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Matter-wave recombiners for trapped Bose-Einstein condensates
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Interferometry with trapped atomic Bose-Einstein condensates (BECs) requires the development of techniques
to recombine the two paths of the interferometer and map the accumulated phase difference to a measurable atom
number difference. We have implemented and compared two recombining procedures in a double-well-based
BEC interferometer. The first procedure utilizes the bosonic Josephson effect and controlled tunneling of atoms
through the potential barrier, similar to laser light in an optical fiber coupler. The second one relies on the
interference of the reflected and transmitted parts of the BEC wave function when impinging on the potential
barrier, analogous to light impinging on a half-silvered mirror. Both schemes were implemented successfully,
yielding an interferometric contrast of ∼20% and 42% respectively. Building efficient matter-wave recombiners
represents an important step towards the coherent manipulation of external quantum superposition states of BECs.
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I. INTRODUCTION

The most striking application of the wave character of
matter is the construction of matter-wave interferometers [1].
Matter-wave interferometry relies on (1) the splitting of the
atomic wave function between two internal and/or external
states with a well-defined phase difference, (2) the possibility
to implement an additional phase shift during the time
evolution, and (3) the recombination of the two wave packets
in order to transform their relative phase difference into a
measurable signal. The coherent manipulation of atoms in
particular has required the development of an atom optics
toolbox of beam splitters, phase shifters, recombiners, etc.

Various interferometric schemes have been devised for
BECs either using radio-frequency (rf) or microwave fields
to perform a Ramsey sequence [2–9], or laser fields to drive
Raman [10] or Bragg [11–22] transitions. Most of these
schemes resort to free-falling clouds, which inherently limits
the interrogation time to a few 100 ms (with the notable
exception of experiments conducted in microgravity [21]).

A. Interferometers with trapped atoms

Interferometers where atoms are confined in a potential
until readout [23–28] can be used as a μm-sized scanning
probe, e.g., for high-resolution field sensing [29,30] or the
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study of short-ranged interactions. In principle, they also
offer the perspective of arbitrarily long interrogation times.
However, the effect of interactions can generally not be
neglected in trapped-atom interferometers, particularly when
working with BECs. On the one hand, interactions cause mean-
field shifts and dephasing effects that limit the interrogation
time [17,27,31,32], but on the other hand they can be used
to produce nonclassical states and perform measurement with
improved sensitivity [5,33]. Interferometers relying on super-
positions of external modes, albeit technically challenging,
are particularly relevant for technological applications related
to precision measurement of gravitation or inertial forces
[34–36].

An important class of trapped-atoms interferometers are
double-well interferometers. In double-well interferometers
[23,24,27], the splitting into two localized spatial modes is
achieved by smoothly transforming a single-well potential
into a double-well potential. The inverse operation, namely
the recombination of the two modes in order to transform
the phase difference between the two paths into a measurable
signal, turns out to be more strenuous. While several schemes
for the splitting and merging of clouds of thermal atoms
have been proposed [37–39], trapped BEC interferometers
usually rely on the time-of-flight (tof) recombination method,
already used in Refs. [24,40], which implements a matter-
wave equivalent of the double-slit experiment. With this
technique, the phase information is deduced from the position
of the emerging interference fringes in the spatial density
distribution of the overlapping atomic clouds. Alternative
techniques have been suggested to infer the phase between
trapped BECs, e.g., through the phase-dependent excitations
produced at the merging of two condensates [41,42] or by
monitoring the time evolution of their momentum distribution
[28]. However, no direct method has been demonstrated so
far to map the phase of a superposition of external states
onto a measurable atom number difference, in contrast to
interferometers relying on internal-state labeling, where such
techniques are readily available. Developing such a method
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would make phase estimation in BEC interferometers with
external-state superpositions much easier since counting atom
numbers in two spatial modes is more robust and less sensitive
to noise than fitting spatial interference fringes, as it does not
requires high spatial resolution imaging nor the measurement
of higher-order spatial correlation functions [43].

Here, we present two methods for the phase-sensitive
recombination of the two halves of a BEC, trapped in a
double-well potential, implemented on our atom-chip based in-
terferometer [27]. In an optical Mach-Zehnder interferometer
(MZI), this operation is achieved by means of a recombination
beam splitter. Its function is to transform the phase difference
between the two paths of the interferometer into a measurable
intensity difference between the two output ports. Similarly, we
perform this operation by carefully manipulating the confining
potential to recombine the two halves of the trapped BEC in
such a way as to translate their relative phase directly into an
atom number difference between the two wells.

The first method (Josephson recombiner) relies on the
atomic Josephson effect in the double-well potential [44–47].
A phase difference between the two halves of the BEC in-
duces an oscillating tunneling current (Josephson oscillations)
through the potential barrier. To control this current, the trap
is smoothly deformed so that the wave function essentially
remains in a superposition of the two lowest-lying modes of the
double-well potential at all times. This technique implements
a matter-wave analog to an optical fiber coupler.

The second method (nonadiabatic recombiner) is based on
the interference of the parts of the BEC wave functions which
are reflected on and transmitted through the potential barrier,
similarly to a half-silvered mirror in optics. In this case, the
fast transformation of the potential with respect to the time
scale of the motion in the trap implies that many modes are
excited.

In contrast to the tof recombination technique usually
employed in double-well interferometers, here the phase is
inferred from the measured atom numbers in each well,
allowing us to draw benefit from the precise atom counting
methods already available [48–50].

Another fundamental difference with the tof recombiner
is that atoms remain trapped at all times, making it possible
to resort to on-chip detection techniques [51,52]. This also
implies that atomic interactions play a key role, and in
particular that they can be taken advantage of to engineer
the atom number fluctuations of the output state. This should
enable interferometric phase inference with better precision
than with the tof recombination [53].

