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Abstract

We describe a new version of GBS (Global Braginskii Solver), a 3D global,
flux-driven plasma turbulence code to simulate the turbulent dynamics in
the tokamak scrape-off layer (SOL), superseding the code presented by Ricci
et al. [Plasma Phys. Control. Fusion 54, 124047 (2012)]. The present work is
driven by the objective of studying SOL turbulent dynamics in medium size
tokamaks and beyond with a high-fidelity physics model. We emphasize an
intertwining framework of improved physics models and the computational
improvements that allow them. The model extensions include neutral atom
physics, finite ion temperature, the addition of a closed field line region, and a
non-Boussinesq treatment of the polarization drift. GBS has been completely
refactored with the introduction of a 3-D Cartesian communicator and a
scalable parallel multigrid solver. We report dramatically enhanced parallel
scalability, with the possibility of treating electromagnetic fluctuations very
efficiently. The method of manufactured solutions as a verification process
has been carried out for this new code version, demonstrating the correct
implementation of the physical model.

Keywords:

1. Introduction

Understanding the turbulent dynamics of the tokamak scrape-off layer
(SOL) is one of the important scientific challenges to address as we approach
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the era of burning plasma experiments in magnetic fusion energy devices.
The SOL plays a crucial role in determining the performance of tokamak
devices, for instance, by controlling the impurity influx into the core plasma,
the recycling level, and the heat exhaust [1]. Non-linear simulations of SOL
dynamics have become an essential tool to understand transport and stability
phenomena, and to interpret and develop experiments.

High-fidelity physics simulations of SOL dynamics present many model-
ing challenges. The problem at hand is of a multiphysics nature, involving
sheath physics, neutral particles, turbulence, and, necessarily, their inter-
action. These phenomena take place at disparate time and spatial scales,
ranging from the Larmor scale for the sheath to the machine size for the
parallel structure of the turbulent structures. Experimental measurements
have highlighted the fundamental aspects of the strong turbulent dynamics
that must be retained, with high amplitude modes that have a radial exten-
sion similar to the SOL gradient length, Lp = −p/∇p ∼ 1cm [2]. Plasma
transport is intermittent, i.e. the fluctuation probability distribution func-
tions are skewed, and therefore a purely diffusive approach is in principle
insufficient to describe plasma profile evolution.

In the past decade, computational models have increased our understand-
ing of SOL dynamics. The fluctuation levels and intermittency found in the
tokamak SOL were first recovered using 2D fluid turbulence codes such as
TOKAM2D, ESEL, and SOLT [3–7], where the fluid equations are integrated
along the direction parallel to the magnetic field lines and closed by using
assumptions on the losses at the end of the field lines. The fluid approach is
justified by the large collisionality in the SOL, where the plasma temperature
is a few tens of electronvolts, and by the low frequency and wavenumber of
the turbulence. These codes included the physics of blob filaments [8] and
of curvature-driven modes in the absence of parallel dynamics. However,
3D effects such as drift-wave turbulence and magnetic fluctuations can have
a strong impact on edge turbulence [9]. Advances in computer hardware
and algorithms have now enabled the study of SOL dynamics in 3D using
codes such as GEMR [9, 10], BOUT++ [11], TOKAM3D/3X [12, 13], and
GBS [14].

The present paper describes a new version of the GBS code, a 3D global,
flux-driven, two-fluid turbulence code implemented using finite differences
for the spatial discretization and traditional Runge-Kutta methods for the
time advance. GBS was originally developed as a 2D code to simulate the
turbulent dynamics of field-aligned turbulence in basic plasma physics devices
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such as TORPEX [15, 16]. The numerical approach used was similar to that
of the TOKAM2D, ESEL, and SOLT codes, e.g. with the use of explicit
or semi-implicit time marching algorithms and the Arakawa scheme [17] to
treat non-linear E×B advection terms.

In recent years, GBS was generalized to 3D, effectively adding ballooning,
drift-wave, sheath physics, and electromagnetic fluctuations. The parallel dy-
namics was treated using field-aligned parallel gradient operators based on
centered finite differences. The resulting algorithm, while lightweight and
fairly robust, required the magnetic safety factor q to be a radially constant
rational number. A description of this code was published in [14]. Mag-
netic shear effects were implemented using the ŝ− α metric coefficients [18],
and then updated to include finite aspect ratio effects [19]. The numerical
approach for the parallel gradient was recently generalized to allow varying
q [20].

A new version of GBS, presented herein, has been developed with the
specific goal of studying the SOL dynamics of medium size tokamaks using
high fidelity, realistic-size global turbulence simulations. This involves re-
solving scales from the order of the ion sound Larmor gyroradius, ρs . 1mm
(ρs = cs/ωci =

√
Te/mi/(eB/mi)) up to the machine size R ∼ 1m, including

ion temperature dynamics [21], neutral particle physics [22], and a full treat-
ment of the polarization drift avoiding the Boussinesq approximation. The
largest GBS simulations carried out so far reproduced the SOL dynamics of
TCV [23] or Alcator C-Mod [24] with ρ−1

∗ = R/ρs ≈ 2000. We also intro-
duce a closed field line region, as a means to represent the particle and heat
outflow into the SOL more realistically.

As it will be shown, one of the main computational obstacles to reach the
plasma size of TCV or C-Mod is the inversion of the Poisson and Ampère
operators, since standard sparse matrix-based methods perform poorly as the
problem size increases. We report that the sparse solvers are now superseded
by a stencil-based, parallel multigrid solver. The use of an iterative solver
has the added benefit, respect to direct solvers, that time varying operators
can be treated in a computationally efficient manner. This has allowed the
removal of the Boussinesq approximation from the vorticity equation. Ad-
ditionally, simulations with electromagnetic fluctuations can now be carried
out with only a small increase in computational cost at any plasma size.

The paper is organized as follows. First, in Section 2 we present the
complete physical model used to describe the SOL dynamics, including neu-
tral atom physics and a more rigorous, non-Boussinesq description of the
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polarization velocity. Then, in Section 3 we discuss computational details
of the GBS implementation, such as the rigorous code verification procedure
employed, the neutral physics module, the parallel multigrid solver, and we
demonstrate improved parallel scalability of the GBS code. Examples of the
application of the new GBS code follow in Section 4. Some final remarks on
this work can be found in Section 5.

2. Physical model for scrape-off layer dynamics

The philosophy behind the development of GBS is to approach a very
complex problem, such as tokamak edge turbulent dynamics, in steps of in-
creasing complexity. This method effectively reduces the problem into more
tractable parts, and facilitates the interpretation of both simulation results
and experimental measurements. Consequently, the first 3D version of GBS
employed a cold-ion version of the two-fluid drift-reduced Braginskii equa-
tions [25], aiming at explaining turbulence in basic plasma physics devices
with a simple geometry and where typically only electron heating is available.

In effect, the first turbulent studies in 3D using GBS involved linear
devices such as LAPD, which have turbulent modes in an straight open mag-
netic field line configuration [26, 27]. Then, curvature driven (interchange)
modes and seeded plasma filament dynamics where studied in simulations of
the TORPEX device, where the superposition of toroidal and vertical mag-
netic fields gives rise to helicoidal field lines [15, 28–32]. This required a
description of the parallel dynamics in the presence of vertically tilted mag-
netic field lines.

A toroidal limiter tokamak geometry became available in GBS around
2010, with the first results being the identification of the turbulent satura-
tion mechanisms [33]. A complete set of boundary conditions for all fluid
moments was derived [34]. Then, several papers describing the turbulent
dynamics in this geometry followed, concentrating on identifying the linear
and non-linear turbulent regimes [35, 36], the equilibrium electric field, the
intrinsic toroidal plasma flows, and the effect of the limiter position [37–39].
Much of the research focus has been on clarifying the physical mechanisms
setting the SOL width [40–42]. More recently, a detailed comparison of GBS
simulations with Gas Puff Imaging (GPI) data of Alcator C-Mod inner-wall
limited discharges [43] was carried out, finding that the observed turbulence
characteristics and the background profiles are very well reproduced in the
simulations [44].
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GBS SOL simulations follow the plasma dynamics within an annular
region with right-handed coordinates (y = aθ, x, ϕ), which represent the
poloidal length around the minor radius a, the radius, and the toroidal angle.
The toroidal coordinate ϕ is periodic, while periodicity in y can be selected
for a given range of x. The periodic region corresponds to the closed flux-
surface region, while the SOL extends outside the last closed flux-surface
where the magnetic field lines are not periodic. A toroidal limiter can be
placed at an arbitrary poloidal angle. Simulations involve localized density
and temperature source terms (close to and at the inner boundary of the
simulated domain) building up the profiles in time, which then drives the
turbulence. This is the so-called ”flux-driven” approach. Our turbulence
studies focus on the steady state regime where plasma injection, turbulent
transport, and losses at the limiter balance each other. The recently intro-
duced closed field-line region allows sources to be placed inside the confined
region, driving turbulence and allowing the outflowing turbulent structures
to fill the SOL with plasma.

In the following subsections, we provide a complete description of the
simulation model. We start with the fluid moments for the main plasma
species, including the effects of neutrals, in section 2.1. This is followed
by a discussion of the drift-reduction procedure, leading to the final model
equations 2.2. The boundary conditions for the plasma-wall interface are
described in section 2.3, while the kinetic model for neutral particle physics
is shown in section 2.4. A description of the fluid equations follows below.

