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Kurzfassung
Wir analysieren die Energie-Drehimpuls-Karte des quantenmechanischen Pendels
um tiefere Einsicht in die Verbindung zwischen den avoided crossings der Eigen-
energieoberflächen und der Bedingung für quasiexakte Lösbarkeit des Eigenwert-
problems zu gewinnen. Es hat sich herausgestellt, dass das System sowohl im all-
gemeinen Fall, welcher keine analytischen Lösungen zulässt, als auch im quasiexakt
lösbaren Fall nichttriviale Monodromie hat.

Abstract
We analyze the energy-momentum map of the quantum pendulum in an attempt
to deepen our understanding of the connection between the avoided crossings of its
eigenenergy surfaces and the condition for the quasi-exact solvability of the quantum
pendulum eigenproblem. We found that non-trivial monodromy is present not only
in the general case when no analytic solutions exist but also for the quasi-exactly
solvable cases.
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Chapter 1

Introduction

The quantum pendulum, i.e., a rigid rotor under a cosine potential and/or its vari-
ants, belongs to prototypical systems in quantum mechanics. It makes an appear-
ance in a wide range of applications, in particular in molecular physics. Among
these are manipulation of molecular rotation [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] and translation [26, 27], orbital imag-
ing [28, 29, 30], deracemization [31], molecular trapping [32], quantum simulation
[33, 34] and quantum computing [35, 36, 37, 38, 39, 40, 41].

A polar and polarizable molecule subject to electric and/or optical fields is the
most common realization of the quantum pendulum. If the molecule is linear and
its electronic angular momenta vanish (i.e., the molecule is in a 1Σ state), it is also
the simplest one. Herein, we will concern ourselves with this simplest realization of
the quantum pendulum. Its Hamiltonian is given by

H = B
[
J2 − η cos θ − ζ cos2 θ

]
(1.1)

with B the rotational constant, J2 the square of the angular momentum opera-
tor, θ the polar angle between the molecular axis and the common direction of the
electrostatic, εS, and optical, εL, field vectors, and η and ζ the orienting and align-
ing dimensionless interaction parameters. Figure 1.1 illustrates the meaning of the
above vectors and angles and provides a definition of the moment of inertia I, which
is related to the rotational constant via B = ~2

2I . The interaction parameters are then
η = µεS

B
for the orienting interaction and ζ = (α‖−α⊥)ε2

L

2B for the aligning interaction.
An overview of values of η and ζ for eperimentally achievable field strengths and
different molecules may be found in Table B1 of Ref. [42] by Sharma and Friedrich.

A general solution of the pendular eigenproblem – i.e., the eigenproblem for
Hamiltonian (1.1) – can only be found by a numerical diagonalization of the corre-
sponding truncated infinite-dimensional Hamiltonian matrix. Its matrix elements,
which depend solely on the interaction parameters η and ζ, can be obtained analyt-
ically in the free-rotor basis set, |j,m〉.

Previous work on the supersymmetry of the quantum pendulum [43] has revealed
that the pendular eigenproblem does have analytic solutions, but only for a particu-
lar class of states (i.e., for stretched states) and a particular ratio of the interaction
parameters such that k ≡ η

2
√
ζ
be an integer.

Follow-up work [44] has led to the realization that the pendular eigenenergy
surfaces E = E(η, ζ) exhibit (avoided) intersections, whose loci are given by integer
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Figure 1.1: The static field εS interacts with the body-fixed dipole moment µ, the
optical field εL with the body-fixed static-polarizability components α⊥ and α‖ of
the linear molecule. Also depicted are the polar angle θ and azimuthal angle ϕ, the
molecular axis r, as well as the atomic masses m1, m2. The molecule’s moment of
inertia is I = mr2 with reduced mass m = m1m2

m1+m2
and r = |r|.

values of k, termed from now on the topological index. Thus the condition for
analytic solvability has been found to coincide with the equation for the intersection
loci of the eigenenergy surfaces.

This curious coincidence is the main motivation for the analysis put forward in
this thesis. If a more general relationship between this quasi-exact solvability and
partial degeneracy of the spectrum of energy-eigenvalues could be established, it
might provide a useful tool for determining either property in similar systems.