B. Setup and methods

The basics of the BEC Mach-Zehnder interferometer have
been described in our previous publication, Ref. [27]. Here
we summarize the procedure used to prepare the BEC in a
superposition of the left and right spatial modes in a double
well with a well-controlled relative phase [see Fig. 1(a)]. We
prepare a BEC with N ≈ 1200 87Rb atoms at a temperature
T ≈ 25 nK in an elongated magnetic trap, created using an
atom chip [54–56]. We use the technique of rf dressing [57,58]
to dynamically transform the single-well potential into an
elongated double well with tunable spacing, barrier height, and
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FIG. 1. Scheme of the interferometer and double-well potentials.
(a) The condensate is coherently split by transforming a single trap
into a double-well potential; a relative phase between the two arms
is imprinted by tilting the double well during a time tφ ; the spacing
between the two wells is then reduced to perform the recombination
of the wave packets and map the relative phase onto a population
imbalance. After the recombination time tBS, the atom clouds are
separated and the atom number in each well is counted. (b) Cut
of the double-well potential used immediately prior to recombination
(thick blue line) and that used for the recombiner (thick red line). Thin
horizontal lines: chemical potential (including zero-point energy) in
the ground and first excited state in each potential (for the weakly
coupled potential, the spacing between the levels is smaller than the
width of the lines). Shaded surfaces: density profiles of the ground
state in each potential.

tilt. By increasing linearly the rf amplitude, we smoothly split
the BEC transversely into a symmetric double well [24] with
well spacing d = 2 μm, barrier height V0 = h × 3.7 kHz, and
tunnel coupling energy J = h × 0.1 Hz (h denotes Planck’s
constant). The splitting produces a coherent superposition
with a reproducible initial phase difference 〈φ0〉 = 0 (standard
deviation of the initial phase difference �φ0 = 0.16 rad) and
no population imbalance on average 〈z ≡ (NL − NR)/N〉 = 0
(the brackets denote ensemble averaging). To prepare a state
with a finite relative phase, we slightly tilt the double well off
the horizontal plane, inducing a deterministic phase shift due
to the potential energy difference between the two wells

φ(tφ) = ϕ0 + ε tφ/�. (1)
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with ε/h = 350 Hz [59]. The phase of the superposition can
be adjusted by tuning the phase accumulation time tφ . ϕ0 is
a phase offset picked up while the double well is tilted and
levelled back, and hence independent of tφ .

The linear evolution of the mean phase is accompanied
by a broadening of the phase distribution caused by atomic
interactions, which is currently the main limitation to the
interrogation time of the interferometer [27,60]. Because of
the difference of chemical potential between different states
with well-defined atom number difference, the initial relative
number uncertainty after splitting translates into a growing
relative phase uncertainty, with the variance of the relative
phase growing as [61–63]

�φ2(tφ) = �φ2
0 + R2(tφ − ti)

2 . (2)

The dephasing rate R = 51 mrad ms−1 is proportional to
the interaction energy and to the initial uncertainty on the
population imbalance after splitting, and ti = −6 ms accounts
for the two times 3 ms used to incline and level the double
well.

To characterize the state of the BEC, we can interrupt the
sequence at any time and measure either the relative phase φ or
the population imbalance z. To infer φ, we switch off the trap,
let both halves of the condensate overlap, and image them
with our tof fluorescence imaging system [49]. We extract
the phase from the position of the interference fringes in the
density profile of the expanded cloud with an estimated 1σ

uncertainty of ±0.08 rad. To measure z, we switch off the trap
such as to apply a kick with opposite momentum to each cloud,
and count the atoms in two separate regions of the fluorescence
pictures. We estimate the 1σ uncertainty of the atom number
difference measurement to be of the order of ±13 atoms [27].

Altogether, the splitting and the phase accumulation stages
produce a coherent superposition of left and right modes with a
reproducible mean phase, and a phase spread which increases
in time under the effect of interaction-induced dephasing.

II. RECOMBINERS

The last element needed to close the interferometric se-
quence is a phase-sensitive recombiner. We have implemented
two methods to perform the phase-dependent recombination
of the two halves of the BEC, i.e., to transform a symmetric
superposition of the two modes with a phase difference φ(tφ)
into a state with a population imbalance z depending on
φ(tφ). Both rely on the coherent motion of the atoms in the
double-well potential. In the following, we describe the details
of each protocol.

A. Josephson recombiner

A natural way to translate the input phase difference into a
population imbalance is to make use of the atomic Josephson
effect in the double-well potential [44–47]. Assuming that
the BEC wave function can be written as a superposition of
two time-independent spatial modes ψL(R) localized in the left
(right) well of a symmetric double-well potential V (�r), the
time evolution of the population imbalance z(t) = [NL(t) −
NR(t)]/N and relative phase φ(t) = φR(t) − φL(t) obey the

coupled equations

ż = −
√

1 − z2(τ ) sin φ(τ ), (3)

φ̇ = 	z(τ ) + z(τ )√
1 − z2(τ )

cos φ(τ ), (4)

where τ = 2J t/� is a dimensionless time rescaled to the
single-particle tunneling frequency J/h, and 	 = UN/2J

denotes the ratio of interaction to tunneling energy [64]. The
parameters of the bosonic Josephson junction are given by

J = −
∫ (

�
2

2m
∇ψL∇ψR + ψLψRV

)
d�r, (5)

U = g

∫
ψ4

Ld�r, (6)

with g = 4π�
2as

m
and as being the s-wave scattering length.

In the absence of interaction (	 = 0), starting from a state
with z = 0 and a given initial relative phase φi and letting the
atoms tunnel for a quarter of an oscillation period produce a
state with imbalance

z(φi) = sin φi. (7)

This is equivalent to a π/2 Rabi pulse in Ramsey interferom-
etry.

1. Implementation

The Josephson recombiner is implemented by ramping
down the double-well barrier in 3 ms from the split trap to a
more coupled trap [see Fig. 1(b)]. The duration of the coupling
ramp was chosen to avoid exciting a sloshing motion of the
BEC. The condensates are then held for an adjustable time
tBS in the coupled trap, before the barrier is raised again to
separate the atoms for counting. The procedure is illustrated
in Fig. 2(a).

