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Summary

Recently, we demonstrated elevated numbers of CD4+ Foxp3+ regulatory

T (Treg) cells in Plasmodium yoelii-infected mice contributing to the reg-

ulation of anti-malarial immune response. However, it remains unclear

whether this increase in Treg cells is due to thymus-derived Treg cell

expansion or induction of Treg cells in the periphery. Here, we show that

the frequency of Foxp3+ Treg cells expressing neuropilin-1 (Nrp-1)

decreased at early time-points during P. yoelii infection, whereas percent-

ages of Helios+ Foxp3+ Treg cells remained unchanged. Both Fox-

p3+ Nrp-1+ and Foxp3+ Nrp-1� Treg cells from P. yoelii-infected mice

exhibited a similar T-cell receptor Vb chain usage and methylation pat-

tern in the Treg-specific demethylation region within the foxp3 locus.

Strikingly, we did not observe induction of Foxp3 expression in Foxp3� T

cells adoptively transferred to P. yoelii-infected mice. Hence, our results

suggest that P. yoelii infection triggered expansion of naturally occurring

Treg cells rather than de novo induction of Foxp3+ Treg cells.

Keywords: parasitic protozoan; regulatory T cells; rodent.

Introduction

CD4+ Foxp3+ regulatory T (Treg) cells are well-known

key players in the maintenance of immunological home-

ostasis and there is an increasing body of evidence that

Treg cells also control immune responses during infec-

tious diseases. Elevated frequencies and/ or numbers of

Treg cells were detected in mice infected with parasites1,2

and viruses3 as well as in humans suffering from Heli-

cobacter pylori infection.4 Likewise an increase in the

number of CD4+ CD25+ Foxp3+ Treg cells was observed

in the peripheral blood of patients infected with Plasmod-

ium falciparum,5,6 the parasite that causes severe malaria.

Most recently, we detected elevated Treg numbers in

spleens of BALB/c mice infected with Plasmodium yoelii,7

a well established experimental mouse model for studying

Plasmodium infection at the blood stage. Strikingly, deple-

tion of Treg cells from P. yoelii-infected mice resulted in

a more efficient T-cell response accompanied by signifi-

cantly reduced parasitaemia, suggesting that Foxp3+ Treg

cells interfere with anti-malarial immune responses.7

Besides naturally occurring thymus-derived Foxp3+

Treg (nTreg) cells a heterogeneous population of induced

Treg (iTreg) cells exists that arises from naive

CD4+ CD25� T cells within the periphery in several

experimental settings.8–10 Hence, the iTreg repertoire

derives from conventional T cells, whereas nTreg cells

were selected by high-affinity interactions within the thy-

mus.11,12 It was assumed that nTreg cells mainly recog-

nize self-antigens, acting as important regulators of

autoimmune responses. In contrast iTreg cells seem to

respond to foreign antigens, so playing a crucial role in

mucosal immune tolerance and chronic allergic reactions.

However, they might also be generated in response to

self-antigens and have been suggested to collaborate with

nTreg cells to achieve optimal regulation.13 Until now, it

is difficult to study the phenotype and function of iTreg

cells versus nTreg cells due to the lack of a single specific

feature of either cell type in particular during ongoing

immune responses. However, a better understanding of

the origin of Treg cells would be helpful to develop speci-

fic therapeutics to modulate the number and function of

Abbreviations: iTreg, induced Treg; Nrp-1, neuropilin-1; nTreg, natural Treg; p.i., post-infection; TCR, T-cell receptor; Treg cell,
regulatory T cell; TSDR, Treg-specific demethylation region
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Treg cells by interfering with pathways that are involved

in their expansion or conversion from conventional T

cells, respectively.

