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the persistence of ocean heat content anomalies, 
especially where the atmosphere interacts with deep 
oceanic mixed layers, such as in the North Atlantic 
and North Pacific Subpolar Gyres (e.g., Mochizuki 
et al. 2010; Guemas et al. 2012; Matei et al. 2012b). 
Ocean memory possibly also arises from properly 
initialized ocean circulation and hence “slow” ocean 
dynamics [e.g., Matei et al. (2012b); a comprehensive 
review of the principles behind decadal prediction 
was recently provided by Kirtman et al. (2013)].

The quality of a decadal prediction system 
is assessed—in analogy to a seasonal prediction 
system—by performing a set of hindcasts (retrospective 
predictions) and by evaluating these hindcasts against 
the observed climate evolution. This evaluation step 
requires a sufficiently powerful observing system 
and is therefore usually limited to the period since 
around 1960. Assessing the gain in prediction skill 
that is obtained through the initialization is a core 
element of decadal prediction research, although for 
the users of such a prediction it matters little whether 
skill arises from the expected change in forcing or 
from the initialized internal variability.

The MiKlip project aims to establish and improve 
a decadal climate prediction system that by the end 
of the project can be transferred to the German 

D	ecadal climate prediction has progressed from  
	being an avant-garde enterprise of only a few  
	modeling groups to the scientific mainstream 

within less than a decade (Smith et al. 2007; Keenlyside 
et al. 2008; Pohlmann et al. 2009; Mochizuki 
et al. 2010; Kirtman et al. 2013; Meehl et al. 2014). 
Responding to both the new research opportuni-
ties and the enhanced societal requirements for 
information about near-term future climate change 
(e.g., WMO 2011; Kirtman et al. 2013), the German 
Federal Ministry for Education and Research has for 
the period 2011–19 funded a comprehensive national 
project on decadal climate prediction, Mittelfristige 
Klimaprognose (MiKlip; midterm climate forecast). 
This paper summarizes the scientific, strategic, and 
structural lessons learned from MiKlip so far.

A decadal prediction system simulates not only 
the climate response to future natural and anthro-
pogenic forcing but also the future evolution of 
internal climate variability, caused by chaotic pro-
cesses. Because chaos fundamentally limits climate 
predictability, a decadal prediction must be initialized 
from the observed state of those components of the 
climate system that provide a multiyear “memory,” 
usually but not exclusively the ocean (e.g., Bellucci 
et al. 2015a). Relevant ocean memory arises from 
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meteorological service (Deutscher Wetterdienst; 
DWD) for operational use. To serve this dual pur-
pose—preoperational predictions combined with 
research progress—MiKlip is organized around a 
hub consisting of a global climate prediction system, 
in turn comprising the Max Planck Institute Earth 
System Model (MPI-ESM; Giorgetta et al. 2013) 
together with an initialization procedure. Around 
this hub, the research is organized in four modules 
focusing on initialization, evaluation, processes and 
modeling, and regionalization.

The MiKlip hub furthermore provides a central 
evaluation system. The evaluation system, the neces-
sary observational data, and the entire set of MiKlip 
prediction results conform to the CMIP5 data stan-
dards (Taylor et al. 2012) and reside on a dedicated 
data server. The MiKlip server makes the prediction 
results and evaluation system immediately accessible 
to the entire MiKlip community, thereby providing a 
crucial interface between production on the one hand 
and research and evaluation on the other hand.

The structure of MiKlip differs notably from other 
community efforts in decadal climate prediction, 
especially the decadal prediction portion of phase 5 of 
the Coupled Model Intercomparison Project (CMIP5; 
see Kirtman et al. 2013; Meehl et al. 2014). CMIP5 
comprises 16 different decadal prediction systems 

and thus offers a much richer spectrum of modeling 
approaches than does MiKlip, which focuses on a 
single global prediction system. On the other hand, 
MiKlip can produce quick and tailored research 
responses that help modify its prediction system. 
MiKlip could hence cycle through a greater number 
of generations of its prediction system, compared to 
the cycle defined by the different phases of CMIP; 
this faster cycle enables faster learning from succes-
sive generations (see “Three generations of the global 
prediction system” section).

A project that conceptually rests in between 
MiKlip and CMIP is Seasonal-to-Decadal Climate 
Prediction for the Improvement of European Climate 
Services (SPECS; www.specs-fp7.eu/), funded by 
the European Union Framework Program 7. SPECS 
comprises six European climate prediction systems 
and thus shares with CMIP the multimodel approach. 
SPECS shares with MiKlip the strategy to coordi-
nate research within the project and to coordinate 
improvements of the prediction systems; however, 
SPECS is not designed to provide the same interactive 
cycle of prediction system improvements as MiKlip 
does. Overall, the approaches by MiKlip, SPECS, and 
CMIP complement each other.

The remainder of this paper is dedicated to the 
following scientific and strategic topics. The “Three 
generations of the global prediction system” section 
documents how we explored a variety of initialization 
methods and developed a strategy for deciding among 
them. These decisions have resulted in the succession 
of three generations of the MiKlip global decadal pre-
diction system. The “Evaluation of prediction system 
generations” section demonstrates that the systematic 
effort in prediction evaluation and verification has 
led to identification of prediction skill in many new 
quantities, such as multiyear-mean seasonal surface 
temperature over Europe, Northern Hemisphere 
midlatitude storm tracks, the quasi-biennial oscillation 
(QBO), and carbon uptake by the North Atlantic. The 
“Processes and model development” section presents 
aspects of enhanced process understanding and, in 
particular, how the development of a volcano code 
package enables us to include in future predictions 
the occurrence of a major volcanic eruption. The 
“Downscaling the decadal prediction” section discuss-
es how the regionalization of the predictions has made 
possible the identification of regional forecast skill. 
The “Discussion and conclusions” section provides 
a synthesis of the lessons learned from MiKlip so far.