The parameters of the recombiner (recombination double
well and duration of the holding time tBS) were experimentally
optimized to achieve the maximum output imbalance starting
with a symmetric input superposition with a phase close to
π/2. For each final double well, we scanned the duration of
the holding time tBS and monitored the Josephson oscillations
[Fig. 2(b)]. We obtained the highest population imbalance
〈zm〉 ≈ 0.2 in the potential displayed in Fig. 1(b) (thick red
line) for tBS = 0.225 ms. In this double well, the distance
between the two potential minima is 1.5 μm and the barrier
height is h × 1 kHz. Mean-field simulations of the tunneling
dynamics show that most of the tunneling already occurs
during the recombination ramp, while the two potential
wells are being coupled. From the measured frequency of
the Josephson oscillation, we estimate J/h ≈ 40 Hz and
	 ≈ 7.

By scanning the phase-accumulation time tφ to tune the
relative phase at the input of the recombiner, we observe a
sinelike dependence of the output imbalance [see Fig. 2(c)].
This oscillation exhibits a characteristic anharmonic shape,
with a slope steeper around φi = π than around φi = 0. The
anharmonicity is caused by atomic interactions and is already
captured by the classical two-mode description of the BEC
[Eqs. (3) and (4)]. Starting from a state with no imbalance and
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FIG. 2. Comparing the two BEC recombiners. Left: Josephson
recombiner, right: nonadiabatic recombiner. (a), (d) Simulated evo-
lution of the density profile during the beam-splitter operation (1D
Gross-Pitaevskii computation in the direction of splitting), for an
initial state with z = 0, φi = π/2. Black lines denote instantaneous
position of the double-well minima; green shaded area represents the
holding time tBS in the recombination double well. Times below
0 ms refer to the coupling ramp. (b), (e) Evolution of the final
imbalance as a function of tBS. Black points denote measured
imbalance (ensemble average), the blue line denotes the result of
a 3D Gross-Pitaevskii simulation, and the red line indictes the
same as the blue line time-shifted and multiplied by an exponential
damping term to fit the data. Decay times: 5.1 ms (Josephson
recombiner), 5.4 ms (nonadiabatic recombiner). The shaded area
correspond to the experimentally optimized value of tBS yielding
the maximal output imbalance. (c), (f) Final imbalance as a function
of the relative phase at input for the optimal tBS. Dots represent
experimental data, the continuous line indicates the fit with the
two-harmonic model, and the dashed line shows the harmonic part of
the two-harmonic fit. The error bars indicate ± one standard error of
the mean. The calculation in Fig. 2(d) appeared previously in Fig. 4(b)
of Ref. [27].

varying the initial relative phase, the period of the oscillations
of φ and z around the stable point (z = 0,φ = 0) diverge as
one gets closer from the separatrix between the Josephson
oscillations and the self-trapped modes [thick black line in
Fig. 3(b)] [64]. Hence, for a state with an initial phase φi ≈ π ,
a small variation of φi causes a large variation of the imbalance
measured after a fixed duration tBS equal to a quarter of a small-
amplitude plasma oscillation. Interestingly, this anharmonicity
in the vicinity of φi = π resembles the nonlinearity predicted
in Ref. [42] at the merging of two condensates, which had been
suggested to improve the phase sensitivity.

As result of the parity of the response of the recombiner
and the 2π periodicity of the phase, the output imbalance at a

(a) (b)

FIG. 3. Effect of interactions. (a) Final population imbalance z

as function of the phase φi of the state at the input of the Josephson
recombiner, in the absence (red) and presence (blue) of interactions
(1D GPE simulation of the recombiner sequence along the direction
of splitting). Interactions are responsible for the anharmonicity of
the blue curve. Note the steep slope close to φi = π . (b) Classical
phase portrait of the BJJ for 	 = 10 (gray lines). The blue points
on the z = 0 axis correspond to input states of the recombiner with
different initial phases. The blue lines represent the trajectory each
state travels in phase space during a fixed time equal to a quarter
of a (small-amplitude) plasma oscillation. As the initial state gets
closer from the hyperbolic fixed point (φ = π,z = 0), the oscillations
become increasingly slow and approach asymptotically the separatrix
(black line).

given time can be written as a Fourier series

z(φi) =
M∑

n=1

an sin (nφi) (8)

without loss of generality. Fitting the data of Fig. 2(c) with the
model of Eq. (8), we find fair agreement already by restricting
the series to the two lowest harmonics with a1 = 0.18 ± 0.02
and the anharmonicity η ≡ |a2/a1| = 0.26 ± 0.13. As long as
the lowest harmonic abs|a1| dominates over the higher-order
harmonics, the amplitude a1 of the recombiner response is an
indication of how sensitive it is to phase shifts. However, a
higher phase uncertainty on the input state will tend to reduce
this amplitude (as one has to average over different output
imbalances) independently from the intrinsic contrast of the
recombiner.

