ωl

⊥ < Ωr
⊥. (a) Density profiles of electron in the lowest

and second sub-bands for the chemical potential with a step-
like behavior in the middle point of the system between the
sites L/2 and L/2 + 1 (indicated by dashed vertical line) for
L = 36. The right part of the system is in the single-channel
regime, with vanishing density in the second sub-band, and
the left part is in the two-channel regime. (b) Single-particle
correlation function from the bulk (here the middle point) of
the two-channel regime towards the right direction shows ex-
ponential decay both in two-channel regime and across the
interface. Similar exponential decay is observed towards the
left side 〈c†L/4cL/4−j〉 ∼ e−j∆.
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FIG. 9. Single-particle correlation functions in the presence of
two interfaces: in the left side there is a two-channel state of
non-interacting fermions, in the middle there is a Tq1D state
and in the right side there is a single-channel state. Different
system sizes are shown (a) L=30 rungs and (b)L=48 rungs.
Inset in (a) shows sub-band resolved density profiles.

VI. INTERFACE BETWEEN

SINGLE-CHANNEL AND TOPOLOGICAL

QUASI-ONE-DIMENSIONAL STATES

In this section, we consider presence of an interface
between the single-channel and topological quasi-one-
dimensional states. Chemical potential changes as a step
function at the interface so that densities have profiles as
depicted in Fig. 7 (a). In Fig. 7 (b) single-particle cor-
relation functions are presented starting from the bulk
of the Tq1d state and showing exponential decay to any
other distant point. This is so, because in Tq1d state
single-particle excitations are gapped.

In all figures presented in this section the parameters
for topological state are φ = gx = gℓ,ℓ′ = 0 and W = 1.8.
In Fig. 8 we present correlation functions starting from
the edge of the Tq1D state and extending all the way
towards the another edge. As opposed to the behavior of
correlation function starting from the bulk of the Tq1D
state, shown in Fig. 7 (b), the correlation function from
the edge shows recovery over the interface, due to the
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the middle part fermions interact attractively and densities
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spectral gaps and there are no edge modes. Single particle
correlation function from lead to single-channel regime decays
exponentially, as opposed to algebraic recovery shown in Fig.
9. In the inset single-particle correlation function starting
from the edge of the single-channel regime and density profiles
in 3 different regions can be seen. Here L = 48 rungs.

edge modes.

Finally, we consider the case of two interfaces. System
is made of a Fermi liquid lead, that is modeled by non-
interacting electrons, a Tq1D intermediate state and a
single-channel regime. This kind of setup may be relevant
to describe realistic situations when lead is connected
to a quantum wire and inbetween single-channel regime
and the lead q1D state of electrons forms. Even though
single particle correlation functions that start from lead
decay exponentially in intermediate Tq1D region, they
show recovery in single-channel regime as presented in
Fig. 9. When we place instead of Tq1D state CDWπ (or
other partially gapped) phase inbetween free fermions
and single-channel regime we do not observe recovery
of single-fermion correlations from lead to single-channel

region. We present in Fig. 10 the case where Tq1D
intermediate region is replaced by attractively interact-
ing fermions with gapped relative excitation and gapless
charge mode. One can see that single particle correla-
tion function from lead to single-channel regime shows
exponential decay and no recovery.

VII. CONCLUSION

Using combination of effective field theory bosoniza-
tion and DMRG simulations we have shown that when
starting populating the second lowest transverse sub-
band of interacting one-dimensional spinless electrons
the superconducting quasi-one-dimensional state is stabi-
lized that is a topological state characterized by non-local
string order and hosting Z2 discrete symmetry protected
zero-energy edge modes for open boundary conditions.
We have presented the single-particle correlation func-
tions for the case when a spatial interface between the
single-channel and Tq1D regimes is present, and showed
that due to the edge modes of intermediate Tq1D state
correlation fuction from lead to single channel regime
shows algebraic recovery, even though that in the inter-
mediate phase they are suppressed exponentially.
Based on our findings, we expect that upon increas-

ing transversal confinement frequency, the quasi-one-
dimensional zigzag state will smoothly evolve not into the
superconducting state16, but into the CDWπ state. The
zigzag state can not be smoothly connected to the super-
conducting state because, as we showed, the nature of the
superconducting state crucially depends on the statistics
of the particles, whereas the nature of the zigzag state
is independent of statistics. Moreover, zigzag state is
characterized by the string order parameter30, which is
similar to the one found in CDWπ state.
This work has been supported by DFG Research Train-

ing Group (Graduiertenkolleg) 1729 and center for quan-
tum engeneering and space-time research (QUEST). Part
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retical Physics, Leibniz University of Hanover. We thank
M. Baranov, H. P. Büchler and E. Jeckelmann for helpful
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32 N. Lang and H. P. Büchler Phys. Rev. B 92 041118 (2015).
33 F. Iemini, L. Mazza, D. Rossini, R. Fazio, and S. Diehl,

Phys. Rev. Lett. 115, 156402 (2015).
34 A. Keselman and E. Berg, Phys. Rev. B 91, 235309 (2015).
35 After our work was submitted, new preprint appeared con-

firming our findings on stability of topological phase with
respect to small single-fermion tunneling as well as time-
reversal symmetry breaking for µ1 = µ2, C. Chen, W. Yan,
C. S. Ting, Y. Chen, arXiv:1602.01369.

36 L. Campos Venuti and P. Zanardi, Phys. Rev. Lett. 99,
095701 (2007).

37 W.-L. You, Y.-W. Li, and S.-J. Gu, Phys. Rev. E 76,
022101 (2007).

38 S.-J. Gu, Int. J. Mod. Phys. B 24, 4371 (2010).
39 G. Sun, A. K. Kolezhuk, and T. Vekua, Phys. Rev. B 91,

014418 (2015).
40 Even though c = 3/2 criticality was suggested to occur,

effective velocity at critical point was argued to vanish in
infrared limit. The finite-size scaling of the peak value of
the fidelity susceptibility is sensitive to the dependence of
correlation length on the deviation from criticality and not
to the velocity of soft excitations at critical point. Hence
vanishing effective velocity is not manifested in fidelity
susceptibility studies and for this reason transition that
we observe looks like criticality at ordinary quantum Ising
tranisiton, with correlation length critical exponent equal
to unity.

41 M. Piraud, F. Heidrich-Meisner, I. P. McCulloch, S.
Greschner, T. Vekua, and U. Schollwöck, Phys. Rev. B
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