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Abstract. It is found that modes of Alfvénic character affected by plasma

compressibility and having equal poloidal and toroidal mode numbers (named “isomon

modes”) can exist in W7-X. These modes, and the conditions under which they arise, are

sensitive to the magnitude of the rotational transform of the field lines and the presence

of energetic ions. The energetic ions produced by neutral-beam injection (having the

energy 55 − 60 keV) interact resonantly with large-scale isomon modes (m = n � 10),

which tends to lead to instabilities extending over a large part of the plasma cross section.
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1. Introduction

Several types of plasma instabilities driven by energetic ions, with exhibiting a range

of various consequences, have been observed in toroidal fusion facilities. In particular,

instabilities excited by the energetic ions produced during plasma heating by Neutral

Beam Injection (NBI) were observed in the Wendelstein 7-AS stellarator. In this device,

beam-driven instabilities occurred in both low-beta discharges and high-beta discharges;

however, in the latter case they were transient and occurred after switching to full

NBI power and during density ramp up [1–3]. It is of great interest to predict the

influence of energetic ions on plasma stability in Wendelstein 7-X, the next-step optimized

stellarator of the same line. This question has motivated us to carry out the present work

contributing to the study of plasma stability during NBI in W7-X.

The magnetic configuration of W7-X has a few peculiarities requiring particular

attention. Like its predecessor, W7-AS, the field of W7-X is characterized by small

magnetic shear, but the rotational transform, ι, is close to unity in contrast to W7-AS,

where ι was in the range 0.3 - 0.5, see figure 1. Note that ι in a Helias reactor (a

Wendelstein-line device) may be close to unity, too [4]. One can expect that this

peculiarity of W7-X and the Helias reactor will lead to new features of Alfvén eigenmodes

and Alfvén-sound modes as compared with those in W7-AS.

One of these features was revealed in [5] (see also the overview [6]), where it was

shown that the local (continuum) frequency of the Geodesic Acoustic Mode, GAM,

(ωGAM) in W7-X only slightly exceeds the sound frequency (ωs = ιcs/R, where cs is

the sound velocity and R is the major radius of the torus) across the entire plasma cross-

section because the so-called “sound parameter”, S, is not small (S ∝ ι2). In contrast,

the GAM frequency well exceeds the sound frequency in devices with q ≡ ι−1 � 1.

Despite the fact that ωGAM ∼ ωs in W7-X, one cannot rule out that GAMs will be

destabilized by energetic ions in W7-X, because the damping rate caused by the bulk ions

is relatively small, γdamp � ωGAM . The point is that the phase velocity (ω/k‖, where ω

is the wave frequency, k‖ is the wavenumber along the magnetic field) well exceeds the

ion thermal velocity, vT i, even when the wave frequency only slightly exceeds the sound

frequency. Indeed, for ω = κsωs with κs > 1, we have ω2/(k2‖v
2
T i) = κ2sc

2
s/v

2
T i = κ2sΓ� 1,

with Γ is the specific heating ratio. Another reason why one can expect that the damping

will be relatively small is that k‖ equals to ι/R only for one of the components of the

GAM mode, whereas k‖ = 0 for another main component. In addition, experiments on

the NSTX spherical tokamak showed that the BAAE mode (Beta-induced Alfvén-acoustic

Eigenmode) in the sound-frequency range was destabilized by injected fast ions [7].

On the other hand, because ι is close to unity and the shear is small, new modes

may appear in W7-X. For instance, Alfvénic-type modes with a global structure and

frequency above the sound frequency but below the frequency of toroidicity-induced

Alfvén eigenmodes, ωTAE, may arise. To understand why, let us assume that m = n & 1

and ω = k‖vA, where m and n denote the poloidal and toroidal mode numbers,

respectively, and vA the Alfvén velocity. Then ωm=n ∼ m∆ιvA/R and ωm=n/ωs ∼
m∆ι/(ι

√
βi), where ∆ι = 1−ι, βi is the ion beta (8πpi/B

2). For βi ∼ 0.01 and ∆ι/ι = 0.1

we obtain ωm=n/ωs ∼ m. On the other hand, ωm=n/ωTAE = 2m∆ι/ι < 1 for m < 5.
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Figure 1. Typical rotational transforms in W7-AS and W7-X.

In this paper we will consider the existence of Alfvénic modes affected by plasma

compressibility and having m = n 6= 0 in W7-X plasmas with energetic ions produced by

NBI.

Note that in GAMs, the dominant Fourier harmonics are known to be m = n = 0

in the scalar potential of the perturbed electromagnetic field, Φ̃, and m = 1, n = 0 in

the plasma compressibility, ζ, which is coupled to Φ̃ due to the geodesic curvature of the

field lines (This statement is true for relatively low-beta plasmas, βq2 � 1 [8], which is

the case in W7-X). The potential Φ̃ of the modes with m = n 6= 0 is coupled to the

compressibility in the same way as in GAMs. Therefore, both the GAM mode and the

m = n 6= 0 modes can be described by the same equation (however, taking into account

the finite orbit width of the energetic ions and / or several coupled harmonics is necessary

to determine the GAM radial structure). We will refer to the modes described by this

equation as isomon modes, i.e., modes with equal (ISO) MOde Numbers (m = n) of Φ̃.

The article has the following structure. A basic equation for isomon modes and GAM

modes in stellatator plasmas containing energetic passing ions is first derived, and the

contribution of the energetic ions being calculated for the m = n case, in section 2. It is

then used to carry out a stability analysis in the local approach in section 3. The existence

of eigenmodes in W7-X is considered and their destabilization in the forthcoming NBI

experiments is studied in section 4. The results obtained are summarized in section 5.