2.1. Main plasma species model equations

The derivation of the fluid equations starts from the Boltzmann equations
for the ion and electron species, where we include Krook collision operators
describing the interaction of ions and electrons with neutrals. These neutral
particles interact with the main plasma species through collisional processes,
and play an important role in the SOL dynamics, in particular, regulating
the heat and particle fluxes to the first wall. For the ion species we consider
ionization, recombination, and charge-exchange processes, while for the elec-
trons, we consider ionization, recombination, and elastic collision processes.
The kinetic equations considered are

∂fi
∂t

+ v · ∂fi
∂x

+ ai ·
∂fi
∂v

= νizfn − νcx

(
nn

ni
fi − fn

)
− νrecfi + Ci(fe, fi),

(1)
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∂fe
∂t

+ v · ∂fe

∂x
+ ae ·

∂fe
∂v

= νiznn

[
2Φe(vn, Te,iz)−

fe

ne

]
+ νennn

[
Φe(vn, Te,en)− fe

ne

]
− νrecfe + Ce(fe, fi)

(2)

where ae,i = Ze,ie(E + ve,i × B)/me,i is the particle acceleration due to the
Lorentz force, Φe is a Maxwellian distribution function for electrons with an
average velocity equal to the local average neutral velocity, and temperatures
Te,iz = Te/2− Eiz/3 +mev

2
e/6−mev

2
n/3 and Te,en = Te +me(v

2
e − v2

n)/3 de-
pending on local plasma and neutral properties to ensure energy conservation
in the high mass ratio limit [22]. Eiz is the ionization energy, and Ci and Ce
are the Coulomb collision operators including both inter- and intra-species
collisions for ions and electrons respectively. The subscripts {e, i, n} denote,
respectively, electrons, ions, and neutrals.

The ionization, recombination, elastic electron-neutral, and charge-exchange
processes are described, respectively, through the use of Krook operators with
collision frequencies defined as

νiz = ne〈veσiz(ve)〉 (3)

νrec = ne〈veσrec(ve)〉 (4)

νen = ne〈veσen(ve)〉 (5)

νcx = ni〈viσcx(vi)〉 (6)

where σiz, σrec, σen and σcx, are the ionization, recombination, elastic electron-
neutral, and charge-exchange cross sections. The effective reaction rates,
〈vσ〉, are taken from the OpenADAS [45]1 database.

The fluid equations result from the first three moments of the kinetic
equations in the Braginskii limit. We consider the limit where the neutral
collision times are much larger than the Coulomb collision times, which allows
us to retain the Braginskii closure for the ion and electron species [46]. In
the case where the neutral and Coulomb collision times cannot be separated,
a different closure procedure is required [47]. More sophisticated limits for
the fluid equations, such as the general gyroviscous expression for the main
ion species [48], are left for future work. The Braginskii moment equations,

1OpenADAS - http://open.adas.ac.uk
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including terms describing interactions between the main plasma species and
the neutrals, are given by

∂ne
∂t

=−∇ · (neve) + nnνiz − niνrec + Sn (7)

∂ni
∂t

=−∇ · (nivi) + nnνiz − niνrec + Sn (8)

mene
deve
dt

=−∇pe −∇ · Πe − ene [E + ve ×B] + Rei

+menn(νen + 2νiz)(vn − ve) (9)

mini
divi
dt

=−∇pi −∇ · Πi + Zieni [E + vi ×B]−Rei

+minn(νiz + νcx)(vn − vi) (10)

3

2
ne

deTe
dt

=− pe∇ · ve −∇ · qe − Πe : ∇ve +Qe

+ nnνiz

[
−Eiz −

3

2
Te +

3

2
meve ·

(
ve −

4

3
vn

)]
− nnνenmeve · (vn − ve) +

3

2
neSTe (11)

3

2
ni

diTi

dt
=− pi∇ · vi −∇ · qi − Πi : ∇vi +Qi

+ nn(νiz + νcx)

[
3

2
(Tn − Ti) +

mi

2
(vn − vi)

2

]
+

3

2
niSTi . (12)

where Πe,i are the stress tensors, Eiz is the ionization energy, Rei is the fric-
tion force between electrons and ions, pe,i is the pressure,qe,i is the heat flux
density, and Q is the heat generated by Coulomb collisions. The definitions
of the stress tensor, heat fluxes and sources, and friction forces used are given
in the review by Braginskii [46].

The detailed derivation of the terms describing the interaction between
plasma and neutrals can be found in [22]. These terms consist of plasma
sources and sinks due to ionization and recombination processes, in Eqs. 7
and 8; an explicit electron energy sink to accommodate for the ionization
energy, in Eq. 11; the drag and equipartition terms due to the difference
between the neutral and plasma particle velocity and temperature, in Eqs. 9–
12; and the heat generated by friction between the plasma and the neutral
species, in Eqs. 11 and 12.
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2.2. Drift reduced equations

Although much simpler than the kinetic equations, the fluid moment
equations still contains temporal scales (e.g. ω−1

c ) that are typically not of
interest for modeling turbulent dynamics. Additionally, we observe that the
perpendicular (turbulent) dynamics occur in length scales of the order of ρs,
while the relevant length scale for the parallel dynamics is the magnetic field
line length ∼ R. Hence, it is advantageous to eliminate the undesired (fast)
temporal scales, and to separate the parallel and the perpendicular dynamics.
The required separation of temporal and spatial scales is achieved through
the use of the following velocity representation:

ve = v‖eb̂ + vE×B + v?,e (13)

vi = v‖ib̂ + vE×B + v?,i + vpol,i (14)

together with the approximation E = −∇φ− b̂0∂tψ, where ψ represents the
perturbed poloidal magnetic flux. The drift velocities vE×B = −∇φ× b̂0/B
and v?,e,i = −∇pe,i × b̂0/(Ze,iene,iB) are the zeroth order solution to the

perpendicular component of equations 9 and 10. Here b̂ is a unit vector
in the direction of the magnetic field, with an equilibrium component b̂0.
The ion polarization drift vpol,i is obtained as a first order correction to the
solution of equation 10, using vE×B + v?,i as an estimate for vi:

vpol,i ≈ −
1

niωci

di
dt

(
ni
B
∇⊥φ+

1

eB
∇⊥pi

)
+

1

miniωci
b̂0 ×

[
Giκ−

∇Gi

3

]
.

(15)

The magnetic field line curvature vector is given by κ = b̂0 · ∇b̂0, and, after
imposing d

dt
� ωci, only the viscous component of the ion stress function is

retained:

Gi = −η0i

(
2∇‖v‖i +

Ĉ(φ)

B
+

Ĉ(pi)

ZieniB

)
. (16)

Here η0i = niTiτie is the viscous coefficient (τie is the electron-ion collision

time), and the curvature operator is defined as Ĉ(a) = (B/2)
[
∇× (b̂0/B)

]
·

∇a. In GBS, the polarization velocity (equation 15) and its divergence re-
tain corrections due to density gradients, i.e. we avoid the commonly used
Boussinesq approximation by recasting equation 10 as an equation for the
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momentum before carrying out the drift reduction. The derivation of the
polarization velocity and its divergence, which are somewhat lengthy, are
condensed in Appendix A. The equations are similar to those found by
Simakov and Catto [49, 50].

Once the polarization velocity and its divergence are known, obtaining
the drift reduced equations is straightforward. The principal idea is to ex-
pand equations 7–12 using equations 13 and 14. Assuming a quasi-neutral
plasma, we retain an equation for the electron density, a vorticity equation
that enforces charge conservation, and equations for the ion and electron
parallel velocities and temperatures. We use the charge number Zi = 1 for
the main ion species. The drift-reduced equations implemented in GBS are
given below, using the normalized units, symbols, and dimensionless plasma
parameters defined in table 1. These normalized units are used throughout
the rest of the paper.

∂n

∂t
=− ρ−1

?

B
{φ, n} − ∇ ·

(
nv‖eb̂

)
+

2

B

[
nĈ(Te) + TeĈ(n)− nĈ(φ)

]
+Dn∇2

⊥n+ Sn + νiznn − niνrec (17)

∂Ω

∂t
=− ρ−1

?

B
∇⊥ · {φ, ω} − ∇⊥ ·

[
∇‖(v‖iω)

]
+
B

3
Ĉ(Gi)

+B2∇ ·
(
j‖b̂
)

+ 2BĈ(pe + τpi) +DΩ∇2
⊥Ω− nn

n
νcxΩ (18)

∂U‖e
∂t

=− ρ−1
?

B

{
φ, v‖e

}
− v‖e∇‖v‖e

+
mi

me

[
νj‖
n

+∇‖φ−
∇‖pe
n
− 0.71∇‖Te −

2

3n
∇‖Ge

]
+Dv‖e∇

2
⊥v‖e +

nn

n
(νen + 2νiz)

(
v‖n − v‖e

)
(19)

∂v‖i
∂t

=− ρ−1
?

B

{
φ, v‖i

}
− v‖i∇‖v‖i −

2

3n
∇‖Gi −

1

n
∇‖ (pe + τpi)

+Dv‖i∇
2
⊥v‖i +

nn

n
(νiz + νcx)

(
v‖n − v‖i

)
(20)

∂Te
∂t

=− ρ−1
?

B
{φ, Te} − v‖e∇‖Te +

4

3

Te
B

[
7

2
Ĉ(Te) +

Te
n
Ĉ(n)− Ĉ(φ)

]
+

2

3

{
Te

[
0.71∇ ·

(
v‖ib̂

)
− 1.71∇ ·

(
v‖eb̂

)]
+ 0.71Te(v‖i − v‖e)

∇‖n
n

}
+ χ⊥,e∇2

⊥Te +∇‖
(
χ‖,e∇‖Te

)
+ STe −

nn

n
νenme

2

3
v‖e(v‖n − v‖e)
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+
nn

n
νiz

[
−2

3
Eiz − Te +mev‖e

(
v‖e −

4

3
v‖n

)]
(21)

∂Ti
∂t

=− ρ−1
?

