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ABSTRACT

The canonical treatment and quantization of non-linear coset space sigma models
are discussed.

1. Introduction

In this contribution we present a canonical treatment of non-linear coset space sigma
models which is based on our recent work on matter-coupled supergravity in three
space-time dimensions [1, 2]. To bring out the features of the sigma model more
clearly, we will restrict our discussion here to the flat space models (for a related
discussion, see also [3]). The main result will be that a polynomial represention
of the relevant operators can be found inspite of the inherent non-linearity of the
underlying model. In this respect, our construction is very similar in spirit to recent
approaches to quantum gravity based on Ashtekar’s new variables [4],

Our conventions and notation are entirely taken over from [1, 2], except that we
will be dealing with flat three dimensional Minkowski space with signature —+...4,
the points of which are denoted by z,y,.... These coordinates decompose into a
time coordinate ¢ and space coordinates x,y,... (in canonical gravity, the choice
of the time coordinate is quite arbitrary); a dot stands for the derivative with
respect to time. Three-dimensional indices are designated by p,v,... = 0,1,2 while
spacelike indices are given by 7,7,.. = 1,2. As for the sigma model, we denote
the coordinate fields on the N dimensional target manifold by ¢™(z) with curved
indices m,n,...=1,..., N.

2. General Sigma Models and Notation

The general sigma model considered here describes a scalar field ¢ that maps the d-
dimensional Lorentzian space-time into an arbitrary target manifold M with metric

Gmn .
81
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82 H. J, Matschull and H. Nicolas

The standard Lagrangian of the sigma model reads

L(e™(x), 0up™ (2)) = — 3G mn(p(2))Bue™ (v)8" ¢" (), (2.1)

To define the canonical momenta we will also need the Lagrange function L =
fdx £, where dx denotes integration over the d — 1 dimensional space.

Obviously, the main problem here is posed by the non-linear interactions induced
by the geometrical form of this Lagrangian, and this problem also makes its appear-
ance in the canonical formalism. The canonical momenta, which are conjugate to
the coordinate fields ©™, are defined by

oL

Pm = -6—{0;;"_ = Gmn(‘P)‘P (22)

The basic Poisson brackets are given by

{¢™(x),pa(¥)} = 676(x,¥) (2.3)

and the Hamiltonian is
H o= / dx (pmyp™ — L). (2.4)

Although the momenta do transform properly under reparametrizations (namely
as vectors, i.e. elements of the tangent space T, M), the coordinate fields o™ do
not. A first step to avoid such difficulties is to remember how the Poisson bracket
is originally defined: It maps two functions on phase space to a new function.
Given two functions f,g on phase space, i.e. functionals of ¢™(x) and pp,(x),

then
og bg 5f
1.9} = [+ (5@ 5o ~ T et) 25)

This definition still uses coordinates but is obviously independent of them. Now
the main problem is to find “good canonical variables”, i.e. functions on the phase
space which

L]

parametrize the phase space completely;

L4

have simple Poisson brackets, thus can be used as basic quantum operators;

¢

respect the geometric structure of the model, i.e. transform as tensors on M,

@

respect additional structures of the target space (e.g. group multiplication,
symmetries etc.).

In the next section we will show that this can be achieved by introducing a vielbein
on M. In addition, we will see that the canonical formulation is possible without
explicit use of coordinates. Rather, we will introduce canonical variables in terms
of which all relevant canonical expressions become polynomial. In particular, for
group and coset manifolds, the introduction of a matrix representation will be useful
to provide canonical variables having all the properties listed above.
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Canonical Treatment of Coset Space Sigma Models 83

3. The Vielbein Formalism
Let E[*(i) be a vielbein on M. The inverse vielbein E A(p) is then defined by
Gmn = EAEPnap, EPEE =65 (3.1)

where 7 is any constant (‘flat’) metric. We assume that a global set of such vectors
exists, as for the special cases considered later (group manifolds) it always does. As
a consequence, the index A is a global index labeling the vector fields, whereas the
index m refers to local coordinates.

The vector field ,¢™ can now be expanded in terms of the vielbein, giving

8u¢™ = PAED < P=ER 0™ (3.2)

Note that the quantity P,f introduced here is inert under coordinate transformations
on M and the standard Lagrangian takes the simple form

L=-LPAPtBy,p. (3.3)

We will now show that, starting from a Lagrangian L(y, PJ') and introducing
special momenta and Poisson brackets, we obtain a canonical theory that is com-
pletely equivalent to the one defined by (2.3) and (2.4) without making any use
of the ‘old’ canonical variables. The advantage of this procedure is that, for all
examples considered below, the Lagrangian depends on the coordinate fields ¢ only
implicitly, but let us nevertheless study the general Lagrangian ,C(P;“‘, P).

