Investigating flow patterns and related dynamics in multi-instability turbulent
plasmas using a three-point cross-phase time delay estimation velocimetry scheme
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Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon
plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for
time delay estimation velocimetry. The advantage of this introduced method is the capability of
calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in
complex spatiotemporal data. It is able to distinguish and visualize details of simultaneously present
superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently
repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.).
The velocity calculations are based on time delay estimation obtained from cross-phase analysis of
time series. Each velocity vector is unambiguously calculated from three time series measured at
different spatial points. This method, when applied to fast imaging, has been crucial to understand
the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon
plasma. The capabilities and the limitations of this velocimetry method are discussed and demon-
strated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for

complex broadband wave dynamics involving simultaneously present multiple instabilities.

PACS numbers: 52.35.Ra, 52.35.-g, 52.25.Xz, 52.35.Kt, 52.35.Mw, 47.80.Cb

1. INTRODUCTION

Inherent energy sources in plasmas such as density gra-
dients and ion and electron temperature gradients give
rise to various instabilities leading to the formation of
flows and waves which can nonlinearly interact and drive
the system to dynamics dominated by turbulence [1]. In-
verse cascades of energy via vortex mergers or vortex
interactions with a weak non-zero background flow can
lead to large scale flows in the system [2, 3]. Moreover the
existence of a radial electric field in plasmas can also give
rise to flows. On the other hand, flows themselves can
be sources driving other kinds of instabilities. The most
common flow related instability is the Kelvin-Helmholtz
instability that arises due to sheared flows [4, 5]. In this
regard, to understand several different phenomena in a
plasma, the accurate measurement of the plasma flows
is crucial. It gives important insight to understand both
the origin of the flows and their effects on the complex
plasma dynamics. For example, a recent study in the
Controlled Shear Decorrelation eXperiment (CSDX) has
shown coexisting multiple plasma instabilities located at
spatially separated regions [6]. Depending on the plasma
parameters (e.g., magnetic field and input power), vari-
ous regimes develop, each characterized by different dy-
namics. For example for increasing magnetic fields the
plasma evolves from a purely density gradient driven col-
lisional drift wave (CDW) mode dominated regime to a
system of weak turbulence where the CDW modes are
superimposed on a broad background of plasma density
fluctuations driven by other instabilities. Other stud-
ies also show transitions between various instabilities de-
pending on external operation parameters and boundary
conditions [7, 8]. In such systems, understanding the

flows and the spatiotemporal patterns gives physical in-
sight to the phenomena being studied. However, getting
proper measurements of the flows and wave velocities has
not been trivial, as the system, being very rich in com-
plexity, shows several phenomena occurring at different
temporal and spatial scales.

Typically there are two approaches to determine ve-
locities from spatiotemporal data: (i) pattern matching
algorithms and (ii) cross correlation techniques. In fluids,
the instantaneous flow velocity field can be measured by
imaging seeded tracer particles assuming negligible iner-
tia. This method is only valid when the introduction of
the foreign particles does not perturb the original flows
being studied. The velocity field is then represented by
the trajectories of the tracers and it can be estimated
by particle tracking velocimetry (PTV) or particle im-
age velocimetry (PIV). These methods have been suc-
cessfully applied to study the flow fields in fluids and
gases (e.g., the atmosphere) [9-12]. In PTV, pattern
matching algorithms are applied to calculate the distance
that a recognizable structure moves between consecutive
measurements. PIV methods calculate the velocity by
local spatial cross-correlation between interrogation win-
dows of sequential images. For example, in dusty plas-
mas the dynamics of dust particles can be investigated
within the plasma background by applying conventional
PIV methods [13] to reconstruct single trajectories [14]
using the dust as the tracer particles. But in general,
tracer particles can not be used to measure the very
complex fast flows and associated wave dynamics in a
plasma. Structures that are born are typically obliged to
change in shape, size and amplitude due to wave-wave
and wave-particle electrodynamic interactions and even-
tually clear away. In some cases propagating waves, pat-



terns or structures of density formations can themselves
serve as “tracer objects” in a loose sense (as these “trac-
ers” change the shape and size with time and space). In
Refs. [15-19] a cross-correlation velocimetry method is
used to track blob structures in the separatrix regions of
tokamak experiments (e.g., Alcator C-Mod, ASDEX Up-
grade). Even if the blobs change its size and shape, this
method is reported to be robust and tracks the struc-
tures resulting in a realistic velocity field of propagating
blobs. Other PTV methods are also capable of measuring
the instantaneous velocity field of propagating wave-like
structures in a plasma [20, 21]. Ref. [22] is a detailed
study of optical flow and pattern matching techniques
introducing a hybrid approach between cross-correlation
and pattern matching. However, all these PIV and PTV
methods are less suited to investigate broadband turbu-
lence dynamics, where a superposition of different insta-
bilities and related spatial structures following different
velocity fields is present. Here the dynamics can be very
entangled and events at various timescales can occur at
the same place, and vice versa at various spatial scales
at the same time.

In case of frequently repeating wave-like events — the
requirement of a measurable peak in the frequency do-
main of interest — time delay estimation (TDE) cross-
correlation techniques can be useful to determine aver-
aged frequency-resolved velocities [23-28]. Such methods
are typically applied to time series measured at two spa-
tially separated points. By assuming that the structures
are propagating from one point to the other, in the partic-
ular direction of a line joining the two points, the velocity
vector in this direction is calculated. However, this pro-
cedure leads to erroneous results when the velocity vector
of the propagating structures is not along the straight line
joining the two points as used for the standard two-point
TDE method [22, 29]. Effectively the measurement of the
velocity between two points can accurately give only one
dimensional velocity. When the two-point TDE method
is extended to study velocities in two dimensions, there
are inherent systematic errors, that are not necessarily
taken into account during routine use of this method.
This discrepancy is shown in Fig. 1 of Ref. [29]. For ex-
ample, we take a look at a simple case of motion in two
dimensions in the radial-azimuthal plane. For a circular-
shaped blob having a pure azimuthal motion, two point
TDE will give the correct azimuthal velocity if the two
points are chosen spatially separated in the azimuthal
direction at the same radial position. However, for the
same system, if the two points of interrogation are cho-
sen to be spatially separated in the radial direction at
the same azimuthal angle, the estimated velocity would
be infinite. Points chosen other than in line with the az-
imuthal motion thus lead to artificially enhanced velocity
estimates. Moreover, for tilted structures, any efforts to
estimate the radial and azimuthal velocity from two ra-
dially separated points using two point TDE would give
large errors. This can lead to serious concerns in the use
of two-point TDE to estimate two dimensional velocity

vectors using an array of points, as in standard gas puff
imaging or beam emission spectroscopy [18]. To avoid
these kind of discrepancies, we propose using three spa-
tially separated points and show that in this method,
these errors can be reduced.

