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The real-time dynamics of the Fermi-Hubbard model, driven out of equilibrium by quenching or ramping the
interaction parameter, is studied within the framework of the nonequilibrium self-energy functional theory. A
dynamical impurity approximation with a single auxiliary bath site is considered as a reference system, and the
time-dependent hybridization is optimized as prescribed by the variational principle. The dynamical two-site
approximation turns out to be useful to study the real-time dynamics on short and intermediate time scales.
Depending on the strength of the interaction in the final state, two qualitatively different response regimes are
observed. For both weak and strong couplings, qualitative agreement with previous results of nonequilibrium
dynamical mean-field theory is found. The two regimes are sharply separated by a critical point at which the
low-energy bath degree of freedom decouples in the course of time. We trace the dependence of the critical
interaction of the dynamical Mott transition on the duration of the interaction ramp from sudden quenches to
adiabatic dynamics and therewith link the dynamical to the equilibrium Mott transition.
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I. INTRODUCTION

Systems of strongly correlated electrons on a lattice exhibit
diverse emergent phenomena such as insulating behavior
caused by strong local Coulomb repulsion. The Mott insulator
is believed to hold the key for an understanding of the complex
physics that is characteristic for several transition metals and
compounds and has been at the focus of a vast number of
studies in recent decades [1]. The preparation and the study
of a Mott-insulating state by experiments done with ultracold
fermionic atoms [2,3] opens an exciting new perspective on the
underlying many-body problem and on the related idealized
many-body models, such as the single-band Fermi-Hubbard
model [4]. The new aspect in those experiments is the high
degree of control over the microscopic model parameters
which can be used to steer the system between different
phases in the equilibrium phase diagram but also to initiate
and to manipulate nonequilibrium processes [5,6]. The last
point in particular has attracted some interest recently, and
time-dependent experiments with ultracold atoms in optical
lattices [7,8] can complement the investigation of condensed-
matter dynamics on femtosecond time scales with ultrafast
pump-probe experiments [9–11].

The study and the understanding of strongly interacting
lattice-fermion systems far from equilibrium requires a crit-
ical examination of standard concepts of quantum statistics
regarding, e.g., the thermalization of isolated quantum sys-
tems [12–14], and it can bring about entirely new concepts
such as dynamical phase transitions [15,16]. Apart from
such fundamental theoretical questions, a further development
and application of numerical methods is highly needed to
study relevant problems such as the correlation-driven metal-
insulator transition.

The Mott transition in the single-band Hubbard model is
the paradigmatic field of application for the dynamical mean-

*fhofmann@physik.uni-hamburg.de

field theory (DMFT) [17,18], which may be characterized
as an internally consistent and nonperturbative mean-field
approach controlled by the limit of infinite spatial dimensions.
Although the feedback of nonlocal magnetic correlations is
neglected, the DMFT phase diagram of the (paramagnetic)
Mott transition [18] represents an instructive example of a
phase transition which must be described by nonperturbative
means. This has triggered the study of the real-time dynamics
at the Mott transition using the extension of the standard DMFT
to the nonequilibrium case [19–21]. The simplest protocol to
initiate the dynamics is a sudden quench of the Hubbard-U ,
from Uini = 0 to different final values Ufin. For weak Ufin, it has
been found that thermalization is delayed and that the system
gets trapped in a so-called prethermal metastable state [22,23].
On the other hand, for strong Ufin, a fast relaxation is again im-
peded by collapse-and-revival oscillations that are reminiscent
of the dynamics in the atomic limit. Both regimes are separated
by a sharp transition for a certain final interaction strength
Ufin = U

dyn
c , at which a fast relaxation to thermal equilibrium

takes place. This picture of the “dynamical Mott transition”
has emerged by applying the nonequilibrium DMFT to the
Hubbard model on an infinite-dimensional Bethe lattice [23]
and has been corroborated by different subsequent studies and
using different methods [24–28].

Within the DMFT the original lattice-fermion system is
mapped onto an impurity model, where a single correlated site
is embedded in a noninteracting dynamical mean field (“bath”)
which must be determined self-consistently. This effective
impurity model poses a demanding many-body problem,
particularly for a general nonequilibrium situation. While
continuous-time quantum Monte-Carlo methods represent
highly efficient “solvers” for the equilibrium case, only short
propagation times can be accessed due to a severe sign (or
phase) problem showing up in the real-time domain [29,30].
Perturbative approaches are much more successful and have
been used extensively in the strong- [31] and weak-coupling
regime [32,33] but are clearly of limited use to address the
Mott transition which takes place at intermediate coupling
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strengths. As concerns the single-band Hubbard model, an
exact-diagonalization (ED) solver is an efficient method for
the equilibrium case at zero temperature [34], though the
determination of the one-particle parameters of the impurity
Hamiltonian is essentially done in an ad hoc way. For a
nonequilibrium problem, the necessary Hamiltonian represen-
tation of the effective mean field poses an even more severe
complication which has so far been solved on a short time
scale only [35], since in the course of time more and more bath
degrees of freedom have to be coupled to the impurity. Still this
has allowed ED approaches to operate, such as Krylov-space
methods [35], the multiconfiguration time-dependent Hartree
method [36] or density-matrix renormalization techniques
based on matrix-product states [37].

The (nonequilibrium) self-energy functional theory
(SFT) [38,39] offers a different route for the application
of ED methods. Here, a reference impurity model with a
given finite (small) number of bath degrees of freedom is
considered. Instead of imposing the DMFT self-consistency
condition, the time-dependent parameters of the reference
system are fixed by applying a general variational principle,
stating that the grand potential should be stationary as when
expressed as a functional of the (nonequilibrium) self-energy.
While the DMFT is recovered by choosing a reference
system with a continuum of bath sites, any reference system
with a finite bath generates a consistent dynamical impurity
approximation (DIA) or, when choosing, in the spirit of
cluster-DMFT approaches, a finite cluster of correlated sites
to better account for short-range correlations, a variational
cluster approximation (VCA). For an overview we refer to
Refs. [40,41].

