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A growing number of researchers consider Iterative Learning Control (ILC) a promising tool for numerous
control problems in biomedical application systems. We will briefly discuss why classical ILC theory is
technically too restrictive for some of these applications. Subsequently, we will extend the classical ILC
design in the lifted systems framework to the class of repetitive trajectory tracking tasks with variable
pass length. We will analyze the closed-loop dynamics for two standard learning laws, and we will discuss
in which sense the tracking error can be reduced by which controller design strategies. Necessary and
sufficient conditions for monotonic convergence will be derived. We then summarize all results in a set
of practical controller design guidelines. Finally, a simulation study is presented, which demonstrates
the usefulness of these guidelines and illustrates the special dynamics that occur in variable pass length
learning.
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1. Introduction and Motivation

Several control problems in various application domains require the controller to repeat the same
trajectory tracking task from the same initial condition multiple times. In such control systems, the
tracking performance can be improved by learning from previous executions by means of Iterative
Learning Control (ILC). Thanks to numerous contributions by many researchers, a rich body of
methods exists for various implementations and frameworks of iterative learning control (see for
example Moore et al. (1993), Rogers et al. (2007), Galkowski et al. (2003), Owens and Hätönen
(2005), Norrlöf and Gunnarsson (2002), Paszke et al. (2010), and many more).

Depending on the analysis framework, the input and output trajectories can be described in the
frequency domain or by lifted vectors. In many standard ILC application domains, especially in
robotics, the analysis of the system dynamics as well as the controller design are carried out in the
frequency domain, rather than in the lifted-systems framework. This yields some advantages1, but
for frequency domain methods to be applicable, the trial duration is assumed to be magnitudes
larger than both the sampling time and the characteristic time constant of the system to be
controlled. This requirement does not hold in many ILC applications, especially in those from the
field of biomedical engineering. Therefore, it is advisable to use the lifted systems framework when
aiming to derive new methods for such applications.

A brief review of recent contributions reveals that the potential application fields for ILC in

∗Corresponding author. Email: seel@control.tu-berlin.de
1For example, the frequency-domain representations of the system dynamics and the controller dynamics commute, which is
in general not the case for their lifted-system representations.
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biomedical engineering are numerous, including diabetes treatment (e.g. Wang et al. (2010)), re-
habilitation robotics (e.g. Duschau-Wicke et al. (2010); Liu et al. (2012)), and blood pressure
measurement (e.g. Seel et al. (2013a)). However, in these applications, often even the basic as-
sumptions of iterative learning control do not hold. One of these assumptions is that the dynamics
(including the initial condition) do not change from pass to pass, i.e. the same input causes the
same output when applied again in any of the following trials. This very restrictive assumption has
been relaxed by several author’s contributions, where ILC methods yielding robustness of conver-
gence properties with respect to iteration-variant dynamics and initial conditions were proposed,
see for example Donkers et al. (2008); Moon et al. (1998); Park et al. (2008). However, a more
fundamental assumption of ILC is that each trial shall be of the same duration (i.e. the same pass
length). In order to demonstrate that this assumption is often violated, two examples from the
context of functional electrical stimulation (FES) are briefly discussed in the following:

Functional Electrical Stimulation for Upper Limb Movement. A functional arm movement shall
be produced via electrical stimulation of the respective muscles through skin electrodes, as con-
sidered for example by Freeman et al. (2010), Soska et al. (2012) and Klauer et al. (2010). If the
desired motion is complex, then very precise and well-timed stimulation patterns need to be ap-
plied. However, the system dynamics are very nonlinear and uncertain, since they depend on many
details such as the exact electrode position. Therefore, it can be hard to set stimulation parameters
that generate (anything close to) the desired motion in the first trial. For successive learning of
the corresponding stimulation profile, the use of a robust ILC algorithm based on a linear model
seems promising. However, at least for the first passes, it is expected that the actually achieved
trajectory leaves the neighborhood of the reference trajectory very early. Even if the ILC algorithm
is very robust, the data gathered in a completely different section of the state space is hardly useful.
Therefore, and for reasons of safety, a trial should be terminated whenever output and reference
begin to differ too much. Nevertheless, between the beginning and the (early) termination of each
trial, some valuable data is gathered that might be used for learning if there was a way to deal
with varying pass lengths.
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Figure 1. Iterative Learning Control of Functional Electrical Stimulation (FES) for supporting the foot motion during gait.
The stimulation intensity trajectory is adjusted from stride to stride to influence the foot-to-ground angle trajectory. Hip and

knee joint are moved by the patients themselves. Depending on their strength and abilities, the steps are often cut short by
suddenly putting the foot down. Thus, swing phase duration varies from step to step.

Functional Electrical Stimulation for Gait Assistance. Many stroke patients suffer from the
drop foot syndrome, a limited ability to dorsiflex the foot, i.e. to lift the foot towards the tibia.
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Patients walking at constant speed on a treadmill can be supported, for example, by controlling
the ankle joint angle via electrical stimulation of the tibialis anterior muscle. This is illustrated in
Figure 1 and further described in Seel et al. (2013b). Due to the repetitive nature of gait, ILC is
a promising method for improving the stimulation profile for the swing phase from step to step
and to maintain the desired foot motion despite slow parameter variance. However, the foot is only
in swing phase (i.e. above the ground) as long as the hip joint and the knee joint are sufficiently
flexed. Thus, depending on the patient’s strength and abilities, the steps are often cut short by
suddenly putting the foot down. This means that the swing phase duration varies largely even
when patients walk at constant speed. In order to apply ILC methods, we must find a way to learn
from trials of varying duration.

Both application examples demonstrate that, in many situations, passes might be terminated
early, either by events that depend on the states of the system or on the controller performance,
or by randomly occurring events. A number of further examples for this phenomenon are found in
the aforementioned literature on other biomedical application systems. Due to a lack of suitable
methods, the fact that the trial duration varies is typically ignored completely, or a heuristic
approach is used with no guarantee of convergence being maintained (cf. for example Nahrstaedt
et al. (2008a), Longman and Mombaur (2006)).