This letter reports a method for the calculation of the
time-averaged 2D velocity field v(z,y) = vye, + vye, of
wave-like structures and patterns propagating in a two-
dimensional plane. Using the assumption of propagating
plane waves this work concentrates on the dynamics of
wave structures. Each single velocity vector is frequency-
selectively calculated from time series measured at three
spatially separated points aligned in a triangular geome-
try in the plane. The velocity vectors are calculated by 3-
point cross-phase time delay estimation (in the following
called 3-point CP-TDE). From the cross-power spectral
density (CPSD) the cross-phase is used to calculate the
(time averaged) time delay that structures need to prop-
agate between the pairs of points. Since the cross-phase
depends on the frequency, the chosen frequency interval
for averaging the velocity vector field is a very crucial
parameter. Due to the self-consistent solution of two ve-
locity vector components measured by the three points,
this velocimetry method cannot result in infinite velocity
values. The method should be applicable to space-time
data measured with any kind of spatiotemporal diagnos-
tic in plasma physics (plasma probe array, visible light
imaging, imaging techniques like gas puff imaging, beam
emission spectroscopy, X-ray imaging, etc.) and in fluids
in general.

Figure 1 illustrates the capability of the 3-point CP-
TDE velocimetry introduced in this work compared to
usual 2-point TDE velocimetry. In the case when lo-
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FIG. 1: (Color online) Capability of (a) 2-point TDE ve-
locimetry and (b) 3-point CP-TDE velocimetry. For three
different wave vectors u the relations to the measured vector
v are illustrated. Plane wave fronts are assumed.



cally plane waves can be assumed, the 3-point CP-TDE
velocimetry can measure the time-averaged 2D veloc-
ity field, i.e., the measured average velocity vectors v
equal the average wave vectors u. Globally the wave
fronts are allowed to change their directions, but in scales
smaller than the wavelength the plane wave assumption
is needed. The method has limitations when applied to
obtain the average velocity field of single structures, such
as blobs or eddies, especially when their structures are
tilted. But the method also works for these cases when
the shape of the structures is random or when the lo-
cation of their occurence is random. In Sec. 2 this is-
sue is discussed in more details. In plasmas one dis-
tinguishes between different types of velocities, ranging
from the plasma flow velocity, a zoo of plasma waves and
their velocities and the velocity of certain plasma struc-
tures (e.g., eddies and blobs). Propagating structures in
plasmas can be measured by spatiotemporal diagnostics
like Langmuir probe arrays or fast imaging. In this let-
ter, we apply the described 3-point CP-TDE technique
to space-time visible light measurements of the dynamics
in a cylindrical helicon plasma. It is assumed that the
structures observed as propagating waves or patterns of
light emission are linked to density [21, 30, 31].

This paper is organized as follows. In Sec. 2 the 3-
point CP-TDE velocimetry method is introduced. Sec-
tion 3 starts with the description of the experimental
setup and diagnostics of CSDX and introduces two dif-
ferent plasma regimes in the helicon discharge mode used
for applying the introduced velocimetry method. Section
4 shows the results of velocimetry studied in the different
plasma regimes. The results are discussed in Sec. 5 and
summarized in Sec. 6.

2. 3-POINT CROSS-PHASE TIME DELAY
ESTIMATION VELOCIMETRY

The method of extracting the average 2D velocity field
is applicable to spatiotemporal data of fluid-like systems
when the dynamics exhibits a non-random average quasi-
periodic component resulting in a peak in the frequency
domain. This can be waves or structures propagating
along a temporary stable trajectory, e.g., cloud motion
in the atmosphere, rotating structures and waves in a
plasma or vortex motion in the atmosphere. A high
enough spatial and temporal resolution of the data is
desirable to resolve the spatial distances and the di-
rections of the structures propagating between consec-
utive measurements. At least the spatial and temporal
Nyquist limits need to be fulfilled, i.e., d < Apin/2 and
fsample > 2fwave.max With d being the spatial distance
between the points, Ani, the shortest detectable wave-
length, fsample the sampling frequency and fyavemax the
maximal detectable frequency. In this work the average
2D velocity field of propagating structures and waves in
a helicon plasma is calculated from spatiotemporal data
of fast camera measurements.

Figure 2 illustrates the geometry and the parameters
used for the 3-point CP-TDE method. To determine
the average velocity vector v(x;,y;) = vg(x,y;)es +
vy(2;,yi)ey at a position (x;,y;) the average velocity
components v, (x;,y;) and Uy(:ci,yi) are calculated by
CP-TDE. A set of three time series is measured at three
different positions in the x — y—plane. The three non-
collinear points span a triangle (1, 2, 3) whereas the po-
sition (x;,y;) corresponds to the geometric barycenter of
the triangle [Fig. 2(a), the triangle does not necessar-
ily have to be equilateral]. The only assumption for the
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FIG. 2: Tllustration of the three points used for 3-point CP-
TDE velocimetry. (a) Three points (1,2,3) of locations for
simultaneous data acquisition. It does not necessarily need
to be an equilateral triangle. The studied structures are as-
sumed to be much larger than the average distance between
the points to assume plane wave propagation. (b) Geometry
for time lag calculation.

