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Abstract. The toroidal torque due to the non-resonant interaction with external

magnetic perturbations (TF ripple and perturbations from ELM mitigation coils)

in ASDEX Upgrade is modelled with help of the NEO-2 and SFINCS codes and

compared to semi-analytical models. It is shown that almost all non-axisymmetric

transport regimes contributing to neoclassical toroidal viscosity (NTV) are realized

within a single discharge at different radial positions. The NTV torque is obtained to

be roughly a quarter of the NBI torque. This indicates the presence of other important

momentum sources. The role of these momentum sources and possible integral torque

balance measurements are briefly discussed.

1. Introduction

Stability and transport of tokamak plasmas are strongly influenced by toroidal plasma

rotation. The knowledge of various mechanisms and corresponding torques driving

the toroidal plasma rotation is therefore crucial for operation control of these fusion

experiments. Dedicated experimental studies at NSTX [1], DIII-D [2] and JET [3, 4]

have shown a strong dependence of the plasma rotation on non-axisymmetric magnetic

perturbations (e.g., from coils for mitigation of edge localized modes (ELMs), from

toroidal field (TF) coil ripple and from error fields). The observed changes in plasma

rotation were in agreement with theoretical predictions for the torque produced by

‡ See http://www.euro-fusionscipub.org/mst1
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non-resonant non-axisymmetric magnetic perturbations, which are based on analytical

and semi-analytical approaches [5, 6, 7]. The non-resonant torque produced by such

perturbations is often expressed through a viscous force, terming the phenomenon

also as neoclassical toroidal plasma viscosity (NTV). In this paper the NTV torque

is evaluated numerically for ASDEX Upgrade equilibria using the drift kinetic equation

(DKE) solver NEO-2 [8, 9] and the results are compared to analytical models [5, 10]

and a semi-analytical approach based on Hamiltonian theory [11], as well as to results

from the DKE solver SFINCS [12].

Analytical and semi-analytical approaches presently used for the evaluation of the

NTV torque [5, 6, 7] make simplifying assumptions concerning geometry and collision

operators. A numerical approach without such simplifications is provided by the

quasilinear version of the code NEO-2 [8]. In this code, the only assumption simplifying

the general neoclassical ansatz for non-axisymmetric tori is that perturbations of

the magnetic field are small enough such that the particle motion within perturbed

flux surfaces is only weakly affected by the perturbation field. This reduces the

“nonlinear” 4D problem, where all relevant toroidal Fourier modes of the perturbation

field simultaniously affect the particle motion, to a set of uncoupled 3D problems. Those

are solved for each toroidal Fourier mode separately and finally result in independent

contributions to the torque. Such a quasilinear approach is well justified in many

circumstances but might be only marginally justified for high toroidal mode numbers

of the perturbation. In a previous study [8], the quasilinear version of the code NEO-2

has been benchmarked for a simplified tokamak geometry against various analytical

models [5, 13, 14, 15, 16, 10], as well as the nonlinear codes DKES [17] and NEO [18].

In this paper, also the DKE solver SFINCS [12] is used for benchmarking of the ion

contribution to the torque. The code SFINCS is not limited to small values of the

perturbation amplitude because it solves the nonlinear problem pertinent to neoclassical

stellarator transport. Computationally, this is a much more demanding task than solving

the quasilinear problem. In contrast to the DKES code, which solves the reduced

monoenergetic problem, SFINCS as NEO-2 uses the full linearized Coulomb collision

operator.

A set of perturbed ASDEX Upgrade equilibria studied here has been computed

by the ideal MHD equilibrium solver NEMEC [19, 20]. These equilibria include

both, perturbations from the TF ripple and from ELM mitigation coils with different

distribution of current values resulting in different perturbation field spectra in the

ASDEX Upgrade shot #30835. Due to the strong shielding of resonant magnetic

perturbations (RMPs) by plasma response currents in AUG [21], magnetic fields

computed within ideal MHD theory, where RMPs are shielded perfectly, provide a good

approximation in a major part of the plasma volume except for narrow resonant layers

around resonant rational flux surfaces.

Here, in order to identify various NTV regimes of importance for ASDEX Upgrade,

comparison of numerical results from NEO-2 and SFINCS with several analytical models

and additional parameter scans have been undertaken. In addition, results for the
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integral torque are compared to the torque resulting from neutral beam injection (NBI)

computed by the code NUBEAM [22] and the overall torque balance is discussed.

The structure of the paper is as follows. In Section 2 the toroidal moment

conservation equation and its simplified forms are introduced and basic definitions are

given, e.g., expressions for the rotation velocity components and toroidal torque density

in terms of plasma parameters and neoclassical transport coefficients. In Section 3 the

NTV torque profiles computed by NEO-2 and SFINCS are shown for ASDEX Upgrade

equilibria, as well as a comparison to analytical and semi-analytical models is presented.

In Section 4 additional momentum sources, which are not taken into account here,

are discussed in order to stimulate further experiments and simulations, and finally in

Section 5 the results are summarized.