THREE GENERATIONS OF THE GLOBAL 
PREDICTION SYSTEM. The MiKlip funding 
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period is subdivided into five development stages of 
usually 18 months in length. Each transition from one 
development stage to the next marks a well-defined 
and easy-to-communicate point in time for collecting, 
synthesizing, and implementing recommendations 
for changes in the global prediction system. Three 
generations of the prediction system are now avail-
able, termed baseline0, baseline1, and prototype 
(Table 1). Because of the relative timing of CMIP5 
and the MiKlip start, we could use the CMIP5 ini-
tialized simulations (hindcasts) as our starting point, 
a set that we redubbed for MiKlip use as baseline0. 
Already during development stage 1, we defined and 
performed the next set of hindcasts (baseline1), using 
an initialization procedure and initialization data dif-
ferent from baseline0. Based on the research during 
development stage 1, we have defined and executed 
during development stage 2 the experiments with the 
prototype system. We have not defined a prediction 
generation for development stage 3 (see “Discussion 
and conclusions” section); at this writing, we are at 
the beginning of development stage 4.

From baseline0 to baseline1. Our design of baseline1 
started from the recognition that baseline0 performed 
poorly in the tropics. Following Matei et al. (2012b), 
the initial conditions in baseline0 were constructed 
from a simulation with the Max Planck Institute 
Ocean Model (MPIOM; Jungclaus et al. 2013) forced 

by the National Centers for Environmental Prediction 
(NCEP)–National Center for Atmospheric Research 
(NCAR) reanalysis (Kalnay et al. 1996). The three-
dimensional ocean temperature and salinity anoma-
lies of the forced ocean run were added to the coupled 
model climatology; in a step with the coupled model 
called the assimilation run, the ocean hydrography 
was nudged to this sum of fields. The coupled model 
state resulting from the assimilation run was used as 
the initial condition for the 10-yr-long hindcast simu-
lations. While this simple initialization gave excellent 
hindcast skill for North Atlantic sea surface tempera-
ture (SST) and even some skill in central European 
summer surface air temperature (Müller et al. 2012), 
the initialization led to degraded performance for 
SST in the tropics, compared to the uninitialized (his-
torical) CMIP5 simulations (Figs. 1a,d; Müller et al. 
2012; Bellucci et al. 2015b). This poor performance 
in the tropics may have arisen from the very simple 
initialization procedure, leading to a lack of balance 
between zonal wind stress and ocean surface pressure 
gradient in the coupled model (Thoma et al. 2015) 
or from the observations used in the procedure (e.g., 
McGregor et al. 2012; Lee et al. 2013; Pohlmann et al. 
2016, manuscript submitted to Geophys. Res. Lett.).

A test suite of three-member hindcast ensembles 
with yearly start dates from 1961 onward explored 
various alternative initialization procedures. For each 
initialization, hindcast skill was evaluated for some 

Table 1. Experiments performed in MiKlip. In MPI-ESM-LR, LR stands for low resolution, T63 horizontally 
with 47 levels in the atmosphere and nominally 1.5° horizontal resolution and 40 levels in the ocean. In 
MPI-ESM-MR, MR stands for mixed resolution, T63 with 95 levels in the atmosphere and 0.4° horizontal 
resolution with 40 levels in the ocean.

Baseline0 Baseline1 Prototype

Models MPI-ESM-LR MPI-ESM-LR MPI-ESM-LR

MPI-ESM-MR MPI-ESM-MR

Initialization 
ocean

3D temperature (T )–salinity (S) anomalies 
from MPIOM forced with NCEP–NCAR 
reanalysis

3D T–S anomalies from 
ORAS4

3D T–S (full field) from 
GECCO2 and from ORAS4

Initialization 
atmosphere

Assimilation run ERA-40 and ERA-Interim; 
vorticity, divergence, log (p), 
T; full field

ERA-40 and ERA-Interim; 
vorticity, divergence, log (p), 
T; full field

Ensemble  
size

LR: 3 (10) LR: 10 30 (15 each with initialization 
from GECCO2 and ORAS4)

MR: 3 MR: 5

Start years LR: 1961–2013; yearly for 3 realizations  
1961–2000: five yearly for 10 realizations

LR: 1961–2014: yearly 1961–2014: yearly

2001–13: yearly for 10 realizations MR: 1961–2013: yearly

MR: 1961–2000: five yearly

2001–12: yearly
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predefined measures such as global-mean surface 
temperature, North Atlantic SST index, and, for years 
2004–10, the Atlantic meridional overturning circula-
tion (AMOC) at 26.5°N. These evaluations suggested 
initializing the ocean with temperature and salinity 
anomalies from the Ocean Reanalysis System 4 (ORAS4; 
Balmaseda et al. 2013) reanalysis and the atmosphere 
from the 40-yr European Centre for Medium-Range 
Weather Forecasts (ECMWF) Re-Analysis (ERA-40; 
Uppala et al. 2005) and ECMWF interim reanalysis 
(ERA-Interim; Dee et al. 2011; Table 1).

