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Abstract. Plasma configurations describing the stellarator experiment Wendel-
stein 7-X (W7-X) are computationally established taking into account the geome-
try of the test-divertor unit and the high-heat-flux divertor which will be installed
in the vacuum chamber of the device [Gasparotto M et al., 2014 Fusion Engineer-
ing and Design 89 2121]. These plasma equilibria are computationally studied
for their global ideal magnetohydrodynamic (MHD) stability properties. Results
from the ideal MHD stability code cas3d [Nührenberg C 1996 Phys. Plasmas 3
2401], stability limits, spatial structures and growth rates are presented for free-
boundary perturbations. The work focusses on the exploration of MHD unstable
regions of the W7-X configuration space, thereby providing information for fu-
ture experiments in W7-X aiming at an assessment of the role of ideal MHD in
stellarator confinement.
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Figure 1. Rotational transform profiles versus normalized
toroidal flux for W7-X variants. Standard case: magnetic mirror
0.11 and 〈β〉 = 0.05 (×), 〈β〉 = 0.03 (+); low-iota case: magnetic
mirror 0.22 and 〈β〉 = 0.009 (∗). Results from nemec are shown
as solid lines, results from field-line tracing in the magnetic fields
from the nemec+extender p+vacfield procedure as symbols.
The vacuum rotational transform for a high-iota case is indicated
(– – –) for comparison only.

1. Introduction

In the design of present-day stellarator devices, the
implications of ideal magnetohydrodynamic (MHD)
stability were of great importance, a configuration
being ideal-MHD unstable would not have been
considered ready for approval. In experiments,
however, several stellarators showed quiescent plasmas
in scenarios predicted to be unstable according to
ideal MHD theory or close to the MHD stability limit.
Examples are very quiescent ECRH-heated plasmas in
Wendelstein 7-AS [1], and the conclusion that W7-AS
was not limited by pressure-driven MHD instabilities,
neither in the achievable plasma pressures nor in the
performance of the high-plasma-pressure discharges
[2, 3], and almost shearless configurations in TJ-II [4].
In the Large Helical Device (LHD), explicitly MHD-
unstable scenarios were experimentally investigated
[5], by making use of the flexibility of its magnetic
configuration.

The Wendelstein 7-X stellarator experiment
(W7-X) in Greifswald, Germany, has ended its
commissioning phase [6] and started the first plasma
operation [7]. In its second operational phase, W7-X
will be equipped with a high-heat flux divertor [6, 8]
exploiting the intrinsic island chains in the plasma
periphery present for edge rotational transform values

of ι = 5/4, 5/5, and 5/6. In the MHD context
studied here, it is important that an MHD stable
plasma performance with plasma pressures yielding
〈β〉 ≈ 0.05 is one of the design goals of W7-X. Here,
〈β〉 = 2µ0〈p/B2〉 is the volume averaged ratio of the
plasma pressure and the internal magnetic field energy
density.

Therefore, this work, which computationally
revisits the ideal MHD properties of W7-X plasmas
[9], focusses on the study of unstable cases in the
W7-X configuration space, possibly providing plasma
scenarios in which experiments might assess the role of
ideal MHD in stellarator confinement.

Following [10, 11], where the ideal MHD displace-
ment vector ξ describes the change in location of
a fluid element from its initial position, the energy
that is required to perturb a plasma equilibrium is
2 δW = −

∫
plasma

ξ · F(ξ)d3r. Here, the force opera-

tor of linearized ideal MHD is F(ξ) ≡ j0 × B1 + j1 ×
B0 − ∇p1, the subscripts indicating equilibrium (0)
and perturbed (1) magnetic field, B, current density,
j, and the scalar plasma pressure, p. For stellarator
equilibria, the ideal MHD energy principle as formu-
lated in [10, 11] has often been treated with approx-
imate methods, such as averaging and stellarator ex-
pansion [12,13]. The true geometry, however, has been
used in the terpsichore [14] and cas3d [15] codes,
the latter being used in this work. A Galerkin method,
with basis functions combining finite elements for the
radial direction and Fourier expansions for the poloidal
and toroidal magnetic angles, is implemented for the
minimization of the first-order perturbed MHD ener-
gies. In the cas3d code, the full energy principle is em-
ployed, thus permitting the study of global, compress-
ible, free-boundary linear ideal MHD modes for their
spatial structures and time dependence with growth
rates or frequencies.