2. Toroidal momentum conservation and neoclassical toroidal viscosity

In a tokamak plasma, charged particles and neutrals together with the electromagnetic

field are represented by a coupled system, which can be characterized by the exact

conservation law of the total toroidal momentum of particles and of the electromagnetic

field. In a covariant notation this conservation law is given as (see, e.g., [8] for its

toroidally averaged form),

∂

∂t
Pϕ +

(
∂xi

∂t

)

r

∂

∂xi
Pϕ +

1√
g

∂

∂xi
√
g Πi

ϕ = 0, (1)

where
√
g is the metric determinant and xi are some (generally time dependent)

coordinates with rotational symmetry over the toroidal angle ϕ, such as cylindrical

coordinates (R,ϕ, Z) or flux coordinates (r, ϑ, ϕ) associated with the unperturbed

axisymmetric field, and Pϕ = P · ∂r/∂ϕ and Πi
ϕ = (∂r/∂ϕ) ·Π · ∇xi, are the toroidal

co-variant components of the momentum density vector and the total stress tensor of

particles and electromagnetic field respectively given by

P =
∑

α

P(α) +
1

c2
S, Π =

∑

α

Π(α) − σ. (2)

Here,

P(α) = mαnαVα, Π(α) = mαnαVαVα + pαI + πα (3)

are the momentum density vector and the total stress tensor of particle species α,

respectively, with pertinent mass mα, density nα, scalar pressure pα, and viscous stress

tensor πα. Pointing flux S and Maxwell stress tensor σ are respectively defined as

S =
c

4π
E×B, σ =

1

4π

(
E E− E2

2
I + B B− B2

2
I

)
. (4)

In the main plasma volume neoclassical “flux surface” averaging of (1) over unperturbed

flux surfaces results in a one dimensional conservation law,

1

S

∂

∂t
S 〈Pϕ〉+

1

S

∂

∂r
S
〈
Πr
ϕ

〉
= 0, (5)
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where 〈. . .〉 denotes the average, r is a flux surface label (effective radius) fixed by the

condition 〈|∇r|〉 = 1, and S is the (generally time dependent) flux surface area.

The exact equations (1) and (5) contain no volume source density. This means

that the integral total momentum within the vacuum vessel can only be driven by

sources located at the walls or outside the vessel. Since the Pointing flux is usually

negligibly small, the toroidal momentum is approximately the same as the kinematic

toroidal momentum of plasma particles and neutrals. However, the contribution of the

electromagnetic field, σ, to the total momentum flux density
〈
Πr
ϕ

〉
is as important as

the contributions by charged particles and neutrals, Π(α). In order to make equation (5)

of practical use within a local 1D balance description, the nonlocal fluxes, which

are not fully determined by local plasma parameters and a limited number of their

derivatives, should be excluded from the total momentum flux
〈
Πr
ϕ

〉
and turned into

momentum sources (torque densities), which are described outside the closed set of

balance equations. E.g., excluding the contribution of neutral particles, α = n, produced

by NBI from the l.h.s. of (5), the pertinent torque density is obtained as

TNBI
ϕ = − 1

S

∂

∂t
SP(n)ϕ −

1

S

∂

∂r
S
〈
Πr

(n)ϕ

〉
. (6)

Formally the contributions from all external non-axisymmetric electromagnetic

perturbations, including besides the static or slowly varying magnetic perturbations

also the contribution from RF heating and current drive, can be separated into the

source term TNA
ϕ . Generally, this separation is not so straightforward as (6), see, e.g.,

[8] for the case of non-resonant magnetic perturbations, and may even not always be

meaningful in a general case (see discussion in Section 4). Thus, equation (5) turns into

1

S

∂

∂t
S
∑

α

mα 〈gϕϕnαV ϕ
α 〉+

1

S

∂

∂r
S
〈
Πr

[in]ϕ

〉
= TNBI

ϕ + TNA
ϕ , (7)

where α denotes only plasma particles. The radial component of the total stress
〈

Πr
[in]ϕ

〉

(flux surface averaged radial flux density of the toroidal momentum) is the sum of the

total stress from intrinsic turbulent modes (anomalous momentum flux density) and

total axisymmetric stress including the contribution from the polarization current and a

small contribution of axisymmetric neoclassical shear viscosity. In case of non-resonant

external magnetic perturbations, TNA
ϕ is directly linked through the flux-force relation to

the non-ambipolar neoclassical particle flux densities ΓNA
α driven by these perturbations

in a stationary radial electric field (see, e.g. [5, 8]),

TNA
ϕ = −1

c

√
gBϑ

∑

α

eαΓNA
α . (8)

Here, c is the speed of light, eα is the charge of species α, and Bϑ is the contra-variant

magnetic field component linked to the poloidal flux ψpol by
√
gBϑ = ∂ψpol/∂r. Torque

produced by these thermal particle fluxes is called NTV torque. In presence of supra-

thermal particle losses, the torque density (8) should include also the flux of these fast

particles (see, e.g., [23, 24]). However, this type of flux cannot be described by the local

neoclassical ansatz.



Effect of 3D magnetic perturbations on the plasma rotation in ASDEX Upgrade 5

The non-ambipolar neoclassical particle flux densities are expressed through

transport coefficients DNA
ij and thermodynamic forces Aj,

ΓNA
α = −nα

(
DNA

11 A1 +DNA
12 A2

)
, (9)

where the thermodynamic forces are specified by

A1 =
1

nα

∂nα
∂r
− eαEr

Tα
− 3

2Tα

∂Tα
∂r

,

A2 =
1

Tα

∂Tα
∂r

, (10)

with Tα and Er being α species temperature and radial electric field, respectively. Thus,

equations (8) and (9) reduce the problem to the evaluation of diffusion coefficients

DNA
ij , which are computed here numerically by NEO-2, SFINCS, and the Hamiltonian

approach [11] using the perturbed equilibrium magnetic fields from the NEMEC code

represented in Boozer coordinates (r, ϑ, ϕ). For the perturbed equilibria, these variables

correspond to the perturbed magnetic field and are different from flux variables used in

equations (1)-(7). In particular, ϕ is not an exact symmetry variable anymore. This

difference, however, is small for weakly perturbed equilibria and can be ignored in (7)

(see [8]). For evaluation of the analytical expressions of Shaing [5] magnetic fields have

been converted from Boozer coordinates to Hamada coordinates. The radial electric

field profile required for the forces (10) is calculated here from the toroidal rotation

frequency of ions via the relation

V ϕ =
c√
gBϑ

(
Er −

1

eini

∂(niTi)