This idea has successfully been employed for the study of
the (equilibrium) Mott transition. Remarkably, the DIA with
only a single additional bath site has turned out to recover the
DMFT picture of the Mott transition in a qualitatively correct
way [42–46], and with a few more bath degrees of freedom [43]
the agreement is even quantitative.

The present paper reports on results obtained by applying
the nonequilibrium extension of the dynamical impurity
approximation to study the real-time dynamics after quenches
and ramps of the Hubbard interaction. For the nonequilibrium
case, the fundamental concepts of self-energy functional
theory are somewhat different and require a completely new
strategy for the numerical evaluation [39]. Different practical
issues of the implementation have been discussed recently in
Ref. [47]. For the first application of the nonequilibrium DIA
we restrict ourselves to a two-site reference system. As will be
discussed, this is indeed sufficient in many respects to cover
the essentials of the dynamical Mott transition as compared
to previous work [23,24]. We also discuss the significance of
the method in view of recently proposed Hamiltonian-based
impurity solvers [35–37].

The paper is organized as follows: In Sec. II we briefly
introduce the nonequilibrium many-body problem, review the
self-energy functional approach, and discuss the cornerstones
of its numerical implementation. The application to study the
Mott transition for both the equilibrium and the nonequilibrium
case is presented in Secs. III and IV, respectively. Section V
provides a summary.

II. MODEL AND METHODS

Using standard notations, the Hamiltonian of the Fermi-
Hubbard model at half-filling reads

H (t) = −T
∑
〈ij〉,σ

c
†
iσ cjσ + U (t)

∑
i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
.

(1)

Here, c
(†)
iσ (creates) annihilates a fermion at site i and with

spin projection σ = ↑,↓, and the number operator is given
by niσ = c

†
iσ ciσ . Fermions can tunnel between neighboring

sites 〈ij 〉 with the hopping amplitude T . Two fermions on
the same site are repelled by the local Coulomb interaction U .
Nontrivial real-time dynamics can be stimulated by controlling
the explicit time dependencies of the model parameters. Here,
we investigate both sudden quenches and ramps of different
duration of the interaction parameter U (t).

Calculations have been performed within the two-site
dynamical impurity approximation (DIA), which provides a
local approximation to the self-energy. It relates the full lattice
problem to a small reference system consisting of a single
correlated site (Lc = 1) sharing the same time-dependent
interaction as the original model but with an additional
uncorrelated “bath” site (Lb = 1) coupled to it via the time-
dependent hybridization V ′(t). For an illustration, see Fig. 1.
Here and in the following, primed quantities refer to the
reference system.

The parameter V ′(t) is determined via a variational princi-
ple set up within the general framework of the nonequilibrium
self-energy functional theory (SFT) [39]. The latter exploits
the fact that the initial state equilibrium grand potential of
the original system, �, at inverse temperature β can be
expressed as a functional of the nonequilibrium self-energy.
The self-energy functional is stationary at the physical self-
energy � of the model, i.e., δ�̂[�] = 0, where it equals
the physical grand potential, namely �̂[�] = �. Note that
functionals are indicated by a hat and that � is defined on
the Keldysh-Matsubara contour C [48–50], i.e., has elements
�ij,σ (z,z′) with complex contour times z,z′.

Assuming that the problem posed by the reference system
can be solved, the self-energy functional of the original
system can be evaluated exactly for a certain subclass of trial

T U > 0

U = 0

original system

V ′

reference system

FIG. 1. Illustration of the original (left) and the reference system
(right). Black solid lines indicate nearest-neighbor hopping between
correlated sites (red filled dots). The original system is the Hubbard
model with additional uncorrelated sites (blue filled dots) which,
however, are decoupled and merely ensure that both Hamiltonians
operate in the same Hilbert space. In the reference system (right)
these “bath sites” are locally coupled to the otherwise disconnected
correlated sites via a hybridization parameter V ′(t), indicated by blue
solid lines.
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self-energies, namely for the exact self-energies �′ of the
reference system at different parameters V ′(z). We have

�̂[�′] = �′ + 1

β
Tr ln

(
G−1

0 − �′)−1 − 1

β
Tr ln G′ , (2)

where the grand potential �′, the self-energy �′, and the
Green’s function G′ of the reference system are functionals
of V ′(z). Furthermore, β is the inverse temperature of the
initial equilibrium state. One must consider V ′(z) with z

on the upper and lower Keldysh branch as independent
variables, since otherwise the functional dependence of �̂

on all real-time quantities would disappear. Finally, G0 is
the free Green’s function of the original system. The trace
contains an implicit integration along C, i.e., we defined
Tr A = ∑

iσ

∫
C dz Aiσ,iσ (z,z+), where z+ is infinitesimally

later on C. The optimal value V ′
opt(t) is determined at each

instant of time according to the stationarity principle

δ�̂[�′]
δV ′(z)

∣∣∣∣
V ′(t)=V ′

opt(t)

= 0 , (3)

which is evaluated on the space of physical parameters V ′(t).
This Euler equation is the central equation of the (two-site)
dynamical impurity approximation, which gives us access to
the optimal local self-energy �′

opt and therewith to the one-

particle Green’s function GDIA ≡ (G−1
0 − �′

opt)
−1.

Equation (3) is inherently causal, i.e., optimal parameters
can be determined at some time t without affecting results at
earlier times t ′ < t . This allows for the implementation of a
time-propagation scheme for V ′

opt(t). For reasons discussed
in Ref. [39], it is beneficial to carry out the functional
derivative in Eq. (3) analytically, which turns the variational
problem into the problem of finding the zeros of K̂[V ′](t) :=
−βδ�̂[�′]/δV ′(z)|V ′(t). The latter, however, proves to be
highly unstable [47]. Fortunately, this problem can be bypassed
by only fixing the initial condition (at t = t0) via K̂[V ′](t0) = 0
and for later times t > t0 requiring the respective time
derivative to vanish, i.e., ∂t K̂[V ′](t) = 0. Thus, we finally have
to solve

K̂[V ′](t)|V ′=V ′
opt

= 0, for t = t0, (4a)

∂t K̂[V ′](t)|V ′=V ′
opt

= 0, for t > t0. (4b)

For precise details on the SFT framework and its numerical
implementation we refer to Refs. [39,47].