B
{φ, Ti} − v‖i∇‖Ti +

4

3

Ti
B

[
Ĉ(Te) +

Te
n
Ĉ(n)− Ĉ(φ)

]
+

2

3
Ti
(
v‖i − v‖e

) ∇‖n
n
− 2

3
Ti∇ ·

(
v‖eb̂

)
− 10

3

Ti
B
Ĉ(Ti)

+ χ⊥,i∇2
⊥Ti +∇‖

(
χ‖,i∇‖Ti

)
+ STi

+
nn

n
(νiz + νcx)

[
Tn − Ti +

1

3
(v‖n − v‖i)2

]
. (22)

We make use of the following definitions: the Poisson bracket is {a, b} =
b̂0 · (∇a×∇b), the scalar vorticity is Ω = ∇ · ω = ∇ · (n∇⊥φ+ τ∇⊥pi),
j‖ = n

(
v‖i − v‖e

)
is the parallel current, and U‖e = v‖e + βe0miψ/(2me) is

the sum of electron inertial and electromagnetic flutter contributions. In
fact, ψ is related to the (dynamically induced) magnetic field through the
expression B1 = −βe0∇× (ψb̂0)/2. The unit magnetic field vector can then
be defined as b̂ = b̂0 + B1/B. It can be shown that B1 ⊥ B0, which in fact
excludes the fast compressional Alfvén wave from the dynamics. Including
the electromagnetic flutter contribution, the parallel derivative is given by
∇‖a = b̂0 · ∇a+ βe0 {ψ, a} / (2Bρ?).

The source terms Sn, STe , and STe have been added to the density and
temperature equations to model the outflow of hot plasma from the core to
the SOL. These sources are poloidally and toroidally constant, and Gaussian
shaped in the radial direction. They are localized in a narrow radial domain
inside the closed field line region. In simulations including only the SOL, the
position of the source defines the last closed flux surface (LCFS).

In normalized form, the gyroviscous terms are given by

Gi = −η0i

(
2∇‖v‖i +

Ĉ(φ)

B
+
Ĉ(pi)

nB

)
(23)

Ge = −η0e

(
2∇‖v‖e +

Ĉ(φ)

B
− Ĉ(pe)

nB

)
. (24)

Originally, small constant coefficients η0e,i were used in GBS to avoid
numerical pile-up at high parallel wavenumbers, effectively damping modes
whose wavelengths are too short to be resolved by the numerical grid. With
the various improvements of the code, these coefficients can now be assigned
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their physical values. A similar approach is used for the parallel heat flux
terms. The parallel heat diffusion coefficients, χ‖e,i, used to be set to a

constant, but alternatively they can have the form χ‖e,i ∝ T
5/2
i,e now.

The simulation model makes extensive use of the auxiliary scalar functions
φ, v‖e, and ψ, which must be extracted from the dynamical (e.g. left-hand
side) variables Ω and U‖e by inverting the following generalized Poisson and
Ampère equations:

∇ · (n∇⊥φ) = Ω− τ∇2
⊥pi (25)(

∇2
⊥ −

βe0
2

mi

me

n

)
v‖e = ∇2

⊥U‖e −
βe0
2

mi

me

nv‖i, (26)

with the magnetic flux deduced from

ψ =
(
U‖e − v‖e

)(βe0
2

mi

me

)−1

. (27)

The electrostatic potential, thus, involves corrections arising from the density
gradient, which should not be neglected in the SOL where the fluctuations are
O(1). Additionally, there is a shielding term on the right hand side of equa-
tion 25, ∼ τk2

⊥pi. Equation 26 reverts to U‖e = v‖e in the pure electrostatic
case. Finally, we remark here that the Poisson and Ampère operators are
time evolving. Thus, obtaining a solution to equations 25 and 26 through
standard sparse methods involves rebuilding and reinverting the operators
every timestep. This is impractical due to the excessive computational cost.
We developed a stencil-based multigrid solver to invert these operators effi-
ciently, which is detailed in section 3. The GBS model (equations 17–27) is
closed by a set of generalized Bohm-Chodura boundary conditions applied
at the entrance of the magnetic presheath, as described below.

2.3. Boundary conditions

As GBS has been used to model turbulence in open magnetic field line
configurations, major efforts have been placed in describing the interface
between the plasma and the vacuum vessel. The treatment of the Bohm-
Chodura sheath is crucial and therefore we describe its implementation. The
boundary conditions were first derived in [34], with corrections for finite
Ti introduced in [21]. Following these papers, we generalize the boundary
conditions to relax the Boussinesq approximations.
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When a plasma touches a wall, a plasma sheath contiguous to the wall
is formed. Within the sheath layer, both ions and electrons are accelerated
by large electric fields, the drift approximation breaks down, and eventu-
ally the plasma becomes non-neutral. In the case where the plasma flows
along magnetic fields that are incident to the wall at an oblique angle, three
distinct sheath regions can be identified as the wall is approached [51].
First comes the collisional presheath, where ions remain magnetized and the
plasma is ambipolarly accelerated in the parallel direction. Then comes the
magnetic presheath (MP), which remains quasi-neutral but where the drift-
approximation breaks down due to a large electric field established on the
ρs scale and in the direction normal to the wall surface. The MP is followed
by the Debye sheath, where an even larger electric field is established on the
Debye length scale and where quasi-neutrality is not satisfied. Therefore,
boundary conditions for the drift-fluid equations, Eqs. 17–27, describing the
proper sheath physics are required at the MP entrance.

Here, we outline the principal steps leading to a generalized set of Bohm-
Chodura sheath boundary conditions for all the fluid fields. The steady-state
dynamics of the plasma is analyzed in the collisional presheath, where the
drift-Braginskii model still applies. Moreover, in the vicinity of the MP en-
trance, the sheath electric field is so strong that plasma gradients in the direc-
tion normal to the wall become dominant. Thus, the system of fluid equations
becomes, in first approximation, one dimensional, and can be greatly sim-
plified by keeping only terms that contain gradients in the direction normal
to the wall. In the infinite aspect ratio limit, the direction normal to the
wall is aligned to the GBS coordinate y. The effect of radial gradients can
also be considered and gives rise to corrections due to E × B and diamag-
netic drifts. Under these assumptions, the steady-state Braginskii equations
can be written as a linear system of equations of the form MX = S, where
X =

[
∂yn, ∂yv‖i, ∂yφ, ∂yTe, ∂yTi

]
, M is a matrix of operators acting on X,

and S represents the source of particles, momentum, and heat.
As the MP is reached, gradients in the y direction become large. However,

the intensity of the sources does not necessarily change, thus the terms in
MX balance each other and are much larger than the source terms. We
approximate this as MX ≈ 0, which requires that det (M) = 0 is satisfied.
This defines the entrance of the MP, and, imposing this condition, one obtains
the value of the ion velocity at the MP entrance. Finally, from the matrix
system MX ≈ 0 one can obtain relations between the plasma gradients at
the MP entrance, leading to a complete set of boundary conditions. The
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boundary condition for v‖e must be derived from a kinetic theory [34]. The
final result is

v‖i =
√
Te

(
±
√
FT + θn −

θT
2
− 2φ

Te
θφ

)
(28)

v‖e =
√
Te

(
± exp

(
Λ− φ

Te

)
− 2φ

Te
θφ + 2 (θn + θTe)

)
(29)

∂n

∂y
=− n√

Te

(
± 1√

FT
+
θn
FT

+
θT

2FT

)
∂v‖i
∂y

(30)

∂φ

∂y
=−

√
Te

(
± 1√

FT
+
θn
FT

+
θT

2FT

)
∂v‖i
∂y

(31)

Ω =−
(
nFT cos2 χ

)
×

[(
± θFT

F
3/2
T

− 2θT

F
3/2
T

− 2θn

F
3/2
T

)(
∂v‖i
∂y

)2

+

√
Te

(
± 1√

FT
+
θn
FT

+
θT

2FT

)
∂2v‖i
∂y2

]
(32)

∂Te
∂y
≈0 (33)

∂Ti
∂y
≈0 (34)

In the above expressions, all quantities are given at the magnetic presheath
entrance, FT = 1 + τTi/Te, and the ± signs indicates values at opposite ends
of the field lines. We find that the largest contribution to Ω ∼ (∂yv‖i)

2/FT
in the Boussinesq boundary conditions [34] cancels out exactly with a non-
Boussinesq contribution. The temperature gradients along y are very small
and can be neglected, since one finds that ∂yTe ∼ ∂yTi ≈ 0.1∂yφ [21, 34]. The
drift corrections arising from radial plasma gradients are defined as follows:

θn =

√
Te

2 tanχ

∂ lnn

∂r
(35)

θTe =

√
Te

2 tanχ

∂ lnTe
∂r

(36)

θT =

√
Te

2 tanχ

∂ ln (FTTe)

∂r
(37)

θFT
=

√
Te

2 tanχ

∂ ln (FT )

∂r
(38)
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θφ =

√
Te

2 tanχ

∂ lnφ

∂r
(39)

The symbol χ represents the angle between the magnetic field lines and the
wall, with χ = π/2 indicating normal incidence with respect to the wall. In a
large aspect ratio tokamak with a toroidal limiter this reduces to χ ≈ r/(qR).