To characterize the Josephson recombiner regardless of the
input state, we estimate its intrinsic contrast. It corresponds
to the highest achievable output imbalance |z(φi)| when
varying the phase φi of the input state. In practice, the phase
of the input state is tuned by varying the phase accumulation
time tφ . The corresponding imbalance at the output of the
recombiner displays the Mach-Zehnder interference fringes
represented in Fig. 4(a). However, for a given value of tφ , the
phase exhibits some uncertainty, which grows with tφ under
the effect of interaction-induced dephasing, as modeled in
Eq. (2). When averaging over experimental realizations for
each value of tφ , this phase noise reduces the amplitude of
the interference fringes. To estimate the contrast C of the
recombiner independently from the uncertainty on the phase of
the input state, we resort to the method presented in Ref. [27]:
We construct the distribution of population imbalance by
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(a) (b)

(c) (d)

FIG. 4. Comparison between the Mach-Zehnder interferometric fringes obtained with the two recombiners. Left: Normalized population
imbalance between the two wells measured as a function of the phase accumulation time prior to recombination with the Josephson (a)
or nonadiabatic (c) recombiner. It exhibits interference fringes and a damping due to interaction-induced dephasing. Gray dots denote the
imbalance of individual realizations, black dots show the ensemble average, and the red curve indicates the fit with a model taking into account
dephasing. Note that the first oscillation for each recombiner corresponds to the data of Figs. 2(c) and 2(f). Right: Distribution of population
imbalance over all times obtained by binning all the single-realization imbalances from the Josephson BS (b) and the nonadiabatic BS (d) data,
used to extract the contrast of the recombiners. Red line shows the fit with the model of Eq. (9) (blue line) with additional Gaussian imblanance
noise (black line). The data of Figs. 4(b) and 4(d) have been shown previously in Figs. 1(c) and 5 of Ref. [27].

binning the measured single-shot imbalances at all times and
assume that the phase uniformly samples the interval [0,2π ].
Neglecting the anharmonicity of the recombiner, we expect
the output imbalance z to be distributed following

p(z) = 1

π

1√
z2 − C2

if|z| < C,

= 0 elsewhere, (9)

and thus to exhibit a typical two-peak structure [blue lines in
Figs. 4(b) and 4(d)]. To account for technical atom-number
noise of the recombiner, the distribution Eq. (9) is convolved
with a Gaussian distribution of rms width σrec. We compare
the distribution of imbalances to this model to estimate C and
σrec. Unfortunately, the measured distribution does not display
a two-peak structure, which makes it difficult to fit with our
model. Imposing C = 0.2, we find rough agreement with the
data for σrec = 0.15. We attribute the failure of the fit model
to the relatively low contrast of the Josephson recombiner
as well as its anharmonicity. However, even including the
anharmonicity in the model suggests that C � 0.2 and σrec �
0.15, both parameters being strongly anticorrelated.

2. Limitations

The contrast of the Josephson recombiner is fundamentally
limited by the onset of self-trapping [64]. In a simple two-mode
picture, the maximum imbalance achievable when starting
with z = 0 is set by the self-trapping threshold

|zc| = 2

√
	 − 1

	
(10)

[see Fig. 3(b)]. For 	 ∼ 7, we expect |zc| ≈ 0.7, which is much
larger than the highest achieved imbalance. This suggests that a
recombiner based on the Josephson effect should operate in the
Rabi regime (	 < 1), where tunneling dominates over atomic
interactions. However, attaining this limit with our setup seems
strenuous, since even for the most strongly coupled double
wells, the interaction energy UN ≈ μ ≈ h × 0.5 kHz is larger
than or equal to the spacing between the two lowest energy
levels. Furthermore, approaching the Rabi regime implies
strongly reducing the splitting distance, and hence signifi-
cantly displacing the condensate wave function. Achieving
adiabaticity with respect to the motion of the atoms implies
deforming the potential over long time scales, of the order of
tens of ms, during which other effects limit the coherence of
the superposition. Faster manipulation of the atoms implies
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breaking the adiabaticity, and hence invalidates the two-mode
description of the recombiner.

Another factor limiting the contrast is the way we separate
the wave packets to measure the imbalance: Ideally, we wish
to adiabatically map the output state of the recombiner onto
a superposition of the left and right modes of two uncoupled
wells. In practice, however, separating the two halves of the
BEC too abruptly is similar to projecting its wave function
prior separation onto the left and right modes after separation,
which effectively reduces the final measured imbalance, as can
be seen in Fig. 3(a): Even in absence of interaction, the output
imbalance, defined as z = ∫ 0

−∞ |ψ(x)|2dx − ∫ ∞
0 |ψ(x)|2dx is

only of the order of 50% for an input phase φi = π/2 (here
x denotes the direction of splitting in the double well, and∫ ∞
−∞ |ψ(x)|2dx = 1).

To estimate what contrast should be theoretically achiev-
able, we simulated the dynamics of the BEC during the whole
recombiner sequence by solving the 3D Gross-Pitaeevski
equation (GPE). The simulations indicate that contrasts as high
as ∼55% should be attained. We attribute this discrepancy
with the best measured contrast of ∼20% to effects beyond
the mean-field picture. Possibly, the limited contrast is related
to the strong damping of the tunneling oscillations that we
systematically observe in our double wells [see Fig. 2(b)],
and which will be the object of further studies. To quantify
the effect of this damping, we fit the data of Fig. 2(b) with
the result of a 3D GPE simulation of the dynamics of the
BEC with an adjustable time shift �t (to account for a small
experimental delay) and an exponential damping prefactor
e−t/τ , yielding �t = 0.15 ms and τ = 5.1 ms. Note that the 3D
GPE simulation also exhibits a damping [blue line in Fig. 2(b)],
but on a much longer time scale than observed experimentally.
On an even longer time scale, the simulation predicts revivals
of the amplitude which we never observed experimentally.
The short time scale (with respect to the Josephson oscillation
period TJ = 3.8 ms) of this unknown additional damping
mechanism emphasizes the need for a fast recombination
procedure, which may, however, not be compatible with the
adiabatic manipulation of the potential.

B. Nonadiabatic recombiner

A way to avoid some limitations of the adiabatic Josephson
beam splitter, especially the ones coming from the interactions,
is to operate nonadiabatically with respect to the interaction
time scale in order to induce a fast interference between the
condensates and use this interference to recapture the clouds
in the two wells of a double well.

1. Principle of operation

The nonadiabatic regime can be reached by decreasing
the well spacing and the barrier height nonadiabatically with
respect to the time scale of the motion. The clouds are abruptly
accelerated towards the barrier and after an adjustable time
tBS, the barrier is raised to separate the atoms for counting
[see Fig. 2(d)]. Starting again with a symmetric superposition
with φi = π/2, the parameters of the recombiner trap and the
time tBS were optimized to yield the highest imbalance [see
Fig. 2(e)]. The optimum was found in the same recombination

double well as for the first method, however, for a longer time
tBS = 2.25 ms.