In principle, approximations within the self-energy func-
tional theory can be constructed such that they respect the
macroscopic conservation laws and the respective continuity
equations for particle number, spin, and energy. Conservation
laws for one-particle quantities in fact hold for any choice
of the reference system, but obeying energy conservation
requires a continuum of variational degrees of freedom [39].
Hence, for small reference systems, energy conservation is
weakly violated, but one can expect to gradually improve
on this by adding further variational degrees of freedom.
It is noteworthy, that by providing a continuous bath (i.e.,
Lb = ∞) one formally recovers the dynamical mean field
theory (DMFT) [18–21] (for Lc = 1 or its cluster extension
for Lc > 1), which in fact is a fully conserving approximation.

For our calculations we consider the half-filled Hubbard
model on a one-dimensional lattice of 40 sites with periodic
boundary conditions, which is sufficient to ensure numerically
converged results [51]. Choosing a one-dimensional system
is convenient for numerical reasons. It is important to note,
however, that the lattice dimension and geometry enters the
DIA only via the free density of states (DOS). Moreover,
we expect that results essentially depend on the variance of
the DOS only [42]. For the one-dimensional lattice this is
�1D = √

2 T . Energy (and time) units are fixed by setting
T = 1. Calculations have been performed for different inverse
temperatures β, which set the length of the Matsubara branch
in Eqs. (2)–(4). All integrations over imaginary time τ have
been carried out using accurate high-order numerical integra-
tion schemes with step sizes varying from �τ = 0.05 for larger
β to �τ = 0.1 for smaller β. For the real-time propagation
and integration along both Keldysh branches, however, we are
limited to the trapezoidal rule [51]. Sufficiently converged time
propagations are obtained for time steps �t = 0.04 . . . 0.05 for
maximum times up to tmax � 25.

III. EQUILIBRIUM MOTT TRANSITION

Before the real-time dynamics of the Hubbard model can be
analyzed within the two-site DIA, a proper initial state has to
prepared, that is, the equilibrium variational problem [Eq. (3)
at t = t0] has to be solved. To the best of our knowledge, all
previous SFT studies evaluated the grand potential �̂[�′] [cf.
Eq. (2)] (and possibly its derivatives [43]) directly to search for
stationary points. Here we instead determine the equilibrium
solution by evaluating its derivative analytically and look for
the roots of K̂[V ′] by solving Eq. (4a). Thus, as a benchmark
and to introduce our method, in this section we reproduce and
discuss the known equilibrium results for a two-site reference
system, as depicted in Fig. 1.

Results for the optimal hybridization parameter V ′
opt are

shown in Fig. 2(a). In general, the on-site energies of the
correlated and of the bath site have to be used as additional
variational parameters, but in the present case (half filling)
their value is fixed due to particle-hole symmetry. Starting
from high temperature T (low β = T −1) and weak interaction
U , one can easily perform a global search to obtain a solution of
Eq. (4a). The full T -U phase diagram is then explored using
a local search based on Broyden’s method [52,53], starting
from the solution at a nearby point in the phase diagram. By
lowering the temperature T , i.e., increasing β, we find three
solutions for certain values of U : There is a metallic solution
with large V ′

opt, which is adiabatically connected to the metallic
phase at weak U , an insulating one with small V ′

opt, connected
to the strong-U limit, and a third solution with intermediate
V ′

opt, which is thermodynamically unstable (see below). This
indicates a first-order phase transition with coexisting metallic
and insulating phases.

In Fig. 2(b) we additionally present the double occupancies
for the respective optimal solutions. In the coexistence region
the double occupancy, like the optimal hybridization, has
three branches. The branch for which 〈n↑n↓〉 increases with
increasing U corresponds to the thermodynamical unstable
solution, because for this phase one has ∂〈n↑n↓〉/∂U =
∂2�(β,U )/∂U 2 > 0, which violates a thermodynamical
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FIG. 2. (a) Optimal variational parameter V ′
opt as a function of the

interaction for different inverse temperatures increasing from β = 10
(red curve) to β = 200 (blue curve), and (b) the respective double
occupancies. The inset in (b) shows the Maxwell construction for
β = 100: The mid arrow indicates the value for Uc, the outer arrows
point at the spinodal points, which define the region where metallic
and insulating solutions coexist.

stability condition. In fact, the system undergoes a first-order
phase transition at a critical interaction, the value of which
can be inferred from the Maxwell construction [54], as shown
in the inset of Fig. 2(b): The double occupancy jumps at the
critical interaction Uc, determined by requiring that the shaded
areas on both sides of the jump be equal. In addition, the lower
and upper boundaries of the coexistence region, Uc1 and Uc2,
can be read off at the spinodal points of the curve [see arrows
in Fig. 2(b)].