The energetic ions produced by NBI in W7-X are described in Appendix A. In addition,

in Appendix A the resonances between the energetic ions (both trapped ions and passing

ones) and the modes are considered. The influence of the neoclassical radial electric field

on the confinement of locally trapped NBI ions in W7-X is analyzed in Appendix B.
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2. Basic equations

In this section we derive equations describing perturbations of Alfvénic character in

compressible plasmas with a population of passing energetic ions. We are interested

in perturbations with m = n (including the case of m = n = 0), but the restriction

m = n will be imposed only on relations associated with the energetic ions.

We proceed from the following equations [9]:

∇ ·
(
ω2

v2A
∇⊥Φ̃

)
+∇‖∇2

⊥∇‖Φ̃−
4π

c
∇ ·

j0‖
B

B̃ + C(s) = C(α), (1)

[
ω2(1 + βs) + c2s∇2

‖
]
ζ̃ =

2icω

B2
(B×K) · ∇Φ̃, (2)

where

C(s) =
2iω

c
∇ ·
(
βsB×K ζ̃

)
, (3)

and

C(α) =
4πiω

c2
∇ · j̃(α)⊥ . (4)

ζ is defined by ζ = ∇·ξ, ξ is the plasma displacement, a tilde labels perturbed quantities,

ω is the mode frequency, B is the equilibrium magnetic field, j0‖ is the equilibrium

longitudinal plasma current, B̃ = −(ic/ω)∇ × [(∇‖Φ̃)b], b = B/B, ∇‖ = b · ∇,

∇⊥ = ∇−b∇‖, K = (b ·∇)b is the field line curvature, βs = c2s/v
2
A, j̃(α) is the perturbed

current of the energetic particles. The first of these equations – equation (1) for the scalar

potential of the electromagnetic field coupled to the plasma compressibility due to the

field line curvature – is actually the quasineutrality equation ∇· j̃ = 0, with j̃ = j̃(p) + j̃(α),

j̃(p) is the bulk-plasma current, j̃(α) is the energetic-ion current. This equation is often

used to study Alfvén eigenmodes. The second equation – the equation for ζ – describes

sound waves in the absence of curvature, but includes the curvature coupling of ζ with

Φ. The presence of energetic ions is described by the RHS term in equation (1), C(α),

and effects of compressibility in this equation are described by C(s). In equation (2) the

inhomogeneity of the magnetic field is neglected except in the term responsible for the

coupling of ζ and Φ. In all equations, the subscripts ⊥ and ‖ label magnitudes across

and along the equilibrium magnetic field, respectively.

To obtain (1) the equation ∇ · j̃ = 0 was expressed as

∇ · j̃‖b +∇ · j̃⊥ = 0, (5)

where j̃‖ = j̃
(p)
‖ + j̃

(α)
‖ and j̃‖ = cb · (∇× B̃)/(4π), j̃⊥ = j̃MHD

⊥ + j̃
(α)
⊥ , j̃MHD

⊥ is the current

determined by the ideal MHD equations.

Let us take the Fourier transform of the magnetic field (B), the field line curvature

(K), and all perturbed quantities (X̃):

B = B̄

(
1 +

1

2

∑
µ,ν

εµνe
iµϑ−iνNϕ

)
, (6)

K =
∑
µ,ν

Kµ,ν(r)e
iµϑ−iNνϕ, (7)
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X̃ =
∑
m,n

Xm,n(r)eimϑ−inϕ−iωt, (8)

where B̄ is the magnetic field at the magnetic axis, the radial coordinate r is defined by

ψ = B̄r2/2, ψ is the toroidal magnetic flux, ϑ and ϕ are the poloidal and toroidal Boozer

angles, respectively, N is the number of the equilibrium field periods. Then, following

the approach of Ref. [5], we obtain an equation similar to equation (42) of Ref. [5], but

with an extra term describing the contribution of energetic ions. Restricting ourselves to

an approximation in which the equilibrium magnetic field contains only harmonics with

µ = 1, ν = 0, we have:

1

r

d

dr
rδ0

(
ω2 − ω2

G1

v2A
− k2mn

)
dΦm,n

dr

−
[
m2δ0
r2

(
ω2 − ω2

G1r
2ε′2t /ε

2
t

v2A
− k2mn

)
+
kmn
r

(rδ0k
′
mn)′

]
Φm,n

−4πiω

c2
Br
mn

d

dr

j0‖
B

=
4πiω

c2
(∇ · j̃α⊥)m,n, (9)

where

ω2
G1 = ε̃2

c2s
R2

∑
l=±1

(
ω2

ω2 − k2m+l,nc
2
s

)
, (10)

the potential Φ̃ is related to the perturbed electric field by Ẽ = −∇⊥Φ̃, kmn ≡ k‖(m,n) =

(mι − n)/R, δ0 & 1 is determined by the plasma shaping (see Ref. [10]), ε̃2 = ε2t/(δ0ε
2),

εt = −ε1,0, ε = r/R, prime denotes the radial derivative.

It follows from equation (9) that the local Alfvén resonance (i.e., Alfvén continuum)

in the absence of energetic particles is described by

ω2 = ω2
G1 + k2mnv

2
A. (11)

In particular, when m = n = 0, this equation has a solution

ω2 = 2ε̃2
c2s
R2

(1 + S) , (12)

where the sound parameter is defined by S = ι2/(2ε̃2) [5]. Equation (12) represents the

GAM frequency, ωGAM , when S � 1. In W7-X S & 1, whence equation (12) reads:

ω2 = ω2
s

(
1 + S−1

)
∼ ω2

s . (13)

When m = n 6= 0, equation (11) has the following simple solution for frequencies well

above the sound frequency: ω2 = m2(∆ι)2v2A/R
2.