At any time tBS, the phase-dependent imbalance results
from the interference between the parts of the wave packet that
are transmitted and reflected on either side of the semireflective
potential barrier, like in a half-silvered mirror (see Ref. [27]).
Neglecting interactions, the symmetry of the potential, and
the linearity of the Schrödinger equation ensures that the
population imbalance z(t) ≡ ∫ 0

−∞ |ψ |2dx − ∫ ∞
0 |ψ |2dx obeys

at each time

z(t) = C(t) sin φi, (11)

where C(t) = 2
∫ ∞

0
Im[ψ∗

R(x,t)ψL(x,t)]dx, (12)

the time-dependent contrast 0 � C(t) � 1 is independent of
φi and is determined by the mode matching between the
transmitted and the reflected wave packet on either side of
the barrier.

Besides neglecting interactions, the simplest way to model
the nonadiabatic recombiner consists in approximating the
double-well potential with a one-dimensional square barrier.
A wave packet impinging on the barrier is split between a
transmitted and a reflected wave. For a plane matter wave of
momentum �k [energy: �

2k2/(2m)] impinging on a potential
barrier of height V0 and size d, the transmission coefficient
reads

T = 4ε(ε − 1)

4ε(ε − 1) + sin2[
√

(ε − 1)d/L]
if E > V0, (13)

T = 4ε(1 − ε)

4ε(ε − 1) + sinh2[
√

(1 − ε)d/L]
if E < V0, (14)

where ε = V0/(�2k2/2m) is the kinetic energy of the plane
wave in units of the barrier height and L(V0) = �/

√
2mV0 is

the tunneling length associated to the energy V0. L corresponds
to the extension of a wave packet of kinetic energy V0, and is
the characteristic length associated to the penetration depth of
an evanescent matter wave into a potential barrier of height V0

at low energy [65].
Figure 5, left panel, shows how the transmission probability

T depends on the energy and the barrier width. Two regimes
must be distinguished:

(1) E > V0 corresponds to a situation where classically, the
particles would pass over the barrier. Quantum mechanically,
the wave packet is partly transmitted and partly reflected. The
transmission probability oscillates between [1 + 4ε(ε − 1)]−1

(thick black dashed line) and the condition T = 0.5 corre-
sponding to a 50:50 beam splitter imposes the condition

E � 1 + √
2

2
V0. (15)

In other words, a 50:50 beam splitter can only be achieved in
the classical regime (E > V0) if the energy is of the order of
the barrier height (V0 � E � 1.2 × V0).

(2) E < V0 corresponds to a situation where the atoms can
only tunnel through the barrier. The transmission probability
is a monotonically decreasing function of E. T = 0.5 can only
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FIG. 5. Transmission and contrast of the square beam splitter. Left: Transmission probability for a plane wave of energy E impinging on a
potential barrier of height V0/h = 1 kHz and width d = 0.4,1 or 2 μm. Note the oscillations of T associated with the transmission resonances
for E > V0. Dashed black line: lower bound for T in the classical regime (E > V0). Gray shaded area: uncertainty on the kinetic energy of
the initial state in the double well �E = ±�ω/2. The red dotted line corresponds to the transmission of a semireflective mirror T = 0.5.
Right: Contrast of a square beam splitter when two plane matter waves of opposite momentum and equal intensities are impinging on it. High
contrast can be achieved in the tunneling regime (E < V0) provided the barrier is sufficiently narrow and in the classical regime when E ≈ V0.
At higher energy, secondary maxima can be observed when a transmission resonance is reached. 100% contrast is obtained for E = V0 and
d = 2L (white point).

be achieved if

d < 2L(V0). (16)

This second condition means that in the tunneling regime,
the transmission drops when the barrier is larger than the
penetration depth associated to the V0.

Still, 〈E〉 ≈ V0 is not sufficient to achieve a high contrast.
The mode-matching condition of Eq. (12) shows that in order
for C to be large, there must be a good overlap between the
reflected and the transmitted wave on each side of the barrier. In
the case of a square barrier, we can derive an explicit expression
for the contrast from the model of Ref. [65]. Assuming that
two plane waves of equal intensity and opposite momentum
are impinging on the square barrier, the contrast reads

C = 4
√

ε(ε − 1) sin[
√

(ε − 1)d/L]

4ε(ε − 1) + sin2[
√

(ε − 1)d/L]
if E > V0,

C = 4
√

ε(1 − ε)sinh[
√

(1 − ε)d/L]

4ε(1 − ε) + sinh2[
√

(1 − ε)d/L]
if E < V0. (17)

The result is displayed in Fig. 5, right panel. As expected, the
maximal contrast C = 1 is achieved when

E = V0, (18)

and d = 2L(V0) =
√

2�2

mV0
. (19)

When the kinetic energy is larger than the barrier height, the
contrast is approximately equal to V0/E. In the tunneling
regime (E < V0), high contrast can be achieved, provided the
barrier is made narrow enough. For a given energy E of the
incoming waves, taking the limit d → 0 imposes that V0 must
diverge like 1/d to ensure a contrast of unity. This corresponds

to the limit of an ideal δ potential, or, in optics, to an infinitely
thin half-silvered mirror.

In practice, however, the wave packets are not plane waves;
they have instead a finite momentum spread which is non-
negligible compared to V0 (gray shaded area in Fig. 5). It
means that the atoms tunnel through the barrier as much as
they cross it classically. The potential barrier in our double
wells also has a finite extension, which is always comparable
to the width of wave packets [see Fig. 1(b)]. Interestingly, the
double well for which we experimentally obtained the highest
contrast indeed implements the condition E ≈ V0, while the
spacing between the potential minima is approximately twice
as large as the tunneling depth dt = 0.5 μm corresponding to
the barrier height.

