MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

Development of FORTRAN Programs

Using an AMOS Terminal

Friedrich Hertweck

IPP R-29 September 1978

Die nachstebende Arbeit wurde im Rahmen des Vertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europiischen Atomgemeinschaft iiber die
Zusammenarbeit anf dem Gebiete der Plasmaphysik durchgefiihrt.




IPP R/29 Sep 14, 1978

Development of FORTRAN Programs Using an AMOS Terminal

Friedrich Hertweck

0. Introduction 1

1. General Remarks on Using the AMOS System 1

2. Compiling FORTRAN Programs 2
2.1 Using Catalogued Procedures FOGI1CA or FOHXCA 2
2.2 Using Catalogued Procedures AFORT or AFORTH

3. Execution of FORTRAN Object Programs 4
3.1 Normal Batch Execution L
3.2 Alternate Routing of Printer Output 5
3.3 Job Output written into AMOS File 6
3.4 Using the catalogued Procedure AJOB 6

4, Further Remarks on Using AMOS 7
4.1 Printing a Time Stamp on the Output File 7
4.2 Some Remarks on Program Organization 7
4.3 Handling COMMON Statements 8
4.4 Printing AMOS Job Output on a Remote Station 8




Development of FORTRAN Programs Using an AMOS Terminal

0. Introduction

The IPP Computer Center 1is equipped with two coupled
processors IBM 360/91 and AMDAHL 470V/6. On the 91, an
05/360 MVT system is used (Release 21.6), on the U470 the
VM/370 system is used to run several virtual machines, 1in
particular the AMOS and an MVT machine. In addition, there
are other virtual machines, like the CMS machines, Reduce,
etc. However, there is no general CMS service available and
in this note we are only concerned with the AMOS/MVT system.

AMOS is a File Management and File Editor System. Users
may create FORTRAN jobs as AMOS files and submit them to
either MVT system (MVT91 or MVTLUT70) where they are processed
as batch jobs. Apart from normal 0S/360 data sets and tapes
a FORTRAN job may also use AMOS files for input or output.
The AMOS system prevents more than one job modifying an AMOS
file, though several jobs may read a file.

With the catalogued JCL procedures FOG1CA and FOHXCA it
is possible to compile a FORTRAN program (or individual
subroutines or batches of subroutines) and placing the
object program(s) into an AMOS file segment. Should the
compilation fail then instead of the object program the user
will find the compiler error messages in that file segment.

A FORTRAN program consisting of a batch of object modules
may be executed using the catalogued procedure FOX. A HASP
command will direct the output of the job to a remote batch
terminal line printer or it may be placed into an AMOS file
segment for inspection from the terminal.

The catalogued procedures AFORT, AFORTH, and AJOB may be
used to minimize the job output (no source program lists or
loading maps) and to make the directing of job output to
AMOS file segments as easy as possible.

The last section contains a few remarks that may prove
useful for the novice computer and AMOS user.

1. General Remarks on Using the AMOS System

The user must have an AMOS identification (usually a
three-letter code showing his initials) and an account
number assigned to him. If he wants to obtain job output at
a terminal he must generate a file called AMOSQUT and admit
via the USER subcommand of the FILEORG command the user AMOS
to write into this file:

GENERATE AMOSOUT,SIZE=n
FILEORG
USER *AMOS




Apart from this file the user may generate any number of
files he wants, subject to his space restrictions. (For
details of how to use the AMOS system, cf. the Programmer's
Handbook, section F.)

2, Compiling FORTRAN Programs

The newer versions of the IBM FORTRAN compilers have the
facility to produce error messages suited for display at the
terminal. When used with the appropriate catalogued
procedures, either the object output or the error messages
may be directly routed into an AMOS file segment.

2.1 Using Catalogued Procedures FOG1CA or FOHXCA

The user should create a file segment containing the
following commands:

// EXEC FOG1CA,USERID=uid,FILE=filename,NAME=segname
{ FORTRAN source code }

The following general rules apply: Capital 1letters denote
those parts of the command that have to be typed exactly as
shown, lower case letters denote quantities to be specified
by the user. The FORTRAN source code may be given either
explicitly or by a sequence of $$ substitute commands.