Classically, Hamiltonian (1.1) amounts to a completely integrable system with
n degrees of freedom. That is to say, it possesses n independant integrals of motion
Fi (i = 1, ...n), which are mutually Poisson-commuting. As such, classically, it is
exactly solvable, that is to say its trajectories can be obtained by quadratures.

However, integrability of the classical system does not imply exact solvability of
the corresponding quantum mechanical system, as the latter is only solvable for a
particular choice of η and ζ.

The avoided crossings at integer k do, of course, amount to a quasi-degeneracy of
the energy spectrum and thus characteristic changes in the structure of the systems
energy-momentum map. The latter bears a close connection to the system’s mon-
odromy. The question of monodromy is that of the existence of a single consistent
global assignment of quantum numbers, or — in the classical case — action-angle
variables and as such might offer some insight into the quasi-exact solvability of the
problem. The monodromy of the system can in turn be computed by analyzing its
energy-momentum-map (E,m), where E is the systems energy andm the projection
quantum number corresponding classically to the azimuthal angular momentum pϕ.

It has been shown in Ref. [44] that in the free-rotor (η, ζ → 0) and harmonic-
librator (η → ∞) limit the system is exactly solvable. The corresponging systems
then exhibit trivial monodromy.



Chapter 2

Theoretical Foundations

2.1 Classicaly Integrable Systems and Action-Angle
Coordinates

A Hamiltonian system of n degrees of freedom spanning a 2n-dimensional phase
space Φ, is called integrable [45] if there exist n independant, mutually Poisson
commuting integrals of motion Fk and a Hamiltonian H = H(F1, ..., Fn) such that

{Fk,H} =
n∑
i=1

∂Fk
∂qi

∂H
∂pi
− ∂Fk
∂pi

∂H
∂qi

= 0 = dFk
dt

, k = 1, ...n. (2.1)

Poisson commuting means that the Fi satisfy the relation

{Fi, Fj} = 0. (2.2)

While integrable systems are rare among all possible Hamiltonian systems, they are
of particular interest to mathematicians and physicists alike, as Hamiltonian systems
which are explicitly solvable using the methods of traditional mathematical physics
are invariably integrable [45, 46].

The question arises, what characteristics of integrable systems differentiate them
from others, and how these relate to their solvability. The Louville-Arnol’d theorem
[47] gives surprising a insight into this matter. A complete analysis of its conse-
quences can be found in Ref. [45].

2.1.1 Proof of Integrability of the Classical Quadratic Pen-
dulum

It can be shown easily that the quadratic pendulum, see Eq. (2.3) below, is inte-
grable, by simply verifying Eqs. (2.1) and (2.2) with respect to the system’s known
integrals of motion, i.e. the azimuthal angular momentum pϕ and energy E. The
classical Hamiltonian H can be obtained by replacing J2 with its classical analog,
the rotational energy divided by the rotational constant, to find

H = B

(
p2
θ +

p2
ϕ

sin2 θ
− η cos θ − ζ cos2 θ

)
. (2.3)

The fact that pϕ and H are in fact time invariant, i.e. integrals of motion, and
thus satisfy Eq. (2.1) is trivial in the case of H. For pϕ this can be shown by making
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use of Hamilton’s equations to verify that

dpϕ
dt

= ∂H
∂ϕ

= 0, (2.4)

for H is not explicitly dependent on ϕ.
The Poisson bracket of pϕ and H also vanishes, as is evident from Eq. (2.4) and

the linear independence of θ, ϕ, pθ and pϕ.