The dynamics of the wave function in the double-well
potential is fairly intricate but still can be captured by
mean-field simulations. Note that conversely to the Josephson
recombiner, the density profile exhibits a complex structure
due to the multiple reflections and transmissions in the double-
well potential. Simulations suggest that the optimal duration
tBS to achieve maximal imbalance corresponds to a turning
point of the classical center-of-mass oscillations in the double
well, for which the wave packets reach maximal separation
(see Fig. 6).

Fitting the response z(φi) of the nonadiabatic recombiner
at fixed tBS = 2.25 ms using the model of Eq. (8) restricted to
the two lowest harmonics (see Fig. 2), we find a1 = 0.3 ±
0.03 and η = |a2/a1| = 0.12 ± 0.09, indicating a slightly
weaker anharmonicity than for the Josephson recombiner.
This behavior is only partially captured by simplified 1D GPE
simulations along the direction of splitting which predict η =
0.28 (Josephson) and η = 0.23 (nonadiabatic) respectively.
One possible explanation for the fact that the nonadiabatic
recombiner seems to be less affected by interactions is that
the wave function is stretched during the nonadiabatic motion,
implying a lower mean-field energy.
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in the normal recombining procedure in order to separate the atoms
for counting (tBS = 2.25 ms). It corresponds to the turning point of
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2. Practical implementation

We implemented a nonadiabatic recombiner in our atom-
chip-based trapped atom Mach-Zehnder interferomerter [27].
Figure 4(c) displays the fringes obtained by varying the phase
accumulation time in the interferometer. In contrast to the
Josephson recombiner, the distribution of z at all times for
the nonadiabatic recombiner exhibits a clear double-peaked
structure [see Fig. 4(d)] from which we extract C = 42 ± 3%
and σRBS = 0.07 using the model of Eq. (9). This is less than
expected from the time-dependent 3D GPE simulations [up to
∼70%, see Fig. 2(e)]. Interestingly, the simulated evolution
of the output imbalance as a function of tBS for the input
phase φi = π/2 [blue line in Fig. 2(e)] displays roughly the
same features as experimentally observed. This again suggests
that an additional damping mechanism is at work. Fitting the
experimental data with the result of the 3D GPE simulation
with additional time shift and exponential damping prefactor
yields �t = 0.25 ms and τ = 5.4 ms [red line in Fig. 2(e)].
This decay time is very close to the one we found for the
Josephson recombiner (5.1 ms), suggesting that the damping
mechanism is the same in both procedures.

III. PERSPECTIVES

We have implemented two strategies for the phase-sensitive
recombination of a BEC in a double-well potential. With
the Josephson recombiner we achieved a true analog of an
optical recombination beam splitter in a double-well-based
BEC Mach-Zehnder interferometer. It relies on a manipulation
of the potential which is adiabatic with respect to the motion

of the atoms, ensuring that the output state remains essentially
in a superposition of the two lowest energy eigenstates of the
potential. This is needed, for example, to further process the
quantum state in a sequence of coherent operations. In contrast,
the nonadiabatic recombiner based on a fast modification of
the double well yields a higher contrast than the Josephson
recombiner. It produces a wave packet with a complex spatial
structure of phase and density in each well.

Currently, none of these recombination beam splitters
can allow for phase estimation better than the standard
quantum limit �φSQL = 1/

√
N = 0.03 rad. We estimate the

phase uncertainty (standard deviation of the phase distribu-
tion after repeated identical measurements for an accumu-
lated phase 〈φ〉 = 0) from the Josephson recombiner δφ =
�z/|∂n/∂φ|φ=0 ≈ σz/C = 0.75 rad, while for the nonadia-
batic recombiner we get δφ ≈ 0.18 rad. It is interesting to
note that both recombiners result in a phase readout with a
sensitivity inferior to that of the time-of-flight recombination
where we routinely achieve δφ = 0.08 rad [27].

Presently, the performance of both recombiners seems to
be limited by an unknown relaxation mechanism which is
responsible for the fast damping of the Josephson oscillations
between the two wells. This damping, which is the subject
of ongoing research in our group, is not captured by a 3D
mean-field description. We conjecture that it is linked to the
coupling between the coherent transverse dynamics and the
longitudinal excitations of our elongated BECs. In our setup
and within our experimental parameters, the atoms are in the
1D quasicondensate regime [66], where the atoms occupy
only a few (typically two) modes in the transverse direction
of the double well, while they can access many longitudinal
modes which form a so-called bath the energy could decay
to. One way to reach a better sensitivity to small phase shifts
would be to achieve a higher contrast C. This may require the
use of optimized trap manipulation protocols, in particular to
operate on a time scale short with respect to these relaxation
mechanisms [67–69].

These recombiners are necessary tools for the coherent
manipulation of superpositions of external states, as needed,
for example, to measure inertial forces. Since they allow
mapping the relative phase between the two modes of the
BEC into an atom number difference, these recombination
protocols will greatly benefit from the precise atom-counting
methods already available [48–50]. Furthermore, they allow
taking advantage of interactions during the recombination step,
which opens the way for quantum-enhanced interferometry
with superpositions of external modes. While the sensitivity of
the phase estimation based on the tof-recombination method is
fundamentally bounded by δφ ∝ N−2/3 regardless of the input
state [53], recombiners based on atom counting are expected
to be ultimately bounded by the Heisenberg scaling δφ ∝ 1/N

[45,47] only. Eventually, our recombiners complement the
atom-optics toolbox for the manipulation of superpositions of
motional states of a BEC and can be used for the tomography
of the many-body wave function.
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Aurélien Perrin for earlier work on the experiment. T.B.

