MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

GALE System Programmer's Handbook

Robert Lathe
Erich Miller

IPP R/27 February 1978

Die nachstehende Arbeit wurde im Rabmen desVertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europiischen Atomgemeinschaft iiber die
Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiibrt.

Abstract

This report provides the in-
formation needed to implement
the GALE system at a user ins-
tallation. The model~driven
structure of the system is
described with examples and
the steps involved in generat-
ing the model 1including the
necessary macros are dis~
cussed.

Chapter

Chapter

Chapter

—

5%

o

et bt b et et

NNMNNNNNNDNNNDDNDNDNNNDDNDDNDR

.
W W W W WN -
e s s »

LI)

.

OO ~Ia WUt U .& bW

W www
s o 8 e

=W -

b W=

WM

N

(G - TSI 8

Table of Contents

Preface

Manual Objectives
Structure of the Manual

Introduction

Design Goal

Design Philosophy

System Features

System Model

Device Drivers

System Protection

Terminal Facilities

Hardware and Software Requirements

Generation of GALE Configuration Files

Introduction

Terminology

Configuration Model Structure
Block Format

Header Block

Diagnostic Descriptor Block
Module Control Block
Namelist Structure
Privileged NCBDs

NCBD Block Format

The Entire Structure
Implementation

Macro Description

HDR Macro

DDB Macro

MCB Macro

NCBD Macro

UPAR Macro

MO Message Output File Generation

Introduction

The Source File
The Message File
The Macros

Chapter 4

A N A . I -
e e s e ® 8 ©° o

(8]

Chapter

[SARG IR0, NG I NG RO, G, RS R
« e 8 & 8 8 © s 8 ° 8

Appendix A

Appendix B

Appendix C

B RN RN R
s s s &

NN O R W RN N

) N e

GALE Data File Structure

Introduction

Block Format

Header Block

Diagnostic Descriptor Block
Module Control Block

Data Block

Block Linkage

Block Placement

GALE Sysgen Procedure

Introduction

Prerequisites

Target System Prerequisites

Disk Space Prerequisites
Distribution Device Contents
Preparing for GALE System Generation
GALESGN.CMD File Details

Building GALE Configuration Files
CNFGEN.CMD File Details

Setting up GALE for Usage
SETUP.CMD File Details

Offset Definitions for CNF Blocks

Example CNF Structure Construction

User Message File

Preface

0.1 Manual Objectives

The "GALE System Programmer's Handbook" provides all
the information needed to 1implement the GALE system.
Although the manual is primarily self-contained, the reader
should be familiar with the manual "DIOS I/O Operations"”
and, of course, with the RSX~11M system for a full wunder-
standing of this manual.

0.2 Structure of the Manual

This manual is organized into chapters with the follow=-
ing contents:

Chapter
Chapter

provides an introduction to the GALE system.
describes the main control structure (CNF) of
the GALE system. An example structure impleme-
tation is provided in Appendix B.

Chapter 3 provides information on generating Message Files
for use with the Message Output utility.
describes the GALE Data File structure.
discusses the GALE sysgen procedure.

N =

Chapter
Chapter

(S0~

CHAPTER 1

Introduction

This chapter presents a general introduction to the fa-
cilities of the General Acquisition system for Laboratory
Experiments (GALE). It is intended for systems programmers
implementing the system on a particular experiment and for
those contemplating using GALE or designing new systems.

1.1 Design Goal

The major purpose of GALE is to serve as a translator
between the experimentalist and the experimental apparatus.
The translation process is accomplished by means of a combi-
nation of hardware and software modules which convert
electrical signals into messages and graphs meaningful to
the experimentalist on the one hand, and which converts mes-
sages and logical decisions from the experimentalist into
electrical signals acceptable to the apparatus on the other
hand. The translation process is, in the ideal situation,
transparent, however in the practical case restrictions are
imposed. In particular, the user must often have an wunder-
standing of the characteristics of the hardware used to ac-
guire the data.

The objective of the GALE development is a single sys-
tem for use in a pulsed or continuous operational mode which
may be generally characterized as:

1. adaptable to varic s experiments,

2. flexibile at a particular experiment,

3. simple for the experimentalist.

In the pulsed operational mode, experiments are performed in

a definite period of time, and following the end of an ex-
periment, the acquired data 1is available for processing.

Introduction PAGE 1-2

Thus only the data are acquired in real-time, the processing
occurs in non~real~time. This mode is most suitable for ex-

periments with high data input rates and short duration. In
the continuous mode, the acquired data is also processed 1in
real—-time, thus providing a sort of data monitoring. This

mode 1s more sultable for experiments with relatively low
data input rates and longer duration.

1.2 Design Philosophy

In discussing the GALE system philosophy, it should be
kept in mind, that the development objective is a single
system adaptable to a wide variety of laboratory experiment
environments. The alternative is a separate system develop-
ment for each application. The design philosophy implement-~
ed 1in GALE centers on the assumption that the characteris=~
tics of a specific application may be modelled and therefore
the acquisiton system may be tailored to the application via
the model. Furthermore, once a model is constructed, it
must be changeable to reflect new sitiuations arising in the
application. The ease with which the model may be generated
and modified determines the simplicity of the system usage
by the experimentalist.

The assumption that an application may be modelled im~
plies that the system which interprets that model must be
composed of a set of (semi~) independent components. In
GALE, only those components of the total system are required
which are specifically or implicitly given in the applica=-
tion model, thus minimizing the space requirements at a
given installation. The components are parameterized 1in
such a way, that the application model acts as a mask used
to extract the characteristics required for the given appli=-
cation.

1.3 System Features

The GALE system is designed to support a wide variety
of laboratory experiment applications. In the current re-
lease, GALE 3.0, many of the features described are fully
suppor ted, some are partially supported and some are at pre-
sent not supported. The degree of support is indicated with
the feature description.

Introduction PAGE 1-3

1.3.1 System Model

Model Driven. As discussed above and in Chapter 2, the GALE
system is model driven. The complete model has pro-
visions for local and remote diagnostics. At pre-
sent, only local diagnostics are supported.

Dynamic Model Modification. The system model may be dynami-
cally modified at any time other than during the
data acquisition phase. In particular, the defini-
tion of the modules may be changed in the event of a
hardware failure. This feature is fully supported.

Pulsed and Continuous Modes. The present GALE release sup-
ports pulsed mode only.

Multiple Experiment Support. In some cases, it is more eco-
nomical to support several experiments from one
large computer (resource sharing). For such re-
quirements, the GALE design provides for multiple
configurations where each experiment is described by
a separate model. MES is at present not supported.

1.3.2 Device Drivers

Central CAMAC Processing. All requests to the CAMAC system
from the device drivers are processed by central
CAMAC processing routines in DIOS. At the present
time, two CAMAC controllers are supported, without
DMA.

Dynamic Device Driver Loading. In pulsed mode, the devices
required for data acquisition are very often re-
guired for only a small percentage of the time. In
GALE, device drivers are in main storage only during
the time that the device is actually active, thus
saving storage resources. This feature is fully
supported.

User State Device Driver Testing. Device drivers being de-
veloped under the GALE system may be tested in user
state. Errors in the code result in abortion of the
driver, not 1in a system crash, an important consi-
deration in multi~user systems. This 1s a fully
supported feature.

Introduction PAGE 1-4

1.3.3 System Protection

User Logon Protection. Access to the system is password
protected. This 1is a recommended optional feature
of RSX-11M.

Diagnostic Protection. Each diagnostic 1is protected from
inadvertent (or intentional) modification by users
other than the owner and system manager. Thus, each
user has access to his diagnostic(s), 1s however
unaware of other activities in the system. A fully
supported feature.

Data File Protection. All data taken are written into files
which may be read by all users; only the system
manager may delete data files. Fully supported.

Automatic Data File Backup. Data files are automatically
written to backup storage, either in background pro-
cessing or during a specified period of time, for
instance overnight. Files which are no longer
on-line, are transferred from the backup storage by
demand requests. This feature 1is at present not
supported.

1.3.4 Terminal Facilities

Standard Terminal Input. All teminal input is either in the
form of simple commands adhering to the RSX-11M con-
ventions or in the form of Namelist specifications.
Fully supported.

Central Message Facility. All GALE error and informational
messages reside in two system files. Thus all mes-
sages are system wide and are provided in non-~coded
form. Fully supported.

Plot Facility. An optional plot facility is provided for
use with TEK 4000 series teminals.

1.4 Hardware and Software Requirements

The GALE system operates under the RSX-11M operating
system. The hardware confiquration required is that which
is necessary to operate an RSX-11M mapped system and the de-
sired modules and interfaces for data acquisition. These
prerequisites are described in detail in Chapter 5 in this
report.

CHAPTER 2

Generation of GALE Configuration Files

2.1 Introduction

The GALE data acquisition system developed at the In-
stitute for Plasma Physics is based upon a description model
of the relevant data acquisition hardware. In addition to
the individual hardware descriptions, the model also repre-
sents the system topology, i.e., the interrelationships
between the various hardware components. These hardware
components, referred to as "modules", may be dependently or
independently related. Groups of modules (in which both de—
pendent and independent relationships may exist) which form
a logically related construct are termed a "diagnostic".
The set of all diagnostics present on one experimental ap-
pratus comprises the system model. The existence of such a
model allows the conception and implementation of only one
software system, controlled by the model, which meets the
requirements of a variety of experiments.

Due to the fact that the model forms the heart of the
GALE system, the success or failure of a given application
depends upon the careful construction of the configuration
model. The model is held in a file referred to as the "CNF
File". Once this file is generated, model parameters may be
changed via the DLG task; the structure of the model itself
is however fixed and may only be changed through the con-
struction of a new model and CNF file. The model generation
consists of three basic steps:

1. Defining the diagnostics with their associated mo-
dules and the interrelationships of the system com-
ponents.

2. Translating the logical system model into a MACRO
source file using a set of macros.

3. Generating the CNF file.

Generation of GALE Configuration Files Page 2~2

These steps are described in detail in the remainder of this
chapter.

2.2 Terminology

Before attempting to describe the GALE configuration
structure and its sub-structures, it is necessary to first
define a number of terms used throughout this chapter. It
is of the utmost importance that the systems programmer con-
cerned with the implementation of the GALE system have a
through understanding of list processing concepts. The fol-
lowing concepts are presented here for review purposes and
are not intended to be an exhaustive discussion of the
topic.

A "node", often referred to as a "record" or "entity"
is a defined unit of information. Each node consists of one
or more bytes of storage, divided into named parts called
"fields" or "elements". The address of a node is referred
to as a "link" or "pointer".

Lists may be formed into structures of wvarious types.
A "linked 1list" is a set of nodes whose structural proper-—
ties essentially involve only the linear (i.e., one dimen-
sional) relative positions of the nodes. The end of such a
list is reached when the pointer to the next node 1is zero.
A "circular 1list" 1is a linked list which has the property
that its last node is linked back to the first node rather
than pointing to zero. It is then possible to access all of
the list starting at any node contained in the list.

A more complicated structure involving nodes is a
"tree". Knuth * formally defines a tree as follows:
A tree is "a finite set T of one or more nodes such that

1. There is one specially designated node called the
"root" of the tree, root (T); and

2. The remaining nodes (excluding the root) are parti-
tioned into m>=0 disjoint sets T(l),...,T(m), and

each of these sets in turn is a tree. The trees
T(1),...,T(m) are called the ‘“"subtrees" of the
root."

* Knuth, Donald E.; The Art of Computer Programming, Ad-

dison-Wesley; Reading, Mass.; 1969.

Generation of GALE Configuration Files Page 2-3

This definition has the advantage of being recursive,
however it is not very intuitive. A somewhat more intulitive
definition might be achieved by redefining the second part
of the above as follows:

2a. Eminating from the root are one or more pointers.
The remaining nodes are linked in such a way that
each node is pointed to by exactly one node, 1ts
"predecessor", and points to zero or more nodes, its
"successors".

A concept of particular interest in the remainder of
this chapter 1is the "binary tree". 1In a binary tree, each
node has at most two subtrees, distinguished as the "left
subtree" and the "right subtree”.

Consideration of the definition and concept of a tree
reveals the following properties:

1. The root is a unique node which has no predeces-—
SOrs.

2. Every node other than the root has exactly one pre-
decessor.

3. Every node other than the root is connected to the
root by a unique path such that the path begins at
the root and ends at the node, and such that each
node on the path other than the root is a successor
of the previous node on the path.

2.3 Configuration Model Structure

As implied above, the GALE system 1is "model driven",
that 1is, the system can only be "operated" when a model of
the hardware is provided and the model determines the opera-
tion of the system. Before describing how a model 1s actu-
ally implemented, it is important that the wuser have an
understanding of the general philosophy of the modelling
structure used in GALE.

The GALE model organizes the associated hardware 1n
such a way which can best be described as a binary tree
structure. In particular, this structure takes into account
the following facts about the combining of modules into di-
agnostics and diagnostics into a complete system.

Generation of GALE Configuration Files Page 2-4

1. A system is composed of one or more diagnostics.

2. Diagnostics are completely independent of one another as
far as hardware function is concerned. (The physical
phenomena they observe may be very closely connected, on
the other hand).

3. Each diagnostic consists of at least one and possibly
more modules.

4., Within a diagnostic, modules may be independent of one
another or dependent upon other modules. The "indepen-
dent" or "dependent" characteristic of a module is a
function of its physical interconnections with other mo-
dules. Thus, if a module has a physical output to a
second module, the second module is defined to be depen-
dent upon the first. Independent modules are defined as
those modules which have no inputs from other modules in
the configuration model. As will be discussed below,
dependent modules in the model always follow the modules
upon which they depend.

For example, consider the combination of a Pulse Gener-
ator (PG) driving several pairs of Multiplexed ADC's (MX)
and CAMAC Memories (CM) within a single diagnostic: each MX
depends on pulses from the PG but is completely independent
of the other MX's. Each MX has a CM associated with it (de-
pendently), into which it stores its data. This structure
may be intuitively represented by the following diagram:

| 1

| DIAG |
| |
—
...._._._V.-_-_—.—
I |
_________ | PG | = e e
| | | |
| | |
v v v
I I I | | |
| MX | | MX | I MX |
| | | | | |
*___l__._ — —
v \Y
| T = | |
| CM | | CM | I CM |

Figure 2~1
Example of a Diagnostic Structure

Generation of GALE Configuration Files Page 2-5

In the above diagram, it is evident that some of the
modules are independent of others, and on the other hand,
that some of the modules are dependent upon other modules.
A more formal way of expressing these relationships 1is the
concept of a binary tree. Each node in a binary tree has
exactly one entry and two outputs. In the case of a GALE
configuration structure, the outputs represent dependence or
independence. Returning to the example above, a binary tree

structure for the same diagnostic might be illustrated as
follows:

Figure 3-2
Example of a Diagnostic Binary Tree

In the above example, the downward arrows (left sub-
trees) symbolize the dependent relationships, the transverse
arrows (right subtrees) indicate the independent relation-
ships and the diagnostic node is the root of the tree.

Generation of GALE Configuration Files Page 2-6

A set of such diagnostics may be combined in a similiar
way to form the complete configuration. Thus the GALE con-
figuration is a binary tree of binary trees. The following
figure depicts a simple system configuration.

I
| HEADER |

I I

I

v-—-__—-
I | ===>| | =23 I
| DIAG 1 | | DIAG 2 | | DIAG 3 |
| | I I I I
T S T

\' v v
I | | I | |
| MODULES | | MODULES | | MODULES |
| | I I I I

Figure 3-3

GALE Configuration as a Binary Tree

As in the previous example, the downward arrows repre-
sent the dependent relationships, the transverse arrows sym=
bolize the independent relationships and the Header node is
the root of the tree. The reader should also be aware that
the Header never has an independent pointer and that the di-
agnostic independent pointer always is directed to the next
diagnostic (if more exist).

In implementing a GALE configuration, each node of the
logical configuration is converted to a control block. The
following sections give detailed descriptions of the various
control blocks and their contents.

Generation of GALE Configuration Files Page 2-7

2.4 Block Format

All blocks used in building the CNF file consist of
multiples of 64 byte records. A set of Macros has been sup-~
plied to simplify allocation, linkage and initialization of
the CNF blocks. All offsets mentioned below are listed in
Appendix A. Some entries in the three different block types
are concerned with the same quantities and are named by the
same offsets. 1In particular, every CNF block begins with a
common section with the following offsets.

B.LNG Block length in units of 64 bytes.

B.TYP Block type code. Identifies the block type, where
BT.HED denotes a Header Block.
BT.DDB denotes a Diagnostic Descriptor Block.

BT.MCB denotes a Module Control Block.

The block type code is set automatically when using
the Header~, DDB~ and MCB~Macros respectively.

B.DID In the Header block, this element is set to zero.
For further information, see the descriptions D.DID
and M.DID.

B.LK1 Pointer to next independent block (right pointer).

B LK2 Pointer to first dependent block (bottom pointer).

B.NCB Pointer to associated NCBD list.

Generation of GALE Configuration Files Page 2-8

2.4,1 Header Block

The Header block contains information needed to identi-
fy the experiment and the current shot, certain system de-
pendent information, and space for additional user informa-
tion or comments not associated with a specific diagnostic.

H.FPC File processing code. Of concern for data process-
ing purposes only. Cleared by Header Macro.

H.DAT Date of last shot in binary (day month and year).
Cleared by Header Macro and initialized by ACQ.

H.TIM Time of last shot in binary (hour, minute and sec-—

ond) . Cleared by Header Macro and initialized by
ACQ.

H.LST Last shot number corresponding to H.DAT and H.TIM.
Cleared by Header Macro and initialized by ACQ.

H.NXT Shot number of next data file to be written.
Cleared by Header Macro and initialized by ACQ.