derivation of the velocity field is that the structures keep
their shape and velocity vector constant while passing the
triangle. The smaller the triangle compared to any struc-
ture, the better this assumption is fulfilled (since the time
any structure needs to pass decreases with size). In the
following we consider structures and wavelengths much
larger than the distance between the triangle points and
hence we can safely assume that structures passing across
the triangle propagate like plane waves, as shown in Fig.
2(b). The wave front with the velocity vector v passes
the array of three points. Based on the incident angle of
the velocity vector, the plane wave front is detected at the
three points #1, #2 and #3 with time lags to; = to — t1
and t3p = t3 — to. According to Fig. 2 the distances are
given by so1 = (v,ra1)/|v| and s32 = (v,r32)/|v|, with
ro; = ro —ry and rgs = rg — ro. Consequently, the time
lags are given by

<V7 r21> <V7 r32>
to] = t3g = . 1
21 V]2 ) 32 |V\2 ( )

Solving for the components of v yields

A (ro1yrass — ro1z7s2y)(—raayter + ra1,t32) 2)
¢ (ro1ats2 — r324t21)? + (r21yts2 — T32yt21)?
(T21yr32w - T21mr32y)(7032:1:t21 - r211t32)

Vy = . (3
Y (ro1ats2 — r32at21)? + (ra1ytss — T32yt21)? ®)

The time lags to; and t3» are calculated frequency-
resolved from the cross-phase spectra 621 (f) and 032(f)



according to

Abii(f)

At (f) = Tomf (4)

The cross-phase spectra are calculated from the angle
of the cross-power spectral density <(Py;. The cross-
power spectral density (CPSD) is the distribution of
cross-power per unit frequency. For the fluctuating quan-
tities si(¢) and s;(¢) the CPSD is defined as [32]

Pu(w) = / Ry (t)e “tdt (5)

with Ry; being the cross-correlation, defined as

oo

Rp(t) = / sp(7) - si(r + t)dr (6)

— 00

where s} denotes the complex conjugate of s;.  To ob-
tain a good spatial resolution in all directions, it is a
reasonable choice to use the smallest possible triangle, if
possible where the edge angles are close to 60°. The size
of the triangle, i.e., the distance between the points d,
determines the minimum size of the structures for that
a velocity can be detected. Here the Nyquist limit gives
the smallest detectable structures with ap,in > 2d.
Figure 3 illustrates the three point pixel array at one
specific position as used in the present work in fast cam-
era data. As an example in Fig. 3(a) is shown the cam-
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FIG. 3: The pixel array used for 3-point CP-TDE velocimetry.
(a) This image is taken from the camera frame shown in Fig.
12(e1) for B =160mT. The three points are shown as white
pixels. Here the velocity vector is calculated at the position
z=—-1.7cm and y = —1.8cm. (b) Zoomed region indicated
by the black frame in Fig. (a).

era frame of Fig. 12(e;) for B = 160mT at 7 = 0 pus.
The barycenter of the pixel array (at x = —1.7cm and
y = —1.8 cm) corresponds to a single point where the ve-
locity vector is calculated. The three pixels can be better
distinguished in the zoomed plot in Fig. 3(b). The size of
the pixel array is considerably smaller than the observed
wave structures in the plasma. Thus plane wave propa-
gation across the pixels can be assumed.

Equations (1) to (3) show, that the velocity vector is

4

calculated from just two time delays (in this example
from the pairs 1-2 and 2-3). Since three points give three
possible pairs (1-2, 2-3 and 3-1) the number of equations
is larger than unknowns and the solution for this sys-
tem of equations is overdetermined. However, in a real
physical system the presence of noise and the fact that
the wave fronts can change their shape while passing the
three points, especially in turbulent dynamical systems,
lead to the fact, that the solution of each possible pair
is independent. In this sense the three possible combina-
tions (1-2 and 2-3; 2-3 and 3-1; 3-1 and 1-2) can be used
to independently calculate the velocity vector from the
same original data from the time series measured at the
points #1, #2 and #3. Finally this method gives three
realizations of the calculated velocity at the barycenter
of the three points from one set of measurements. We
have checked rigorously that the velocities calculated are
similar, independent which of the pairs are chosen. Aver-
aging over these three realizations gives the best estimate
of the velocity at the barycenter of the chosen triangle of
points. In Fig. 4 we compare the velocity vector fields
calculated from the three different sets of pairs. The

FIG. 4: Velocity vector fields using 3-point CP-TDE ve-
locimetry from the identical measurement for the three re-
alizations of the permutations (a) 1-2 and 2-3, (b) 2-3 and
3-1, (c¢) 3-1 and 1-2. This example is discussed in details in
Fig. 13(d). Superimposed shown are streamline plots calcu-
lated for each vector field. The velocity field is measured at
B =160mT and averaged over the strongest frequency com-
ponent over the frequency range 2.5 — 4.5 kHz. For visibility
only every 4th vector in x and y direction is shown.

average variation of the vectors, i.e., its absolute values
and the angles, between the three realizations is about
5—15%. In the edge the signal-to-noise ratio is much
lower and thus the measured time lags are more influ-
enced by noise. Especially in the center of the plasma
averaging over the three realizations is useful to obtain
a better estimate of the velocity vectors by reducing the
noise. After calculation of the vector components a me-
dian filter is applied to exclude local outliers of the vector
components.

2.1. Effect of shear on evaluation of radial velocity

It is important to keep in mind that the 3-point CP-
TDE velocimetry method calculates the time-averaged



velocity vector of wave fronts. In case the velocity vec-
tor of propagating structures is not perpendicular to the
wave fronts [see Fig. 5], the wave front vector obtained
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FIG. 5: In case the tilt angle a of propagating structures
can be estimated, the velocity of the structures vs can be
calculated from the measured wave front velocity v,.

