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Theory of time-resolved nonresonant x-ray scattering for imaging ultrafast coherent electron motion
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Future ultrafast x-ray light sources might image ultrafast coherent electron motion in real space and in real
time. For a rigorous understanding of such an imaging experiment, we extend the theory of nonresonant x-ray
scattering to the time domain. The role of energy resolution of the scattering detector is investigated in detail. We
show that time-resolved nonresonant x-ray scattering with no energy resolution offers an opportunity to study
time-dependent electronic correlations in nonequilibrium quantum systems. Furthermore, our theory presents
a unified description of ultrafast x-ray scattering from electronic wave packets and the dynamical imaging
of ultrafast dynamics using inelastic x-ray scattering by Abbamonte and co-workers. We examine closely the
relation of the scattering signal and the linear density response of electronic wave packets. Finally, we demonstrate
that time-resolved x-ray scattering from a crystal consisting of identical electronic wave packets recovers the
instantaneous electron density.
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I. INTRODUCTION

Scattering of x rays from matter is a well-established
method in several areas of science to access real-space, atomic-
scale structural information of complex materials, ranging
from molecules to biological complexes [1–3]. Utilizing the
Fourier relationship between the electron density of the sample
and the scattering intensity (i.e., elastic x-ray scattering),
coherent diffractive imaging (CDI) is a powerful lensless
technique to obtain three-dimensional structural information
of nonperiodic and periodic samples [4–7]. With the recent
progress in technology for producing ultrashort, tunable,
and high-energy x-ray pulses from x-ray free-electron lasers
(XFELs) [8,9], a particular interest has been aroused in
performing CDI with atomic-scale spatial resolution at present
and forthcoming XFELs (LCLS, SACLA, European XFEL).
In addition, the high brightness of the x-ray pulses from XFELs
promises the possibility of carrying out single-shot CDI with
sufficiently strong scattering signal for imaging individual
nonperiodic objects.

The natural time scale of electronic motion ranges from tens
of attoseconds (1 as = 10−18 s) to a few femtoseconds (1 fs =
10−15 s) [10–12]. In order to understand how spatial properties
of electronic states change in time, it is crucial to image the
dynamical evolution of the electronic charge distribution with
angstrom spatial resolution and (sub)femtosecond temporal
resolution. Hence, imaging the electronic charge distribution
with atomic-scale spatial and temporal resolution will provide
a unique opportunity to understand several ubiquitous ultrafast
phenomena like electron-hole dynamics and electron transfer
processes [13–16]. The pump-probe approach is one of the
most common ways to study ultrafast dynamics, where first
a pump pulse activates the dynamics and subsequently the
activated dynamics is investigated by the probe pulse at
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a precise instant. Recently, the synchronization to within
tens of attoseconds between pump and probe pulses has
been demonstrated experimentally [17]. Moreover, attosecond
hard x-ray pulses seem feasible in the near future [18–21].
Therefore, the x-ray pulses will be comparable to the natural
time scale of several elementary processes in nature and will
open the door to studying these ultrafast processes in real space
and in real time.

Time-resolved x-ray scattering (TRXS) from temporally
evolving electronic systems is an emerging and promising
approach for real-time and real-space imaging of electronic
motion. A series of scattering patterns obtained at different
instants of the dynamics may be stitched together to make a
movie of the electronic motion with unprecedented spatiotem-
poral resolution. In this context, a straightforward extension of
x-ray scattering from the static to the time domain would seem
to suggest the possibility of imaging ultrafast electronic motion
with the notion that the scattering pattern encodes information
related to the instantaneous electron density.

In order to image the electronic motion on an ultrafast
time scale, the probe pulse duration must be smaller than the
characteristic time scale of the motion. As a consequence, the
ultrashort probe pulse has a finite, broad, spectral bandwidth.
Thus, it is fundamentally difficult to perform an energy-
resolved scattering experiment with an energy resolution better
than the bandwidth of the pulse. This makes it necessary to
include all transitions within the bandwidth induced by the
scattering process. In our previous work, we have focused
on the imaging of coherent electronic motion in a hydrogen
atom via quasielastic TRXS assuming high energy resolution
of the scattering detector [22]. Furthermore, we have also
investigated the role of scattering interference between a
nonstationary and several stationary electrons in a many-
electron system. The findings of the scattering interference
were visually demonstrated for the helium atom, where one
electron forms an electronic wave packet and the other electron
remains stationary [23]. We also proposed time-resolved
phase-contrast imaging as a future experiment to image
instantaneous electron density [24].
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The purpose of the present paper is to provide a rigorous
theoretical analysis of the imaging of coherent electronic
motion via TRXS and to discuss the pros and cons of
TRXS. In this work, we provide a unified description of
ultrafast x-ray scattering from electronic wave packets and the
dynamical imaging of ultrafast dynamics using inelastic x-ray
scattering introduced by Abbamonte and co-workers [25–29].
This paper is structured as follows. Section II discusses the
theory of TRXS from electronic wave packets. Section III
presents results and a discussion of the theory presented
in the previous section. Section III is subdivided into three
subsections, where we present, in Sec. III A the role of the
energy resolution of the scattering detector, especially in
the cases of no and high energy resolution; in Sec. III B
the density perturbation response of electronic wave packets
within linear-response theory; and in Sec. III C TRXS from
a crystal consisting of identical electronic wave packets at
each lattice point. Conclusions are presented in Sec. IV.
The detailed mathematical steps are presented in the three
Appendixes.