∂r

)
+ qV ϑ,

V ϑ =
c k Bϕ

ei
√
g〈B2〉

∂Ti

∂r
, (11)

where q is the safety factor. The coefficient k = 5/2 − D32/D31 is determined by the

parallel ion flow obtained from the NEO-2 solution for the unperturbed, axisymmetric

problem,

〈V‖iB〉 = Bϕ

(
V ϕ − qV ϑ

)
+

ckBϕ

ei
√
gBϑ

∂Ti

∂r

= − (D31A1 +D32A2) . (12)

3. NTV torque in ASDEX-Upgrade

Evaluation of the NTV torque is performed here for a set of ASDEX Upgrade equilibria

based on the shot #30835 (Bt = −1.794 T, Ip = 0.8 MA, Pheat = 9.753 MW, ν? = 0.03,

κ = 1.753, δo = 0.151, δu = 0.511, H-mode). ASDEX Upgrade is equipped with 16

ELM mitigation coils, which form an upper and a lower ring each consisting of eight

coils [25]. This setup allows for some control of the poloidal mode spectrum by varying

the toroidal phase shift between the upper and lower coils ∆φul, which is also termed

as varying the coil polarity. The NTV torque is computed here for the experimentally

realized ELM mitigation coil polarity ∆φul = 90◦ where good ELM mitigation has
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been achieved, as well as for a few simulated equilibria with other coil polarities. A

simple (pure deuterium) plasma is assumed in this analysis. This assumption only

weakly overestimates the ion density in case of high Z impurities and Zeff ∼ 1.7.

In Figure 1 the experimentally measured profiles of density ne, temperatures Ti and

Te, toroidal ion rotation frequency V ϕ, collisionality parameter ν? = 2νqR0v
−1
T , and

the resulting toroidal Mach number of the E × B rotation Mt = cR0Er(vT
√
gBϑ)−1

as well as the safety factor for the corresponding shot are shown as functions of the

normalized poloidal radius ρpol = (ψpol/ψ
a
pol)

1/2. Here, ν = 16
√
πnαe

4
αΛ(3m2

αv
3
T )−1, Λ

is the Coulomb logarithm, vT = (2Tα/mα)1/2, R0 is the mean major radius value at a

given flux surface, ψpol = 0 on the magnetic axis and ψapol is the poloidal flux value at the

separatrix. The radial electric fields obtained from NEO-2 agree perfectly with those

from SFINCS computations (not shown in this figure). Within this modeling effort of
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Figure 1. Radial profiles of density, temperatures, toroidal rotation frequency,

collisionalities (left), toroidal Mach number and safety factor (right) for ASDEX

Upgrade shot #30835 (with ELM mitigation coils switched on).

the NTV torque, magnetic perturbations due to both TF ripple (toroidal mode number

n = 16) and ELM mitigation coils with various coil polarities in this shot (n = 2 with a

minor contribution from n = 6), are studied (see Figure 2).

In Figure 3 radial profiles and scans over the normalized perpendicular adiabatic

invariant η = v2
⊥(v2B)−1 of the ion E × B drift frequency ΩtE = MtvTR

−1
0 , bounce-

averaged magnetic drift frequency 〈ΩtB〉b (see definition in (16)) and bounce frequency

ωb are shown for various η-values and radial positions, respectively. Resonances between

the different frequencies lead to the formation of resonant transport regimes, which are

described by asymptotical formulas in the collisionless limit [10, 5, 16, 6]. The resonance

condition for the superbanana-plateau (sb-p) regime [26, 11] is given by ΩtE+〈ΩtB〉b = 0,

whereas for drift-orbit resonances [10, 16, 6, 11] the conditionmϑωb+n(ΩtE+〈ΩtB〉b) = 0

must be fulfilled for trapped particles. Here, the bounce frequency mode number mϑ

can take any positive or negative integer value. It can be seen that the sb-p resonance
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condition is fulfilled in the inner part of the plasma and in the vicinity of zero of

the electric field where the contribution from the sb-p regime to the non-ambipolar

particle fluxes is expected to be largest. Drift-orbit resonances can contribute to the

non-ambipolar particle fluxes nearly over whole the radial domain, except for a certain

region in the vicinity of the zero of the electric field. For sufficiently large values of

mϑ drift-orbit resonances occur not only in the deeply trapped region but also in the

vicinity of the trapped-passing boundary. This emphasizes the importance of a proper

numerical discretization of the velocity space in order to resolve the different resonant

transport regimes.
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Figure 2. Left - radial profiles of the maximum value of the normalized perturbation

field for the TF ripple and for RMP with 90◦ coil phase (see definition in Eq. (14));

right - Variation of the absolute value and real part of the normalized perturbation

field along the field line for ρpol = 0.5.

For the TF ripple a comparison of NEO-2 results with analytical estimates of the

torque density and of the integral torque,

(
TNA
ϕ

)
int

=

∫

V (ρpol)

d3r TNA
ϕ , (13)

where V (ρpol) is the volume limited by the flux surface with a given ρpol, is shown

in Figure 4. In order to quantify the impact of nonlinear effects and to validate the

quasilinear approach, the NTV torque density is also computed with the code SFINCS.