Baseline1 shows much improved correlation skill for 
tropical surface temperature, compared to baseline0, 
while maintaining positive skill in North Atlantic 
surface temperature (Fig. 1; see also Pohlmann et al. 

2013). Almost all regions with negative correlation 
in baseline0 show positive correlation in baseline1 
(tropical Atlantic, Africa, Indian Ocean, and western 
Pacific). Only the eastern Pacific continues to show 
negative skill, although less pronounced than in 
baseline0, in a pattern resembling the Pacific decadal 
oscillation (see also Mochizuki et al. 2010; Guemas 
et al. 2012). The improvement in tropical SST hindcast 
skill in baseline1 has led to a substantial improvement 
also in hindcast skill for global-mean surface tempera-
ture (Pohlmann et al. 2013).

Compared against the uninitialized (histori-
cal) simulations, initialization continues to provide 
additional skill primarily in the North Atlantic, owing 
to the deep mixed layers and associated long-lived heat 

Fig. 1. Evolution during the MiKlip project of the ensemble-mean hindcast skill [(left) anomaly correlation; 
(right) with anomaly correlation of historical simulations subtracted] of surface air temperature averaged over 
the lead years 2–5 in the low-resolution model version MPI-ESM-LR. Observations are from Hadley Centre/
Climatic Research Unit, version 4 (HadCRUT4; Jones et al. 2012). The period is 1961–2012; (a),(d) baseline0, 
(b),(e) baseline1, and (c),(f) prototype. Hindcast ensemble size is 3 for baseline0, 10 for baseline1, and 30 for 
prototype; historical ensemble size is 3 for baseline0, 10 for baseline1, and 15 for prototype. Crosses denote 
skill different from zero exceeding the 95% confidence level; significant negative skill indicates where the ini-
tialization causes skill degradation. The figure was created with the evaluation tool provided by the central 
evaluation system (Illing et al. 2014).
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content anomalies there (Fig. 1e). Because the skill 
enhancement in the North Atlantic is supported by 
robust physical understanding (e.g., Matei et al. 2012b), 
we have confidence in this result, although the region 
covers only a small portion of the globe. Notice that 
northeastern North Atlantic SST skill relative to the 
historical simulations in baseline0 is inflated because 
of one particularly improbable historical realization 
within the small ensemble of three; the larger ensemble 
size in baseline1, both in initialized and historical 
simulations, means that skill assessment is more robust 
(see “Evaluation of prediction system generations” 
sections). The baseline1 hindcasts track the observed 
time series of North Atlantic Subpolar Gyre SST quite 
well and much better than the historical simulations, 
with the exception of a large and unexplained drop 
centered around year 2002 (Fig. 2). In particular, the 
hindcasts also show the downward trend beginning in 
2005 [as was found earlier by Hermanson et al. (2014) 
with the Met Office decadal prediction system], and 
our predictions suggest that this downward trend is not 
reversed until the end of the current decade.

From baseline1 to prototype. The design of the prototype 
system was based on a far more comprehensive assess-
ment compared to the design of baseline1. Suggestions 
for modifications were collected from each MiKlip 
subproject; a number of suggestions for modified 
initialization could readily be implemented and tested.

The first suggestion is based on the recognition 
that the German contribution to Estimating the 
Circulation and Climate of the Ocean 2 (GECCO2) 
ocean reanalysis (Köhl 2015) provides an improved 
initial state compared to its predecessor GECCO 
[which was used earlier in Pohlmann et al. (2009), 
Matei et al. (2012b), and Kröger et al. (2012)]. The 
model comprises higher horizontal and vertical 
resolution, the domain is now fully global including 
the Arctic, and the simulation has been extended into 
the most recent years. Benefits of the new assimilation 
can be seen in several GECCO2 solution properties 
crucial for decadal prediction, such as ocean heat 
content, which, compared to the reference simula-
tion (without assimilation), shows reduced and more 
realistic interdecadal variability. The AMOC at 
26.5°N agrees excellently between the reanalysis and 
the observations (Fig. 3; Köhl 2015).

The workf low for producing initial conditions 
from GECCO2 has been modified so that the data 
needed for the initialization are available for quasi-
operational use. Such availability, ideally with no 
more than a 1-month delay, cannot currently be 
obtained through the full-blown and computationally 

intensive four-dimensional variational data assimila-
tion (4D-Var) method on which GECCO2 is based. 
This drawback is overcome here by performing 
shorter independent optimization runs toward 
the end of the assimilation window and further by 
appending a brief unconstrained run with unadjusted 
forcing for the final period. This modification in the 
workflow might make 4D-Var more broadly appli-
cable not only for reanalyses but also for predictions.

The second suggestion for modified initialization 
concerns the use of full-field rather than anomaly 
initialization in the ocean, reflecting a more general 
tendency in the decadal prediction field (Smith 
et al. 2013a; Meehl et al. 2014; Polkova et al. 2014). 
A simulation closer to the observed mean state, 
instead of the coupled model’s, offers conceptual 
advantages because some important climate processes 
such as sea ice formation and melt and atmospheric 
tropical stability are sensitive to the background state. 
Moreover, full-field initialization obviates the need to 
compute anomalies separately.