from 3-point CP-TDE is not parallel to the velocity vec-
tor. However, if an analysis method exists capable to
estimate the tilt angle «, the true velocity of the struc-
tures vy can be calculated by |vg| = |v,| cos(a), with v,
being the obtained velocity component from 3-point CP-
TDE velocimetry. Figure 6 demonstrates the influence of
tilted wave fronts in cylindrical geometry by a calculation
of the velocity field using 3-point CP-TDE velocimetry of
a modeled azimuthally propagating m, = 2 eigenmode
[compare Fig. 6(a)], with ¢ being the azimuthal coordi-
nate. Without shear in radial direction the velocity field
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FIG. 6: Dependence of the 3-point CP-TDE velocimetry on
sheared structures. The upper row (a,c,e) shows a mod-
eled azimuthal mg = 2 eigenmode structure S(r, dsn,t)
at t = 0 propagating in clockwise direction with S =
A(r) sin (mwt + ¢sn(r)). A(r) is the radial dependent ampli-
tude A = ro~exp {—r*(v/20) 7*}, ¢en(r) is the radial depen-
dent shear, w = d¢/dt the angular frequency and o = 4.3 the
assumed standard deviation of the radial density profile. The
lower row (b,d,f) shows the calculated velocity vector fields.

has only azimuthal components [compare Fig. 6(b)]. If
a radial shear is present [Figs. 6(c,e)], the velocity field
also consists radial velocity components [Fig. 6(d,f)]. The
radial velocity components depend on the shear direc-
tion and on the azimuthal propagation direction of the

structures. For a radial shear d¢g,/dr > 0 an outward
radial velocity component arises, and for a radial shear
dsn/dr < 0 an inward radial velocity component arises.
This effect needs to be regarded when interpreting 2D
velocity fields [29]. The more turbulent a system is, the
less stable are the mode structures [33, 34]. If then the
radial shear of the structures randomly change in time,
the influence of the shear on the time-averaged velocity
field can again be small.

The 3-point CP-TDE velocimtry can also be applied to
calculate the time-averaged velocity field of single events
such as blobs or eddies. For these structures a reason-
able frequency needs to be determined [compare Eq. (4)].
A very simple approach is using f & v/\, where v is the
velocity and A is the size (or the wavelength) of the struc-
ture. The above discussed influence of the shape of these
structures is also valid in the same way here.

3. EXPERIMENTAL SETUP

The experimental work has been performed in the Con-
trolled Shear Decorrelation eXperiment (CSDX) [6, 35].
The apparatus consists of a 2.8 m long discharge tube
with a radius of 0.1 m. A magnetized argon plasma is pro-
duced by helicon discharge using an m = 1 antenna (ra-
dius 7.5 cm) with typical operating parameters of 1.6 kW
rf input power and neutral gas pressure of 0.42 Pa. Fi-
nally, since we wanted to study very complex turbulent
regimes, we performed these experiments with insulat-
ing end boundaries. In previous studies it was shown
that the end boundaries are crucial for the system to be
driven into broadband turbulence [8, 36].

The azimuthal plasma cross-section is diagnosed by
fast imaging. A Phantom V710 high speed camera de-
tects emission from neutral atoms and ions, respectively,
with a typical sampling frequency of 210,526 Hz. To
roughly distinguish between emission from neutrals and
ions two different optical filters have been used [neutral
argon Ar I (longpass filter for wavelength > 650 nm),
singly ionized argon Ar I (band pass filter with FWHM
from 410nm to 490 nm)]. For minimizing the contribu-
tion of parallel plasma dynamics the parallax and the
depth of field (~ 10cm) is reduced by using a telescope
to image the plasma onto the camera chip. A refrac-
tive 1.2m, f/8 Celestron C6-RGT telescope is positioned
7m away from the focal plane in the plasma (1 m down-
stream from the source). A more detailed description of
the experimental setup is given in Refs. [6, 31]. Temper-
ature fluctuations are neglected and it is assumed light
fluctuations represent the dynamics of density fluctua-
tions [21, 30, 31]. The plasma dynamics and the aver-
age plasma profile in CSDX in helicon discharge mode
vary strongly with ambient magnetic field [6]. The time-
averaged density profile peaks in the center and decays
within =~ 5cm towards the edge. With higher magnetic
fields the profiles (n. and light intensity) become nar-
rower [37].



4. 2D VELOCITY FIELDS OF HELICON
PLASMA REGIMES

In the following 3-point CP-TDE velocimetry is ap-
plied to two different plasma regimes. The level of non-
linear coupling and in turn the complexity of dynamics
increases with higher magnetic field strengths [6]. The
first regime at B = 90mT is dominated by dynamics
of quasi-coherent drift waves in the density gradient re-
gion. The dynamics of the second regime at B = 160 mT
is much more complex, i.e., while combined drift wave-
Kelvin Helmholtz (KH) activity is present between den-
sity gradient and edge, other waves propagating in ion
diamagnetic drift direction are present in the center of
the plasma.

At magnetic fields below 100 mT the plasma dynamics
is dominated by quasi-coherent drift waves in the density
gradient region at radii between 2cm < r < 5cm. With
increasing B-field a considerable shear in w(r) evolves
in the edge resulting in a combined drift-KH system be-
tween density gradient and edge. At magnetic fields be-
tween 120mT < B < 180mT high mode numbers with
me ~ —5 to mg ~ —15 appear in the center of the plasma
at radii 7 < 2cm [6] propagating in the ion diamagnetic
drift direction, i.e., the opposite direction to the waves
in the combined drift-KH system. Cross-phase analysis
of density and potential fluctuations shows that all these
instabilities are present simultaneously. Their radial sep-
arated regions partially overlap, resulting in intermixed
turbulent dynamics [6].

4.1. 3-point CP-TDE velocimetry of drift waves

Previous studies in CSDX have demonstrated a con-
trolled transition to a turbulent state as the magnetic
field is increased from 40mT to 100mT when the de-
vice is configured with insulating boundary conditions
[8, 35, 38]. With increasing B, the drift wave fluctua-
tions evolve from narrow-band coherent waves to a state
of weak turbulence characterized by broadened frequency
and wave number spectra. At B ~ 90 — 100mT, the
narrow-band coherent eigenmode-like drift wave fluctu-
ations (with a dominant my = 3 mode) coexist with
more broadband turbulent fluctuations, in a state of weak
turbulence, in the following called quasi-coherent drift
waves. Nonlinear energy transfer analyses [39, 40] re-
vealed that the energy is transferred from the higher fre-
quency (f > 10kHz, mg = 3 mode) turbulent fluctu-
ations to the low frequency (f < 1kHz, my = 0 mode)
azimuthally symmetric shear flow. The azimuthally sym-
metric, low frequency sheared flow is driven by the high
frequency turbulent plasma fluctuations and thus has the
characteristics of a zonal flow. More recent detailed stud-
ies for a larger B-field range is given in Ref. [6].