063620-8



MATTER-WAVE RECOMBINERS FOR TRAPPED BOSE- . . . PHYSICAL REVIEW A 93, 063620 (2016)

and R.B. acknowledge the support of the Vienna Doctoral
Program on Complex Quantum Systems (CoQuS). J.-F.S.
acknowledges the support of the Austrian Science Fund (FWF)
through his Lise Meitner fellowship (M 1454-N27). This
research was supported by the European Integrated project

SIQS and the FWF projects SFB FoQuS (SFB F40). T. B. and
R. B. thank the FWF Doctoral Programme CoQuS (W1210).
B. J.-D. is supported by the Ramon y Cajal program. The
authors acknowledge financial support by Grants FIS2014-
54672-P Generalitat de Catalunya and FIS2011-24154 from
MICINN (Spain).

[1] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Rev. Mod.
Phys. 81, 1051 (2009).

[2] D. S. Hall, M. R. Matthews, C. E. Wieman, and E. A. Cornell,
Phys. Rev. Lett. 81, 1543 (1998).

[3] F. Minardi, C. Fort, P. Maddaloni, M. Modugno, and M.
Inguscio, Phys. Rev. Lett. 87, 170401 (2001).

[4] F. Chevy, K. W. Madison, V. Bretin, and J. Dalibard, Phys. Rev.
A 64, 031601 (2001).

[5] C. Gross, T. Zibold, E. Nicklas, J. Estève, and M. K. Oberthaler,
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[26] Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, and J.
Dalibard, Nature (London) 441, 1118 (2006).

[27] T. Berrada, S. van Frank, R. Bücker, T. Schumm, J.-F. Schaff,
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Rev. A 64, 063607 (2001).
[39] E. Andersson, T. Calarco, R. Folman, M. Andersson, B. Hessmo,

and J. Schmiedmayer, Phys. Rev. Lett. 88, 100401 (2002).