A suite of three-member test hindcast ensembles, 
using each of ORAS4 and GECCO2 in both anomaly 
and full-field ocean initialization, suggested that 
all three initialization alternatives to the baseline1 

Fig. 2. SST index for the North Atlantic Subpolar 
Gyre (40°–60°N, 0°–60°W) from 1960 to 2020. Shown 
is the 5-yr running mean for the observations [Hadley 
Centre Sea Ice and Sea Surface Temperature dataset 
1.1 (HadISST1.1); Rayner et al. 2003; solid black] and 
the ensemble mean over 10 realizations of MPI-ESM-
LR historical simulations extended with the repre-
sentative concentration pathway (RCP4.5) scenario 
(dashed black). Further shown is the time mean over 
the first five prediction years for each start year, for the 
ensemble mean of baseline1 MPI-ESM-LR hindcasts 
and predictions (solid red; last start year 2015). The 
whiskers show the range (minimum to maximum) of 
the ensemble.
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initialization (cf. Figs. 1b,e) led to improvements in 
the eastern tropical Pacific, the Indian Ocean, and 
the region in the northwestern North Atlantic where 
the three-member subensemble of baseline1 showed 
a relative minimum in skill (not shown). Although 
the skill was not improved everywhere, we concluded 
from the results of the initialization module (Polkova 
et al. 2014) and our additional test ensemble that the 
prototype system should use full-field initialization. 
The differences between ORAS4 and GECCO2 were 
only slight (not shown), so we used both initialization 
fields side by side.

Most baseline0 and baseline1 hindcasts were 
performed with the Max Planck Institute Earth 
System Model, low resolution (MPI-ESM-LR; T63 
with 47 levels in the atmosphere and nominally 1.5° 
horizontal resolution and 40 levels in the ocean). The 
Max Planck Institute Earth System Model, mixed 
resolution (MPI-ESM-MR; T63 with 95 levels in 
the atmosphere; 0.4° horizontal resolution with 40 
levels in the ocean), has yielded only modest benefit 
in the hindcasts (Pohlmann et al. 2013), just as in 
the CMIP5 historical simulations (Jungclaus et al. 
2013). Clear exceptions exist where use of the higher 
vertical resolution is essential, such as for the QBO 
(Pohlmann et al. 2013; see “Evaluation of prediction 
system generations” section). But given the compu-
tational constraints, we decided against the use of 
MPI-ESM-MR in the prototype system.

Instead, the prototype system employs a much 
larger ensemble than before. With increasing 
ensemble size, the ensemble-mean correlation 
with observations is expected to increase, while 

the uncertainty of the skill estimate and the risk 
of finding spurious skill are expected to decrease 
(Murphy 1990; Kumar et al. 2001; Scaife et al. 2014a). 
These expectations are confirmed in baseline1 for 
the North Atlantic SST index and central European 
summer surface temperature (Fig. 4; Sienz et al. 2016). 
The prototype system thus comprises 30 ensemble 
members instead of 10, with 15 members each based 
on ORAS4 and GECCO2 (Table 1).

Hindcast ensembles are generated in baseline0 
and baseline1 through lagged initialization, meaning 
that the model initial state at the nominal start day 
(1 January of any given start year) is taken from the 
state a few days earlier or later. The chaotic nature 
of the atmospheric model solution implies that 
the realizations soon drift away from each other 
and develop their own weather histories. But this 
procedure does not explore the possible ocean initial 
conditions that within uncertainty bounds are consis-
tent with the available observations. Therefore, MiKlip 
aims at the development of alternative ensemble-
generation procedures that explore the possible initial 
states more fully (see also Du et al. 2012).

Four procedures have been tested: empirical 
oceanic singular vectors (Molteni et al. 1996; Marini 
et al. 2016), the anomaly transform (Wei et al. 2006; 
Romanova and Hense 2015), a multiassimilation run 
approach in which the assimilation is based on several 
realizations of a historical run (Keenlyside et al. 
2008), and the singular evolutive interpolated Kalman 
(SEIK) filter (Pham et al. 1998; Brune et al. 2015). 
Unfortunately, no robust improvement compared 
to the lagged initialization has been found; if there 

Fig. 3. (a) Anomalies of the global-mean upper-ocean (0–700 m) heat content from the reference run (Ref, 
no assimilation) and GECCO2 in comparison to the estimates from Levitus et al. (2009) and Ishii and Kimoto 
(2009). (b) Comparison of the monthly mean meridional overturning at 26.5°N in Sv (1 Sv = 106 m3 s−1) from 
GECCO2 (red) and the reference run (black) with observations from Rapid Climate Change (RAPID; green; 
e.g., Cunningham et al. 2007; McCarthy et al. 2012). Updated from Köhl (2015), including a correction to the 
curve from the reference run in (a).
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is improvement, this is compensated by additional 
problems such as an overestimation of the internal 
variability by the ensemble spread in some, though 
not all, variables (Marini et al. 2016). A speculative 
interpretation of this result suggests that on the time 
scales relevant here, variability even in the ocean 
interior might be dominated by the forcing from 
atmospheric internal variability. Because the more 
sophisticated ensemble-generation methods do not 
yet provide a clear path forward, we use the same 
lagged initialization procedure in the prototype 
system as in baseline0 and baseline1.