Results for different temperatures are collected in the
phase diagram shown in Fig. 3. Metallic and insulating
solutions coexist in a triangular-shaped region, bounded by
the curves Uc1(T ) and Uc2(T ). Within the coexistence region,

FIG. 3. Phase diagram of the Mott transition in the half-filled
Hubbard model on a one-dimensional lattice as obtained from the
DIA with a two-site reference system. Below the critical temperature
Tc metallic solutions exist up to interactions U � Uc2, insulating
solutions exist down to U � Uc1, and in between both coexist. Red
line: first-order phase boundary Uc(T ).

there is a line Uc(T ) of first-order transitions terminating
in a second-order critical point at the temperature Tc. For
temperatures above Tc the Mott metal-insulator transition
becomes a smooth crossover. Extrapolating our data to T = 0,
we find Uc1(0) ≈ 7.28 ≈ 5.15�1D and Uc(0) = Uc2(0) ≈
8.59 ≈ 6.07�1D, both of which fall within a range of results
obtained earlier for other lattices (where the variance of the
density of states has been used as the energy unit) [42]. The
value of Uc2(0) obtained within the DIA for the Bethe lattice
is in remarkably good agreement with DMFT+NRG [55]
(Uc(0) = 5.88). The value obtained for the critical tempera-
ture, Tc ≈ 0.077 ≈ 0.054�1D, is more sensitive to the lattice
geometry: For the semielliptical DOS one finds Tc ≈ 0.03
within the two-site DIA [42]. This value underestimates the
DMFT result by 50%, but quantitative agreement is obtained
already by adding only three bath sites [43].

As there is no Mott transition at a finite Hubbard-U in
the one-dimensional model [4], let us point out again that
the DIA is a mean-field approach. It is therefore not really
sensitive to the lattice dimension, and the results rather depend
on the lattice geometry via the variance of the DOS only.
The one-dimensional case is studied here for purely technical
reasons, and the results should be seen as representative for
the model on higher-dimensional lattices.

We conclude that the present implementation of the two-site
DIA reproduces the known results for the Mott transition
obtained earlier where the phase diagram has been constructed
from the explicit calculation of the grand potential. The
agreement between the results of the two different numerical
approaches is fully quantitative. As compared to the full DMFT
solution, the two-site approximation qualitatively captures
the correct topology of the equilibrium phase diagram.
Quantitatively, Uc2 is predicted quite accurately while Uc1 is
over- and Tc is underestimated. For the present study, we will
nevertheless restrict ourselves to the two-site approximation
since the computational effort is considerably higher for
the nonequilibrium case. More importantly, nonequilibrium
calculations with more than a single bath site are not easily
stabilized numerically with the present implementation [47].

IV. DYNAMICAL MOTT TRANSITION

In the following we will discuss the real-time dynamics
of the Hubbard model induced by sudden quenches or ramps
of the interaction from a “free” initial state to arbitrary final
interactions Ufin > 0. Within the SFT the optimal parameters
of the reference system are undefined for a free system due to
the vanishing self-energy. For practical reasons we therefore
consider initial states with Uini = 0.01.

We furthermore choose the initial inverse temperature
β = 10. Essentially, this corresponds to a zero-temperature
initial state: As concerns the reference system, there is hardly
any change in the optimal hybridization parameter with
temperature in the limit U → 0, as can be seen from Fig. 2(a).
The remaining temperature dependence via the noninteracting
Green’s function of the original system [see Eq. (2)] is very
weak for lower temperatures. Consequently, there is hardly any
temperature dependence seen in the nonequilibrium results.
This has been verified numerically (up to β � 40).
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The interaction is switched from Uini to Ufin via U (t) =
Uini + (Ufin − Uini)r(t) by either quenching,

r(t) = 
(t) , (5)

or conducting cosine-shaped ramps of different duration
�tramp, i.e.,

r(t) = (1 − cos(πt/�tramp))/2 . (6)

Both cases will be discussed successively in the next two
subsections.

A. Interaction quenches

Following the time evolution after a quench, we find
two qualitatively different response patterns for weak and
strong final interactions, which are well separated by a sharp
transition point at a critical interaction U

dyn
c ≈ 4.61. Results

are presented in Fig. 4, where we show the time dependence
of the optimal hybridization parameter, the double occupancy,
and the total energy. Moreover, in Fig. 5 we show for each
time-dependent quantity Q(t) the time average

Q = lim
t→∞

1

t

∫ t

0
dt ′ Q(t ′) , (7)

and the fluctuations

�Q = (Q − Q)2
1
2
. (8)

Let us first focus on weak quenches, i.e., Ufin < U
dyn
c .

For the optimal hybridization parameter V ′
opt(t) we observe

a quick drop to smaller values within approximately one
inverse hopping, followed by moderate oscillations around
some constant value, see Fig. 4 (top left). For final interactions
Ufin � 4, the long-time average of the optimal hybridization
slightly decreases with increasing Ufin (Fig. 5, top). On the
same short time scale, the double occupancy decays from
its noninteracting initial value, i.e., the Coulomb repulsion
quickly suppresses doubly occupied sites. For final interactions
Ufin � 3 we find a strong initial drop and pronounced periodic
recurrences. However, these recurrences shift to later and

FIG. 4. Time dependencies of the optimal hybridization V ′
opt, the

double occupancy 〈n↑n↓〉, and the total energy Etot for interaction
quenches starting from Uini = 0.01 to different Ufin (see color labels).
Left: weak-coupling regime, Ufin < U

dyn
c . Right: strong-coupling

regime, Ufin > U
dyn
c .

FIG. 5. Long-time averages (points) and fluctuations (shaded
areas) of the optimal hybridization V ′2

opt, the double occupancy

〈n↑n↓〉, and the total energy Etot. Red lines: critical interaction U
dyn
c

separating weak- and strong-coupling regime. Blue line: equilibrium
values of the double occupancy at zero temperature. Green lines:
thermal values of the double occupancy, which in the weak-coupling
regime almost coincide with the long-time average, but in the
strong-coupling regime match the minima of the double-occupancy
oscillations (squares). Orange line: total energy right after the quench.

later times upon increasing Ufin. In addition, small regular
oscillations around some value close to zero become apparent,
see Fig. 4 (middle left).