As our new momenta we define the derivatives of L with respect to the time

component PA:
6L
Py = ET 34
A= epx PA = pm E " (9). (3.4)
The variables P4, which we now regard as the momenta, evidently correspond to
an anholonomic basis in tangent space (and thus in phase space), whereas the pn,’s
are like a coordinate basis.
The Hamiltonian (2.4) can be obtained directly, i.e. without using the ‘old’
momenta, by solving (3.4) for P and computing

H(Pa,¢) = /dx(PAP,A — L), (3.5)

If we parametrize phase space in terms of the variables ¢™ and the momenta Py,
the Poisson brackets (2.3) are reproduced via

g Em of
f:g} /dx EA ( )&pm(x) 5P (x) ( )6§0m(X) 6PA(X)
c 6f bg
0% ()P0 5 s 5P ) (3.6)
where f and g are arbitrary functionals of ¢ and P4, and
Qup® =2BFEROmES (3.7
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are the coefficients of anholonomy of the vielbein. Here the coordinates still appear,
but

of
Ef s = F 3.8
A G‘Pm A(f) ( )
is just the action of the vector field E4 on f. If there is no explicit dependence of
L on ¢, the Hamiltonian depends on ¢ only via the “spatial derivatives” P#; it is
therefore useful to have the canonical brackets of P4 and P#. A straightforward
calculation yields

{Pa(x), Pa(y)} = Qa5 (¢(x))Pc(x) §(x,y),
{Pa(x), PP(y)} = (850: — ac® (p(x) PF (x)) b(x,¥),

{PAX), PE(y)} = 0. (3.9)

Here and in the remainder, spatial derivatives §; will always be understood to act
on the first argument in the §-function (i.e. x in (3.9)). The Poisson brackets (3.9)
can be regarded as the basic relations from now on, but observe that the quantities
P{ are not independent (they obey 9 P} = 39 B¢ PP PP), nor do they span the
whole phase space: general phase space functions, such as global charges introduced
below, still depend explicitly on ¢.

At first sight the advantage of these relations over (2.3) is not entirely obvious,
but for group manifolds the coeflicients of anholonomy are just the structure con-
stants of the algebra (for a suitably defined vielbein) and thus the coefficients on
the right hand side of (3.9) become numerical, and, in addition, we will find better
functions than the coordinates ¢™ to parametrize the whole phase space, and the
basic brackets will become even simpler.

The transition to the quantized theory is implemented by replacing any function
of ¢ alone by the corresponding multiplication operator and

s~ v 6
The quantum operators then act on wave functionals ¥[p(x)]. The ordering pre-
scription implicit in this replacement ensures that the relations (3.9) can be directly
replaced by quantum mechanical commutators (modulo factors of 7), and the that
geometrical structure of (3.9) is thus preserved.

4. Group Manifolds

At this point, not much more can be said if the target space M is an arbitrary
Riemannian manifold. For this reason, we will now make further assumptions on
the structure of M. The simplest possibility is to assume that the target space is a
group manifold, i.e. M = G for some semisimple Lie group G. In fact, we can also
treat coset space models with M = G//H for any subgroup H of G in this way, just

by changing the explicit form on the Lagrangian and adding suitable gauge degrees
of freedom.
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Canonical Treatment of Cosel Space Sigma Models 85

For group manifolds, we assumne the vielbein (3.1) to be a set of left invariant
vector fields; this means that

B () = B (0) e, (41)

where ¢ — () is a diffeomorphism induced by left multiplication. Then, the
commutator of two vielbein vector fields is

[Ea,EB] = faB®Ec, (4.2)

where f4pC are the structure constants of the group, which also define the coeffi-
cients of anholonomy and the flat metric via

Qas€ = —fa%,  nas = fac”fan€. (4.3)

The field theoretic model obtained in this way with the standard Lagrangian goes
by the the name of “principal chiral model”. From the results listed above, we can
immediately derive the relevant brackets by substituting the structure constants for
the coefficients of anholonomy, but still these P-variables do not parametrize the
whole phase space.