The presence of energetic ions affects the continuum and leads to Im ω 6= 0 when

these ions interact resonantly with the perturbation.

As shown in Appendix A, both trapped and passing energetic ions will be produced

in the first NBI experiments on W7-X. In the plasma core, ions that are born passing

will constitute a majority. For this reason, and because of some uncertainty concerning

the confinement of trapped energetic ions, we only consider the effect of passing particles

on plasma stability.
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In general, the resonance condition for passing particles can be written as follows

[6, 11]:

ω − [(m+ µ)ι− (n+ νN)]ωϕ = 0, (14)

where ωϕ is the frequency of the particle motion in the toroidal direction, which when

m = n reduces to

ω = [−m∆ι+ µι− νN)]ωϕ. (15)

We assume that m∆ι� 1, which for W7-X yields m� 10. In addition, we assume that

ω � Nωϕ. Then resonances with ν 6= 0 can thus be neglected. Note that the restriction

ω � Nωϕ is fulfilled for injected passing ions in W7-X (where N = 5) when the mode

frequency is less than 100 kHz. For instance, for 60-keV deuterons and 55-keV protons

it becomes ω � 350ιχ kHz (χ ≡ v‖/v) and ω � 470ιχ kHz, respectively. This condition

does not contradict the condition ω > ωs (e.g., ωs = 20 kHz in a deuterium plasma with

temperature T = 4 keV, ι = 0.87). Taking this into account and the fact that in W7-X

the magnetic-field Fourier harmonics with µ > 1 are small, we only need to consider the

interaction of the beam ions and the mode through the resonance

ω + (m∆ι± ι)ωϕ = 0. (16)

As seen from equation (9), the energetic ions contribute through their perturbed

current, which we write as

j̃
(α)
⊥ = eα

∫
d3vvDf̃ , (17)

where f̃ is the perturbed distribution function of the energetic ions, vD = (w2/ωBα)(b×
K) the velocity of the particle drift motion, K ≈ B−1∇⊥B, w2 = (v2‖ + 0.5v2⊥) ≈ const,

and ωBα = eαB̄/(Mαc) is the gyrofrequency, e and M are the electric charge and the

particle mass, respectively, the subscript “α” labels energetic ions. It follows from (17)

that

j
(α)
r(mn) =

eαεt
2iωBαr

∫
d3vw2

∑
l=±1

lfm+l,n, (18)

j
(α)
ϑ(mn) = − eαε

′
t

2ωBαr

∫
d3vw2

∑
l=±1

fm+l,n. (19)

The perturbed distribution function can be written as [12]

f̃ = −cΠ̂F
∫ t

−∞
dτ

w2

B
(b×K) · Ẽ− cR

iω

∂F

∂J
Ẽϕ, (20)

where F is the equilibrium distribution function of the energetic ions, the operator Π̂ in

variables E , µp, J (the particle energy, the magnetic moment, and the canonical angular

momentum, J = ψp −RvϕB/ωB, with ψp the poloidal magnetic flux) is

1

M
Π̂ =

∂

∂E
+
cn

eω

∂

∂J
. (21)

One can see that the Fourier harmonics of [(b×K) · Ẽ] are

[(b×K) · Ẽ]mn = − 1

2r

∑
l=±1

[
ilεtEr(m+l,n) + rε′tEϑ(m+l,n)

]
, (22)
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and therefore,

fmn = −cΠ̂F w2

2rB

∑
l=±1

[
lεtEr(m+l,n) − irε′lEϑ(m+l,n)

ω − kmnv‖

]
− cR

iω

∂F

∂J
Ẽϕ(mn). (23)

Using (18), (19), (23), Ẽ = −∇⊥Φ̃, and neglecting the coupling between Fourier

harmonics, we can write the transverse current components as follows:

jr(mn) =
ieαcεt

4ωBαBr2

∑
l=±1

∫
d3vw4Π̂F

εtΦ
′
m,n − lmε′tΦm,n

ω − km+l,nv‖
, (24)

jϑ(mn) =
eαcε

′
t

4ωBαBr

∑
l=±1

∫
d3vw4Π̂F

lεtΦ
′
m,n −mε′tΦm,n

ω − km+l,nv‖
, (25)

where Π̂ in the (r, v, χ) variables (which are approximately constants of motion for well-

passing particles) is

Π̂ =
1

v

∂

∂v
+

1− χ2

v2χ

∂

∂χ
+

(
R

v‖
+
n

ω

)
q

ωBα

1

r

∂

∂r
. (26)

In order to calculate the integrals in (24) and (25) we need to specify F , which we

take as an anisotropic slowing-down distribution

F =
2nα(r)

π(1 + χ2
α)
δ(χ− χα)

η(vα − v)

v3
, (27)

where η(vα − v) is the Heaviside step function, the particle density is defined by

nα = pα/Eα, Eα = 0.5Mαv
2
α, pα is the energetic ion pressure defined by pα = 0.5(p‖+ p⊥),

p‖ =
∫
d3vv2‖F , p⊥ = 0.5

∫
d3vv2⊥F , and we take Mα = Mi, Mi is bulk-ion mass. Equation

(27) implies that the ion energy is sufficiently high, E � (Mi/Me)
1/3T (Me is the electron

mass) so that Coulomb collisions mainly slow down the fast ions without much pitch-angle

scattering.