H.EXP 3~character ASCII experiment name. H.EXP is used to
form the file name extension of the data files.

H.FLN Data File 1length in wunits of 64 byte records.
Relevant in Data Files only.

H.LUP Length of system user parameter section in bytes.
Automatically initialized by the Header Macro.

H.UPR Start of the system user parameters. User parame-
ters may be specified by using the UPAR Macro.

Generation of GALE Configuration Files Page 2-9

2.4.2 Diagnostic Descriptor Block

The DDB describes a single diagnostic, which may con-
sist of one or more modules. It contains information to
identify the diagnostic to the terminal user and to the data
processing programs, general characteristics, status infor-
mation, \ser parameters and link pointers to further DDBs
and to the Module Control Blocks.

D.DID Diagnostic ID code. Identifies the diagnostic by an
unique number ranging from 1 to 255.

D.TYP Reserved for future use. Any type code from 1 to
255 is acceptable.

D.MLN String length of diagnostic name (1 to 22).
D.MSG Diagnostic name in ASCII (e.g. "HF HEATING").
D.UOC User member code for diagnostic.

D.UGC User group code for diagnostic. D.UOC and D.UGC
form the User Identification Code (UIC) of the user
owning the diagnostic. Only privileged users and
the owning user have access to the diagnostic data
base.

D.CHR Diagnostic characteristic bits, set to

DC.DAQ for data acquisition diagnostic

DC.CTL for monitoring and control diagnostic

DC.LCL for local diagnostic directly connected to
host computer.

DC.RMT for remote diagnostic connected to subsidary
computer. If neither DC.LCL nor DC.RMT are
set, then the diagnostic 1is defaulted to
local (DC.LCL). '

D..5T5 Diagnostic status bits. Initialized to zero (diag-
nostic 1logically off-line). If set to ST.ONL the
diagnostic is considered to be logically connected
to the GALE system.

D.RSA Diagnostic remote station address, valid only if
DC.RMT is set.

D.LUP Length of DDB user parameter section 1in bytes.
Automatically initialized by the DDB macros.

D.UPR Start of the diagnostic user parameters. User par-
ameters may be specified by using the UPAR Macro.

Generation of GALE Confiquration Files Page 2-10

2.4.3 Module Control Block

The MCB controls the actual hardware function of the
associated module during data acquisition or monitoring and
control respectively. It contains information identifying
the module and the diagnostic, link pointers to other MCBs
within this diagnostic, module independent information wused
by the driver, module characteristics and module dependent
parameters determining its operation mode.

M.DID Diagnostic ID code, matches code in D.DID of the as-
sociated diagnostic. Indicates the diagnostic to
which the module belongs.

M.TYP 2-character ASCII module type code. This 1is the
partial driver name for this module (e.g. MX, if
the module drivers P-section is named MXDRV). DIOS
uses the type code to determine the module driver.

M.UNIT Module physical unit number (0 to 255).

M.MID Module ID code in diagnostic. Identifies the module
within a diagnostic by an unique number ranging from
1 to 255.

M.ACP 2-character ASCII partial task name of the ACP con-
taining the module driver (e.g. DA if an ACP with
task name DA.... holds the module driver).

M.CTL Module control bits, set to

MC.CTL for monitoring or control modules.

MC.GEN data are to be read from the module and
stored in the data file.

MC.PRE used in connection with MC.GEN=1 to indi-
cate that the first request to read data
from a module is to be given directly after
receipt of the pre-trigger; otherwise ig-
nored.

MC.PST used in connection with MC.GEN=1 to indi-
cate that the first request to read data
from a module is to be given after receipt
of the post-trigger; otherwise ignored.

MC.HLD no data are to be read from the module and
stored in the data file (MC.GEN=0), however,
other modules which do generate data to be
stored 1logically depend upon this module.
Thus operations on the module will be termi-
nated only after receipt of the
post~trigger.

Generation of GALE Configuration Files Page 2-11

M.DLN

M.DFM

M.DCT

M.DAT

M.VCT

M.PRI

MC.INT for modules generating interrupts.

MC.CAM for CAMAC modules.

MC.SUB for sub~modules. The sub-module concept may
be used by non-~standard drivers for modules
which are interfaced through a multiplexer
module. In this case the multiplexer is
considered a normal DIOS module with a CAMAC
or UNIBUS address respectively in M.ADR and
MC.SUB not set in its MCB. Each sub-module
must be distinguished from others on the
same multiplexer by specifying a physical
sub—address in M.ADR. The MC.SUB bit pre-
vents this address from being treated as an
invalid CAMAC or UNIBUS address by DIOS.

MC.NPR read data in DMA mode from the module.

MC.OVF 1indicates that a module has generated more
data than expected, which might be caused by
a hardware malfunction (set by DIOS).

MC.ERR error on module (set by DIOS).

Length in bytes of module data item.
Format code of data delivered by the module.

MF.NST Non-standard type

MF.BYT Logical*]l data

MF.INT Integer*2 data

MF.FLT Real*4 data

MF.MUX Data in MX format

MF.NL1 Negative logic ones complement
MF.NL2 Negative logic twos complement

Number of data items desired for MC.GEN=1;
otherwise ignored. If M.DCT=0 amd MC.GEN=1, then no
data will be read and the module will be treated as
MC.HLD=1.

Pointer to starting record of module data block 1in
data file. Set by ACQ task.

Module interrupt vector address. Legal addresses
must range from 70(8) to 774(8) and must be a multi-
ple of 4.

Module interrupt priority for non CAMAC modules. If
the module does not require interrupt service,
MC.INT must not be set and M.VCT and M.PRI are irre-
levant.

Generation of GALE Configuration Files Page 2-12

M.ADR Module device register or CAMAC BCNA address depend-
ing on bit MC.CAM in M.CTL.

M.ERR Module error byte. If any error has occured with
the module during I/0 via DIOS this byte is provided
to accept the error code.

M.LUN LUN used by tasks in doing I/O to module wvia DIOS.
DIOS assigns the LUN to the module when processing a
LOAD request. Set dynamically by the task request-
ing I1/0,

M.LPM Length of device dependent parameter section.
Automatically initialized by the MCB macros.

M.DDP Start of the device dependent parameters of module.
Device dependent parameters may be specified by
using the UPAR Macro.

2.5 Namelist Structure

In the operation of large experiments, scientific and
economical reasons necessitate the possibility of continuing
work without long delays, even in the case that some acqui-
sition or control modules become inoperable. That is, it is
necessary to allow a gquick exchange of modules while opera-
tion continues. This requirement is fullfilled by the CNF
structure through the application of the GALE Namelist rou-
tines in conjunction with so-called GALE Namelist Control
Blocks (NCBDs, which consist of slightly modified Namelist
Control Blocks). With a properly constructed Namelist
structure, privileged users may modify any element 1in the
CNF structure via the DLG task.

The Namelist structure associated with the configura-~
tion model consists of a set of open-ended (non-circular)
lists. These partial 1lists are 1linked according to
pre~defined rules by the DLG task to form a normal (circu~
lar) Namelist. An example of such a partial list 1is shown
below.

— e s s o s St B e S e W oy e o -

s e e e e o e e S g g P

Generation of GALE Configuration Files Page 2~13

2.5.1 Privileged NCBDs

To reduce Operator errors, NCBDs provide for the modif~
ication of some entries by users with privileged access
only; within one partial list these NCBDs preceed the other
NCBDs. The first "privileged" NCBD holds a pointer to the
first "non privileged" NCBD to allow quick access to
non-privileged NCBDs. The following depicts such a partial
list:

s e v e e i Sy P o S P s P e P s e B P

* privileged NCBD

The information contained in a part of the CNF struc-
ture consists of entries with identical meaning (e.g. module
name in MCB). It is possible to modify such an entry by
using a single NCBD partial list for all blocks belonging to
the same type as these partial 1lists may be dynamically
linked to the partial list associated with a specific block.
Therefore, in addition to the NCBD lists for each specific
block, one system-wide NCBD list is provided for each block
type (Header, Diagnostic, Module). The data associated with
these common NCBDs can be edited by users with privileged
access rights only.

2.5.2 NCBD Block Format

NCBD blocks are used to dynamically modify their asso-
ciated variables in the CNF data base. An NCBD consists of
an access flag and a complete NCB as it is described in the
"GALE Programmers Handbook". NCBDs are constructed conform-
ing to the following format:

Generation of GALE Configuration Files Page 2-14

N.PRV

N.NXT

N,HLP

| N.LEN | N.MSK |

| Pointer to data area |
or
Data area

Access privileges flag or a pointer to the first
non-privileged NCBD of the partial list. If the
current NCBD is not the first privileged NCBD of the
partial list, this entry contains an access flag set
to NS.PRV to indicate privileged access only, NS.NPR
to allow non-privileged access, or NS.NDF to indi-
cate an empty list. If the current NCBD is the
first privileged NCBD of the partial list, this
entry points to the first non-privileged NCBD in the
partial list.

Pointer to next NCB (Integer*2).
Starting record number of a format string 1in the

User Message File, which holds the explanatory text
for the variable associated with this NCB

(Integer*2). This is generally a symbolic name
referring to a message label in the User Message
file. A 1listing of the standard user messages is

given in Appendix C.

Generation of GALE Configuration Files

N.NAM

N.FLG

N.TYP

N.LEN

N.MSK

N.OFS

Page 2~15

Name by which the data of the associated variable

are referred to by NML (4 bytes RAD50 notation).

Logical*l control variable, which is always set

to

NS.RMT (=1). Additionally, NS.HLP (=2) is set if

N,.HLP contains a meaningful record number. For
ample if a Help function is available N.FLG is
to 3 (NS.RMTINS.HLP).

ASCII data format code (Logical*l), where the co
A (ASCII string), D (decimal Integer*2), E (Real*
I (decimal Integer*1l), O (octal Integer*2), Y (oc
Integer*1l) and B (bit variable) are defined.

Associated variable data region length in byt
This 1is an Integer*2 value, except for N.TYP set
"B", In this case N.LEN is a Logical*l set to 1
2 respectively depending upon whether the bit is
be modified in a byte~ or word- variable.

Logical*l bit indicator, which is required only
N.TYP is set to "B". N.MSK gives the position
the bit to be turned on or off (0<=N.MSK<=15).

Pointer to the associated data region.

ex-
set

des
4y,
tal

es.
to
or
to

if
of

Generation of GALE Configuration Files Page 2-16

2.6 The Entire Structure

Interconnection of the CNF and Namelist structures 1is
done via pointers. Therefore, an entry is provided in each
CNF block, which holds a pointer to its associated NCBD list
(B.NCB). Furthermore, the first list is fixed to belong to
the Header, the second is attached to all DDBs and the third
1ist to all MCBs of the CNF structure, thus these three sys-
tem-wide lists need not be traced by pointers in the associ-
ated blocks, but are found by placement. All entries in
these lists may be modified, as stated previously, by privi-
leged users only.

For clarification an example of a structure 1is given
below, which describes a system with one diagnostic (DDB1)
consisting of three modules, where two modules (MCBll and
MCB12) are independent of oneanother and one module (MCB13)
is dependent upon another (MCB11) . Two entries 1in the
Header Block (NCBDH1 and NCBDH2) and in the DDB (NCBDD1 and
NCBDD2) are to be modified by users with privileged access
only, also one fixed entry (NCBDM1) in all MCBs.
Furthermore, the DDB should have another entry (ND11l) to be
modified, the first MCB two other entries (NM11ll and NM112)
and the third MCB one other entry (NM131l), where all entries
may be modified by users with normal (non-privileged) access
rights. The second module should have four additional par-
ameters (NM121, NM122, NM123 and NM124) to be modified,
where two of them (NM121 and NM122) are only to be modified
by users with privileged access.

Generation of GALE Configuration Files

o B i i i iy i

Page 2-17

i P 2 s e P

| HDR | | NCBDH1* |
| EXP |~==>0 | DAT |
| =~ - | ==
b | e
| | =——=>0 |->|NCBDH2* |
i | NXT I
oy Eeemes | =~
Y |=>0
| DDB1 | | NCBDD1* |
| LASER |-=->0 | ONL |
—|——— e i
I I ————— |
| | =———— >|ND11 | ==>0 | ~>|NCBDD2* |
| | FILTER | IDID |
| memmemm——— e | -~
| |=>0
\%
| MCB11 | | MCB12 | | NCRDM1* |
| MX1,1 |~=——mmm—m—mm e >l MX2,2 |=->0 | ADR |
= | | e e e —— e | =
[| ———— | Ve |=>0
|| == >INM111 | V |NM121* |
| | MODE | 0 |MODE |
¥ e e [
————————— | g i | Vi
| MCB13 | | =~>INM112 | | INM122* |
| CM1,3 |-==>0 | ECHAN | | |[EXTMAP |
———f|— eee——— | ~~ it Eae
O it |=>0 | Vo e
| === >|NM131 | | ==——m >|NM123 |
\Y% | DT | | CHAN |
6 @ s s pesaes | e
| ~==>0 Ve e e
INM124 |
| FACTOR |
R —— }_....
I->0
* privileged NCBD
Figure 2-3

Example CNF Structure with NCBD

Lists

Generation of GALE Configuration Files Page 2-18

2.7 Implementation
Implementation of the CNF structure is done 1in steps.
First, the acquisition and control system is represented in

a chart as shown above.

Beginning with the Header block, each diagnostic 1s re-
presented by a DDB. The DDBs are numbered (Diagnostic ID
number, DID) and given a name to yield a better survey. As
seen by the CNF, all diagnostics are independent of onean-
other. Next, each diagnostic is described by its structure
of MCBs. In the simplest case, one diagnostic consists of
one module and is therefore represented by one DDB and one
MCB, where the MCB is considered to be dependent on the DDB.
If a diagnostic consists of more than one module, the depen-~
dances are expressed by the linkage of the MCBs.

For example, the nth diagnostic of a system 1is des-
cribed, where a pulse generator (PG) triggers two MUXADCs
(MX), which deliver data to one CAMMEM (CM) each; the
structure is represented as follows:

s b s e mem e i P

Example

~—~>|DIAG | ~~~>NEXT DIAGNOSTIC
| DYNPAR |
......| ___|_...
| | ==~>DN1
|
v
|PG(I) |~==—>0
| MODULE1}
__.‘..._.._|......
I | ~=~>MN1
|
v
IMX (J) |=—————m——— S>|MX (J+1) |~=~>0
|MODULE 2| | MODULE 3|
—|——] -] ——— -
| | ~—~>NM11 | | NN 12
| |
v Y
|[CM(K) |==-=->0 |CM(K+1) | ~==>0
| MODULE4 | | MODULES |
—— | ——]—-— | —] ——
| | ~~=~>NM13 | | ~~=~>NM14
v v
0 0
Figure 3-4

Diagnostic CNF Structure

Generation of GALE Configuration Files Page 2-19

The pulse generator appears as the first module, since
all other modules of the diagnostic depend upon it. The
next dependent module in the hierarchy is one of the MUX-
ADCs. The other MUXADC is considered to be independent of
the first one and therefore it is connecteéed via a pointer to
the right side. Again both CAMMEMs are dependent on their
associated MUXADCs, therefore these modules are connected
via bottom pointers. During this process, each module 1is
provided with two numbers: the module unit number gives the
number of the module of the given type within the whole sys-
tem (UNIT), while the second number identifies the module
within the diagnostic (Module ID number, MID). In addition,
it must be determined which entries of each CNF block are to
be modified wvia the GALE dialog task (DLG). For each such
entry, an NCBD is created, where those belonging to one
block are 1linked together, thus building a partial list.
Lists may consist of NCBDs allowing normal access or of
NCBDs for privileged access rights only, or of both types of
NCBDs, where the privileged NCBDs preceed the other NCBDs in
one list. A list built as described is provided with a glo-
bal label, which is referenced by the associated CNF block.

The CNF and NCBD structures are then translated into
MACRO~11 source code. Macros for this purpose are avail-
able, which are described below. In this phase of the im-
plementation, all diagnostics and modules are described in a
standarized manner; this applies also to the Namelist Con-
trol Blocks required for dynamic modifications.

Special notice is to be given to the system-wide NCBD
lists which are associated with all blocks of one type.
Because these lists are not linked to the CNF structure by
pointers, they are allocated a fixed place within the NCBD
structure, where the list for the Header starts at the first
NCBD, the list for the DDBs with the second and the list for
the MCBs with the third NCBD. The further arrangement of
lists 1is free. 1If one of the first lists is empty then one
NCBD with an access flag NS.NDF must be allocated:

NCBD NS.NDF ;HDR AND DDB
NCBD NS.NDF ;LIST EMPTY
NCBD NS PRV; ¢ CUNIT>; DM UNIT,U.BYT 3MCB LIST

The entire structure is transferred 1into two source
files ("exp"CNF.MAC and "exp"NCB.MAC; "exp" is the experi-
ment short name), where one contains the CNF and the other
the associated NCBDs. The objects produced by the assembler
(MAC) are converted by the task builder (TKB, options /~HD,
UNITS=0, STACK=0) into a task 1image file each.

Generation of GALE Configuration Files Page 2-~20

In order to obtain the proper linkage between the CNF
and NCBDs, it 1is required that each NCBD partial list be
preceeded with a global label, which can be referenced by
the blocks of the CNF. The image file of the CNF is there-
fore built using the symbol table of the image file of the
NCBDs, thus inserting the proper relative addresses in the
CNF. The label blocks are removed from both files so that
they contain only the pure binary structure code. The re-
sulting files are allocated for direct access with record
length 16 (DASNCB."exp") or with record length 64 respec-
tively (DASCNF."exp"), where the relative addresses of asso-

ciated lists are transferred to corresponding record
numbers.

Vice versa, these record numbers are converted to rela-
tive addresses again, if the files are read back into core
by any GALE task guaranteeing proper linkage for the respec-
tive storage medium.