It can be seen that the NTV torque acts in the direction opposite to the experimentally

measured plasma rotation velocity and the integral torque computed by NEO-2 is about

-0.6 Nm, whereas the SFINCS calculation predicts a value of -0.4 Nm. The NTV torque

produced by TF ripples is mainly applied to ions and, in case of the quasilinear model,

corresponds to the ripple-plateau regime [10] in a major part of the plasma volume. The

difference between the NEO-2 result and the SFINCS result is about 30% for ρpol ≤ 0.9

and a rather large discrepancy is observed at outermost points with ρpol > 0.9. This
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Figure 3. Left - radial profiles of the ion E×B drift frequency ΩtE , bounce-averaged

magnetic drift frequency 〈ΩtB〉b and bounce frequency ωb in the deeply trapped (�),

trapped-passing boundary (+) and an intermediate (◦) region. Right - drift and

bounce frequencies as functions of the normalized perpendicular adiabatic invariant η

at ρpol = 0.57 (4) and ρpol = 0.95 (�) for the trapped particle domain. The trapped-

passing and deeply trapped boundaries are indicated by dashed and solid vertical lines,

respectively.

0 0.2 0.4 0.6 0.8 1
−0.16

−0.14

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

ρpol

T
N
A

ϕ
[N

m
/m

3
]

NEO-2
SFINCS
Analytical

0 0.2 0.4 0.6 0.8 1
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

ρpol

( T
N
A

ϕ

) in
t
[N

m
]

NEO-2
SFINCS
Analytical

Figure 4. Radial profiles of the NTV torque density (left) and the integral torque

(right) produced by the TF ripple.

correlates with the deviation from the quasilinear scaling of the NTV torque density,

see Figure 5, and can be attributed to the onset of nonlinear transport due to locally

trapped particles, which are blocked by the perturbation field. The respective quasilinear

theory validity conditions (41) of Ref. [8] are clearly violated at outermost points and are

marginally violated in the rest of the plasma volume. For the SFINCS calculation shown

here, only the E×B drift of particles within flux surfaces has been taken into account.
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Figure 5. Ratio of the NTV torque density computed by SFINCS TNA
ϕ to the

quasilinear result
(
TNA
ϕ

)
QL

as a function of the perturbation field scaled by a factor F

for the TF ripple at different radial positions. F = 1 corresponds to the actual value

of the perturbation field in the experiment.

Therefore a strong increase of the torque is seen near the zero of radial electric field

at ρpol ≈ 0.9, where a contribution of 1/ν transport appears. This increase is absent

in the NEO-2 result where also the magnetic drift is taken into account (see a more

detailed discussion of the RMP case below). Due to these differences, the value of the

integral torque computed by NEO-2 is about 33% larger than the value predicted from

SFINCS computations. The analytical estimate, used here for comparison, is obtained

from a general expression for the particle flux in the ripple-plateau regime (Eq. (45)

of Ref. [10]) by replacing in this derivation the simplified magnetic field with the more

general form,

B(r, ϑ, ϕ) = B0(r, ϑ) + Re {Bn(r, ϑ) exp(inϕ)} , (14)

where B0 is the unperturbed magnetic field and Bn is a complex perturbation field

amplitude. The non-ambipolar diffusion coefficients valid for a general tokamak

geometry are then

DNA
11 =

√
π

4

nm2
i c

2v3
TB

2
0

e2
i g(Bϑ

0 )2Bϕ
0




2π∫

0

dϑ

B2
0



−1 2π∫

0

dϑ

B3
0

∣∣∣∣
Bn

B0

∣∣∣∣
2

,

DNA
12 = 3DNA

11 , (15)

where the notation is the same as in Ref. [8]. The difference in the integral torque

between the NEO-2 result and the analytical estimate is less than 5%.

In Figure 6, the NEO-2 result for the ion NTV torque density produced by the

ELM mitigation coils with ∆φul = 90◦ is compared to the bounce-averaged model of

Shaing [5, 8] and, with the toroidal rotation due to the magnetic drift set to zero,

also to a semi-analytical model based on a Hamiltonian approach [11] and to the code
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SFINCS. If only the E × B drift is considered, the agreement with SFINCS is nearly

perfect (blocked particles are absent for medium scale perturbations), and there is a

qualitatively good agreement between NEO-2 and the bounce-averaged model [5] in

the vicinity of the zero of the electric field around ρpol = 0.9. Apart from this radial

domain NEO-2 results exceed the results of the bounce-averaged model [5] significantly.

The discrepancies can be fixed by adding the NTV torque density from resonant

(not bounce-averaged) transport regimes, which is computed by the semi-analytical

model [11] in the collisionless limit, to the bounce-averaged model [5]. In radial domains

with sufficiently large Er, where the contribution from drift-orbit resonances to the

NTV torque is dominating, a very good agreement between the NEO-2 result and the

semi-analytical model is found. For the NEO-2 result including both, E × B drift

and magnetic drift, a modification of the NTV torque density is observed in the core

of the plasma and in the vicinity of the zero of the electric field. This emphasizes

the necessity to include the magnetic drift into the computations. It should be noted

that the contribution of the magnetic drift to the canonical toroidal banana precession

frequency obtained within the Hamiltonian approach of Ref. [11] differs from the result

of bounce averaging of the rotation frequency ΩtB given by Eq. (67) of Ref. [8] by the

presence of an additional term proportional to q′, i.e. to the magnetic shear. This is

the result of using the standard neoclassical ansatz as a starting point for the derivation

of quasilinear equations in Ref. [8]. In the standard neoclassical ansatz orbits used for

the computation of a linear perturbation of the distribution function are local, bounded

to a particular flux surface (see also Refs. [12, 17]). The semi-analytical model [11]

taking into account drift-orbit and sb-p resonances agrees very well with the local NEO-

2 result over the whole radial domain, if the magnetic shear is neglected in that model.

For ρpol > 0.7 the sb-p resonance makes a dominant contribution to the NTV torque. A

good agreement between the semi-analytical model considering only sb-p resonance and

the bounce-averaged model [5] is found for ρpol < 0.2. The discrepancies in the vicinity

of the zero of the electric field are due to finite aspect ratio and deviations from the

circular flux surface approximation.