The paper is organized as follows. In section 2, the
equilibrium calculations are described. The stability
properties of these W7-X variants are analyzed in
section 3. In section 4, a summary and conclusions
are given.

2. Equilibrium calculations for W7-X variants

The W7-X magnetic-field parameters do not define
just a single configuration, but rather a configurational
space, thus offering a variety of experimental scenarios.
In this work, configurations are explored that fall
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Figure 2. Field-line tracing in the finite-β magnetic field of a W7-X low-iota high-mirror variant (plasma volume Vplasma = 27.7 m3,
〈β〉 = 0.009, mratio = 0.22, Φedge = 1.4 Vs): nemec results (thin black lines) are compared with field-line tracing (red dotted inside
the plasma, green dotted for the 5/6 island, orange dotted for closed surfaces beyond the island chain). The toroidal cross-sections
are: (a) the beginning of a field period (ϕ = 0◦); (b) near a quarter of a field period (ϕ = 16◦); (c) at the middle of a field period
(ϕ = 36◦). In each sub-frame, dashed lines indicate the vacuum vessel, thick solid lines show divertor elements.

in two of the three foreseen divertor modes, firstly
so-called standard-case plasmas with unity rotational
transform, ι . 1, at the plasma edge and the 5/5 island
chains in use for the divertor, and secondly low-iota
plasmas with the 5/6 island for the divertor operation.
Figure 1 shows the ι-profiles for some of the plasma
configurations studied in sections 2 and 3.

Net-current-free plasmas will be studied here.
The elimination of the bootstrap current can be
accomplished by proper adjustment of the magnetic
field with a sufficiently high magnetic mirror [16]. The
magnetic miror describes the change of the magnetic
field strength B, e.g. on the magnetic axis, and may
be defined as

mratio =
Bϕ=0◦ −Bϕ=36◦

2 Bav
(1)

with B taken on the magnetic axis at the bean-shaped
cross-section, ϕ = 0◦, at the triangular cross-section,
ϕ = 36◦, and averaged along the magnetic axis, Bav.
In W7-X, mratio ≈ 0.1 is sufficient for vanishing net-
toroidal current in the standard case, mratio ≈ 0.24 is
needed in the low-iota variant [16].

A suite of codes has been used to obtain the
plasma equilibria studied in section 3. The Biot-
Savart solver vacfield [17] computes the magnetic
field from the coil currents of a magnetic confinement
device. This magnetic field is used in the ideal
MHD equilibrium code vmec [18] in its free-boundary
version nemec [19] to compute free-boundary plasma
equilibria. The nemec code maintains a continuous

total pressure across the plasma boundary and
simultaneously varies the plasma surface to minimize
the plasma energy. In zero-edge-pressure cases, this
reduces to B2

0 continuous at the plasma boundary, with
B0 the total equilibrium magnetic field.

The equilibrium is determined under the assump-
tion of nested magnetic surfaces, a simplification which
appears adequate for most of the subsequent applica-
tions, e.g. stability studies. In this picture, magnetic
islands forming at the so-called natural resonances do
not exist. Instead, a manifestion of rational values of
the rotational transform, ι = n/m, are diverging par-
allel current densities existing if, for a rational ι inside
the plasma, the numerator, n, is an integer multiple of
the number of identical sections or field periods, Np, of
the confinement device, and if the respective field per-
turbation exists. For a rational ι, the field lines make
n poloidal transits and m toroidal transits around the
plasma torus before enclosing upon themselves. Flat-
tening the pressure around the resonance eliminates
the infinite parallel current density [20, 21]. To this
end, in a nemec equilibrium calculation, the equilib-
rium pressure gradient is constrained to be zero with
smooth transitions near a natural resonance, the flux
interval chosen just wide enough to ensure stability re-
garding local stability criteria. A small net toroidal
current exists in this equilibrium, because the rota-
tional transform profile is fixed to the one of the neigh-
boring equilibrium without pressure flattening. Such
equilibria have been used for global stability analyses
in previous work [9] and are examined in this work,
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Figure 3. Field-line tracing in the finite-β magnetic field of a W7-X standard high-mirror variant (plasma volume Vplasma = 26.2 m3,
〈β〉 = 0.05, mratio = 0.11, Φedge = 1.5 Vs): nemec results (thin black lines) are compared with field-line tracing (red dotted inside
the plasma, green dotted for the 5/5 islands, orange dotted for ergodic regions). The toroidal cross-sections are as in figure 2.