The entire structure, implemented as described above,
allows all GALE tasks direct and fast access to all data.
Beyond this, the NCBD structure enable: the GALE Dialog task
(DLG) to modify the contents of any of the control blocks of
the CNF structure.

Generation of GALE Configuration Files Page 2-21

2.8 Macro Description

Macros are described below, which set up and initialize
a GALE CNF model structure. They are supplied in the
RSX-11M System Macro Libray RSXMAC.SML.

Arguments not specified are assumed to be zero.
Leading parameters not specified, require commas as place
holders. Pointers not defined or defined to zero, are in-
terpreted as the end of linkage or they show that the cor-
responding block is not existent.

All macros and the symbolic values used therein are de-
fined by the macro CNFDFS. CNFDF$ must be specified in a
.MCALL directive and called afterwards (see Appendix A).
All block types of the CNF structure are allocated by the
following macros in multiples of 64 bytes.

2.8.1 HDR Macro

The HDR macro must be the first macro called in defin-
ing the CNF structure.

HDR rcnt,ddbr,ncbr,<enam>
rcnt Length of Header block in units of 64 bytes.
ddbr Pointer to first DDB (B.LK2).
ncbr Pointer to associated NCBD list (B.NCB).

enam 1 - 3 character experiment code (H.EXP).

Generation of GALE Configuration Files Page 2-22

2.8.2 DDB Macro

For allocation of a DDB or MCB the user has to call two
macros in sequence. The first macro defines the common part
of the block structure and the user parameter section, while
the second macro allocates and initializes the block specif-
ic part of the DDB or MCB respectively.

ddbnam:

ddbnam
rent
did
ddbr
mcbr

ncbhr

typ

msg
ugc

uoc

chr

sts

rsa

DDB rcnt,did,ddbr ,mcbr ,ncbr

Name of the DDB used as reference label (e.g. DDB3).
Length of DDB in units of 64 bytes.

Diagnostic ID number (D.DID).

Pointer to the next DDB (B.LKl).

Pointer to the first MCB (B.LK2).

Pointer to the associated NCBD list (B.NCB).

DDBE typ,<msg>,ugc,uoc,chr,sts,rsa

Diagnostic type code (D.TYP).

Name of the diagnostic. This 1is an ASCII string
consisting of up to 22 characters (D.MSG).

Group code of the user who is responsible for this
diagnostic (D.UGC).

Owner code of the user, where UIC=[ugc,uoc] (D.UOC).
Characteristic (D.CHR). This argument specifies
whether the diagnostic is used for data acquisition
(DC.DAQ) or is for control purposes (DC.CTL).

Status, initialized to zero (off-line) (D.STS).

Address of remote station, if diagnostic is attached
to a remote station (D.RSA).

Generation of GALE Configuration Files Page 2-23

2.8.3 MCB Macro

mcbnam: MCB rcnt,did,mcblr,mcb2r,ncbr

mcbnam Name of MCB used as reference label.
rcnt Length of MCB in units of 64 bytes.
mcblr Pointer to the next independent MCB (B.LK1l).

mcb2r Pointer to the next dependent MCB (B.LK2).

ncbr Pointer to the associated NCBD list (B.NCB).

MCBE <typrsunit,mid;<acpdi;ctl.dln;dfm,dect,vet,priadr
typ ASCII two character code for the module (M.TYP).
unit Module unit number (M.UNIT).

mid Module ID number (M.DID).

acp ASCII 2 character code for the driver ACP which
holds the driver for this module (M.ACP).

ctl Module control bits (M.CTL).

dln Length of one data item in bytes (M.DLN).

dfm Data format key (M.DFM).

dct Number of data items to be taken (M.DCT).

vect Address of the interrupt vector (M.VCT).

pri Interrupt priority (M.PRI).

adr Module CSR address or CAMAC BCNA (M.ADR).

Generation of GALE Configuration Files Page 2-24

2.8.4 NCBD Macro

The NCBD macro allocates GALE Namelist control blocks
in multiples of 16 bytes.

ncbnam: NCBD acc,nxt,hlp,(vnam>,typ,offs,len,msk

ncbnam Name of the NCBD used as reference label.

acc Access flag set to NS.NPR for normal access and set
to NS.PRV for privileged access. If a NCBD is pro-
vided for privileged access and is the first NCBD in
a 1list where also NCBDs for normal access are pre-
sent, then acc is set to the reference label of the
first NCBD allowing normal access. If a NCBD list
is to be defined empty, acc is set to NS.NDF.

nxt Pointer to next NCBD in the list, where for the last
NCBD in a 1list nxt 1is not defined or defined to
Zero.

hlp Starting record number of the format string 1located

in a message file for usage with the Message Output
(MO) facility. The format string 1is provided to
give information about the variable(s) associated
with the NCBD.

vnam ASCII string which gives the variable name of which
the contents are to be modified.

typ Format code, where the same codes are valid as are
for the Message Output task, except codes N, P, R, S
and T. Additionally the following code is
specified:

B - Bit-variable

offs Offset of the variable relative to the begin of its
associated block.

len Length of data area in bytes.

nsk Defines for a bit variable the position of the bit
to be modified in a byte (len = 1) or in a word

(len = 2), where 0<=msk<=15.

Generation of GALE Configuration Files Page 2-25
2.8.5 UPAR Macro
This macro serves to specify user parameters.

UPAR upn, type,value

upn Of fset of the user parameter relative to the begin-
ning of its associated block. Offsets are defined
by the symbols x.P0l to x.P43, where x is a place-
holder for H (Header), D (DDB), or M (MCB).

type Has the values U.ASC for ASCII strings, U.INT for
16-bit 1integers, U.BYT for 8-bit integers and U.FLT

for reals (4 bytes).

value Is the value which is assigned the user parameter.

CHAPTER 3

MO Message File Generation.

3.1 Introduction

The Message Output facility accepts format strings
stored in two different disk files: the System Message File
which holds the standard RSX-11M system error messages, and
the User Message File which holds user defined messages.

For use with GALE, both files are defined and delivered
to the user via the normal generation procedure.
Nevertheless, the user may wish to extend message files, in
particular the User Message file, for special applications.
For this purpose aids are available to generate or extend
message files for use with the Message Output Task.

3.2 The Source File

The source file consists of a series of macros which
define the message strings and their starting points rela-
tive to the start of the file. Format strings 1in message
files are not limited in length and may cross any number of
records and even block boundaries within the file. Because
format strings are located via record pointers, they have to
start at the beginning of a record, and this starting point
must be known globally. Furthermore, since no format string
length is given explicitly, format strings in a message file
must be terminated by a binary zero. The file is created in
MACRO-11 source code using two macros, MSGSDF and MSGSND
which are described below.

MO Message File Generation. Page 3~2

3.3 The Message File

The Message File is a randomly accessible file with a
fixed record length of 64 bytes, which is built in quite the
same manner as GALE CNF files. The assembler (MAC) compiles
the source code into object form and the task builder (TKB)
is used to produce an image file without Task-Header, Stack
and Logical Unit Table (LUT), (TKB Options: /-HD, STACK=0,
UNITS=0) and a symbol table file. The message file is then
a result of removing the label blocks of the image file,
which may be done easily by means of the CNF task. Af ter
DisMOunting MO: and MOUnting it again with the new message
file, the format strings therein are ready to be accessed.
For example, if file USR.MAC holds user messages in Macro-1l
source code the sequence of implementation is as follows:

MAC>DEV: [UIC]USR=DEV: [UIC]USR

TKB>DEV: [UIC]USR/~HD=DEV: [UIC]USR
TKB>/

ENTER OPTIONS:

TKB>UNITS=0

TKB>STACK=0

TKB>//

CNF>DEV: [UIC]USR.MSG/CF=DEV: [UIC]USR
DMO MO:
MOU MO:/UMSG=DEV: [UIC]USR.MSG

Tasks which desire to use messages contained in the
message file should specify the global label of the message
as the record number in the MO: directive. By task build-
ing the wuser task with the message file symbol table, the
physical record number is automacally inserted by the Task
Builder.

MO Message File Generation. Page 3-3

3.4 The Macros

In order to simplify message file generation, two ma-
cros are available which format the desired format strings
to conform to the rules which apply to message files.

label: MSGSDF <text>

label represents an optional label, which may be used in
locating the starting record numbers for format
strings, as it is done by 1linking the GALE CNF
structure to the associated Namelist structure
(e.g. record number = label/64+1). If the label 1is
to be used as the record number in a directive to
MO:, it must be declared globally.

text denotes the desired format string or a portion of
1t

Any number of MSG$DF macros may be executed in sequence
to establish format strings of any length. A message file
format string is properly terminated by executing the macro

MSGSND

which has no arguments. This macro appends a binary zero to
the format string established by issuing MSGSDF macros and
assures that the next format string, defined by MSGSDF ma-
cros, starts at a 64 byte boundary.

CHAPTER 4

GALE Data File Structure

4.1 Introduction

The GALE Data File is allocated on the data storage
device wupon initiation of the ACQ task (or upon receipt of
the START-TRIGGER when ACQ is in /AUTO mode) and filled with
experiment data during the acquisition phase of the ACQ
task. It is structured to contain all pertinent information
accessible to the system about a given shot. This includes
the time, date and number of the shot. Furthermore, the
model of the on-line data acquisition diagnostics with the
given user parameters is also written to the data file.
Finally the data generated by each module are stored in the
Data File, which may be understood as the Confiquration File
of the on-~line diagnostics extended by the experimental data
delivered by the data generating modules.

4.2 Block Format

The Data File is, like the Configuration File, composed
of 64 byte fixed-length, randomly accessible records. The
records are again grouped into blocks with the same format
in the first three bytes as in the Confiquration File, i.e.,
the length of the block in units of 64 byte records and the
block type <code. The types of blocks present are the fol-
lowing:

BT.HED Header Block

BT.DDB Diagnostic Descriptor Block
BT.MCB Module Control Block

BT.DAT Data Block

GALE Data File Structure Page 4~2

As mentioned above, the first three block types are
identical to those in the Configuration File. Therefore, a
summary of the essential points and differences in the vari-
ous offsets will suffice here, whereas the Data Block will
be described in detail.

4,2.1 Header Block

The Header Block is identical to that in the GALE Con-
figuration File. The shot number, time and date are updated
to the current shot at the time the Data File is written by
ACQ. For each shot, one Data File is created, even when no
diagnostics are on-line. In this case, the Data File will
contain a Header Block only, where the pointer to the first
DDB will be zero. As outlined 1in Chapter 2, the Header
Block contains the shot number and the name of the experi-
ment the Data File belongs to. Thus the Data File name may
be constructed from the Header even in cases where the Data
File name is destroyed. The GALE Data File name format is
described in the chapter "Data File I/0 Interface" in the
"GALE Programmer's Handbook".

B.LK2 This pointer is changed to point to the proper re-
cord in the Data File, rather than in the Configura-
tion File.

B.NCB The Namelist record number is meaningless.

H.DAT This entry holds the date of the shot in binary (3
bytes: day, month and year).

H.TIM Gives the time of the shot in binary (3 bytes:
hour, minute and second).

H.LST Shot number of this Data File.

H,NXT Shot number of the Data File to be written after
this one.

H.FLN This entry gives the total length of the Data File
in units of 64 byte records.

GALE Data File Structure Page 4-3

4.2.2 Diagnostic Descriptor Block

The DDB also has the identical format as in the Confi~-
guration File. The following offsets however deserve men-—
tion:

B.LK1

B.LK2 These pointers are changed to point to the proper
records in the Data File, rather than in the Confi-
guration File.

B.NCB The Namelist record number is meaningless.

D.STS The on-line bit (ST.ONL) 1is always set, as only
those control blocks from on~line diagnostics are
copied to the Data File.

D.CHR The data acquisition bit (DC.DAQ) is always set, as
only data acquisition diagnostics, as opposed to
those dedicated to monitoring and control functions,
are included.

4,.2.3 Module Control Block

The MCB also has the same format as in the Configura-
tion File. The following offsets deserve mention here:

B.LK1
B.LK2 These pointers are relinked to the proper MCB record
numbers in the Data File.

B.NCB The Namelist record pointer is irrelevant.

M.CTL If MC.GEN is set, the module has its associated data
located in a Data Block starting at the record
number given in M.DAT. If MC.ERR is set, an error
has occured with the module at data acquisition
time, where M.ERR holds the proper error code.

M.DCT This offset contains the amount of data (in units of
the format specified in M.DFM) actually read in, as
opposed to the amount requested. If this number
differs from the number of data originally desired,
MC.ERR is set at M.CTL and M.ERR holds the proper
error code.,

GALE Data File Structure Page 4-4

M.DAT This offset holds the actual record number of the
Data Block i1if the module generated any data (MC.GEN
set at M.CTL). Otherwise it is set to zero.

M.ERR If MC.ERR at M.CTL is set this byte contains an
error code explaining the error that has occured at
acquisition time. Because this offset holds only
one byte the class to which the error code belongs
is not reported.

M.LUN The LUN is left over from data acquisition and 1is
meaningless.

4,2.4 Data Block

This block type is unique to the GALE Data File. If a
module delivers data to the computer (MC.GEN set at M.CTL in
its MCB) the contents of the data buffer are written to a
block of this format at the time specified by bits MC.PRE
and MC.PST. The starting record number is maintained in the
associated MCB. As for all other block types in the data
file, Data Blocks are allocated in multiples of 64 byte re-
cords. The first record of each Data Block holds informa-
tion about the length and type of the block, the Diagnostic
and Module identification and the length of the data area in
bytes.

B.LNG Length of the Data Block in units of 64 byte re-
cords.

B.TYP For a Data Block, this entry is fixed to BT.DAT.
X.DID This entry gives the ID code of the diagnostic to
which the module belongs which has delivered data to

the Data Block.

X.MID This entry holds the ID code of the module from
which the data were read.

X.BLN Length of the following data area in bytes.
X.DAT Start of data area. Data are stored in the format

as indicated by M.DFM of the module whose ID code is
held in X.MID.

GALE Data File Structure Page 4-5

4.3 Block Linkage

The Header Block, DDBs and MCBs are linked in the same
way as in the Configuration File.

1. B.LKl in the Header is meaningless.
2. B.LK2 in the Header points to the first DDB.

3. B.LKl in the DDB points to the next DDB or 1is zero
if there are no more diagnostics.

4, B.LK2 in the DDB points to the first MCB in the di-
agnostic.

5. B.LKl in the MCB points to the next independent MCB
in the diagnostic.

6. B.LK2 in the MCB points to the next MCB depending
upon it.

In addition, the MCBs are linked to the data blocks via
M.DAT, which points to the starting record of the associated
Data Block. If the module has no data, the pointer is zero.
The linkage is illustrated in Figure 4-~1.

4,4 Block Placement

The order in which the Header Block, MCBs and DDBs ap-
pear in the Data File is the same as it is in the Configura-
tion File. This means that the Header Block starts at re-
cord one, followed by the first DDB with its MCBs, followed
by the next DDB with its MCBs and so on. The Data Blocks
follow the last MCB. They appear one after another in the
order in which they were read from the modules at acquisi-
tion time, 1i.e., all modules giving data before the shot
come before those which are read in after the shot. Figure
4-2 illustrates the placement of blocks in the Data File.
Note that the pointers on the left hand side are independent
and those on the right are dependent.

GALE Data File Structure Page 4-6

| HEADER |
I |
[
.-.—v——-——-
I | = e e e e e > | !
| DIAG 1 | | DIAG 2 |
| I I |
e —
\' v
| ====>| | | |
| MOoD 1 | | MOD 2 | | MOD 1 |
I | | | ==, | I
l | | |
\' | v
I					
MoOD 3		MOD 4			MOD 2
		[
I I	I				
\' v	\Y				
7 DATA		DATA -			
FROM		FROM [MOD 3		
MOD 3		MOD 4			
I		o i			
I \Y					
\'	DATA				
DATA		FROM			
FROM		MOD 3			
MOD 2					
I					
Figure 4-1

Data File Block Linkage

Page 4-7

GALE Data File Structure

i 1
i i
e ——— e —— — — — — +—_—_——— - 1
i 1 ! 1
1 1 I I
——— e — e ——————— — — + —_————— I i
1 1 1 I 1 1
I i i i 1 t
—_——-e—e—— e ——————— — —— — + — I 1 1
1 1 1 1 I I I i
i 1 i H I I I 1
t—= fe— = o— =] I eo—== | " —_ —_— —_-] i i I i
1 1 i Tt [i1 1 I [[[I I i i
1 11 11 I 1 11 [i It [[i I I]
1 v o vl AV | [| vl 1 AVER | AV | AV v v v v
24 ~ ™
= — ™ o~ - — o~ ™ ™ o~ =r ™
a (&) (&) < = < = L = < =
L <L e o a (] - 2 a o H OO HOQ HOQ =HOAQ
s3] — (@] o O (@] = o] O @] < X O < MO < ;K O < KO
o} (] = = = = o = = = [a]y T om = 0o E om=E
! A

Figure 4-~2
Data File Structure

CHAPTER 5

GALE System Generation

5.1 Introduction

The object of the system generation procedure 1is to
create a GALE system tailored to the user's local hardware
configuration and performance requirements. This section
provides an outline of the stages involved in performing a
system generation. Sysgen can be viewed as having three
milestones, which are:

1. Generation of DIOS, the GALE Dynamic Input/Output
System

2. Generation or copy of the GALE tasks and user ob=-
ject libraries.

3. Generation of the GALE Configuration structure
model.

The =2»ntire system generation process, of which these phases
are components, 1s directed by several indirect command
files, wherein most of them are called by the main command
file GALESGN.CMD. The procedure required for transforming
the Configuration structure into a GALE compatible image
form is contained in the file CNFGEN.CMD. The command files
for installing DIOS and for setting up GALE for usage may be
called directly, to conform to the particular user require-
ments.