The numerical approach implemented in the quasilinear version of the code NEO-2,

which is based on a standard local neoclassical ansatz, can be extended to a non-local

quasilinear NTV model. Being rather different in derivation, the nonlocal quasilinear

equation set and expressions for the non-ambipolar particle flux density are formally the

same with results of Ref. [8]. Only the toroidal rotation frequency due to the magnetic

drift ΩtB is modified which, instead of local Eq. (67) of Ref. [8], is now given by the

following nonlocal expression,

ΩtB =
v2 (2− ηB0)

2
√
g0B0ωc0

(
Br

B0

∂B0

∂ϑ
− B0

Bϑ
0

∂B0

∂r

)
+

+
v2 (1− ηB0)√

g0B0ωc0

(
∂

∂r
(Bϑ + qBϕ)− ∂Br

∂ϑ

)
, (16)

where the only difference from the local expression is the presence of the safety factor

under radial derivative sign. The extended formalism pertinent to the non-local NEO-2
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version will be presented in a separate publication. The additional magnetic shear

term leads to a significant modification of the torque density profile, see Figure 7.

Again a very good agreement between the non-local version of NEO-2 and the semi-

analytical model [11] can be observed, which indicates the importance of contributions

from various resonant transport regimes to the ion NTV torque density. In comparison

to the results obtained by the local approach the sb-p regime covers only a narrow radial

domain located at the zero of the electric field. Furthermore, a distinctive peak of the

torque density is observed at ρpol = 0.4. It should be noted that the expression for the

NTV torque density in the sb-p regime derived from the Hamiltonian approach agrees

analytically with Shaing’s generalized formula [26] published recently.

As can be seen from Figure 8, not only ions but also electrons make a significant

contribution to the NTV torque, which is in the direction of (positive) plasma rotation

and which partly balances the negative ion torque. In the case where only the E×B drift

is taken into account, the electron torque agrees up to a factor 3 with the result of the

asymptotical model [5]. The observed discrepancies can be explained by uncertainties

in the joining procedure of the different asymptotical regimes and by the rather small

aspect ratio where the analytical model of Shaing [5] can significantly deviate from

accurate computations with NEO-2 [8]. It can be observed that the agreement becomes

better for larger aspect ratios closer to the center of the plasma and for small values of

the radial electric field where the contribution from pure 1/ν transport is dominant.

Including the magnetic drift term in the NEO-2 computation modifies significantly

the electron NTV torque density profile in the core of the plasma. In the inner part of the

plasma only the trend seen from NEO-2 results is captured by the universal formula [5]

connecting the 1/ν, ν−√ν and sb-p transport regimes. The observed differences in the

inner part of the plasma are due to the circular flux surface approximation used for the

evaluation of the sb-p resonance condition, which can deviate significantly from accurate

computations for a real tokamak geometry. It should also be noted that the torque

density profile exhibits distinctive substructures in the vicinity of resonant surfaces,

which are indicated by vertical lines. A rather peculiar point in this profile is the

resonant surface (m,n) = (6, 2) which almost coincides with the zero of the electric

field. The increased electron torque density around this point is due to the fact that

for small values of the electric field 1/ν transport is dominant. The electron NTV

torque density evaluated by the non-local version of NEO-2 differs considerably from

local computations for ρpol > 0.3. The additional magnetic shear term yields not only

a modification of the sb-p transport at intermediate radii, but affects also the 1/ν and

ν −√ν transport at the edge.

The NTV torque densities shown in Figure 7 and Figure 8 can be also expressed

in terms of slowing down frequencies ναs and offset rotation frequencies V ϕ
eq,α via the

generic form (see, e.g., (5) of Ref. [8]),

TNA
ϕ = −nimi

∑

α

ναs 〈gϕϕ(V ϕ−V ϕ
eq,α)〉 = −nimiν

i+e
s 〈gϕϕ(V ϕ−V ϕ

eq,i+e)〉,(17)

which provides a rather demonstrative representation. Here, gϕϕ = R2
0 denotes the
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toroidal covariant metric tensor component. In Figure 9 the respective radial profiles

of the species offset rotation frequencies evaluated by the non-local version of NEO-2

are shown. It can be seen that ions tend to rotate in the negative toroidal direction,

whereas the offset rotation frequency of electrons is positive. The different sign of the

offset rotation frequency of ions and electrons correlates with the sign of the torque

density. The total offset rotation frequency exhibits a rather remarkable behavior at

intermediate radial positions where it oscillates around the measured toroidal rotation

frequency. At the edge the computed total offset rotation frequency deviates significantly

from the measured value.
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Figure 6. Ion contribution to the NTV torque density produced by the ELM

mitigation coils with a phase of 90 degrees as a function of the normalized poloidal

radius. Neglecting the effect of magnetic drift (left), the NEO-2 result (solid line) is

compared to SFINCS (dashed line), to a semi-analytical Hamiltonian model [11] (dash-

dotted line) and to the bounce-averaged model by Shaing [5, 8] (dotted line). The

NEO-2 result including both, E×B drift and magnetic drift, is compared to the semi-

analytical Hamiltonian model taking into account drift-orbit (do) and superbanana-

plateau (sbp) resonances, as well as to the universal formula [5] connecting 1/ν,

ν − √ν and superbanana-plateau transport regimes (right). Vertical lines indicate

the positions of resonant surfaces with q(ρpol) = m/n, where m and n are the poloidal

and toroidal mode numbers, respectively.