As a final remark on the boundary conditions, we note that the treat-
ment carried out in Ref. [34] does not include electromagnetic effects, which
are intrinsically 3-D and would require very costly full kinetic simulations
to unravel. In GBS electromagnetic simulations, equation 29 is used as a
boundary condition for v‖e and U‖e, which gives ψ = 0 at the MP entrance. A
detailed linear and non-linear analysis found that these boundary conditions
give the same stability conditions for ideal ballooning modes as ”line-tied”
conditions [40].

2.4. Kinetic model for neutral atoms

We summarize the kinetic model for neutral atoms included in GBS,
which is discussed in detail in [22]. A mono-atomic neutral species is consid-
ered. The kinetic treatment allows for short and long mean free path scenar-
ios. The neutral species is subject to ionization, recombination, and charge-
exchange processes. Neutral-neutral collisions, which can become important
in detached scenarios, are neglected since they have a lower reaction rate than
charge-exchange and ionization processes in the attached SOL regime, which
is the main interest of current GBS simulations. Elastic electron-neutral col-
lisions are neglected for the neutrals because of the small mass ratio. While
molecules and their dissociation can play a role in the SOL, they are ne-
glected here to allow us to develop a simple model to study the interaction
between neutral atoms and the plasma.

The dynamics of the distribution function of a single neutral species, fn,
is described using the kinetic equation

∂fn

∂t
+ v · ∂fn

∂x
= −νizfn − νcx

(
fn −

nn

ni
fi

)
+ νrecfi. (40)

The boundary conditions for fn involve assuming that all impacting par-
ticles are reemitted from the wall instantly, i.e. a saturated wall. A fraction
of the particles is reflected, while the rest is absorbed and released with a
velocity depending on the wall properties. The distribution function of the
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inflowing neutrals is

fn(xb,v) =(1− αrefl)Γout(xb)χin(xb,v)+ (41)

αrefl[fn(xb,v − 2vp) + fi(xb,v − 2vp)],

where xb is the position vector of a point on the limiter or divertor surface,
Γout is the sum of ion and neutral fluxes towards the limiter or divertor plates,
and vp = vpn̂ is the perpendicular velocity with respect to the boundary. The
inflowing velocity distribution χin, is set by the Knudsen cosine law

χin(xb,v) =
3

4π

m2

T 2
b

cos(θ) exp

(
−mv

2

2Tb

)
, (42)

where θ = arccos (v · n̂/v) and Tb is the wall temperature. The function
χin satisfies the property

∫
vp>0

vpχindv3 = 1. The solution of equation 40 in

the adiabatic limit (∂tfn ≈ 0) leads to the neutral density, parallel velocity,
and temperature used in the drift reduced equations (17–22). The numerical
treatment of the neutral particle model is outlined below in section 3.

3. Numerical implementation

GBS is aimed at global calculations of plasma turbulence within an an-
nular domain extending over a full torus, where we must resolve both the
macroscopic device scale and the ion sound Larmor gyroradius in the trans-
port timescale. The lack of separation of amplitudes between fluctuations and
background profiles, as well as the poor separation of length scales between
the eddy size and the radial domain, impose a global flux-driven approach.
GBS simulations involve plasma sources that build-up the profiles, which in
turn drive the turbulent eddies. Hence, the interaction between the turbulent
eddies and the ”bulk” plasma is retained to all orders. This effect is partic-
ularly important in the study of the pressure non-linearity effect believed to
saturate the turbulence [33].

The implementation of GBS can be hastily summarized as follows. A
radial section of a torus, with coordinate system (y = aθ, x, ϕ) is mapped
to a discrete Cartesian grid with (ny, nx, nz) points for each scalar field. We
denote N = ny×nx×nz as the total number of grid points. The ϕ coordinate
is periodic, while periodicity in y can be selected for a chosen range of x –
thus, we can vary between a poloidally periodic plasma, a limited plasma, or
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we can mix open and closed field lines. Time integration is carried out with
the Runge-Kutta order 4 (RK4) algorithm.

Spatial gradients are computed using standard second order centered fi-
nite difference formulas, while the E×B non-linear advection terms are dis-
cretized using the Arakawa scheme [17]. The Poisson and Ampère equations
can be solved using sparse matrix methods, or using a stencil-based multi-
grid solver, described below in section 3.3. The parallel gradient operators
have been described in detail in Ref. [20]. Field-aligned and non-field-aligned
strategies are possible. When the field-aligned strategy is used, the toroidal
coordinate of (U‖e, v‖e, ψ, v‖i) is displaced by half a grid point in the toroidal
direction (i.e. we use staggered grids). We found that it was necessary for
numerical stability to up/downwind the parallel gradients at the ends of the
domain, which was also the case in TOKAM3D [12]. In effect, boundary
conditions (Eqs. 28–34) are implemented using forward and backward finite
difference schemes to increase the numerical stability of the code.

Since the gradient operations and the time integration are both local, do-
main decomposition is an obvious choice for parallelization. Message passing
is carried out with the MPI library, which implements communications for a
distributed memory computer. We use a 3D Cartesian communicator, which
in effect decomposes each scalar field in (np,x, np,y, np,z) subdomains resid-
ing in different processes. When sparse matrix methods for the Poisson or
Ampère equations are used, collective communications are required to pass
the source term into the solver. The multigrid solver, on the other hand,
employs the same domain decomposition grids used for the spatial gradients.

In the following, we discuss several topics related to physical model and
numerical implementation in more detail, pointing out where necessary the
numerical and physical differences found with respect to the older version of
GBS [14].

3.1. Manufactured solutions verification

The reliability of numerical simulation codes can only be ensured through
a thorough and rigorous verification process. By a ”verification process”, we
mean a computational procedure to ensure that the targeted physical model
(here given by equations 17–22) is solved correctly by the code. Traditionally,
code verification has employed several approaches, the most common ones
being simple physical tests (e.g., convergence towards known linear growth
rates or other physical behavior) and code-to-code benchmarks. The Cy-
clone benchmark is a classical example illustrating these two approaches in
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plasma physics [52]. On the other hand, a rigorous code verification entails
quantifying the discretization error and its convergence rate towards a known
analytical solution.

Herein, we present a manufactured method solution (MMS) [53] verifica-
tion of the new GBS code. MMS is a general and rigorous methodology to
verify simulation codes, which was already applied to the old GBS version
(cold ion model, Boussinesq approximation) by Riva et al. [54]. The princi-
pal idea behind MMS is to manufacture a solution to the model equations,
and then adding analytical source terms so that the system naturally ac-
commodates the manufactured solution. Since the analytical solution of the
modified model is known, there is no conceptual difficulty in verifying the
code. Simulations using the analytical source terms are carried out using
progressively more refined grids, from which the discretization error and its
convergence rate can be quantified.

We carry out the assessment of the correct implementation of the model
equations by applying MMS as outlined in our previous publication [54]. In
this manner, we ensure the correct implementation of the substantial addi-
tions to the physical model described herein. To verify the implementation
of the drift-reduced Braginskii model, the manufactured solution chosen for
each field reads

s (y, r, ϕ, t) =As {Bs + Cs sin [Ds (ϕ− qy/a)]×
sin (Esy + Fs) sin [Gsx+Hst]} , (43)

where As, Bs, Cs, Ds, Es, Fs, Gs, and Hs are arbitrary constants and s
represents the scalar fields {n,Ω, v‖i, v‖e, Te, Ti} present in the GBS equations.
The constant Bs is used to ensure n > 0, Te,i > 0, while the other factors
are used to calibrate the numerical error, ensuring that no term dominates
the numerical error in the equations. The dependencies imposed through
these constants manifest the physical problem of interest, with a term being
perfectly aligned to the magnetic field lines, and a perturbation along the y-
coordinate. Variation along the radius and time variation are also included.

The calculation of the source terms consists in substituting equation 43
into equations 17–22 for each field. This tedious process is carried out using
Mathematica [55], which then also allows us to translate the analytical ex-
pressions directly to Fortran. In this manner, the possibility of introducing
errors into the source terms is reduced significantly. Since the convergence
of the numerical scheme used to discretize Eqs. 28–34 is first order, in the
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following we consider simple Dirichlet boundary conditions in y and x to pre-
serve the second order convergence of the discretized interior derivatives. The
solution of the full-polarization Poisson operator is verified independently in
Sec. 3.3.

The quantification of the error concentrates on calculating the discretiza-
tion error ε and the observed order of accuracy p̂, given by

ε = |sh − s| , (44)

p̂ =
ln [(sr2h − srh) / (srh − sh)]

ln(r)
. (45)

Here s is the analytical solution to the problem, h is a parameter representing
the degree of refinement of the grid, sh and srh represent the numerical so-
lutions obtained using different meshes, and r represents the grid refinement

factor between sh and srh. We consider the norms ||ε||2 =
√∑N

i ε
2
i /N and

||ε||∞ = max |εi|, where εi is the local numerical error at the grid point i, as
means to compute the error and to calculate p̂.

Six simulations are carried out, with mesh refinement parameters h =
1, 2, 4, 8, 16, 32 in each direction. The timestep is varied with

√
h, as the

RK4 time advance is 4th order accurate compared to the 2nd order accurate
spatial derivatives. The most refined grid has (ny, nx, nz) = (1024, 512, 256).
The simulation parameters used, which need not be physical for a pure ver-
ification exercise, are q = 2, ν = 0.01, ρ−1

? = 100, and mi/me = 200. The
verification results are summarized in figure 1, where we show the ||ε||∞ (left)
and ||ε||2 (right) norms of the discretization error (top), along with their or-
der of accuracy estimates p̂ (bottom). The discretization error, shown in
logarithmic scale, decreases with slope p̂ = 2 for all the fields. Thus, it is
demonstrated that equations 17–22 are implemented correctly in GBS, and
that the chosen numerical scheme satisfies 2nd order accuracy in space and
4th order in time.