too, section 3.2. If pressure flattening is not invoked,
then the resonant components of j0|| are constrained
to be zero, because otherwise any stability calculation,
local or global, will only give evidence of the diverg-
ing current densities at the natural resonances. Sta-
bility results for such equilibria are presented in sec-
tion 3.2, too. As an alternative to flattening the pres-
sure profile, one can let the rotational transform ι make
a small jump at the rational surface. This allows the
pressure gradient to remain continuous and reflects the
known behaviour of nonlinear solutions of the equilib-
rium equation [22].

The compatibility of the plasma, the surrounding
island chains, and, possibly, divertor components is
checked by field-line tracing in the finite-plasma-
pressure magnetic field. For this purpose, the field-
line tracer gourdon [23] has been augmented with the
W7-X divertor geometry. As the equilibrium solver
only delivers the total magnetic field in the plasma
region and on its boundary, the extender p code
[24] implementing the virtual casing principle [25] is
used to calculate the field of the plasma current in
the outside region and the magnetic field produced
by the coils in the plasma region. Outside the
plasma boundary, the total magnetic field from coil and
plasma currents is obtained by superposition. In the
plasma region, a test for the quality of the equilibrium
calculation is available in the following sense: The
virtual casing principle calculation yields the plasma-
current field by Bpc = Bnemec − Bextender. The
total magnetic field is obtained by superposing the
coils’ field Bvacfield from the Biot-Savart solver,

Btotal = Bpc + Bvacfield. Thus, good agreement
is found between the coils’ field from the Biot-Savart
solver and from the virtual casing principle calculation,
if field-line tracing in Btotal maps out the magnetic
surfaces determined by the equilibrium solver. Since
the vmec code exploits the assumption of nested
magnetic surfaces, the quality of the geometry of
the free-boundary equilibrium, notably of the plasma
boundary, can be improved if this field-line tracing
shows islands in the plasma region. Small remnants
of islands in the plasma region indicate a slight
imperfection of the nemec calculation.

In the free-boundary equilibrium calculation with
nemec, the toroidal magnetic flux enclosed by the
plasma edge, Φedge, is one of the input parameters,
the plasma volume being proportional to it, Vplasma ∝
Φedge. The iterative adjustment of Φedge introduced
in [26] and applied in [24] is used here, too.

A trade-off has to be made between the maximum
calculable plasma volume and the magnetic-field
structure near the so-called x-points of the edge islands’
separatrices or near the possibly ergodic edge region.
The Fourier representations that the nemec code uses
for the magnetic surfaces are not well adapted to the
geometrically complicated situation near the x-points
and would require the inclusion of poloidal Fourier
indices m > 20, which leads to a deterioration of the
equilibrium code’s convergence properties. Therefore,
in the equilibria presented here, the plasma boundary
as obtained from the iterative adjustment of Φedge

may still be surrounded by a very thin layer of closed
magnetic surfaces in the vacuum region, which are too
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Figure 4. Equilibrium pressure profiles, p0/p0(0), used in the
nemec calculations. Linear in normalized toroidal flux (——
and × with flat-pressure regions), bell-shaped in normalized
toroidal flux (– – –), from transport calculation (— · —). The
normalized equilibrium mass density ρ0/ρ0(0) used in the cas3d
calculations is shown, too (· · · · · ·).

demanding geometrically to be modeled by the nemec
code. In the case of more strongly ergodized islands,
however, a stochastic layer surrounds the plasma.