The exact value of the total energy right after the quench (at
t = t+0 ) is given by the expectation value of the Hamiltonian
in the noninteracting initial state, Etot(t

+
0 ) = Ekin(t0) + Ufin/4,

which increases linearly with the final interaction. For weak
quenches we find that this value is relatively well conserved,
apart from a small drop of the time-averaged value (of less than
0.1), and some moderate oscillations of about 5% or less for
increased quench size (up to Ufin � 4) and when compared
to the respective long-time average (Fig. 5, bottom). By
comparison with a thermal ensemble for the same interaction
Ufin, i.e., by comparing with equilibrium two-site DIA calcu-
lations, we can thus ascribe an effective temperature Teff to the
long-time averages by demanding that Etot = E

eq
tot(Teff). The

effective temperature increases from Teff ≈ 0.12 for Ufin = 1
to Teff ≈ 0.28 for Ufin = 4. The corresponding thermal value
for the double occupancy roughly agrees with the respective
time-averaged value (see Fig. 5, middle). This is in agreement
with the prethermalization scenario [22,23] observed in DMFT
calculations.

We now turn to strong quenches, i.e., Ufin > U
dyn
c . Here the

time-dependent behavior of the system drastically differs from
that in the regime of weak quenches. For Ufin � 6 we find a
quite regular oscillatory behavior for all relevant quantities.
A Fourier analysis of the oscillations in the double occupancy
reveals that oscillations occur with frequencies approximately
given by Ufin, as shown in Fig. 6, i.e., the characteristic
frequency for collapse-and-revival oscillations in the atomic
limit. On top of this, there are slow beatings, which probably
should be ascribed to finite-size effects and which appear to
be independent of the interaction. In the long-time limit, the
double occupancy slowly increases with Ufin. However, it
does not reach its free value (i.e., 〈n↑n↓〉0 = 0.25) again, as
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FIG. 6. Left: Fourier transform (F) of the double occupancy.
Plots have been shifted for better visibility. Right: linear dependence
of the dominant frequency on the final interaction Ufin in the strong
coupling regime Ufin > U

dyn
c . Note the interaction-independent small

beating frequencies (left).

perturbative arguments would suggest [23], i.e., the two-site
approximation seems to underestimate the actual double
occupancy in the strong-coupling limit (see Fig. 5, middle).

The optimal hybridization parameter strongly oscillates
around zero, see Fig. 4 (top right). In equilibrium and for strong
interactions the quasiparticle weight (for a two-site system) is
given by 36V ′2/U 2 [56], so that strong collapses and revivals
of the square of the optimal parameter would correspond to
an oscillatory behavior of the Fermi-surface discontinuity, as
has been observed in DMFT calculations [23]. In Fig. 5 (top)
we therefore show the long-time behavior of V ′2

opt(t). With
increasing interactions Ufin we find that both its average and
its fluctuations quickly saturate.

For strong final interactions, conservation of total energy
becomes rather poor and, compared to the weak-coupling
case, the time-averaged value differs more significantly from
the exact value. Nevertheless, we may again compare the
long-time average to an appropriate thermal value to extract the
effective temperature Teff . As compared to the weak-coupling
regime, the effective temperatures are roughly an order of
magnitude higher and, apart from an offset, scale linearly
with Ufin. Interestingly, from this we find thermal values of
the double occupancy which in fact coincide with the overall
minima of its time-dependent oscillations, see Fig. 5 (middle).
This is again in line with the DMFT results [23].

We now focus on the dynamics close to the critical point
U

dyn
c ≈ 4.61, see Fig. 7. In this regime the behavior of V ′

opt(t)

for Ufin � U
dyn
c and Ufin � U

dyn
c becomes very similar: Within

two inverse hoppings, the optimal hybridization strength
decays almost to zero, but then revives to positive values for
Ufin � U

dyn
c and shows slow oscillations with relatively large

amplitude. The same dynamics, but with opposite sign of the
optimal parameter at long times, is observed for Ufin � U

dyn
c .

This is accompanied by a decay of the double occupancy
down to almost zero (〈n↑n↓〉 ≈ 0.016), followed by strong
revivals which are in phase with V ′

opt(t). As discussed for
the weak-quench regime, these oscillations shift to later and
later times for quenches closer and closer to the critical value.
Finally, right at the critical point, no revivals are observed,
i.e., the bath dynamically decouples, and V ′

opt(t) remains zero

up to the longest simulated times. For Ufin = U
dyn
c the double

occupancy merely shows weak oscillates around its long-time
average.

FIG. 7. Dynamical decoupling of the bath site at the critical
point (Ufin = U

dyn
c ) (top) and the corresponding dynamics of the

double occupancy (bottom). Additional curves: dynamics for final
interactions differing by less than 0.3% from U

dyn
c . Note the strong

impact upon tiny changes of Ufin indicating a sharp transition between
the two regimes.

We conclude that, within the two-site DIA, the dynamical
Mott transition is described as a sharp transition characterized
by critical behavior in the Ufin dependence of the quantities
shown in Fig. 5. One may speculate that in calculations with
more bath degrees of freedom in the DIA, some bath sites
which represent low energy degrees of freedom would decou-
ple whereas others would remain connected to the correlated
impurity. Nevertheless, even on the level of the two-site ap-
proximation, there is a surprisingly good agreement of the crit-
ical interaction with results from the DMFT [23] (U dyn

c,DMFT ≈
3.2) and the Gutzwiller ansatz [25] (U dyn

c,Gutzw ≈ 3.3)
when comparing with the value rescaled by the variance of
the one-dimensional DOS, i.e., with U

dyn
c ≈ 4.61 ≈ 3.26�1D.

Within the DMFT [23] a rapid thermalization is found at
Ufin = U

dyn
c , and the thermalized state is characterized as a bad

metal. Opposed to this, within the two-site DIA, a complete
decoupling of the bath site right at the critical point implies
that the final state is described on the level of the Hubbard-I
approximation [57]. Note that therewith the dynamical Mott
transition is very similar to the equilibrium Mott transition at
zero temperature which is also characterized by a vanishing
hybridization to the bath site. In both cases, the Hubbard-
I approximation must be seen as a comparatively crude
description of the bad metal or Mott insulator, respectively,
and one cannot expect a fully consistent picture on this level.
In the nonequilibrium case, for example, the determination of
the effective temperature by comparison with equilibrium two-
site DIA calculations via Etot = E

eq
tot(Teff) yields Teff ≈ 0.3.