If the above file segment is submitted as an express job
(using the command XSUBMIT, or XS for short), it will be
compiled by the FORTRAN IV G1 compiler.

The following default parameters are used:
NOLIST, SOURCE, NODECK, NOMAP

The object module(s) will be placed into the AMOS file
segment

uid:filename.segname

if the compilation was successful, i.e. the <condition code
was 0 or 4.

If the compilation failed (i.e. condition code >4) then
the AMO3S file segment will <contain the terminal error
messages generated by the compiler.

There are two ways for the user to find out whether the
compilation was successful or not:

(1) If he follows the progress of his job by using
occasionally the AMOS command JOBS3, he may see whether
the compile step C is followed by the step O0OBJ (copy
object module(s) into AMQOS file) or by step TERM (copy
compilation error messages into AMOS file)




(2) After the job has terminated the user may list the last
line of the segment by

LIST filename.segname<¥)

It contains either the last card of the object module
in a format similar to

END 15734-F02 020078219
or the last line of the error messages in a format like
¥ 005 DIAGNOSTICS GENERATED, HIGHEST SEVERITY CODE IS 8

If error messages were generated, the user should 1list the
complete segment, obtaining something like this:

100 G1 COMPILER ENTERED

200 510 POL:=POLY*X+C(1)
300 $

400 01) IGIO13I SYNTAX

500 600 DO 3 JJ=1,J4d1
600

700 $

800 01) IGIO13I SYNTAX

900 780 I12=11+99 * (
1000

1100 $

1200 01) IGIO13I SYNTAX

1300 910 B=C(K)

1400 $

1500 01) IGIOO02I LABEL

1600 IGIO22I UNDEFINED LABEL

1700 1234

1800 SOURCE ANALYZED

1900 PROGRAM NAME = MAIN

2000 *¥ 005 DIAGNOSTICS GENERATED, HIGHEST SEVERITY CODE IS 8

The first column of nhumbers are the line numbers of the AMOS
segment. The line numbers of the original source code appear
as the second column of numbers (in the example above, 510,
600, 780, and 910). With the help of the program name
appearing at the bottom of the sublist for each compilation,
the user may locate +the erroneous 1lines 1in his source
segment.

If the FORTRAN H-extended compiler is to be used, the
catalogued procedure FOHXCA must be used.
2.2 Using Catalogued Procedures AFORT or AFORTH

The method described in the previous section has two
drawbacks:

(1) An output list is generated at the central site
(2) The source program is reproduced in the output list

Normally, the output list printed centrally is of nc use to
the user at the terminal, because the source code 1is




available to the user at the terminal anyway.

The alternative JCL procedures AFORT and AFORTH may be
used to suppress the source listing and with an additional
HASP control command direct the output of the job 1into the
user's file AMOSOUT. The job will then look as follows:

/¥ROUTE PRINT REMOTE13
// EXEC AFORT,O0OBJ='progfile.objseg!'
{ FORTRAN source program }

The object module (or 1list of error messages if the
compilation failed) is placed into the user's file progfile
as segment objseg. The file AMOSOUT.jobname contains the
HASP and MVT log messages and possibly error messages. The
source code listing is suppressed.

3. Execution of FORTRAN Object Programs

If no special requirements have to be taken into account,
the 1linking loader should be wused to execute FORTRAN
programs (it is simpler to use and more efficient than the
Linkage Editor). We will discuss several versions of job
setups.

3.1 Normal Batch Execution

In normal batch execution the job is submitted by either
the XSUBMIT or the SUBMIT statement. The XSUBMIT
(abbreviation XS) will use the following default parameters:

- execubtion time limit = 10 sec

- region size = 120 K

The job looks as follows (it is contained in an AMOS file
segment of the user):

// EXEC FOX
//G.SYSLIN DD ¥
{ $$ command(s) pointing to AMOS file segment(s) }

{ containing object modules, in any order 1
//G.SYSIN DD *¥
{ explicit input data or }

{ $$ command(s) pointing to segment(s) with data }
The loader will use the FORTRAN subroutine libraries