The nemec computations were done with up to
700 flux intervals, on 72 toroidal planes per field period,
and with 90 poloidal points. The Fourier expansions
used 18 (9 or 12) poloidal (toroidal) Fourier harmonics.

The coil currents define the magnetic topology
and topography. The main components of the W7-X
magnet system are fifty modular and twenty planar
coils with five modular and two planar coil types
because of the five-fold periodicity and the stellarator
symmetry of the machine. The planar coils can be
used to adjust the rotational transform, ι, near the
plasma boundary. For the W7-X low-iota variant, the
corresponding coil-current distribution was determined
by an optimization in a 6-dimensional space targeting
several properties of the vacuum magnetic field. They
are the vacuum-field magnetic well (or hill, the
definition is given in section 3), the location of the
island-chain o-points, the magnetic mirror of (1), the
values of the rotational transform on the magnetic
axis and near the plasma boundary, and the magnetic
axis position. For the standard case the adjustment
was found iteratively. The current loads for the cases
studied are summarized in table A1.

In the W7-X low-iota case shown in figure 2,
the magnetic field mirror on the magnetic axis is
mratio = 0.22 for small plasma pressure, 〈β〉 = 0.009
and a pressure profile (— · — in figure 4) resulting
from a transport calculation [16, 27] for a high-
density-O2-mode heating scenario. The plasma volume
is Vplasma = 27.7 m3. The field-line tracing in
the finite-β magnetic field shows that the plasma,

red points in figure 2, does not touch the divertor
structures. In the outer region, the field-line tracing
was done without the divertor plates so that the edge-
magnetic-field structure can be studied. The nearly
non-ergodized ι = 5/6 island tube with six cuts on
each meridional cross-section is surrounded by closed
magnetic surfaces.

Three representative cross-sections for the W7-X
standard high-mirror case are shown in figure 3, with
the intersection points from the field-line tracing in red
inside the plasma, in green for the 5/5 islands, and
in orange for ergodic regions. For this equilibrium
with 〈β〉 = 0.05, mratio = 0.11, and Φedge = 1.5 Vs, a
pressure profile linear in the normalized toroidal flux
coordinate s was used in the nemec computation,
which is flattened at the natural resonances (solid line
with × in figure 4), e.g. ι = 10/11 near ρ =

√
s = 0.87.

The low-shear rotational transform varies between
ι(0) = 0.884 and ι(1) = 0.93, marked with × in
figure 1. The plasma volume is Vplasma = 26.2 m3.

If ιedge = 5/5, there are five individual island
tubes winding around the plasma column. In that,
the magnetic topology differs from the one with
ιedge = 5/6, figure 2, where there is a single island in
the peripheral region. With increasing plasma pressure
the islands become larger and more ergodized, see
figure 3 for 〈β〉 = 0.05.

3. Global MHD stability of W7-X variants

In the optimization procedure [20] leading to the
definition of the W7-X configurational space [28],
good MHD stability properties were one of seven
optimization principles. They were targeted by means
of either evaluating in the case of the local Mercier
[29, 30] and peeling [30, 31] stability criteria, or by
their driving terms as proxies for the case of the local
ballooning analysis [30, 32]. Here, the local stability
is used in a supplementary way only, since, in the
ideal MHD framework, the global mode analysis gives
a closer description of the plasma properties, e.g.
determining the poloidal and toroidal perturbation
structures and growth rates or frequencies, which is
of importance in the interpretation of experimental
results.

The magnetic well is a figure of merit in ideal
MHD considerations. With the contained volume∫
V ′ds, the magnetic well can be defined [10] as

V ′′ < 0. In the W7-X configuration space, a vacuum-
field magnetic well prevails. The low-iota cases are
an exception and have a magnetic hill, V ′′ > 0. As
discussed in section 3.1 and for fixed-boundary MHD
modes in [9], this unfavourably influences their MHD
stability properties. In the Mercier criterion [29, 30],
the stabilizing effect of the shear and terms scaling
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as the net-toroidal current are small for low-shear
net-current-free stellarators. Furthermore, since being
weighted by the pressure gradient, which is usually
negative, a magnetic hill acts in a destabilizing way, so
that, according to the Mercier criterion, the low-iota
cases are locally unstable.