By means of equations (24) - (27), we obtain the energetic particle term in (9) in

the form:

C(α)
mn ≡

4πiω

c2
(∇ · j̃α⊥)m,n

=
∑
l=±1

1

r

(
∂

∂r
r
ε2t
ε2

+ lm
rε′tεt
ε2

)
ω2

v2A
Nααl(ω)

(
∂Φm,n

∂r
− lmε′t

εt
Φm,n

)
, (28)

where

αl(ω) = ψ(χ2
α)

[
σχωt
ξlω

+
1

ξ2l
ln
(

1− σχξl
ωt
ω

)]
+

(1 + χ−2α )2ω2
t

ω2 − σχξlωωt

−|χα|N (χ2
α)

{
nσχ
3ιξl

ω2
t

ω2
+

(m+ l)

ξ2l

[
ωt
2ω

+
σχ
ξl

+
ω

ξ2l ωt
ln
(

1− σχξl
ωt
ω

)]}
,(29)

Nα =
nα
ni

1

4ι2(1 + χ2
α)
, (30)

ψ(χ2
α) = 3χ−4α − 2χ−2α − 5, (31)

N (χ2
α) = −(1 + χ−2α )2

Rρα
rι

d lnnα
dr

, (32)
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ξl = km+l,nR/ι, ωt = vα|χα|ι/R is the particle transit frequency, ρα = vα/ωBα,

ωBα = eαB/(Mαc), σχ = sgnχα, ln(1−σχξlωt/ω) = ln |1−σχξlωt/ω|+iπ for σχξlωt/ω > 1.

Substituting equation (28) into equation (9) and assuming j0 = 0 we obtain

1

r

d

dr
rδ0

(
ω2 − ω2

G1 − ω2
α

v2A
− k2mn

)
dΦm,n

dr
−
{
m2δ0
r2v2A

[
ω2 − r2ε′2t

ε2t
(ω2

G1 + ω2
α)

− rv
2
A

mδ0

(
δ0rε

′
t

εt

∑
l lω

2
α,l

v2A

)′
− k2mnv2A

]
+
kmn
r

(rδ0k
′
mn)′

}
Φm,n = 0, (33)

where

ω2
α =

∑
l=±1

ω2
α,l, ω2

α,l = ε̃2ω2Nααl(ω). (34)

This equation is valid for modes with m = n, including the case m = n = 0 (GAM

modes) in both stellarators and tokamaks. In tokamaks εt = ε, whereas in stellarators

εt 6= ε; in particular, ε/εt ∼ 2.4 in W7-X. When m = n = 0, equation (29) for αl(ω) is

reduced, giving the following expression for
∑

l αl(ω):∑
l=±1

αl(ω) = 2(1 + χ−2α )2
ω2
t

ω2 − ω2
t

+ ψ(χ2
α) ln

(
1− ω2

t

ω2

)
−χαN (χ2

α)

(
2 +

ω

ωt
ln
ω − ωt
ω + ωt

)
. (35)

Equations (34), (35) agree with the corresponding result for tokamaks of Ref. [9]. The

difference of a factor of two is associated with different definitions of nα here and in

Ref. [9], and the presence of the factor ε̃2 in equation (34) is due to the plasma elongation

and the fact that εt 6= ε in stellarators.

3. Stability analysis in local approach

It follows from equation (33) that the Alfvén resonance equation (11) in the presence of

energetic ions should be replaced by

ω2 − ω2
G1 − k2mnv2A = ω2

α. (36)

This can be considered as an eigenvalue problem of the form Λ(ω) = λ(ω), with

Λ = ω2 − ω2
G1(ω) − k2mnv

2
A and λ = ω2

α. Because the number of energetic particles is

small, it can be solved perturbatively. Taking ω = ω0 + ∆, where ∆� ω0, we obtain:

Λ(ω0) = 0, ∆ =
λ(ω0)

∂Λ(ω)/∂ω|ω0

. (37)

In particular, when the mode frequency well exceeds the sound frequency, so that

ω2
G1 = 2ε̃2c2s/R

2 ≡ ω2
G is the reduced GAM frequency [ωGAM(S = 0) = ωG], we have:

ω2 = k2mnv
2
A + ω2

G,
γ

ω
=

1

2
ε̃2NαImα, (38)

where γ = Im∆, α =
∑

l=±1 αl, and the subscript “0” is omitted. When m = n = 0, the

frequency is given by equation (12) and the γ/ω ratio is described by (38) supplemented

with the factor (1 + S)−1.
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Note that Imα 6= 0 provided that

ω < ωt|ξl|, ξl χα > 0, (39)

where ξl for the m = n modes is ξl = l−m∆ι/ι. In the considered case of |m∆ι| < 1 the

second inequality in (39) is simplified to

lχα > 0, (40)

which means that, depending on the sign of χα, either l = 1 or l = −1 contributes to the

sum in Im α.

It follows from equation (38) that energetic-ion-driven instabilities can arise when

Im α > 0. Both the velocity-space anisotropy and the spatial inhomogeneity of the

energetic ions contribute to the growth rate of the instability. Instabilities driven by the

velocity-space anisotropy arise when χ2
α < 0.6, and do not depend on the beam direction.

