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Abstract
The FP7 project nanoCOPS derives new methods for simulation during development
of designs of integrated products. It covers advanced simulation techniques for
electromagnetics with feedback couplings to electronic circuits, heat and stress. It is
inspired by interest from semiconductor industry and by a simulation tool vendor in
electronic design automation. The project is on-going and the paper presents the
outcomes achieved after the first half of the project duration.
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1 Introduction
Designs in nanoelectronics often lead to large-size simulation problems and include strong
feedback couplings. Industry demands the provisions of variability to guarantee quality
and yield. It also requires the incorporation of higher abstraction levels to allow for sys-
tem simulation in order to shorten the design cycles, while at the same time preserving
accuracy. The nanoCOPS FP project addresses the simulation of two technically and
commercially important problem classes identified by our industrial partners (NXP Semi-
conductors, ON Semiconductor, ACCO Semiconductor, and MAGWEL):

• Power-MOS devices, with applications in energy harvesting, that involve couplings
between electromagnetics (EM), heat and stress, and

• RF-circuitry in wireless communication, which involves EM-circuit-heat coupling
and multirate behaviour, together with analogue-digital signals.

To meet market demands, the scientific challenges are to:
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• create efficient and robust simulation techniques for strongly coupled systems, that
exploit the different dynamics of sub-systems within multiphysics problems and that
allow designers to predict reliability and ageing;

• include a variability capability such that robust design and optimization, worst case
analysis, and yield estimation with tiny failure probabilities are possible (including
large deviations like -sigma);

• reduce the complexity of the sub-systems while ensuring that the operational and
coupling parameters can still be varied and that the reduced models offer higher
abstraction models that are efficient to simulate.

Achieving solutions to these challenges has considerable industrial impact. The overall
objective of nanoCOPS is to advance a methodology for circuit-and-system-level mod-
elling and simulation based on best practice rules to deal with coupled electromagnetic
field-circuit-heat problems as well as coupled electro-thermal-stress problems that
emerge in nanoelectronic designs. The new methods developed are robust and allow
for strong feedback coupling when integrating systems to increase the performance of
both existing devices and when integrating systems to produce new devices.

First outcomes have been reported in [, ]. The project is on-going and the paper
presents the outcomes achieved after the first half of the project duration. Recently, at
the DATE- conference in Dresden, Germany, we gave dedicated presentations to de-
signers and to engineers with backgrounds in mathematics and in electronics [–]. On
the project website http://www.fp-nanocops.eu/ special videos have been made available.
Here also more publications can be found. The current paper addresses mathematicians
and points out how mathematics as essential ingredient for innovation is transfered for
successful use in industry.

With the new techniques it is possible to efficiently analyze the effects due to variability.
Our methods are designed to solve reliability questions resulting from manufacturabil-
ity. They facilitate robust design as well as enable worst case analysis. They can also be
used to study effects due to ageing. Ageing causes variations in parameters over a long-
term period, which cannot be predicted exactly and thus are typically uncertain. The chal-
lenges for an Integrated Circuit (IC) are that each device has its own electrical and thermal
conditions, which are changing over time (due to ageing, for example). Here, each device
has its own required life-time.

Novel Model Order Reduction techniques, developed here for the fast repeated simula-
tion of the coupled problems under consideration, are applicable to both coupled systems
and parameterized sub-systems. As such they are an essential ingredient for the Uncer-
tainty Quantification.

In summary, our solutions are
• advanced co-simulation/multirate/monolithic techniques, combined with

envelope/wavelet approaches;
• new generalized techniques in Uncertainty Quantification (UQ) for coupled

problems, tuned to the statistical demands from manufacturability;
• enhanced, parametric Model Order Reduction techniques for coupled problems and

for UQ.
All the new algorithms produced are implemented and transferred to the SME partner
MAGWEL. Validation is conducted on industrial designs provided by our industrial part-
ners. These industrial end-users give feedback during the project life-time, contribute to

http://www.fp7-nanocops.eu/
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Table 1 Partners in nanoCOPS

Abbr. Partner

BUW Bergische Universität Wuppertal, Germany (coordinator)
HUB Humboldt Unversität zu Berlin, Germany
TUD Technische Universität Darmstadt, Germany
UGW Ernst-Moritz-Arndt-Universität Greifswald, Germany
FHO FH OÖ Forschungs- und Entwicklungs GmbH, Hagenberg im Mühlkreis, Upper Austria, Austria
KUL Katholieke Universiteit Leuven, Belgium
BUT Vysoké uc̆ení technické v Brnĕ, Brno University of Technology, Czech Republic
MPG Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
NXP NXP Semiconductors Netherland B.V., Eindhoven, The Netherlands
ONN ON Semiconductor Belgium, Oudenaarde, Belgium
MAG MAGWEL NV, Leuven, Belgium
ACC ACCO Semiconductor, Louveciennes, France

measurements and supply material data as well as process data. A thorough comparison to
measurements on real devices is being made to demonstrate the industrial applicability.