In stellarators, the finite number of identical
toroidal sections of the magnetic confinement device,
the so-called field periods, and the stellarator
symmetry, which corresponds to up-down symmetry
in an axi-symmetric configuration, lead to the notion
of so-called mode families and to the decoupling of
odd- and even-parity perturbations [9, 15]. In the
development of a global ideal MHD stability code,
e.g. the cas3d code, the use of these properties
helps to limit the size of the computational problem
and so renders feasible the study of fine-scale free-
boundary perturbation structures which require high
resolution. W7-X has a five-fold periodicity, Np = 5,
and, therefore, three mode families exist, N = 0, 1, 2,
comprising toroidal Fourier numbers ±N ± Np k for
integer k. With s the normalized toroidal flux which
is used as flux-surface label, the dimensionless scalar
normal displacement is ξs = ξ ·∇s. For even-parity
perturbations, it is used with a purely cosine Fourier
series. In this and other work based on the cas3d
code, αmn = 2π(mθ+ nφ/Np) is used in the definition
of a Fourier series, so that in magnetic coordinates the
resonance condition derives from

B0 ·∇ [ξsmn cosαmn] ∝ (mι+ n) ξsmn sinαmn . (2)

In the stability analyses discussed below, all mode
families and both mode parities have been employed,
yielding results essentially independent of the choice
made, which is in keeping with previous findings
[9, 15]. For each of the three scalar perturbation
components, the one normal to flux surfaces, ξs,
and two contributing to the displacement within flux
surfaces, the angle-like variation is described by a
Fourier series. In the work described here, the
perturbation Fourier tables used 325 harmonics, filling
a diagonal band following the resonance condition for
ιedge.

As being the physically relevant boundary condi-
tion, all perturbations discussed in this work have been
determined using the free-boundary condition. In this
scenario, the space of admissible perturbation func-
tions is larger and includes the perturbations of the
fixed-boundary case. Perturbations resembling more or
less fixed-boundary perturbations in spite of the free-
boundary condition, do not change significantly when
subjected to the fixed-boundary condition. However,
perturbations which are evidently free-boundary, will
change considerably when forced to be fixed-boundary,
will become less unstable or even stable.
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Figure 5. Fourier harmonics of the normal displacement, ξs,
versus normalized toroidal flux, s, of an unstable perturbation
in the low-iota case of figure 2. The dominant harmonic ism = 5,
n = −4 (——), with toroidicity-induced side-bands indicated by
dot-dashed curves. The most important helical side-band is for
m = 11, n = −9 (– – –). cas3d computation parameters: 325
perturbation Fourier harmonics (40 strongest shown), 128 radial
points.
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Figure 6. Unstable perturbation in the low-iota case of figures 2
and 5: Contours of the normal displacement, ξs in magnetic
coordinates, on the developed plasma boundary, on the ϕ = 0o

bean-shaped, and on the ϕ = 108o triangular cross-section.
The outside of the torus is near θpoloidal = 0. The bean-
shaped cross-section is at φtoroidal = 0 ± n, the triangular one
at φtoroidal = 0.5 ± n, n = 1, 2. One toroidal transit of the
magnetic field-line (ι = 0.8113) is indicated by – – –. The colour
map applies to all frames.
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A non-uniform equilibrium mass density profile, ρ0
in figure 4, has been used in the kinetic energy related
to the MHD displacement, Wkin =

∫
plasma

ρ0|ξ|2d3r.

It was obtained from transport computations [16, 27],
and affects growth rates but not stability thresholds.