Before we discuss methods that may be used to address the challenge of variable pass length, we
briefly isolate the problem we are trying to solve from similar problems that may occur in the same
context and applications. In particular, we shall note that there exist applications in which the
entire reference duration varies (see for example Moore et al. (2007) or Kurniawan et al. (2013)).
More precisely, the reference trajectory that shall be tracked in one trial is scaled to a different time
length in another (shorter or longer) trial. This is illustrated by an example from the previously
discussed application context. If FES is used to (successfully) perform the same arm motion (for
example drawing a large circle or a point-to-point reaching motion) first within five seconds and
then within three seconds, then the time scale of the entire tracking problem changes. We are
not considering such problems in the following, although they might be an interesting subject for
further research. Instead, we focus (as described above) on control problems with a fixed reference
time duration but early trial termination.

1.1 Previous Work on ILC Systems with Variable Pass Length

Currently, there are very few results available that consider convergence of ILC systems in which
the pass length (or trial duration) is not constant. However, a few similar problems are addressed
in the literature.

Moore (2000) and Moore and Mathews (1998) consider the problem of controlling a gas-metal
arc welding process, in which the time interval between detachments of mass droplets from the
end of a consumable electrode is considered a trial. They propose a discontinuous, switching-based
iterative learning control scheme that forces the system to exhibit a uniform trial length. However,
they assume that the system can be forced to restart a trial by a known input, and they show
convergence only for a simple input-update law with a diagonal learning gain.

Li et al. (2014), Li et al. (2015a), and Li et al. (2015b) address iterative learning control design
problems for systems with randomly varying trial lengths. A stochastic matrix and an iteration-
average operator are introduced to present a unified expression of the ILC scheme. While Li et al.
(2014) and Li et al. (2015a) consider discrete-time linear systems, nonlinear affine and non-affine
systems are considered in Li et al. (2015b). However, the authors assume the trial length to be a
stochastic variable with a known (uniform) probability distribution, and they only show conver-
gence of the expectation of the tracking error to a small value after a large number of trials.

Ahn et al. (2008) consider an ILC scheme that is implemented via a networked control system in
which data dropout occurs. They present a Kalman filtering approach and show that it is possible
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to design a learning gain such that the system eventually converges to a desired trajectory as long
as there is no complete data dropout. With some substantial extensions, this method might be used
for variable pass length systems. The authors assume, however, that the data dropout probabilities
are known, and they do not establish monotonic convergence of the tracking error in any sense.

In fact, for ILC systems with variable pass lengths, the practically highly relevant property of
monotonic convergence is, to the best of our knowledge, for the first time considered by Seel et al.
(2011). Under the sole assumption of a (potentially very small) lower bound and a (potentially very
large) upper bound of the trial duration, it is shown that monotonic convergence of the tracking
error can be achieved in different senses by applying a slightly modified version of a standard input-
update law. Guth et al. (2013) apply these results to trajectory tracking on a lab-scale gantry crane.
In both contributions, however, the convergence analysis is restricted to simple learning laws in
which the change of the input trajectory equals the tracking error multiplied by a learning gain
matrix. Therefore, the methods proposed therein do not apply to the commonly used iterative
learning controllers that include a Q-filter.

From this review of previous contributions we conclude that there exist no methods that guar-
antee monotonic convergence in iterative learning control systems with pass lenghts that vary
arbitrarily within certain bounds. In the present contribution, a number of novel methods are
derived to fill this gap. We will extend the concept of monotonic convergence as well as the stan-
dard ILC design in the lifted-system framework to the class of repetitive trajectory tracking tasks
with variable pass length. The methods we propose for this class of systems are summarized in a
set of controller design guidelines, and their usefulness for practical applications is discussed in a
simulation study.

The remainder of this contribution is organized as follows. In Section 2 we define the control
problem and derive the closed-loop dynamics. With regard to controller design, we consider ILC
systems with a single learning gain matrix in Section 3, whereas the extended version with lowpass
filter in the update loop is considered in Section 4. For both cases, we will analyze the closed loop
dynamics, and we will discuss in which sense the tracking error can be reduced by which controller
design strategies. In particular, the maximum-pass-length (MPL) error will be introduced as a
useful concept for convergence analysis of variable-pass-length systems. Necessary and sufficient
conditions for monotonic convergence of different vector norms of this error will be derived. In
Section 5, we will then summarize all results in a set of practical controller design guidelines.
Finally, the special dynamics that occur in variable-pass-length learning will be illustrated by a
simulation study in Section 6.

2. Iterative Learning Control for Variable-Pass-Length Systems

In this section, a class of iterative learning control systems with variable pass length is introduced
and its closed-loop dynamics are derived. To simplify notation, we consider a dynamic system with
scalar input u(t) ∈ R and scalar output y(t) ∈ R. It is assumed, that the pass length n can vary
from pass to pass and that pass termination is sudden. This means that, for each pass j ∈ N0, the
pass length nj is not known before the pass ends. However, a possibly very small lower bound n
and a possibly very large upper bound n shall be given. Consequently, a full-length desired output
r ∈ Rn must be defined, and (for each pass j) a full-length input ūj ∈ Rn with

ūj := [u(t0,j), u(t0,j + ts), . . . , u(t0,j + (n− 1)ts)]
T , (1)

must be prepared, although only the first nj samples of that trajectory will actually be applied to
the system. In contrast, the output trajectory that is measured during the same trial is denoted
by yj ∈ Rnj and contains only nj ≤ n sample values.

In order to cope with the varying length of the output vector and for the sake of a more compact
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notation, we introduce the remove-last-(n−nj)-elements operator 〈·〉nj
: Rn → Rnj and the append-

(n − nj)-zero-elements operator 〈·〉n : Rnj → Rn. Clearly, these correspond to premultiplication
by the matrices [Inj

, 0nj×(n−nj)] and [Inj
, 0nj×(n−nj)]

T , respectively, where Inj
denotes the nj-

dimensional identity matrix and 0nj×(n−nj) denotes a zero matrix with nj rows and (n − nj)
columns. Thus, for example, the desired output signal for pass length nj becomes 〈r〉nj

, and the
tracking error ej ∈ Rnj measured in pass j can be denoted by

ej := 〈r〉nj
− yj . (2)

For the last (n−nj) samples of the reference trajectory, there exists no measurement information,
since the trial actually ends after nj sample periods. This means that the complete input trajectory
ūj must be updated using the incomplete error information ej . This can be achieved, for example,
by using the following modified version of a classical ILC learning law:

ūj+1 = ūj + L 〈ej〉n, (3)

where L ∈ Rn×n is an adjustable learning gain matrix. As in classical ILC systems, an initial input
ū0 must be chosen based on the (limited) prior knowledge of the system dynamics. Every following
input is then calculated using (3). Although many of the following arguments would also hold for
a learning gain matrix L that depends on the trial index, we will consider only the standard case
of an iteration-invariant learning gain in the sequel.