In order to determine relevant transport regimes, a scan of the diffusion coefficient

DNA
11 normalized by the plateau diffusion coefficient Dp over collisionality parameter

and otherwise the same parameters as in the experimental profile has been performed

at different radial positions, see Figure 10. Here, Dp = πqvTρ
2
L(16R0)−1, ρL = vT/ωc0,

ωc0 is the mean cyclotron frequency value at a given flux surface, and only the dominant

n = 2 perturbation toroidal mode has been taken into account. For electrons all

quasilinear transport regimes described by the bounce-averaged drift kinetic equation

can be seen. At ρpol = 0.30 electrons are clearly in a transition regime between the 1/ν

and the superbanana-plateau regime. At ρpol = 0.50 the onset of the ν − √ν regime
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Figure 7. Ion contribution to the NTV torque density produced by the ELM

mitigation coils with a phase of 90 degrees as a function of the normalized poloidal

radius. The non-local NEO-2 result including both, E × B drift and magnetic drift,

is compared to the NEO-2 result using a local approximation and to the semi-

analytical Hamiltonian model taking into account drift-orbit (do) and superbanana-

plateau (sbp) resonances. Vertical lines indicate the positions of resonant surfaces

with q(ρpol) = m/n, where m and n are the poloidal and toroidal mode numbers,

respectively.

is observed, whereas at ρpol = 0.91 electrons are still in the 1/ν regime and only at

lower collisionalities the transition to the superbanana plateau is observed. When the

magnetic shear is taken into account in the non-local computations, the sb-p regime seen

at ρpol = 0.91 is replaced by a ν − √ν regime. For other radii the computations with

and without magnetic shear differ only slightly. It should be noted that the difference

in the torque density seen in Figure 8 at ρpol = 0.50 is due to the contribution from

the n = 6 perturbation, which is not considered here. The plateau like behavior of

the ion diffusion coefficient indicates resonant “collisionless” diffusion regimes because

the ion collisionality for n = 2 perturbations stays outside the lower boundary of the

ripple plateau regime [10], which requires ν∗ > (nq)−2A−3/2 with A being the aspect

ratio. The non-local results qualitatively show the same dependence on collisionality,

although the absolute value of the resonant regime can deviate significantly. These

regimes are of different nature for different radii. For ρpol = 0.3 and ρpol = 0.5 where

Mach numbers are rather large, the resonant regime corresponds to the regime of bounce

resonances [27, 16]. It can be seen from Figure 6 that toroidal rotation due to the

magnetic drift starts to be important for bounce resonances at smaller ρpol, in particular

at ρpol = 0.3, since the frequency of this rotation scales inversely with ρpol. In contrast

to the two inner points in Figure 10, the ion diffusion coefficient at ρpol = 0.91, which

is close to Er = 0 point, corresponds to the superbanana plateau regime. Its value

there is much higher than the ripple plateau value, which is roughly the maximum value

achievable in the regime of bounce resonances (see [11]). This can also be seen from
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Figure 8. Electron contribution to the NTV torque density produced by the ELM

mitigation coils with a phase of 90 degrees as a function of the normalized poloidal

radius. Left - the NEO-2 results (solid lines) including magnetic drift (without markers)

and neglecting magnetic drift (with markers) are compared to the bounce-averaged

model by Shaing [5] (dashed lines) for the same cases. Right - the non-local NEO-2

result including both, E×B drift and magnetic drift, is compared to the NEO-2 result

using a local approximation. Vertical lines indicate the positions of resonant surfaces

with q(ρpol) = m/n, where m and n are the poloidal and toroidal mode numbers,

respectively.
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Figure 9. Non-local NEO-2 result for the offset rotation frequencies (17) produced

by the ELM mitigation coils with a phase of 90 degrees as a function of the

normalized poloidal radius for ions (dashed), electrons (dash-dotted) and sum over

species (dotted). For comparison the radial profile of the measured toroidal rotation

frequency (solid line) is shown.

Figure 6, where at Er = 0 a spike of the torque appears in case of a pure E×B rotation

because of a strong 1/ν contribution. This is changed to a saturated value when the
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complete rotation model is used.

As seen in Figure 11 the integral NTV torque
(
TNA
ϕ

)
int

, Eq. (13), is dominated by

the ion contribution and is produced mainly at the plasma edge. The maximum value

of the total integral NTV torque as computed by NEO-2 is -1 Nm, which is less than

the NBI torque value of +4.1 Nm. As can be seen from the gradients of the integral

torque, the NTV torque density is larger than the one from NBI at ρpol > 0.9 where

NTV dominates above NBI in the formation of the toroidal rotation profile.

In the torque from RMP coils electrons play an equally important role as ions and

may even dominate in the plasma core for some coil polarities making the torque in

the core positive (see Figure 12). In turn, for ρpol > 0.8 ions are always dominant,

and finally the ions determine the sign of the total torque from RMP coils in all cases.

The magnitude of NTV torque produced by the RMP coils depends strongly on the

poloidal field spectrum. The largest values of the integral NTV torque can be seen

for ∆φul = +90◦ and ∆φul = −150◦. In case of ∆φul = +30◦ and ∆φul = +52◦

the smallest electron contribution to the NTV torque is observed, whereas for negative

values of the phase shift the electron NTV torque is considerably increased. The effect of

magnetic shear, which is taken into account by the non-local computations, is largest for

negative coil polarities and for ∆φul = +90◦, whereas ∆φul = +30◦ and ∆φul = +52◦

are unaffected to a large extent. Here, ions dominate the integral NTV torque for

ρpol > 0.4, which is due to the additional peak in the ion torque density seen in Figure 7.

A positive value of the torque in the core is only observed for negative coil polarities.

As seen in Figure 13, the magnitude of the RMP torque for various coil polarities

correlates with the maximum value of the normalized perturbation field and with the

maximum corrugation of flux surfaces (see Figure 4 in Ref. [20]) for the respective phases

(roughly |Bn/B0|max ∼ |δN|maxR
−1
0 ). This means that the main reason for the non-

axisymmeric perturbation of the magnetic field magnitude B on perturbed flux surfaces

is the meandering of these surfaces caused by the perturbation field component normal

to the unperturbed flux surfaces, but not the direct change of B by the component

which is parallel to the unperturbed field [5, 7, 6].