5.2 Prerequisites

Several points which should be observed when generating
a GALE system are outlined in the following sections.

GALE System Generation Page 5-2

5

2,1 Target System Prerequisites

The Installation under which GALE is to be run must

meet the following requirements:

j

[#%)
°

* ¥ X * ¥ ¥ ¥ %

¥

4.

The hardware configuration must support at least a mini-
mal RSX11M Version 3.0 mapped system.

If CAMAC support is desired, the hardware configuration
must include one of the systems supported by DIOS.

When the RSX system was generated, the following ques-
tions must have been answered as follows:

DO YOU WANT CHECKPOINTING? [Y/N]: Y

DO YOU WANT MEMORY MANAGEMENT UNIT SUPPORT? [Y/N]: Y

DO YOU WANT DYNAMIC MEMORY ALLOCATION SUPPORT? [Y/N]: Y
DO YOU WANT AUTOMATIC MEMORY COMPACTION? [Y/N]: Y

DO YOU WANT MULTI-USER PROTECTION SUPPORT? [Y/N]: Y

DO YOU WANT LOADABLE DRIVER SUPPORT? [Y/N]: Y
ARE YOU PLANNING TO INCLUDE A USER-WRITTEN DRIVER? [Y/N]:
WHAT IS THE ADDRESS OF THE HIGHEST INTERRUPT VECTOR? 8

The address given must be greater than or equal to the
highest interrupt vector to be used by a DIOS module or
CAMAC crate.

DO YOU WANT AST SUPPORT? [Y/N]: Y
DO YOU WANT SEND/RECEIVE DIRECTIVES? [Y/N]: Y
DO YOU WANT THE USER ORIENTED TERMINAL DRIVER? [Y/N]: Y

If you want features of the terminal driver other than
those which are provided by the standard user oriented
terminal driver, you must answer the above question with
no and the following four questions with yes when they
appear.

DO YOU WANT TASKS TO BE CHECKPOINTABLE DURING TERMINAL

INPUT? [Y/N]: Y
DO YOU WANT READ WITH NO ECHO SUPPORT? |[Y/N]: Y
DO YOU WANT READ AFTER PROMPT SUPPORT? [Y/N]: Y
DO YOU WANT TRANSPARENT TERMINAIL READ/WRITE
SUPPORT? [Y/N]: Y
DO YOU REQUIRE THE EXECUTIVE ROUTINE S$GTWRD? [Y/N]: Y
DO YOU REQUIRE THE EXECUTIVE ROUTINE $PTWRD? [Y/N]: Y

Within the executive region there must be a common par-
tition declared as follows:

SET /MAIN=DAPAR:xxxx:15:COM

where xxxx is up to 763 (16K executive) or 1163 (20K ex-
ecutive).

GALE System Generation Page 5-3

5. The RSX system must provide at least one
system~controlled partition to load the Message Output
driver.

6. The RSX system must also provide a partition named "DAS~

COM" with attribute "COM" and a length of at least
100(8) bytes.

7. The size of the RSX system pool must be at 1least 2K
bytes after all desired tasks have been installed.

8. The "BIG" versions of the MACRO-11 Assembler and the
Task Builder, "BIGMAC" and "BIGTKB", must be available
under UIC [1,54].

5.2.2 Disk Space Prerequisites

The free block requirements for the Distribution and
Target System devices naturally differ from those given in
the Chapter "Generating a DIOS System" of the "DIOS I/0O Op-
erations" manual and depend on the particular actions taken.
The following is a quideline, which may satisfy for the most
installations:

Distribution device

ca. 50 blocks non-contiguous
Target System device

ca. 200 blocks contiguous a’ 40 blocks
ca. 450 blocks non-contiguous
ca. 50 blocks contiguous per DIOS driver
test task
96 blocks contiguous for Plot Demo
task
52 blocks contiguous for data file
I1/0 interface test task
33 blocks contiquous for Namelist
test task

If GALE is generated for a Target System foreign to the
running system, the running system disk must be updated with
the GALE macros and symbol definitions, which 1is normally
performed by a DIOS generation for that disk.

GALE System Generation Page 5-4
The partition "DASCOM" (attribute "COM", 1length 100(8)
bytes) must be installed and "BIGMAC" and "BIGTKB" must be
available in the running system.

The Target System devices need not neccessarily be the
same for a DIOS generation and generation of any other GALE
components in a subsequent submission of the GALESGN.CMD
file. This may be considered in cases where the DIOS Target
System disk, which will be the system disk of the Target
installation, lacks free blocks.

NOTE
The Target System device for a
DIOS generation always must
contain a bootable RSX11M Ver-
sion 3.0 mapped system, gener=-
ated to run on the target ins-
tallation. The Target System
device for all other GALE com~
ponents may be any Files=11
device.
|
5.3 Distribution Device Contents

GALE is distributed on a single RKO05 disk. The Distri-
bution disk contains all source, object, task image, library
and command files needed to perform a GALE sysgen. The fol-

lowing is a

complete list of all files contained on a dis-

tribution disk.

UIC

GALESGN.CMD
CNFGEN.CMD
ACQ.CMD
DLG.CMD
DIOSGEN.CMD
DADRVGEN.CMD
CAMACGEN.CMD
LDRACPGEN.CMD
DRVACPGEN.CMD
MOACPGEN.CMD
DICMOUGEN.CMD
INSDIOS.CMD
PAR.CMD
DEV.CMD
CLEANUP.CMD
DIOMOU. ODL

[1,200] contains command and ODL files:

Directs the GALE generation process
Generate Configuration files in GALE format
Generate the GALE Acguisition task
Generate the GALE Dialog task

Directs the DIOS generation process
Generate DIOS system-~resident routines
Generate CAMAC crate configuration
Generate the loader ACP

Generate driver ACP's

Generate Message Output processor

Generate DIOS Mount processor

Perform first~time installation of DIOS
Display target system partitions with VMR
Display target system device list with VMR
Delete temporary files

Overlay description for DIOS MOU processor

GALE System Generation Page 5~5

UIC [1,210] contains object files, libraries, task
image and message files.

DADAT.OBJ Device tables for DAO:

DADRV.OBJ DIOS system~-resident routines; DA: driver
DIOLNK.OBJ Routine to link DA: into device list
MODRV. OBJ Loadable driver for Message Output
DIOSYM.OBJ Global definitions to include in SYSLIB
ACQ.OLB Acquire task components

DLG.OLB Dialog task components

NML.OLB Namelist components

IOLIB.OLB GALE command line input components
DASLIB.OLB GALE data file I/0 interface components
PTL.OLB GALE run~time plot package

CAMLIB.BOR CAMAC specific components (BORER system)

CAMLIB.ICP
CAMLIB.DUM
LDRACP.OLB
DRVACP.OLB

CAMAC specific components (ICP~11 system)
Dummy CAMAC specific components

Loader ACP components

Driver ACP components

MOACP.OLB Message Output ACP components
DIOMOU.OLB DIOS Mount processor components
MCR.OLB Required for DIOS Mount processor
INI.OLB Required for DIOS Mount processor
CNF.TSK Configuration Builder task
PLT.TSK Plot interpreter task

PLTDEM.TSK Plot Demo task

TSTNML.TSK Namelist test task

TSTGDI.TSK GALE data file I/0 interface test task
CMTEST.TSK CM driver test task

CNTEST.TSK CN driver test task

FKTEST.TSK FK driver test task

MATEST.TSK MA driver test task

MSTEST.TSK MS driver test task

MXTEST.TSK MX driver test task

PGTEST.TSK PG driver test task

QDTEST.TSK QD driver test task

TSTEST.TSK TS driver test task

MOTFMT.MSG
USRFMT.MSG
USRFMT.STB

System Message File for Message Output
GALE standard User Message File
Symbol table of USRFMT.MSG for CNF task

UIC [1,220] contains MACRO-11 source code files.

CAMTBL.BOR
CAMTBL. ICP
USRFMT.MAC

Define Borer crate tables
Define ICP crate tables
GALE standard User Message File

GALE System Generation Page 5-6

UIC [30,12) contains macro source files

DIOSYM.MAC DIOS symbol definitions
PDEMAC.MAC GALE and other usefull macros
RSXMAC.DEC Original RSXMAC.SML as delivered by DEC

5.4 Preparing for GALE System Generation

Before beginning to generate a GALE system, the |user
must be familiar with all of the respective documentation.
In addition the following information concerning the target
system should be available before starting the generation
process:

1. Size of the executive region (16K or 20K).
2. MAddress of the highest interrupt vector.

3. Number of the 100-~byte block on which partition
"DAPAR" begins.

4. Number of terminals, including those marked "OFF-
LINE".

5. Unibus addresses, vector area addresses and inter-
rupt priorities of all CAMAC crate or branch con-
trollers.

6. Unibus address, interrupt vector address and inter-
rupt priority of the trigger device.

Because the Distribution and Target System disks are
actively manipulated during the GALE system generation, the
user should copy these disks prior to their actual wuse 1in
the GALE system generation. The user should thoroughly pre-
pare a configuration model of the target system acquisition
hardware and note the types and number of modules, number of
diagnostics (DDB's), amount of data, length of the 1longest
and maximum number of NCB's associated with one control
block.

Mount Distribution and Target System device both with
write enabled. If the running system disk is not your Tar-
get System device, it must have at least the GALE macros 1in
file RSXMAC.SML and the GALE symbol definitions resident in
SYSLIB.OLB (this is always true, if a DIOS has been generat-
ed on the current system disk). Also a partition "DASCOM"
of type "COM" and of 100(8) bytes in length must be present.

GALE System Generation Page 5-7

In a multi-user system, log on under a privileged UIC
and start the GALE sygen process by typing

@ddu:[1, 200]GALESGN

where ddu is the Distribution device.

The indirect command file will guide you through the

generation process by printing comments and asking questions
on the user terminal.

5.5 GALESGN.CMD File Details

This section describes the entire GALESGN.CMD indirect
command file by adding descriotive text to the actual com-
mand file to clarify the SYSGEN process. The command file

is presented in upper-case text, where descriptive text is
presented in upper- and lower-case text.

; GALE SYSTEM GENERATION
; REVISION DATE: 12-JAN-78

THE FOLLOWING SERIES OF QUESTIONS DEFINE THE CHARACTERIS~
TICS OF THE GALE SYSTEM~RESIDENT ROUTINES.

THE FORM OF THE ANSWERS DEPENDS ON THE QUESTIONS AS INDI-
CATED:

[S]: THE RESPONSE MUST BE A 1 TO 16 CHARACTER STRING.
<CR> IS LEGAL ONLY IF EXPLICITLY STATED OR A DEFAULT
IS SPECIFIED.

<XX> INDICATES THE QUESTION HAS A DEFAULT RESPONSE, "XX".
TO SELECT THIS RESPONSE, TYPE <CR>,

wg W6 WO WO WE WE W W

[N]: INPUT AN OCTAL NUMBER (0 TO 377) OR A DECIMAL NUMBER
(0. TO 255. WITH DECIMAL POINT).
0 MAY BE ENTERED BY TYPING <CR>.

[Y/N]: YES/NO QUESTION. TYPE "Y" IF THE ANSWER IS YES.
TYPE "N" OR <CR> IF THE ANSWER IS NO,

W me me mo me w8 we we we W e

(TYPE <CR> TO CONTINUE) [S]:

If you have read and understood the text above, type
<CR> to continue indirect command file processing.

GALE System Generation Page 5-8

ASSIGN DEVICES:

"DISTRIBUTION DEVICE" IS THE DEVICE CONTAINING THIS COM-
MAND FILE AND ALL OTHER COMMAND, OBJECT, AND MACRO FILES
NEEDED TO GENERATE GALE.

wa ws wma Wme We w8 we

"TARGET SYSTEM DEVICE" IS THE DEVICE ON WHICH THE
GALE SYSTEM BEING GENERATED IS TO RUN,

"TARGET UIC" IS THE UIC UNDER WHICH THE OBJECT LIBRARY
OR TASK WILL BE STORED ON THE TARGET SYSTEM DEVICE.

w0 WO Wme W w3 W@

"MAP DEVICE" IS THE DEVICE ON WHICH ALL TASK-BUILDER MAPS
WILL BE GENERATED.

"LIST DEVICE" IS THE DEVICE ON WHICH ALL ASSEMBLER
LISTINGS WILL BE GENERATED.

=g =e we w3

W ~e we

INPUT THE DISTRIBUTION DEVICE ([DDU:] <DKl:> [S]:

Specify the device from which you have started this
command file. If this device is DKl: you may sim-
ply type <CR>,

* INPUT THE TARGET SYSTEM DEVICE [DDU:] <SY0:> [S]:

Specify the device on which you want to generate the
GALE system. If you intend to generate DIOS within
this procedure, this device must contain a bootable
RSX11M Version 3.0 mapped system. If your Target
System device is the actual RSX11M system disk, vyou
may simply type <CR>.

* INPUT THE TARGET UIC [[NN,MM]] <[1,100]> [S]:

Specify the UIC under which the GALE components
should be generated on your target disk. For empty
input this UIC defaults to [1,100].

* INPUT THE MAP DEVICE [DDU:] OR <CR> IF NO MAPS WANTED [S]:
* INPUT THE LIST DEVICE [DDU:] OR <CR> IF NO LISTINGS WANTED [S]:

Specify the devices where assembly listings and task
build maps respectively should go. If no listings
and/or maps are desired, reply with <CR>, which sets
both device specifiers to NL:, the NULL device spec—
ifier.

* DO YOU WANT THE LISTINGS AND/OR MAPS TO BE SPOOLED? [Y/N]:

This question appears only if the print-spooler 1is
installed and a list~ and/or a map-~device has been
specified explicitly.

GALE System Generation Page 5-9

ASN 'Distribution Device'=DD:
ASN 'Target System Device'=TS:
ASN 'Map Device'=MP:
ASN 'List Device'=LS:

All logical devices are assigned the corresponding
physical devices.

INS [1,54]PIP
INS [1,54]BIGMAC
INS [1,54]LBR
INS [1,54]BIGTKB

Installation is done only of those tasks, which are
not yet installed.

; IF ONLY SOME COMPONENTS OF GALE ARE TO BE GENERATED
; THE FOLLOWING QUESTION SHOULD BE DENTED.

* IS THIS THE FIRST GALE GENERATION? [Y/N]:

me =e we =

WITH

¥ ~e mo w0 s

If the answer 1is Y, the query/command seguence
flagged with "/1/" is additionally performed. If
the answer is N or <CR>», the query/command seduence
flagged with "/2/" is additionally performed.

YOU MUST GENERATE DIOS BEFORE GENERATING THE GALE SYSTEM.

A FULL DESCRIPTION OF HOW TO GENERATE DIOS IS GIVEN IN THE
"DIOS I/0O OPERATIONS" MANUAL. IF YOU ARE NOT YET FAMILIAR

WITH THE DIOS SYSGEN PROCEDURE ANSWER THE FOLLOWING QUESTION
"N" AND THEN RESTART THIS COMMAND FILE AFTER READING
THE RESPECTIVE DOCUMENTATION.

DO YOU WANT TO GENERATE DIOS NOW? [Y/N]:

If the answer is N or <CR>, the GALE SYSGEN proce-
dure will be terminated. The DIOS generation pro-
vides your target system disk with facilities vyou
need 1in completing the GALE SYSGEN process. If the
answer was Y, the DIOS generation procedure 1s in-
voked as descibed in Appendix E of the "DIOS I/0 Op-
erations" manual, where the initial questions con-
cerning device and listing options are omitted.

* DO YOU WANT TO TERMINATE GALE GENERATION? [Y/N]:

If you want to generate DIOS and other GALE compo-
nents on seperate devices, you can now terminate the
generation process to start it over with new device
specifications.

If the answer is Y, command file processing 1is ter-
minated, otherwise the generation process goes on.

F s
/1/
/1/
A1/
/1/
/1/
/1/
/1/
£ LA

/1/

GALE System Generation Page 5-10

. /2/
; IN THE FOLLOWING YOU MAY SPECIFY THE COMPONENTS £A3f
; OF THE GALE SYSTEM, WHICH YOU WANT TO REBUILD. LRAL
: £ad
; THE ACQ TASK COLLECTS EXPERIMENTAL DATA AND STORES /2/
; THEM ON THE GALE DATA DEVICE. F &4
; IF ANY TASK BUILD PARAMETERS DID NOT MEET YOUR /2/
; REQUIREMENTS, REBUILD ACQ. THE FORMER SPECIFICATIONS r2/
; ARE AS FOLLOWS: A2
; /2/
PIP TI:=TS:'Target UIC'ACQ.BLD /2/
* DO YOU NEED TO GENERATE THE ACQ TASK? [Y/N]: Pi-¥;

The former task build file is listed on the termi-

nal. Check 1if the specified parameters meet your

requirements. If some should be modified, answer

the question with Y. If the answer is N, the query
session concerning the ACQ task and the Trigger dev-
ice is bypassed.

The following questions concerning the ACQ task are
always expanded, if this is the first GALE genera-~
tion.

ACQUIRE TASK GENERATION
REVISION DATE: 03~JAN-~78

THE ACQUIRE TASK REQUIRES AN MCB FOR YOUR SPECIFIC
TRIGGER MODULE.

B Se ws ms ws ws me we me

HAVE YOU ALREADY DEFINED A TRIGGER MCB? [Y/N]:

If an MCB for your Trigger device has not vyet been
specified or the existing MCB does not meet your re-
quirements, answer with N or <CR>. If the answer is
Y, the following questions defining the Trigger MCB
are omitted.

IN ORDER TO SET UP AN TRIGGER MCB YOU HAVE TO SPECIFY
THE TWO CHARACTER DRIVER ACP PREFIX WHICH CONTAINS
THE TRIGGER DRIVER.