The resulting thermal double occupancy of 〈n↑n↓〉 ≈ 0.1,
however, turns out too large as compared with the time average
〈n↑n↓〉 ≈ 0.016. A better agreement is found when estimating
Teff by comparing with the Hubbard-I solution, where the bath
site is decoupled. This yields Teff ≈ 0.6 and 〈n↑n↓〉 ≈ 0.02.
However, at finite temperatures, the Hubbard-I solution is only
metastable. One may summarize that for the final state at
Ufin = U

dyn
c , our findings more resemble the predictions of

the Gutzwiller approach [25] rather than those of the DMFT.
It is also instructive to interpret our results in the context

of a recent proposal [25,58] stating that the metallic phase
of the paramagnetic and particle-hole symmetric Hubbard
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model in infinite dimensions can be seen as a phase with
a spontaneously broken local Z2 gauge symmetry. At the
zero-temperature transition to the Mott insulating phase, the
Z2 symmetry is restored. This picture of the Mott transition
is nicely captured by the mean-field theory of a slave-spin
model [59,60], which is essentially equivalent to the Gutzwiller
approach. Using the numerical renormalization group, it has
been demonstrated [58] that the Z2 symmetry breaking at the
T = 0 Mott critical point takes place in the full model and
is not an artifact of the mean-field approach. The slave-spin
magnetization can serve as an order parameter for the metal-
insulator transition.

Within the DIA, the optimal hybridization V ′
opt with the

auxiliary bath site at zero one-particle energy can be seen as
an analogous order parameter. There is, however, an important
difference since the corresponding symmetry group is U(1):
Physical observables depend on |V ′

opt|2 only and are therefore
invariant under a phase change of V ′

opt. The fact that V ′
opt �= 0

in the metallic phase can thus be interpreted as a spontaneous
breaking of a local U(1) gauge symmetry which is restored, i.e.,
V ′

opt = 0, in the Mott insulator at T = 0. The choice V ′
opt > 0

for the metallic phase just fixes the gauge.
Our numerical results for the quench dynamics at Ufin =

U
dyn
c indicate that there is a transition from a symmetry

broken, V ′
opt(t = 0) �= 0 state at time t = 0 to a symmetric

state, V ′
opt(t) = 0 for t → ∞, i.e., a time-dependent Mott

transition—similar to that in the Gutzwiller approach [25].
In the Gutzwiller approach and in the two-site DIA as well,
the final state that is reached for t → ∞ is not the thermal
state. Namely, a full two-site DIA equilibrium calculation for
U = U

dyn
c would give V ′

opt �= 0 at any finite temperature, and
the corresponding thermal state has a lower grand potential
than that of the Hubbard-I-like state which is obtained in the
equilibrium calculation by ad hoc setting V ′

opt = 0 (which is
always a stationary point of the grand potential). Hence, within
the two-site DIA restoring the local U(1) gauge symmetry
in the time-dependent Mott transition necessarily implies that
the final state is nonthermal. Within the DMFT, in contrast,
the final state, which is (rapidly) reached after a quench to
Ufin = U

dyn
c , is a thermal state with a high temperature (more

than an order of magnitude higher than Tc) [23], which does
not break theZ2 symmetry [58]. One may speculate that within
the DIA the hybridization of the zero-energy mode with the
impurity also vanishes in the thermal state at T > 0 if more
and more bath sites are added, so that a rapid decoupling of
this mode at Ufin = U

dyn
c would not be at odds with rapid

thermalization.

B. Ramps of the interaction

The previous discussion provokes the question whether the
dynamical Mott transition and the conventional equilibrium
Mott transition can be smoothly connected to each other. Since
the dynamical transition occurs at a much weaker interaction,
it is not at all obvious whether the two phenomena are related at
all. One route to study this question is to consider a ramp with
a finite duration rather than an instantaneous quench of the
interaction as has been done using the Gutzwiller approach in
Ref. [26]. Ramping the interaction in a short time from Uini to

Ufin will make contact to the results found for a sudden quench.
On the other hand, for ramps with infinite duration, i.e., if
the interaction is changed adiabatically rather than suddenly,
the system evolves along paths within the equilibrium phase
diagram and will cross the line of equilibrium transitions (see
Fig. 3). In fact, assuming that there is a critical interaction
for any ramp time �tramp at all, one should expect that, with
increasing �tramp, the critical interaction crosses over from
U

dyn
c ≈ 4.61 (sudden quench) to Uc2 ≈ 8.59 (T = 0), since

starting from a zero-temperature initial state, an adiabatic
process will result in a zero-temperature final state.

To test our expectation we therefore consider a sequence
of (cosine-shaped) ramps with different duration �tramp, see
Eq. (6). Here we are limited to finite propagation times, tmax �
25, for practical reasons. Nevertheless, this allows us to study
the relevant critical behavior for ramp times up to �tramp � 20.