Our consortium brings together extensive R&D experience in nanoelectronic IC simu-
lation and complementary areas of expertise. It includes seven universities, one research
institute, two large-scale semiconductor companies, and two SMEs, see Table .

2 Progress and results
In this section we give an impression of outcomes achieved in the first half of the project
duration. We refer with the abbreviations in Table  to the various project partners.

2.1 Simulation environment
Electronic devices consist of a large number of components. Many parts are accurately
described by a circuit model, whereas semiconductor parts and configurations suffering
from electromagnetic interference necessitate the use of field models. The overall be-
haviour of the device needs to be simulated by a field-circuit coupled method. Improve-
ments on such coupled techniques indirectly lead to more reliable and better integrated
devices. In order to be able to incorporate the mutual electromagnetic influence of neigh-
boring elements (e.g., cross talking), one needs refined models based on a sufficiently exact
discretization of the full Maxwell equations. An interface model for such refined models
was derived that can be used for lumped circuit net lists.

A main result, through joint effort by MAG, HUB, FHO, TUD, was the development
of a simulation environment, which both enables the co-simulation [, ] and mono-
lithic/holistic simulation of a circuit/device system [] or electrical-thermal systems [],
see Figure  and Figure . The interface, both linear and nonlinear, couples software mod-
ules from academia to the device and electromagnetic field simulator from MAGWEL,
offering flexibility in adapting modules and allowing for different time integration proce-
dures. In this way, coupling of electronic circuits with electromagnetics and with semi-
conductor material is achieved. It also allows for state-space formulations of subparts to
which Model Order Reduction can be applied. The interface treats the space discretization
in the field simulator and generates a system of Differential-Algebraic Equations (DAEs).
Especially, when including semiconductor material, large differences of magnitude made
careful scaling during the assembly essential to guarantee that the overall system was sta-
ble [, ].
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Figure 1 Coupled modelling. Set up for modelling coupled problems involving electromagnetics and
circuit equations. Emphasis was made to cast outcomes in terms of Differential-Algebraic Equations.

2.2 Bondwire modelling and simulation
Nowadays integrated circuits (ICs) are important components of daily life. Moreover,
the ever tightening specifications imposed on modern integrated circuits (ICs) by the
semiconductor roadmap demand more energy-efficient chips which become smaller and
smaller in size. Bond-wires are commonly used to connect the chip and the pins during
device assembling. These wires are heated up due to Joule effects and their temperature.
Figure  shows a diagram of a classic IC lead-frame package. TUD and ONN have focused
an improved electro-thermal formula that is the basis for a bondwire calculator for ONN
[]. Bondwire temperature can increase substantially since the electric power is supplied
through the wires. If the wires cannot properly dissipate this power, then permanent dam-
age will occur to the wires and surrounding material. A mathematical formula has been
developed that improves the prediction of this heating compared to known models from
literature [].

Figure  depicts a simplified thermal problem upon which the model is built. The rectan-
gular shape of the package compound is retained and suitable boundary conditions (BCs)
are used; () adiabatic on the rightmost wall except on the wire portion. This facilitates
the inclusion of the lead into the model; () iso-thermal on the leftmost and bottom walls
amounting to the chip and die-attach temperatures; () convective on lateral and upper
walls; () thermal radiation on the wire surface. The temperature dependence of the wire’s
thermal and electrical conductivities is also included. The heat equation is solved by means
of an ad-hoc linearization which involves the compound heat equation and its heat kernel
[], viz.

Tw(y, t) ∼= To +

√
ακ θ̃w(y, t) + 

ακ

–

ακ

. ()
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Figure 2 Coupled simulation. Set up for simulating coupled problems involving electromagnetics and
circuit equations. Here there is integration between a circuit simulator (MECS) and an EM-solver. Note that the
MAGWEL software provides contributions to specific equations as well as associated Jacobian values.