Rationale of the Variable-Pass-Length Learning Law. Recall from the standard ILC literature
that, whenever certain sections of the measured output trajectory perfectly track the corresponding
sections of the reference trajectory, then a well-designed learning controller will try to modify the
input trajectory in such a way that these sections of the output trajectory are influenced as little
as possible. By setting the last n− nj samples of the error information vector to zero, we likewise
demand a learning step that affects the last n−nj samples of the output as little as possible. This
is a very reasonable strategy, since there is no measurement information about the values that
these samples would have under the current input trajectory.

In the following, we will introduce a linear system model and analyze the resulting closed-loop
dynamics in the presence of variable pass length.

2.1 Linear System Dynamics

Assume that the input-output dynamics of the system to be controlled can be approximated by
some linear, discrete-time process with Markov parameters pi, i = 1, 2, . . .. The output ȳj ∈ Rn of
the system can then be described by

ȳj :=

[
yj
ŷj

]
:= Pūj + v , P =


p1 0 · · · 0
p2 p1 · · · 0
...

...
. . .

...
pn̄ pn̄−1 · · · p1

 , (4)

where P ∈ Rn×n is the lifted-system matrix of the process and v ∈ Rn is a bounded, iteration-
invariant disturbance.

Assume that the system dynamics P,v are only imprecisely known, and recall that the trials
end after nj samples. The last n− nj samples of ȳj are denoted by ŷj and represent the unknown
output that would (hypothetically) be measured if the trial was of maximum length nj = n. This
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portion of the complete output ȳj is not known to the controller when computing ūj+1. In fact,
the only certain information the controller obtains in each iteration is the measured output yj .

2.2 Derivation of Closed-Loop Dynamics

Although we assume that the true system dynamics are only imprecisely known, we can nevertheless
derive equations that describe how the complete output ȳj and the tracking error evolve for a
particular P under consideration. By the latter, we will develop a method that enables us to
verify, for a (large number of) given plant dynamics, whether a certain controller yields desired
convergence properties.

In order to derive closed-loop dynamics, we define the maximum-pass-length (MPL) error ēj ∈ Rn
analogously to the previous definition of the maximum-pass-length output:

ēj :=

[
ej
êj

]
:= r− ȳj . (5)

Therein, ej ∈ Rnj is the actually measured control deviation, and êj ∈ R(n−nj) is the hypothetical
error that would occur on the last n− nj sample instants if the trial was of full length.

The previous definitions allow us to rewrite the update law (3) in the following form:

ūj+1 = ūj + L 〈 〈r〉nj
− yj 〉n = ūj + L Hnj

ēj , (6)

in which the last n− nj samples of the MPL error are canceled by multiplication with the block-
diagonal matrix2 Hnj

:= blockdiag{Inj
,0(n−nj)×(n−nj)}.

By combining (4), (5), and (6), and under the assumption of a regular system matrix P, the
following MPL error dynamics are derived:

ēj+1 =
(
In −PLHnj

)
ēj . (7)

In order to gain more insight into the interrelation of the measured error ej and the hypothetical
error êj , we introduce the following trial-dependent partition:[

G1,j G2,j

G3,j G4,j

]
:= In −PL, (8)

G1,j ∈ Rnj×nj , G2,j ∈ Rnj×(n−nj), G3,j ∈ R(n−nj)×nj , G4,j ∈ R(n−nj)×(n−nj). (9)

We then use (5) to rewrite the closed-loop dynamics as follows:[
ej+1

êj+1

]
=

[
G1,j 0nj×(n−nj)

G3,j In−nj

] [
ej
êj

]
=

([
G1,j G2,j

G3,j G4,j

] [
ej

0(n−nj)×1

]
+

[
0nj×1

êj

])
. (10)

Note that, in general, ej+1 and ej do not have the same dimensions.
In the following sections, we will discuss in which sense the tracking error may reduce in variable-

pass-length systems, we will investigate how the learning gain matrix L must be chosen to guarantee
such a reduction, and we will discuss some fundamental effects that appear in learning from trials
with variable length.

2By definition, Hnja = 〈〈a〉nj 〉n ∀a ∈ Rn
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ȳ0

ȳ1

ȳ2

ȳ3

Figure 2. Left : In variable pass length ILC, the norm of the measured error ej is not a useful performance measure, since
it depends largely on the trial duration. The longer trial 1 might yield a larger error norm than the short trial 0, despite

the former exhibiting better reference tracking than the latter. Right : Hidden error growth in ILC systems with variable pass

length. Every second trial is cut short, dotted lines indicate the hypothetical output ŷj . In each trial, the tracking error is
reduced in the sense of (11). Nevertheless, the tracking gets worse on the entire time interval.

3. Learning Dynamics for the Standard Input-Update Law

In classical ILC systems, controller design and implementation aims at reducing the p-norm3 ||ej ||p
of the measured error from one trial to the next, for some p ∈ {1, 2,∞}. In variable-pass-length
ILC, the p-norm of the measured tracking error ej will vary as nj varies, even if the input trajectory
is not updated at all. A long trial might yield a larger error norm than a short trial, despite the
former yielding better reference tracking than the latter, as illustrated in Figure 2a.

Hence, we need a different concept to describe whether the reference tracking is improved by an
update step in the presence of variable pass length. Since, in each trial j, the controller receives the
measurement values of the first nj samples, it is reasonable to demand that the reference tracking
should be improved at least on those first nj samples. Since every vector p-norm and its induced4

matrix norm are submultiplicative5 and since the induced p-norm of a matrix cannot be smaller
than the induced p-norm of any of its sub-matrices, we can derive the following condition for this
property from (10):

||〈ēj+1〉nj
||p

||ej ||p
< 1 ∀ j ∈ N0, nj ∈ {n, ..., n}, r,v, ū0 ∈ Rn ⇔ γp := ||In −PL||p < 1. (11)

This statement introduces the convergence indicator γp and represent a both simple and useful
result with strong analogy to the classical case of constant pass length. However, the demanded
property is still not sufficient to guarantee that the tracking error remains bounded in the presence
of variable pass length. Figure 2b illustrates this remarkable fact. While the example dynamics
chosen therein may seem unrealistic or extreme, they nevertheless demonstrate that, in each trial,
the performance on the first nj samples might be improved at the cost of (severely) worsening the
performance on the last n − nj samples. Hence, a more rigorous converge concept is needed that
also accounts for hidden growth of the hypothetical tracking error êj .