3.1. Edge-rotational transform 5/6

Even at low plasma pressure, the low-iota high-
mirror configuration is unstable against low-mode-
number global perturbations. By way of example,
a low-mode-number perturbation which is unstable
at 〈β〉 = 0.009 is shown in figures 5 and 6. This
even-parity perturbation belongs to the N = 1
mode family. As is typical for so-called Mercier-type
perturbations, there is one dominant Fourier harmonic
with only small side-bands. The m = 5 poloidal
Fourier contents can be seen in the bottom frames of
figure 6 showing the characteristic bean-shaped and
triangular cross-sections. The n = −4 toroidal Fourier
contents becomes evident when counting extrema of
the normal displacement along a θ = const. path on the
developed plasma boundary, top frame of figure 6. This
is in keeping with the resonance condition, mι+n = 0,
for the low-order rotational transform ιres = 4/5 which
is present inside the plasma, see figure 1. In figure 6,
one toroidal transit of a plasma-boundary field line,
θ = θ0+ι φ/Np in magnetic coordinates, shows that the
perturbation is aligned with the magnetic field, i.e. is
resonant. The perturbation is evidently free-boundary.
On the plasma boundary, neither a significant poloidal
nor a significant toroidal variation of the extreme
amplitudes is present.

Assuming a hydrogen plasma and a central
equilibrium electron number density of ne(0) =
0.34 1020/m3 [16, 27], the e-folding time,

τe−fold =

√
µ0 ρ0(0)

|λcas3d|
, (3)

is τe−fold ≈ 13 µs for this perturbation. Figures 5 and 6
show a low-mode number perturbation being spatially
extended as is typical for low-shear stellarators. cas3d
stability calculations demonstrate that perturbations
with the dominant harmonic satisfying the same
resonance condition but at higher multiplicity are more
unstable, and, the higher their mode numbers, the
stronger their radial localization around the respective
resonant surface. By way of example, a series
of perturbations is described, each with the largest
harmonic being resonant at ι = 4/5 at roughly 90%
of the normalized minor radius in the low-iota W7-X
case considered here. For each of the free-boundary
perturbations, the ratio of the maximum amplitude
of the dominant harmonic, ξsmax, and its edge value,
ξsedge, is used as a measure for the free-boundary
nature. The essentially m = 5, n = −4 perturbation
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Figure 7. e-folding times versus dominant poloidal Fourier
index m for unstable MHD eigenmodes in the standard high-
mirror case of figure 3, 〈β〉 = 0.05 and s-linear pressure (×), ◦
for pressure with flattened regions, M for s-bell-shaped pressure.
+ for s-linear pressure at 〈β〉 = 0.04, � for s-linear pressure at
〈β〉 = 0.03. All perturbation mode families (N = 0, 1, 2) were
used. For 〈β〉 = 0.05, the Alfvén time is indicated, too (— · —),
τA ≈ 6 µs (for B0 = 2 T and Lc = 15 m, the field-aligned
extent of the perturbation extrema on the plasma boundary in
figure 10). The dashed lines are only meant to lead the eye.

of figure 6 with an e-folding time of 13 µs is manifestly
free-boundary, with ξsmax/ξ

s
edge ≈ 1.1. The e-folding

time of the dominantly m = 10, n = −8 perturbation
is smaller by a factor of 1.7, and its radial structure
less free-boundary with ξsmax/ξ

s
edge ≈ 1.3. At τe−fold =

4 µs, the essentially m = 25, n = −20 perturbation
is comparatively close to being fixed-boundary with
ξsmax/ξ

s
edge ≈ 4.5. Consistently, when forced to

be fixed-boundary, the latter perturbation does not
change significantly, its e-folding time increases by
7.5%. The manifestly free-boundary perturbations are
stable when subjected to the fixed-boundary condition.

3.2. Edge-rotational transform 5/5

For the standard high-mirror configuration of figure 3,
the results of the cas3d global free-boundary stability
analyses are summarized in figure 7, which shows
e-folding times for unstable eigenmodes versus the
dominant poloidal Fourier index m of the respective
normal displacement harmonics. For each poloidal
m, the most unstable eigenmode was selected. For
the conversion of the cas3d eigenvalues, a central
electron number density of ne(0) = 3 1020/m3 [16, 27]
in a hydrogen plasma was used for 〈β〉 = 0.05,
ne(0)/(1020/m3) = 2.13 and 1.4 for 〈β〉 = 0.04 and
0.03, respectively.