Given the large effort that went into designing 
and executing the prototype system, the comparison 
against baseline1 for surface temperature averaged over 
lead years 2–5 is a little sobering. We see incremental 
improvement in the correlation with observations, 
such as in the eastern tropical Pacific and the central 
North Atlantic (Figs. 1b,c), but the skill improvement 
by initialization has not increased against baseline1, 
except around Drake Passage and the Indian Ocean 
portion of the Southern Ocean (Figs. 1e,f ). The 
anticipated improvements from the combination of 
enhanced ensemble size and full-field initialization 
have thus not materialized for all quantities.

EVALUATION OF PREDICTION SYSTEM 
GENERATIONS. The evaluation module pursues 
two related but distinct objectives; first, data-oriented 
evaluation of the prediction system and, second, 
process-oriented evaluation beyond the estimation 

of forecast skill for standard model output. Much of 
the data-oriented work stems from the recognition 
that observational datasets often provide insuffi-
cient spatiotemporal coverage or quality to enable a 
comprehensive evaluation of the prediction system. 
Therefore, considerable work is required on these 
observational datasets themselves. For example, 
global precipitation data over both land and ocean 
have been reprocessed for the period 1988–2008 to 
deliver daily maps with a grid resolution of 1° × 1° 
and 2.5° × 2.5°, with a traceable estimate of the uncer-
tainty (Schamm et al. 2014; Andersson et al. 2016a,b). 
As another example, variations in terrestrial water 
storage since 2002 have been inferred from GRACE 
satellite gravity measurements and used for the evalu-
ation of the MiKlip hindcasts (Zhang et al. 2015).

The work on verification and process-oriented 
evaluation takes as its starting point the recom-
mendations by Goddard et al. (2013). These include 
bias adjustment, typical spatial and temporal scales 
of aggregation, and verification of the hindcast 
ensemble proceeding along two lines. The first line 
of verification focuses on the mean square error skill 
score (MSESS), which tests whether the ensemble mean 
of a prediction outperforms a reference prediction, 
measured against a verification dataset. In the simple 
case of climatology as reference forecast, the MSESS 
combines the correlation between anomalies, the 
conditional bias (the prediction system systematically 
overestimates or underestimates the magnitude of 
anomalies), and the unconditional bias (difference 

Fig. 4. Correlation with observations for (a) annual-mean North Atlantic (20°–60°N, 10°–80°W) SST and (b) 
central European (40°–45.5°N, 10°–30°E) summer (Jun–Aug) surface temperature for baseline1 hindcasts av-
eraged over lead years 2–5 (red) and historical runs (blue). Shown is the dependence of the correlation on the 
ensemble size k; the vertical lines are 95% confidence intervals. The dots at k = 1 give the correlations for the 
single members. Numbers at the top are p values for the correlation skill scores of baseline1, with historical 
simulations as the reference prediction. The approximate theoretical correlation–ensemble size relation is 
given by the red (baseline1) and blue (historical) solid lines, based on Murphy (1990). The observations used are 
HadISST1.1 (Rayner et al. 2003) for SST and Climate Research Unit Time Series version 3.10 (CRU TS3.10) 
(Harris et al. 2014) for surface temperature over land. From Sienz et al. (2016), reproduced with permission 
(www.schweizerbart.de).
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between time averages; Murphy 1988). In some 
results shown here, the anomaly correlation is used 
because the conditional bias is assumed small and the 
unconditional bias has been subtracted. The second 
line of verification focuses on the full probabilistic 
hindcast derived from the ensemble. We use a vari-
ant of the rank probability skill score (RPSS), which 
assesses whether the ensemble spread of predictions 
accurately represents the forecast uncertainty (e.g., 
Kadow et al. 2015).

The central evaluation system is constantly 
expanded with contributions from the MiKlip evalu-
ation module and, together with its reference data 
pool for verification, resides on the same data server 
as the entire MiKlip prediction output. The analyses 
are collected into a database ensuring reproducibility 
and transparency. Providing the central evaluation 
system to the entire MiKlip project is also an effective 
training tool, especially for those researchers who 
have only recently joined the rapidly expanding field 
of decadal prediction.

Applying the central evaluation system to the three 
MiKlip hindcast generations has identified a problem 
with the full-field initializations that to our knowl-
edge has so far escaped attention. While the prototype 
hindcasts tend to provide the highest skill for North 
Atlantic Subpolar Gyre SST in later lead years, early 
lead years display a marked degradation in skill. This 
degradation is most pronounced in a drop in correla-
tion skill in the initializations with ORAS4 and an 

increase in RMSE in the initializations with GECCO2 
(Fig. 5). Presumably this skill degradation is related to 
model drift upon initialization with a state that builds 
on an incompatible climatology. Figure 5 furthermore 
illustrates the limitation of our testing procedure with 
small test ensembles—it is only the full prototype 
ensemble that identifies the consequences of the drift 
and forces us to readdress the question of full-field 
versus anomaly initialization.

As an example of evaluating probabilistic fore-
casts of discrete events with the RPSS, we analyze 
whether wind storms related to intense extratropical 
cyclones occur at a frequency that is either below 
normal, normal, or above normal for the Northern 
Hemisphere extended winter season (October 
through March; Fig. 6; Kruschke et al. 2015). The 
analysis combines the 29 realizations from all three 
MiKlip generations available at that time. Using 
climatology as the reference leads to RPSS-based skill 
over most of the Northern Hemisphere (not shown; 
Kruschke et al. 2015). Against the historical simula-
tions as reference, however, additional skill arises in 
only a few regions, the most prominent of which are 
the entrance of the North Pacific storm track over 
eastern Asia and the northwestern Pacific. Similar 
but less pronounced and less coherent skill enhance-
ment occurs at the entrance of the North Atlantic 
storm track along the North American east coast 
and the American sector of the Arctic Ocean (Fig. 6; 
Kruschke et al. 2015).