3.1 Monotonic Convergence of the Maximum-Pass-Length Error

The convergence properties of ēj well describe whether the controller performance actually im-
proves. Therefore, we aim at designing controllers that ensure reduction of a p-norm ||ēj ||p of the
MPL error, for example its sum-of-absolute-values norm (p = 1), its Euclidean norm (p = 2), or
its maximum-absolute-value norm (p = ∞). Obviously, if ||ēj ||p is monotonically decreasing in j,

3||x||p := (
∑n

i=1 |x(i)|p)(1/p) ∀x ∈ Rn, p ≥ 1, with the limit case ||x||∞ = maxi |x(i)| ∀x ∈ Rn

4i.e. ||A||p := max{||Ax||p, ||x||p = 1}
5i.e. ||ABx||p ≤ ||A||p||B||p||x||p ∀A,B,x
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then also ||ej ||p is bounded by trial-wise decreasing upper bounds, since

||ej ||p ≤ ||ēj ||p ∀j ∈ N0 ∀p ∈ {1, 2,∞}. (12)

Therefore, the concept of the MPL error is very useful for convergence analysis. In order to have
monotonic convergence (MC) for an arbitrary sequence of pass lengths {nj} and an arbitrary
disturbance signal v, the following condition must hold:

Lemma 1 (Monotonic convergence of the MPL error p-norm (Seel et al., 2011)): For a
repetitive process (4) with regular system matrix P and input-update law (6),

||ēj+1||p ≤ ||ēj ||p ∀ j ∈ N0, nj ∈ {n, ..., n}, r,v, ū0 ∈ Rn

⇔ ||In −PLHn||p ≤ 1 ∀n ∈ {n, ..., n} (13)

for some vector norm || · ||p and its induced matrix norm.

Proof. Necessity and sufficiency follow from the definition of an induced matrix norm, i.e. ||A||p :=
max{||Ax||p, ||x||p = 1}, from the MPL error closed-loop dynamics (7), and from the fact that (in
each trial j) the pass length may take any value nj ∈ {n, ..., n}.

In practice, checking the condition of Lemma 1 would entail the need to calculate the norm
of (n − n + 1) matrices of dimension n × n, which is a potentially large number of large-scale
matrices when high sampling rates are used. Fortunately, simplified conditions can be found for
the 1-norm ||ej ||1 by exploiting the special structure of the closed-loop error dynamics matrices
(In −PLHn), n ∈ {n, ..., n}.

The following theorem exploits this special structure and provides a necessary and sufficient
condition for monotonic convergence of the 1-norm of the MPL error.

Theorem 1 (Monotonic convergence of the MPL error 1-norm (Seel et al., 2011)):
Given a repetitive process (4) with regular P and input-update law (6), the 1-norm of the MPL
error ēj is monotonically decreasing, i.e.

||ēj+1||1 ≤ ||ēj ||1 ∀ j ∈ N0, nj ∈ {n, ..., n}, r,v, ū0 ∈ Rn, (14)

if and only if

γ1 = ||In −PL||1 ≤ 1 . (15)

Proof. Necessity follows from Lemma 1, since (15) repeats a special case (n = n, p = 1) of the
condition therein. Sufficiency is proved by the following argument, which holds for every n ∈
{n, ..., n}:

(In −PLHn) = (In −PL)Hn + (In −Hn). (16)

Note that the last n − n columns of (In − PL)Hn are zero and that (In − Hn) =
blockdiag{0n×n, I(n−n)}. Recall that the induced matrix norm || · ||1 is the maximum absolute
column sum of the matrix. Therefore, we obtain

||In −PLHn||1 = max(||(In −PL)Hn||1, 1) (17)

≤ max(||In −PL||1||Hn||1, 1) ≤ max(γ1, 1) . (18)

And with Lemma 1, monotonic convergence follows.
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Of course, strict monotonic convergence is more desirable than just monotonic convergence. But
even for γ1 < 1, it turns out that ||In − PLHn||1 = 1 ∀n < n, since the last n − n columns each
have an absolute-value sum of one. To clarify this issue, the following corollary is given:

Corollary 1 (Almost-strict monotonic convergence of the MPL error 1-norm): If the
matrix L satisfies γ1 = ||In − PL||1 < 1, then ||ēj+1||1 < ||ēj ||1 for arbitrary pass length nj ∈
{n, ..., n}, unless the first nj entries of ēj are zero. This follows from (10) and from the special
property ||ēj ||1 = ||ej ||1 + ||êj ||1∀j of the 1-norm, which allows the following conclusion:

||ēj+1||1 ≤ ||(In −PL)||1||ej ||1 + ||êj ||1 < ||ēj ||1 . (19)

In practice, this simply means that the learning algorithm is not guaranteed to improve the last
n−nj input samples until long enough passes occur. But it always learns from measured errors on
the first nj samples and (unless they are all zero) improves the overall controller performance by
reducing the 1-norm of the MPL error, even for short pass lengths.

3.1.1 Convergence of the MPL error in different p-norms

The simplified condition that Theorem 1 provides for monotonic convergence of the MPL error
1-norm uses a single scalar convergence indicator, which is quickly calculated from the given input-
output dynamics P and the iterative learning controller L. Beyond this, Lemma 1 provides a
condition for monotonic convergence of the MPL error in any vector p-norm. However, as men-
tioned before, it requires the calculation of the matrix norm of a (potentially) large number of
(potentially) large-scale matrices. Therefore, we shall briefly comment on how the simplified con-
dition of Theorem 1 can be used to assess convergence in any other p-norm of the MPL error. To
this end, note that any vector p-norm is less than or equal to the 1-norm of the same vector, i.e.
||a||p ≤ ||a||1 ∀a ∈ Rn, p ∈ {1, 2, ...,∞}. Therefore, note the following properties.