The spatial inhomogeneity can destabilize the modes when

m+ l < 0. (41)

The effect of the inhomogeneity is sensitive to the beam direction and the direction of

the mode rotation (the sign of m), as follows from equations (40), (41). In particular,

in the case of GAM modes the inhomogeneity of counter-passing particles (σχ < 0) is a

destabilizing factor, whereas the inhomogeneity of co-passing particles (σχ) produces a

stabilizing effect. The growth rate of the m 6= 0 modes is largest when two inequalities,

m < 0 and σχ < 0, are satisfied simultaneously. In this case the inhomogeneity part in the

expression for the growth rate is proportional to (1 + |m|)/(1− |m|∆ι/ι)4. It dominates

when

|(m+ l)χα|N (χ2
α)

√
Eres
Eα
� |ξlψ(χ2

α)|. (42)

These relations are valid when the resonance condition [leading to the first inequality

in (39)] is satisfied, i.e., when

ω = |ξl|ωt
v

vα
. (43)

For the frequency satisfying equation (38) this resonance condition has the form:

k2mnv
2
A

(
1 +

ω2
G

k2mnv
2
A

)
=

(
kmn +

lι

R

)2

v2χ2
α. (44)

In W7-X vα < vA (for instance, vA/vα = 1.7 when the plasma ions and beam ions are

of the same species, the plasma ion density ni = 8 × 1019 m−3 and beam ions (protons)

have the energy 55 keV). Taking this into account and that v < vα, χα < 1, we infer that

equation (44) requires k2mnR
2/ι2 � 1, i.e., [m∆ι/ι]2 � 1 for the modes with m = n.

Let us now evaluate the instability growth rate in W7-X. It follows from (29), (38)

that the growth rate depends sensitively on the pitch angle (ψ = 0 for χ2
α = 0.6 and ψ > 0

is maximum at low χ). The pitch angle of passing particles is restricted by the condition

χ > (
∑
|εµν |)1/2. The main Fourier harmonics εµν for the high mirror configuration of

W7-X are shown in figure 2, from which it follows that the minimum reasonable pitch

angle of passing particles is χα = 0.5. Using this pitch angle, taking ε̃2/ι2 = 0.14,
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transform of the field lines for β(0) = 0.037 in the W7-X high-mirror configuration.

Here r is the radial flux coordinate, a is the plasma radius.
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Figure 3. The plasma density and temperature determined by neoclassical transport

in W7-X. The subscripts “e” and “i” label electrons and ions, respectively, circles are

relevant to electrons and triangles to ions.

and ignoring the contribution of the inhomogeneity of fast ions, we obtain the following

estimate for the growth rate:

γ

ω
=
π

2
ε̃2Nαψ

∑
l=±1

η(zl)

ξ2l
∼ nα
ni
. (45)

where η(zl) is a step function, zl = σχξlωt/ω − 1. The plasma inhomogeneity increases

this estimate for the growth rate when the condition (41) is satisfied.

The magnitude of nα/ni can be evaluated as follows. According to our definition of
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the fast-ion density, nα = (p⊥ + p‖)(2Eα), which leads to

nα =
1 + χ2

α

2

W

Eα
. (46)

Here W =
∫
d3v(Mv2/2)F is the density of the fast ion energy content, which is

determined by the injected power density, Pinj, as follows: W = PinjτE , with τE the

particle energy loss caused by collisional slowing down. Assuming Pinj(r) = Pinj(0)ηinj(r)

and using the identity
∫
d3xPinj = P̄injVp, where P̄inj is the average injected power and

Vp is the plasma volume, we can eliminate Pinj(0) and obtain

nα =
1 + χ2

α

2

P̄inj
Eα

Vp∫
d3xηinj

τEηinj. (47)

For instance, when ηinj = (1− r2/a2)νn , equation (47) becomes

nα =
1 + χ2

α

2

Pinj
VpEα

(νn + 1)τEηinj, (48)

where Pinj is the total injected power.

In the first NBI experiments on W7-X, the injected power will be up to 6.84 MW,

and the maximum energy of injected particles (protons) will be 55 keV. The expected

plasma parameters in the core region are Te = 2.9 keV, ne = 8 × 1019 m−3, and the

plasma volume Vp = 30 m3, see figure 3. With these parameters and ni = ne, we obtain

nα(0)

ni(0)
= 0.9(νn + 1)

1 + χ2
α

2
%. (49)

The NBI energy deposition is rather peaked, νn � 1. For νn = 5, χα = 0.6 we obtain:

nα(0)/ni(0) = 3.7%.

Note that strong transient isomon instabilities, lasting for ∆t � τE and involving

resonant particles with different pitch angles, may arise immediately after the NBI source

is switched on. This conclusion is based on the following. Before a monotonically

decreasing energy distribution of the injected ions will be formed [e.g., the distribution

given by equation (27)], their distribution function will evolve in time, with ∂F/∂E > 0 in

a region ranging from the birth energy down to low energies. This evolution is similar to

that shown in figure 8 of reference [13] for fusion produced alpha particles. The presence

of a region with ∂F/∂E > 0 is an additional factor driving the instability.

Thus, it appears that the growth rate of isomon instabilities in W7-X can be

rather large unless the drive from fast ions is overcome by damping mechanisms in the

background plasma.

4. Eigenmode analysis

One can expect that an isomon mode will exist when a corresponding continuum branch

has an extremum. For this to be the case, the following equation should be satisfied:

(k2mnv
2
A)′ + (ω2

G1)
′ + (ω2

α)′ = 0. (50)

This equation can be written as follows:

2ι′ − ηnR
2

∆ιm2v2A0

[(
ω2
G1

)′
+
(
ω2
α

)′]
= −∆ι

η′n
ηn
, (51)
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where ηn = ni(x)/ni(0), x = r/a, a is the plasma radius. Let us assume that (i) the

radial profiles of the plasma parameters and fast ions are decreasing functions of the

minor radius; (ii) ι′ > 0 (which is the case in W7-X and in many other stellarators); and

(iii) ∆ι > 0. Then all the terms on both sides of Eq. (51) are positive (when Im ωα 6= 0,

our statement is true for the real part of the fast ion term). Because the RHS consists of

a single term associated with the inhomogeneity of the plasma density, equation (51) can

be satisfied only in inhomogeneous plasmas. On the other hand, finite magnetic shear,

plasma compressibility, and the energetic ions contribute to the LHS of (51).