% we ~o me mp

INPUT DRIVER ACP PREFIX [S]:

Specify the driver ACP which contains the driver for
the Trigger device (TGDRV). Driver ACP's are named
xxACP, where the prefix xx is defined at DIOS gener~
ation time.

GALE System Generation

% % M me ms wo ws

W e ws ma wo wo we e

me w8 WO me W we

e

*

YOU ALSO NEED TO SPECIFY THE TRIGGER INTERRUPT VECTOR,
THE INTERRUPT PRIORITY AND UNIBUS CSR ADDRESS.

INPUT TRIGGER INTERRUPT VECTOR ADDRESS [S]:
INPUT TRIGGER INTERRUPT PRIORITY [S]:
INPUT TRIGGER UNIBUS ADDRESS [S]:

GALE provides the Trigger device to be connected to
a PDP1ll via a DR11A or DR11C interface. Specify in-
terrupt vector address, interrupt priority and Un-
ibus address of the respective interface card, which
completes the definition of the Trigger device MCB.

IN ORDER TO GENERATE THE ACQ TASK YOU HAVE TO SPECIFY
THE NUMBER OF LOGICAL UNIT NUMBERS TO BE USED.
THIS IS A DECIMAL NUMBER WITHOUT DECIMAL POINT.

THE NUMBER OF LUNS USED IS THE NUMBER OF MCB'S + 6.

INPUT NUMBER OF LOGICAL UNITS <12> [S]:

Specify the number of LUN's for the ACQuire task.
The minimum number is found by adding 6 to the
number of MCB's which are contained 1in your GALE
Configuration Structure model. A <CR> answer de-
faults the number of LUN's to 12, which allows a
maximum of 6 modules, including the mandatory
Trigger module, to be accessed via the ACQ task.

THE ACQUIRE TASK CONTAINS FOUR INTERNAL BUFFERS WHICH MUST
SPECIFIED AS AN OCTAL NUMBER.

THE CNF BUFFER CONTAINS THE CONTROL STRUCTURE OF ALL
DIAGNOSTICS WHICH ARE CURRENTLY DECLARED AS ON-LINE.

INPUT LENGTH OF CNF BUFFER <4000> [S]:

Specify the length of the CNF buffer in bytes. The
CNF buffer of the ACQ task is provided to hold all
control blocks concerned with on~line data acquisi-
tion diagnostics. Adding the values given at offset
B.LNG of all configuration control blocks and multi-
plying the sum by 100(8) gives the exact length of
the CNF buffer. Note that the length may also be
easily obtained from the assembly listing of the CNF
structure model (see Chapter 2).

Page 5-11

BE

GALE System Generation Page 5-12

~p wo we wo

-e

¥ ome me s =e

% ma = me we

THE DATA BUFFER MUST BE LARGE ENOUGH TO CONTAIN ONE BLOCK
OF DATA (512 BYTES) FOR EACH MODULE WHICH DELIVERS DATA
BEFORE OR DURING AN EXPERIMENT.

INPUT LENGTH OF DATA BUFFER <2000> [S]:

Specify the length of the data buffer in bytes. ACQ
uses this buffer for temporary storage of data read
in from the on-line data acquisition diagnostic mo-—
dules, before they are preserved on the GALE Data
Device. The buffer must be large enough to hold all
data requested from pre-shot modules (MC.PRE set)
plus 8 bytes for each module. If the byte count per
module exceeds 504 (512 respectively), 1024 bytes
must be reserved for that module.

If only data from post-shot modules (MC.PST set) are
taken a buffer of 512 bytes in length will satisfy.
Empty input <CR> defaults the data buffer to 2000(8)
bytes in length.

THE AST CONTROL BLOCK BUFFER MUST HAVE THE LENGTH OF THE
NUMBER OF MODULES WHICH DELIVER DATA DURING AN EXPERIMENT * 20

INPUT LENGTH OF AST CONTROL BLOCK BUFFER <100> [S]:

Specify the length of the AST control block buffer

in bytes. This buffer contains control blocks for
each module delivering data before or during an ex-
periment. Control blocks are fixed to 16 bytes,

where the length of the AST control block buffer 1is
the number of pre-shot modules (MC.PRE set) times
the length in bytes of a control block. Empty input
allocates this buffer with 100(8) bytes, which is
satisfactory for up to 4 pre-~shot modules.

THE I/0 CONTROL BUFFER MUST HAVE THE LENGTH OF THE
TOTAL NUMBER OF MODULES WHICH DELIVER DATA * 6.

INPUT LENGTH OF I/O CONTROL BUFFER <74> [S]:

Specify the length of the 1I/0 control buffer 1in
bytes. This bufffer holds for each module deliver-
ing data an I/0 control block of 6 bytes. Empty
input defaults the buffer length to 74(8) bytes,
which allows up to 10 data delivering modules.

GALE System Generation Page 5-13

; AFTER AN EXPERIMENT IS FINISHED, ACQUIRE WILL WAIT A PERIOD
; OF TIME TO ALLOW CURRENT I/O REQUESTS TO BE COMPLETED.

: AFTER THIS TIME ALL STILL OUTSTANDING REQUESTS WILL BE

; KILLED AND REQUESTS FOR POST EXPERIMENT DATA STARTED.

* INPUT DELAY TIME IN SECONDS <5> [S]:

Input the delay time, which requests to pre-shot mo-
dules can overdue the end-of-experiment trigger.
The specifications of the ACQ task are now finished.
Thereafter the session concerning the DLG task 1is
entered. If this is the first GALE generation the
lines flagged with "/2/" are omitted and the follow-
ing Qquery session concerning the DLG task is always

performed.
; /2/
: THE DLG TASK PROVIDES DYNAMIC MODIFICATIONS /2/
«+ OF THE GALE DATA BASE. IF ANY TASK BUILD /2/
: PARAMETERS DID NOT MEET YOUR REQUIREMENTS, /2/
: REBUILD DLG. THE FORMER SPECIFICATIONS ARE AS FOLLOWS: /2/
; /2/
PIP TI:=TS:'Target UIC'DLG.BLD /2/
* DO YOU NEED TO GENERATE THE DLG TASK? [Y/N]: 127

The former task build file is listed on the termi~

nal. Check 1f the specified parameters meet your

requirements. If some should be modified, - answer

the question with Y. If the answer 1s N, the query
session concerning the DLG task is bypassed.

DIALOG GENERATION
REVISION DATE: 03-JAN-78

IN ORDER TO GENERATE THE DLG TASK YOU HAVE TO SPECIFY THE SIZE
OF THE INTERNAL BUFFERS.
THE BUFFER SIZE SPECIFICATION IS AN OCTAL NUMBER.

THE DIRECTORY BUFFER MUST HAVE THE SIZE 36 * MAX. NUMBER OF DDB'S.

S we ws W WO We WO ws wo we w8 we

INPUT LENGTH OF DIRECTORY BUFFER <74> [S]:

The directory buffer holds for each DDB a control
table of a fixed length of 36(8) bytes. Therefore
the length of the directory buffer is given as 36(8)
times the number of DDB's contained in the GALE Con-
figuration File. Empty input allocates a directory
buffer for two DDB's.

GALE System Generation Page 5-14

THE BLOCK BUFFER MUST HAVE THE SIZE OF THE LONGEST CONTROL BLOCK

W% =s =0 =e

INPUT LENGTH OF LONGEST CONTROL BLOCK BUFFER <300> [S]:

Specify the length of the longest control block con-
tained in the GALE Configuration File. The length
should be a multiple of 100(8), as GALE confiqura-
tion control blocks are allocated 1in records of
100(8) bytes (see entry B.LNG). Empty input de-
faults the buffer length to 300(8), which is satis-
factory for control blocks consisting of up to 3 re-~
cords.

; THE NAMELIST BUFFER MUST HAVE THE SIZE OF THE MAX. NUMBER
; OF NAMELIST ELEMENTS FOR ONE CONTROL BLOCK * 20.

* INPUT LENGTH OF THE NAMELIST BUFFER <600> [S]:

Choose the length of the namelist buffer so that all
NCBD's concerning to one control block may fit in.
Empty input allocates the buffer for a maximum of 24
NCBD's.

The DLG task build parameters are now complete. As
mentioned above, the following lines flagged with
"/2/" are expanded only, if this is not the first
GALE generation.

; /2/
?

; GALE CONFIGURATION BUILDER TASK Faf
: L2/
* DO YOU NEED TO COPY THE CNF TASK? [Y/N]: 12/
. F2f
; GALE DATA FILE I/0 INTERFACE TEST TASK e
; /2/
* DO YOU NEED TO COPY THE TSTGDI TASK? [Y/N]: f2/
; Vv 4
; NAMELIST TEST TASK £2f
: £24
* DO YOU NEED TO COPY THE TSTNML TASK? [Y/N]: /2/
: /2/
; GALE PLOT INTERPRETER TASK 7o
y LK
* DO YOU NEED TO COPY THE PLT TASK? [Y/N]: L2/
* DO YOU NEED TO COPY THE PLOT DEMO TASK? [Y/N]: Pl 7
* DO YOU NEED TO COPY GALE USER OBJECT LIBRARIES? [Y/N]: /2/

Each question answered with Y causes the respective
files, task image or object libraries, to be deleted
on your Target System device under the specified
Target UIC and to be transferred newly from the Dis-
tribution device to your Target System device.

GALE System Generation Page 5-15

IN ORDER TO GENERATE THE GALE TASKS THE COMMON BLOCK
"DASCOM" MUST BE GENERATED.

¥ we me we =@

DO YOU NEED TO GENERATE THE COMMON BLOCK "DASCOM"? [Y/N]: /2/

Answer with Y, if the existing "DASCOM" should be
replaced by a new version. If the answer is N, the

following questions concerning the common block
"DASCOM" are bypassed.

EACH EXPERIMENT IS KNOWN BY A 3-CHARACTER SHORT NAME.

¥ =e wme we

WHAT IS YOUR EXPERIMENT SHORT NAME [S]:

Input the 3-~character short name. This name should
be unique to your application in your local area, as
it identifies your GALE system.

ALL GALE DATA FILES ARE STORED UNDER A SPECIFIC UIC.
SIMILARILY THE SYTEM FILES ARE ALSO STORED UNDER ONE UIC,
WHICH MAY BE DIFFERENT FROM THE DATA FILE UIC.

INPUT THE GALE DATA FILE UIC <[1,100]> [S]:
INPUT THE GALE SYSTEM FILE UIC <[1,100]> [S]:

W % ms we wmo ms =

Input the respective UIC's as indicated. The GALE
data file UIC specifies the UIC under which the data
files, generated by the ACQ task, are to be stored.
The GALE system file UIC specifies the UIC under
which The GALE Configuration File with corresponding
Namelist File are expected by the different GALE
tasks.

The following lines are self-explanatory and serve
to copy DIOS driver test tasks onto your Target Sys-
tem device. They are repeated until an empty input
for a device identifier is given.

GALE System Generation Page 5~16

EACH OF THE DIOS DRIVER TEST TASKS WILL BE COPIED TO YOUR
TARGET DEVICE IN TURN. THE FOLLOWING DIOS DRIVERS CURRENTLY
HAVE ASSOCIATED TEST TASKS.

we W me wo

: CM CAMAC MEMORY
: CN NUCLEAR ENTERPRISES CAMAC MEMORY
: FK FUNCTION KEYBOARD
: MA MULTI~CHANNEL ANALYZER
: MS MULTI-SCALER
: MX CAMAC MULTIPLEXER
: PG CAMAC PULSE GENERATOR
: QD OD808 CHARGE DIGITIZER
TS CULHAM TIME SEQUENCE GENERATOR

TO COPY A TEST TASK, ENTER THE 2~CHARACTER IDENTIFIER IN REPLY
TO THE FOLLOWING QUESTION. AN INPUT OF <CR> INDICATES THAT
NO MORE DRIVER TEST TASKS ARE TO BE COPIED.

W me we wa w0 me =0

INPUT THE DEVICE IDENTIFIER [S]:
PIP TS:'Target UIC''Device Identifier'TEST.TSK;*/DE
PIP TS:'Target UIC'=DD:[1,210] 'Device Identifier 'TEST.TSK

Now all required DIOS driver test tasks have Dbeen

copled.
If this is the first GALE Sysgen all following com=~
mand lines are executed. Otherwise only those are

invoked which have been selected explicitly in the
query session above.

MAC DD:[1,210]DASCOM,LS:'$SP'=DD:[1,220]DASCOM

PIP TS:[1,1)DASCOM.*;*/DE

TKB @DD:[1,200]DASCOM.BLD

PIP DD:[1,200]DASCOM.BLD; */DE

PIP DD:(1,210]DASCOM.OBJ;*/DE

PIP DD:[1,220])DASCOM.MAC/PU

PIP TS:'Target UIC'NML.OLB;*/DE,IOLIB.OLB;*,DASLIB.OLB;*,PTL.OLB;*
PIP TS:'Target UIC'=DD:[1,210]NML.OLB,IOLIB.OLB,DASLIB.OLB,PTL.OLB
PIP TS:'Target UIC'CNF.TSK;*/DE

PIP TS:'Target UIC'=DD:[1,210]CNF.TSK

PIP TS:'Target UIC'=DD:[1,210]DLG.OLB

¢+ DIALOG GENERATION
: REVISION DATE: 03~JAN~78

[

PIP TS:'Target UIC'DLG.TSK;*/DE

TKB @TS:'Target UIC'DLG.BLD

PIP TS:'Target UIC'DLG.BLD/PU

PIP TS:'Target UIC'DLG.OLB;:*/DE

PIP TS:'Target UIC'=DD:[1,210]ACQ.OLB

GALE System Generation Page

® me we w=o

ACQUIRE TASK GENERATION
REVISION DATE: 03-JAN-78

MAC DD:[1,210]TGMCB,LS:"$SP'=TS: 'SUIC'TGMCB
LBR TS:'SUIC'ACQ/RP=DD:[1,210]TGMCB

PIP DD:[1,210]TGMCB.OBJ;*/DE

PIP TS:'SUIC'TGMCB.MAC/PU

PIP TS:'SUIC'ACQ.TSK;*/DE

TKB @TS:'SUIC'ACQ.BLD

PIP TS:'SUIC'ACQ.BLD;*/PU

PIP TS:'Target UIC'ACQ.OLB;*/DE

PIP TS:'Target UIC'PLT.TSK;*/DE

PIP TS:'Target UIC'=DD:[1,210]PLT.TSK
PIP TS:'Target UIC'PLTDEM.TSK;*/DE

PIP TS:'Target UIC'=DD:[1,210]PLTDEM.TSK
PIP TS:'Target UIC'TSTGDI.TSK;*/DE

PIP TS:'Target UIC'=DD:[1,210]TSTGDI.TSK
PIP TS:'Target UIC'TSTNML.TSK;*/DE

PIP TS:'Target UIC'=DD:[1,210]TSTNML.TSK

At this point all GALE components are built. The
initially installed RSX utility tasks are now re-
moved.

REM ...PIP

REM ...MAC

REM ...LBR

REM ...TKB

(B =8 o =3 =p =8 =3 W8 o We = We W

YOUR GALE SYSTEM IS NOW COMPLETE. IF YOU HAVE NOT YET
PREPARED A DESCRIPTION MODEL OF YOUR RELEVANT
ACQUISITION HARDWARE, YOU SHOULD DO THIS NEXT.

FOR FURTHER INFORMATION REFER TO CHAPTER "GENERATION
OF GALE CONFIGURATION FILES" OF THE "GALE SYSTEM
PROGRAMMER'S HANDBOOK". ONCE YOU HAVE PREPARED

THE RESPECTIVE SOURCE FILES, START THE INDIRECT
COMMAND FILE "CNFGEN.CMD". THIS BATCH IS ON YOUR
DISTRIBUTION DEVICE AND WILL GUIDE YOU THROUGH

THE FURTHER CONFIGURATION BUILD PROCESS.

<EOF>

GALE System Generation Page 5-18

5.6 Building GALE Configuration Files

The GALE system is based upon a Configuration file,
which gives a standarized description of the relevant data
acquisition hardware. Once the user has prepared the Confi-
guration and associated Namelist source files, as outlined
in Chapter 2, he may start transforming the files for |use
with GALE, provided the CNF (Configquration File Builder)
task 1s present on the same device under the same UIC where
the source files have been prepared. Also the GALE macro
and symbol definitions must be present in files RSXMAC.SML
and SYSLIB,OLB under UIC [1,1] on the current system disk.

5.6.1 CNFGEN.CMD File Details

This section describes the entire CNFGEN.CMD indirect
command file by adding descriptive text to the actual com-
mand file to clarify the CNF-Generation process. The com-
mand file is presented in upper-case text, whereas descrip-
tive text 1s presented in upper- and lower-case text.

EXPERIMENT CNF STRUCTURE FILE GENERATION
REVISION DATE: 05-JAN~78

THE FOLLOWING SERIES OF QUESTIONS DEFINE THE CHARACTERIS—
TICS OF THE CNF STRUCTURE GENERATION PROCESS.

THE FORM OF THE ANSWERS DEPENDS ON THE QUESTION, AS INDI-
CATED:

=g Wme w0 W@ WO WE We wo =

[S]: THE RESPONSE MUST BE A 1 TO 16 CHARACTER STRING.
<CR> IS LEGAL ONLY IF EXPLICITLY STATED OR A DEFAULT
IS SPECIFIED.

<XX> INDICATES THE QUESTION HAS A DEFAULT RESPONSE, "XX".
TO SELECT THIS RESPONSE, TYPE <CR>.

e wa we we @ We

[N]: INPUT AN OCTAL NUMBER (0 TO 377) OR A DECIMAL NUMBER
(0. TO 255. WITH DECIMAL POINT).
0 MAY BE ENTERED BY TYPING <CR>.