The time-averaged light intensity depicted in Fig. 7(a)
peaks in the center at r = Ocm and decays towards
the edge within ~ 5cm to 2% of the center peak value.
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FIG. 7: (Color online) Camera data for the plasma dynamics
at B =90mT: (a) time-averaged light intensity (longpass fil-
ter > 650 nm) and (b) standard deviation o, for each pixel.
In the columns below are image sequences p(7;) of (c) raw
images, (d) time average-subtracted raw images and (e) each
pixel of each image normalized to its temporal standard devi-
ation to equally emphasize structures in the center (high light
intensity) and in the edge (low light intensity).

The standard deviation of light fluctuation is shown in
Fig. 7(b). Drift wave fluctuations are the largest in the
density gradient between r = 1 — 5cm and in the very
center the light fluctuation level is strongly reduced. In
the three columns below a sequence of successive camera
frames is depicted, illustrating the propagation of wave
structures. The first column [Fig. 7(c1_3)] shows the raw
images and the second column [Fig. 7(d;_3)] the light
fluctuation by subtracting the time-average [Fig. 7(a)].
A dominant my = 1 mode is propagating clockwise in



the electron diamagnetic drift direction. While propa-
gating, the shape of the mode structure changes, partic-
ularly in regions more radially outwards at r > 2cm.
The third column shows light fluctuations normalized
to the standard deviation of each pixel [Fig. 7(e1_3)]
to emphasize dim structures especially in the edge re-
gion. Beyond r ~ 5cm the light fluctuations are close to
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FIG. 8: (Color online) Plasma dynamics at B = 90mT (B-
field direction is ®). (a) From camera data calculated fre-
quency spectra. (b) The cross-power spectral density (CPSD)
and the cross-phase of two time series from two adjacent pixels
at r = 1.8 cm (position of black cross in (c¢)). (¢) The CPSD
value at 4.9kHz in the azimuthal cross-section. (d) Streamline
plot and vector field of the calculated velocity field averaged
over the frequency range 3.9 —5.9kHz. The spatial resolution
of the calculation grid is 1.33mm. For visibility the vector
field is averaged over 13.3 mm in each of the directions =z and
Y.

the noise level. Very weak wave structures are present
at 7 ~ 5cm. From light fluctuations the radially re-

solved frequency spectrum calculated by fast Fourier
transform (FFT) and azimuthal averaging is depicted in
Fig. 8(a). The largest frequency component is present at
4.9kHz across the whole radius. The higher harmonics
at 2x,3x,4 x 4.9kHz can also be distinguished. Within
a broad background, the discrete peaks indicate quasi-
coherent wave dynamics dominated by mode structures
as seen in Fig. 7(d;_3). For the 3-point CP-TDE ve-
locimetry the light fluctuation data of neighboring cam-
era pixels are used to calculate the cross-power spectra.
Figure 8(b) illustrates exemplarily the CPSD [Eq. (5)] be-
tween two adjacent pixels. The CPSD peaks at 4.9kHz
and the higher harmonics. The cross-phase 6(f) is well-
defined at frequencies where the CPSD peaks. Figure
8(c) shows the CPSD value at the frequency 4.9kHz
in the azimuthal cross-section. The CPSD spectrum
in Fig. 8(b) is measured at the position indicated by
the black cross. 3-point CP-TDE velocimetry is applied
and the velocities are averaged over the frequency range
3.9 — 5.9kHz as this is the frequency range of the dom-
inant mode in the system [see Fig. 8(a)]. The result is
shown in Fig. 8(d). The 2D velocity vector field demon-
strates wave structures propagating predominantly in az-
imuthal direction, i.e., in electron diamagnetic direction.
Close to the center (r < 2cm) the waves are only prop-
agating in just the azimuthal direction. With larger ra-
dial position a radial outward velocity component in-
creases leading to an outward spiralling velocity vector
field. For this magnetic field configuration the plasma
density starts to get very low beyond r > 5cm and the
light intensity is too dim to give a definite interpretation
of the velocity field.

The mode-frequency spectra of the azimuthal eigen-
modes are calculated from extracted azimuthal arrays
from ¢ = 0 to 2w and defining the center of r = Ocm
at (z,y) = (0,0) cm. Figure 9 shows this spectrum cal-
culated at the radius r = 2.5 cm. As already visible in the
average removed single frames in Fig. 7(d;_3) the domi-
nant mode number is the mg = +1 mode propagating in
electron diamagnetic direction.

From the 2D velocity vector field the radial profiles of
the velocity components in the azimuthal plane, namely
the azimuthal velocity vy and the radial velocity v, can
be calculated. The frequency resolved velocimetry results
averaged over the azimuthal coordinate (¢ = 0 to 27) are
shown in Fig. 10. The velocity components v4 and v, are
plotted radially resolved and frequency dependent. The
ion cyclotron frequency is at wei/(27) ~ 34.6kHz. For
the whole frequency and radial range the azimuthal prop-
agation is in electron diamagnetic drift direction. In the
frequency range up to 20 kHz the radial velocity compo-
nent v, is mostly more than two times smaller than the
azimuthal velocity, indicating the predominant azimuthal
dynamics, as expected for drift wave activity.

An estimation of the temporal fluctuation of the ve-
locity is obtained from time-averaged radial profiles of vy
and v, at a specific azimuthal angle [Figs. 11(a,b)]. The
average and the standard deviation is calculated from
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FIG. 9: Mode-frequency spectrum of the plasma dynamics at
B =90mT for the radial position » = 2.5 cm. The sign of the
mode number corresponds to the propagation direction, i.e.,
positive in electron diamagnetic direction and negative in ion
diamagnetic direction.
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FIG. 10: (Color online) Frequency dependence of azimuthal
and radial velocity components for the magnetic field 90 mT:
(a) azimuthally averaged azimuthal velocity component v
and (b) azimuthally averaged radial velocity component v.