Figure 3 Bond wire. Classic IC lead-frame package.

Figure 4 Bond wire. Bond-wire heat transfer problem.

Above, Tw is the wire temperature, To is the reference (ambient) temperature, ακ is the
temperature coefficient of the wire thermal conductivity, and θ̃w is an auxiliary variable.

Several numerical tests for wires of gold, copper, and aluminium have been performed
with data provided by ONN. Numerical verification has been carried out with CST Mul-
tiphysics Studio™, and a good agreement has been corroborated. Figure  shows the esti-
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Figure 5 Bond wire. Au-wire current capacities for several diameters and a fixed length. The plotted
temperature is at the wire mid-point, where the hottest point is expected.

mated current capacity (temperature vs current amplitude) for a gold wire after  ms. The
formula retains important geometrical parameters defining the package, which adds high
flexibility. This reduces the over-design of the wires during fabrication. The evaluation of
this formula is computationally inexpensive such that time-consuming D simulation can
be avoided. However, a coupling of the bondwire model to a D simulator is necessary
if the integration in the overall system behaviour should be simulated. Thus, TUD also
implemented a nonlinear in-house simulation code based on the Finite Integration Tech-
nique (FIT) to analyze the coupling before transferring the concept to partner MAG [].
ONN aims to use the algorithm within a GUI (Graphical User Interface).

ONN and BUT made measurements of DC and dynamical fusing of bondwires [].
ONN fabricated test chips (SOIC package so far), where the individual bondwires with
different lengths, diameters and materials have been encapsulated. BUT prepared a com-
plete methodology and experimental setup to do such investigations.

The setup (hardware tester and MATLAB GUI) allows measurements of all six bond-
wires in one IC package. The tester consists of the  independent channels, the  driving
stages, the  Kelvin probe sensing stages, the demultiplexing core for the driving stages
(specification of address of the bondwire) and the multiplexing core for the Kelvin probe
sensing stages.

The block structure, the single channel operation and photographs of the final hardware
solution are shown in Figure , Figure  and Figure . The frequency limitation of the
measurement setup is about  kHz (limits of the used MOS power-switches and PCI
card). The software part of the project consists of two executable MATLAB scripts with
a GUI. MATLAB software is also used for the generation of testing sequences and signals
that drive the tester. Finally, the measurements have been used to validate the bondwire
formula.

2.3 Electro-thermal coupled simulation
MAG and ONN co-operated on electro-thermal simulation in order to guarantee indus-
trial acceptance. A highlight of this work is that the electro-thermal simulation tool is very
flexible concerning the various device technologies since the nanoscale transistor archi-
tecture is incorporated via compact models. Therefore, it is possible to couple the large-
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Figure 6 Bond wire. Final hardware solution of the bondwire tester prototype: overall block structure.

scale (millimeter) structures and the small-scale (sub-micron) of the finger architecture
in a single simulation. The computation deals with the coupling of the electrical response
and with the thermal response in first-principle field solving. Figure  illustrates today’s
capabilities [].

2.4 Multirate simulations
In coupled problems one often encounters multiscale differences (in space) and large vari-
ations in dynamics in time-domain: multirate effects []. In this book especially partitions
in space with different dynamics lead to couplings between subsets of DAEs. A careful
formulation of the coupling is key in being able to guarantee convergent dynamical itera-
tions in a co-simulation. In [] the partition between physical quantities (electromagnet-
ics, heat) was exploited to study this convergence.

A different kind of multirate occurs in electronic circuits involving oscillators, where a
large difference between frequency components can be observed. In the time domain we
see a high-frequency carrier signal that is moduled by an envelope signal (in case of am-
plitude modulation), or where the frequency is modulated (frequency modulation). An
additional effect is the occurrence of sudden steep rises and fall of signals. FHO devel-
oped a multirate envelope time-integration technique, which combines decompositions
along two time scales, using nonuniform biorthogonal spline wavelets []. Emphasis is
on performance optimization, including adaptive grids, iterative linear solvers for huge
problems (e.g. preconditioned GMRES), optimization of the evaluation of lumped devices
(e.g. BSIM and BSIM, MEXTRAM, etc.). Figure  shows the divider block diagram for
a PLL in the . GHz ISM band, employing the silicon germanium technology of IHP (a
research center funded by the German government). The simulation of frequency dividers
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Figure 7 Bond wire. Final hardware solution of the bondwire tester prototype: single channel principle.

is a severe bottleneck for PLL simulation and for the multirate technique in general. In de-
riving Figure , adaptive methods were employed for the different stages of the divider.
Table  shows the drastic improvement of the run time using adaptivity. No commercial
circuit simulator provides this facility yet.