{H, pϕ} = ∂H
∂ϕ

∂pϕ
∂pϕ
− ∂H
∂pϕ

∂pϕ
∂ϕ

+ ∂H
∂θ

∂pϕ
∂pθ
− ∂H
∂pθ

∂pϕ
∂θ

= 0 (2.5)

Now it only remains to be shown that H and pϕ are independent. This is to say,
that their gradient vectors

∇pϕ = (0, 0, 0, 1) (2.6)

∇H = (−
2p2

ϕ

sin θ3 cos θ + η sin θ + ζ cos θ sin θ, 0, 2pθ,
2pϕ

sin θ2 ) (2.7)

with ∇ = (∂θ, ∂ϕ, ∂pθ, ∂pϕ), are linearly independent.
For general η and ζ, this is only the case, for

2p2
ϕ cos θ − η sin θ4 − ζ cos θ sin θ4 = 0, pθ = 0, 0 < θ < π, (2.8)

corresponding to the parametric solutions

E±(pϕ) = (H±(θ), pϕ(θ)) = (1
2(η+ζ) sin θ tan θ−η cos θ−ζ cos θ,±

√
η + ζ

√
2
√

cot θ csc 3
2 θ

) , θ ∈ [0, π]\0

(2.9)
a plot of which is shown in Fig. 2.1.
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Figure 2.1: Critical values E± of H for
η = 60 and ζ = 100. Energies used in in
Fig.2.3 are marked with dashed lines.
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Figure 2.2: The potential V and effective
potential Veff = m2

sin θ2 − η cos θ− ζ cos2 θ
for η = 60, ζ = 100 and m = 2.
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These are the critical values of the system, which correspond to the equilibria of
the effective potential Veff . As can be seen in a plot of Veff in Fig. 2.2, three such
equilibria exist. The global minimum naturally corresponds to the lowest critical
line in Fig. 2.1, the local minimum corresponds to the critical line above it and the
unstable equilibrium corresponds to the curved critical line [α+, α−]. The latter two
meet at the points α+ and α−, where the shallow well ceases to exist, as pϕ becomes
larger.

2.1.2 The Liouville-Arnol’d Theorem
As shown above, the system possesses two integrals of motion H and pϕ. These
define its energy-momentum map

EM : TS2 → R2 : Φ→ (H, pϕ) = (E,m) (2.10)

It is instructive to regard the fibersME,m = EM−1(E,m), which are diffeomor-
phic to disjoint unions 2-Tori T 2 in phase space Φ according to the Liouville-Arnol’d
theorem [47]. New coordinates θ1, θ2, I1(H, pϕ), I2(H, pϕ), or action-angle variables
can be introduced in a neighborhood of these tori by means of a canonical transfor-
mation, such that they evolve in time as

Ik(t) = Ik(0), θk = ωk(I)t+ θ(0), ωk(I) = ∂H
∂Ik

. (2.11)

Hence, given a starting point ξ(0), the time-evolved points ξ(t) onME,m are mul-
tiperiodic functions of the angles θ1, θ2, which can be obtained by quadratures, i.e.
solving transformation equations and integrating known functions[45]. The theo-
rems introduced here for 2 dimensions are also valid for n-dimensional systems.

2.1.3 Cusp Singular Points
For regular values of EM the fibers ME,m will be one (Fig. 2.3 a)) or two (Fig.
2.3 b)) smooth disjoint T 2, for energy regions with a single, or two potential wells
present, respectively. For critical values of EM however, the T 2 will not be smooth
but will carry a distinct signature of the critical values, to which they correspond.
For the curved line of hyperbolic critical values [α+, α−] [48], the ME,m take the
form of cuspidial tori (Fig.2.3 c)), or bitory (Fig.2.3 d)), as can be seen from the
bisections of these tori in Fig. 2.4. These cusp singularities are obstructions to a
smooth variation of action-angle variables as is required for our analysis in Sec.2.3.3.
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Figure 2.3: Sections of toriME,m, i.e. the graphs of pθ(θ), for a range of m and four
different Energies E (depicted in Fig. 2.2). The dashed line in E = 36 corresponds
to a cuspidial torus.