Helios, a member of the Ikaros family of transcription

factors, was proposed for discriminating nTreg from

iTreg cells,14 but its utility as an nTreg marker has been

questioned due to its inconsistent expression on iTreg

cells in distinct immune settings.15,16 Most recently, an

additional marker molecule for distinguishing thymus-

derived nTreg cells from iTreg cells has been described:

the surface receptor neuropilin-1 (Nrp-1).17,18 Whereas

the majority of Foxp3+ nTreg cells expresses Nrp-1 on

their surface,19 Foxp3+ Treg cells converted under home-

ostatic conditions have been suggested to lack Nrp-1

expression.18

Analysis of epigenetic modifications within the foxp3

locus has also been proposed to be helpful for discrimi-

nating thymus-derived nTreg cells with stable Foxp3

expression from peripherally induced Treg cells, which

often show an unstable Foxp3 expression. DNA demethy-

lation at a conserved intronic CpG-rich region, the Treg-

specific demethylated region (TSDR) was correlated with

stable Foxp3 expression,20 but seems to be dispensable for

initiation of Foxp3 expression.21 Accordingly, stable thy-

mus-derived nTreg cells display a fully demethylated

TSDR, whereas the TSDR of CD4+ CD25� non-Treg cells

and in-vitro-induced Treg cells with unstable Foxp3

expression have been described as being heavily methy-

lated.22

In our previous study we observed an increase in Fox-

p3+ Treg cells during P. yoelii infection of BALB/c mice7

that interferes with an effective anti-parasitic immune

response but the origin of these Treg cells is still unclear.

For the development of therapeutic approaches that mod-

ulate Treg responses during malaria infection, it is critical

to better understand the characteristics and origin of

these immunosuppressive T cells. Here, we provide evi-

dence that P. yoelii infection results in an expansion of

thymus-derived nTreg cells rather than peripheral induc-

tion of Foxp3+ Treg cells at least at early time-points dur-

ing infection.

Material and methods

Mice and parasites

Foxp3/eGFP mice (BALB/c) (Jackson Laboratories, Bar

Harbor, ME), Thy1.1 BALB/c mice (kindly provided by

Jochen H€uhn) and BALB/c mice (Harlan Laboratories,

Borchen, Germany) were crossed and maintained under

specific pathogen-free conditions at the Animal Facility of

the University Hospital Essen. Cryopreserved Plasmodium

yoelii 17XNL (non-lethal) infected red blood cells were

passaged once through BALB/c mice before being used in

experimental animals. For P. yoelii infection, mice were

injected intravenously with 1 9 105 infected red blood

cells. Parasitaemia levels were determined by microscopic

examination of Giemsa-stained blood films. All animal

experiments were performed in strict accordance with the

guidelines of the German Animal Protection Law, and

were approved by the state authorities for Ethics in Ani-

mal Experiments of North-Rhine Westphalia, Germany.

Cell separation and adoptive transfer

Spleens were rinsed with erythrocyte lysis buffer and

washed with PBS supplemented with 2% fetal calf serum

and 2 mM EDTA. For isolation of CD4+ Foxp3� T cells,

CD4+ T cells were enriched from splenocytes isolated

from Foxp3/eGFP mice by using the MACS CD4+ T-cell

isolation kit II (Miltenyi Biotec, Bergisch Gladbach,

Germany) according to the manufacturer’s recommenda-

tions, stained with fluorochrome-labelled CD4 antibody

and sorted by using BD Aria II (BD Biosciences, Heidel-

berg, Germany). This process resulted in cells with a

purity of 97–99%. For adoptive transfer experiments,

3 9 106 to 5 9 106 sorted CD4+ Foxp3+(eGFP+) or

CD4+ Foxp3� (eGFP�) T cells from Foxp3/eGFP reporter

mice were injected intravenously into Thy1.1 BALB/c

mice and infected with 1 9 105 infected red blood cells

at the same day.

Antibodies and flow cytometry

Anti-CD4, anti-CD25 (BD Biosciences, Heidelberg,

Germany), anti-T-cell receptor-Vb (TCR-Vb) antibodies

(Biolegend, London, UK), anti-Helios, anti-CD90.2 (eBio-

science, Frankfurt, Germany) and anti-Nrp-1 antibodies

(R&D Systems, Abingdon, UK) were used as Pacific Blue,

phycoerythrin, eFluor450, allophycocyanin or peridinin-

chlorophyll protein conjugates. Dead cells were identified

by staining with the fixable viability dye eFluor 780 (eBio-

science). Flow cytometric expression analysis was per-

formed with an LSR II instrument using DIVA software

(BD Biosciences).