P1: If the MPL error converges to zero in the 1-norm, then so it does in any p-norm.
P2: If its 1-norm converges to a small value ε then any p-norm of the MPL error converges to or

even falls below ε.
P3: If almost-strict MC is established for the MPL error 1-norm, then any p-norm is bounded

from above by the monotonically nonincreasing bound ||ēj ||1, i.e. ||ēj ||p ≤ ||ēj ||1 ∀j.

Therefore, it is in general sufficient to design a learning gain matrix L that satisfies (15).

4. Learning Dynamics for Input-Update Laws with Q-Filter

In the previous section, a modified version of the standard learning law uj+1 = uj + Lej has been
employed. This is a reasonable choice for many applications. Often, however, one wants to restrict
the learning process to a low-frequency range in which model uncertainties are at least limited. In
order to avoid that high-frequency components accumulate in the input trajectory via repetitive
application of the update law, the aforementioned standard learning law is often extended by a
lowpass filter in standard (i.e. constant-pass-length) ILC. Thus, in analogy, we propose the following
for the variable-pass-length case:

ūj+1 = Q
(
ūj + L Hnj

ēj
)
, (20)

where Q ∈ Rn×n is a symmetric matrix with Toeplitz structure containing the Markov parameters
of a low pass filter with cutoff frequency denoted by fQ. Multiplying a lifted signal by Q corresponds
to applying a zero-phase lowpass filter to the signal, see for example Elci et al. (2002).
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Using this modified learning law leads to more complex closed-loop dynamics. By combin-
ing (4), (5), and (20), and under the assumption of a regular system matrix P, we obtain the
following maximum-pass-length error dynamics:[

ej+1

êj+1

]
= PQP−1(In −PLHnj

)

[
ej
êj

]
+ (In −PQP−1)(r− v). (21)

As before, note that, in general, the measured error ej+1 of trial j + 1 on the left-hand side and
the measured error ej of trial j on the right-hand side do not have the same dimensions. For
convenience, introduce the following trial-dependent partition:[

K1,j K2,j

K3,j K4,j

]
:= PQP−1, (22)

K1,j ∈ Rnj×nj , K2,j ∈ Rnj×(n−nj), K3,j ∈ R(n−nj)×nj , K4,j ∈ R(n−nj)×(n−nj). (23)

This, together with (8), allows us to rewrite (21) in the following form:[
ej+1

êj+1

]
=

[
K1,j K2,j

K3,j K4,j

]([
G1,j G2,j

G3,j G4,j

] [
ej

0(n−nj)×1

]
+

[
0nj×1

êj

])
+

[
Inj
−K1,j −K2,j

−K3,j Inj
−K4,j

]
(r− v).

(24)

These dynamics exhibit a different structure than the previously considered dynamics (7). Lemma 1
and Theorem 1 cannot be applied or trivially extended to the present case.

To assess the right-hand side of (24), recall that any p-norm is submultiplicative and that the
p-norm of a matrix cannot be smaller than the p-norm of any of its sub-matrices. It is helpful to
introduce the following scalar convergence indicator γ̃p, residual indicator ε̃p, and crosstalk indicator
κ̃p:

γ̃p : = ||PQP−1(In −PL)||p with γ̃p ≥
∣∣∣∣∣∣∣∣PQP−1

[
G1,j

G3,j

]∣∣∣∣∣∣∣∣
p

, (25)

ε̃p : = ||In −PQP−1||p , (26)

κ̃p : = ||PQP−1||p with κ̃p ≥
∣∣∣∣∣∣∣∣[K2,j

K4,j

]∣∣∣∣∣∣∣∣
p

. (27)

Note that these indicators do neither depend on the current pass length, nor on the reference or
disturbance. They are constants that can easily be calculated for any given system P and iterative
learning controller L,Q. Therefore, we will try to formulate convergence criteria and controller
design guidelines in terms of these indicators.

The above definitions allow us to state the following result:

Theorem 2 (Monotonic decrease of the MPL error norm above a threshold): Consider
a repetitive process (4) with regular P and input-update law (20). Assume that the learning gain
matrix L is chosen such that γ̃p < 1. Then the p-norm of the MPL error decreases from trial to
trial, i.e. ||ēj+1||p < ||ēj ||p, if the norm of the measured tracking error is sufficiently large, namely

||ej ||p >
ε̃p||r− v||p + κ̃p||êj ||p

1− γ̃p
. (28)

10
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Proof. From the closed-loop error dynamics (24) and the triangle inequality, it follows that

||ēj+1||p
||ēj ||p

≤ ||ēj+1||p
||ej ||p

≤

∣∣∣∣∣∣∣∣PQP−1

[
G1,j

G3,j

]
ej

∣∣∣∣∣∣∣∣
p

+

∣∣∣∣∣∣∣∣[K2,j

K4,j

]
êj

∣∣∣∣∣∣∣∣
p

+ ε̃p||r− v||p

||ej ||p
. (29)

Using the inequalities (25), (27) and ||ej ||p > ε̃p||r− v||p + κ̃p||êj ||p + γ̃p||ej ||p from (28), we
immediately see that the right-hand side of (29) is less than one.

This means that the MPL error norm ||ēj ||p decreases (at least) until the norm ||ej ||p of the
measured tracking error falls below a certain threshold, which is small if the convergence indicator
γ̃p, the residual indicator ε̃p, and the hypothetical error norm ||êj ||p are small. The usefulness of
such statements largely depends on the conservativeness of the threshold (28). Therefore, we will
aim at reducing this conservativeness in the following.

4.1 Frequency-Weighted Residual Indicator

Assume that a nontrivial Q-filter is used, which is neither Q ≈ 0n×n nor Q ≈ In, i.e. the cutoff
frequency fQ is neither close to zero nor close to the Nyquist frequency. Then, for all regular lifted
system matrices P, we find that κ̃p = ||PQP−1||p can hardly be less than one. This is not surprising,
since multiplication by a lowpass Q-filter leaves low-frequency lifted signal almost unchanged. At
the same time, premultiplying a high-frequency lifted signal by Q yields a lifted signal with very
small norm. Therefore, the residual indicator ε̃p = ||(In −PQP−1)||p can hardly be smaller than
one.