2.5 Parametric model order reduction
MPG and MAG developed efficient parametric/parameterized Model Order Reduction
(pMOR) methods and techniques for fast simulation of electro-thermal coupled models
[, ] and for fast Uncertainty Quantification [] of nanoelectronic, electro-thermal
models with random variables or stochastic processes. Given the system matrices at dif-
ferent values of the parameters or realizations of random variables, we extract system ma-
trices which are independent of the parameters (random variables), so that parametric
models can be constructed, and the parameters (random variables) symbolically appear
in the model. Reduced-order models of the large-scale parametric models are obtained us-
ing parametric model order reduction techniques. For general complex geometries, like
in Figure , an accurate, physical model in the form of heat transfer partial differential
equations is required. The electrical transport is controlled by Ohm’s law and the current
continuity equation in conductive material

∇ · J = , J = σ (T)E. ()
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Figure 8 Bond wire. Final hardware solution of the bondwire tester prototype: final version of the PCB.

Figure 9 Power MOS transistor. Analysis of a power MOS (left figure) resulting into an asymmetric current
density due to thermally induced conductance variations in the metallic interconnect (right figure).

The generated-energy transport is controlled by Joule’s law

∂U
∂t

= –∇ · Q + �, Q = –κ(T)∇T , U = CV
(
T – T∗). ()

Of particular interest is the local heat generation, which is given by

� = E · J = σ (T)(∇V ). ()
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Figure 10 Divider block diagram. A divider block diagram for a PLL (phase lock loop) in the 5.6GHz ISM
band (industrial, scientific and medical (ISM) radio band).

Figure 11 Multirate solution. The solutions show time-varying multirate behaviour, which was efficiently
solved by the implementation of FHO.

Table 2 Performance summary multirate simulation

Single grid Multiple grids

Number of equations 130,000 85,000
Nonzeros in Jacobian 5× 106 2.5× 106

Assembly of linear system 4 s 2 s
Linear solve 8 s 4 s
Envelope analysis 5 h 37 min

Figure 12 A thermal package model (provided by
MAG).

Here κ(T) is the heat diffusion, CV is the constant-volume heat capacitance of the material,
which is also T-dependent and T∗ is a reference or ambient temperature. The latter ex-
pression results in a non-linear relation (coupling) between the variables V , the electrical
voltages, and the temperature variables, T . Spatial discretization (using the finite-element
method, or finite volume method, like finite integration) of () and () results in a large-
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scale system of ODEs in the form of

E
dx(t)

dt
= Ax(t) + x(t)TFx(t) + Bu(t), ()

where x is the state vector including the nodal voltages and nodal temperatures vary-
ing with time. The tensor F ∈ R

n×n×n represents the non-linear character of the heat
source �. Roughly speaking, F can be considered as a D array of n matrices. Each matrix
is in R

n×n. The matrix E ∈ R
n×n is a capacity matrix for both the electrical and the ther-

mal part, and the matrix A ∈ R
n×n is the conductivity matrix for both the electrical and

the thermal part. Linear parametric models in state-space-form were constructed based
on the discrete data provided by MAG, resulting from a finite-integration technique (FIT).
As an example we consider a parametric thermal package model, see Figure . When con-
sidering meshes that are topologically equivalent for different package thicknesses p, the
parametric dependence of the matrices as well as the matrices in the tensor F will take
the form as

M(p) = M + pM +

p

M. ()

The second term in () originates from the linear dependence of dual areas corresponding
to the cell edges perpendicular to the thickness, whereas the third term originates from
dual areas associated to cell edges tangential to the thickness orientation.

If the parameter p symbolically appears in the model, the system in () becomes a para-
metric model,

E(p)
dx(t, p)

dt
= A(p)x(t, p) + x(t, p)TF (p)x(t, p) + B(p)u(t), ()

where the matrix E(p), A(p), B(p) and each matrix in F (p) are in the form of M(p). Some
mathematical calculations are needed to extract the parametric system from the system
in (). However, the calculations are independent of the dimension of the matrices in (),
which makes the calculation very cheap and flexible [].