Methylation analysis

Quantification of methylation was performed as described

recently.23 Briefly, DNA was extracted from sorted T-cell

subsets isolated from P. yoelii-infected Foxp3/eGFP male

mice by using the QIAamp DNA Mini kit (Qiagen, Hil-

den, Germany) according to the manufacturer’s recom-

mendations and bisulphite DNA was generated using the

BisulFlash DNA Modification kit (Epigentek, Farming-

dale, NY). Quantitative real-time PCR was performed by

using specific primers (50-AAA TTT GTG GGG TAG

ATT ATT TGT TTT TT-30 and 50-ATC ACA ACC TAA

ACT TAA CCA AAT TTT TCT-30), specific VIC- or

FAM-labelled TaqMan probes detecting methylated
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progenitors (50-ATT CGG TCG TTA TGA CGT T-30) or

demethylated progenitors (50-ATT TGG TTG TTA TGA

TGT TAA T-30) and Roche TaqMan Probe Master 480

(Roche Diagnostics, Basel, Switzerland) on a Roche Light

cycler 480 system.

Statistical analysis

Statistical analyses were performed with one-way analysis

of variance and two-tailed Student’s t-test as indicated

with significance set at the levels of *P < 0�05, **P
< 0�01 and ***P < 0�001. All analyses were calculated

with GRAPH PAD PRISM 5�0 software (Graph Pad Software,

La Jolla, CA).

Results

Increase in Foxp3+ Treg cells with reduced
frequencies of Nrp-1 expressing cells at early time-
points during P. yoelii infection

We made use of the well established P. yoelii infection

model of BALB/c mice to carefully characterize the

CD4+ Foxp3+ Treg cell population during Plasmodium

infection. Flow cytometric analysis revealed higher per-

centages and numbers of Foxp3+ Treg cells within spleen

of P. yoelii-infected mice at days 3 and 5 post-infection

(p.i.), respectively (Fig. 1a). These cells exhibited an acti-

vated phenotype as determined by the expression level of

CD25 (Fig. 1b). However, it is unclear whether this

increase in Treg cells is caused by the expansion of thy-

mus-derived nTreg cells or by the induction of iTreg cells

within the periphery.

To gain further insights into the origin of Treg cells at

early time-points during P. yoelii infection we analysed the

expression of Helios and Nrp-1, both molecules proposed

to identify nTreg cells, on Foxp3+ Treg cells by flow cytom-

etry. As depicted in Fig. 1(c), percentages of Helios-expres-

sing Foxp3+ Treg cells did not alter during P. yoelii

infection, but we detected elevated numbers of

Helios+ Foxp3+ Treg cells in infected mice compared with

uninfected controls (Fig. 1c). In contrast, the frequency of

Nrp-1 expressing Foxp3+ Treg cells significantly decreased

in spleen from P. yoelii-infected mice at days 3, 5 and 7 p.i.

in comparison to non-infected mice, whereas the absolute

numbers slightly increased at early time-points during

infection (Fig. 1c). Interestingly, analysis of Nrp-1 and

Helios co-expression on Foxp3+ Treg cells revealed increas-

ing percentages of Helios+ Nrp-1� Foxp3+ Treg cells

concomitant with decreasing frequencies of Helios+ Nrp-

1+ Foxp3+ Treg cells in the course of infection (Fig. 1d).

These results suggest that analysing Nrp-1 and Helios

expression seems not to be sufficient to determine whether

P. yoelii infection results in an expansion of thymus-

derived nTreg cells or peripheral Treg induction.

Similar T-cell receptor-Vb chain repertoire of Nrp-1+

and Nrp-1� Foxp3+ Treg cells from P. yoelii-infected
mice

To get more information about the origin of Foxp3+ Treg

cells in P. yoelii-infected mice in particular with regard to

Nrp-1 expression, we next analysed the TCR-Vb chain

repertoire on gated Nrp-1+ and Nrp-1� Foxp3+ Treg cells

in comparison with Foxp3� T cells isolated from spleens

of non-infected and P. yoelii-infected mice 3 and 7 days

p.i. (Fig. 2a). Interestingly, similar to Foxp3+ Treg cells,

the frequencies of most TCR-Vb chains were unaffected

upon infection in Foxp3� T cells, suggesting a polyclonal

T-cell response to a mitogen released by the parasite, as

already proposed.24 Nevertheless, at day 7 p.i. the fre-

quency of Nrp-1+ Foxp3+ Treg cells with TCR-Vb chain

8.1/8.2 usage was reduced, whereas the percentage of

TCR-Vb11+ cells was increased (Fig. 2b). Similarly, we

detected elevated levels of TCR-Vb+ Nrp-1� Foxp3+ Treg

cells in mice infected with P. yoelii for 7 days compared

with non-infected mice (Fig. 2c), suggesting that both

Foxp3+ Treg subsets originate from the same progenitor.