3-Point CP-TDE velocimetry of five independent time
windows of a movie of 5000 frames. According to the
mg = 1 drift wave mode the velocities are also averaged
over the frequency range 3.9 —5.9 kHz. In this way, if fre-
quency ranges corresponding to specific azimuthal modes
are chosen, one can get mode resolved velocity informa-
tion from these measurements using this method [41].
The temporal deviation of both v4 and v, is the smallest
in the center at r < 2.5 cm and gets large in the density
gradient 3cm < r < 5cm. The deviations would be lower
than the statistically error shown here, when the number
of realizations is increased. Figure 8(d) indicates that the
2D velocity vector field is not perfectly azimuthally sym-
metric. From averaging the time-averaged velocity pro-
files over the full azimuthal circumference A¢ = 2x, the

obtained standard deviation then indicates the variation
of the radial profiles due to any azimuthal asymmetry
[Fig. 11(c,d)]. The plotted error bars indicate how much
the time-averaged profiles vary with the azimuthal angle.
For perfect azimuthal symmetry these error bars would
be zero. Close to the center the variation is the smallest.
For r > 3 cm the variation is considerable, especially for
the radial velocity component [Fig. 11(d)]. Note that this
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FIG. 11: Radial profiles of (left column) azimuthal velocity
vg and (right column) radial velocity v.. In (a,b) the val-
ues are averaged in time at one azimuthal angle and in (c¢,d)
the profiles are calculated from time-averaged profiles aver-
aged over the full azimuthal circumference A¢ = 2mw. The
averaged frequency range is 3.9 — 5.9kHz. In (a,b) twice the
temporal standard deviation is shown as the error intrinsic to
this method, in (c,d) once the spatial standard deviation is
plotted.

is the region of the largest density and ion pressure gradi-
ents that drive the turbulence in CSDX. The correspond-
ing density and electric field fluctuations also contribute
to the deviations here. Beyond r =~ 5 cm, the dynamics is
not coherent and the light intensity is low, as can be seen
in Fig. 7. The average azimuthal velocity increases ap-
proximately linearly between 0 cm < r < 2cm from zero
to vy &~ 500ms ™!, whereas the radial velocity component
is approximately zero, indicating a nearly pure azimuthal
propagation. Between 2cm < r < 5cm the slope of the



azimuthal velocity decreases until it reaches a value of
v ~ 900 ms™!. Simultaneously a radial outward velocity
component increase to v, ~ 400ms~!. However, in this
radial region the azimuthal variation becomes large for
both velocity components. In the edge region at » > 5cm
the wave amplitudes are close to the signal-to-noise level,
which especially leads to increased errors. The uncertain-
ties result from the turbulent dynamics of velocity shear
driven fluctuations. Here the average azimuthal velocity
is close to zero. The average radial velocity varies from
zero to v, &~ —200ms L.

4.2. 3-point CP-TDE velocimetry of coupled
instabilities

At 160 mT the plasma dynamics is more complex due
to the presence of different wave types at different radial
locations. Figures 12(a) and (b) show the time-averaged
camera frame and the standard deviation of a movie con-
taining 5000 frames. Compared to Fig. 7(a,b) the light
intensity of the plasma peaks more pronounced at smaller
radii (r < 2cm) and the region of the strongest fluc-
tuation level also shifts more towards the center. This
transition has been studied in detail in Refs. [6, 37] and
can be explained in the frame of the formation of the
blue core in argon plasma helicon mode. The time re-
solved camera raw images in Fig. 12(c) show the narrow
peaked light intensity in the center. Very dim but vis-
ible between Ocm < r < 2cm are modes (|mg| = 5 to
|mg| ~ 15) with a low amplitude. Particularly these
modes propagate in the ion diamagnetic drift direction,
i.e., opposite to the drift waves in the gradient region. In
Refs. [6, 37] this dynamics have been shown to be well
separated from drift wave dynamics in the density gradi-
ent region (2cm < r < 5cm). These waves can be better
distinguished by subtracting the average [Fig. 12(d)] and
normalization to the standard deviation [Fig. 12(e)]. A
mode structure of mg ~ 7 reaching from r ~ 3cm far
into the edge at r &~ 7 cm propagates in the electron dia-
magnetic drift direction (here clockwise) and the higher
inner mode structure propagates in the opposite direc-
tion (counter-clockwise). The propagation direction of
the inner modes is difficult to deduce from the single
frames (The spatiotemporal plot in Ref. [6] Fig. 12(e)
clearly demonstrates propagation of these core fluctua-
tions in the ion diamagnetic direction). Superimposed to
the high modes in the center is a mg = 2 — 3 mode prop-
agating in the electron diamagnetic drift direction [6].

Figure 13(a) shows the frequency spectrogram calcu-
lated from the camera data. The strongest frequency
components from (0cm < r < 5cm) are located at
~ 2.5kHz. In the core region (Ocm < r < 3cm) broad-
band components are present up to 50 kHz. Separated
at the edge, frequency components between 1 — 20 kHz
are present. The study of the cross-phase between den-
sity and potential fluctuations in Ref. [6] suggests that
these instabilities may be Kelvin-Helmholtz (KH) in the
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FIG. 12: (Color online) Camera data for the plasma dynam-
ics at B = 160mT: (a) time-averaged light intensity (long-
pass filter > 650nm) and (b) standard deviation o, for each
pixel. In the columns below are image sequences p(7;) of (c)
raw images, (d) time average-subtracted raw images and (e)
each pixel of each image normalized to its temporal standard
deviation to equally emphasize structures in the center (high
light intensity) and in the edge (low light intensity).

edge and drift waves in the density gradient. The ori-
gin of the ion-wave-like mode in the center is still under
discussion. Figure 13(b) shows an example of the CPSD
and the cross-phase between two time series measured
at two adjacent pixels at a radius of r = 1.8cm. The
cross-phase is well defined at the frequency band between
2.5 — 4.5 kHz, where also the CPSD peaks. Figure 13(c)
shows that the CPSD at 3.5 kHz is well measurable in the
azimuthal cross-section. The resulting velocity field aver-
aged over the frequency band 2.5 — 4.5 kHz is illustrated