The left invariance of the vielbein fields implies the invariance of Plfl (and thus
L, if there is no explicit y-dependence) under left multiplication with a constant
group element, This symmetry, of course, provides a conserved Noether current and
a charge that canonically generates the left multiplication. However, this charge
cannot be expressed in terms of the P-variables, as already mentioned in the last
section, because, as the left invariant vector fields are the generators of right mul-
tiplication, the momenta P4 also generate right multiplication.

To obtain a parametrization of the whole phase space, it is convenient to intro-
duce a (faithful) matrix representation V(i) of the group G. A basis for the matrix

. representation of the algebra is then given by

Za = ER (p)V"H(9)0mV(p), (4.4)
which is independent of ¢ by (4.1). The commutation relations of these matrices
are

[24.2B] = fa®Zc, (4.5)

and they define a new ‘flat’ metric by the Killing form
1ap 1= Tr(Z4ZB), (4.6)

which may differ from (4.3) by a constant factor for each simple factor of G, de-
pending on the representation V(¢). Using this metric we can invert (4.4) to obtain
the vielbein in terms of the matrix representation and the inverse metric 745

EA =Te(V-10.VZp )72, (4.7)
QOur new phase space variables are thus ¥V and P4, and they provide a complete

parametrization (as the representation is faithful). Note that this formalism does
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86 H. J. Matschull and H. Nicolai

not use the entries of the V-matrix as the primary configuration variables, as this
would necessitate an analysis of the constraints that restrict the general matrix to
be an element of the group G. For exceptional groups, these constraints are not
even known. Instead, the entries of the matrix are functions on the phase space.
And they are chosen such that every function on phase space can be written as a
function of them and the Py’s.

The Poisson brackets of V and P4 are very simple. One can obtain them by
using (3.6) and (4.4):

{Pa(x), Pa(y)} = —faB® Pc 8(x,y),
{V(x)’PA(Y)} = VZA E(X»y): (48)

It is essentially the new algebraic structure {(matrix multiplication) that appears
on the right hand side of the last equation and provides such a simple expression,
showing that the momenta generate right multiplication.

If we use these quantities as the basic operators in the quantized theory, the
wave functional has to be given as a function ¥[V(x)]. To obtain the expression for

the operators .5,4, we define the matrix derivative operator

%) o}
(-5-1-)—)” = M. (4.9

As it stands it can only act on functions that are defined on open subsets of RP*2
(D the dimension of the matrix representation) and it has the property

a

év’l‘r(AV) = A (4.10)
for any matrix A, which makes computations very simple. It is now easy to see that
the polynomial operators 5

Pa=iTr(VZa4 3—9) (4.11)

provide the correct commutation relation, but are still defined on functions on open
subsets of RP*P only. If the group is not open in RP*P one can always extend
the wave functional into a neighbourhood of G. Then the operators are well defined
because the result does not depend on the extension chosen: VZ, is a vector field
tangent to G in RP*P,

In fact, the quantum theories defined by this representation and by (3.10) are
equivalent: Let ¥[V] be a wave functional in the matrix representation. It corre-
sponds to the wave functional ¥{V(¢)] in the original representation. When acting
on it with (3.10), we obtain

PV =Bl (o) o V(o)

=i ()T (0nV 3‘%7) ¥V

= m(vz,, g%) Y[V (4.12)
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Canonical Treatment of Cosel Space Sigma Models 87

Finally, we have to discuss the global symmetry under left multiplication with
an arbitrary group element for a Lagrangian that depends on P;,‘ only. From (4.11)
it is obvious that 5
8, = f dxzﬁ(zAvW) (4.13)
is the corresponding quantum operator, that generates left multiplication with a
constant group element (whereas (4.11) generates right multiplication). The classi-
cal quantity is a little more complicated and reads

Qu = / dx Tr(V™2Z4VZ5)#72€ Pe. (4.14)

Straightforward calculation yields the Poisson brackets
{@a,V} =—-24V, {Qa,PP}=0, {Qa Ps}=0 (4.15)

As the Hamiltonian depends on V only via P, it follows immediately that the
charges @4 are constants of motion.

5. Coset Manifolds

Up to now we have not specified the action for the coset space sigma model in terms
of the variables V(¢) on the group manifold. If we choose the standard Lagrangian
(8.3), we are dealing with a physical field that takes its values on the whole group
manifold. We will now show that we can treat coset space sigma models in the same
manner simply by modifying the action.