Although the TCR-Vb usage by Foxp3� T cells was simi-

lar to Foxp3+ Treg cells, we detected lower frequencies of

TCR-Vb7 and TCR-Vb9 and increased percentages of

TCR-Vb6 and TCR-Vb11 expressing CD4+ Foxp3� T

cells at day 7 p.i. (Fig. 2d).

TSDR methylation analysis of Nrp-1+ and Nrp-1�

Foxp3+ Treg cells from P. yoelii-infected mice

Demethylation of CpGs within the TSDR located in the

foxp3 locus has been correlated with a long-term mainte-

nance in Foxp3 expression, which is a specific feature of

thymus-derived nTreg cells.25 In contrast, some iTreg cell

subpopulations might lose their Foxp3 expression upon

activation and display a complete or at least intermediate

TSDR methylation.26 To analyse whether Nrp-1+ and

Nrp-1� Foxp3+ Treg subpopulations detected during

P. yoelii infection differ in terms of stability in Foxp3

expression, we performed methylation analysis of the

TSDR of sorted Nrp-1+ and Nrp-1� Foxp3+ Treg cells as

well as Nrp-1+ and Nrp-1� Foxp3� T cells isolated from

non-infected and P. yoelii-infected Foxp3/eGFP reporter

mice.

Within the Foxp3� T-cell subset we did not observe

any significant difference in the TSDR methylation status

between Nrp-1+ Foxp3� and Nrp-1� Foxp3� T cells iso-

lated from P. yoelii-infected and non-infected mice

(Fig. 3a). Nrp-1+ Foxp3+ Treg cells from non-infected,

but also from P. yoelii-infected mice exhibited 1–5%
methylation within the TSDR (Fig. 3b) suggesting that

these cells stably express Foxp3, a typical feature of nTreg

cells. Similar results were also described by Weiss et al.,

who detected complete demethylation of the TSDR in
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Figure 1. Plasmodium yoelii infection of BALB/c mice resulted in reduced percentages of neuropilin-1 (Nrp-1)-expressing Foxp3+ regulatory T

(Treg) cells, with unaffected Helios expression. Foxp3/eGFP reporter mice were infected with 1 9 105 infected red blood cells (iRBC) intra-

venously. Non-infected [0 days post-infection (d p.i.)] and P. yoelii-infected Foxp3/eGFP mice were killed at 3, 5 and 7 d p.i. (a) The frequency

(left panel) and absolute number (right panel) of Foxp3+ (eGFP+) Treg cells and (b) the mean fluorescence intensity (MFI) of CD25 expression

on Foxp3+ Treg cells were determined on gated CD4+ T cells and CD4+ Foxp3+ Treg cells, respectively by flow cytometry. Representative dot

plots are shown in the upper panel. (c) Helios and neuropilin-1 (Nrp-1) expression were analysed on CD4+ Foxp3+ Treg cells by flow cytometry.

Representative dot plots are shown in the upper panel. Percentages and absolute numbers of Helios and Nrp-1-expressing Treg cells are summa-

rized. (d) The frequencies of Helios+ Nrp-1�, Helios� Nrp-1+ and Helios+ Nrp-1+ co-expressing Foxp3+ Treg cells were determined by flow

cytometry. Representative dot plots are shown in the left panel. Results from two independent experiments with n = 6 mice are summarized as

mean � SEM. Each dot represents one animal. One-way analysis of variance with Dunett‘s post test was used for statistical analysis. *P < 0�05,
**P < 0�01, ***P < 0�001.
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Nrp-1+ Foxp3+ Treg cells from WT mice.17 Importantly,

the majority (> 90%) of Nrp-1� Foxp3+ Treg cells iso-

lated from P. yoelii-infected mice also showed TSDR

demethylation (Fig. 3b), indicating stable Foxp3 expres-

sion in most of these cells.