Since this seems to be a very restrictive result, we briefly interpret it in more detail by inspecting
the system dynamics (4) and the learning law (20), which leads to the following conclusion. If there
are high-frequency portions in the reference r or disturbance v, then these lead to high-frequency
portions in the tracking error that will not be removed by the learning controller unless fQ is larger
than those frequencies. This is in accordance with our previous statement that the Q-filter restricts
the learning process to a low-frequency range.

In that sense, however, approximating ||(In −PQP−1)(r− v)||p by ε̃p||r− v||p is highly conser-
vative. In the very realistic case that both r and v contain only frequencies (far) below the chosen
fQ, we may expect the error norm to be reduced to a much smaller value than (28) suggests.

In order to obtain a less conservative result, we define the frequency-weighted matrix norm
|| · ||≤f0,p : Rn×n → R as follows:

||A||≤f0,p := ||AQf0 ||p ∀A ∈ Rn×n , (30)

where Qf0 ∈ Rn×n is the regular lifted system matrix of a lowpass filter with some cutoff frequency
f0 (between 0 and the Nyquist frequency) and unity p-norm ||Qf0 ||p = 1. Recall that the induced
matrix p-norm is the largest gain by which the p-norm of a vector increases when multiplied with
the matrix. Following this definition, the frequency-weighted matrix norm || · ||≤f0,p yields the
largest gain by which the p-norm of a low-frequency vector increases when multiplied with the
matrix6. Furthermore, note that, by definition, the proposed matrix norm || · ||≤f0,p exhibits the
fundamental properties of a matrix norm, i.e. it is definite, homogeneous, and subadditive.

Using this frequency-weighted matrix norm, we now define the frequency-weighted residual in-
dicator

ε̃≤f0,p : = ||(In −PQP−1)||≤f0,p , (31)

6more precisely: ||A||≤f0,p = max{||Ax||p,x = Qf0 x̂, ||x̂||p = 1}.
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which is found to be clearly below one for Q-filters with fQ > f0. This allows us to reduce the
conservativeness of (28) in the sense that ε̃p||r− v||p can be replaced by ε̃≤f0,p||r− v||p if the
reference and disturbance signals contain only frequencies below a known frequency f0, i.e. if
multiplication by the lowpass filter from the definition (30) yields

Qf0(r− v) = (r− v). (32)

4.2 Monotonic Decrease of the Maximum-Pass-Length Error 1-Norm

A second source of conservativeness of Theorem 2 lies in the fact that κ̃p is typically close to one,
as discussed above. However, if we decide to use the 1-norm for convergence analysis, we find the
following condition for monotonic convergence, which is clearly less conservative.

Theorem 3 (Monotonic decrease of MPL error 1-norm above a threshold): Consider a
repetitive process (4) with regular P and input-update law (20), and assume that the reference and
disturbance signals contain only frequencies below a known frequency f0, i.e.

Qf0(r− v) = (r− v), (33)

where Qf0, with ||Qf0 ||1 = 1, is a regular lifted matrix of a lowpass filter with cutoff frequency f0.
Assume furthermore that the learning gain matrix L is chosen such that γ̃1 < 1. Then the 1-norm
of the maximum-pass-length error is reduced from trial j to trial j + 1, i.e. ||ēj+1||1 < ||ēj ||1, if its
measured portion satisfies

||ej ||1 >
ε̃≤f0,1||r− v||1 + (κ̃1 − 1)||êj ||1

1− γ̃1
. (34)

Proof. The proof follows the lines of the proof of Theorem 2, but it exploits the fact that the
1-norm of a vector is the sum of the absolute values of its entries. Therefore, we find

||ēj+1||1
||ēj ||1

=
||ēj+1||1

||ej ||1 + ||êj ||1
≤
γ̃1||ej ||1 + ε̃≤f0,1||r− v||1 + κ̃1||êj ||1

||ej ||1 + ||êj ||1
, (35)

which is less than one, since (34) yields ||ej ||1 > γ̃1||ej ||1 + ε̃≤f0,1||r− v||1 + (κ̃1 − 1)||êj ||1.

Theorem 2 and Theorem 3 provide practically useful conditions for convergence analysis. In
particular, the conditions (28) and (34) yield upper bounds of the residual errors that may occur
when a Q-filter is used. It is known from standard ILC theory that these residual errors depend
on r− v. In variable-pass-length systems, however, they also depend on the hypothetical tracking
error êj that would occur on the last n − nj samples. Assume for example that ε̃≤f0,1||r− v||1 is
negligibly small, that κ̃1 = 1.1 and that γ̃1 = 0.5. Then the 1-norm of the MPL error is guaranteed
to decrease as long as ||ej ||1 > 0.2 ||êj ||1. This means that the tracking is improved at least until
the measured portion of the error becomes smaller than a fifth of the hidden portion.

4.3 Multiple-Input Multiple-Output Systems

To simplify the preceding derivations and arguments, we have assumed that the input and the
output of the system to be controlled are both scalar. At this point, we briefly comment on the
value of the above results for multiple-input multiple-output systems with u(t), y(t), r(t), v(t) ∈ Rm.

12
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Obviously, for such systems ūj , ȳj , ēj , r,v ∈ Rmn and yj , ej ∈ Rmnj with

ūj :=
[
u(t0,j)

T , u(t0,j + ts)
T , . . . , u(t0,j + (n− 1)ts)

T
]T
, P,L,Q ∈ Rmn×mn,

〈·〉nj
: Rmn → Rmnj , 〈·〉n : Rmnj → Rmn, Hnj

:= blockdiag{Imnj
,0m(n−nj)×m(n−nj)}.

With these slight modifications and with Imnj
instead of Inj

, we find that the learning law,
the definition of the maximum-pass-length error, and the closed-loop dynamics are equivalent
to (3), (5), (7), respectively. Likewise, we proceed and redefine the dimensions of the partition

G1,j ∈ Rmnj×mnj , G2,j ∈ Rmnj×m(n−nj), G3,j ∈ Rm(n−nj)×mnj , G4,j ∈ Rm(n−nj)×m(n−nj),

and equivalently for Ki,j , i = 1, 2, 3, 4. This finally reveals that all of the results of Sections 3 and 4
also hold analogously for the considered case of multiple-input multiple-output systems.