In the standard high-mirror cases, the ideal MHD
eigenmodes are resonant near the plasma boundary,
i.e. the dominant harmonics approximately fulfill the
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the standard high-mirror case with magnetic mirror 0.11 and s-
linear pressure. Dominant poloidal Fourier perturbation index
m = 35 (+); m = 16 (×); m = 12 (•). All perturbation mode
families (N = 0, 1, 2) were used.

resonance condition, mιboundary + n = 0, which is
typical for peeling modes [31]. In W7-X, the rotational
transform is roughly unity and, for this reason, free
from low-order rationals, other than the divertor-
relevant edge values of 5/4, 5/5, and 5/6. Hence,
only relatively high mode numbers can be resonant
inside the plasma. In the standard high-mirror cases
studied here, the lowest dominant poloidal Fourier
indices m of unstable eigenmodes are, indeed, O(10),
e.g. (m,n) = (11,−10) or (m,n) = (12,−11), as can
be seen in figures 7 to 10.

For 〈β〉 = 0.05, the influence of the pressure
profile was studied with a linear dependence on the
flux label s, shown as solid line in figure 4, and
a bell-shaped dependence, indicated by the dashed
line. The latter is more peaked near the magnetic
axis and flatter near the plasma boundary. The e-
folding times are smaller in the equilibrium with s-
linear pressure (× in figure 7) than the ones in the
case with s-bell-shaped pressure (M). The flattening
of the pressure around natural resonances, eliminating
otherwise diverging parallel current densities (see
section 2 and figure 4), causes more pronounced
gradients elsewhere. Consequently, the e-folding times
are larger in the equilibrium without flattened regions,
× in figure 7, as compared to the case with pressure-
flattening (◦ ), both for 〈β〉 = 0.05. This underlines
the destabilizing nature of steeper pressure gradients,
especially near the plasma edge. The small change
in e-folding time, δτe−fold ≈ 1 µs, however, justifies
the usage of equilibria in which pressure flattening
was not invoked, but in which the components of the
equilibrium parallel current density diverging at the
natural resonances have been constrained to zero.

For both pressure profiles as well as for varying
plasma-β using the s-linear profile [× (+, �) for
〈β〉 = 0.05 (0.04, 0.03) in figure 7] medium-mode-
number perturbations, m . 13, grow on larger time-
scales as the high-mode-number ones do, m ≈ 25.
Hence, stability limits in terms of the averaged plasma-
β depend on the perturbation mode numbers. Figure 8
shows the extrapolation of unstable MHD eigenvalues
corresponding to e-folding times via (3) to points of
marginal plasma-β. It may be concluded that the
W7-X standard case is stable against low-mode-number
modes, i.e. perturbation with poloidal Fourier index
m < 10. Medium-mode-number instabilities, m ≈ 10,
can exist at 〈β〉 = 0.05, which is the envisaged MHD-
stability limit [28]. Only pressure-driven MHD modes
with higher mode-numbers may have more restrictive
stability limits, e.g. 〈β〉 ≈ 0.04 for 15 . m . 20.

Evaluation of the Alfvén time shows that all the
instabilities summarized in figures 7 and 8 develop on
an Alfvén time-scale. With

τA =
Lc

vA
=
Lc

B0

√
µ0 ρ0(0) (4)

it is τA ≈ 6 µs for 〈β〉 = 0.05, B0 = 2 T, ne(0) =
3 1020/m3, and a characteristic length of Lc = 15 m.

The latter is derived from the spatial structure of
the dominantly (m,n) = (12,−11) unstable eigenmode
with τe−fold ≈ 8 µs at 〈β〉 = 0.05, shown in figures
9 and 10 by way of example. With many Fourier
harmonics of comparable amplitude and the extrema of
the normal displacement on the outside of the plasma
torus, the ballooning nature is apparent. In total,
the perturbations can be characterized as ballooning-
peeling.