II. THEORY

Atomic units are used throughout this article unless
specified otherwise. We begin with the minimal-coupling
interaction Hamiltonian for light-matter interaction in the
Coulomb gauge [30],

Ĥint = α

∫
d3xψ̂†(x)

[
Â(x) · ∇

i

]
ψ̂(x)

+ α2

2

∫
d3xψ̂†(x)Â2(x)ψ̂(x), (1)

where α is the fine-structure constant, ψ̂†(x) [ψ̂(x)] is the
creation (annihilation) field operator for an electron at position
x, Â is the vector potential operator of the light, and ∇

i
is the

canonical momentum of an electron. It is well established that
at photon energies much higher than all inner-shell thresholds
in the system of interest, elastic and inelastic scattering
(Thomson and Compton scattering) are mediated by the Â2

operator. Therefore, we focus only on scattering mediated by
Â2 and will not consider the contribution from the dispersion
correction in the scattering process, i.e., scattering induced
by the Â(x) · ∇ operator in second order. In the inelastic
case, the Â2-induced scattering is also known as nonresonant
inelastic x-ray scattering [31]. Most generally, the x rays must
be treated as a statistical mixture of photons occupying all
possible electromagnetic modes. Â can be expressed in terms
of plane waves as [30]

Â(x) =
∑
k,s

√
2π

V ωkα2
{âk,sεk,se

ik·x + â
†
k,sε

∗
k,se

−ik·x}, (2)

where V is the quantization volume, ωk is the energy of a
photon in the kth mode, and k and s are the wave vector and
the polarization index of a given mode, respectively. â†

k,s (âk,s)
is the photon creation (annihilation) operator and εk,s is the
polarization vector in the k,s mode.

Here, we assume that an electronic wave packet |�,t〉 has
been prepared with the help of a suitable pump pulse with
sufficiently broad energy bandwidth. To obtain the differential
scattering probability (DSP), which is the crucial quantity
in x-ray scattering, we employ first-order time-dependent
perturbation theory for the interaction between matter and
x rays. The expression for the DSP is [22]

dP

d�
= dσth

d�

∫ ∞

−∞
dτ

∫ ∞

−∞
dδ

∫ ∞

0
dωks

W�E(ωks
)

ωks

(2πωkin )2α
e−iωks δ

∫
d3x

∫
d3x ′〈�|n̂

(
x′,τ + δ

2

)
n̂

(
x,τ − δ

2

)
|�〉

× e−iks ·(x−x′)G(1)

(
x′,τ + δ

2
; x,τ − δ

2

)
, (3)

where dσth
d�

is the Thomson scattering cross section, ωkin is the photon energy of the incident central carrier frequency, and ωks

refers to the scattered photon energy. ks is the momentum of the scattered photon, n̂(x) is the electron density operator, and G(1)

is the first-order correlation function for the x rays [32,33]. The energy resolution of the scattering detector is specified by a
spectral window function W�E(ωks

), which is a function of ωks
with a width �E modeling the range of scattered photon energies

accepted by the detector. It is important to note that the window function is not a normalized function, i.e., the detected scattering
intensity depends on the width of the window function, which implies that the signal is weak for a narrow width �E.

We assume, for simplicity, that the x rays can be treated as a coherent ensemble of Gaussian pulses; the expression for the
first-order correlation function is given in Appendix A. Furthermore, we assume the object much smaller than the distance cτl ,
where c is the speed of light and τl the pulse duration. Now, the DSP from Eq. (3) reduces to

dP

d�
= dσth

d�

∫ ∞

0
dωks

W�E(ωks
)
ωks

ωkin

∫ ∞

−∞
dτ

I (τ )

ωkin

∫ ∞

−∞

dδ

2π
C(δ)e−i(ωks −ωkin )δ

×
∫

d3x

∫
d3x ′〈�|n̂

(
x′,τ + δ

2

)
n̂

(
x,τ − δ

2

)
|�〉eiQ·(x−x′). (4)

Here, I (τ ) is the intensity of the probe pulse, C(δ) = exp[−2 ln 2 δ2/τ 2
l ] is a function of the pulse duration τl , and Q = kin − ks

is the photon momentum transfer with kin as the incident photon momentum. Equation (4) is the key expression for
TRXS, but a straightforward interpretation of this equation is not easy as it is a complicated expression of τ , δ, and ωks

variables. The electronic correlation function in Eq. (4) reflects the perturbation of the freely evolving electronic wave
packet by the density operator. Through this density perturbation electronic states can be populated that initially were not
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present in the wave packet. Furthermore, these freely evolving, additionally populated electronic states get projected back
onto the density-perturbed wave packet at a later time [see the second line in Eq. (4)]. It is thus evident from Eq. (4)
that TRXS is related to an intricate quantity: a space-time-dependent density-density correlation function, which is in
contrast with the common notion that TRXS provides access to the instantaneous electron density 〈n̂(x)〉t = ρ(x,t). A similar
approach for ultrafast x-ray scattering has been developed in the past [34,35], but focused on x-ray scattering for probing atomic
motion, e.g., bond breaking in diatomic molecules [34].