Using a robust parametric model order reduction algorithm in [], a reduced paramet-
ric model () with the same parametric structure as the full parametric model, in (), but
with much fewer equations, has been derived

Ê(p)
dz(t, p)

dt
= Â(p)z(t, p) + z(t, p)T F̂ (p)z(t, p) + B̂(p)u(t). ()

By replacing the full parametric system in () with the reduced model (), much simulation
time could be saved. Accurate reduced-order models (ROM) were derived for these linear
parametric models. Structure preserving models with sufficient accuracy are obtained for
nonlinear parametric coupled problems as well. We refer to Figure  for the results of
the ROM. The relative error of the output produced by the ROM is of the order –.
Furthermore, we have constructed a ROM for a Powercell electro-thermal model with
size n = ,, and m =  inputs, l =  outputs. Simulation of such a large-scale
system with numerous terminals is a hard task for commercial simulation software, e.g.,
Spectre. The simulation immediately breaks down due to out of memory. We proposed
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Figure 13 Simulation results after Model Order
Reduction. Full order model state space n = 8549,
ROM state space r = 58, amount of inputs 34 and
outputs 68. Temperature as computed by the ROM.

Figure 14 Power-MOS device (the back contact is
not shown).

an efficient method: BDSM-ET [], which uses the superposition principle to construct
a ROM with block-wise sparsity. The size of the ROM is r = , and thus almost two
orders of magnitude smaller than the Full Order Model (FOM). A most important feature
is that the ROM is also much sparser than the ROM obtained using the standard method.
With an error less than –, the thermal part of the ROM has been used together with
Spectre, and validated to be efficient.

In developing pMOR methods for fast UQ of nanoelectronic, electro-thermal models
with random variables or stochastic processes, we applied pMOR techniques to a Power-
MOS device (Figure ), provided by MAG, and obtained a parametric reduced order
model (pROM) that is of high accuracy over a very large parameter range. We have em-
bedded the parametric reduced model into the Stochastic Collocation Method [], which
proved to be both efficient and accurate.

Figure  displays the Power-MOS chip. Figure  shows the heating of the chip. We built
an order- pROM for the order- FOM of the electrical part, and an order- pROM
for the order- FOM of the thermal part. Figure  and Figure  depict the evolution
of the ‘maximal relative error at the outputs’, which is defined as the maximal relative error
at all outputs. When the system starts, the maximal relative error is high because the sys-
tem is hardly heated up (exact values close to zero) and the thermal parts are dominated
by modelling error and numerical error. However, as time elapses, the maximal relative
error goes down to the order of – and therefore, the dominant physical properties are
accurately captured over a large parameter range.

2.6 Uncertainty quantification
UGW, BUW, MAG, TUD worked on methods for Uncertainty Quantification and ap-
plied the approaches to address variations of material properties as well as in the geome-
try []. Apart from in-house software of UGW and BUW, interfacing with libraries from
Sandia National Laboratories [] was achieved. In order to demonstrate robustness of an
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Figure 15 Power-MOS device. Heat flux density on
the back contact at time t = 10–6 s.

Figure 16 Rel. error at source. The evolution of the
maximal relative error of the outputs for different values of
the electrical conductivity σ = 10, 1011 S/cm.

Figure 17 Rel. error at back contact. The evolution of the
maximal relative error of the outputs for different values of
the electrical conductivity σ = 10, 1011 S/cm.

optimization algorithm under uncertainties, a Power Transistor Model was considered
as a test example. We reduced the thermal instability by optimizing the geometry within
the device layout, while taking both the conductive power losses and shape variations of
source/drain into account. In [] we focused on a shape/topology optimization problem
of a power MOS device with three metal layers under geometrical and material uncertain-
ties to reduce the current density overshoot. This problem, occurring in the automotive
industry, yields a stochastic electro-thermal coupled problem. It is a multi-finger MOSFET
power transistor with a stripe cell structure, which consist of several thousands of parallel
channel devices. The source and drain contacts are located on the top metal finger of the
design, as shown in Figure . A series of metal stripes and complex via patterns transport
the current to drain and away from the sources of the individual channels. Consequently,
the multi-dimensional current flow is governed by a coupled time-dependent system of
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Figure 18 Power transistor. Power Transistor optimized to reduce power hotspots while taking geometrical
variations into account.