4. Integral momentum balance and other momentum sources

It should be mentioned that plasma parameter profiles used in this modelling, in

particular the toroidal rotation frequency, correspond to a (quasi-)steady state observed

in shot #30835 at 3.2 s. In contrast to Ref. [1] where a modification of a steady state

rotation profile by turning on perturbation coils has been shown to be in agreement with

NTV induced by these coils, this can be hardly expected in the pertinent AUG shot.

In this shot a significant density reduction and modification of temperature profiles has

been observed after turning on the RMP coils, what leads also to a modification of

turbulent transport. Therefore, a single steady state has been chosen for a study of the

static torque balance. Since the integral rotational moment is a conserved quantity, the

missing balance between the NTV torque and the NBI torque, which exceeds the NTV
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Figure 10. Normalized electron (left panel) and ion (right panel) diffusion coefficients

DNA
11 computed with (lower panel) and without (upper panel) magnetic shear for

various radii ρpol (see the legend) as functions of the collisionality parameter ν?. Actual

collisionalities in the experiment for the given poloidal radius are indicated by filled

circles. Note that the normalizing plateau diffusion coefficient is by a a square-root of

mass ratio smaller for electrons than for ions.

torque roughly by a factor four, clearly suggests the importance of other momentum

sources. The complete integral torque balance follows from the integration of the steady

state equation (7) over the main plasma volume,
(
TNBI
ϕ

)
int

+
(
TNA
ϕ

)
int

+
(
T tot
ϕ

)
w

= 0, (18)

where
(
T tot
ϕ

)
w

is the momentum flux through the main plasma boundary (separatrix) via〈
Πr

[in]ϕ

〉
, the only momentum source where the anomalous and axisymmetric neoclassical

transport provide a contribution. Note that at least formally, all three torques in this

balance can be determined independently outside the main plasma volume [28]. Since

each of the last two torques in (18) consists of a few contributions, they are discussed
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(
TNA
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for

90◦ ELM mitigation coil polarity and of the integral NBI torque (see legend).
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Figure 12. Profiles of total (i+e) integral NTV torque from ELM mitigation coils

with various polarities (see legend) for local (left) and non-local (right) computations.

below in more detail.

The contributions entering
(
TNA
ϕ

)
int

besides the NTV torque are listed here roughly

in the order of their importance. The first of these sources is related to losses of NBI

generated fast particles [29, 30]. This torque would be negative (as the NTV torque

of ions) and its value can be high enough to balance the NBI torque, as shown in

Ref. [30] for JET. Estimations of fast particle losses induced by violations of AUG axial

symmetry using 3D Monte Carlo modelling in Boozer coordinates with help of the NEO-

MC code [31] version for fast particles [32] have shown that the toroidal torque due to

such losses cannot match the discrepancy because it is smaller than the NTV torque

(about 5% of the NBI torque). Another important unaccounted momentum source is
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Figure 13. Profiles of the maximum value of the normalized perturbation field (left)

and of the maximum corrugation of the 3D flux surface [20] (right) for ELM mitigation

coils with various polarities (see legend).

the resonant torque produced by RMPs in resonant layers around rational flux surfaces

where the ideal MHD theory is not valid. Normally, RMPs are shielded by plasma

response currents in the core, which results in a small torque. However, the situation

might change at the plasma edge, where the RMP amplitudes can be large enough

to modify the electron temperature profile in the resonant layer around some of the

dominating resonances. This might significantly reduce the shielding by electrons [21].

An accurate quantitative description of this interaction is still missing. Besides the

magnetic perturbations from the TF ripple and ELM mitigation coils there are two

more possible magnetic perturbations, which can produce NTV and resonant torque

and which are not taken into account here. These are the error fields and the fields

from eddy currents induced in the wall and other external conductors by intrinsic MHD

modes.

It should be noted that a description of the resonant torque in terms of a local

torque density TNA
ϕ is limited to cases where the non-axisymmetric part of gradients of

plasma parameters is small everywhere including the islands produced by RMPs. This is

the case where the quasilinear theory is valid (see, e.g., [21]). Otherwise, this description

is only formally valid, but not useful, because plasma parameters become essentially 3D

within and in some vicinity of islands, and only the integral torque is meaningful.

The last contributor to
(
TNA
ϕ

)
int

, the torque due to ECRH/ECCD, consists of

two parts. First, the direct toroidal momentum input by microwave radiatiation is

related to the coupled ECRH power as PECRHR0/c, and for PECRH ∼ 0.5 MW is around

0.01 Nm. Second, losses of supra-thermal electrons, which are possible in presence of

non-axisymmeric magnetic field perturbations, can produce only positive torque in the

direction of the NBI torque. Therefore, the last contributor to
(
TNA
ϕ

)
int

, the torque due

to ECRH/ECCD, can be safely removed from the list.
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Various contributions to the torque
(
TNA
ϕ

)
int

can be measured externally in a direct

way because the integral torque due to electromagnetic perturbations is equal to the

momentum flux carried by these perturbations through the plasma boundary in the

form of Maxwell stress, essentially via its magnetic part. (Finally, this Maxwell stress

is balanced by Lorentz forces onto the external currents that create the perturbations.)