3.2. Implementation of neutral physics model

In what follows, we summarize the calculation of the neutral density,
velocity, and temperature needed in equations 17–22. Using the method
of characteristics, the formal solution to equation 40 is found. Details of
the calculation are shown in Ref. [22]. The solution is then approximated
in the limit where τturb > τn and λmfp,nk‖ � 1. Physically, this means
that the neutral distribution function can be assumed to be static in the
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Figure 1: ||ε||∞ (left) and ||ε||2 (right) norms of the discretization error (top panels) and
their respective order of accuracy estimates (bottom panels) for GBS simulations where
the space/time grid is refined by a factor of 32. The refinement parameter is defined as
h = ∆x/∆x0 = ∆y/∆y0 = ∆z/∆z0 = (∆t/∆t0)2.

turbulent timescale (adiabatic limit), ∂tfn = 0 [56], and that the mean free
path of the neutrals is short compared to the parallel scalelength of the
plasma structures. The latter fact is then used to decouple the perpendicular
and parallel coordinates, arriving to the conclusion that each poloidal plane
can be treated separately in the computation.

The formal solution to equation 40, in the adiabatic limit and assuming
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λmfp,nk‖ � 1 , becomes

fn(x⊥, x‖,v, t) =

∫ r⊥b

0

[
S(x′

⊥,x‖,v,t)

v⊥
+ δ(r′⊥ − r⊥b)fn(x′⊥b, x‖,v, t)

]
(46)

× exp
[
− 1
v⊥

∫ r′⊥
0
νeff(x′′⊥, x‖, t)dr

′′
⊥

]
dr′⊥,

where r′⊥ is defined in the expression x′⊥ = x − r′⊥v⊥/v⊥, r⊥b indicates the
distance of x to the wall along the v direction, and v⊥ is the perpendicular
velocity. The effective cross-section for removal of the neutrals particles is
given by νeff = νiz + νcx. Here the single prime notation indicates the source
location of neutral particles, while the double primes indicate locations along
a path integral between x′ (source) and x (target). Hereafter, since we have
expressed the solution in a steady-state form, and where the poloidal planes
are decoupled, we drop the x‖ and t labels to simplify the notation.

Equation 46 involves a volumetric neutral source term resulting from
charge-exchange and recombination processes, given by

S(x′⊥,v) = νcx(x′⊥)nn(x′⊥)Φi(x
′
⊥,v) + νrec(x

′
⊥)fi(x

′
⊥,v), (47)

where Φi is the velocity distribution for the ions, and the source term from
the wall, δ(r′−r′b)fn(x′b,v), given by the boundary conditions (equation 41).

The recombination term in equation 46, together with the ion recycling
term Γout,i arising from the boundary conditions, do not depend on the neu-
tral distribution function and can be evaluated using the bulk plasma quanti-
ties. On the other hand, the charge-exchange and the reflected and re-emitted
neutrals depend on nn(x⊥), which must be computed.

A linear integral equation for nn(x⊥) is obtained by integrating equa-
tion 46 in velocity space. After extensive rearrangement (see [22]), the fol-
lowing expression is obtained:

nn(x⊥) =

∫
D

nn(x′⊥)νcx(x′⊥)Kp→p(x⊥,x
′
⊥)dA′+∫

∂D

Γout(x
′
⊥b)Kb→p(x⊥,x

′
⊥b)da′b + nn,rec(x⊥), (48)

where dA′ is an infinitesimal area in the perpendicular plane D, while da′b
represents an infinitesimal distance along the boundary ∂D. The perpendic-
ular component of neutral and ion flux outflowing into the boundary, Γout,
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can be obtained from the solution of

Γout(x⊥b) =

∫
v⊥ cos θfn(x⊥b,v⊥)dv⊥ + Γout,i(x⊥b) (49)

and where θ = arccos |v⊥ · n̂/v⊥| is the angle between v⊥/v⊥ and n̂ at the
target location, x⊥b. The following kernel functions, involving integrals in
velocity space, are defined

Kp→p(x⊥,x
′
⊥) =

∫ ∞
0

1

r′⊥
Φ⊥i(x

′
⊥,v⊥) exp

[
− 1

v⊥

∫ r′⊥

0

νeff(x′′⊥)dr′′⊥

]
dv⊥

(50)

Kb→p(x⊥,x
′
⊥b) =

∫ ∞
0

v⊥
r′⊥

cos θ′χ⊥in(x′⊥b,v⊥) exp

[
− 1

v⊥

∫ r′⊥

0

νeff(x′′⊥)dr′′⊥

]
dv⊥

(51)

Kp→b(x⊥b,x
′
⊥) =

∫ ∞
0

v⊥
r′⊥

cos θΦ⊥i(x
′
⊥,v⊥) exp

[
− 1

v⊥

∫ r′⊥

0

νeff(x′′⊥)dr′′⊥

]
dv⊥

(52)

Kb→b(x⊥b,x
′
⊥b) =

∫ ∞
0

v2
⊥
r′⊥

cos θ cos θ′χ⊥in(x′b,v) exp

[
− 1

v⊥

∫ r′⊥

0

νeff(x′′⊥)dr′′⊥

]
dv⊥,

(53)

where Φ⊥i(x⊥,v⊥) =
∫

Φi(x⊥,v)dv‖ and χ⊥in(x⊥,v⊥) =
∫
χin(x⊥,v)dv‖.

These kernels are interpreted as the neutral particles originating/arriving
from/to the plasma or the boundary. The exponentially decaying factors
take into account neutral losses due to ionization and charge-exchange colli-
sions along the particle trajectory. They do not depend on fn or any of its
moments, and they can be evaluated from the bulk plasma moments. Hence,
equations 46 and 49 can now be discretized, and assume the matrix form[

nn

Γout

]
=

[
Kp→p Kb→p

Kp→b Kb→b

]
·
[
nn

Γout

]
+

[
nn,rec

Γout,rec + Γout,i

]
. (54)

This linear system is dense, with about a third of the matrix elements filled,
typically. The fraction of non-zero entries decreases with the plasma size. In
GBS, equation 54 is solved using standard dense matrix solvers. Once the
neutral density is known, the entire distribution function is readily obtained
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from equation 46, which allows to compute the rest of the fluid moments
such as v‖n and Tn

Since the solution of equation 54 is rather costly, the neutral density is
recalculated on a timescale longer than the timestep associated with the ion
and electron fluid equations. On the other hand, the interaction terms in the
plasma equations, such as the ionization source and the neutral collision cross
sections, which depend also on the temperature and other plasma quantities,
are updated every time step. Finally, we remark that several convergence
tests ensuring sufficient precision of the solution are performed in [22].

3.3. Implementation and verification of a multigrid solver for the Poisson
and Ampère equations

Multigrid methods are powerful computational algorithms based on hier-
archical discretizations [57, 58]. The fundamental idea of multigrid methods
is to accelerate the convergence of classical iterative methods, such as the Ja-
cobi and Gauss-Seidel iterations, by solving progressively coarser problems
where low wavenumber error in the solution vector can be removed efficiently.

Figure 2: Potential function χ mapped to a 2D Cartesian grid, showing the location of the
grid indices, together with the integration contour (blue line). The vector n̂ (red arrow)
points outwards from each side of the square integration contour.

Geometric multigrid, which can be written in terms of simple stencil op-
erations, can be a O(N) method when properly designed. Additionally, since
the operators map to local grid operations, it can be parallelized using stan-
dard domain decomposition techniques. For this reason, we find multigrid
methods to be an ideal match to solve the generalized Poisson and Ampère
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equations (25 and 26) in GBS. We have developed a Fortran 2008, object
based 2-D multigrid solver employing the standard stencil-based approach
described in [57, 58].

The solver can compute a solution for model equations of the form

∇ · (∇⊥ξ(y, x))− λ(y, x)ξ(y, x) = Sξ(y, x) (55)

∇ · (λ(y, x)∇⊥ξ(y, x)) = Sξ(y, x), (56)

which can be used to express the Poisson equation with or without the Boussi-
nesq approximation and the generalized Ampère operator. In these model
problems, ξ represents the scalar potential function to obtain, λ is a known
scalar field (e.g. the plasma density), Sξ is a source term (e.g. the charge or
the current).