Fig. 5. (a) Correlation and (b) RMSE against HadISST1.1 (Rayner et al. 2003) of the SST index for the 
North Atlantic Subpolar Gyre (40°–60°N, 0°–60°W) against lead year and for all MiKlip generations 
and the historical simulations. Baseline0 and baseline1 outperform the historical simulations for almost 
all lead years. The prototype (pr) hindcasts sometimes provide the highest skill, as is the case for most 
lead years when using GECCO2 and correlation skill in (a). But sometimes the prototype hindcasts 
provide the lowest skill, especially for early lead years, as is the case when using ORAS4 and correla-
tion skill in (a) as well as when using either ORAS4 or GECCO2 and the RMSE in (b).
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Fig. 6. Hindcast skill for whether wind storms related to intense extratropical 
cyclones occur at a frequency that is either below normal, normal, or above 
normal, for the Northern Hemisphere extended winter season (number 
of tracks within 1,000 km per period Oct–Mar), in a 29-member ensemble 
constructed from all three MiKlip generations. Skill score is the RPSS; the 
reference predictions are the historical simulations, and the verification 
dataset is the ERA reanalyses. (a) Hindcast of winters 2–5 and (b) hindcast 
of winters 2–9; significant skill scores are indicated (α < 5%) as black dots, 
and areas of strong inconsistencies between ERA-40 and ERA-Interim are 
masked out (gray). From Kruschke et al. (2015), reproduced with permission 
(www.schweizerbart.de).

For the analysis shown 
in Fig. 6, Kruschke et al. 
(2015) developed and used 
a bias correction that goes 
beyond the one recom-
mended in Goddard et al. 
(2013). The standard cor-
rection method is effec-
tively an adjustment of the 
mean that only depends on 
lead time. But in a changing 
climate, model drift follow-
ing initialization depends 
also on start year (Kharin 
et al. 2012). Kruschke et al. 
(2015) therefore combined 
t he bias correct ion by 
Gangstø et al. (2013), which 
is formulated as a third-
order polynomial in lead 
time, with the drift correc-
tion proposed by Kharin 
et al. (2012) by making the 
coefficients of the third-
order polynomial a linear 
function of the start year.

We mention here four 
further examples of evaluat-
ing hindcast skill for quantities other than the surface 
temperature. First, the baseline1-MR version shows pre-
diction skill for the QBO for lead times of up to 4 years. 
Here, it is essential to use the atmospheric initialization 
as well as the high vertical resolution in the atmosphere 
for basic process representation (Pohlmann et al. 2013; 
see also Scaife et al. 2014b). Second, the MSESS and 
ensemble reliability have been computed for zonal-
mean geopotential height. The only weak dependence 
of the skill measures on lead time suggests that for 
geopotential height, changes in external forcing are the 
main source of skill (Stolzenberger et al. 2015). Third, 
baseline1 displays significant prediction skill for the 
AMOC at 26.5°N (Müller et al. 2016, manuscript sub-
mitted to Climate Dyn.), confirming the earlier results 
obtained with a system predating the CMIP5 (Matei 
et al. 2012a), although the physical cause of the predic-
tion skill appears to be different. And fourth, baseline1 
shows multiyear potential prediction skill for carbon 
uptake by the North Atlantic Subpolar Gyre, arising 
from the improved representation of SST through the 
initialization (Li et al. 2016).

PROCESSES AND MODEL DEVELOPMENT. 
One MiKlip module aims to understand better the 

processes causing decadal variability, to improve 
existing model components, and to incorporate 
additional climate subsystems that are relevant for 
decadal climate predictions. Substantial effort is 
devoted to exploring the effects of model resolution. 
For example, a higher-resolution (T106) version of the 
CMIP3 atmospheric model ECHAM5 revealed that 
a significant fraction of the convective precipitation 
over and south of the Gulf Stream can be explained 
by the variability of the underlying SST, especially 
in summer (Hand et al. 2014; see also Minobe et al. 
2008). Higher horizontal resolution in both atmo-
sphere and ocean is expected to improve the telecon-
nections between the North Atlantic and Europe 
(e.g., Minobe et al. 2008; Hand et al. 2014), which are 
weaker at the T63 atmospheric horizontal resolution 
used in MiKlip than in reanalyses (e.g., Müller et al. 
2012; Ghosh et al. 2016.). Increasing the atmospheric 
horizontal resolution to T127 is therefore high on 
MiKlip’s list of priorities.