III. RESULTS AND DISCUSSION

In the following, we will further elucidate Eq. (4), taking into consideration a key assumption for TRXS. The probe pulse is
assumed to be sufficiently short to freeze the wave packet dynamics, i.e., the evolution of the wave packet is assumed to be much
slower than the pulse duration. Under this situation, the τ -dependent phases of the wave packet can be collected together with
the I (τ ), and the τ -dependent integral can be performed in Eq. (4), yielding

dP

d�
= dσth

d�
F

∫ ∞

0
dωks

W�E(ωks
)
ωks

ωkin

∫ ∞

−∞

dδ

2π
C(δ)e−i(ωks −ωkin )δ

×
∫

d3x

∫
d3x ′〈�|n̂

(
x′,τd + δ

2

)
n̂

(
x,τd − δ

2

)
|�〉eiQ·(x−x′). (5)

Here, F is the fluence of the probe pulse (in units of the number of photons per area) and τd is the pump-probe delay time. The
above equation can be rewritten as

dP

d�
= dσth

d�
F

∫ ∞

0
dωks

W�E(ωks
)
ωks

ωkin

∫ ∞

−∞

dδ

2π
C(δ)e−i(ωks −ωkin )δ

×
∫

d3x

∫
d3x ′〈�|eiĤ δ/2n̂(x′,τd )e−iĤ δn̂ (x,τd ) eiĤ δ/2|�〉eiQ·(x−x′). (6)

Here, Ĥ is the electronic Hamiltonian. Furthermore, by introducing 〈Ĥ 〉 = Ẽ as the mean energy of the wave packet, the
δ-dependent freely evolving phase of the wave packet, exp[iEiδ/2], can be factorized into exp[iẼδ/2] and exp[i(Ei − Ẽ)δ/2]
with Ei as the eigen-energy corresponding to eigenstate |
i〉 in the wave packet. Since the pulse duration is short enough to freeze
the motion, |Ei − Ẽ| � 1/δ holds. Therefore, exp[i(Ei − Ẽ)δ/2] can be approximated by unity and Eq. (6) can be written as

dP

d�
= dσth

d�
F

∫ ∞

0
dωks

W�E(ωks
)
ωks

ωkin

∫ ∞

−∞

dδ

2π
C(δ)e−i(ωks −ωkin )δ

×
∫

d3x

∫
d3x ′〈�|n̂(x′,τd )e−i(Ĥ−Ẽ)δn̂ (x,τd ) |�〉eiQ·(x−x′). (7)

Now the δ-dependent integral can be performed straight away in the above equation, which yields the simplified expression for
the DSP as

dP

d�
= dσth

d�
F

∫ ∞

0
dωks

W�E(ωks
)
ωks

ωkin

τl√
8π ln2

×
∫

d3x

∫
d3x ′〈�|n̂(x′,τd )e−(τ 2

l /8ln2)(ωkin −ωks +Ẽ−Ĥ )2
n̂(x,τd )|�〉eiQ·(x−x′). (8)

Let us introduce a complete set of eigenstates in between the two density operators in Eq. (8), such that

dP

d�
= dσth

d�
F

∫ ∞

0
dωks

W�E(ωks
)
ωks

ωkin

∑
f

τl√
8π ln2

e−(τ 2
l /8ln2)(ωkin −ωks +Ẽ−Ef )2

×
∫

d3x

∫
d3x ′〈�|n̂(x′,τd )|
f 〉〈
f |n̂(x,τd )|�〉eiQ·(x−x′). (9)

Here, |
f 〉 and Ef are the electronic state reached by x-ray scattering and the associated electronic energy, respectively.
At this point, it is instructive to recover from TRXS the case of x-ray scattering from a stationary target. To image

a stationary electronic state the pulse duration may become arbitrarily large. Considering the monochromatic limit τl → ∞, one
obtains from Eq. (4) the general expression for x-ray scattering from a stationary target,

dP

d�
= dσth

d�
F

∫ ∞

0
dωks

W�E(ωks
)
ωks

ωkin

∑
f

δ(ωkin − ωks
+ E0 − Ef )

×
∫

d3x

∫
d3x ′〈
0|n̂(x′)|
f 〉〈
f |n̂(x)|
0〉eiQ·(x−x′). (10)

043409-3



GOPAL DIXIT, JAN MALTE SLOWIK, AND ROBIN SANTRA PHYSICAL REVIEW A 89, 043409 (2014)

Here, |
0〉 and E0 represent, respectively, the stationary
electronic state (e.g., the ground state) and the associated
electronic energy. The key quantity in Eq. (10) may be
expressed in terms of the dynamic structure factor (DSF)

S(Q,ω) =
∑
f

δ(ω + E0 −Ef )

∣∣∣∣
∫

d3x〈
f |n̂(x)|
0〉eiQ·x
∣∣∣∣
2

,

(11)

where ω = ωkin − ωks
is the photon energy transfer [36].

S(Q,ω) is the Fourier transform of the Van Hove correlation
function [37]. Note that if the energy window function W�E

is centered at ωkin , and �E is small, such that ωks
= ωkin , then

Eq. (10) reduces to elastic x-ray scattering from a stationary
target.

In contrast to x-ray scattering from a stationary target,
the pulse duration in TRXS determines the time resolution
and has to be shorter than the motion of the electronic wave
packet. Therefore, in TRXS the incoming photon energy is
not well defined, due to the inherent bandwidth of the x-ray
pulse. Comparing Eqs. (9) and (10), one sees that TRXS is
a generalized form of stationary-state x-ray scattering that
depends on the spectrum of the pulse. The generalized DSF
for TRXS is

S̃(Q,ω,τd ) =
∑
f

τl√
8π ln2

e−(τ 2
l /8ln2)(ω+Ẽ−Ef )2

×
∣∣∣∣
∫

d3x〈
f |n̂(x,τd )|�〉eiQ·x
∣∣∣∣
2

. (12)

In the following, we will discuss several experimental situa-
tions described by different spectral window functions, as well
as how the generalized DSF can be related to the linear density
perturbation for electronic wave packets.

A. Impact of energy resolution of scattering detector on TRXS

In the following, we will consider the role of W�E in TRXS
for two interesting situations for the energy resolution.