N o
z )
3

n

= 20

Y—

0 1 2 3 4 5 6 7
radial position, r (cm)

+0.3

CPSD (dB)

y (cm)

FIG. 13: (Color online) Plasma dynamics at B = 160mT.
(a) From camera data calculated frequency spectra. (b) The
cross-power spectral density (CPSD) and the cross-phase of
two time series from two adjacent pixels at » = 1.8 cm (posi-
tion of black cross in (c)). (c¢) The CPSD value at 3.5kHz in
the azimuthal cross-section. (d) The calculated velocity field
averaged over the frequency range 2.5 — 4.5 kHz. The red and
blue streamlines demonstrate outward and inward flow, re-
spectively [z = 0, red y = —1.0cm, blue y = —3.5cm]. The
spatial resolution of the calculation grid is 1.33 mm. For visi-
bility the vector field is averaged over 13.3 mm in each of the
directions x and y.

in Fig. 13(d). The velocity field in the edge is expanded
to larger radii when compared to the drift wave case in
Fig. 8(d). This can be ascribed to the dynamics in the
edge supporting transport of plasma towards the edge
resulting in the detection of proper velocity components.
Obviously very different dynamics happen between the
gradient region and the plasma core. The trajectory em-
phasized by the red streamline starting in the core at the
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red solid circle ends on the same path as the trajectory
starting more outwards, marked by the blue streamline
starting at the blue solid circle. This inward and outward
dynamics has also been observed by velocity analysis of
flux measurements and have been studied in details in
Ref. [42]. According to the discussion in Sec. 2.1 about
the influence of the radial shear of the structures, the
radial outward component in the radial range r > 5cm
probably results from the temporally constant tilt of the
structures [compare frames in Fig. 12(d;_3)].

The strong frequency dependence of the azimuthal and
radial velocity components is illustrated in Fig. 14. In
the same way as in Fig. 10 the velocity vectors are aver-
aged over the azimuthal coordinate. At 160 mT the ion
cyclotron frequency is at 61.5kHz. The azimuthal ve-
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FIG. 14: (Color online) Frequency dependence of azimuthal
and radial velocity components for the magnetic field 160 mT:
(a) azimuthally averaged azimuthal velocity component vy
and (b) azimuthally averaged radial velocity component v;.

locity component [Fig. 14(a)] shows one way azimuthal
dynamics below 10kHz in direction of the electron dia-
magnetic drift. Above 10kHz the sign of vg4 changes for
radii 7 < 3cm, i.e., in the core the propagation points in
the ion diamagnetic drift direction. The radial velocity
component also shows a strong dependence on the fre-
quency. Below f =~ 2kHz the radial velocity is close to
zero in the center and in the gradient region. In the edge
an outward velocity component exists. Above f ~ 2kHz
a radial inward velocity appears below radii » ~ 4 cm.
The change of sign of the radial velocity could be well
seen in the 2D velocity vector field in Fig. 13(d) indi-
cated by the colored streamlines. In the core the red
streamline starts spiralling outwards, in the gradient re-
gion the blue streamline starts spiralling inwards.
Figure 15 shows the radial velocity profiles of vy and v,
averaged over the frequency range 2.5—4.5 kHz where the
largest amplitude in the frequency spectrum is present.
Similar to Fig. 11 the Figs. 15(a,b) show the result from
averaging over independent realizations in time and Figs.
(c,d) the average over the full azimuthal circumference.
In time average [Figs. 15(a,b)] the azimuthal velocity in-
creases monotonically from zero the center until r ~ 4 cm
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FIG. 15: Radial profiles of (left column) azimuthal velocity
vy and (right column) radial velocity v,. In (a,b) the val-
ues are averaged in time at one azimuthal angle and in (c,d)
the profiles are calculated from time-averaged profiles aver-
aged over the full azimuthal circumference A¢ = 27w. The
averaged frequency range is 2.5 — 4.5kHz. In (a,b) twice the
temporal standard deviation is shown as the error intrinsic to
this method, in (c,d) once the spatial standard deviation is
plotted.

to values about 350ms™! and decreases rapidly to zero
for r > 4.5cm. In the center for » < 3cm, the variation
of vy is the smallest. The variation increases to large
values in the gradient region indicating turbulence, that
leads to considerable fluctuations of the time delays mea-
sured by the cross-phases between the time series. For
r < 3cm the radial velocity is close to zero. In the ra-
dial range 2.5cm < r < 4.5 cm the radial velocity points
inward with values about ~ —100ms~?2 until it increases
in the edge to positive values of about ~ +100ms~2. In
the edge the error bars are high as both the turbulence
fluctuation level is high [also see [Fig. 13 in Ref. [6]]]
and the light intensity drops [see Fig. 12]. More ensem-
ble averaging in time probably might statistically reduce
the temporal error calculated. In the azimuthally aver-
aged picture of the time-averaged profiles [Figs. 15(c,d)]
a variation is detected indicating azimuthal asymmetry.
When compared to the 90 mT case the asymmetry is not
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as high [compare Fig. 11(c,d)], but still considerable.
Mode-frequency spectra for different radii can help
identifying the underlying eigenmode dynamics in the
different radial regions. Figure 16 shows mode-frequency
spectra at two radii, i.e., within the core at »r = 1.3cm
and in the gradient region at » = 2.5cm. In the core
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FIG. 16: Mode-frequency spectra of the plasma dynamics at
B = 160mT for the radial positions (a) r = 1.3cm and (b)
r = 2.5cm. The sign of the mode number corresponds to the
propagation direction, i.e., positive in electron diamagnetic
direction and negative in ion diamagnetic direction.