stochastic Partial Differential Equations (PDEs). Its solution enables to investigate the
propagation of uncertainties through a -D model, which affect yield and performance of
a power transistor. In particular as parameters p(ω) = [σ(ω), W(ω), Cυ (ω), VD(ω), VS(ω)]
are taken, in which the conductivity of the Metal layer, σ, the thickness of the Metal,
W, and the thermal capacitance of the Via, Cυ , and the drain and source contacts are
considered, see also Figure . Here ω varies over some event space and the probability
distributions of the parameters are predetermined. The PDEs are equipped with random
Dirichlet boundary conditions that describe the potentials at the drain and source pads.

To reduce the current density overshoots in the area of the contact layer of the power
device, as basic random-dependent cost functional

F(υ) = w

∫

D
Qe

[
υ, V (υ)

]
dx + w

∫




h
[
V (υ)

]
dγ , ()

was taken, where the dissipation power Qe is analyzed in the area of Metal layer D ⊂R
,

and the source voltage term h is represented by the random Dirichlet boundary condition
in the area of the source and drain pads 
 ⊂R

. The variable υ is defined as υ = (x, p(ω)),
whereas the weights w and w refer to known a priori information about objectives.

For the robust optimization one considers a PDE-constrained minimization problem

min
υ

E
[
F(υ)

]
+ η

√
Var

[
F(υ)

]
, ()

where η =  was taken. The Stochastic Collocation Method, based on Polynomial Chaos
Expansion (PCE) [, ], provided a response surface model to estimate the expectation
E[F(υ)] and the standard deviation

√
Var[F(υ)]. Combining with a Topological Derivative

Method, we could reduce hot spot phenomena in a robust sense, see Figure . The op-
timization results for a relevant nanoelectronics problem demonstrate that the proposed
method is robust and efficient [].

We finally remark that our implementations are also able to identify dominant parameter
contributions to the variance when varying parameters [].

As a separate action, TUD developed a GUI (Graphical User Interface) for Uncertainty
Quantification to easily compare our UQ methods with Monte Carlo simulations and
Worst Case Corner Analysis []. The last approach is very popular in the semiconductor
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Figure 19 Power transistor. The pictures give a temperature distribution in the Metal3 layer and the
Contact Layer for the structure after optimization (joint work by UGW, BUW, MAG).

industry because it is much faster than Monte Carlo. Our UQ implementation exploits
sparse grid techniques and can easily deal with up to  independent parameters.

2.7 Fast fault simulation
NXP, BUW and TU Eindhoven developed a special algorithm for fast fault simulation
in NXP’s in-house circuit simulator Pstar. NXP’s simulator is the best in the world for
this functionality [, ]. Imperfections in manufacturing processes may cause unwanted
connections (faults) that are added to the nominal, ‘golden’, design of an electronic cir-
cuit. When considering faults from the point of view of parameter variations this is well
in the range of large deviations. In [] the faulty elements are represented by adding
linear conductivities to the circuit. The approach also works for analyzing the effect of
additional linear capacitors. However, the main interest is in adding linear conductivities:
thus puvT x(t, p), where p = /R, with resistance R, and given vectors u, v, to the system of
circuit equations of which the solution becomes x(t, p). By fault simulation we simulate
all situations: a huge number of new connections of pairs of vectors (u, v) and each with
many different values of p, up to the regime of large deviations, for the newly added el-
ement and comparing the result x(t, p) at specific time points with the ‘golden’ solution
x̃(t) = x(t, ) of the fault-free circuit, corresponding with p = . If the deviation between
x(t, p) and x̃(t) exceeds some threshold, the fault triple (u, v, p), is marked as detectable
and is taken out of the list. We also consider ‘opens’ (broken connections). A strategy is
developed to efficiently simulate the faulty solutions until their moment of detection. The
hierarchical structure was enhanced, such that the hierarchical solver could deal with all
new elements: note that some new connections may violate the original hierarchical struc-
ture of the golden circuit. A clever software solution was developed and is reported in [].
By this, also the faulty problems could benefit from an enhanced form of hierarchical by-
passing. Because each candidate fault is a low-rank modification of the designed circuit
an hierarchical variant of the Sherman-Morrison formula was exploited. Fast fault simu-
lation is achieved in which the golden solution and all faulty solutions are calculated over
the same time step.
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Figure 20 Fast fault imulation. Speed up in fast fault simulation for the TJA1021 chip.