We begin the discussion for ramps of different duration to
the same final interaction Ufin = 12, starting from the same
initial state that has also been considered for the quenches
discussed in Sec. IV A. As a measure of adiabaticity of the
process we compare the total energy as a function of the in-
teraction during the ramp with the corresponding equilibrium
result. This is shown in Fig. 8 where the time-dependent value
of the total energy Etot(t) during the ramp is plotted against
the instantaneous value U (t) of the interaction. The resulting
function Etot(U ) can be compared with the equilibrium total
energy (dashed line) as well as with the total energy after a
sudden quench (straight line). With increasing ramp duration
the curves Etot(U ) converge to the equilibrium result, i.e., to

FIG. 8. Check of adiabaticity for ramps of the interaction
from Uini = 0.01 to Ufin = 12 with different ramp times (�tramp ∈
{0.5,1,2,4,6,8,10,12,15}, colored from purple to cyan). The total
energy during the ramp is plotted as a function of the instantaneous
interaction (top left), i.e., Etot(U ) ≡ Etot(t(U )), as obtained from
the inverse of (cosine) ramp profile U (t), Eq. (6), (bottom) and
from the time-dependent total energy Etot(t) (right). The results are
contrasted with the total energy after a quench (straight red line) and
the equilibrium energy at the same final interaction (dashed red line).
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FIG. 9. Time dependencies of the optimal hybridization V ′
opt, the

double occupancy 〈n↑n↓〉, and the total energy Etot (from top to
bottom) for ramps of the interaction with �tramp = 7, starting from
Uini = 0.01 to different Ufin (as indicated in the top panel) in the weak-
and the strong-coupling regime as well as right at the dynamical
critical point.

the U dependence of the ground-state energy. For ramp times
�tramp � 15, the process is almost perfectly adiabatic.

As is discussed in the context of the (quantum) Kibble-
Zurek mechanism [15,61], the dependence of the energy
difference �E ≡ Etot(�tramp) − Etot(∞) on the ramp time
�tramp should asymptotically follow an inverse power law.
Figure 8 demonstrates that the excitation energy does decrease
with increasing �tramp. Here, one would expect the mean-
field exponent, i.e., �E ∝ 1/�tramp (see Ref. [26] for a
discussion), and, roughly, our data are in fact consistent with
this expectation. To extract a reliable value for the exponent,
however, calculations for much longer ramp times would be
necessary.

Independent of the ramp duration, we find essentially
the same distinction between a weak- and a strong-coupling
regime that has been discussed for the case of a sudden
quench. The two regimes are sharply separated by a critical

interaction U
dyn
c = U

dyn
c (�tramp) which depends on the ramp

duration (see discussion below). With increasing ramp time
the dynamics becomes more well behaved in the sense that
energy conservation becomes almost perfect for weak final
interactions and is strongly improved in the strong-coupling
case. As an example, in Fig. 9, we show the time dependencies
of the optimal hybridization, of the double occupancy and of
the total energy for different values of Ufin which are located
below, right at, and above the dynamical critical interaction
U

dyn
c ≈ 8.02 for a ramp with �tramp = 7. Note that the process

is clearly nonadiabatic. For Ufin � U
dyn
c we find that there are

almost no oscillations of the optimal hybridization parameter
after the ramp is completed. The same holds true for the double
occupancy. Its (time-averaged) value after the ramp only
slightly increases with increasing final interaction after having
reached a minimum (close to zero) right at the critical point.
This already indicates proximity to an adiabatic process where
the double occupancy would just follow its equilibrium value,
i.e., where it would monotonically decrease with increasing
final interactions [see Fig. 2(b)].

We also obtain reasonable results for the time-dependent
momentum distribution n(k,t) and, contrary to the study of
quench dynamics, can therefore more comprehensively focus
on the question of thermalization. In Fig. 10, we show three
different examples for the final-state dynamics of n(k,t), ex-
emplary for the weak- [Fig. 10(a)] and for the strong-coupling
case [Fig. 10(b)] as well as for Ufin = U

dyn
c [Fig. 10(c)]. We

again consider ramps with �tramp = 7. The initial state is
characterized by a sharp Fermi-surface discontinuity, which
is slightly washed out by the finite temperature (β = 10). The
final state that is reached in the long-time limit either shows
a sharp jump of n(k,t) at the Fermi surface (in case of Ufin <

U
dyn
c ) or collapse-and-revival oscillations (Ufin > U

dyn
c ). This

is very similar to the DMFT results in the quench case [23].
Right at the critical point (Ufin = U

dyn
c ) we also find fast

thermalization toward a hot thermal distribution immediately
after the ramp is completed. Comparing with Hubbard-I
equilibrium calculations, we find an effective temperature of

FIG. 10. Time dependent momentum distribution for a ramp with �tramp = 7 ending at different interactions (a) below, (b) above, and
(c) right at the critical point. Precise numbers are given in the top left corner of each plot. For the latter the long-time average of the momentum
distribution is fitted with an equilibrium distribution within the Hubbard-I approximation (red line). Relative errors of fits for the momentum
distribution, the double occupancy, and the total energy (from top to bottom) at different temperatures are shown in (d), an error estimate for
the effective temperature Teff ≈ 0.5 is indicated by a red shaded area.
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FIG. 11. Dynamical critical interaction U
dyn
c as a function of

the ramp time �tramp determined for cosine-shaped ramps starting
from Uini = 0.01. The equilibrium value Uc2 ≈ 8.59 for the critical
interaction at zero temperature is indicated by a gray dashed line.

Teff ≈ 0.5, see Figs. 10(c) and 10(d). Note that this is somewhat
lower than the effective temperature that had been obtained for
the quench (Teff ≈ 0.6).

Let us finally come back to the original motivation to
study ramps of the interaction. We consider ramps with
various durations bridging the limit of an instantaneous quench
�tramp = 0 and the adiabatic limit �tramp → ∞. For each
ramp time, we have performed a series of calculations with
different Ufin to extract the respective value of the dynamical
critical interaction U

dyn
c . The latter is indeed well defined in

the whole �tramp regime. Its dependence on the ramp time for
�tramp � 20 is shown in Fig. 11.

U
dyn
c monotonically increases with �tramp and seems to

approach the value of the critical interaction Uc2 ≈ 8.59
for the zero-temperature Mott transition, as obtained by
the two-site DIA (cf. Sec. III). However, the convergence
turns out to be very slow. We also cannot fully exclude
that the low but nonzero initial-state temperature has some
effect on the result expected for �tramp → ∞ and that, even
for a perfectly adiabatic process, the final-state effective
temperature becomes nonzero which would imply that U

dyn
c

converges to a somewhat lower value. Nevertheless, the results
indeed clearly indicate that the dynamical Mott transition and
the equilibrium Mott transition are related phenomena which
are smoothly connected—at least within the two-site DIA.
The same conclusion can be drawn from the results of the
Gutzwiller calculations [26] which, however, show additional
oscillations of the critical interaction when increasing the ramp
duration. This effect is absent in the two-site DIA.