The differential operators have been implemented using a finite volume
approach, as suggested in [58] for variable coefficient problems. In GBS, in
addition to the scalar λ inside the operator, one must also treat the shaping
coefficients [20]. We express the problem in weak form, and the differen-
tial operator is treated using the divergence theorem

∫
∇ · (λ∇⊥ξ) dV =∫

λ (∇⊥ξ · n̂) d`, which gives a line integral (n̂ is an outward pointing vector
normal to the integration contour, see figure 2). In stencil notation, the 2nd
order accurate differential operator is

D(y,x) =

δ(+1,−1) δ(+1,+0) δ(+1,+1)

δ(+0,−1) δ(+0,+0) δ(+0,+1)

δ(−1,−1) δ(−1,+0) δ(−1,+1)

 ,

δ(+0,+0) =−
{

1

2∆y2

[
(λgyy)(−1,+0) + 2 (λgyy)(+0,+0) + (λgyy)(+1,+0)

]
+

1

2∆x2

[
(λgxx)(+0,−1) + 2 (λgxx)(+0,+0) + (λgxx)(+0,+1)

]}
δ(−1,+0) =

1

2∆y2

[
(λgyy)(−1,+0) + (λgyy)(0,0)

]
− 1

8∆x∆y

[
(λgxy)(+0,+1) − (λgxy)(+0,−1)

]
δ(+1,+0) =

1

2∆y2

[
(λgyy)(+1,+0) + (λgyy)(0,0)

]
− 1

8∆x∆y

[
(λgxy)(+0,−1) − (λgxy)(+0,+1)

]
δ(+0,−1) =

1

2∆x2

[
(λgxx)(+0,−1) + (λgxx)(0,0)

]
− 1

8∆x∆y

[
(λgxy)(−1,+0) − (λgxy)(+1,+0)

]
δ(+0,+1) =

1

2∆x2

[
(λgxx)(+0,+1) + (λgxx)(0,0)

]
− 1

8∆x∆y

[
(λgxy)(+1,+0) − (λgxy)(−1,+0)

]
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δ(−1,+1) =− 1

8∆x∆y

[
(λgxy)(−1,+0) + 2 (λgxy)(+0,+0) + (λgxy)(+0,+1)

]
δ(+1,−1) =− 1

8∆x∆y

[
(λgxy)(+1,+0) + 2 (λgxy)(+0,+0) + (λgxy)(+0,−1)

]
δ(+1,+1) = +

1

8∆x∆y

[
(λgxy)(+0,+1) + 2 (λgxy)(+0,+0) + (λgxy)(+1,+0)

]
δ(−1,−1) = +

1

8∆x∆y

[
(λgxy)(+0,−1) + 2 (λgxy)(+0,+0) + (λgxy)(−1,+0)

]
.

Here, the subscripts indicates, in a 2-D Cartesian grid, the indices where
the quantities are defined. Where the integration requires values at the half
indices (±1/2,±1/2), the quantities are obtained using linear interpolation.
In addition to the scalar function λ, the metric coefficients gij enter the
computation. The discretization procedure ensures self-adjointness of the
operator and, furthermore, takes into account the variation of the metric
coefficients automatically.

The grid transfer operations implemented, e.g. restriction and prolonga-
tion, are the full weighting scheme and the linear interpolation operators

Ri =
1

16

1 2 1
2 4 2
1 2 1

 , Ii,x =
1

2

(
1 1

)
, Ii,y =

1

2

(
1
1

)
.

The operators are all modified at the boundary, following the method out-
lined by [58]. The relaxation methods implemented are the relaxed Jacobi,
Successive Over Relaxation, and Red-Black Gauss-Seidel iterations. Non-
homogenous Dirichlet and Von Neumann boundary conditions can be spec-
ified, with the condition that at least one of the boundaries of the domain
must fulfill a Dirichlet condition. We have verified the 2nd order accuracy
of this solver in the context of a stand-alone program with a simple ana-
lytic solution (a product of harmonic functions). As an example, in figure 3
we show the convergence test carried out for the non-Boussinesq Poisson
equation with solution ξth(y, x) = sin(kyy) sin(kxx), using spatially varying
coefficients mimicking

λ =λ0

[
1 + sin2

(
2πkpy

Ly

)
exp

(
(x− x0)2

2σ2

)]
. (57)

In figure 3 we demonstrate (a) 2nd order accuracy of the solver and (b) good
convergence properties even when the wavenumbers of λ(y, x), kp and σ, are
large.
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Figure 3: Infinity norm of the numerical error, ||ξth − ξ||∞, found in multigrid solution
of equation 56 using equation 57 as a spatially varying coefficient with wavenumbers kp
(left) and σ (right). We use kx = ky = 4, ny = 4nx, Ly = 800, and Dirichlet boundary
conditions on all four sides.

Verifying the non-linear steady state is a different matter. The chaotic
nature of the system amplifies tiny numerical differences over time, leading
to different plasma states. For this reason, we carry out two identical simula-
tions that use two Poisson different solvers (multigrid vs. PMUMPS [59, 60],
a parallel sparse solver), and we compare the mean profiles and the turbu-
lence. Figure 4 shows such comparison, in particular (a) for the relative
amplitude vs. poloidal wavenumber kθρs0 and (b) for the probability distri-
bution function (PDF) of the potential fluctuations. Here we note that the
moments of the PDF are subject to time averaging error due to finite sam-
pling. In spite of this, the moments of the PDF (mean, root-mean-square,
and skewness) match each other quite well. The steady-state plasma profiles
are also a good match.

Convergence for the problems of interest is very fast, with the norm of
the relative error dropping below 10−10 in 3 or 4 multigrid iterations (V(3,3)-
cycles) with 6 grid levels in GBS simulations. Fastest convergence and
robustness is found using an overrelaxed Red-Black Gauss-Seidel method
(relaxation constant ω ≈ 1.2), which can improve convergence when grid
anisotropy and variable coefficients are present. The metric coefficients used
in GBS, as an example, the ŝ− α model, involve a severely deformed metric
that slows down convergence. In effect, as one of the metric coefficients in-
creases like gyy ∝ (ŝθ)2, convergence must be improved by further increasing
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carried out using a multigrid or a sparse matrix solver. GBS simulation parameters were
Lx = 100, Ly = 400, ρ−1? = 250, ν = 0.1, βe0 = 0.

the relaxation constant. Even with a large relaxation parameter, the cross
derivative terms ∼ ŝθ∂xy remain troublesome. Overall, the convergence prop-
erties of the solver remain appropriate for ŝ ≈ 1. With this setup, the GBS
multigrid solver is faster than the backsolve step of standard sparse linear
solvers.

The largest gains when integrating a multigrid solver into GBS stem
from improved parallelism, in particular, in the strong scaling, and from the
possibility of defining time varying operators. Even for the simple case where
the Boussinesq operator ∇2

⊥φ is used, the parallel sparse solver scales poorly
and became a bottleneck towards large size simulations. As an example of
such a case, in figure 5 we show the strong and weak scalings and timings
for GBS using parallel multigrid or PMUMPS. The test was carried out at
Helios, a BullX B510 supercomputer based on Intel Xeon processors operated
by the International Fusion Energy Research Centre. In the strong scaling,
the simulations have a grid size (ny, nx) = (2048, 256), which corresponds
to plasmas even larger than the ones discussed in [44]. The poloidal grid
size is maintained constant while the number of cores in each poloidal plane
is increased. This approach involves a direct test on the scalability of the
Poisson solver itself.

Using multigrid represents a tremendous advantage with respect to the
PMUMPS simulations, with a factor of 5 gain in speed at 32 cores per poloidal
plane. For the multigrid runs we observe a superlinear speed-up when going
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from 16 to 32 cores per poloidal plane. This is due to reduced memory usage
in each core, which then leads to better cache use and improves the solver’s
performance. On the left-bottom panel of figure 5, note that the multigrid
solver takes a small fraction of the total timestep. On the other hand, when
using PMUMPS the computational effort is completely dominated by the
backsolve of the Poisson operator. Other parallel sparse solvers, such as
PARDISO [61], display similar performance as PMUMPS.

For the weak scaling and timing (right top and bottom panels of figure 5),
we choose a fixed number of points per core, and then increase the problem
size and the number of cores at the same rate. This exercise tests whether
a code can treat increasingly larger problems in an efficient manner. As we
observe in the figure, the new version of GBS, with its multigrid solver, is
capable of treating large grid sizes just as efficiently as it can deal with small
ones. Finally, we note that the multigrid solver solution time in GBS scales
as O(N), as shown by the constant time to solution on the bottom-right
panel of figure 5.

In Ref. [14], a time varying operator was implemented for the Ampère
problem (equation 26) using standard sparse methods. The operator had
to be periodically rebuilt and diagonalized. For speed considerations, this
process took place every 10 timesteps, and the LU decomposed operator was
used to obtain v‖e and ψ every timestep (more specifically, every Runge-
Kutta substep). Furthermore, the number of cores remained bounded by the
number of poloidal planes, mainly because of memory constraints. In the
new version of GBS, we find that the Ampère equation can be solved with
the same efficiency and scalability shown for the Poisson problem. Hence, we
can include electromagnetic effects with only a 10% penalty in speed respect
to the electrostatic case, and solving the time dependent operator.

4. Physical applications

As a showcase of the new capabilities of GBS, we present two modeling
applications using the simple field-aligned grid with flat q. First, we demon-
strate the propagation of coherent plasma filaments (blobs) in a geometry
corresponding to that of the TORPEX Simple Magnetized Torus (SMT) [15].
We use this simple example, in particular, to demonstrate the effects of finite
ion temperature and the full-polarization terms in the vorticity equation.
Then, we show a more complex simulation of the full turbulent dynamics in
a tokamak SOL.
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Figure 5: Strong (left) and weak (right) scalings (top) and timings (bottom) are shown for
GBS simulations using either parallel multigrid or parallel MUMPS. (left, constant grid
size with increasing number of cores) (right, increasing grid size with constant number of
points per core). In the strong scaling we take a fixed grid size and increase the number
of cores per poloidal plane from 4 to 32. In the weak scaling, the problem size and the
number of cores in the y direction, Ncy, are both increased by a factor of 8. The test
was carried out at Helios, a BullX B510 supercomputer based on Intel Xeon processors
operated by the International Fusion Energy Research Centre.