The subpolar North Atlantic and its interaction 
between gyre and overturning circulations are im-
portant for the northward oceanic heat transport 
and thus for Atlantic warming events such as in the 
1990s (Robson et al. 2012a) and the 1920s (Müller 
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Fig. 7. Detrended time series of hindcast and observed globally averaged surface temperature from 1962 to 
2004; the figure shows anomalies relative to the mean over this period for HadCRUT3v observations (Brohan 
et al. 2006; black), baseline1-LR (blue), and baseline1-LR without volcanic eruptions (b1-NVA; red). The blue 
and red curves are each based on three realizations. The purple line indicates the 10-ensemble-member mean 
of baseline1-LR. The standard deviation is indicated by the hatched areas. (a) Lead year 1 and (b) lead years 
2–5. The numbers indicate the anomaly correlation coefficient between the hindcasts and the observations 
over the whole period. The gray shaded region right above the x axis shows the time series of annually aver-
aged stratospheric aerosol optical depth (Stenchikov et al. 1998; and updates). From Timmreck et al. (2016), 
reproduced with permission.

et al. 2015), including their predictions [Robson et al. 
(2012b) and Müller et al. (2014), respectively]. These 
results underscore the importance of reducing the 
misplacement of the Gulf Stream and the North 
Atlantic Current that is ubiquitous in CMIP5 climate 
models (e.g., Flato et al. 2013), including the MPI-ESM 
(Jungclaus et al. 2013).

Hindcast skill is markedly degraded by not 
including the effects of volcanic eruptions (Fig. 7; 
Timmreck et al. 2016). MiKlip has therefore devel-
oped a volcano code package that enables the running 
of a new ensemble of predictions if a major volcanic 
eruption occurs in the future. The volcano code pack-
age is implemented in a two-step procedure. In the 
first step, the volcanic radiative forcing is calculated 
offline with a global aerosol–climate model; in the 
second step, this forcing is included in the MiKlip 
system. As a consequence of this two-step procedure, 
the underlying climate model for producing the pre-
dictions remains unchanged, obviating the need to 
retune the model (Mauritsen et al. 2012) and to create 
new control and historical simulations.

DOWNSCALING THE DECADAL PREDIC-
TIONS. Climate information is often required at a 
substantially higher spatial resolution than is avail-
able from the global climate models, particularly for 
regional-scale impact studies. The representation 
of processes such as orographic rain, mesoscale 
circulations, or wind gusts improves as resolution 
is refined. For this reason, MiKlip has developed a 
coordinated regional downscaling component for the 

decadal predictions. The two main research questions 
pursued in MiKlip are (i) whether predictive skill can 
be found also on the much smaller regional and local 
scales and (ii) whether the downscaling adds value to 
the global predictions. The geographical focus lies 
on Europe and Africa. Because the regional models 
rely on the global results, there is necessarily some 
time lag between constructing the global hindcast 
ensembles and their use in downscaling.

Downscaling implies additional uncertainty (e.g., 
Räisänen 2007; Flato et al. 2013); therefore, different 
approaches are employed in MiKlip to assess the robust-
ness of the results. These approaches are coordinated 
with respect to model grids, initializaion, and data 
processing [analogous to the Coordinated Regional 
Climate Downscaling Experiment (CORDEX) con-
tribution to CMIP5; e.g., Kotlarski et al. 2014]. For 
Europe, the ensemble consists of the two regional 
climate models (RCMs) Consortium for Small-Scale 
Modelling in Climate Mode (COSMO-CLM or CCLM; 
Rockel et al. 2008) and Regional-Scale Model (REMO; 
Jacob 2001), and a statistical–dynamical method. For 
Africa, three RCMs are used: CCLM, REMO, and 
Weather Research and Forecasting (WRF) Model 
(Skamarock and Klemp 2008).

The regionalization for Europe maintains or 
slightly enhances the skill inherited from the baseline1 
global hindcasts for annual-mean surface temperature 
(Fig. 8). Given the user orientation of downscaled pre-
dictions, we show here the combined skill from forcing 
changes and initialized internal variability; skill score 
is MSESS evaluated against the European daily high-
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Fig. 8. Ensemble-mean hindcast skill over Europe for near-surface air temperature for lead time 2–5 yr, starting 
yearly from 1961 to 2004. Skill score is MSESS evaluated against E-OBS (Haylock et al. 2008), with climatol-
ogy as the reference forecast; positive values indicate better skill than climatology. (a) MPI-ESM-LR baseline1;  
(b) RCM ensemble (combined from CCLM and REMO). Given the user orientation of downscaled predictions, 
we show here the combined skill from forcing changes and initialized internal variability.

resolution gridded dataset (E-OBS; Haylock et al. 
2008), with climatology as the reference forecast. The 
RCM ensemble consists of simulations with CCLM 
as well as with REMO, and it maintains the skill in 
western and southern Europe and shows an increase in 
parts of central, eastern, and northern Europe (Fig. 8).

Added value of the downscaling has been found 
for strong precipitation events over central Europe; 
the RCM CCLM clearly outperforms the baseline0 
global model in the representation of the frequency 
of days with precipitation larger than about 20 mm 
day-1 (not shown; Mieruch et al. 2014). Furthermore, 
while the global model ensemble is overconfident 
(ensemble spread smaller than the error, a feature that 
is ever more pronounced with increasing precipita-
tion intensity), the regional model ensemble is reliable 
out to very large intensities.

A statistical–dynamical downscaling approach 
comprising a combination of weather typing and 
CCLM simulations has been used to explore the 
predictability of wind energy output over central 
Europe (Reyers et al. 2015). The skill score used is the 
MSESS, the reference prediction is the downscaled 
historical simulation, and the verification dataset is 
the downscaled wind energy output of ERA-Interim 
for the period 1979–2010. While no skill is found for 
any lead time for baseline0, positive skill is obtained 
for short forecast periods of baseline1 and prototype, 
particularly over central Europe; prototype GECCO2 
outperforms all other systems over Poland for lead 
years 2–5 (Fig. 9). Hindcast skill is highest for autumn 
and lowest for summer over central Europe (not 
shown), indicating a clear dependency of the predic-
tive skill on season (Moemken et al. 2016).