Therefore, it would be sufficient to determine the magnetic Maxwell stress by measuring

the non-axisymmetric magnetic field outside the plasma [33, 28]. Alternatively,
(
TNA
ϕ

)
int

can be determined from the torque balance (18) using the measured
(
TNBI
ϕ

)
int

and(
T tot
ϕ

)
w

. In absence of significant NBI and non-axisymmetric torque outside the main

plasma boundary, the momentum flux
(
T tot
ϕ

)
w

carried through the separatrix is finally

recovered at the wall, as follows from the integration of equation (1) over the vacuum

chamber volume. Flux
(
T tot
ϕ

)
w

consists of three contributions, which require different

measurements. Presenting it as a sum of particle and electromagnetic field contributions,(
T tot
ϕ

)
w

=
(
T part
ϕ

)
w

+
(
TEM
ϕ

)
w

and averaging this expression over the time scale of

turbulent fluctuations, the toroidal reactive torque onto the main plasma due to charged

and neutral particle fluxes to the wall is

(
T part
ϕ

)
w

= 2π
∑

α

mα

∮
dlR

∫
d3v fα v · n v · ∂r

∂ϕ
, (19)

where fα is the averaged distribution function, which is then axisymmetric. The poloidal

integration contour here is along the wall surface, and the unit vector normal to the wall

n points to the inside of the vessel. In contrast to the momentum flux of neutral particles

(α = n), which appears due to charge exchange with the surrounding neutral gas, and

which is spread over the wall, the momentum flux of charged particles (ions) is localized

at the divertor target plates. Before the sheath this latter flux is determined mainly by

parallel transport, v·n v·∂r/∂ϕ→ (v‖/B)2B·n B·∂r/∂ϕ. This means that the toroidal

reactive torque on the plasma from the vicinity of a particular strike point scales with

B ·n. Since B ·n has opposite signs for inner and outer strike points, the integral torque

onto the main plasma manifests itself as an imbalance between the toroidal momentum

fluxes carried by particles to the inner and outer divertor targets (see, e.g., Section 6.3

of Ref. [34] and Ref. [28]).

A simple expression for the intrinsic electromagnetic torque
(
TEM
ϕ

)
w

, which has

been omitted in Ref. [28], is obtained when the currents and charges induced by edge

instabilities in the wall are negligible. In this case, only the axisymmetric part of the

electromagnetic field resulting from averaging of this field over the fluctuation time scale

contributes to the electromagnetic momentum flux, because only the axisymmetric field

leads to a Lorentz force onto the axisymmetric currents in the wall. In a (quasi) steady

state, the pertinent part of the Maxwell stress tensor σ is essentially determined by the

magnetic field,

1√
g

∂

∂xi
√
gσiϕ =

1

4π
∇ ·BϕB =

1

c
∇ · ψpol j. (20)
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The integral intrinsic electromagnetic torque is then

(
TEM
ϕ

)
w

=
2π

c

∮
dl R

(
ψapol − ψpol

)
j · n

≈ 2π

c

∑

s

R2
s (n ·B)s

ls+∆l∫

ls−∆l

dl (l − ls) j · n, (21)

where the final expression corresponds to the current localized around divertor strike

points numbered here with subscript s. The term with ψapol in the first expression in (21)

provides a zero contribution to the integral due to ∇ · j = 0. It should be noted that

due to (20) and ∇ · j = 0, currents flowing along ψpol contours (in particular, parallel

currents) produce no steady state toroidal torque since they produce no toroidal j×B

force. Only currents which are closed across ψpol contours produce toroidal torque. This

relates to both the currents in the plasma and to the poloidal currents in the wall, which

close the plasma currents to the wall. The former produces the torque onto the plasma

and the latter the torque onto the wall, thus balancing the force onto the plasma by

third Newton’s law. In the equilibria studied here, ψpol increases from the private flux

region towards the scrape-off layer. Thus, currents in the wall (target plates), which

balance the positive NBI torque, flow in direction of increasing ψpol.

5. Summary

Computations of the NTV torque produced in ASDEX Upgrade by the TF ripple and

magnetic perturbations from ELM mitigation coils show an agreement between different

numerical (NEO-2, SFINCS) and semi-analytical models within their validity domains.

Specific differences are also observed and discussed. It is clearly seen that ions as well as

electrons contribute to the overall torque. It is remarkable that practically all quasilinear

transport regimes except for the highly collisional Pfirsch-Schlüter regime are realized

within the single discharge #30835, which is studied here. Various bounce averaged

transport regimes as well as resonant regimes are important in specific radial positions.

Those regimes have been identified by scans over collisionality and comparison with

analytical and semianalytical computations. The quasilinear approach used in NEO-2

is well justified for computations of the torque driven by RMPs but slightly overestimates

the torque from the TF ripple. The amplitude of the perturbations corresponding to the

TF ripple is already marginally outside the validity range for the quasilinear approach,

mainly because of the high toroidal mode number.

The NTV torque is produced mainly at the plasma edge where its density is

comparable with the NBI torque density. However, the integral NTV torque balances

only a quarter of the integral NBI torque. This emphasizes the importance of other

momentum sources unaccounted here. Some of these sources (e.g. the torque due to

fast particle losses) can be computed with present day models. An accurate description

of the other sources connected with resonant interaction of magnetic perturbations at
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rational flux surfaces is still an open problem. Thus, measurements of discharges where

the role of resonant interactions is minimized are of future interest.

The integral torque balance [28], which can be used to verify the modelling by

measurements outside the plasma, is discussed here in some more detail. For this

balance, in addition to measurements of the asymmetry of the momentum flux carried

by divertor fluxes [28], measurements of charge-exchange neutral spectra and of the

currents between the plasma and the wall (divertor target plates) are shown to be of

importance.

Besides the integral torque balance, an accurate description of the torque density

profile resulting from non-axisymmetric magnetic field perturbations would be an

important part of turbulent momentum transport studies, where the effect of turbulent

momentum flux dominating in
〈

Πr
[in]ϕ

〉
in equation (7) on the rotation velocity profile

is required in its pure form, i.e. the second term in l.h.s. of (7). The state of art of

existing models discussed here does already allow for such a description for the NTV

torque.
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