A simple solution of (51) can be obtained for an incompressible plasma without

energetic ions. Let us take

ι = ι0 + (ιa − ι0)x2, (52)

where ι0 = ι(0) and ιa = ι(a). Equation (52) is justified, at least, when the magnetic shear

is small in the entire plasma cross section. The plasma density profile is approximated

by ηn(x) = (1− x2)1/2. Then, solving (51) for x2, we obtain

x2∗ =
1

3

(
4− 1− ι0

ιa − ι0

)
. (53)

In W7-X ιa−ι0 ≈ 0.1. In this case, as seen from (53), x∗ = 1 at ι0 = 0.9, and x∗ � 1when

ι0 is well below 0.9. This implies that it is more likely that an extremum exists in the W7-

X standard and low-ι configurations than in the high-iota and high-mirror configurations

(where ι0 is somewhat higher). Another conclusion is that the plasma compressibility

and the presence of the energetic ions are factors that facilitate the existence of extrema.

However, this does not necessarily mean that the compressibility will lead to discrete

modes. The point is that it breaks up the Alfvén continuum, produces the sound branch,

and shifts upwards the Alfvén branch located above the sound branch, this shift being

dependent on the radius. As a result of even a small shift, the mode frequency may

cross a continuum branch [in the (r, ω plane)] at some point r+. Then a discontinuity

of the derivative Φ′(r) in r+ in the numerically calculated mode Φ(r) appears. Strictly

speaking, in this case the eigenmode does not exist because of continuum damping, but

it will nevertheless survive if there is a population of energetic ions whose drive exceeds

the damping.

The role of the energetic ions is not restricted to mode destabilization. They can

also lead to the appearance of an additional continuum branch, as shown in figure 4.

For numerical calculations it is convenient to write equation (33) in dimensionless

form. We introduce the dimensionless wave number k̄mn = kmnR, the plasma temperature

Θ(x) = T (x)/T (0), ω̄ = ωR/cs0 and ω̄t = ωtR/cs0, with cs0 = cs(0). Then we will have

(bars over k‖, ω and ωt are omitted):

1

x

d

dx
xδ0
[
(ω2 − ω2

G1 − ω2
α)ηnβs0 − k2mn

] dΦm,n

dx
− m2

x2

{
δ0ηnβs0

[
ω2 − x2ε′2t

ε2t
(ω2

G1 + ω2
α)

− x

mδ0ηn

(
δ0xε

′
t

εt
ηn
∑
l

lω2
α,l

)′ ]
− δ0k2mn

}
Φm,n −

kmn
x

(xδ0k
′
mn)′Φm,n = 0, (54)
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where

ω2
G1 = ε̃2Θ

∑
l=±1

ω2

ω2 − [(m+ l)ι− n]2Θ
, (55)

N (χα) = −(1 + χ−2α )2
R

a

ρα
a

1

ιx

d lnnα
dx

, (56)

ωα and ωα,l are given by equation (34), βs0 = c2s(0)/v2A(0), kmn = mι−n, ξl = m+ l−n/ι,
ln z = ln |z|+ iπ when Re z < 0.

Equation (54) was solved for the W7-X high mirror configuration with β0 = 3.7%

and the standard configuration with β0 = 6.8%. Plasmas without energetic ions and with

NBI ions (with nα(0)/ni(0) = 3%) were considered. Some results of these calculations

are shown in figures 4 - 6.

Figure 4 demonstrates that isomon instabilities with global structures and rather

large growth rates can be excited in the high-mirror configuration. Of course, this

statement is only true when the destabilizing effect of the energetic ions exceeds the

mode damping. To study the damping is however beyond the scope of this paper. Here

we restrict ourselves to a brief discussion of this issues.

First of all, we note that the phase velocity with the k‖R = m(ι−1) of the calculated

mode well exceeds the bulk ion thermal velocity, (ω/k‖vT i)
2 ∼ (cs/vT i)

2/(m∆ι)−2 � 1.

This implies that ion damping due to the plasma displacement across the magnetic

field (ξ⊥ ∼ cΦ̃/(rB̄ω)), is relatively small. However, one can show that ξ‖ ∼ ξ⊥ for

ω2 ∼ 2c2s/R
2 (we used K = (1/R)εt/ε) and ω2/k2sc

2
s ∼ 2c2s/v

2
T . Therefore, the damping

associated with the plasma displacement along the magnetic field is not negligible and

deserves a special study.

A mode resembling the m = n = 1 rigid kink displacement in tokamaks inside the

q = 1 radius but, in contrast to the tokamak mode, occupying almost the entire plasma

cross section, was found in the case of the high mirror configuration with ι(r) a little bit

smaller than that shown in figure 2, see figure 5.

Calculations were also carried out for the W7-X standard configuration having a

lower ι(r) than in figure 2, in which case equation (50) is more easily satisfied. This

explains why the modes were found even in the absence of energetic ions, see figure 6.

Note that the frequencies of these modes are higher than that of the mode shown in figure

4 and, hence, their Landau damping on ions is smaller.