Figure 2.4: ME,m of hyperbolic critical values are pinched tori, i.e cuspidial tori or
bitori. This figure was taken from [49]

It is important to note that EM has two leaves, which are connected at the
line of hyperbolic critical values. The smaller leaf A′ represents states, which are
localized within the shallow well and the larger leaf A represents states localized in
the deeper well, as well as delocalized states. The two leaves overlap, of course for
all values of EM for which ME,m are two disjoint tori, which is the whole region
covered by A′. Understanding the nature of the ME,m at the critical lines is vital
to choosing the right paths for analysis in Sec. 3.
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2.2 The Quantum Pendulum
The quantum counterpart of the classical system with Hamiltonian (1.1) is the
main subject of this thesis. It bears the usual correspondance to the classical case,
though it may be noted that the dynamics of the classical case depends solely on the
dimensionless ratio η

ζ
[50] while the quantum dynamics also depends on the absolute

values of η and ζ, due to the presence of the fixed quantity ~ in the rotational
constant B.

2.2.1 The Eigenvalue Problem
The energy eigenvalues of our the quantum pendulum are readily computed by
diagonalizing H in the free-rotor basis [44], the eigenfunctions of which are –apart
from a normalization factor– spherical harmonics Y m

j (θ, φ). The resulting integrals
〈j′,m′|H|j,m〉 are easily evaluated analytically by making use of the "integral over
the triple-product" theorem, (see e.g. Zare [51]), since the potential terms can also
be written as linear combinations of spherical harmonics. The orienting interaction
can thus be recast as

− η cos θ = −η
√

4π
3 Y 0

1 (θ, φ) (2.12)

and the aligning interaction as

− ζ cos θ2 = −ζ 4
3

√
π

5Y
0

2 (θ, φ) +
√

5
4Y

0
0 (θ, φ). (2.13)

As for all rotating bodies, the matrix elements of the rotational energy, i.e. the
squared angular momentum operator are

〈j′,m′|J2|j,m〉 = j(j + 1)δj′,jδm′,m. (2.14)
It should be noted that the eigenstates of H have indefinite parity, as the cos θ op-
erator changes parity, while the J2 and cos θ2 operators preserve parity.

The matrix elements for the orienting interaction are now simply integrals over
three spherical harmonics with the respective coefficients of Eqs. (2.12) and (2.13)
and the free-rotor eigenfunctions and are given by

〈j′,m′| − η cos θ|j,m〉 =− η
[

(j +m)(j −m)
(2j + 1)(2j − 1)

] 1
2

δj′,j−1δm′,m

− η
[

(j +m+ 1)(j −m+ 1)
(2j + 3)(2j + 1)

] 1
2

δj′,j+1δm′,m.

(2.15)

Similarly, the matrix elements of the aligning interaction are given by

〈j′,m′| − ζ cos θ2|j,m〉 =− ζ
[

1
3 + 2(2j + 1) [j(j + 1)− 3m2]

3(2j + 3)(2j + 1)(2j − 1)

]
δj′,jδm′,m

− ζ
[

(j +m)(j +m− 1)(j −m)(j −m− 1)
(2j − 1)2(2j + 1)(2j − 3)

] 1
2

δj′,j−2δm′,m

− ζ
[

(j +m+ 2)(j +m+ 1)(j −m+ 2)(j −m+ 1)
(2j + 3)2(2j + 5)(2j + 1)

] 1
2

δj′,j+2δm′,m.

(2.16)
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Due to the linearity of 〈j′,m′| · |j,m〉, the complete Hamiltonian can thus be
recast as the sum of (2.14), (2.15) and (2.16). The resulting matrix was easily com-
puted in a sufficiently large dimension N using Wolfram Mathematica10.0 and then
diagonalized with Matlab’s ’Eig’ function . Each matrix-diagonalization then pro-
vides N eigenvalues.

2.2.2 The Quantum Energy-Momentum Map
In correspondence to the classical case the energy-momentum map EM = (H,m)
of the quantum system can now be constructed by simply plotting the energy eigen-
values Ej,m against the good quantum number m, i.e. the projection of the angular
momentum on the space fixed axis, as for example in Fig. 3.2. The resulting map
is the basis for the analysis put forward in Sec. 2.3.3.

2.2.3 An Analysis of Numerical Errors
Our numerical method to calculate the eigenvalues is, of course, of varying precision.
Generally it is to be expected that the results will become less precise with increas-
ing quantum number J . The errors also depend on the values of the interaction
parameters η and ζ.