1. No energy resolution

First, we consider the case where the detector does not
resolve the energy of scattered photons. In this case, the
spectral window function can be treated as being constant
and �E as large enough to include all accessible scattered
photon energies. Here, we assume �E to be sufficiently large
but the object size D to be sufficiently small, such that the
uniqueness of a pixel in Q space, the pixel size being given
by �Q = π/D, is not lost due to large uncertainty in the
momentum distribution. For example, the Compton shift from
a resting electron for x rays with 10 keV energy is about
�ω ≈ 57 eV at a scattering angle of 45◦. Thus assuming a
maximum shift of about 2�ω = 114 eV, one finds a maximum
object size of D ≈ 38 Å. In this situation the ωks

-dependent
integral [see Eq. (9)] may be written as∫ ∞

0
dωks

ωks

τl√
8π ln2

e−(τ 2
l /8ln2)(ωkin −ωks +Ẽ−Ef )2 � ωkin . (13)

Here, we assume that ωkin 
 |Ef − Ẽ|, i.e., due to the
insufficient energy resolution the pulse can be treated as

quasimonochromatic. Substituting the result from Eq. (13) in
Eq. (9), the expression for the DSP in the case of no energy
resolution becomes

dP

d�
= dσth

d�
F

∑
f

∣∣∣∣
∫

d3x〈
f |n̂(x,τd )|�〉eiQ·x
∣∣∣∣
2

(14)

= dσth

d�
F

∫
d3x

∫
d3x ′〈�|n̂(x′,τd )n̂(x,τd )|�〉eiQ·(x−x′).

(15)

This result for the energy-integrated generalized DSF resem-
bles the static case [36]. However, the DSP still depends on
the pump-probe delay τd . The integrated DSF encodes the
electron pair-correlation function [37] and one could observe
electron correlation effects in experiments [38–40]. Thus, in
the case of an electronic wave packet, the energy-integrated
generalized DSF offers the electron pair-correlation function
of the wave packet at different delay times, from which one can
retrieve information about time-dependent electronic correla-
tions in the wave packet. Therefore, wave packet dynamics
can be imaged via TRXS even in the case of no energy
resolution.

2. High energy resolution

Now, we consider the situation where �E is much smaller
than the bandwidth, i.e., high energy resolution. Let the
spectral window function be centered at ω̃kd

and

∫ ∞

0
dωks

W�E(ωks
) = �E. (16)

Hence,∫ ∞

0
dωks

W�E(ωks
)ωks

τl√
8π ln2

e−(τ 2
l /8ln2)(ωkin −ωks +Ẽ−Ef )2

� ω̃kd
�E

τl√
8π ln2

e−(τ 2
l /8ln2)(ωkin +Ẽ−Ef −ω̃kd

)2
. (17)

On substituting the result from Eq. (17) in Eq. (9), the
expression for the DSP in the case of high energy resolution
reduces to

dP

d�
= dσth

d�
F�E

∑
f

τl√
8π ln2

e−(τ 2
l /8ln2)(ωkin +Ẽ−Ef −ω̃kd

)2

×
∣∣∣∣
∫

d3x〈
f |n̂(x,τd )|�〉eiQ·x
∣∣∣∣
2

, (18)

assuming ω̃kd
/ωkin � 1.

Equation (18) shows that in the case of high energy
resolution the DSP is determined by the generalized DSF [see
Eq. (12)] for TRXS:

dP

d�
= dσth

d�
F�ES̃

(
Q,ωkin − ω̃kd

,τd

)
. (19)

Thus the scattering signal depends on the spectrum of the
x-ray pulse and on the position of the window function
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ω̃kd
. The special case where the spectral window function

is centered at the central frequency of the incoming beam,
ω̃kd

= ωkin , comes closest to what can be considered time-
resolved coherent diffractive imaging. However, even then
one does not just recover the Fourier transform of the
instantaneous electron density: one measures the generalized
DSF S̃(Q,0,τd ), which in contrast to the static case includes in-
elastic scattering within the bandwidth and cannot be reduced
to |∫ d3x〈�|n̂(x,τd )|�〉eiQ·x|2. Thus, the scattering signal
depends on the spatiotemporal density-density correlation
function of the wave packet. By changing the position of
the window function one can measure the generalized DSF
S̃(Q,ω,τd ). We probe the wave packet at different delay times
τd with a time resolution given by the probe-pulse duration
τl . By measuring the generalized DSF it is possible to extract
information about dynamics on time scales much faster than
τl . To this end, in the next section we will combine TRXS of
electronic wave packets with the approach of Abbamonte and
co-workers.

B. Linear response to density perturbations
for electronic wave packets

We showed in the last section that TRXS with high energy
resolution depends on the generalized DSF. In this section
we investigate which information about the dynamics can
be extracted from S̃(Q,ω,τd ). In x-ray scattering from a
stationary, homogeneous target S is related to the propagator
for the electron density χ by [25]

Im[χ (Q,ω)] = −π [S(Q,ω) − S(Q,−ω)], (20)

i.e., the energy- and momentum-resolved scattering signal is
related to the imaginary part of the electron density propagator
in the Fourier domain. For a target in thermal equilibrium this
is a version of the fluctuation-dissipation theorem [36]. In
the real-space and real-time domain, χ (x − x′,t − t ′) reflects
the amplitude for some perturbation in the electron density to
propagate from position x′ to x during a finite time interval
t − t ′ [37]. Experimental measurement provides only the
imaginary part of χ , via Eq. (20). However, a four-step recipe
to reconstruct the full χ (x − x′,t − t ′) from the experimentally
accessible Im[χ (Q,ω)] has been developed by Abbamonte
et al. [25,27]. This approach has been applied to image ultrafast
electron dynamics at synchrotron light sources [26,27]. The
reconstructed χ (x − x′,t − t ′) is the complete response for a
homogeneous system. In the case of a stationary, inhomoge-
neous system [28] one recovers the propagator χ (x,x′,t − t ′)
averaged over all source locations x′. Recently, a method based
on a coherent standing-wave source was proposed to obtain the
full χ (x,x′,t − t ′) for inhomogeneous systems [29].