[Y/N]: YES/NO QUESTION. TYPE "Y" IF THE ANSWER IS YES.
TYPE "N" OR <CR> IF THE ANSWER IS NO.

wE ms WE W w8 wa w8

-~

(TYPE <CR> TO CONTINUE) [S]:

If you have read and understood the text above, type
<CR> to continue indirect command file processing.

GALE System Generation Page

me wmo Wme we =e

W ¥ deme = =@ ws Se We we We W We w2 We W

*
*

*

ASSIGN DEVICES:

"DISTRIBUTION DEVICE" IS THE DEVICE CONTAINING THIS COM-
MAND FILE.

"TARGET SYSTEM DEVICE" IS THE DEVICE ON WHICH THE
GALE SYSTEM WAS GENERATED.

"TARGET UIC" IS THE UIC UNDER WHICH THE CONFIGURATION
IMAGE FILE WILL BE STORED ON THE TARGET SYSTEM DEVICE.

"MAP DEVICE" IS THE DEVICE ON WHICH ALL TASK-BUILDER MAPS
WILL BE GENERATED.

"LIST DEVICE" IS THE DEVICE ON WHICH ALL ASSEMBLER
LISTINGS WILL BE GENERATED.

INPUT THE DISTRIBUTION DEVICE [DDU:] <DK1l:> [S]:
INPUT THE TARGET SYSTEM DEVICE [DDU:] <SY0:> [S]:
INPUT THE TARGET UIC [[NN,MM]] <[1,100]> [S]:

Specify devices and UIC as you have done at GALE
Sysgen time. The Target System device must contain
the CNF task and the Configuration source file with
corresponding Namelist source file under the Target
UIC. Also the common block "DASCOM" for vyour GALE
system must be available on the Target System device
under UIC [1,1].

INPUT THE MAP DEVICE [DDU:] OR <CR> IF NO MAPS WANTED [S]:

l

INPUT THE LIST DEVICE [DDU:] OR <CR> IF NO LISTINGS WANTED ([S]:

Specify list and map device or give empty input if
no listings/maps desired.

DO YOU WANT THE LISTINGS AND/OR MAPS TO BE SPOOLED? [Y/N]:
This question appears only if the print—-spooler 1is

installed and a 1list and/or map device has been
specified explicitly.

ASN 'Distribution Device '=DD:
ASN 'Target System Dveice'=TS:
ASN 'Map Device'=MP:
ASN 'List Device'=LS:

All logical devices are assigned the corresponding
physical devices.

19

GALE System Generation Page 5~20

INS [1,54]BIGMAC
INS [1,54]PIP
INS [1,54]BIGTKB

Installation 1s done of those tasks only, which are
not yet installed.

; IN ORDER TO GENERATE THE CONFIGURATION STRUCTURE FILES FOR YOUR
; SYSTEM YOU MUST HAVE SOURCE FILES PREPARED AS DESCRIBED IN

; THE "GALE SYSTEM PROGRAMMER'S HANDBOOK".

THE SOURCE FILE FOR THE CONFIGURATION STRUCTURE SHOULD HAVE BEEN
NAMED "EXP"CNF.MAC AND YOUR SOURCE FILE FOR THE CORRESPONDING
NAMELIST STRUCTURE SHOULD HAVE BEEN NAMED "EXP"NCB.MAC,

WHERE "EXP" IS THE 3~CHARACTER EXPERIMENT SHORT NAME

WHICH YOU GAVE IN DEFINING DASCOM IN THE GALE SYSTEM GENERATION.

¥ we wma ma w0 we =

HAVE YOU ALREADY PREPARED YOUR SOURCE FILES? [Y/N]:

If you have prepared the Configuration source file
along with the corresponding Namelist source file
under the Target UIC on your Target System device
and both files have been named as outlined above,
you may answer this question with Y. In all other
cases you should reply with N or <CR>, which causes
processing of this indirect command file to be ter-~
minated.

* WHAT IS YOUR EXPERIMENT SHORT NAME [S]:

Input the 3~character short name of your experiment
as you specified it at GALE Sysgen time.

THE TARGET SYSTEM DASCOM MUST BE INSTALLED IN ORDER TO GENERATE
THE CONFIGURATION STRUCTURE FILES. THIS SHOULD BE DONE IF NO
GALE USER'S ARE ACTIVE, ESPECIALLY IF YOU ARE GENERATING FOR

A TARGET SYSTEM FOREIGN TO THE CURRENT SYSTEM,

=e wo we wme wg

-

* MAY THE TARGET SYSTEM DASCOM MAY BE INSTALLED NOW? [Y/N]:

If the answer is Y, the common block "DASCOM" is in-
stalled from the Target System device, thus
overwriting a formerly installed "DASCOM". This may
lead to a malfunction of GALE tasks and even to
disruption of GALE components. To avoid any errors
ensure that no GALE users are active at present,
otherwise answer with N or <CR>», which terminates
indirect command file processing, and try CNF file
generation later.

If you are generating for a Target System foreign to
the current system, don't forget to reinstall "DAS~
COM" from the current system disk, 1if it was in=-
stalled formerly.

GALE System Generation Page 5-21

INS TS:[1,1]DASCOM
INS TS:'Target UIC'CNF

The common block "DASCOM" is installed from the Tar-
get System device. If the CNF task is not already
installed, it will be performed now. If it cannot
be installed from the specified Target System device
the following lines will appear on your terminal and
command file processing will be terminated.

YOUR TARGET SYSTEM DEVICE CONTAINS NO CNF BUILDER TASK-
IMAGE FILE. CORRECT THE MISTAKE AND START CNFGEN.CMD OVER.

=p wme wa =

If installation of the CNF task was successful, com-
mand file processing is continued here.

THE USER MESSAGE FORMAT FILE, USRFMT.MSG, PROVIDES EXPLANATORY
INFORMATION ABOUT THE CONTENTS OF AN NCB. THE STANDARD FILE
HAS ALREADY BEEN COPIED TO YOUR TARGET SYSTEM DISK IN THE

GALE SYSTEM GENERATION PROCEDURE. THE GALE SYSTEM PROGRAMMER'S
HANDBOOK PROVIDES INFORMATION ON HOW TO EXTEND THE CONTENTS

OF THE FILE. IF YOU HAVE CHANGED THE CONTENTS OF THE USER
MESSAGE FORMAT FILE YOU MUST NOW REBUILD IT. AFTER REBUILDING
THE FILE YOU MUST DISMOUNT AND THEN REMOUNT MO: IN ORDER TO
MAKE THE NEW MESSAGE FILE EFFECTIVE.

=g WmE W@ W@ WE W W |We Wwe we

* e

DO YOU WANT TO REBUILD USRFMT.MSG? [Y/N]:

The source file of the standard user messages Wwas
copied to your Target System device at GALE Sysgen
time and resides under UIC [1,2]. If vyou have
changed the contents of the file and want to make
the new version available, answer with Y, otherwise
input <CR> or N.

MAC DD:[1,210]USRFMT,LS:'Spool Attribute'=TS:[1,2]USRFMT
TKB @DD:[1,200]USRFMT.BLD

CNF TS:[1,2]USRFMT.MSG/CF=DD:[1, 210]) USRFMT

PIP DD:[1,200]USRFMT.BLD;*/DE

PIP DD:[1,210]USRFMT.OBJ;*/DE,USRFMT.TSK;*

If the user has decided to rebuild the User Message
File it is done via the steps outlined above. First
the source file is assembled, then a task image 1is
built from which the pure binary version is produced
by the GALE utility CNF. Afterwards all temporary
files are deleted.

GALE System Generation Page 5~22

Whether or not the User Message File was to be
rebuilt, indirect command file processing continues
at this point.

MAC DD:[1,210]DASNCRB,LS: 'Spool Attribute'=TS:'Target UIC''EXP'NCB
MAC DD:[1,210]DASCNF,LS:'Spool Attribute'=TS:'Target UIC''EXP'CNF
TKB @DD:[1,200])'EXP'NCB.BLD

TKB @DD:[1,200] "EXP'CNF.BLD

CNF TS:'Target UIC'DASNCB.'EXP'/NM=DD:{l,?lO]DASNCB

CNF TS:'Target UIC'DASCNF.'EXP'/CF=DD:[1,210]DASCNF

PIP DD:[1,200]'EXP'CNF.BLD;*/DE,'EXP'NCB.BLD;*

PIP DD:[1,210]DASCNF.*;*/DE,DASNCB.*;*

PIP DD:[1,210]*.STB/PU

The Configuration files are built as outlined above
with the User Message File. All intermediate files,
which are no longer used are deleted, where the last
version of the Symbol Table for the User Message
File is kept on the Distribution device for later
generation of CNF files.

REM ...MAC
REM ...TKB
REM ...CNF
PIP TS:'Target UIC'SETUP.CMD;*/DE
REM ...PIP

All tasks installed during processing of this indi-
rect command file are now removed. Existing ver-
sions of the indirect command file SETUP.CMD, which
prepares the GALE system for usage, are replaced by
a new version reflecting the present specifications.

s

i YOUR CONFIGURATION STRUCTURE MODEL IS NOW READY FOR USE.

* DO YOU WANT TO SET UP GALE FOR DATA ACQUISITION NOW? [Y/N]:

If the current system disk is vyour Target System
device and you want to set up GALE for data acquisi-
tion, you may answer Y, which invokes the indirect
command file SETUP.CMD just generated. If the
answer is N or <CR> command file processing ends
with the output of the following comment lines.

e we

TO SET UP GALE FOR DATA ACQUISITION YOU HAVE TO RUN
THE INDIRECT COMMAND FILE "SETUP.CMD", WHICH WAS
CREATED ON YOUR SYSTEM TARGET DISK UNDER YOUR TARGET UIC.

D) =e =8 =

<EOF>

GALE System Generation Page 5-~23

5.7 Setting up GALE for Usage

If you have successfully performed a complete GALE Sys-

gen, you may set it up for usage in either of two ways: If
the question

* DO YOU WANT TO SET UP GALE FOR DATA ACQUISITION NOW? [Y/N]:

in the Configuration file build procedure is answered Y, Or
by invoking the indirect command file SETUP.CMD explicitly
via MCR:

@TS: 'Target UIC'SETUP

NOTE

Be sure that the running sys-
tem disk contains a GALE Dy-
namic Input/Output System ta-
ilored to your requirements.

5.7.1 SETUP.CMD File Details

The following describes the entire SETUP.CMD indirect
command file by adding descriptive text to the actual com-
mand file as it has been generated by the CNF file genera-
tion process. The command file is presented in upper-case
text, where descriptive text is presented in upper~ and
lower-case text.

SET UP GALE FOR DATA ACQUISITION

e =e =8

The following lines concerning the Target System
device and the Target UIC are bypassed if setting up
of the GALE system was invoked by the Configuration
build process.

IN ORDER TO INSTALL THE GALE TASKS YOU HAVE TO SPECIFY
THE TARGET SYSTEM DEVICE AND TARGET UIC
WHERE THE TASKS HAVE BEEN BUILT.

% ¥ me ma wo e we

INPUT THE TARGET SYSTEM DEVICE [DDU:] <SYO0:> [S]:
INPUT THE TARGET UIC [[NN,MM]] <[1,100]1> [S]:

Specify the Target System device and UIC as you have
done at GALE Sysgen and CNF generation time.

GALE System Generation Page

ASN 'Target System device'=TS:

W =e me me ws e

% we =8 me we

*

W W me w=e ws wo wa

The logical device is now assigned the physical dev-~
ice,

IN ORDER TO ACTIVATE THE GALE SYSTEM YOU
HAVE TO ACTIVATE THE DYNAMIC INPUT/OUPUT SYSTEM
INCLUDING THE MESSAGE OUTPUT PROCESSOR.

DO YOU WANT TO INSTALL DIOS NOW? [Y/N]:

If you answer Y, your Target System device must be
the running system disk and assigned SY0:. The in-
direct command file to install the GALE Dynamic
Input/Output System is then activated. For details
refer to the "DIOS I/0 OPERATIONS" manual.

Whether DIOS is to be installed or not, command file
processing continues at this point.

WHEN INSTALLING THE GALE ACQUISITION OR DIALOG TASK,
THE COMMON BLOCK "DASCOM" MUST HAVE BEEN INSTALLED BEFORE.

DO YOU WANT TO INSTALL THE COMMON BLOCK "DASCOM"? [Y/N]:

If the answer is Y, the common block "DASCOM" is in-
stalled from your Target System device. Note, that
a formerly installed "DASCOM"™ is thereby overwrit-
ten.

DO YOU WANT TO INSTALL THE GALE ACQUISITION TASK "ACQ"? [Y/N]:
DO YOU WANT TO INSTALL THE GALE DIALOG TASK "DLG"? [Y/N]:
DO YOU WANT TO INSTALL THE GALE PLOT INTERPRETER "PLT"? [Y/N]:

Each question answered with Y causes the correspond-
ing task to be installed later on.

The following lines concerning the GALE data device
and the GALE system device are bypassed if both, ACQ
and DLG task are not to be installed.

NOW SPECIFY THE GALE DATA DEVICE WHERE ALL GALE DATA FILES
ARE TO BE STORED AND THE GALE SYSTEM DEVICE WHERE ALL OTHER
GALE FILES RESIDE.

INPUT GALE DATA DEVICE ([DDU:]) <DKl:> [S]:
INPUT GALE SYSTEM DEVICE [DDU:] <SYO0:> [S]:

Specify the GALE data device, where GALE data files
are to be stored and the GALE system device, which
is the device on which your Configuration structure
files have been built. In the most cases the GALE
system device will therefore be identical to your
Target System device. If empty input is given the
devices default to DK1l: and SY0: respectively.

GALE System Generation

ASN 'GALE Data device'=DD:/GBL
ASN 'GALE System device'=DS:/GBL

The logical devices are assigned physical devices.

INS TS:[1,1]DASCOM

The common block "DASCOM" is installed, if it was
stated above.

The following actions are taken only if ACQ or DLG
task respectively should be installed.

REM ...ACQ

ACQ is removed if it had been installed, but is not
active at present.

; CANNOT REMOVE/INSTALL -~ ACQ IS ACTIVE

This message appears if ACQ is active when trying to
install it.

INS TS:'Target UIC'ACQ
Otherwise ACQ is installed.

REM ...DLG

; CANNOT REMOVE/INSTALL -~ DLG IS ACTIVE
INS TS:'Target UIC'DLG

REM ...PLT

; CANNOT REMOVE/INSTALL ~~ PLT IS ACTIVE
INS TS:'Target UIC'PLT

The installation procedure explained for the ACQ
task is repeated for the DLG and PLT tasks.

Finally the User File Directory (UFD), where the
GALE Plot intermediate data files are stored, is es-
tablished.

INS [1,54]UFD

UFD TS:(1,7]
REM ...UFD

Don't forget to start the PLT task before producing
any plots.

GALE IS NOW READY TO RUN. GOOD LUCK!!!

B =e =m0 =e¢

<EOF>

Page

APPENDIX A

Offset Definitions for CNF Blocks

Define paramter offsets relative to the base of the par-
ameter area. TYP denotes "H" for Header, "D" for DDB and "M"
for MCB. TYPl denotes "UPR" for Header or DDB, and "DDP" for
MCB.