(1) SY31.FORTLIB
containing the standard subroutines of FORTRAN

(2) BYS1.858BELIB
containing further subroutines from the Scientific
Subroutine Package (they are listed in the Programmer's
Handbook in chapter C3.2)




to supply any missing subroutines, including the I/0
interface package. The loader will use the following default
options:

PRINT, MAP, LET, CALL, RES, NOTERM

Any printer output by the job, produced by
WRITE(6,format) statements, will be spooled and by default
printed at the central computer site at Garching on one of
the line printers. In fact, four data sets are concatenated
and printed as one "output list". They are:

(1) HASP log messages
(2) MVT log messages
(3) Loader output

(4) Output of user's program

3.2 Alternate Routing of Printer Output

There are two additional ways to handle the printer
output of the job:

(1) to have it printed on a remote line printer

(2) to have it moved into a segment of the user's AMOS file
AMOSOUT for inspection at a terminal

In both cases the method to obtain the desired result is the
same: the first line of the job should be

/*¥ROUTE PRINT REMOTEn

where n denotes the Remote Job Station (RJE Terminal). The
user should use the appropriate number for the terminal he
wants to use. However, for certain CRT terminals the ROUTE
command is automatically added and hence the job is printed
by default at the user's nearest RJE Terminal.

If n=13, the printer output is moved into a segment of
the user's file AMOSOUT (cf. section 1). The segment is
automatically generated by the system. Its name is identical
to the jobname of the user, as indicated by AMOS after a
SUBMIT or XSUBMIT command, for example:

JOB FRH789 SUBMITTED FOR EXECUTION

$%¥16.55.12 MVT-470
JOB 117 FRH789 AWAITING EXEC F 3 PRIO 12
0K

After the job has completed (reply to Job command is "JOB
NOT FOUND"™) the user would type in the AMOS command

LIST AMOSOUT.FRHT89
in the above example. Due to currently existing 1limitations

of the AMOS system, the printer output must be converted
into card images. A line with not more than T2 characters




will be converted into one card image, with the label being
a multiple of 10. If a print 1line 1is longer than 72
characters, the remaining up to 61 characters are converted
into a second card image with the label incremented by one.
A1l printer control characters are discarded (cf. B&B no.
85 .

The user should keep in mind that gradually his file
AMOSOQUT will overflow. He therefore must not forget to purge
the segments not longer needed. Alternatively, from time to
time, he may purge the whole file and generate it again.

3.3 Job OQutput written into AMOS File

The user may choose to write some of his formatted output
into an AMOS file. The output produced must be compatible
with the card image format, i.e. a 1line must not contain
more than 72 characters.

In order to achieve the desired result the user nmust
(1) include the AMOS I/0 procedures into his program

(2) supply an appropriate DD statement for the file
reference number used

Let us assume the user wants to put his standard output file
(FTOB6F001) into an AMOS segment. Then his job would for
instance look as follows:

/*¥ROUTE PRINT REMOTE13

// EXEC FOX

//G.SYSLIN DD DSN=SYS1.FORTLIB(AMOSIO),DISP=SHR
/7 DD *

$$ ABC:PROGFILE.OBJECT

//G.PRINT DD UNIT=DISK,VOL=SER=AMOS,DISP=SHR,
ki DSN='W: ABC:WORKFILE.OUT<1.1>;"
//G.SYSIN DD *

$$ ABC:DATAFILE.DATA

Here we have assumed that the wuser ABC had his program
compiled previously and had the object module(s) placed into
file segment PROGFILE.OBJECT. The DD-statement with ddname
G.PRINT directs the standard printer output (file reference
number = 6) to the wuser's AMOS segment WORKFILE.QOUT and
indicates that the output 1lines (in the format of card
images!) are to be labelled 1, 2, 3,...

3.4 Using the catalogued Procedure AJOB

If the procedure explained in the previous section 3.3 is
to be used as a standard, the user may use the catalogued
procedure AJOB (="AMOS Job") instead which contains all
these modifications by default.