4.1. Seeded blob simulations

GBS is used here to simulate blob dynamics in the SMT geometry, in
particular, TORPEX [15]. This machine is characterized by helical field
lines terminating on the vessel walls, resulting from the superposition of
toroidal (Bϕ) and vertical (By) magnetic fields. The main device parameters
are R = 1m, a = 0.2m, Bϕ = 75mT, By ∼ 2mT. The number of field line
turns around the torus, Nϕ, can be varied between 2 and 16. Thus, the main
elements of scrape-off layer turbulence (curvature driven modes, helical field
lines, and sheath physics) are present, although in a simplified setting with
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Figure 6: Plasma density snapshots at t = 0.16, 0.32, 0.48R/cs0 (left, center, right) in
seeded blob simulations using TORPEX geometry and parameters. The top row shows
the blob propagation in a cold-ion, Boussinesq model, while the bottom row, including Ti
effects and non-Boussinesq terms shows significantly faster propagation.

excellent diagnostic coverage.
In what follows, we consider seeded blob simulations, where we follow the

dynamics of a single blob used as an initial condition for the simulation. The
setup is identical to previous blob simulations carried out with GBS [31],
but we include Ti physics (τ = 2) and the full-polarization terms. The
following parameters are used: ρ−1

? = 500, Ly = Lx = 200, Nϕ = 2, ν =
0.1, which correspond to ne0 = 1017m−3 and Te0 = 1eV. Electromagnetic
terms are neglected due to the small β. The grid resolution is (ny, nx, nz) =
(256, 256, 64), and we consider the following blob sizes a⊥ = {0.5, 1.0, 2.0}a0,

where a0 = [4(2πNϕ)2ρ−1
? ]

1/5 ≈ 13ρs0 is the blob reference size. The initial
longitudinal (e.g. along the field line) blob size considered is a‖ = 2πNϕ,
which corresponds to a connected blob.

The simulation is initialized using a field-line-following Gaussian pertur-
bation in n, Te, and Ti. The electrostatic potential starts as a small dipole
”seed” to initialize the motion, and we require a balance between the lead-
ing order terms in the Ohm’s law. The blob is propelled by an E × B flow
resulting from the dipole structure of the electric field, which is driven by
the magnetic field curvature terms. As the blob accelerates it deforms into
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a mushroom shaped structure, and then turbulent features form, leading to
loss of coherence. The blob break-up takes place after it travels a significant
fraction of the radial extension of the vessel.

Figure 6 shows an example of such process, comparing our previous
Boussinesq simulations with τ = 0 to the τ = 2, non-Boussinesq case. The
time evolution of the plasma density is shown for a⊥ = 1a0. Similar dy-
namics is observed for the other blob sizes.Each column shows a density
snapshot in time, with t = 0.16, 0.32, 0.48R/cs0. The time scale of the phys-
ical processes (acceleration, propagation, break-up) is significantly faster in
simulations with τ = 2. This result is qualitatively consistent with recent
blob simulations using fluid and gyrofluid codes [7, 62–64], in the sense that
non-Boussinesq blobs with finite Ti dynamics propagate faster than their cold
ion counterparts and can have enhanced coherence. An exhaustive bench-
mark and validation exercise for seeded blob motion in TORPEX, including
GBS and other codes, has been carried out in the cold ion limit [65], and a
similar exercise is taking place using data from the MAST tokamak [66].

4.2. Scrape-off layer simulation including a closed field line region

In the past, GBS simulations focused on the plasma dynamics of a SOL
region with only open magnetic field lines. However, recent infrared thermog-
raphy measurements have shown very steep plasma profiles just outside the
LCFS [67]. Steep plasma profiles are typically associated to radially sheared
electric fields, for instance, as in the high confinement mode (H-mode) trans-
port barrier. This type of phenomena, which must forcibly include interaction
between the open and closed magnetic field line regions, strongly motivated
the inclusion of a confined region in GBS to fuel the SOL more realistically
than in our previous work. Herein we present the first such simulations.

Results of a GBS SOL simulation including a closed field line region
are shown in figure 7. The parameters are Ly = 1600, Lx = 100, ρ−1

? =
1000, ν = 0.01, q = 4 (flat profile), βe0 = 0, with resolution (ny, nx, nz) =
(1024, 64, 128). The source terms are poloidally and toroidally uniform, with
the radial profile S = 0.25 exp

(
− (x/5)2). The sources are centered around

the inner boundary of the simulation domain. An equivalent simulation,
albeit without the confined region, is described in [42]. As a first approach
to studying a complex physical system, we use a Boussinesq model with cold
ions. The plasma flux surface geometry is circular, with an infinitely-thin
wedge limiter placed at the high-field-side, mimicking an inner-wall-limited
plasma. Similar configurations have been considered by other codes [10, 68].
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Figure 7: Poloidal cross sections of density (top left), electrostatic potential (top right),
ion parallel velocity (bottom left) and electron parallel velocity (bottom right) in GBS
simulations coupling the plasma edge with the scrape-off layer. The limiter is an infinitely
thin wedge shown as a thick black line in the SOL region.

The plasma dynamics found differs from previous GBS results in signifi-
cant ways. To begin, there is a strong interplay between sheath-driven flows
and the confined region. A strong inwards radial v‖i flux from the SOL drives
intrinsic rotation in the plasma edge region. The parallel flows, in fact, do
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not equalize along the field line (bottom left of figure 7), which in turn drives
a poloidal asymmetry in the density due to parallel momentum balance (top
left of figure 7). A similar effect was found by Tamain et al. [68], although in
their case the density strongly ballooned in the low-field-side, and the flow
asymmetry was poloidally mirrored with respect to ours.

Some other interesting phenomena appear in the simulation.The electro-
static potential changes sign around the LCFS, and the sheath cannot sustain
the typical potential of φ ∼ 3Te due to the presence of field aligned currents
at the sheath (see, for example, [37]). This effect creates a large floating
potential in the near SOL, which in turn drives a strong v‖e feature close
to the limiters. In addition, a strong electric field gradient is found around
the LCFS, with the flow being clockwise in the confined region and counter-
clockwise in the SOL. This is exactly the simulation scenario where effects
such as blob creation and turbulence suppression arise and can be studied in
a natural and self-consistent way.

5. Summary and conclusions

The present paper describes a new version of GBS, a 3D two-fluid global,
flux-driven plasma turbulence code to simulate the turbulent dynamics at the
boundary of tokamaks. The development of the new GBS version was in part
driven by the objective of studying SOL turbulent dynamics in medium size
tokamaks and beyond with a reliable model. We remark two aspects of the
present work, which are intertwined: model extensions increasing the physics
fidelity of the simulations, and the computational improvements allowing
them.

The model extensions include neutral atom physics, finite ion temper-
ature, and a more sophisticated treatment of the polarization drift. The
neutral atom model treats a single, monoatomic kinetic species subject to
ionization, charge exchange, and recombination processes. The effect of these
processes is included in the plasma fluid equations through a Braginskii-like
closure that adds particle, momentum, and heat sinks and sources related
to the neutrals. GBS implements, in fact, drift-reduced equations for ion
and electron density, momentum, and temperature, with a charge conserva-
tion (vorticity) equation. The latter includes a more refined description of
the polarization drift, retaining a non-linear coupling between density and
electrostatic potential.
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Concurrently with these model improvements, the GBS code has been
completely refactored, for instance, by introducing a 3-D Cartesian communi-
cator and a scalable parallel multigrid solver. Thanks to these improvements,
we report enhanced parallel scalability, with the possibility of treating elec-
tromagnetic fluctuations at any plasma size very efficiently. The introduction
of multigrid techniques was also paramount for eliminating the Boussinesq
approximation. The implementation of the model equations is verified using
the MMS method, demonstrating that the discretization of the fluid model
equations attains the desired accuracy order. This process gives us full con-
fidence in the reliability and fidelity of the code. Indeed, simple physics
examples obtained using the new GBS code already point towards new an
exciting directions, such as the simulations concurrently including closed and
open field line regions.
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Appendix A. Expressions for the polarization drift

The derivation of the polarization drift and its divergence begins with
the Braginskii equation for the αth component of the momentum of the ion
species, written in physical units:

∂

∂t
(miniviα) +

∂

∂xβ
(mini 〈ViαViβ〉)− Zieni [Eα + (vi ×B)α] = Rα , (A.1)

33



where Rα is the momentum exchange between species, 〈〉 implies averaging
over the distribution function, and Einstein summation notation is used. The
velocity is split between mean and random components, Vi = v′i + vi, with
〈v′i〉 = 0, which allows us to write

∂

∂xβ
(mini 〈ViαViβ〉) =

∂

∂xβ
(miniviαviβ) +

∂

∂xβ
(mini 〈viαviβ〉)

=vi · ∇ (minivi) +minivi∇ · vi +∇pi +∇ · Πi. (A.2)

In the expression above, the scalar pressure and the ion stress tensor take
their usual forms, and we use the product rule to expand the term involving
the mean velocity.

The drift reduction follows as usual. The procedure employed is general,
but we restrict the analysis to the case of a large aspect ratio tokamak, which
allows us to simplify the polarization velocity and its divergence considerably.
Taking the cross product of equation A.1 with b̂0, having approximated B
with its equilibrium value, yields

v⊥i =
b̂0 ×∇⊥φ

B
+

b̂0 ×∇pi
ZieniB

+
b̂0 ×∇ · Πi

ZieniB
+

b̂0

ZieniB
× d

dt
(minivi) +

b̂0 ×mvi∇ · vi
ZieB

. (A.3)

The first two terms are identified as the E×B and diamagnetic drifts, and
together with v‖i represent in fact the 0th order solution of equation A.1

v0i = v‖ib̂ + vE×B + v?i (A.4)

v0⊥i = vE×B + v?i (A.5)

where vE×B = −∇φ× b̂0/B and v?,i = −∇pi × b̂0/(ZieniB). The polariza-
tion drift is obtained from

vpol,i =
b̂0

ZieniB
× d

dt
(miniv0⊥i) +

b̂0 ×mv0⊥i∇ · v0i

ZieB
+

b̂0 ×∇ · Πi

ZieniB
. (A.6)

The 0th order perpendicular velocity, crossed with the unit magnetic field,
gives

b̂0 × niv0⊥i = −
[
ni∇⊥φ
B

+
∇⊥pi
B

]
, (A.7)
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while the divergence of v⊥0 is

∇ · v0⊥i ≈
1

B

[(
∇× b̂0

)
· ∇φ− ∇B

B
· b̂0 ×∇⊥φ

]
+∇‖v‖i+

1

ZieniB

[(
∇× b̂0

)
· ∇pi −

(
∇B
B

+
∇ni
ni

)
· b̂0 ×∇⊥pi

]
, (A.8)

where we assume a large aspect ratio tokamak, neglecting some small curva-
ture terms ∼ ∇ · b̂0.