A coset space is defined as the set of equivalence classes G/H of a group G
modulo any subgroup H, where equivalence is defined by right multiplication, i.e.
g1~ g2, iff g1 = gk forsome h € H.

The distance of two equivalence classes, and thus the metric on G/H, is the
“orthogonal distance” of the two submanifolds in G, which is actually independent
of the special points on m the submanifolds where it is measured.

Let us now fix the Lagrangian for the coset space model to be

L{p™,8up™) = G Dup™ 8" ", (6.1)

where ¢™ are coordinates on the coset and G5 denotes the metric on the coset
space, which has to be distinguished from the metric on the group.

To treat this theory as described in the last section, we introduce additional
coordinates u” on H such that, together with ¢™, they parametrize the whole
group G in the following way: let go(¢) by any representative of the equivalence
class with coordinates ™, then

9(ip, u) := go(p)h(u) (5.2)

provides a parametrization of G, which thereby becomes a A bundle over G/H with
local section go(¢). For the matrix representation we get the same formula

Vg, u) = Vo(p)W(u), (5.3)
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where W(u) is a matrix representation for H. To obtain the vielbein, we first
define a basis of the matrix algebra, and then use the inverse of (4.4) to get the left
invariant vector fields.

Let the matrices X, be a basis of the H subalgebra, obeying

[Xa:Xﬁ] = faﬁ'yx*yx T"(XorXﬂ) = Tag, (5-4)

and denote by Y, the remaining independent generators of G, which we choose to
be orthogonal to the X,:

rI‘r(YaXp) = 0, 'I‘I'(YQYD) - iiab. (5-5)

As a consequence, all structure constants with two greek indices vanish and there
is a representation of H on the coset generators Y, defined by

[-Xcr, Ya] = faabyb, (5'6)

which preserves the Cartan Killing metric 7,5 = Fact F2a® + fae fon® + FanSFrc”
The corresponding (inverse) vielbein on G can be obtained from (4.7). It has a
triangular form and reads

Eg = = Te((V5 ' 0m Vo)WY W),

B2 = Tr((Vy 10m Vo) WX W 1)) 7%#,

ES = Te(W™18,WY;)n® = 0,

E* =Te(W™ 16, WXg)n*°. (5.7)

Here we see that E,* depends on u only and provides a vielbein on H, whereas £,
and E, still depend on ¢ and u. In fact, E,% transforms as a gauge field on the H
prln(:xpal bundle G — G/H.

Since E,? is u-dependent, it cannot be used as a vielbein on G/H; but it depends
on u only via the “rotation” Y, — WY, W~!, which is the mtegra.ted form of (5.6).
Thus the metric

GCZ% () = E5 (9, w)E, (@, u)ab (5.8)

is independent of u. It is exactly the metric defined at the beginning of this section,
because it measures the length of a vector projected onto the plane spanned by the
vielbein vectors E,, which are by definition orthogonal to the subgroup H.

At this point one should remember that the ‘flat’ indices a, b and «a, § globally
label the vector fields £, and E,, whereas the ‘curved’ indices m,n and r,s only
refer to local coordinates on the group manifold. It is therefore essential that we are
dealing with a group manifold, because this ensures that global non-vanishing (left
invariant) vector fields exist. It is thus the extra u-dependence in (5.8) that makes
it possible to write the metric on a coset space {which generally does not admit a
global vielbein) as a ‘square’ of a vielbein.

With these tools at hand, we can now treat the Lagrangian (5.1) as a function
of the fields ¢™(z) and u"(z), which is actually independent of u (the u" are thus
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Canonical Treaiment of Coset Space Sigma Models 89

trivial gauge parameters), but to which we can apply the methods of the last section,
as it is a sigma model on a group manifold. We only have to express the action in
terms of the derivatives P‘;“, which now split into P} along the coset space and Qf
along the subgroup,

Py = En8,0™,
Qs = Ep 0up™ + B Gyu”. (5.9)
Obviously, the Lagrangian is just
L=—L1PiPFg. (5.10)

It is formally the same as the standard action for the group manifold, but now
the sum runs over the coset indices only. As a consequence, the fields QF do not
appear in the Lagrangian. So we see that it is the Lagrangian that determines which
degrees of freedom are physical and which are not; we can convert the principal chiral
model into a coset space sigma model simply by omitting those P‘j" corresponding
to a subgroup of H from the sum (3.3). Of course, for a non-compact group G,
there is only one choice of the subgroup H for which the Hamiltonian is positive
definite. If we compute the canonical momenta