The dominant harmonics which are coupled by
stellarator-type helical equilibrium components each
have tokamak-type side-bands, e.g. toroidicity-induced
ones. Radially, the perturbation is strongly localized
near the plasma boundary. On the plasma boundary,
the normal displacement forms five field-aligned stripes
of strong inward and outward shift, on the outside
of the torus, with an approximate length Lc = 15m.
Whereas in the so-called triangular cross-sections, ϕ =
(36+k 72)o, k = 0, . . . 4, the region of strongest normal
displacement is located near the tip of the triangle
pointing towards the outside of the torus. In the bean-
shaped cross-sections, ϕ = (0 + k 72)o, k = 0, . . . 4, the
regions of strong displacement are halfway between the
outside and the tip of the cross-section.

4. Conclusions

In continuation and extension of earlier work [9],
W7-X divertor equilibria have been computationally
established and studied for their global ideal MHD
properties.
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Figure 9. Fourier harmonics of the non-dimensional normal
displacement, ξs, versus normalized toroidal flux, s, of the
unstable odd-parity perturbation with τe−fold ≈ 8 µs in the
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325 perturbation Fourier harmonics (40 strongest shown), 128
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Figure 10. Unstable, odd-parity perturbation in the standard
high-mirror case of figure 3, 〈β〉 = 0.05, and figure 9: Contours
of the normal displacement, ξs in magnetic coordinates, on the
developed plasma boundary (compare figure 6), on the ϕ = 0o

bean-shaped, and on the ϕ = 180o triangular cross-section. One
toroidal transit of the magnetic field-line (ι = 0.93) is indicated
as – – –.

In the low-iota case with the 5/6 island for
the divertor at the plasma edge, unstable low-mode
number, free-boundary perturbations exist even at
low plasma-β. With essentially one dominant Fourier
harmonic and small side-bands, they are Mercier-
type global modes. In a low-shear net-current-
free stellarator, this is consistent with the lack of
shear stabilization and vacuum magnetic well, the
local Mercier criterion thus being violated. Using
equilibrium pressure and mass-density profiles as well
as the central value of the equlibrium mass density
from a transport analysis, e-folding times of O(10) µs
are found. If studied experimentally in W7-X, this
scenario might clarify the question whether a vacuum
magnetic well is needed for MHD stability of small-
shear stellarators. A relaxation of this requirement
would have a direct impact on the magnetic geometry
by possibly making the strong indentation dispensable,
which forms the inboard side of the torus in the bean-
shaped cross section.

The standard case with the 5/5 islands at the
plasma edge is stable against low-mode-number modes,
poloidal m < 10, for the foreseen value of the magnetic
mirror, mratio = 0.1. Since, for 〈β〉 & 0.04, ballooning-
type, medium-mode-number, unstable free-boundary
perturbations exist according to the computational
global mode analysis, this W7-X scenario might be
useful to experimentally study the question whether
MHD modes with poloidal m & 10 might affect the
plasma edge region of small-shear stellarators in a
dangerous way.

This work will be continued with global ideal
MHD stability studies of divertor equilibria with boot-
strap current and, eventually, equilibria reconstructed
from experimental W7-X data.
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Appendix A. Coil currents

The W7-X magnet system consists of fifty modular
and twenty planar coils. The five-fold periodicity and
the stellarator symmetry of the machine reduce to five
modular coil type and two planar ones. Additionally,
there are ten in-vessel divertor coils and five large-
dimension correction coils outside the cryostat. The
divertor and correction coils are not used in this work.
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Table A1. Current loads for the W7-X variants discussed in this
work. The cases are identified by the rotational transform on the
plasma edge, ιedge, and by the magnetic mirror on the magnetic
axis, mratio. The five types of modular coils are labelled 1 to 5,
the two types of planar coils are A and B.

Imodular / MA Iplanar / MA

1 2 3 4 5 A B

a1.4294 0.9884 0.9817 0.9566 0.5422 0.1186 0.4454
b1.404 1.3506 1.2261 1.1794 1.111 0.007 0.007

aιedge = 5/6, mratio = 0.22
bιedge = 5/5, mratio = 0.11

In table A1, the current loads are summarized which
define the W7-X variants studied in sections 2 and 3.
With these current amplitudes, the central magnetic
field strength is Baxis ≈ 2 T.
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