A simple empirical analysis of these errors can give sufficient insight into the
precision of our data before we draw conclusions from them. To this end we gen-
erated sets of eigenvalues EN

J,m with equal parameters, save the dimension N of the
truncated Hamiltonian matrices that were used for their generation. We then cal-
culated absolute errors uN = |EN

J,m − ENmax
J,m | of each eigenvalue EN

J,m, where ENmax
J,m

is the corresponding eigenvalue of highest precision. By checking for convergence
we can state a good estimate for each uN and an upper bound for the remaining
uncertainty uNmax

J,m . In all analyzed cases, uNJ,m converged quickly and uniformly upto
a value of uNJ,m ≈ 10−12, which is certainly sufficient for the analysis of monodromy
put forward in Sec. 3.

It can be seen in Fig. 2.5–2.7 that, with increasing interaction parameters η and
ζ, larger N are required to achieve a desired precision.

For the relatively low and experimentally achievable [42] η = 20, ζ = 100, the
empirical relation uJ+10

J,m ≈ 10−(3+0.25J) might be inferred from the results in Fig. 2.5,
but is naturally of limited scope and fails as the maximal precision is approached.
In any case errors of uNJ,m ≈ 10−12 are achieved at N = J + 10 for J > 40 and
N = J + 20 for all J .

The larger interaction parameters η = 175 and ζ = 430 of Fig. 2.6 mandate
larger N to achieve comparable precision. Again uJ+10

J,m ≈ 10−(0.06J) may be used as
a very rough estimate, however this relation fails for J < 30. Still a minimal error
of uJ+10

J,m ≈ 10−12 is achieved at N = J + 20 for J > 60 and at N = J + 35 for all J .
For the somewhat unrealistically large interaction parameters η = 400, ζ = 1600

much larger N are required (see Fig. 2.7). Here only at N = J+45, J > 50 minimal
precision of uJ+10

J,m ≈ 10−12 is achieved and only at N = J + 50 is it achieved for all
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J . In Fig.2.8 an energy-momentum map of H (1.1) is also displayed with a broad
scope of J , to give some overview over the precision of our method. It can be seen
here that the topmost energy levels Ej,m are noticeably irregular, while the errors
of all other Ej,m are negligibly small in terms of determining the structure of EM .
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Figure 2.5: Absulote errors uN for η =
20, ζ = 100. For a number of energy
levels Ej,m at m = 0.
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Figure 2.6: uN for η = 175, ζ = 430.
It should be noted that for each uNJ,m
the lowest dimension displayed is N =
J + 5.
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2.3 Monodromy

2.3.1 Classical Monodromy
As stated in Sec. 2.1.2, it is possible to construct smooth action-angle variables in a
neighborhood of eachME,m, which is a smooth torus T 2. The question arises, as to
whether it is also possible to assign global action angle variables, i.e. continuously
expand the local coordinate system to the system’s entire phase space. This is the
question of the system’s monodromy. As the choice of action-angle variables is not
unique, the answer to this question is not always trivial.

Cusp singularities and topology of fiber bundles
The T 2 bundle over a circle Γ, which loops around a cusp singularity α of the

energy-momentum map EM is non-trivial [52], i.e. MΓ is not diffeomorphic to
T 2 × S1. Because of this the T 2 in a neighborhood of the pinched Torus EM−1(α)
cannot be labeled uniquely and global action-angle variables cannot be introduced
here [53, 54].

In contrast to this, it follows from the existence of global action-angle variables
that the transport according to the smooth functions Ik of a torus around a closed
loop in phase space must return all variables to their initial values. Any such loop
does not contain isolated singularities and may thus be smoothly contracted into a
point.

The classical period lattice
For a regular value f of EM the Hamiltonian vector field

XFi
= ({qi, Fi}, ..., {qk, Fi}, {pi, Fi}, ..., {pk, Fi}) (2.17)

of the integral Fi defines a flow gFi
onMf .