Offset Definitions for CNF Blocks PAGE A-2

+.MACRO UPDEF TYP,TYP1

TYP'.POl = TYP'.'TYP]
TYP'.P02 = TYP'.'TYP1+2
TYP'.P03 = TYP'.'TYP1+4
TYP'.P04 = TYP'.'TYP1+6
TYP'.PO5 = TYP','TYP1+10
TYP'.P06 = TYP','TYP1+12
TYP'.PO7 = TYP'.'TYP1+14
TYP'.P08 = TYP'.'TYP1+16
TYP'.P09 = TYP'.'TYP1+20
TYP'.PID = T%P*."IYP1+22
TYP'.P1l = TYP'.'TYP1+24
TYP'.P12 = TYP'.'TYP1+26
TYP'.P13 = TYP'.'TYP1+30
TYP'.P14 = TYP'.'TYP1+32
TYP'.P15 = TYP'.'TYP1+34
TYP'.P1l6 = TYP'.'TYP1+36
TYP'.P17 = TYP'.'TYP1+40
TYP'.P18 = TYP'.'TYP1+42
TYP'.P19 = TYP'.'TYP1+44
TYP'.P20 = TYP'.'TYP1+46
TYP'.P21 = TYP','TYP1+50
TYPE PI2 = TYPE, 'PYP1i52
TYP'.P23 = TYP'.'TYP1+54
TYP'.P24 = TYP'. 'TYP1+56
TYP'.P25 = TYP'.'TYP1+60
TYP'.P26 = TYP'.'TYP1+62
TYP'.P27 = TYP'.'TYP1+64
TYP'.P28 = TYP'.'TYP1+66
TYP'.P29 = TYP'.'TYP1+70
TYP'.P30 = TYP'.'TYP1+72
TYP'.P31 = TYP'.'TYP1+74
TYP'.P32 = TYP'.'TYP1+76
TYP'.P33 = TYP'.'TYP1+100
TYP'.P34 = TYP'.'TYP1+102
TYP'.P35 = TYP'.'TYP1+104
TYP'.P36 = TYP'.'TYP1+106
TYP'.P37 = TYP'. ' 'TYP1+110
TYP'.P38 = TYP'.'TYP1+112
TYP'.P39 = TYP','TYP1+114
TYP'.P40 = TYP'.'TYP1+116
TYP'.P41 = TYP'.'TYP1+120
TYP'.P42 = TYP'.'TYP1+122
TYP'.P43 = TYP','TYP1+124

. ENDM UPDEF

Of fset Definitions for CNF Blocks

°
L
o
’

i
BT.HED
BT.DDB
BT.MCB
BT.DAT
B.LNG
B.TYP
B.DID
B.LK1
B.LK2
B.NCB

—e ws w8

H.FPC
H.DAT
H.DAY
H.MON
H.YEA
H.TIM
H.HOU
H.MIN
H.SEC
H.LST
H.NXT
H.EXP
H.FLN
H.DBM
H.LUP
H.UPR

e =8 we

D.DID
D.TYP
D.MLN
D.MSG
D.UIC
D.UOC
D.UGC
D.CHR
D.STS
D.RSA
D.LUP
D.UPR
DC.DAQ
DC.CTL
DC,LCL
DC.RMT
ST.ONL

WowowoH RN wnonn

wonon oW noawn

DEFINE

W N

.MACRO BLKDFS

BLOCK TYPES AND GENERAL BLOCK OFFSETS

= WO

0

DEFINE HEADER OFFSETS

3

12
12
13
14
16
16
17
20
22
24
26
32
34
46
50

DEFINE DDB OFFSETS, STATUS AND CONTROL BITS

3
12
13
14
42
42
43
44
45
46
56
60

&

2

100

200

1

PAGE A-3

Offset Definitions for CNF Blocks

DEFINE

=g we =o

M.DID
M.TYP
M.UNIT
M.MID
M.ACP
M.CTL
M.DLN
M.DFM
M.DCT
M.DAT
M.VCT
M.PRI
M.ADR
. ERR
. LUN
.LPM
.DDP

won

H

[N U | | (N (| | O | T Y 1 1

=TEE=R

DEFINE

e =g we

MC.CTL
MC.GEN
MC.PRE
MC.PST
MC.HLD
MC.INT
MC.CAM
MC.,SUB
MC.NPR
MC.OVF
MC.ERR
MF .NST
MF.BYT
MF.INT
MF.FLT
MF .MUX
MF.NL1
MF.NL2

T O R T A

DEFINE

.MID
.BLN
. DAT

2 DS D me ~e we

(L T 1}

DEFINE

+.ASC
.BYT
« INT
+ FLT

C OO~~~

hn W n

MCB OFFSETS

- =W
Ul N
-9

WWwhNN RN
HOOOR WMNO N

w
[0S

U W
O YU

MCB STATUS AND CONTROL BITS

1

2

10

20

40
100
200
400
4000
40000
100000

NS W -=O

0
0
DATA BLOCK OFFSETS
4
6
10

UPAR TYPE

=N = O

PAGE A-4

Of fset Definitions for CNF Blocks

®
r

’
NS.PRV
NS.NPR
NS.NDF

.
[

N.
N.
N.
N.
N.
N.
N.
N.
N.

o we =

NS.LCL
NS.RMT
NS.HLP

.
’
.
’
r

DEFINE

DEFINE

PRV
NXT
HLP
NAM
FLG
TYP
LEN
MSK
OFS

A T | O O [| B

DEFINE

noun

DEFINE

UPDEF
UPDEF
UPDEF

.
r

-
I’

DEFINE ALL OF

BLKDFS

NCBD ACCESS FLAGS

d |
0
0

NCB AND NCBD OFFSETS

~2
0
2
4
10
in
12
13
14

NCB AND NCBD DATA FLAGS

0
1
2

USER PARAMETER OFFSETS

.MCALL
H, UPR
D, UPR
M,DDP
. ENDM

.MACRO
.MCALL
.MCALL

. ENDM

UPDEF

BLKDFS$

ABOVE MACROS AND OFFSETS

CNFDFS$
BLKDFS$,MCB,MCBE,CBLK, RCT,HDR, DDB, DDBE
UPAR,NCBD, NCB

CNFDFS

PAGE A-5

APPENDIX B

Example CNF Structure Construction

As an example of how to construct the CNF and NCB
source files, consider a system consisting of the two diag-
nostics depicted in Fiqures 2-4 and 2-5. Figure B~1 depicts
the combined configuration model; for simplification rea-
sons, the partial Namlelist structure is not shown, but 1is
indicated by a labeled pointer. The elements of each block
which may be dynamically modified are shown in Figure B=2.
The tree nodes are labeled by the first line in the node box
and the contents of the node are given on the second line.
All labels and contents are defined according to the follow-
ing conventions:

1. The Header Block is designated by HDR and its con-
tent is the experiment short name.

2. DDBs are labeled as DDBnm where n is the diagnostic
number and m is always zero. An abbreviated form
of the diagnostic name is contained in the DDB node
box.

3. MCBs are labeled as MCBnm, where n is the diagnos-
tic number and m is the module number within the
diagnostic. The MCB node box also contains the mo-
dule type and unit number designation.

4, The partial Namelist pointers are labeled as NXnm
corresponding to the associated node box label,
where X is H, D or M depending upon the node type
(HDR, DDB or MCB).

Example CNF Structure Construction

| HDR |
| EXP |===>0

I
| Jsemsp

L L L mpea—

| DDB1 |

| LASER |==—~——v

Pl
| |=~=>ND10

e e

| MCB11 |
(S S (—

——| | ===

.
| ~=~>NM11

— s — — e B

| MCB12 |
| CM1 j =i

e | = | ——

Pl
| =~=>NM12

l
r
v
0

PAGE B~2

| DDB2 |
————————————— >| DYNPAR|~~~=>0
___]_l___
||
| |~~=>ND20
|
\Y
MCB13 | | MCB21 |
MX 2 | --=>0 | PGI1 | ~==>0
———| | ——— e | e | e
[|
| |===>NM13 | |~~=>NM21
| |
\Y v
0 __________________
| MCB22 | | MCB24 |
| Mx3 | = e >| MX4 | ===>0
——]] ——— | |
|| [
| | ==~>NM22 | | ~-~->NM24
I I
\Y \V
| MCB23 |===>0 | MCB25 |=~==>0
| CM2 | | CM3
——]] ——— ———| = ——
|] |
| | ~=~>NM23 | | =~=~=>NM25
I |
Y \Y
0 0
Fiqgqure B-1

Example Configuration Model

Example CNF Structure Construction PAGE B-3

Block Entry Meaning

HDR none

DDB1 ONLINE indicates that the diagnostic is on-line or
off-line. Initialized to off-line (0).

FILTER user parameter giving a filter factor as a
real value. Initialized to 1.

MCB11 MODE the MX operating mode
ECHAN the MX end channel

MCB12 DeT number of data items to read and store 1in
the data file.

MCB13 MODE the MX operating mode.
ECHAN the MX end channel
EXTMAP the MX extender map

FACTOR user parameter giving the calibration fac-
tor. Initialized to 0.0031415.

DDB2 ONLINE gives the diagnostic status as on-line or
off-line. 1Initialized to off-line (0).

MCB21 PLSFRQ specifies the duration and number of pulses
to be generated by the PG as a vector of 32.
real values. Initialized to all zero (gen-
erate no pulses).

MCB22 ECHAN the MX end channel

MCB23 Dem the number of data items to read and store
in the data file.

MCB24 ECHAN the MX end channel

MCB25 DCT the number of data items to read and store
in the data file.

Figure B-2
Modifiable Block Entries

Example CNF Structure Construction PAGE B-4

In scanning the tree and specifying the macros which
define the nodes, the following algorithm should be used:

l. Begin with the Header Block.

2. Follow the bottom (dependent) pointer to the next
block and specify it.

3. PRepeat Step 2 until the bottom pointer is zero.

4. Return up the tree via the bottom and then the side
(independent) pointers until a non-zero side po-~
inter is found; if none is found, then scanning 1is
finished.

5. Follow the side pointer to the next block and spec—
ify it; then go to Step 2.

Returning to the example system and applying the above
algorithm, the configuration file may be constructed as fol-
lows. The first step, as discussed in the section describ-
ing the macros, is to define the macros themselves. This is
done with the following two statements:

.MCALL CNFDF$
CNFDFS

The Header Block may now be defined with the statement:
HDR 1,DDB1, ,<EXP>

which defines the Header Block as being one record (64
bytes) 1long, the next dependent block is the DDB labeled
DDB1, and the experiment short name is "EXP". The Header
Block has no specific NCBD's associated with it, thus the
NCBD pointer is empty. Following the bottom pointer from
the Header Block, the next block to be defined is DDB1;
this is achieved with the following statements:

DDB1: DDB l1,1,DDB2,MCB11,ND10
DDBE 1,<LASER DIAGNOSTIC>,100,101,DC.DAQ
UPAR D.POL,U. FLT 1.0

in which the DDB length is given as one record, the diagnos-
tic identification number 1is one, the next (independent)
block is DDB2 and next dependent block is MCB1l1 and the
block specific NCBD list is labeled ND1l. The block exten~
sion macro designates the name of the diagnostic, specifies
the owner UIC as [100,101] and defines the diagnostic as
being for data acquisition. Note that the remaining parame-
ters are not explicitly given, thus implying that the ini-
tial status is off-line. Furthermore, the first user param-—

Example CNF Structure Construction PAGE B-5

eter (FILTER) is defined as a REAL*4 variable and given the
initial value of 1.

Continuing with the scanning algorithm, the bottom po-
inter of block DDB1l points to the block MCB1l1l which may be
specified as follows:

MCB11l: MCB 1,1,MCB13,MCB12,NM11
MCBE <MX>,1,1,<EX>,<MC.HLD!MC.CAM>,,,,,,1200
UPAR M.P01,U.INT,O
UPAR M.P02,U.BYT,3
UPAR M.P02+1,U0.ASC,<S5>

The above macros define the first MCB as belonging to diag-
nostic 1, as having a partial Namelist beginning at location
NM11 in the NCBD file, and as having a dependent module
(MCB12) and independent module (MCB13). Furthermore, the
module is a MUXADC with unit number 1 and module identifier
1. It is located in CAMAC crate 1 at station 8, the associ-
ated driver is in the EXACP task and no data are to be di-
rectly read (data are stored in the CAMMEM module defined by
MCB12). The three UPAR macros define the MUXADC extender
map (M.P0l) as zero (i.e., there are no extender channels),
defaults the end channel to 3 (M.P02) and sets the mode to
"sequential scan". Note that the latter two parameters may
be changed dynamically via the DLG task as variables "MODE"
and "ECHAN" defined in the partial Namelist NM1l1.

The next module encountered by following the bottom po-
inter from the MCB11l block is MCB12. This is a CAMMEM CAMAC
module with unit 1 and module indentification 2. The module
CM1: is located in crate 1 station 9 and is to be read by
the ACQ task following the post~trigger. The MCB 1is thus
defined by the following macros:

MCB12: MCB i A (N 1,8
CTL=MC.CAM!MC.GEN!MC.PST
MCBE <CM>,1,2,<EX>,<CTL>,U. INT,6 MF, MUX,1000,,,1220
UPAR M.PO1l,U.INT,1
UPAR M.P02,U.INT,0
UPAR M.P03,U.ASC,<E>

The device specific parameters M.P0l, M.P02 and M.P03 define
the core map (one 2K CAMMEM), the internal address from
which data reading is to start and that data will be sent
from another module via the external bus. Note that the
number of data items to be read (1000) as defined in the
MCBE macro may be dynamically changed via the DLG task as
variable DCT defined in the partial Namelist NM12.

Returning to the scanning algorithm, the current node
(MCB12) has no non-zero pointers. Referring to step 4 of
the algorithm, the scanning is backed up the tree until a

Example CNF Structure Construction PAGE B-6

node 1is found with a side (independent) pointer. Such a
node 1s MCB1ll which points to MCB13. This module may be de-
fined with the following macros:

MCB13: MCB 1,1,,,NM13
CTL=MC.CAM!MC.GEN!MC.PRE
MCBE <MX>, 2,3,<EX>,<CTL>,U. INT,MF.MUX, 24,,,1100
UPAR M.P01,U.INT,O
UPAR M.P02,U.BYT,7
UPAR M.P02+1,U0.BYT,<R>
UPAR M.P05,U.FLT,3.1415E=2

Note that the user parameter FACTOR is assigned to location
M.P05 in the user parameter area since the MX requires 8
bytes for device dependent parameters. Also, data are read
directly from this module (in contrast to MX1l:) and the
first read request is initiated directly after receipt of
the pre-trigger.

The node MCB13 has no non-zero pointers so that step 4
of the scanning algorithm is again relevant. Tracing back
the tree, the next node containing a non-zero independent
pointer is DDBl which points to DDB2. The second diagnostic
is defined with the macros:

DDB2: DDB 1,2,,MCB21,ND20
DDBE 1,<DYNAMIC PARAMETERS>»,100,102,DC.DAQ

The second diagnostic belongs to the user with Dic
{100,102]. The modules contained in diagnostic 2 are de-
fined with the macros:

MCB21: MCB 2,2,,MCB22,NM21
MCBE <PG»,1,1,<EX>, MC.CAMIMC.HLDY, .,y p2100
UPAR M.PO1l,<U.FLT*32.>

Note that the module must be held active during the shot
(MC.HLD set) since other modules are externally connected to
it and depend upon the output of PGl: for their proper
functioning. Also, 32 real values for the specification of
the pulse bursts are reserved by the UPAR macro. The block
generated 1is two records long due to the number of device
dependent parameters which would otherwise oveflow a single
length block. Continuing with the tree scan, the remaing
modules are defined by:

MCB22: MCB 1,2,MCB24,MCB23,NM22
MCBE <MX>,3,2,<EX>,{MC.CAMIMC.HLD>, ;. y4s +2120
UPAR M.P01,U.INT,O0
UPAR M.P02,U.BYT,7

UPAR M.P02+1,U.ASC,<5>

Example CNF Structure Construction PAGE B~7

MCB23: MCB 1y 2:5,HM23
CTL=MC.CAMIMC.GEN!MC,PST
MCBE <CM>,2,3,<EX>,<CTL>,U. INT,MF.MUX,1400,,,2160

UPAR M.P01,U.INT,1
UPAR M.P02,U.INT,O
UPAR M.P03,U.ASC,<E>

MCB24: MCB 1,2,,MCB25,NM24
MCBE <MX>,4,4,<EX>,<MC.CAM!MC.HLD>,,,,,,2300
UPAR M.P01,U.INT,O0
UPAR M.P02,U.BYT,3

UPAR M.P02+1,0.ASC,<S5>
MCB25: MCB 1242 ,HM25
CTL=MC.CAM!MC.GEN!MC.PST
MCBE <CM>, 3,5,<EX>,<CTL>,U. INT,MF.MUX,1600,,,2340

UPAR M.P01,U.INT,1
UPAR M.P02,U.INT,O0
UPAR M.P03,U.ASC,<E>

The above macros generate a model of two independent MUXADCs
which feed data to one CAMMEM each and are commonly driven
from one PG. All of the modules are located in CAMAC crate
2 starting at station number 4. As defined, a total of 12
analog channels are to be converted, the data stored in CM
units and read after the post-trigger 1is received.
Referring to the scanning algorithm, the tree 1is retraced
according to step 4; no more nodes are found which contain
non-zero independent pointers so that the trace ends at the
Header node. It may thus be concluded that all nodes in the
configuration model have been defined and that the next step
in generating the model, the specification of the partial
Namelists, may be begun.

Before beginning the construction of the Namelist
source file for the example configuration, a few of the 1di-
osyncracies of the file structure should be noted. The par-
tial Namelists may generally be divided into two groups:
privileged system~wide 1lists, one for each block type
(Header Block, Diagnostic Descriptor Block and Module Con-—
trol Block) and block-specific lists, one for each Dblock.
As described in the chapter on generating the configuration,
the system-wide partial lists must begin at a defined record
number in the NCB file: the first record must be the first
element in the system-wide Header Block Namelist; the sec-—
ond record must be the first element in the system-wide DDB
Namelist; the third record must be the first element in the
system-wide MCB Namelist. If any of these lists is empty, a
null element must be generated to f£ill the record; this 1is
illustrated in the example below. The location of all other
elements in the file is immaterial. A further point is that
partial 1lists may themselves be made up of partial strings.
This feature is particularly useful in referring to standard

Example CNF Structure Construction PAGE B-8

offsets in particular blocks.

In constructing the NCB source file, the system-wide
partial 1lists should be considerd first, starting with the
Header Block. In the example, there is to be no system-wide
Header Block list, therefore a null element must be generat-
ed. As in the CNF file, the first two statements must de-
fine the configuration block structure; the first state-~
ments in the file are as follows:

.MCALL CNFDFS$
CNFDFS$
HDR: : NCBD NS.NDF

The null element for the system~wide Header Block 1list is
done. The system-wide DDB list is to contain elements for
modifying three entries in every DDB: the diagnostic iden~-
tification (D.DID), the diagnostic user code (D.UOC) and the
diagnostic user group code (D.UGC). Recalling the position-~
al dependence of the start of the system-wide lists, only
one element will be defined now, the definition of the rema-
ining two will be deferred. The first element of the par-
tial list is therefore:

DDB: : NCBD NS5.PRV,DBSW]1,D$HPO,<DID>,D,D.DID,U.BYT

which allows the modification of the D.DID entry in the DCB
by privileged users. This entry is a single byte entry
(U.BYT length) and has an informational message in the User
Message File at record DSHPO. The remainder of the list be-
gins at DBSWI1.