In our case of a nonstationary, inhomogeneous wave
packet the x-ray scattering depends on the generalized
DSF S̃(Q,ω,τd ). Define a generalized electron density
propagator

χ̃ (x,x′,t,t ′) = χ (x,x′,t,t ′)C(t − t ′), (21)

connecting the density propagator χ and the temporal coher-
ence function C of the x-ray pulse; see Eq. (A5). Similar to
Eq. (20), we find a relation between the generalized DSF and

the generalized electron density propagator (see Appendix C),

Im[χ̃(Q,−Q,ω,τd )] = −π [S̃(Q,ω,τd ) − S̃(Q, − ω,τd )].
(22)

Now, using the four-step recipe, as developed by Abbamonte
et al. [25,27], one can obtain the full χ̃ (Q,ω,τd ) from the
experimentally accessible Im[χ̃(Q,ω,τd )]. In this way, the
generalized electron density propagator can be obtained.
Observe that when the temporal coherence function C is
known one obtains the exact propagator χ (x,x′,t,t ′) from
χ̃ (x,x′,t,t ′) by division, and in any case the generalized
propagator reduces to the exact propagator if t − t ′ is much
shorter than the pulse duration.

In the last section, we saw that TRXS from a wave
packet is complicated by electron density dynamics faster
than the pulse duration; see Eq. (7). Therefore, it is natural
to ask the question whether the electron density propagator
obtained from S̃(Q,ω,τd ) can be used to unravel these induced
dynamics. To answer this we investigate the linear density
response of an electronic wave packet to the scattering process.
Note that here we analyze the response of the exact propagator
χ (x,x′,t,t ′). The detailed derivation is given in Appendix B.
The true physical density response can be written as

δn(x,t) = Tr[n̂(x,t)δρ̂(t)], (23)

where δρ̂(t) is the change in the electronic state within linear-
response theory. For Â2-induced nonresonant scattering, the
linear-order terms of the above equation can be written
as

δn(x,t) = (−i)
α2

2

∫ t

−∞
dt ′

∫
d3x ′Tr

[
ρ̂X

in Â2(x′,t ′)
]

×〈�|[n̂(x,t),n̂(x′,t ′)]|�〉. (24)

Here, ρ̂X
in represents the initial density operator for the x rays.

Performing some simple mathematical steps (see
Appendix B) one obtains the linear density response of Â2

scattering. The contributions from photon scattering expressed
by the field correlation functions 〈Ê(±)(x′,t ′)Ê(∓)(x′,t ′)〉 to
the linear density response are zero. The only nonzero
contributions to the linear density response come from the
field correlation functions 〈Ê(±)(x′,t ′)Ê(±)(x′,t ′)〉 when the
field has a fixed carrier-envelope phase. In typical experiments,
however, the phase is not controlled and one has to average
over the phase even in our ideal case of a Gaussian ensemble.
Thus, the linear density response of the Â2 scattering process
itself vanishes. Therefore, the fast dynamics induced in Â2

nonresonant scattering cannot be captured by the linear-
response electron density propagator χ . This does not render
χ meaningless. Our finding rather expresses the fact that χ

describes linear-order density fluctuations, whereas the density
response to nonresonant x-ray scattering is, in general, a
higher-order process.

C. TRXS from a crystal: Recovery of instantaneous
electron density

In this section, we consider the case of TRXS from a crystal
of identical electronic wave packets. We separate the coherent
and the incoherent scattering by inserting a complete set of
energy eigenstates that is projected onto the initial state and
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its orthogonal complement

|�〉〈�| + (1 − |�〉〈�|)
= |�〉〈�| + (1 − |�〉〈�|)

∑
f

|
f 〉〈
f |(1 − |�〉〈�|).

(25)

Now we insert this complete set into Eq. (7). As in Sec. II we
assume a pulse short enough to freeze the wave packet motion.

In particular, we exploit that |Ei − Ẽ| � 1/δ for eigenstates
|
i〉 contained in the wave packet with energies Ei and
thus

eiĤ δ(1 − |�〉〈�|)|
i〉 ≈ eiEiδ|
i〉 − eiẼδ|�〉〈�|
i〉
≈ eiEiδ(1 − |�〉〈�|)|
i〉.

The key expression of Eq. (8) can then be rewritten

∫
d3x

∫
d3x ′

⎡
⎣e−(τ 2

l /8ln2)(ωkin −ωks )2〈�|n̂(x′,τd )|�〉〈�|n̂(x,τd )|�〉

+
∑
f

e−(τ 2
l /8ln2)(ωkin −ωks +Ẽ−Ef )2〈�|n̂(x′,τd )|
 ′

f 〉〈
 ′
f |n̂(x,τd )|�〉

⎤
⎦ eiQ·(x−x′)

= e−(τ 2
l /8ln2)(ωkin −ωks )2

∣∣∣∣
∫

d3x 〈�|n̂(x,τd )|�〉 eiQ·x
∣∣∣∣
2

+
∑
f

e−(τ 2
l /8ln2)(ωkin −ωks +Ẽ−Ef )2

×
∫

d3x

∫
d3x ′〈�|n̂(x′,τd )|
 ′

f 〉〈
 ′
f |n̂(x,τd )|�〉eiQ·(x−x′) , (26)

where |
 ′
f 〉 = (1 − |�〉〈�|)|
f 〉.