Classically the period lattice vectors onMf are defined as linear combinations
of flows gFi

required to mimic the 2π-periodic flows gIi
, generated by the actions Ii

of (2.11). That is the matrix Af , whose colums are the lattice vectors so that
gIi

...
gIn

 = A†


gFi

...
gFn

 . (2.18)

This lattice can be extended to an open small neighborhood Df of f , given Df

also lies in the set of regular values [49, 45].

2.3.2 Quantum Monodromy
By analogy, the notion of monodromy in quantum mechanics is related to the exis-
tence of a global consistent assignment of quantum numbers. A system with non-
trivial monodromy does not permit such an assignment in such a way that the
extrapolation of quantum numbers ν(E,m) happens in a smooth way, which is a
necessary requirement for physically meaningful quantum numbers [49]. We can
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use these insights to evaluate monodromy from the numerically generated energy-
momentum map EM .

The quantum period lattice and local quantum numbers
In our case, the quantum period lattice can be introduced in point (E,m) through

the Einstein-Brillouin-Keller action quantization following the action-relation

Ik(E,m) = 2π~(νk + µk), νk ∈ N0, (2.19)

with local quantum numbers νk, Maslov indexes µk and actions Ik (2.11). The
quantum numbers νk and m then locally define the vectors of the poriod lattice (see
Fig. 2.9). The lattice vectors in DE,m can still be defined by local actions, which
are smooth functions of the Fi. The actions and integrals will be referred to by their
corresponding quantum operators in this paragraph, to clarify the relation to the
quantum numbers.

(νJ + 2,m)

(νJ ,m)

(νJ ,m+ 2) (νn + 2,m)

(νn,m) (νn,m+ 2)

Figure 2.9: Two different choices of an elementary cell of the period lattice corre-
sponding to the quantum numbers νJ = J and νn = 2J − |m|

One of the integrals of motion of the pendulum, the azimuthal angluar momen-
tum m already defines a periodic flow, while the other, the Hamiltonian H does not.
To describe the period lattice for the whole of EM we may take an exemplary flow
on a regular torusME,m as in Fig. 2.10. We take a periodic orbit Γ of gm onMf .
We also take an orbit gH starting at ξ0 ∈ Γ and returning to ξ′ ∈ Γ after the period
of first return TE,m.

We then see that the latter also induces a rotation Θ along Γ. Hence, we find
that, to satisfy (2.18), the lattice vectors must be

AE,m = 1
2π

(
2π −ΘE,m

0 TE,m

)
. (2.20)
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gHgm

ξ0

ξ′
Γ

Figure 2.10: The flows of the vector fields Xm and XH . Where gm is periodic while
gH induces a rotation Θ along Xpϕ .

2.3.3 Calculating Monodromy from the Energy-Momentum
Map

In order to reveal the monodromy in our system, we will follow the method of
analytic continuation of period lattices [49, 55, 45]. To this end, we follow a closed
loop γ in the set of regular values around the critical line [α+, α−] and try to continue
the period lattice of quantum states as defined by the quantum numbers νk(k = n, J)
(see. Fig 2.9) for consecutive values of (E,m) ∈ γ.

After completing this loop and returning to the initial point (E1,m1) = (E0,m0)
we compare the corresponding lattice matrixes AE1,m1 and AE0,m0 . If the lattices do
not coincide, so that the monodromy matrix M defined by

MAE0,m0 = AE1,m1 (2.21)

is not a unit matrix, then the system has non-trivial monodromy and the actions
used to define the period lattices are not global [49].

2.4 Quasi-Exact Solvability
While integrability and exact solvability coincide classicaly, this is not the case in
quantum mechanics, due to the absence of a quantum analogue of the Liouville-
Arnol’d theorem. [56]

In any case exactly solvable models, such as the hydrogen atom or the harmonic
oscillator, are exceedingly rare in quantum physics. There do, however, also exist
a larger number of quasi-exactly solvable models, which have been categorized in
[57, 58] that have the characteristic property of only admitting analytic solutions
for an arbitrarily large but finite part of the spectrum and only when the potential
parameters satisfy a specified condition [59].