The first element of the MCB system~wide list must now
be defined. This list is considerably longer than the cor-
responding DDB list and should contain entries which enable
modification of the following elements: the module type
(M.TYP), the module unit number (M.UNIT), the module physi=-
cal address (M.ADR), and the control bits (MC.GEN, MC.PRE,
MC.PST, MC.HLD). Since there are no positional records fol~
lowing this partial list, all elements of the MCB
system~wide list may now be specified:

MCB:: NCBD N5.PRV,MCSW1,M$HP1,<TYPE>,A,M.TYP,U. INT
MCSW1: NCBD NS.PRV,MCSW2,M$SHP2,<UNIT>,I,M.UNIT,U.BYT
MCSW2: NCBD NS.PRV,MCSW3,M$HPY, <ADDR>,0,M.ADR, U. INT
MCSW3: NCBD NS.PRV,MCSW4,M$HC04,<GEN>,B,M.CTL, 2, MC.GEN
MCSwW4: NCBD NS.PRV,MCSW5,MS$HC06, <PRESHT>,B,M.CTL, 2, MC. PRE
MCSW5: NCBD NS.PRV,MCSWB,MSHCO?,<PSTSHT),B,M.CTL,2,MC.PST
MCSW6: NCBD NS. PRV, ,M$SHCO08, <HOLD>,B,M.CTL, 2, MC.HLD

The remaining DDB system~wide NCBDs may now be definied
as follows:

Example CNF Structure Construction PAGE B~9

DBSW1: NCBD NS.PRV,DBSW2,D$HP4,<OWNER>,Y,D.UOC,U.BYT
DBSW2: NCBD NS.PRvV,,DSHP4,<GROUP>,Y,D.UGC,U.BYT

These macros complete the definition of the system-wide par-
tial lists.

As was previously mentioned, partial lists may consist
of a list of partial lists. This is particularly useful in
defining the device dependent parameters of modules which
occur more than once in the configuration, in the example,
the modules MX and CM. The MX has three dependent parame-
ters, one of which (the end channel) 1s to be dynamically
modifiable. Its macro definition is:

MXC: NCBD NS.NPR,,MS$H121,<ENDCHA>,I,M.P02,0.BYT

The CM also has three device dependent parameters, none of
which is to be modifiable. However, the number of data
items to read and store in the data file should be modifi-~
able for each CM. The macro definition is:

CMC: NCBD NS.NPR,,MS$HCO01,<ITEMS>,D,M.DCT,U.INT

A common partial list is also required for the DDBs as
each diagnostic should be declarable as on-line or off~line
by the diagnostic user (non-priviledged) as well as by the
system manager (privilegded user). Had this entry been
placed in the system~wide DDB partial list, only priviledged
users could specify the on-line characteristic. Note that
although this entry is specified as non-priviledged (NS.NPR)
it may only be altered by the diagnostic owner and privi-
ledged users. The DDB common partial list is given by the
macro:

DDBC: NCBD NS.NPR,,D$HP5,<ONLINE>,B,D.STS,1,ST.ONL

This completes the definition of the common partial Namel-
ists. It should be noted that all of the Namelist elements
defined up to this point have had entries in the User Mes-
sage file. Furthermore, all standard elements have informa-
tional messages in the User Message file which is generated
in the GALE system generation process under the file name
USRFMT.MSG and is located under UIC [1,2] on the system dev-
ice. Chapter 3 contains information on generating addition~-
al messages for use with user specified NCBDs.

The only remaining NCBDs are those which are block

specific. Some of the blocks have no specific entries so
these may be assigned directly to the common partial 1lists
or to an empty block. The first step is to generate an

empty block, as follows:

DUM: NCBD NS.NPR

Example CNF Structure Construction

The block specific NCBDs will now be defined in the order in
which their associated control blocks were defined above.
The Header Block has no NCBD's associated with 1it. The
first DDB is associated with the partial list labeled ND10.
Here it is desired to give a filtering factor as input to a
data processing program. The required NCBD is:

ND10:: NCBD NS.NPR,DDBC, ,<FILTER>,E,D.P01,U.FLT

In addition to the DDB specific parameter <FILTER>, the user
may also set the diagnostic on-line or off-line via the DDB
common partial list DDBC.

, The next block to be dealt with is MCB11. Figure B-2
specifies that the user is to be allowed access to the two
parameters MODE and ECHAN which are hardware specific param-
eters, The ECHAN entry is contained in the MX common par-
tial list MXC so that it need be defined here; the partial
list for MCB1ll is therefore:

NM11l:: NCBD NS.NPR,MXC,M$H123,<MODE>,A,M.P02+1,U,BYT

The block MCB12 requires that the number of data items to be
read (DCT) be modifiable. This entry is contained in the CM
common list and is thus defined with the statement:

NM12==CMC

The control block MCB13 requires an entry for the input of
the MX extender map the MUX mode and a calibration factor
<FACTOR> as well as the MX common parameter. Its partial
Namelist is thus given by the statements:

NM13:: NCBD NS.NPR,NM131, ,<FACTOR>,E,M.P05,U.FLT
NM131: NCBD NS.NPR,NM132,M$H122,<EXTMAP>,O,M.P01,U.INT
NM132: NCBD NS.NPR,MXC,MSHIEB,<MODE>,A,M.P02+1,U.BYT

In this case, two points should be noted. First, the diag-
nostic owner may enter the parameters FACTOR, EXTMAP and
MODE as well as the MX common parameter since the block
specific partial list is linked to the common partial list;
and second, the FACTOR entry is initialized to a value of
0.0031415 in the definition of the MCB in the CNF file. The
definition of the first diagnostic is now completed.

The second diagnostic is considerably less work since
most of the modules contained in it are also in diagnostic 1
as a glance at Figures B-1 and B-2 reveals. The block DDB2
contains no block specific parameters as may be seen from
its definition in the CNF file. The NCBD list may be quick-~
ly dispensed with by defining its partial list as the DDB
common list with the statement:

Example CNF Structure Construction PAGE B-11

ND20==DDBC

The next block encountered defines the PG module. The asso-
ciated MCB defines a vector of 32 real values which define
the Pulse~-Frequency sequence to be produced by the genera-
tor. The required list is generated with the statement:

NM21l:: NCBD NS.NPR, ,M$H112,<PLSFRQ>,E,M.P01,<U.FLT*32.5

The user may thus enter up to 16 pairs of real values. The
following MX-CM pairs may be defined with already available
partial lists since the user may only change the end-channel
on the MX and the number of data items to be read from the
CM. The partial lists are therefore defined with:

NM22==MXC
NM23==CMC
NM24==MXC
NM25==CMC

The second diagnostic is thus defined. As in any assembly
source file, both the CNF and NCBD source files must be
ended with a .END statement.

The source files created (Figures B-3 and B~4) may now
be translated into a format acceptable to the ACQ and DLG
tasks with the indirect command file CNFGEN.CMD which is on
the GALE distribution disk.

Example CNF Structure Construction PAGE B-12

.MCALL CNFDFS$
CNFDF$
HDR 1,DDB1,,<EXP>
DDBl: DDB 1,1,DDB2,MCB11,ND10
DDBE 1,<LASER DIAGNOSTIC>,100,101,DC.DAQ
UPAR D.PO1,U.FLT,1.0
MCB11l: MCB 1,1,MCB13,MCB12,NM11
MCBE <MX>,1,1,<EX>,<MC.HLDIMC.CAM>,,,,,,1200
UPAR M.P01,U.INT,O0
UPAR M,P02,U.BYT, 3
UPAR M.P02+1,U.ASC,<S>
MCB12: MCB 1,1,,,NM12
CTL=MC.CAM!MC.GEN!MC.PST
MCBE <CM>,1,2,<EX>,<CTL>,U.INT,MF.MUX,1000,,,1220
UPAR M.P01,U.INT,1
UPAR M.P02,U.INT,0
UPAR M.P03,U.ASC,<E>
MCB13: MCB 1,1,,,NM13
CTL=MC.CAM!MC.GEN!MC. PRE
MCBE <MX>, 2, 3,<EX>,<CTL>,U. INT,MF.MUX, 24,,,1100
UPAR M.P01,U.INT,0
UPAR M.P02,U.BYT,7
UPAR M.P02+1,U.BYT,<R>
UPAR M.P05,U.FLT,3.1415E~2
DDB2: DDB 1,2, ,MCB21,ND20
DDBE 1,<DYNAMIC PARAMETERS>,100,102,DC.DAQ
MCB21: MCB 2,2, ,MCB22,NM21
MCBE <PG>,1,1,<EX>,<MC.CAM!MC.HLD>,,,,,,2100
UPAR M.PO1,<U.FLT*32.>
MCB22: MCB 1,2,MCB24,MCB23,NM22
MCBE <MX>,3,2,<EX>,<MC.CAMIMC.HLD>,,,,,,2120
UPAR M.PO1,U.INT,0
UPAR M.P02,U.BYT,?7
UPAR M.P02+1,U.ASC,<S>
MCB23: MCB 1,2,,,NM23
CTL=MC.CAM!MC.GENIMC.PST
MCBE <CM>,2,3,<EX>,<CTL>,U.INT,MF.MUX,1400,,,2160
UPAR M.PO01,U.INT,1
UPAR M.P02,U.INT,O0
UPAR M.P03,U.ASC,<E>
MCB24: MCB 1,2,,MCB25,NM24
MCBE <MX>,4,4,<EX>,<MC.CAMIMC.HLD>,,,,,,2300
UPAR M.P01,U.INT,0
UPAR M,P02,U.BYT,3
UPAR M.P02+1,U.ASC,<S>
MCB25: MCB 1,2,,,NM25
CTL=MC.CAM!MC.GEN!MC.PST
MCBE <CM>,3,5,<EX>,<CTL>,U.INT,MF.MUX,1600,,,2340
UPAR M.PO01,U.INT,1
UPAR M.P02,U.INT,O0
UPAR M.P03,U.ASC,<E>
.END

Figure B~3
Example CNF Source File

Example CNF Structure Construction PAGE B-13

.MCALL CNFDFS$

CNFDF$
"
H SYSTEM~WIDE PARTIAL LISTS
r
HDR: : NCBD NS.NDF
DDB:: NCBD NS.PRV,DBSW1,D$HPO,<DID>,D,D.DID,U.BYT
MCB:: NCBD NS.PRV,MCSW1,M$HP1,<TYPE>,A,M.TYP,U.INT
MCSW1l: NCBD NS.PRV,MCSW2,M$HP2,<UNIT>,I,M.UNIT,U.BYT
MCSW2: NCBD NS.PRV,MCSW3,M$HP9,<ADDR>,0,M.ADR,U.INT
MCSW3: NCBD NS.PRV,MCSW4,M$HCO4,<GEN>,B,M.CTL,2,MC.GEN
MCSW4: NCBD NS.PRV,MCSW5,M$HCO06,<PRESHT>,B,M.CTL,2,MC.PRE
MCSW5: NCBD NS.PRV,MCSW6,M$HCO07,<PSTSHT),B,M.CTL,2,MC.PST
MCSW6: NCBD NS.PRV,,M$HC08,<HOLD>,B,M.CTL,2,MC.HLD
DBSW1l: NCBD NS.PRV,DBSW2,D$HP4,<OWNER>,Y,D.UOC,U.BYT
DBSW2: NCBD NS.PRV,,D$SHP4,<GROUP>,Y,D.UGC,U.BYT
[
: MX, CM AND DDB COMMON PARTIAL LISTS
MXC: NCBD NS.NPR,,M$H121,<ENDCHA>,I,M.P02,U.BYT
CMC: NCBD NS.NPR,,MSHCO1l,<ITEMS>,D,M.DCT,U.INT
DDBC: NCBD NS.NPR,,DS$HPS5,<ONLINE>,B,D.STS,1,ST.ONL
DUM: NCBD NS.NPR
r’
: BLOCK SPECIFIC PARTIAL LISTS
ND10:: NCBD NS.NPR,DDBC, ,<FILTER>,E,D.P0l1,U.FLT
NM1ll:: NCBD NS.NPR,MXC,M$H123,<MODE>,A,M.P02+1,U.BYT
NM12==CMC
NM13:: NCBD NS.NPR,NM131,,<FACTOR>,E,M.P05,0.FLT
NM131: NCBD NS.NPR,NM132,M$SH122,<EXTMAP>,0,M.P01,U.INT
NM132: NCBD NS.NPR,MXC,M$H123,<MODE>,A,M.P02+1,U.BYT
ND20==DDBC
NM21l:: NCBD NS.NPR,,M$H112,<PLSFRQ>,E,M.P01,<U.FLT*32.>
NM22==MXC
NM23==CMC
NM24==MXC
NM25==CMC

. END

Figure B-4
Example NCBD Source File

APPENDIX C

User Message File

The following is a listing of the User message file

which
tion.
Label
HSHPO

HSHPH1

H$SHPH2

DSHPO

DSHP1

DSHP2

DSHP3

D$HP4
DSHPS5
D$HP11
D$HP12

DSHP13

is generated as USRFMT.MSG by the GALE system genera-

Message
SHOT NUMBER OF NEXT DATA FILE TO BE WRITTEN

TIME OF LAST SHOT HOUR MINUTE SECOND RESPECTIVELY
THESE FIELDS ARE SET BY THE ACQ TASK

DATA OF LAST SHOT DAY MONTH YEAR RESPECTIVELY
THESE FIELDS ARE SET BY THE ACQ TASK

DIAGNOSTIC ID CODE IN RANGE 1 TO 255 (10)
BLOCK TYPE CODE:

1 - FOR HEADER

2 -~ FOR DDB

3 -~ FOR MCB

DIAGNOSTIC MESSAGE STRING LENGTH.
THE MAX VALUE IS 21

USER MESSAGE STRING OF THE DIAGNOSTIC.
THE VECTOR SIZE IS 21. CHARACTERS

UIC OF DIAGNOSTIC OWNER

BIT SET MEANS: DIAGNOSTIC IS ONLINE

BIT SET MEANS: DATA ACQUISITION DIAGNOSTIC

BIT SET MEANS: MONITORING AND CONTROL DIAGNOSTIC

USER PARAMETER SECTION

User Message File PAGE C-2

MSHPO

MSHP1
MSHP2
MSHP3

MSHP4

MSHPS
MSHP6

MSHP7

MSHPS

MSHP9
MSHP111

M$SHP112

MSH121

M$H122

DIAGNOSTIC ID CODE
THE VALUE MUST MATCH THE CONTENTS OF DID IN THE DDB

2 CHARACTER ASCII MODULE TYPE CODE
PHYSICAL UNIT NUMBER OF THE MODULE
MODULE ID CODE IN DIAGNOSTIC

2 CHARACTER ASCII PARTIAL NAME OF THE ACP CONTAINING
THE DRIVER FOR THE MODULE.
THIS ENTRY IS ZERO FOR BUILT~IN DRIVERS.

BIT SET MEANS: MODULE GENERATES INTERRUPT
BIT SET MEANS: MODULE IS A CAMAC MODULE

INTERRUPT VECTOR NUMBER COMPUTED BY DIVIDING

ADDRESS BY 4 FOR NON~CAMAC INTERRUPTING MODULES:
OTHERWISE ZERO.,

INTERRUPT PRIORITY FOR NON~CAMAC INTERRUPTING
MODULES; OTHERWISE ZERO.

DEVICE REGISTER OR CAMAC ADDRESS
LENGTH OF DEVICE DEPENDENT PARAMETER BUFFER IN BYTES

REAL VECTOR DEFINING THE PULSE SEQUENCE LIST
ONE BURST IS GIVEN THROUGH A PAIR OF REALS WITH THE
FOLLOWING MEANING: THE FIRST VALUE GIVES THE
DURATION (IN SECONDS), THE SECOND SETS THE NUMBER
OF PULSES IN THAT BURST.

NOTE!
FOR TS THE MAX. NUMBER OF BURSTS IS 7
FOR PG THE MAX. NUMBER OF BURSTS IS 16

MUX END CHANNEL NUMBER

EXTENDER BIT MAP:

EACH BIT IS ASSOCIATED WITH THE CORRESPONDING MUX
CHANNEL. A BIT SET MEANS: THE CORRESPONDING
CHANNEL IS CONNECTED TO AN EXTENDER.

User Message File

MSH123

MSH131

MSH132

MSH133

MSHCO1

M$HCO2

MSHCO3
MSHCO4
MSHCO05
MSHCO®
MSHCO7

MSHCO8

MUX MODE:

R -~ RANDOM READ

S ~ SEQUENTIAL SCAN

T -~ SEQUENTIAL TRIGGERED

CORE MAP BIT PATTERN DESCRIBING THE PHYSICAL
CONFIGURATION OF THE LOGICAL CAMMEM

START ADDRESS OF DATA TRANSFER

ACCESS INDICATOR:
I -~ INTERNAL
E -~ EXTERNAL

NUMBER OF DATA ITEMS DESIRED

DATA FORMAT DESCRIPTOR:
~ NON-STANDARD
LOGICAL DATA
INTEGER DATA

REAL DATA

MUX DATA

I

0
1
2
3
4

t

BIT SET MEANS: CONTROL MODULE

BIT SET MEANS: DATA GENERATION MODULE
LENGTH IN BYTES OF DATA ITEM

BIT SET MEANS: READ DATA BEFORE SHOT
BIT SET MEANS: READ DATA AFTER SHOT

BIT SET MEANS: DO NOT UNLOAD MODULE DURING
DATA ACQUISITION

GALE System
Programmer's Handbook

READER'S COMMENTS
NOTE: THIS FORM IS FOR DOCUMENT COMMENTS ONLY.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable and well
organized? Please make suggestions for improvement.

Is there sufficient documentation on associated system
programs required for use of the software described in
this manual? If not, what material is missing and where

should it be placed?

Please turn over

Please indicate the type of user/reader that you most nearly
represent.

[] Assembly language programmer

[] Higher~level language programmer

[1] Occasional programmer (experienced)

[] User with little programming experience
[] Student programmer

[1] Non-programmer

If you desire to have your name put on the PDE documentation
mailing list, please indicate so here......

[]

NAME DATE

ORGANIZATION

STREET

CATY

STATE ZIP CODE

COUNTRY

RETURN TO:

PDE PROJEKT DATENERFASSUNG

INSTITUTE FOR PLASMAPHYSICS
D~-8046 GARCHING

WEST GERMANY