These results are based on equation (54) obtained with a number of simplifying

assumptions. Therefore, assuming that the energetic ions are absent, we carried out

calculations with the full ideal MHD code CAS3D [14] and the CKA code [15]. The

latter is based on reduced MHD and neglects plasma compressibility. The m = n = 3

and m = n = 4 modes calculated by the CAS3D with compressibility switched off and by

the CKA code are shown in figure 7. We observe a good agreement between the results

of these codes. Furthermore, the calculated modes are in reasonable agreement with the

modes described by equation (54) but calculated for the standard magnetic configuration

(see figure 6). This is not surprising because the rotational transform in the standard

configuration is only a little bit less than that in the high mirror configuration. On the

other hand, the code CAS3D does not find the m = n = 4, m = n = 3 and m = n = 2
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the modes with ω1 = 1.384 (approximately 40 kHz at T (0) = 2.9 keV), γ1 = 0.01 and

ω2 = 1.292 (approximately 37 kHz at T (0) = 2.9 keV), γ2 = 0.048 (right panel) in the

W7-X high-mirror configuration in the presence of counter-injection of hydrogen with

χα = −0.55, nα(0) = 0.03. The dashed lines in the left panel show frequencies of two

modes found. They lie in the continuum gap which has arisen to avoid crossing the

intersection point of the upper continuum branch described by equation (11) and an

energetic-ion-induced branch. The two lower continuum curves depend weakly on the

presence of the energetic ions. The numbers “1” and “2” in the right panel label modes

with the frequencies ω1 and ω2, respectively.
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parameters to those in figure 4 but with ι(r) everywhere decreased by by 0.015.
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Figure 6. Eigenmode with |m| = |n| = 3, ω = 1.980, γ = 0 (left panel) and eigenmode

with |m| = |n| = 4, ω = 2.562, γ = 0 (right panel) in the W7-X standard configuration

without fast particles.

modes in compressible plasmas: The calculated modes have strong spikes at certain radii,

which indicates strong continuum damping. A similar picture was obtained by solving

equation (54) in the absence of the energetic ions.

Figures 4 – 7 demonstrate that isomon modes exist and may extend over a large part

of the plasma cross section. The plasma compressibility is a factor which may prevent

the existence of these modes, whereas the presence of the energetic ions and a decrease

of the rotational transform facilitate the mode existence.

5. Summary and conclusions

The results of this work can be summarized as follows.

• W7-X is prone to Isomon Modes (IM), which are Alfvénic eigenmodes affected by

plasma compressibility and having m = n. These modes are sensitive to the magnitude

of the rotational transform. In the high-mirror configuration, the IM modes were found

to exist in the presence of energetic ions. The same modes were also found in the absence

of such ions, but suffer some continuum damping in this case. A very wide m = n = 1

mode was found, which constitutes a rigid kink displacement of almost the entire plasma

cross section. In the standard configuration, where ι(r) is only slightly less, by 1 - 2 %,

eigenmodes of this kind were found even in the absence of the energetic ions.

• The passing NBI ions (with the maximum energy 55 - 60 keV) tend to destabilize

the IM modes with m � ι/∆ι ≈ 10 in W7-X. The instability drive from the fast ions

corresponds to a growth rate of about γ/ω = 10−2 − 10−3 in the first planned NBI

experiments. Whether the mode will actually be unstable depends, of course, on the

damping, which we have not calculated.

• These results are based on the mode equation which takes into account the plasma
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Figure 7. The modes with the dominant mode numbers |m| = |n| = 3 (left panel) and

|m| = |n| = 4 (right panel) found by the CAS3D code (broken lines) without taking into

account the plasma compressibility, and by the CKA code (solid lines), in the W7-X

high mirror configuration in the absence of the energetic ions. The result is similar to

the modes shown in figure 6, which was calculated for the standard configuration in a

compressible plasma without fast ions by solving equation (54).

compressibility and the presence of the energetic ions. This equation was derived and

analyzed by perturbatively (analytically in the local approach) and non-perturbatively

(numerically). In the absence of the energetic ions, similar results were obtained by the

CAS3D and CKA codes.

• Both passing and trapped NBI ions can interact resonantly with IMs in W7-X.

However, only the contribution of the passing ions was included in our analysis, but

these constitute a majority of the fast-ion population in the plasma core. In addition, it

seems that a considerable fraction of trapped energetic ions will be lost. The point is that

β in the first NBI experiments on W7-X will be not sufficient for good confinement of

trapped fast ions [19]. The neoclassical electric field, being negative, is a favourable factor

for their confinement but is not sufficient to improve the situation drastically. On the

other hand, trapped NBI ions, if sufficiently well confined, may play an important role:

first, they dominate in the plasma periphery where the amplitudes of the modes with

m/n = 3/3, 4/4 are the largest (see figures 6 and 7), and second, as shown in Appendix

A, they can interact with IMs having higher mode numbers (up to m = n = 6) and,

hence, higher mode frequencies, so that their ion Landau damping is less than that of

the modes with m = n & 1. Therefore, the study of the influence of trapped energetic

ions on the IM modes and other modes is to be studied in future.

• To know IM damping is necessary for a reliable prediction of the NBI-driven IM

instabilities in W7-X. One can expect that the IMs will damp through Landau mechanism

mainly in the plasma core, where the phase velocity is smallest. Accordingly, their

destabilization may have a favourable effect on the energy deposition of the energetic

ions, channeling the energy of these ions (both passing and trapped ones) from the
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periphery region to plasma center. We recall that spatial channeling of the energy

and momentum of energetic ions appears to have been observed in the NSTX spherical

torus [16], where it was caused by high-frequency instabilities and had negative effect on

the plasma balance. Moreover, these experiments [17] demonstrated that the efficiency

of the energy transfer across the magnetic field by the destabilized modes well exceeded

that due to plasma thermal conductivity. Calculating the damping, including its radial

dependence, is therefore an important task for the future.

• Immediately after the NBI source is switched on, strong transient isomon

instabilities, lasting for ∆t � τE and involving resonant particles with different pitch

angles, may arise because there is a region with ∂F/∂E > 0 in this case.