His job will then look as follows:

/*¥ROUTE PRINT REMOTE13

// EXEC AJOB,LIST='listfile.listseg'
//0BJ DD *#

$$ userid:progfile.objseg

//DATA DD ¥

$$ userid:datafile.dataseg

All HASP, MVT, and other system messages will go into
AMOSOUT. jobname. The output from the FORTRAN job itself will
go into the AMOS file specified in the LIST parameter. The

fourth line specifies the object program to be executed, the
last line specifies the input to the job.

With this procedure the 1loader will not produce any
output.

4. Further Remarks on Using AMOS

In this section we add a few remarks that may help the
user to use the system more efficiently.

4.1 Printing a Time Stamp on the OQutput File

It is recommended that a time stamp is being placed in
the job output file. This will prevent the wuser from
misinterpreting his LIST output (which always goes into the
same file segment) should his job have failed.

A typical error that may occur is the attempt to execute
a job after a failed compilation. The 1loader would reject
the job, telling so in the AMOSOUT.jobname segment produced
by the job. However, the user print file 6 would be 1left
unchanged and will show the results of the previous run.

In order to avoid this problem, the user should 1let his
FORTRAN program begin with:

REAL D(6)
CALL DATE(D)
WRITE(6,100) D

100 FORMAT(3(2AL4,4X)/)

This will produce as the first line of the list segment (for
example):

24.08.78 10.37:42 ABCT07

4.2 Some Remarks on Program Organization

For longer programs it is recommended that the user
exploits the capabilities of FORTRAN and compiles smaller
parts of the program separately. He may create a set of N
segments P(n) of the form




/*¥ROUTE PRINT REMOTE13
// EXEC AFORT,0BJ='WORK.OBJ(n)'
{ part n of FORTRAN source code }

forn = 1,2,...,N. Whenever a subroutine in part P(k), say,
has been modified +the editing 1s terminated with AMOS
command

XSUBMIT
which will produce a new object module OBJ(k).

The new version of the program can then be executed by
submitting the segment

/*ROUTE PRINT REMOTE13

// EXEC AJOB,LIST='WORK.L'
//0BJ DD #¥

$$ ABC:WORK.OBJ(1)

$$ ABC:WORK.OBJ(N)

$$ XYZ:0BJLIB1.POISSON
//DATA DD *¥

$$ ABC:WORK.PARM

In this example user ABC includes the POISSON solver POISSON
of user XYZ who keeps the object module in his file OBJLIB1.

4,3 Handling COMMON Statements

The user should also wuse the $$ commands to include
COMMON and other globally wused declarations in his
subroutines. Then changes of these declarations will
immediately be propagated into the whole program if a
compile job is submitted:

/*¥ROUTE PRINT REMOTE13
$$ ABC:WORK.P(1)<20:%¥>

$$ ABC:WORK.P(N)<20:%>

Here we have assumed that the source segments P(n) are
labelled 10,20,30,... . Then the /¥ROUTE commands are
omitted from the input.

4.4 Printing AMOS Job Output on a Remote Station

Due to present limitations of AMOS3, it is not possible to
print an AMOS file segment on an arbitrary line printer. Per
default the PRINT command will print the segment on the
printer associated with the terminal on which PRINT was
issued (i.e. mostly the segment will be printed centrally).

If the user has completed development of his program and
if he has decided that he would like to keep the last output




list, he may issue a job

/%¥ROUTE PRINT REMOTEn
// EXEC APRINT
$$ ABC:WORK.LIST

which will print the contents of his segment WORK.LIST on
remote printer n.

An even more convenient way of handling the output is by
including the JCL statements in the output. The time stamp
format statement (cf. section 4.1) may be modified to

100 FORMAT ('/*ROUTE PRINT REMOTEn'/
% '// EXEC APRINT'/
* 3(2A4,4X)/)

producing an AMOS segment

1 /¥ROUTE PRINT REMOTES

2 // EXEC APRINT

3 24.08.78 15.11:37 ABC837
1

5

{ output from job 1

which after inspection at the terminal may be printed at
remote printer n simply be typing in the command XSUBMIT. If
the segment is to be printed centrally, 1line 1 with the
ROUTE command must be deleted.