The quadratic pendulum (1.1) is quasi-exactly solvable for a certain choice of
interaction parameters η and ζ such that

η

2
√
ζ

= k, k ∈ N. (2.22)
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For these systems with integer k, the tunneling doublets degenerate as can be
seen in Fig. 3.1, and some solutions can be found analytically. This fact has been
put forward by Schmidt and Friedrich in Ref. [44], where some energy levels (ground
states and first excited state) and the corresponding eigenfunctions have been found
by means of the SUSY apparatus.



Chapter 3

Results

3.1 Monodromy of the Quadratic Pendulum
We compared the energy-momentum maps of two systems with integer (Fig. 3.1)
and non-integer (Fig. 3.2) topological index k, computing the monodromy of both
systems using the methods detailed in Sec. 2.3.3.

In full agreement with the theorems described in Sec. 2.3.1, we found that the
system has monodromy. In particluar its monodromy matrix is

M =
(

1 1
0 1

)
, (3.1)

as can be seen in Fig. 3.2 and Fig 3.1.

Figure 3.1: EM of H and critical lines
(2.9) for η = 168, ζ = 441, k = 4. Up-
per members of tunneling doublets are
marked with grey circles. Colors corre-
spond to equal rotational quantum num-
ber νJ .

Figure 3.2: EM of H and critical lines
(2.9)for η = 175, ζ = 430, k = 4.22.
Upper members of tunneling doublets
are marked with grey circles. Colors
correspond to equal librational quantum
number νn.

14
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To illustrate this fact and shed some light on the qualitative consequences this
has for the system, we also visualized a certain choice of quantum numbers that
are locally smooth, i.e. define a smooth sequencing of states over certain domains
of EM in Fig. 3.3. There exist two natural choices of such quantum numbers
for our system. These are the librational quantum number νn and the rotational
quantum number νJ [52]. The librational quantum number νn works best for small
J , i.e strongly bound states, whose energy Ej,m resides in a low range for which the
system is essentially a 1:1 resonant oscillator [49]. On the other hand νJ is smooth
for large J and the corresponding range of high energies, where the system is similar
to a free-rotor with a small perturbation. It can be seen in Fig. 3.3 that, together,
these quantum numbers do indeed map the whole of A in a smooth manner.

As such, no difference exists in terms of monodromy between systems with integer
and non-integer topological index k. Both systems exhibit non-trivial monodromy,
as is mandated by the nature of the critical line [α+, α−].

Coinciding labels on A and A′ There is, however, a qualitative difference in
the way these systems can be labeled, which is directly linked to the degeneracy of
the tunneling doublets at interger k. If we introduce librational quantum numbers
ν ′n on the Leaf A′ these are also smooth. However, for non-integer k, νn and ν ′n and
their corresponding classical actions cannot be smoothly connected to one-another
and consequently we need three sets of quantum numbers to cover the whole of EM
in this case.

For integer k on the other hand, such a connection is obviously possible as the
energies of the νn-polyads coincide and hence EM can be covered completely by only
two labels. In particular, a single quantum number can be introduced to label A′
and the corresponding region in A, which is peculiar, as these are disjoint domains
of EM .
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Figure 3.3: EM of H and critical lines (2.9) for η = 175, ζ = 430, k = 4.22. States
with equal νJ are connected with solid lines and states with equal νn with dashed
lines.

3.2 Bidromy of the Corresponding Supersymmet-
ric Partner Potentials

As a complementary analysis, a similar approach was taken to analyse the case 1+
partner potential

V 1+
1 =

m2 − 1
4

sin2 θ
− 2β(−m+ 1) cos θ − β2 cos2 θ − 1/4, (3.2)

which generally relates to the partner Hamiltonian H1 through

H1 = ∂2

∂θ2 + V1 (3.3)

and was used in the calculation of exact solutions in Ref. [44].
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This system amounts to a swallowtail system [60] (see Fig. 3.7), as follows from
the nature of the ME,m along the critical lines (corresponding to the dashed lines
of Fig. 3.6) bordering the overlap region A± of the energy-momentum map EM .
On A± theME,m are two disjoint tori T 2

+ ∪ T 2
−, one of which will degenerate into a

circle S1 at either edge of A± (see Fig. 3.4) defining the system to be of swallowtail
form. We demonstrate this fact in Fig. 3.5, which shows cross sections of these
ME,m for a range of different values of m.