The ion stress tensor is split into viscous and finite Larmor radius com-
ponents in the same way it is treated in Ref. [14]:

∇ · Πi =∇ · Πi,FLR +∇ · Πi,vis, (A.9)

∇ · Πi,FLR =−miniv?i · ∇v0⊥i + pi

(
∇× b̂0

ωci

)
· ∇v0⊥i+

∇⊥
[
pi

2ωci
∇ ·
(
b̂0 × v0⊥i

)]
+ b̂0 ×∇

(
pi

2ωci
∇⊥ · v0⊥i

)
,

(A.10)

∇ · Πi,vis =Giκ−
1

3
∇Gi +

[
∇‖Gi

]
b̂0. (A.11)

Gi is defined in equation 23. The last term of equation A.8 multiplied by
b̂0 × niv0⊥i, together with the first term of equation A.10 cancel out the
diamagnetic convection of the momentum in the total time derivative, as
typically found when using the Braginskii closure. Hence, neglecting the
polarization velocity from the convective derivative, the time derivative be-
comes di

dt
= ∂t + vE×B · ∇+ v‖ib̂ · ∇. This is not the case when more general

closures are used, a discussion on the validity of the diamagnetic cancellation
can be found in [48]

It is straightforward to show that, in the large aspect ratio limit, the
rest of the terms stemming from b̂0 × mv0⊥i(∇ · v0i)/(ZieB) can be ne-
glected. As the divergence of the velocity involves the magnetic field cur-
vature, these terms are estimated to be a factor of ρs/R smaller than b̂0 ×
d
dt

(miniv0⊥i)/(ZieniB).
The final expression for the polarization velocity (i.e. equation 15) is

vpol,i ≈ −
1

niωci

di
dt

(
ni
B
∇⊥φ+

1

B
∇⊥pi

)
+

1

miniωci
b̂0 ×

[
Giκ−

∇Gi

3

]
.

(A.12)
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The vorticity equation involves the divergence of the polarization current
jpol,i = nivpol,i. After some algebra, assuming a static magnetic field and
again ordering curvature terms as R−1, the following useful expressions are
obtained

ω =ni∇⊥φ+∇⊥pi (A.13)

Ω =∇ · ω (A.14)

∇ · jpol,i ≈−
1

Bωci

∂Ω

∂t
− 1

Bωci
∇ ·
[
∇‖(v‖iω)

]
− 1

Bωci
∇ ·

[
b̂0 ×∇⊥φ

B
· ∇ω

]
+

1

3miωci
Ĉ(Gi). (A.15)

Equation A.15, together with the divergence of the diamagnetic and parallel
currents, leads directly to Equation 18.
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J. Contributors, Theory-based scaling of the sol width in circular limited
tokamak plasmas, Nuclear Fusion 53 (2013) 122001.

[42] F. Halpern, P. Ricci, S. Jolliet, J. Loizu, A. Mosetto, Theory of the
scrape-off layer width in inner-wall limited tokamak plasmas, Nuclear
Fusion 54 (2014) 043003.

[43] S. J. Zweben, B. D. Scott, J. L. Terry, B. LaBombard, J. W. Hughes,
D. P. Stotler, Comparison of scrape-off layer turbulence in Alcator C-
Mod with three dimensional gyrofluid computations, Physics of Plasmas
16 (2009) 082505.

[44] F. Halpern, et al., Comparison of 3d flux-driven scrape-off layer tur-
bulence simulations with gas-puff imaging of alcator c-mod inner wall
limited discharges, Plasma Physics and Controlled Fusion (in press) 57
(2015).

[45] H. P. Summers, W. J. Dickson, M. G. O’Mullane, N. R. Badnell, A. D.
Whiteford, D. H. Brooks, J. Lang, S. D. Loch, D. C. Griffin, Ionization
state, excited populations and emission of impurities in dynamic finite
density plasmas: I. the generalized collisionalradiative model for light
elements, Plasma Physics and Controlled Fusion 48 (2006) 263.

[46] S. I. Braginskii, Transport processes in a plasma, volume 1 of Reviews
of Plasma Physics, Consultants Bureau, New York, 1965.

[47] P. Helander, D. Sigmar, Collisional Transport in Magnetized Plas-
mas, Cambridge Monographs on Plasma Physics, Cambridge University
Press, 2005.

[48] J. J. Ramos, General expression of the gyroviscous force, Physics of
Plasmas 12 (2005) 112301.

[49] A. N. Simakov, P. J. Catto, Drift-ordered fluid equations for field-aligned
modes in low- collisional plasma with equilibrium pressure pedestals,
Physics of Plasmas 10 (2003) 4744–4757.

[50] A. N. Simakov, P. J. Catto, Erratum: drift-ordered fluid equations for
field-aligned modes in low- collisional plasma with equilibrium pressure

41



pedestals [phys. plasmas 10, 4744 (2003)], Physics of Plasmas 11 (2004)
2326–2326.

[51] K. U. Riemann, The bohm criterion and sheath formation, Journal of
Physics D: Applied Physics 24 (1991) 493.

[52] A. M. Dimits, G. Bateman, M. A. Beer, B. I. Cohen, W. Dorland,
G. W. Hammett, C. Kim, J. E. Kinsey, M. Kotschenreuther, A. H.
Kritz, L. L. Lao, J. Mandrekas, W. M. Nevins, S. E. Parker, A. J. Redd,
D. E. Shumaker, R. Sydora, J. Weiland, Comparisons and physics basis
of tokamak transport models and turbulence simulations, Physics of
Plasmas 7 (2000) 969–983.

[53] W. L. Oberkampf, C. J. Roy, Verification and validation in scientific
computing, Cambridge University Press, 2010.

[54] F. Riva, P. Ricci, F. D. Halpern, S. Jolliet, J. Loizu, A. Mosetto, Verifica-
tion methodology for plasma simulations and application to a scrape-off
layer turbulence code, Physics of Plasmas 21 (2014) 062301.

[55] I. Wolfram Research, Mathematica, version 8.0 ed., Wolfram Research,
Inc, Champaign, Illinois, 2010.

[56] Y. Marandet, A. Mekkaoui, D. Reiter, P. Brner, P. Genesio, F. Catoire,
J. Rosato, H. Capes, L. Godbert-Mouret, M. Koubiti, R. Stamm, Trans-
port of neutral particles in turbulent scrape-off layer plasmas, Nuclear
Fusion 51 (2011) 083035.

[57] W. Briggs, V. Henson, S. McCormick, A Multigrid Tutorial, Second
Edition, second ed., Society for Industrial and Applied Mathematics,
2000. doi:10.1137/1.9780898719505.

[58] U. Trottenberg, A. Schuller, Multigrid, Academic Press, Inc., Orlando,
FL, USA, 2001.

[59] P. R. Amestoy, I. S. Duff, J. Koster, J.-Y. L’Excellent, A fully
asynchronous multifrontal solver using distributed dynamic scheduling,
SIAM Journal on Matrix Analysis and Applications 23 (2001) 15–41.

[60] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet, Hybrid
scheduling for the parallel solution of linear systems, Parallel Computing
32 (2006) 136–156.

42
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Primitive variables
Quantity Unit Definition
B0 T Magnetic field at the magnetic axis
ne0 m−3 Density at the LCFS
Te0 eV Temperature at the LCFS
R0 m Major radius at the magnetic axis

Gyrobohm normalizations
Quantity Definition

cs0
√
Te0/mi Sound speed

ωci0 eB0/mi Ion gyrofrequency
ρs0 cs0ωci0 Ion sound Larmor gyroradius

Time and space normalizations
Quantity Normalization Definition
l⊥ ρs0 Reference perpendicular length
l‖ R0 Reference parallel length
t R/cs0 Reference time

Dimensionless variables
Parameter Normalization Definition
n ne0 Density
φ Te0/e Electric potential
Ω ne0Te0/(eρ

2
s0) Vorticity

v‖e,i cs0 Electron/ion parallel velocities
Te,i T(e,i)0 Electron/ion temperatures
ψ 2mics0/(eβe0) Poloidal magnetic flux

Dimensionless parameters
Parameter Definition
ν ene0R0/(mics0σ‖) Dimensionless Spitzer resistivity
ρ? ρs0/R0 Normalized ion sound Larmor gyroradius
βe0 2µ0ne0Te0/B

2
0 Electron plasma beta

τ Ti0/Te0 Temperature ratio

Diffusion coefficients
Parameter Normalization
D,χ⊥ cs0ρ

2
s0/R0 Particle/heat diffusion coefficients

χ‖ cs0R0 Parallel heat diffusion coefficient

Table 1: Normalizations and dimensionless parameters used in GBS.
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