The results are stored in a database. This database is of help to first externally diag-
nose a faulty IC and to identify the candidate circuit submodels where the fault may have
happened. After that the IC can be studied further internally. This can help to improve
next productions. Moreover, the collection of simulations can also be helpful as a priori
check before layouting. NXP can identify locations on a chip that are probably affected by
tiny manufacturing accuracies, which case faulty behaviour at predefined time points for
measurements.

Inclusion of sensitivity analysis brought speeds up in CPU time of a factor  or more.
See Figure  for an indicative result. Later invoking of faults gave an additional order
of magnitude in speed up. By this reduction of simulation time candidate faults could be
detected that would have been impossible otherwise because of excessive CPU time [].

Note that essentially one is looking to the weak spots in the circuit. In our approach
the manufacturing process is the immediate cause of the problem. However it can also
show up later, due to effects of ageing of the design, or by stress effects due to heating.
It is also related to other network problems, e.g., in analyzing traffic behaviour in a city
when suddenly a road is blocked, or when a new connection pops up. Our approach can
be extended to energy distribution networks, sewage systems, and even to networks that
are not constant of size in time.

This algorithm also offers interesting ingredients to combine with Uncertainty Quan-
tification.

2.8 Test examples, measurements
The industrial partners NXP, ONN, and ACC did provide various test examples. The test
cases cover realistic-size power MOS devices at constant temperature and in ET coupling
mode; a driver chip with multiple heat-sources; a smart power driver test chip with ther-
mal sensor; an -shaped inductor with surrounding circuitry; a fast and reliable model
for bondwire heating; RF and electro-thermal simulations; reliable RFIC isolation under
uncertainty (for floor planning and grounding strategies; this involves on-chip coupling ef-
fects, chip-package interaction, substrate coupling and the so-called co-habitation factor);
multirate circuit examples; silicon test chips for step-by-step testing and validation; trans-
mission line and baluns. All these are found in our industrial problem classes described in
the introduction. ACC has prepared several designs, made simulations and realized test
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boards. They served for step by step study, for comparison to measurements and for val-
idation of the enhanced MAGWEL software, in close cooperation with BUT, NXP and
ONN.

As simple example, we mention here test chips that include passive structures (induc-
tances, capacitances, baluns, resonators). These structures, that are easily measurable, are
used to validate further EM extraction and model reduction. Simulated results are com-
pared to measurements, EM solver extraction and then with extraction plus netlist reduc-
tion in terms of accuracy, memory usage and time simulation.

3 Conclusion
The unique combination of the nanoCOPS consortium allows to already report the fol-
lowing intermediate, innovative highlights halfway the project, to which all partners have
contributed.

• The coupling interface with the MAGWEL software has been improved, tested and is
operational.

• Successful large-scale EM-heat simulation was achieved.
• Grid-adaptive multirate circuit simulation was established.
• Model Order Reduction was successfully applied to coupled EM-heat problems.
• Accurate bond wire modelling for fast usage at industry was demonstrated and was

validated by measurements.
• Uncertainty Quantification was applied to variations of material parameters and

geometry and was used in robust topology optimization. Apart from the topics, this at
best demonstrates the robustness of the integrated software - to achieve optimization
one addresses all parts of the codes.

• Innovative methods for improving yield as well as to identify faults were derived.
• Advanced measurements environments have been set up both at academia and at

industry.
• Outcomes have been presented at conferences. Joint papers have been published in

various journals.
• Interaction between academia and industrial partners addressed a broad range: test

examples, new algorithms, implementations, practical use of new methods, ways to
improve measurements.

The focus in the second half of the project is on further validation and demonstra-
tion of the methods by applying them to the broad range of IC building blocks. To-
gether with the industry partners methodologies are defined how best to use the meth-
ods. All three industrial partners started work on reliability and the impact of age-
ing. Also steps to yield optimization have been developed. Techniques with adjoint
approaches are currently introduced. Also inverse problems are addressed. Presen-
tations will be given at SCEE-, Scientific Computing in Electrical Engineering,
http://wwwdev.ricam.oeaw.ac.at/events/conferences/scee/.
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