6L 6L
P, = ’6'."’5;5=770bptb; Qo = E"Q"ta'zo (5'11)
the absence of @ from the Lagrangian immediately implies the constraint Qq = 0;
this must be interpreted as a weak equality in accordance with the general theory
" of constraints [5].
Again we parametrize the phase space by the momenta P, and Qo together with
the matrix V. The Hamiltonian is then given by

H(Pa,Qa\ V) = / dx L(PaPyn® + PR Pnas + ¢°Qa), (5.12)

where ¢® are arbitrary functions and the composite fields P# can be read off directly
from

VGV = PAY, + Qf Xa, (5.13)
which combines (5.7) and (5.9).

We repeat that the main difference from the canonical point of view between
the principal chiral model and the coset space sigma model characterized by this
Hamiltonian is that the momenta @, corresponding to the subgroup H have become
constraints generating gauge transformations with parameters ¢®. Nonetheless, the
combined set of momenta P, and @, still obeys the same Poisson brackets as before;
consequently, we can read off the result directly from (4.8). So, we get

{Qua(x), Qa(y)} = —fap" @y 8(x,¥),
{Qa(x), Po(¥)} = —far* P b(x,y),
{Pa(x), Po(¥)} = —Fas @y 8(%,¥) — Far°P:6(x,¥). (5.14)
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The first equation shows that the constraints form a first class algebra. Furthermore,
{V(x), Pa(y)} = VYa 8(x, ),
{V(x), Qa(¥)} = VXa 6(x, ) (5.15)

which shows that the Q4 generate local H transformations on V, which are realized -
by right multiplication with an element of H.

To construct an operator representation for P; and @4, we can simply take over
formula (3.10). Inserting the properties of the vielbein, one arrives at

Pux) = B () s ,,‘f( S+ 1B () gy
Qalx) = iBo (X) 5y ,(x) (5.16)
Observe that the operator
B (x)By(x) = w‘s( S+ B (x)Ga(x) (5.17)

can be viewed as a connection on the principal fiber bundle G — G/H with base
space G/H and fiber H (it defines a “borizontal subspace” of T}, 4} G at each point);
note, however, that we are dealing with funciional, not ordinary derivatives here.

We recall that in the quantized theory, any physical wave functional ¥[p, u]
must satisfy QQ\I’ = 0; with the above parametrization, this is simply solved by
¥ = ¥[p]. We emphasize however, that the u-dependence of P4 cannot be dropped
since otherwise the constraint algebra (5.14) would not be obeyed.

Obviously, in this representation, i.e. writing the wave function as ¥{p, 4], the
constraints are easy to solve, but we would simply end up with a functional ¥[gp]
and the whole group structure that has been introduced to simplify the canonical
formalism would be lost. Instead, when using the matrix representation, i.e. writing
¥[V], the constraints and momentum operators read

Qo = iTx(VX, 3%) P, = z'Tr(VYa-.o.%). (5.18)

which are easier to deal with than the ‘geometrical’ operators (5.16). The con-
straints now require that the wave functional is gauge invariant under local trans-
formations V — VW,

As for the group manifolds the Lagrangian in invariant under left multiplication
with an arbitrary constant element of G. It follows that G acts as a group of isometry
transformations on the target space M = G/H. The associated charges Q, and
Q. are again given by (4.14). Note that the split of indices here has nothing to do
with the split into physical and gauge degrees of freedom since we are now dealing
with left multiplication whereas the gauge group acts by right multiplication. We
may omit the terms proportional to Qq, as these are constraints and would only
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Canonical Treatment of Cosetl Space Sigma Models 91

generate extra gauge transformations, thus the charges are now

Q, = / dx Tr (VY. VY3) 7 P,

Qq = / dx Tr (V"1 X4 VY,) 7 P.. (5.19)

They constitute the canonical generators of the isometry group and generate the
isometry transformations on the fields, as can be verified from the relations (5.15).
The corresponding quantum operators are simply

6

Oa =/dxz'fnr(yavW

. 6
) Qa= / dxz’I\-(Xo,V-ﬁ)—). (5.20)
Note, however, that (5.20) differs from (5.19) by terms proportional to constraints.
Again the charges commute with all the momenta P; and derivatives F, thus
they provide constants of motion and, in addition, they also commute with the

constraints Q. This means that they are observables in the sense of Dirac.
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