Adoptively transferred Foxp3� T cells did not acquire
Foxp3 expression upon P. yoelii infection

Results from our Helios expression analysis, TCR-Vb
chain usage and TSDR methylation analysis suggest that

P. yoelii infection resulted in an expansion of nTreg cells

with stable Foxp3 expression rather than induction of

Foxp3+ Treg cells from Foxp3� precursors within the

periphery. To further corroborate these findings we adop-

tively transferred sorted Thy1.2+ CD4+ Foxp3� T cells or

Thy1.2+ CD4+ Foxp3+ T cells into Thy1.1+ BALB/c mice

before P. yoelii infection (Fig. 4a). At days 3 and 5 p.i.

Foxp3/eGFP expression was analysed in Thy1.2+

splenocytes by flow cytometry. As depicted in Fig. 4 we

did not detect induction of Foxp3 expression in adop-

tively transferred Foxp3� T cells upon P. yoelii infection.

Only 1% of transferred Thy1.2+ CD4+ T cells expressed

Foxp3, whereas 16–19% of endogenous Thy1.1+ CD4+ T

cells in non-infected and P. yoelii-infected mice exhibited

Foxp3 expression, respectively (Fig. 4b,c). These results

indicate that P. yoelii infection of BALB/c mice was not

sufficient to confer Foxp3 expression to peripheral

CD4+ Foxp3� T cells.

Discusssion

In our previous study, we demonstrated that P. yoelii

infection of BALB/c mice resulted in a significant increase

in Treg cell numbers in the spleens of infected mice inter-

fering with effective clearance of the parasite.7 Hence,

Treg cells might represent a promising target to modulate

the anti-parasitic immune response for the development
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Figure 2. T-cell receptor-Vb (TCR-Vb) chain

usage of neuropilin-1-positive (Nrp-1+) and

Nrp-1� Foxp3+ regulatory T (Treg) cells at day

3 and day 7 after Plasmodium yoelii infection.

(a) Representative dot plots illustrating the gat-

ing strategy for analysis of TCR-Vb chain

repertoire on different CD4+ T-cell subsets by

flow cytometry. Percentages of (b) Nrp-

1+ Foxp3+ Treg cells, (c) Nrp-1� Foxp3+ Treg

cells and (d) Foxp3� T cells using TCR-Vb2,
TCR-Vb5, TCR-Vb6, TCR-Vb8.1/8.2, TCR-

Vb8.3, TCR-Vb9, TCR-Vb11, TCR-Vb12 and

TCR-Vb13 isolated from spleen of non-

infected [0 days post-infection (d p.i.), white

bars) and P. yoelii-infected Foxp3/eGFP mice

3 days (grey bars) and 7 days p.i. (black bars).

Results from two or three independent

experiments with n = 6 to n = 10 mice in total

are summarized as mean � SEM. One-way

analysis of variance with Dunett‘s post test

was used for statistical analysis. *P < 0�05,
***P < 0�001.
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of immune-based therapeutics and improvement of vacci-

nation strategies that target the blood stage of Plasmod-

ium infection. However, for this purpose careful

phenotypic characterization of these Treg cells is neces-

sary. Here, we provide evidence that P. yoelii infection of

BALB/c mice triggers expansion of thymus-derived Fox-

p3+ nTreg cells rather than de novo induction in the

periphery.

Both Helios and Neuropilin-1 have been proposed as

reliable marker molecules to discriminate nTreg cells

from iTreg cells.14,17,18 Interestingly, the frequency of

Nrp-1 expressing Foxp3+ Treg cells declined in P. yoelii-

infected mice whereas the percentage of Helios+ Foxp3+

Treg cells remained unchanged, suggesting that at least

one of these molecules is not suitable for identifying

nTreg cells during Plasmodium infection.

Helios expression was originally identified to be

restricted to Foxp3+ nTreg cells as the majority of Foxp3+

Treg cells in naive mice expresses the transcription factor

Helios.14 However, contradictory results have been

described for the expression of Helios in in vivo induced

Treg cells. Whereas Foxp3+ Treg cells induced by admin-

istration of antigen through the oral route exhibited no

Helios expression,14 intravenous injection of low-dose

antigen resulted in elevated Helios expression in Foxp3+

iTreg cells16 suggesting that the use of Helios as a specific

marker for nTreg cells seems to be dependent on the

in vivo environment.