[Fig. 16(a)] the strongest amplitudes result from drift
wave modes mg = +1 to mg = +4 in the frequency
range below ~ 10kHz. These modes propagate in elec-
tron diamagnetic drift direction. In addition a broad dis-
tribution of negative mode numbers between mgy = —1
to mg = —15 is present, which propagate in ion dia-
magnetic drift direction. Across the frequency range
f = 10 — 30kHz these modes show a broadband dis-
tribution. While the drift wave modes show distinct
peaks indicating quasi-coherence, the opposite propagat-
ing broadband distributed modes indicate turbulent dy-
namics. Note, that in the single camera frames the high
mode numbers in the core seem to be more coherent,
but when studying the movies with more attention, it
becomes clear, that the modes are not azimuthal coher-



ent. Frequently the modes change in local azimuthal sec-
tors resulting in the broad mode number spectrum. At
outer radii close to the edge, the mode dynamics change
[Fig. 16(b)]. Beyond the steep density gradient region at
r &~ 2.5cm the drift wave dynamics remains, i.e., only
the positive modes my = +1 to my = +4 are present
below f ~ 10kHz. When comparing the two spectra
with the total frequency spectrum [Fig. 13(a)], it be-
comes clear, that the broadband frequency components
with f > 10kHz in the core region result from the oppo-
site propagating mode structures.

The dynamics in the core can be visualized in the ve-
locity vector fields from 3-point CP-TDE velocimetry
by extracting the velocity field from selected frequency
ranges. In Fig. 17 the velocity fields of drift waves and
of the inner mode structure are shown. Figure 17(a)
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FIG. 17: Velocity vector fields of plasma dynamics at B =
160mT in the frequency ranges of (a,b) 2.5 — 4.5kHz and
(c,d) 20— 25 kHz. Both velocity fields are calculated from the
same camera dataset. In (a) and (c¢) the direction is indicated
by the arrow heads. The zoomed sections in the right column
indicate the details in the plasma core.

shows the velocity field averaged over the dominant fre-
quency peak between 2.5—4.5kHz [zoomed region of Fig.
13(d)]. Clockwise propagation in electron diamagnetic
drift direction is present in the whole azimuthal cross-
section. The zoomed plot in Fig. 17(b) demonstrates the
one way azimuthal velocity field. Figures 17(c) and (d)
show the vector field averaged over the frequency range
of 20 — 25kHz. The streamline plot in Fig. 17(c) indi-
cates the change of sign of vy at the radius ~ 4cm. As
visible in Fig. 14 the sign of vy changes in this frequency
range and the structures propagate counter-clockwise in
ion diamagnetic drift direction [Fig. 17(d)].

Generally speaking the streamline plots are shown to
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visualize the 2D vector field. However, their interpre-
tation needs to be done with care, especially thinking
about interpreting them as paths for trajectories in such
a turbulent system with spatiotemporal fluctuations at
multiple scales.

5. DISCUSSION AND CONCLUSIONS

While analyzing the plasma dynamics during the tran-
sition to broadband turbulence in CSDX, via different
interesting but complex regimes, the knowledge of the
velocity components are crucial, but not straightforward.
Mach probes were too perturbative in these regimes for
CSDX, laser-induced fluorescence spectroscopy was too
slow to capture any turbulent dynamics and PIV was
not possible at these plasma parameters. Fast framing
camera could provide with both the necessary tempo-
ral resolution (at 210,526 frames per second) and with
sufficient spatial resolution ((128 x 128) pixels covering
~ (17 x 17)cm). However, standard traditional two-
point TDE did not give reasonable results as explained
in details in the introduction. A novel method of using
three spatially separated points and using the cross-phase
TDE is a simple extension that yielded a lot of impor-
tant details of the plasma systems studied. Especially
for the complex dynamics at B = 160 mT where dif-
ferent instabilities are superimposed present simultane-
ously the 3-point CP-TDE velocimetry demonstrates its
capability. Close to the plasma center my = 2 — 4 drift
waves are superimposed with modes between myg = —1
to mg ~ —15 that propagate in opposite direction, i.e.,
in ion diamagnetic drift direction. The extracted velocity
fields show this, when averaged over the correct frequency
ranges. Separating the inner mode dynamics from the
other dynamics to obtain the velocity field is possible by
“filtering” in the frequency ranges. Averaging the ve-
locity over a too large frequency range usually yields in
non-meaningful results. In fluids and plasmas not only
different frequency and mode components of waves are
present at the same time, but also various types of driv-
ing instabilities can exist simultaneously. Before the wave
velocity can be instability-selectively analyzed, the typi-
cal frequency range of the wave type needs to be known.
In regions that are dominated by turbulence temporal
fluctuation of the velocity components are found to be
considerably high. The cylindrical boundary conditions
in the present experiment give rise for the dominating az-
imuthal dynamics. However, the 2D velocity vector fields
indicate considerable deviations from perfect azimuthal
symmetry.

6. SUMMARY

The 3-point CP-TDE velocimetry is a velocimetry
method based on cross-phase time delay estimation. It
is introduced to calculate the frequency dependent time-



averaged two-dimensional velocity field of wave dynam-
ics in a plasma (or in a fluid). By assuming plane wave
structures and using the data of three time series mea-
sured at three positions aligned in a triangle the veloc-
ity vectors are calculated. The method has been ap-
plied to wave dynamics in a linear magnetized cylindrical
plasma. Two different plasma regimes have been inves-
tigated. In the first regime the dynamics was dominated
by quasi-coherent drift waves. In the calculated 2D ve-
locity field predominantly azimuthal propagation of an
mg = 1 mode in electron diamagnetic drift direction was
seen. Deviations from perfect azimuthal symmetry of
the velocity field is observed. The second plasma regime
exhibited complex dynamics from multiple driving insta-
bilities. In a combined drift-Kelvin-Helmholtz system be-
tween density gradient and edge, propagation in electron
diamagnetic drift direction has been observed, and simul-
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taneously weakly developed turbulent mode dynamics of
mg = —1 to mg ~ —15 propagating in the ion diamag-
netic direction was present in the plasma core. The ve-
locity fields of these different wave dynamics could be
calculated and separated. The advantage using three
points for calculating the velocity vectors is, that infi-
nite velocity values are completely avoided. However,
interpretation of the 2D vector fields needs to be done
with care, especially when structures are tilted, have a
blobby character or are small compared to the average
distance of the spatial detectors. The 3-point CP-TDE
velocimetry is capable to distinguish between dynamics
at different time scales and spatial scales, respectively. As
soon as high spatiotemporal resolution data is available,
this velocimetry method can be supportive especially for
rich dynamical regimes exhibiting velocity components
entangled in different scales in space and time.
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