α−

T 2
α

α+

T 2
+ ∪ T 2

−

S
1+
∪
T

2− T
2 +
∪
S

1 −

S
1
−

S 1+

E

m

Figure 3.4: The critical lines E± of the case 1+ partner potential V1. The topology of
the correspondingME,m is shown. T 2 denote 2-tori S1 circles, T 2

α cuspidial tori and
the subscripts ± denote whether the ME,m correspond to states localised around
the global or local minimum of V 1+

1 , i.e. if they lie on the upper or lower leaf of Fig.
3.6.
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Figure 3.5: Cross sections of theME,m correspondig to values within A± for energy
E = −200. It can be seen that at either critical line, the left or right graph contracts
into a point, and thus the correspondingME,m contracts into a circle. These cases
are drawn with dashed lines.

A±

Γ1

Γ2
Γ2

Γ2

Figure 3.6: A schematic representation of the bifurcation diagram of the case 1+
partner potential V 1+

1 , depicting the bipath Γ1,2. This figure was taken from [60]
and relabeled.

Having determined the nature of our system’s energy-momentum map we can
now evluate its bidromy following a similar appoach to the one outlined in Sec. 2.3.3.
To this end, we choose a "virtually closed"[61] bipath Γ1,2 (see Fig. 3.6), which is
equivalent to the kind of closed path taken in Fig. 3.1 in terms of determing lattice
changes. As depicted in Fig. 3.7, we transport an elementary cell along two closed
loops Γ1 and Γ2 and compare the lattice vectors of the initial cell Ai and final cells
Af by adding up the latter two to combine lattice deformations along the loops Γ1
and Γ2.

We find that this is effected by the transformation

Af = M̃Ai =
(

1 1
0 2

)
Ai (3.4)

The system, thus, has bidromy.
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40
Figure 3.7: EM of the case 1+ partner potential and critical lines (2.9) for β = 30
and k = m− 1.

We analysed the case 1− partner potential V 1−
1 in the same fashion as V 1+

1 in
Fig. 4.2 and found it to also have bidromy corresponding to the transformation

Af = M̃Ai =
(

1 1
0 2

)
Ai. (3.5)

Finally, the case 2 partner potential V 2
1 (see Fig. 4.1) was found to have Mon-

odromy

M =
(

1 1
0 1

)
, (3.6)

as it is equivalent to the quadratic pendulum 1.1 for k = 1.



Chapter 4

Conclusion

The main result of this thesis is that choosing a ratio of the interaction parameters
that satisfies the condition for quasi-exact solvability for the quantum pendulum
problem does not affect the monodromy of the system. The monodromy matrix of
the quadratic pendulum (1.1) was found to be

M =
(

1 1
0 1

)
(4.1)

for integer and non-integer k alike. Hence, monodromy is not a critical factor in
determining whether the system will be quasi-exactly solvable or not. The mon-
odromy matrix of the corresponding supersymmetric partner potential V 2

1 is also M
(4.1) as it is equivalent to the quadratic pendulum for k = 1.

We did, however, find a qualitative difference between quantum pendula with
integer and non-integer k through our analysis of the energy-momentum map. For
an integer k a qualitatively different labeling of the quantum states is possible, since
labels on A and A′ naturally coincide in this case as the tunneling doublets become
degenerate. Hence the whole of EM can then be labeled by two quantum numbers.

The case 1+ and case 1− partner potentials V 1±
1 were both found to have bidromy,

pertaining to the transformation

M̃ =
(

1 1
0 2

)
. (4.2)
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Figure 4.1: Energy-momentum map EM of the case 2 partner potential V 2
1 and

critical lines) for β = 30 and k = 1. It can be seen that this system is equivalent to
the quadratic pendulum
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Figure 4.2: Energy-momentum map EM of the case 1− partner potential V 1−
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critical lines for β = 30 and k = m+ 1. It can be seen that this system is equivalent
to the quadratic pendulum
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