Interestingly, we detected significantly lower percent-

ages of Nrp-1-expressing Foxp3+ Treg cells in P. yoelii-

infected mice. This might suggest that increased Foxp3+

Treg cells represent induced Treg cells because Nrp-1 was

described as highly expressed by thymus-derived nTreg

cells.17,18 However, similar to Helios, the usage of Nrp-1

as an nTreg marker seems to be dependent on the in vivo

environment. Weiss et al. detected elevated Nrp-1 expres-

sion on Foxp3+ iTreg cells under inflammatory condi-

tions17 and, most recently Petzold and colleagues

described an up-regulation of Nrp-1 on Nrp-1� iTreg

progenitors upon TCR engagement in the presence of

interleukin-2.27 Hence, the reliability of Nrp-1 and Helios

as marker molecules to discriminate nTreg cells from

iTreg cells is still discussed controversially and seems to

be dependent on the site and mode of Treg cell induc-

tion. Moreover it is unclear, whether these marker mole-

cules define specific subpopulations of Foxp3+ Treg cells

exhibiting different functions or whether the expression

of Helios and Nrp-1 on Foxp3+ Treg cells is regulated

based on their activation and/ or maturation. This issue

has to be clarified in future experiments in the context of

different types of immune responses. Interestingly, we

detected elevated percentages of Helios+ Nrp-1� Foxp3+

Treg cells in the course of infection in contrast to

decreasing frequencies of Helios+ Nrp-1+ Foxp3+ Treg

cells. This observation might reflect either down-regula-

tion of Nrp-1 on Helios+ Foxp3+ Treg cells or expansion

of Helios+ Nrp-1� Foxp3+ Treg cells. Since Helios expres-

sion was also correlated with the activation status of

CD4+ T cells independent of Foxp3 expression,15 the sig-

nificant increase in the number of Helios-expressing cells

within Foxp3+ Treg cells in P. yoelii-infected mice, might

reflect the activated phenotype of Treg cells at early time-

points during P. yoelii infection underpinned by an up-

regulation of CD25 expression on Foxp3+ Treg cells upon

P. yoelii infection. We also observed an up-regulation of

Helios expression on Foxp3� T cells in the course of

P. yoelii infection (data not shown).

From our TCR-Vb chain usage analysis one might

speculate about the same origin of both Nrp-1+ and Nrp-

1� Treg cells because we detected an increase in TCR-

Vb11 usage in both populations upon P. yoelii infection.

Within the Foxp3� T-cell population we also observed

elevated percentages of TCR-Vb11+ cells in P. yoelii-

infected mice, but additionally decreased frequencies of

TCR-Vb7 and TCR-Vb9 expressing cells. Preferential

deletion of T cells expressing TCR-Vb9 was already
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Figure 3. The majority of neuropilin-1-positive (Nrp-1+) and Nrp-

1� Foxp3+ regulatory T (Treg) cells from Plasmodium yoelii-infected

mice are highly demethylated in their Treg-specific demethylation

region (TSDR). (a) Nrp-1+ Foxp3� and Nrp-1� Foxp3� T cells as

well as (b) Nrp-1+ Foxp3+ and Nrp-1� Foxp3+ Treg cells were iso-

lated from spleen of non-infected Foxp3/eGFP reporter mice and

P. yoelii-infected Foxp3/eGFP mice at days 3 and 5 post-infection

(d p.i.). DNA was isolated and bisulphate treated before methylation

analysis by real-time PCR. Results from three or four independent

experiments with n = 4 to n = 6 mice each were summarized as

mean � SEM. One-way analysis of variance with Dunett’s post test

was used for statistical analysis. *P < 0�05, **P < 0�01.
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described in P. yoelii-infected C57BL/6 mice and pro-

posed to be a result of super-antigenic activity during

acute infection.28 However, Swardson and colleagues

observed no differences in the course of P. yoelii infection

between BALB/c mice and BALB/c.D2 mice, which

express a super-antigen encoded by an endogenous retro-

viral gene resulting in deletion of TCR-Vb9+ T cells.29

Moreover, TCR-Vb repertoire studies in African children

suffering from malaria argue against the idea of dominant

super-antigenic activities.30 Therefore, further studies with

regard to the TCR-Vb profile and also TCR-Va chain

usage by T cells during Plasmodium infection would be

helpful to better understand elicitation and regulation of

parasite-specific adaptive immune response.