• It may be possible to excite global IMs by external antennas, channeling the RF

energy to the plasma core. This would confirm the predicted existence of the modes

extending over a large part of the plasma cross section. In the case of positive result, it

could serve as a method of the plasma heating with a low frequency (ω � ωBi) RF field,

without employing the Alfvén resonance.
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Appendix A. Energetic ions at the initial stage of operation with NBI in

W7-X

An injection power up to 6.84 MW is planed for use in the first experiments with NBI

on W7-X [18]. Balanced injection will be used, which will be provided by two pairs

of injectors. The maximum energy of the injected atoms will be 55 keV for hydrogen

and 60 keV for deuterium. Most experiments are planned with hydrogen. Pitch-angle

characteristics of the injected particles are shown in figures A1 and A2.

We observe that both trapped and passing particles will be produced as a result of

NBI. Passing particles dominate in the core region, whereas most trapped ones are born

in the periphery of the plasma. Losses to the first wall are substantial for the trapped

particles [19].

To investigate possible resonances between energetic ions and isomon modes, we first

note that the resonance condition for the locally trapped particles is given by

ω = ωb, ωb = N
v

R

√
εm
2
. (A.1)
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Figure A1. The λ distribution of protons born by NBI at x ≡ r/a = 0.2 and x = 0.4.

Here S is a source function, λ = µpB̄/E , and µp is the particle magnetic moment.
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For the high mirror configuration and ω ≈ kmvA, with km = −m∆ι/R, this gives the

resonant velocity

vres ≈ vA
m∆ι

N

√
2

εm
, (A.2)

which for the used W7-X parameters (N = 5, vA/vα = 1.7, εm = 0.1, and ∆ι = 0.1)

simplifies to

m = 6.6
vres

vα
< 7. (A.3)

Passing particles interact with isomon modes through the resonance

ω = (km ± ι/R)v‖, (A.4)

which leads to the resonance pitch

χres =
|m|∆ι
±ι−m∆ι

vA
v
. (A.5)

Because χ < 1 and vA > v, we conclude that (A.5) is satisfied when m� ι/∆ι ∼ 10.

Appendix B. The influence of the ambipolar electric field on the

confinement of injected ions

Numerical investigation of the confinement of injected protons predicts considerable

collisionless losses of trapped particles for the time ∆t . 1 ms [19]. This time well exceeds
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Figure B1. The radial electric field determined by neoclassical theory.
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Figure B2. δ versus x = r/a (left panel) and w versus ϑ (right panel) for κ� 1 in the

presence of a radial field (Figure B1).

the bounce period of locally trapped particles (τL ∼ 2πR/(NvχL) = 2.1×10−6/χL s, with

χL a characteristic pitch of the particles), which is comparable to the particle precession

time (τpr ∼ 2πr/vpr, with vpr = 0.5ρv∂ lnB/∂r), ρ = v/ωBα. This indicates that particles

escape from the plasma due to their regular motion along superbanana obits.

In addition, some losses were observed for ∆t > 1 ms [19]. It seems that they

can be explained by collisionless diffusion caused by separatrix-crossing of transitioning

particles (trapped particles that undergo orbit transformation from the locally passing

state to locally trapped state and vice versa) [20].

These results were obtained in the assumption that the radial electric field is absent.

Therefore, the question arises how the radial electric field, which is usually present in the

plasma, will affect the confinement of the energetic ions. Below we discuss this question,

restricting ourselves to a consideration of locally trapped particles, whose confinement is
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the greatest concern [19].

According to reference [21], the motion of the locally trapped ions can be described

by the following equations:

〈ṙ〉 = u sinϑ, (B.1)

r〈ϑ̇〉 = u cosϑ+ w, (B.2)

where

u =
vd
ε

[
εmεh
εH

(
2E(κ)

K(κ)
− 1

)
− εt

]
(B.3)

w =
vd
ε

[
rε′0 −

ε2h
εH

(
2E(κ)

K(κ)
− 1

)]
+ vE, (B.4)

〈(...)〉 means bounce averaging, K(κ) and E(κ) are the complete elliptic integrals of the

first kind and second kind, respectively, κ = κ(ϑ) is the particle trapping parameter,

vE is the poloidal component of the E × B drift velocity, εh = −ε11 > 0 is the largest

helical component of the equilibrium magnetic field, εm = ε01 is the mirror component,

εH(ϑ) =
√
ε2m + ε2h − 2εmεh cosϑ, and ε0 = 0.5ε00 describes the effect of diamagnetism,

vd = ρv/(2R).

It follows from (B.1), (B.2) that good confinement of the particles could be achieved

if

δ ≡ |w/u| � 1 and w(ϑ) ≈ const. (B.5)

In the absence of the electric field these conditions can be satisfied only due to the term

proportional to ε′0, which requires sufficiently high β. Note that the necessity of high β

for good confinement of energetic ions was shown for the first time numerically in [22]

and remains a key point in the optimization of Wendelstein-line stellarators. However, at

the initial stage of operation of W7-X the injected power will be not sufficient to provide

the required β. One can see that the diamagnetic term in (B.4) is smaller than the helical

term in a wide range of poloidal angles. This implies that most of the locally trapped

particles will be lost.

In most plasma scenarios, the calculated radial electric field determined by the

ambipolarity condition of the neoclassical diffusion of electrons and ions is negative (figure

B1). This field, as seen from equation (B.4), tends to improve particle confinement due

to the fact that vE has the same sign as ε′0. However, there is a question whether this field

is strong enough to satisfy the condition given by (B.5). Figure B2 gives the answer. We

observe that δ > 1 in the periphery region (r/a > 0.5) of the inner circumference of the

torus but is less then unity at small poloidal angles. In addition, we observe that w(ϑ) is

approximately constant only for r/a� 1. Therefore, we conclude that the positive effect

of the neoclassical electric field is rather small in the considered case.
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