Now consider a crystal where an identical electronic wave
packet is prepared at each lattice site with the help of a pump
pulse (see Fig. 1). We assume the subunits of the crystal to be
noninteracting. The electronic states in Eq. (26) represent the
state of the entire crystal, which factorizes into the electronic
states of the individual subunits. Due to the periodic structure
of the crystal, the first term in Eq. (26) provides a coherent
scattering signal giving rise to Bragg reflections. According to
the Laue condition, for a sufficiently large crystal, the lattice
sum allows scattering only at momentum transfer Q that is
equal to a reciprocal lattice vector. For coherent scattering,
the lattice sum is a coherent sum, because it is impossible
to distinguish at which subunit the scattering occurred. Thus,

FIG. 1. (Color online) A two-dimensional view of a crystal made
of identical atoms prepared in exactly the same quantum superposition
and with identical phase.

the Bragg intensity of the coherent scattering signal scales
with the square of the number of unit cells in the crystal. The
second term in Eq. (26) describes an incoherent scattering
signal, where at one lattice site an electronic transition from
the wave packet to a state that is not part of the wave packet
is induced. Therefore, the sum over final states in Eq. (26)
involves a sum over the different lattice sites. Because the site
where the wave packet was destroyed can be distinguished
from the other sites, the corresponding contributions must be
summed incoherently. Thus, the intensity of the incoherent
signal scales only linearly with the number of unit cells in the
crystal.

In conclusion, the TRXS signal is dominated by the
coherent scattering signal for a sufficiently large crystal. In
the case of TRXS from a crystal, the instantaneous electron
density 〈�|n̂(x,τd )|�〉 of the wave packet can be retrieved
from the coherent scattering signal. Although for a short
pulse the bandwidth is large, the coherent signal dominates
in the case of sufficiently many unit cells. It is important
to mention that in the case of scattering from a single
electronic wave packet, as demonstrated in our previous work
[22,23], the contribution from the incoherent scattering signal
dominates over the contribution from the coherent scattering
signal.

IV. CONCLUSION

This work is devoted to a rigorous understanding of TRXS
for imaging coherent electronic motion on an ultrafast time
scale using ultrashort hard x-ray pulses. The roles of the
pulse duration and of the energy resolution of the scattering
detector have been investigated for TRXS. For stationary
targets, long probe pulses can be used and the theory reduces
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to nonresonant x-ray scattering (elastic and inelastic). To
image electronic wave packets one has to use ultrashort x-ray
pulses. It is found that TRXS encodes the generalized dynamic
structure factor and not the instantaneous electron density of
an electronic wave packet. We have analyzed the scattering
signal for two limiting situations of the energy resolution of
the scattering detector. In both situations, the probe pulse
duration sets the time resolution for the electronic motion.
In the case of no energy resolution the scattering signal
depends on the wave packet dynamics through the pump-
probe delay and one measures the energy-integrated DSF
which encodes the time-dependent electron pair-correlation
function of the wave packet. Therefore, TRXS with no energy
resolution is of particular importance as it seems feasible with
existing detector technology and offers the ability to image
time-dependent electron correlations in dynamical electron
systems. In the case of high energy resolution (small �E) the
scattering signal contains additional fingerprints of dynamics
induced by the scattering process that are faster than the
probe duration. They can be probed in the energy domain
by varying the position (ω̃kd

) of the spectral window function.
We have made the connection of our theory to the dynamical
imaging of ultrafast dynamics by Abbamonte and co-workers.
In this way we have shown that from energy-resolved x-ray
scattering one can recover the electron density propagator for
time scales much faster than the probe-pulse duration. Thus,
the present theory can be regarded as a unified description
of time-resolved ultrafast x-ray scattering. The response of
the density perturbation for an electronic wave packet within
linear-response theory has been investigated. We showed
that the linear density response due to the scattering event
itself vanishes. A special and interesting situation has been
considered for TRXS from a crystal consisting of identical
electronic wave packets with identical phase at each lattice
point. The scattering signal of the crystal is shown to recover
the instantaneous electron density of the wave packet in this
case. We hope that our present analysis of TRXS on ultrafast
time scales will help in planning and understanding future
experiments.

APPENDIX A: FIRST-ORDER CORRELATION
FUNCTION FOR X RAYS

The first-order correlation function is defined as

G(1)(x1,t1; x2,t2) = Tr
[
ρ̂X

in Ê(−)(x1,t1)Ê(+)(x2,t2)
]

= 〈E(−)(x1,t1)E(+)(x2,t2)〉, (A1)

where ρ̂X
in is the initial density operator for the x rays and

Ê(+) (Ê(−)) is the positive (negative) component of the electric
field operator. In the classical limit, the pulsed electric field can
be expressed as

E(x,t)=E0cos(kin · x − ωin[t − τd ])g(kin · x−ωin[t − τd ]),

(A2)

where kin and ωin are, respectively, the carrier wave vector and
the frequency of the pulsed field. Here, we assume that the

envelope function g is Gaussian:

g(kin · x − ωin[t − τd ]) = e−(1/2σ 2ω2
in)(kin·x−ωin[t−τd ])2

, (A3)

where τd is the time delay and σ is related to the pulse duration
as τl = √

8 ln 2σ . The probe pulse is assumed to propagate
along the z direction. Therefore, by using Eqs. (A2) and
(A3), the key quantity for the first-order correlation function
is expressed as