C. Discussion of the method

To conclude this section, let us contrast our approach
with Hamiltonian-based methods which strive to solve the
effective impurity model of nonequilibrium DMFT exactly
by mapping it onto a single-impurity Anderson model with
a finite number of bath sites [35], which can then be treated
numerically. The number of bath orbitals is systematically
increased until the properties of the DMFT bath are accurately
represented. In the current implementation, the number of bath
sites needed for an accurate representation of the DMFT bath
scales roughly linearly with the maximum simulation time

(and it also weakly depends on the parameter regime). This
limits simulations to short times. Different implementations
have been put forward to solve the finite impurity model, using
exact-diagonalization techniques [35], the multiconfiguration
time-dependent Hartree method [36], as well as an approach
based on the matrix-product state representation [37]. With
exact-diagonalization methods [35] propagation up to tmax ≈ 3
inverse hoppings has been possible by providing Lb = 8
bath sites at weak interactions, whereas using matrix-product
states [37], tmax ≈ 7 (tmax ≈ 5.5) could be reached with Lb =
24 (Lb = 18) sites at strong (weak) interactions, i.e., the
Hamiltonian based solvers are currently aiming at a numerical
exact solution at short times.

In contrast to this, the self-energy functional approach
maps the original lattice-fermion problem onto an auxiliary
model with a fixed, small number of bath sites and, in
the case of the dynamical impurity approximation, a single
correlated site. Rather than aiming at an exact solution of the
nonequilibrium DMFT equations, the SFT provides an inde-
pendent variational scheme to determine the time-dependent
one-particle parameters of the reference system which only
in the limit of an infinite number of bath sites recovers the
DMFT. Formally, a qualitatively correct time evolution on
much longer propagation times is thus possible with a very
small number of bath sites. The present study has in fact
shown that even with the most simple reference system (with
a single bath site only) one can make close contact with full
DMFT results. The agreement between the two-site DIA and
full DMFT is qualitatively satisfying and close to the critical
point for the (dynamical) Mott transition even quantitative.
This demonstrates that much of the essential physics can be
captured with a single time-dependent variational parameter.

The general framework of the SFT ensures that variational
approximations are conserving with respect to the particle
number and spin. The possible violation of energy conserva-
tion, however, must be seen as a major drawback of the present
implementation of the DIA. Ways to overcome this problem
have been discussed in Ref. [39]. Here, we could show that
energy conservation is in fact violated but that, on the other
hand, this violation is moderate in the weak-coupling limit after
a quantum quench and even for strong interactions does not
generally invalidate the results which still agree qualitatively
with DMFT. Furthermore, if the dynamics is initiated by
ramping the interaction, energy conservation is respected to
a much higher degree.

V. SUMMARY

The nonequilibrium extension of the self-energy functional
theory (SFT) has been applied to study the real-time dynamics
of the Fermi-Hubbard model initiated by sudden quenches
and by ramps of the interaction parameter, starting from
the noninteracting limit to different final values Ufin. As
the simplest nontrivial approximation within the SFT, which
provides a local trial self-energy, we have employed the two-
site dynamical impurity approximation (DIA). The dynamical
Mott metal-insulator transition represents an ideal first test
case for this method.

We have studied the dynamical Mott transition by system-
atically tracing the time evolutions of the double occupancy,
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the total energy, the momentum distribution, and the optimal
hybridization parameter of the reference system for different
Ufin. All quantities are found to exhibit distinct response be-
havior in the weak- and in the strong-coupling regime. Within
the two-site DIA these regimes are separated by a sharp critical
interaction U

dyn
c at which the low-energy bath site decouples

from the correlated site in the course of time. By analyzing
long-time averages and comparing these with thermal results,
we have found fast thermalization for quenches to Ufin = U

dyn
c

and clear indications for prethermalization in both, the weak-
and the strong-coupling regime. In all relevant aspects, this
is in surprisingly good qualitative agreement with a previous
nonequilibrium DMFT study [23]. This also holds for the nu-
merical value of the dynamical critical interaction which turns
out to be roughly a factor of two smaller than the critical value
Uc2(0) for the equilibrium Mott transition at zero temperature.

Comparing results for ramps of different duration, we could
trace the critical behavior in the whole range from a sudden
quench to the limit of an adiabatic quasistatic process. We
found that there is a well-defined critical interaction U

dyn
c in

all cases which monotonically increases with the ramp time
and which converges to the zero-temperature critical point Uc2

in the adiabatic limit. Qualitatively, this agrees well with the
predictions of the Gutzwiller approach [25,26].

In view of the comparatively simple but successful two-site
dynamical impurity approximation it appears very promising
to improve the approach by considering more complex
reference systems. An improved study of the mean-field
dynamics using a reference system with more bath degrees
of freedom suggests itself. Furthermore, cluster approxima-
tions generating nonlocal trial self-energies appear highly
interesting. Both routes are computationally demanding [47]
concerning both complexity but also stability, but on the other
hand also very promising. Furthermore, the nonequilibrium
self-energy functional theory is a completely general approach
and can be applied to more complex systems beyond the
single-band Hubbard model at half filling—similar to the
equilibrium case [40,41]. We expect that the method can serve
as a highly useful tool to uncover and understand intriguing
phenomena of strongly-correlated many-body systems out of
equilibrium.

ACKNOWLEDGMENTS

We would like to thank Christian Gramsch for numerous
helpful discussions. Support of this work by the Deutsche
Forschungsgemeinschaft within the Sonderforschungsbereich
925 (projects B5 and B4) is gratefully acknowledged.

[1] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039
(1998).
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