DISCUSSION AND CONCLUSIONS. MiKlip 
is well poised to deliver its decadal prediction and 
evaluation systems to the DWD for operational use 
by 2019. Placing a single global prediction system 
in the focus of a major research effort has dem-
onstrated benefits such as the rapid development 
of alternative initialization strategies, sophisti-
cated evaluation methods for quantities beyond the 
surface temperature, and regional applications of 
the global predictions. Such rapid progress would 
have been impossible at any single institution in 
Germany, no matter how scientifically powerful 
or well-funded.

At least five major issues remain unsettled and 
must be tackled by MiKlip in the coming years:

1)	 We have not yet converged on a best initializa-
tion procedure of our prediction ensemble. 
Some hindcasts suffer from degraded skill right 
after initialization, in particular when full-field 
initialization is used. This effect presumably is 
related to using an assimilation model, either 
statistical or dynamical, that is different from the 
model used in the hindcasts (Kröger et al. 2012). 
Furthermore, it is unsatisfactory that our initial 
condition ensemble is unable to explore the full 
uncertainty range of the initial ocean state.

2)	 The teleconnections between SST and surface 
temperature over land are not robust enough in 
our model. While MiKlip has successfully re-
produced the observed connection between the 
SST in the tropical Atlantic and the West African 
monsoon (Paeth et al. 2016, manuscript submit-
ted to Meteorologische Zeitschrift), prediction 
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skill for North Atlantic SST translates into only 
some, but not sufficient, skill over Europe (Mül-
ler et al. 2012). The required higher-resolution 
version of MPI-ESM has until recently not been 
available, owing to some unrealistic features in 
an earlier control run (J. Jungclaus 2014, personal 
communication). These problems have now been 
overcome, and we will perform the next set of 
production runs with an atmospheric model with 
resolution T127 (MPI-ESM-HR).

3)	 The availability of the MPI-ESM-HR brings into 
even sharper relief the computing resource issue 
that we already faced when applying the MR 
version of our system. Because higher resolution 
usually implies smaller possible ensemble size, 
we experience a palpable trade-off between more 
realistic representation of physical processes on 
the one hand and the translation of this repre-
sentation into prediction skill on the other hand. 
With a new computer available to MiKlip since 
July 2015, the competition for resources between 

resolution and ensemble size has subsided 
somewhat, but in the foreseeable future hindcasts 
with MPI-ESM-HR will be limited to an ensemble 
size of 10.

4)	 When starting MiKlip, we underestimated the dif-
ficulty of implementing suggested model improve-
ments. Any modification to the climate model itself 
requires a retuning (e.g., Mauritsen et al. 2012), a 
new control run with constant forcing to make 
sure the model simulates a stable climate, and a 
new ensemble of historical runs as a reference for 
assessing skill enhancement through initialization. 
Being tied to the general MPI-ESM development 
implies that the cycle of model versions rests 
outside of MiKlip’s immediate control and occurs 
in intervals longer than sometimes desired by 
MiKlip. On the other hand, MiKlip does not com-
mand the personnel resources needed to maintain 
an independent climate model, and even if it did, 
separating its model development from that of the 
MPI-ESM would not use resources efficiently—

Fig. 9. MSESS for wind energy output for (top) years 1–4, (middle) years 2–5, and (bottom) years 6–9 of the (left 
column) baseline0 3-member ensemble mean, (second column) baseline1 10-member ensemble mean, (third 
column) prototype ORAS4 10-member subensemble mean, and (right column) prototype GECCO2 10-mem-
ber subensemble mean. Reference prediction is the ensemble mean of the uninitialized historical runs, using 
3 realizations for baseline0 and 10 members for the other generations; verification dataset is the wind energy 
output downscaled from ERA-Interim (Dee et al. 2011). Adapted from Moemken et al. (2016).
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MiKlip would maintain a full-blown climate model 
for decadal prediction alone.

For generational cycles of the prediction system 
that are defined not through different model ver-
sions but through different initialization proce-
dures, a much faster turnover can be implemented. 
The 18-month turnover originally envisioned 
in MiKlip, however, proved to be overambitious 
for a sustained mode of operation. We therefore 
decided not to produce a set of hindcasts during 
development stage 3 and have instead focused 
our effort on a comprehensive evaluation of the 
prototype system. A sustained 18-month turnover 
would imply that we could never explore the full 
implication of a generation of hindcasts, including 
the effects on downscaling, before designing the 
generation after. We thus tentatively recommend 
for later operational use to allow for a more relaxed 
cycle of prediction system generations, with inter-
vals of 2–3 years rather than 18 months.

5)	 We have so far focused almost exclusively on eval-
uating the hindcasts and not on constructing and 
issuing our own exploratory forecasts, although 
we do participate in the multimodel real-time 
decadal prediction exercise led by the Hadley 
Centre (Smith et al. 2013b). We have also started 
a dialogue with potential users of the MiKlip 
forecasts and have now added subprojects that 
develop such a dialogue systematically. Issuing 
our own forecasts requires further exploration 
of how to communicate the strengths and weak-
nesses of the forecast in a manner both accurate 
and easy to grasp. MiKlip plans to tackle this 
challenge over the coming years because without 
this communication component an operational 
system would remain incomplete.
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