E(−)(z1,t1)E(+)(z2,t2)

= 1
4 |E0|2e−(1/2σ 2)(α2z2

1+[t1−τd ]2−2αz1[t1−τd ])ei(kinz1−ωint1)

× e−(1/2σ 2)(α2z2
2+[t2−τd ]2−2αz2[t2−τd ])e−i(kinz2−ωint2). (A4)

At this point, it is important to analyze the spatial depen-
dence in Eq. (A4), i.e., under which conditions the spatially
dependent terms can be ignored and all the electrons in the
sample experience a spatially uniform pulse envelope. The
spatially dependent terms, exp[−α2z2/2σ 2] and exp[αzt/σ 2],
can be approximated by unity if the condition α|z| � τl is
satisfied. Here, τl is the pulse duration and 1/α is the speed of
light. Let us consider the situation considered in our previous
works [22,23], where a 1 fs pulse duration has been used.
Therefore, for the given value of τl , |z| � τl/α � 300 nm.
Hence, for a sample size of tens of nanometers (or smaller)
exposed to a few-femtosecond hard x-ray pulse, the spatial
dependence of the envelope of the incident pulse can be
ignored. Note that we assume the object size to be small
in comparison to the transverse size of the x-ray beam.
Therefore, the first-order correlation function for x rays can be
written as

G(1)(x1,t1; x2,t2) = 2παI (τ )C(δ)e−iωinδeikin·(x−x′), (A5)

where τ = t1+t2
2 , δ = t2 − t1, and C(δ) = e−2 ln 2 δ2/τ 2

l . Observe
that the function C(δ) and thus the first-order correlation
function vanish for time differences δ much larger than the
pulse duration. Therefore, the function C(δ) describes the
temporal coherence properties of the x rays.

APPENDIX B: DENSITY PERTURBATION
FOR AN ELECTRONIC WAVE PACKET
WITHIN LINEAR-RESPONSE THEORY

The physical density response can be written as

δn(x,t) = Tr[n̂(x,t)δρ̂(t)], (B1)

where δρ̂(t) is the change in the density operator within linear-
response theory and can be written as

δρ̂(t) = ρ̂(0,1)(t) + ρ̂(1,0)(t), (B2)

with

ρ̂(0,1)(t) =
∑

{n},{n̄}
ρX

{n},{n̄}|
{n}〉
〈



(1)
{n̄},t

∣∣. (B3)

Here, ρX
{n},{n̄} represents the populations and coherences of all

the occupied field modes of the incident radiation. Here, we
have assumed that with the help of a pump pulse an electronic
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wave packet |�〉 is prepared and |
{n}〉 = |�〉|{n}〉 is a product
state of electronic and photon states. The first-order change of
the state vector in the interaction picture can be written as

∣∣
(1)
{n},t

〉 = (−i)
∫ t

−∞
dt ′Ĥint(t

′)|
{n}〉. (B4)

On substituting the expressions from Eqs. (B2) and (B3) in
Eq. (B1), the physical density response can be expressed as

δn(x,t) = Tr[n̂(x,t)(ρ̂(0,1)(t) + ρ̂(1,0)(t))]

= −i
∑

{n},{n̄}
ρX

{n},{n̄}

∫ t

−∞
dt ′〈
{n̄}|[n̂(x,t),Ĥint(t

′)]|
{n}〉.

(B5)

Now, on using the second term of Ĥint as shown in Eq. (1)
(the Â2 term), the above equation can be written as

δn(x,t) = (−i)
α2

2

∫ t

−∞
dt ′

∫
d3x ′Tr

[
ρ̂X

in Â2(x′,t ′)
]

×〈�|[n̂(x,t),n̂(x′,t ′)]|�〉, (B6)

which can be expressed in the following known form as [41]:

δn(x,t) =
∫ t

−∞
dt ′

∫
d3x ′χ (x,x′,t,t ′)V (x′,t ′). (B7)

On comparing Eq. (B6) with Eq. (B7), we can write the linear-
response function at position x and time t due to the external
potential at position x′ and time t ′ as

χ (x,x′,t,t ′) = −i〈�|[n̂(x,t),n̂(x′,t ′)]|�〉, (B8)

and the interaction potential as

V (x′,t ′) = α2

2
Tr

[
ρ̂X

in Â2(x′,t ′)
]
. (B9)

In the following, we will simplify V (x′,t ′), which can be
expressed in terms of the electric field operator as

V (x′,t ′) = α2

2ω2
kin

Tr
[
ρ̂X

in Ê2(x′,t ′)
]

= α2

2ω2
kin

{
Tr

[
ρ̂X

in Ê(−)(x′,t ′)Ê(+)(x′,t ′)
]

+ Tr
[
ρ̂X

in Ê(+)(x′,t ′)Ê(−)(x′,t ′)
]

+ Tr
[
ρ̂X

in Ê(+)(x′,t ′)Ê(+)(x′,t ′)
]

+ Tr
[
ρ̂X

in Ê(−)(x′,t ′)Ê(−)(x′,t ′)
]}

. (B10)

On using the expressions for the pulsed electric field and
envelope function [see Eqs. (A2) and (A3), respectively], and
using a similar procedure as shown in Appendix A, the above
equation can be simplified as

V (x′,t ′) = α2

2ω2
kin

[
1

2
E0g(kin · x′ − ωkin [t ′ − τd ])

]2

× [2 + e−2i(kin·x′−ωkin t ′) + e2i(kin·x′−ωkin t ′)]. (B11)

Here, we assume that all the electrons in the sample experience
a uniform pulse envelope and hence the spatial dependency

of the envelope function can be ignored (see Appendix A).
Therefore, Eq. (B11) reduces to

V (x′,t ′) = πα3

ω2
kin

I (t ′)[2 + e−2i(kin·x′−ωkin t ′) + e2i(kin·x′−ωkin t ′)].