In the following, we summarize the above findings in guidelines for controller design.

13
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5. Controller Design Guidelines

As Theorem 2 suggests, it is advantageous to choose a learning gain matrix that leads to a small
convergence indicator γ̃p. As also discussed above, the choice L = P−1 leads to the fastest con-
vergence. This, however, assumes that the input-output dynamics of the system to be controlled
are precisely known. If model uncertainties are significant, then a more careful choice is advisable.
As discussed in the classical ILC literature (see for example Bristow et al. (2006) and references
therein), a small diagonal learning gain will yield ||Imn − PL||p just below one for a large class
of system dynamics, which results in slow convergence with a potentially large residual error but
good robustness with respect to model uncertainties.

When faced with the question of how to choose the cutoff frequency fQ of the Q-filter, one should
note the following relationships. For a given f0, the indicator ε̃≤f0,p becomes small if fQ is raised
above f0. However, as discussed before, a small fQ improves robustness with respect to model
uncertainties by preventing high-frequency portions of the measured output from influencing the
learning process. As in classical control theory, one must balance between controller performance
(bandwidth) on the one hand and robustness and measurement noise rejection on the other hand.

From the preceding discussion we conclude the following controller design guidelines for ILC
systems of the form (4), (20):

G1. An upper bound f0 for the largest frequency that occurs in the reference signal r or in the
disturbance signal v should be known.

G2. The model P should approximate the input-output dynamics of the system (at least with
small or moderate uncertainties) for frequencies between 0 and f0.

G3. The cutoff frequency fQ of the Q-filter Q should be smaller than the smallest frequency at
which large model uncertainties occur.

G4. At the same time, fQ should be chosen such that a small residual indicator ε̃≤f0,p is achieved
for the given system dynamics P. This typically implies fQ ≥ f0.

G5. The learning gain matrix L should be chosen such that a small convergence indicator γ̃p is
achieved for some induced matrix norm || · ||p.

Following these guidelines will prevent hidden error growth and will assure that the tracking
error is quickly reduced (at least) until its norm falls below a small threshold.

6. Simulation Study of an Example System

The goal of this section is to illustrate some variable-pass-length learning phenomena and to demon-
strate the usefulness of the criteria derived above. For this purpose, controller design and simu-
lations are carried out for a simple example application system that is motivated by Nahrstaedt
et al. (2008a). There, functional electrical stimulation (FES) of the tibialis anterior muscle is used
to induce a predefined foot movement during the swing phase of gait (i.e. between toe-off and
initial contact, when the foot moves forward without ground contact).

The stimulation pulse width of the FES current pulses (in tenths of milliseconds) and the ankle
joint angle (in degrees) are the input variable u(t) and the output variable y(t), respectively. Then
the following linear difference equation model roughly approximates the input-output dynamics of
the system at a sampling interval of ts = 0.02 s (cf. Nahrstaedt et al. (2008b)):

y(t)− 0.8097002 y(t− ts)− 0.0777289 y(t− 2ts) = 0.6634u(t− 2ts), (36)

The ankle joint angle y(t) shall be controlled to follow a predefined reference trajectory in each
trial, i.e. in the swing phase of each stride. Based on experimental data (Seel et al., 2013b), the
duration of swing phase in the gait of stroke patients is estimated to vary between 0.6 s and 1.0 s,
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which corresponds to n = 30 and n = 50. Therefore, the following full-length lifted signal vectors
are defined:

ūj = [uj(t0), uj(t0 + ts), . . . , uj(t0 + 49ts)]
T ∈ Rn, (37)

ȳj = [yj(t0 + 2ts), yj(t0 + 3ts), . . . , yj(t0 + 51ts)]
T ∈ Rn, (38)

r = [r(t0 + 2ts), r(t0 + 3ts), . . . , r(t0 + 51ts)]
T ∈ Rn, (39)

v = [v(t0 + 2ts), v(t0 + 3ts), . . . , v(t0 + 51ts)]
T ∈ Rn, (40)

where the input-output time shift of two samples is chosen to compensate the relative degree of
the system dynamics (36). The Markov parameters of (36) are determined and, from those, the
(regular, lower triangular, Toeplitz) lifted system matrix P is calculated.

Based on experimental data, reasonable values for the sequence of pass lengths {nj}, for the
desired output r and for the zero-input response signal v are found. The initial input ū0 is chosen
to be a constant pulse width of 0.2 ms.

A two-parameter learning gain matrix Lopt is employed with (Lopt)i,i = l1 ∀i ∈ [1, n] on the main
diagonal, and (Lopt)i,i−1 = l2 ∀i ∈ [2, n] just below the main diagonal. If no Q-filter was used, this
would correspond to the following first-order controller dynamics:

uj+1(t) = uj(t) + l1 (r(t+ 2ts)− yj(t+ 2ts))

+ l2 (r(t+ 1ts)− yj(t+ 1ts)) , t = t0, . . . , t0 + (nj − 1)ts. (41)

The parameters of Lopt are chosen by numerically minimizing the norm ||In − PLopt||1, as sug-
gested by Theorem 1, over wide ranges of both l1 and l2. For l1 = 1.5, l2 = −1.35, an ap-
proximate plant inversion with a small convergence indicator of γ1 < 0.13 is achieved. There-
fore, when employing the learning law (6), almost-strict7 monotonic convergence of ||ēj ||1 (for
all j, nj ,v,u0) follows from Corollary 1 without further computational effort. By calculation of
maxn∈{n,...,n} ||In −PLoptHn||2 ≈ 1.004, it is furthermore found that the Euclidean norm ||ēj ||2 of
the maximum-pass-length error is not only bounded by ||ēj ||1 from above, but also bounded to rise
(if at all) in no pass by more than 0.4%.

A zero-phase lowpass filter (2nd-order Butterworth) is used as a Q-filter. Since r and v are
known to contain only frequencies below f0 = 2 Hz, the Q-filter cutoff frequency is chosen to be
fQ = 5Hz, such that ε̃≤f0,2 = 0.214. Calculation of the convergence indicator defined in Section 4
yields γ̃2 = 0.092. According to Theorem 2, this implies that the Euclidean norm of the MPL error
decreases, (at least) as long as the measured error norm is larger than a small threshold.