063620-9

http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/PhysRevLett.81.1543
http://dx.doi.org/10.1103/PhysRevLett.81.1543
http://dx.doi.org/10.1103/PhysRevLett.81.1543
http://dx.doi.org/10.1103/PhysRevLett.81.1543
http://dx.doi.org/10.1103/PhysRevLett.87.170401
http://dx.doi.org/10.1103/PhysRevLett.87.170401
http://dx.doi.org/10.1103/PhysRevLett.87.170401
http://dx.doi.org/10.1103/PhysRevLett.87.170401
http://dx.doi.org/10.1103/PhysRevA.64.031601
http://dx.doi.org/10.1103/PhysRevA.64.031601
http://dx.doi.org/10.1103/PhysRevA.64.031601
http://dx.doi.org/10.1103/PhysRevA.64.031601
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1088/1367-2630/13/6/065020
http://dx.doi.org/10.1088/1367-2630/13/6/065020
http://dx.doi.org/10.1088/1367-2630/13/6/065020
http://dx.doi.org/10.1088/1367-2630/13/6/065020
http://dx.doi.org/10.1103/PhysRevA.84.021605
http://dx.doi.org/10.1103/PhysRevA.84.021605
http://dx.doi.org/10.1103/PhysRevA.84.021605
http://dx.doi.org/10.1103/PhysRevA.84.021605
http://dx.doi.org/10.1088/1367-2630/15/4/043002
http://dx.doi.org/10.1088/1367-2630/15/4/043002
http://dx.doi.org/10.1088/1367-2630/15/4/043002
http://dx.doi.org/10.1088/1367-2630/15/4/043002
http://dx.doi.org/10.1038/ncomms3424
http://dx.doi.org/10.1038/ncomms3424
http://dx.doi.org/10.1038/ncomms3424
http://dx.doi.org/10.1038/ncomms3424
http://dx.doi.org/10.1103/PhysRevA.81.043633
http://dx.doi.org/10.1103/PhysRevA.81.043633
http://dx.doi.org/10.1103/PhysRevA.81.043633
http://dx.doi.org/10.1103/PhysRevA.81.043633
http://dx.doi.org/10.1103/PhysRevA.61.041602
http://dx.doi.org/10.1103/PhysRevA.61.041602
http://dx.doi.org/10.1103/PhysRevA.61.041602
http://dx.doi.org/10.1103/PhysRevA.61.041602
http://dx.doi.org/10.1103/PhysRevLett.85.2040
http://dx.doi.org/10.1103/PhysRevLett.85.2040
http://dx.doi.org/10.1103/PhysRevLett.85.2040
http://dx.doi.org/10.1103/PhysRevLett.85.2040
http://dx.doi.org/10.1126/science.287.5450.97
http://dx.doi.org/10.1126/science.287.5450.97
http://dx.doi.org/10.1126/science.287.5450.97
http://dx.doi.org/10.1126/science.287.5450.97
http://dx.doi.org/10.1103/PhysRevLett.89.140401
http://dx.doi.org/10.1103/PhysRevLett.89.140401
http://dx.doi.org/10.1103/PhysRevLett.89.140401
http://dx.doi.org/10.1103/PhysRevLett.89.140401
http://dx.doi.org/10.1103/PhysRevLett.91.010406
http://dx.doi.org/10.1103/PhysRevLett.91.010406
http://dx.doi.org/10.1103/PhysRevLett.91.010406
http://dx.doi.org/10.1103/PhysRevLett.91.010406
http://dx.doi.org/10.1103/PhysRevLett.94.090405
http://dx.doi.org/10.1103/PhysRevLett.94.090405
http://dx.doi.org/10.1103/PhysRevLett.94.090405
http://dx.doi.org/10.1103/PhysRevLett.94.090405
http://dx.doi.org/10.1103/PhysRevA.74.031602
http://dx.doi.org/10.1103/PhysRevA.74.031602
http://dx.doi.org/10.1103/PhysRevA.74.031602
http://dx.doi.org/10.1103/PhysRevA.74.031602
http://dx.doi.org/10.1103/PhysRevA.74.031601
http://dx.doi.org/10.1103/PhysRevA.74.031601
http://dx.doi.org/10.1103/PhysRevA.74.031601
http://dx.doi.org/10.1103/PhysRevA.74.031601
http://dx.doi.org/10.1103/PhysRevA.84.033610
http://dx.doi.org/10.1103/PhysRevA.84.033610
http://dx.doi.org/10.1103/PhysRevA.84.033610
http://dx.doi.org/10.1103/PhysRevA.84.033610
http://dx.doi.org/10.1103/PhysRevA.87.013632
http://dx.doi.org/10.1103/PhysRevA.87.013632
http://dx.doi.org/10.1103/PhysRevA.87.013632
http://dx.doi.org/10.1103/PhysRevA.87.013632
http://dx.doi.org/10.1103/PhysRevLett.110.093602
http://dx.doi.org/10.1103/PhysRevLett.110.093602
http://dx.doi.org/10.1103/PhysRevLett.110.093602
http://dx.doi.org/10.1103/PhysRevLett.110.093602
http://dx.doi.org/10.1088/1367-2630/16/7/073035
http://dx.doi.org/10.1088/1367-2630/16/7/073035
http://dx.doi.org/10.1088/1367-2630/16/7/073035
http://dx.doi.org/10.1088/1367-2630/16/7/073035
http://dx.doi.org/10.1103/PhysRevLett.92.050405
http://dx.doi.org/10.1103/PhysRevLett.92.050405
http://dx.doi.org/10.1103/PhysRevLett.92.050405
http://dx.doi.org/10.1103/PhysRevLett.92.050405
http://dx.doi.org/10.1038/nphys125
http://dx.doi.org/10.1038/nphys125
http://dx.doi.org/10.1038/nphys125
http://dx.doi.org/10.1038/nphys125
http://dx.doi.org/10.1103/PhysRevLett.92.130403
http://dx.doi.org/10.1103/PhysRevLett.92.130403
http://dx.doi.org/10.1103/PhysRevLett.92.130403
http://dx.doi.org/10.1103/PhysRevLett.92.130403
http://dx.doi.org/10.1038/nature04851
http://dx.doi.org/10.1038/nature04851
http://dx.doi.org/10.1038/nature04851
http://dx.doi.org/10.1038/nature04851
http://dx.doi.org/10.1038/ncomms3077
http://dx.doi.org/10.1038/ncomms3077
http://dx.doi.org/10.1038/ncomms3077
http://dx.doi.org/10.1038/ncomms3077
http://dx.doi.org/10.1038/ncomms5009
http://dx.doi.org/10.1038/ncomms5009
http://dx.doi.org/10.1038/ncomms5009
http://dx.doi.org/10.1038/ncomms5009
http://dx.doi.org/10.1063/1.3470591
http://dx.doi.org/10.1063/1.3470591
http://dx.doi.org/10.1063/1.3470591
http://dx.doi.org/10.1063/1.3470591
http://dx.doi.org/10.1103/PhysRevLett.111.143001
http://dx.doi.org/10.1103/PhysRevLett.111.143001
http://dx.doi.org/10.1103/PhysRevLett.111.143001
http://dx.doi.org/10.1103/PhysRevLett.111.143001
http://dx.doi.org/10.1103/PhysRevA.80.023603
http://dx.doi.org/10.1103/PhysRevA.80.023603
http://dx.doi.org/10.1103/PhysRevA.80.023603
http://dx.doi.org/10.1103/PhysRevA.80.023603
http://dx.doi.org/10.1103/PhysRevLett.98.030407
http://dx.doi.org/10.1103/PhysRevLett.98.030407
http://dx.doi.org/10.1103/PhysRevLett.98.030407
http://dx.doi.org/10.1103/PhysRevLett.98.030407
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1016/0378-4363(88)90176-3
http://dx.doi.org/10.1016/0378-4363(88)90176-3
http://dx.doi.org/10.1016/0378-4363(88)90176-3
http://dx.doi.org/10.1016/0378-4363(88)90176-3
http://dx.doi.org/10.1038/23655
http://dx.doi.org/10.1038/23655
http://dx.doi.org/10.1038/23655
http://dx.doi.org/10.1038/23655
http://dx.doi.org/10.1088/0264-9381/17/12/311
http://dx.doi.org/10.1088/0264-9381/17/12/311
http://dx.doi.org/10.1088/0264-9381/17/12/311
http://dx.doi.org/10.1088/0264-9381/17/12/311
http://dx.doi.org/10.1103/PhysRevLett.86.608
http://dx.doi.org/10.1103/PhysRevLett.86.608
http://dx.doi.org/10.1103/PhysRevLett.86.608
http://dx.doi.org/10.1103/PhysRevLett.86.608
http://dx.doi.org/10.1103/PhysRevA.64.063607
http://dx.doi.org/10.1103/PhysRevA.64.063607
http://dx.doi.org/10.1103/PhysRevA.64.063607
http://dx.doi.org/10.1103/PhysRevA.64.063607
http://dx.doi.org/10.1103/PhysRevLett.88.100401
http://dx.doi.org/10.1103/PhysRevLett.88.100401
http://dx.doi.org/10.1103/PhysRevLett.88.100401
http://dx.doi.org/10.1103/PhysRevLett.88.100401


T. BERRADA et al. PHYSICAL REVIEW A 93, 063620 (2016)

[40] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee,
D. M. Kurn, and W. Ketterle, Science 275, 637 (1997).

[41] G.-B. Jo, J.-H. Choi, C. A. Christensen, T. A. Pasquini, Y.-R.
Lee, W. Ketterle, and D. E. Pritchard, Phys. Rev. Lett. 98, 180401
(2007).

[42] A. Negretti and C. Henkel, J. Phys. B 37, L385 (2004).
[43] J. Chwedenczuk, F. Piazza, and A. Smerzi, Phys. Rev. A 82,

051601(R) (2010).
[44] M. Albiez, R. Gati, J. Foelling, S. Hunsmann, M. Cristiani, and

M. K. Oberthaler, Phys. Rev. Lett. 95 010402 (2005).
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