(B12)
Therefore, on substituting the expressions from Eqs. (B11) and
(B8), the density response can be written as

δn(x,t) = 2πα3

ω2
kin

∫ t

−∞
dt ′I (t ′)

∫
d3x ′χ (x,x′,t,t ′)

×{1 + cos[2(kin · x′ − ωkin t
′)]}. (B13)

The total density response can be decomposed into two parts
as

δn(x,t) = δn1(x,t) + δn2(x,t), (B14)

where

δn1(x,t) = 2πα3

ω2
kin

∫ t

−∞
dt ′I (t ′)

∫
d3x ′χ (x,x′,t,t ′) (B15)

and

δn2(x,t) = 2πα3

ω2
kin

∫ t

−∞
dt ′I (t ′)

∫
d3x ′χ (x,x′,t,t ′)

× cos[2(kin · x′ − ωkin t
′)]. (B16)

On performing the x′-dependent integral in Eq. (B15), one
finds that δn1(x,t) = 0. Thus, for perfectly stable (coherent) x
rays, the density response for an electronic wave packet can
be written as

δn(x,t) = 2πα3

ω2
kin

∫ t

−∞
dt ′I (t ′)

∫
d3x ′χ (x,x′,t,t ′)

× cos[2(kin · x′ − ωkin t
′)]. (B17)

APPENDIX C: CONNECTION BETWEEN
LINEAR-RESPONSE FUNCTION AND DYNAMICAL

STRUCTURE FACTOR

The retarded electron density propagator

χ (x,x′,t,t ′) = −i 〈�|[n̂(x,t),n̂(x′,t ′)]|�〉 θ (t − t ′) (C1)

describes the propagation of disturbances in the electron
density and characterizes the electronic system. The step
function θ (t − t ′) ensures causality. To connect the dynamical
properties of the system with the temporal coherence of the
probe pulse, we define the generalized propagator

χ̃ (x,x′,t,t ′) = −i C(t − t ′) 〈�|[n̂(x,t),n̂(x′,t ′)]|�〉 θ (t − t ′),

(C2)

where C(t − t ′) = exp[−2 ln 2 (t − t ′)2/τ 2
l ] describes the

temporal coherence of the x-ray pulse with pulse duration τl ;
see Eq. (A5). Observe that this propagator vanishes when t − t ′
is much larger than the pulse duration. As before, we image the
system at a pump-probe delay time τd with a pulse duration
short enough to freeze the wave packet. Thus, |t − τd | and
|t ′ − τd | of interest are small with respect to the wave packet
motion and we can write the generalized propagator in terms
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of δ = t − t ′ and τd ,

χ̃ (x,x′,δ,τd ) := χ̃(x,x′,t,t ′) (C3)

= −iC(δ)θ (δ)
∑
f

[〈�|n̂(x,τd )|
f 〉〈
f |n̂(x′,τd )|�〉ei(Ẽ−Ef )δ − 〈�|n̂(x′,τd )|
f 〉〈
f |n̂(x,τd )|�〉ei(Ef −Ẽ)δ]. (C4)

The Fourier transform with respect to x, x′, and δ is given by

χ̃(Q,Q′,ω,τd ) =
∫∫∫

dδd3x d3x ′eiωδeiQ·x eiQ′ ·x′
χ̃ (x,x′,δ,τd ) (C5)

= −i
∑
f

∫∫
d3x d3x ′ei(Q·x+Q′ ·x′)

∫
dδ C(δ) θ (δ)[ei(ω+Ẽ−Ef )δ〈�|n̂(x,τd )|
f 〉〈
f |n̂(x′,τd )|�〉

− ei(ω−Ẽ+Ef )δ〈�|n̂(x′,τd )|
f 〉〈
f |n̂(x,τd )|�〉]. (C6)

Now, one can easily determine the imaginary part of χ̃ (Q,−Q,ω,τd ),

Im[χ̃ (Q,−Q,ω,τd )] = −π
∑
f

τl√
8π ln 2

e−(τl/8 ln 2)(ω+Ẽ−Ef )2

∣∣∣∣
∫

d3x 〈
f |n̂(x,τd )|�〉eiQ·x
∣∣∣∣
2

+π
∑
f

τl√
8π ln 2

e−(τl/8 ln 2)(−ω+Ẽ−Ef )2

∣∣∣∣
∫

d3x 〈
f |n̂(x,τd )|�〉eiQ·x
∣∣∣∣
2

(C7)

= −π [S̃(Q,ω,τd ) − S̃(Q, − ω,τd )]. (C8)

This establishes the relation of the measured generalized DSF
and the imaginary part of the generalized density propagator.
Applying the four-step recipe by Abbamonte and co-workers
[25,27] one can reconstruct real-space information about χ̃ .
From the definition of the generalized propagator, we see that
for time propagation much shorter than the pulse duaration
(δ � τl) this gives information about the density propagator.
Observe that the generalized DSF provides only the diagonal

terms, where Q′ = −Q. It was shown in Ref. [28] that one
recovers the full electron density propagator only for homo-
geneous systems, whereas for the case of an inhomogeneous
system one obtains the averaged generalized propagator

χ̃(x,δ,τd ) =
∫

d3x ′ χ̃(x + x′,x′,δ,τd ) ,

averaged over all possible source locations x′.
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