In practice, much less reliable model knowledge might be available. Therefore, and for the sake of
comparison, a second learning gain Ldiag is designed by simply choosing a small diagonal learning
gain Ldiag = 0.12 In, which yields a convergence indicator of γ̃2 = 0.954. Obviously, this also
guarantees monotonic decrease of ||ēj ||2 for large measured error norms, but a much slower decrease
and a potentially larger residual error norm should be expected.

The lifted system model P,v is simulated with both of the designed learning controllers Ldiag,Q
and Lopt,Q. Input and output trajectories of the first seven passes (trials) (with pass lengths of
{nj}6j=0 = {34, 40, 30, 46, 50, 50, 37}) are presented in Figure 3. The reduction of the MPL error
1-norm and 2-norm is illustrated in Figure 4a.

In the plots for Lopt, a core phenomenon of variable-pass-length learning becomes apparent.
Whenever a pass is long enough to encounter samples that have not been reached before, the
controller starts to learn this piece of trajectory almost from scratch, i.e. starting with the according
piece of ȳ0 that (hypothetically) would have been measured in the first pass if it had been long
enough. Due to approximate plant inversion, the very next output already resembles the reference

7in the sense of Corollary 1, i.e. ||ēj+1||1 < ||ēj ||1 for all nj ∈ {n, ..., n} unless ej is the zero vector.
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Figure 3. Variable-pass-length ILC. The end of each pass is marked with a dot (which also helps to identify the curves, since
nj is given). Lines are continued in dashed style to illustrate the (hypothetical) maximum-pass-length errors ēj = r− ȳj with

respect to the reference trajectory (black solid with dots). Left : Starting from a constant input ū0, the controller with optimized
learning gain Lopt quickly reduces the control deviation for all sample instants seen so far. Right : The controller with diagonal

learning gain matrix learns slower and in a qualitatively different fashion.

(up to the longest pass length seen so far). The similarity of y2 and y3 shows that, when shorter
passes occur, controller performance is not improved significantly any more.

In contrast, the diagonal controller learns slower and in a qualitatively different fashion. The
measured errors result in input updates that clearly affect the output less precisely. After the first
three learning steps (with pass lengths n0 = 34, n1 = 40, and n2 = 30), the error on the first 30
samples is still significant. However, the samples 40− 46 of y3 are closer to the reference than the
same samples of y3 in the left subplot. This extrapolating behavior of the less precise input update
law seems advantageous. However, if either v or r would exhibit steeper slopes on the time interval
t ∈ [n ts, ..., n ts], this behavior would obviously lead to inferior performance.

In several further simulations, similarly quick reduction of the tracking error is observed for
both learning gain matrices. Furthermore, simulations with modified controller parameters l0, l1, l2
confirm that γp and γ̃p are indeed useful convergence indicators.

Influence of time-variant disturbances

A closer observation of experimental data reveals that the zero-input response v varies with time,
which is most likely due to changes in the muscle tone of antagonistic muscles and due to small
variations of the shank motion, both of which act as disturbances on the output of the system to
be controlled. We model this effect by choosing an iteration-dependent signal vector vj that varies
unpredictably within an experimentally identified range, as illustrated by Figure 4b. Note that the
signal changes dramatically within as few as three iterations.

Repeating the simulations described above with the time-variant vj yields the results presented in
Figure 4c. The MPL error 1-norm and 2-norm of the optimized learning gain Lopt slightly increase

16



September 23, 2017 International Journal of Control ILC˙VPLsys

(a) trial index j

Ldiag
Lopt

re
la

ti
v
e

M
P

L
er

ro
r

n
o
rm
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||ē0||2 ||ēj ||1
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Figure 4. (a) Reduction of the MPL error 1-norm and 2-norm over the first 18 iterations when using an iteration-invariant

zero-input response signal vj . (b) Iteration-variant zero-input response signal vj as determined from experimental data. (c)

Reduction of the MPL error 1-norm and 2-norm over the first 18 iterations when using the iteration-variant vj from (b).

from trial 2 to trial 3. However, both norms quickly converge to a tenth of their original value.
Rapid reduction of both norms is also observed for Ldiag. After this first phase of convergence, the
error norms fluctuate slightly more than in the case of a constant signal v. However, we shall note
that, despite the drastic variations in vj , the controllers manage to keep the MPL error norms
close to the values of trials 5 and 6, which are only slightly above the remaining error norms in
Figure 4a. This demonstrates that time-variant disturbances are compensated by the proposed
iterative learning controllers, even if the disturbances change dramatically within few trials.

7. Conclusions

A framework for the analysis of repetitive systems with variable pass length was developed. Iterative
learning control schemes with and without lowpass filtering were proposed. The resulting closed-
loop learning dynamics were derived and analyzed with respect to monotonous reduction of the
tracking error. To cope with the variable dimension of the measured tracking error, the hypothetical
maximum-pass-length error was introduced. This concept proved to be useful for convergence
analysis in the presence of variable pass lengths.

For the standard input-update law without Q-filter, we obtained necessary and sufficient con-
ditions that guarantee monotonic convergence of the MPL error norm. For the extended learning
law with Q-filter, we derived conditions that assure a reduction of the tracking error at least until
it falls below a potentially very small threshold. In this context, the issue of conservativeness in
matrix-norm-based convergence criteria was addressed by proposing a frequency-weighted residual
indicator to assess the non-zero residual error that is associated with Q-filter usage.

Based on all previous findings, we derived practical guidelines for the design of iterative learning
controllers in the presence of variable pass length. In a simulation study, we demonstrated the
usefulness of these guidelines and discussed typical phenomena of variable pass length learning.

Since we did not restrict P to be Toeplitz, all of the derived criteria can be employed for a
very large class of systems including time-variant (but iteration-invariant) systems. Furthermore,
all findings and guidelines hold as well if the pass length is constant and can therefore also be
employed for convergence analysis and controller design in classical ILC systems.

Finally, it should be noted that in the motivational examples in Section 1, as in most other
biomedical applications, the variability of the pass length is only one of the difficulties that com-
plicate the employment of classical ILC theory. Issues like input saturation or iteration-variance
(in the process dynamics, the initial conditions, the disturbance, or the reference signal) should be
addressed individually as well as in the context of variable-pass-length systems.
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