Analysis of TSDR methylation of Nrp-1+ and Nrp-1�

Foxp3+ Treg cells as well as Nrp-1+ and Nrp-1� Foxp3+
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Figure 4. Adoptively transferred CD4+ Foxp3�

T cells do not acquire Foxp3 expression in

Plasmodium yoelii-infected mice. From

3 9 106 to 5 9 106 sorted Thy1.2+ CD4+ Fox-

p3� T cells or Thy1.2+ CD4+ Foxp3+ T cells

from naive Foxp3/eGFP mice were injected

intravenously into Thy1.1+ BALB/c mice before

infection with 1 9 105 infected red blood cells

(iRBC) or in naive, non-infected mice. At 3

and 5 days post-infection (d p.i.) mice were

killed and Foxp3 expression was analysed in

gated CD4+ Thy1.2+ and CD4+ Thy1.1+ T

cells, respectively by flow cytometry. (a) Purity

of sorted CD4+ Foxp3/eGFP� T cells and

CD4+ Foxp3/eGFP+ T cells is shown in repre-

sentative dot plots. (b) Representative dot plots

for either non-infected or P. yoelii-infected

Thy1.1 mice receiving either Thy1.2+ CD4+

Foxp3� T cells or Thy1.2+ CD4+ Foxp3+ T

cells 3 d p.i. / cell transfer. (c) Data from two

or three independent experiments with n = 4

to n = 11 mice in total are summarized as

mean � SEM. Student’s t-test was used for

statistical analysis. ***P < 0�001.
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T cells from P. yoelii-infected mice revealed an almost

complete TSDR demethylation in Foxp3+ Treg cells inde-

pendent of Nrp-1 expression, whereas Foxp3� T cells

exhibited 100% TSDR methylation upon P. yoelii infec-

tion. Interestingly, at day 5 p.i. the methylation status of

the TSDR in Nrp-1� Foxp3+ Treg cells significantly

decreased, which might suggest that stable Foxp3-expres-

sing nTreg cells lose their Nrp-1 expression in the course

of infection. This would argue for an expansion of thy-

mus-derived nTreg cells upon P. yoelii infection in line

with our TCR-Vb usage analysis. However, as we have

not analysed all TCR-Vb chains, we could not exclude

that T-cell clones with distinct specificities are also

affected during P. yoelii infection.

We showed that the level of CD4+ Foxp3+ Treg cells

was elevated post P. yoelii infection, whereas the expres-

sion of Foxp3 was not induced in adoptively transferred

Foxp3� T cells in mice previously infected with P. yoelii.

These results argue against de novo induction of Foxp3+

Treg cells during P. yoelii infection. However, we and

others detected adaptive interleukin-10 producing

CD4+ Foxp3� T cells that were generated during P. yoelii

infection.7,31 These cells exhibited immunosuppressive

function in vitro and T-cell-specific interleukin-10 deletion

resulted in enhanced T-cell activation in P. yoelii-infected

mice.7 Hence, our data provide evidence that P. yoelii

infection of BALB/c mice triggers induction of inter-

leukin-10-producing Foxp3� Treg cells and expansion of

pre-existing Foxp3+ thymus-derived nTreg cells. Similar

results were also described for viral infections. Foxp3� T

cells did not acquire Foxp3 expression upon adoptive

transfer to Friend virus-infected32 or lymphocytic chori-

omeningitis virus-infected mice,33 suggesting expansion of

nTreg cells rather than conversion of non-Treg cells into

Foxp3+ iTreg cells during these viral infections.

With regard to future therapeutic interventions one

might think of blocking molecules highly expressed by

nTreg cells using small interfering RNA approaches or

application of specific antibodies. Since we observed ele-

vated frequencies of Helios-expressing Foxp3+ Treg cells

and Helios+ Foxp3+ Treg cells have been described to

have a high suppressive activity,34 probably due to their

more activated phenotype, Helios might be an attractive

target to interfere with Foxp3+ Treg cell function during

Plasmodium infection. However, one has to keep in mind

that Helios is also up-regulated on Foxp3� T cells during

infection and modulating the intrinsic suppressive func-

tion of Foxp3+ Treg cells might also result in

immunopathological side effects. Therefore, approaches

to prevent expansion of nTreg cells would be a more rea-

sonable therapeutic strategy. Our findings should foster

further experiments to identify specific factors that sup-

port nTreg expansion in Plasmodium infection because

they represent promising targets for therapeutic regula-

tion of anti-parasitic immune responses.
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